
2023 10

Ignacio Huitzil Velasco

Advanced Management of
Fuzzy Semantic

Knowledge

Director/es
Bobillo Ortega, Fernando

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Ignacio Huitzil Velasco

ADVANCED MANAGEMENT OF FUZZY SEMANTIC
KNOWLEDGE

Director/es

Bobillo Ortega, Fernando

Tesis Doctoral

Autor

2022

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Tesis Doctoral

Advanced Management of Fuzzy Semantic
Knowledge

Autor

Ignacio Huitzil Velasco

Director

Fernando Bobillo Ortega

Universidad de Zaragoza
Departamento de Informática e Ingenieŕıa de Sistemas

Escuela de Ingenieŕıa y Arquitectura

2022

“Advanced Management of Fuzzy Semantic Knowledge”

This thesis dissertation is submitted to the Department of Informatics and Systems
Engineering at University of Zaragoza, Spain in partial fulfilment of the requirements

for the degree of Doctor

Ignacio Huitzil Velasco

Zaragoza, 2022

To my mother, Silvia

“When the student is ready the teacher shall appear”

–Zen proverb

“Annus mirabilis” “wonderful year”

–John Dryden (poem 1667)

I

II

Acknowledgments

All my gratefulness and admiration to my advisor and great human, Fernando

Bobillo. For his patience, support, and time to show me how to do a rigorous research.

For teaching me to get better results and go on to the next target. His direction was

very important for this project, without his help this would have not been possible.

Thank you to Eduardo Mena to allow me to join the Distributed Information System

(SID) group. Thanks to every SID mate for showing me their professional work, a

friendly way to collaborate, and promoting the meetings and share with you the tapas

time.

Special thanks to Miguel Molina from Imperial College London for allowing me

to enjoy a four months research stay at the laboratory (Data Science Institute), for

making part of our research group, and have a new experience with a new project. I

do not forget the city and people I met. The coffee time and the research talks of Luis

Baca (Tronco). Thank you to my friend and English teacher George from Acton.

I appreciate the incredible job of the University Staff, Pilar Enguita and Ana

Gimeno for their help in the research management process. Also, thanks to the

International Staff, Asun Moreno, Araceli Bravo and Eva Pastor for their good job in

the scholarship process and all my gratitude to Universidad de Zaragoza and Santander

Universidades 2017-2018 who funded part of my PhD studies.

I do not forget my friends from Colegio Mayor Miraflores for their support in my

personal life and that show me the value of the life. Thank you to Enrique Cuesta,

Dani Alavedra, D. Antonio Schlatterr, Pablo López, Jesús Milan, Paco Baltar. Thanks

for shared their time in activities like mountain bike, walks, meditations, discussions,

travels, beers or tacos time.

A particular thank you to my friends Kuda and Caeh for reminding me not lose

the ground and go on to my dreams. Thank you to each of my friends that share and

enjoy the coffee break, lunchtime, beers, great talks, friends from laboratory and that

known in the way: Emanuele, Gadiel, Ilaria, Ciro, David, Mariapia, Heide, Bettina,

Daniel, Marta, Migue, Estefańıa, Giselle, Toño, and more.

To my friends from México who ask about me and help me in the other side of the

world: Pilar, Vero, Rube, Tere, Julio, Orlando, Fer, Jesús, Roberto (Torta), Humberto

and Doña Isabel.

Thanks to my lovely Mexican family, to my sisters (Anabel, Paloma, Xochitl, and

Engracia) and my nephews (Ángel, Gus, and Santi) little devils. Thank you to my

III

Parents (Silvia and Lázaro) by teaching me that the effort, honesty, dedication, daily

work is the success key in the professional work.

Finally, thanks to all the people that do not appear here. I am sorry, you are in my

mind.

“¡Gracias totales!” –Gustavo Cerati

IV

Abstract

In recent years, Semantic Web technologies (in particular, ontologies) have become

a de facto standard for knowledge representation. Managing uncertain semantic

knowledge is a challenging topic in many Artificial Intelligence applications. Indeed,

there are many scenarios and real-world domains where one must manage the

imprecision and noise of data collected from sensors, the vagueness of perceptual data,

the absence or incompleteness of data, the fuzziness due to ill-defined concepts, etc.

In this thesis, we will concentrate on the particular case of fuzzy semantic knowledge,

i.e., in the subfield of fuzzy ontologies. Although there has been a significant amount

of previous work, there are still many open problems.

Firstly, there are not enough examples of publicly available fuzzy ontologies,

suggesting that new techniques to build fuzzy ontologies are needed. Secondly, in

order to solve some reasoning tasks, some algorithms were proposed to prove that

some inference service is decidable, but there are no optimized reasoning algorithms.

Thirdly, no attention has been paid to the support of the increasingly important and

ubiquitous mobile devices. Last but not least, many of the developed fuzzy ontologies

are toy examples, and there is a notable lack of applications to real-world problems.

In this thesis, we develop some advanced strategies, algorithms, and tools to enhance

the management of fuzzy ontologies and fuzzy ontology reasoners. In particular, we

present new algorithms to learn fuzzy ontologies, novel reasoning algorithms, new

methods to manage imprecise knowledge on mobile devices, and the development of

real-world applications as a proof of concept of our contributions.

V

VI

Resumen

En los últimos años, las tecnoloǵıas de la Web Semántica (en particular, las

ontoloǵıas) se han convertido en un estándar de facto para la representación del

conocimiento. La gestión del conocimiento semántico incierto es un tema complejo en

muchas aplicaciones de Inteligencia Artificial. De hecho, existen múltiples escenarios

y dominios del mundo real en los que se debe gestionar la imprecisión y el ruido de los

datos recopilados por los sensores, la vaguedad de los datos percibidos, la ausencia o

incompletitud de los datos, la existencia de conceptos mal definidos, etc. En esta tesis

nos concentraremos en el caso particular del conocimiento semántico difuso, es decir,

en el subcampo de las ontoloǵıas difusas. Aunque ha habido una cantidad significativa

de trabajo previo, todav́ıa existen muchos problemas abiertos.

En primer lugar, no hay suficientes ejemplos de ontoloǵıas difusas disponibles

públicamente, lo que sugiere que se necesitan nuevas técnicas para construir ontoloǵıas

difusas. En segundo lugar, para resolver algunas tareas de razonamiento, se han

propuesto algoritmos que permiten demostrar que una tarea es decidible, pero no

existen algoritmos de razonamiento optimizados para resolverla. En tercer lugar, no

se ha prestado atenciónal soporte de los cada vez más importantes y omnipresentes

dispositivos móviles. Por último, pero no por ello menos importante, muchas de las

ontoloǵıas difusas desarrolladas son ejemplos académicos y existe una notable falta de

aplicaciones a problemas del mundo real.

En esta tesis, desarrollamos estrategias, algoritmos y herramientas avanzados para

mejorar la gestión de ontoloǵıas difusas y los razonadores para ontoloǵıas difusas. En

particular, presentamos nuevos algoritmos para aprender ontoloǵıas difusas, novedosos

algoritmos de razonamiento, nuevos métodos para gestionar conocimiento impreciso

en dispositivos móviles y el desarrollo de aplicaciones del mundo real como prueba de

concepto de nuestras contribuciones.

VII

VIII

Contents

1 Introduction 3

1.1 Objectives . 6

1.2 Structure of the thesis . 7

2 Background 9

2.1 Fuzzy sets and fuzzy logic . 10

2.1.1 Fuzzy sets . 10

2.1.2 Linguistic variables . 13

2.1.3 Fuzzy logical operators . 14

2.1.4 Fuzzy aggregation operators . 16

2.1.5 Fuzzy modifiers . 21

2.1.6 Defuzzification . 22

2.2 Semantic Web technologies . 23

2.2.1 Ontologies . 23

2.2.2 Description Logics . 25

2.2.3 Web Ontology Language (OWL) 30

2.2.4 Reasoning . 32

2.3 Fuzzy extensions of Semantic Web technologies 33

2.3.1 Fuzzy ontologies . 33

2.3.2 Fuzzy Description Logics . 35

2.3.3 Fuzzy OWL ontologies . 39

2.3.4 Fuzzy reasoning . 40

2.4 Clustering . 45

2.5 Mobile computing . 48

3 Contributions to fuzzy ontology learning 53

3.1 Learning local fuzzy datatypes . 53

3.2 Learning global fuzzy datatypes . 57

3.3 Learning consensual fuzzy datatypes 69

IX

4 Contributions to fuzzy ontology reasoning 87

4.1 Algorithms for instance retrieval and realization 87

4.1.1 Instance retrieval in fuzzy ontologies 89

4.1.2 Realization in fuzzy ontologies 93

4.2 Minimalist algorithms for flexible faceted instance retrieval 96

4.3 Similarity between individuals . 104

4.4 Matchmaking between individuals . 108

5 Contributions to the support of fuzzy ontologies on mobile devices 117

5.1 Transversal techniques . 117

5.1.1 Optimization of the reasoning 118

5.1.2 Distributed ontology files . 118

5.2 GimmeHop app: Beer recommender system 120

5.3 Serializable and incremental fuzzyDL 128

5.4 Learning fuzzy ontologies on mobile devices 133

5.4.1 Datil app . 133

5.4.2 Fudge app . 135

6 Practical contributions: real-world applications and evaluation 137

6.1 Gait recognition system . 138

6.1.1 Data capture . 140

6.1.2 Data preprocessing . 141

6.1.3 Fuzzy ontologies for gait recognition 145

6.1.4 Decision: gait recognition algorithm 148

6.1.5 Zaragoza dataset: OWL and RDF representation 152

6.1.6 Results and discussion . 153

6.2 Beer recommender system . 161

6.2.1 Fuzzy ontology . 162

6.2.2 Evaluation . 168

6.3 Blockchain smart contracts . 179

6.3.1 Ontologies . 181

6.3.2 Architecture . 182

6.4 Evaluation of the instance retrieval algorithm 187

6.4.1 Experimental setup . 187

6.4.2 Results and discussion . 189

6.5 Building Information Modeling . 193

6.5.1 Implementation . 194

X

6.5.2 Dataset . 198

6.5.3 Results and discussion . 202

6.6 Evaluation of Datil . 207

6.6.1 Running time on mobile devices 207

6.6.2 Lifestyle profile . 208

6.6.3 Fuzzy linguistic summaries . 214

6.7 Evaluation of Fudge aggregation . 215

6.8 Evaluation of the serializable and incremental fuzzyDL reasoner 217

6.8.1 Experimental setup . 217

6.8.2 Results and discussion . 218

7 Conclusions and future work 227

7.1 Fuzzy ontology learning . 227

7.2 Reasoning . 229

7.3 Mobile devices . 230

7.4 Real-world applications . 231

7.5 Future work . 234

Bibliography 253

A Publications 285

1

2

Chapter 1

Introduction

Semantic Web Technologies, or simply semantic technologies, is a term that includes a

wide range of technologies such as ontologies, linked data, or knowledge graphs. The

name comes from the fact that these technologies are part of the architecture proposed

for the Semantic Web [BHL01], an extension of the current Web proposed in 1991,

understandable not only by humans but also by machines. These technologies have

become a de facto standard for knowledge representation and have been successfully

used in numerous applications in different domains, often unrelated to the Web.

In this thesis, our interest will focus on ontologies, since in our understanding,

they are the ones which truly allow defining the semantics of knowledge, making

the annotation of data (which can be part of the Linked Data cloud or a

knowledge graph) possible. An ontology is defined as “an explicit specification of a

conceptualization” [Gru93]. Essentially, ontologies allow defining the vocabulary of

interest in a domain of interest in a formal way, understandable by machines, and

allowing automatic reasoning to discover implicit knowledge that necessarily follows

from explicitly represented knowledge.

The current expansion of Artificial Intelligence allows us to anticipate a high

interest in these technologies in coming years. On the one hand, the use of knowledge

is an important feature of many intelligent systems; for example, ontologies have

been used extensively to store the knowledge in expert systems [YDNG18]. On

the other hand, semantic technologies can be used as a common exchange format

between different systems or intelligent agents; for example, ontologies have been used

in multi-agent systems [HWDC09]. Both approaches are actually not disjoint: for

example, ontologies can be used in robotics to make local decisions by a robot and to

promote communication between robots [AS21]. Finally, the possibility of using these

technologies for eXplainable Artificial Intelligence (XAI) has been raised, for example,

by extending the current machine learning systems based on a black box model (such

as neural networks or deep learning) with ontologies that promote justifications of the

3

deductions [CWBM21].

Shortly after the birth of ontologies, the inability to adequately handle knowledge

affected by imprecision or vagueness was noticed. Such knowledge is inherent to many

real-world domains and is necessary to deal with notions such as expensive, large, or

recent. To overcome this limitation, fuzzy ontologies were proposed [Str13], extending

classical ontologies with elements from fuzzy set theory and fuzzy logic. Fuzzy sets

allow to represent the partial membership of an element to a set, and fuzzy logic

allows to manage propositions which are partially true and make deductions through

approximate reasoning [Zad65]. It also worth to note that fuzzy systems have also

proved to be very useful for XAI [CLDW21]. The emergence of fuzzy ontologies should

not come as a surprise, since it is similar to what happened with fuzzy databases [PB96],

fuzzy evolutionary computation [Ped97], or fuzzy neural networks [LL04], just to

cite some examples. Since both ontologies and fuzzy logic are useful for XAI, fuzzy

ontologies could be particularly useful in that task.

The most important formalism used as a theoretical foundation for ontologies

are Descriptive Logics (DLs) [BHLS17], a family of logics to represent structured

knowledge providing a good trade-off between expressivity and reasoning complexity.

In fact, the standard language for ontology representation, Web Ontology Language

(OWL), is equivalent to the DL SROIQ(D). The current version of OWL is OWL

2 [CGHM+08], and it includes several profiles or sublanguages with less expressivity

but better computational properties.

If we revisit the history of DLs, we can identify several phases [BHS07]:

− In phase 0, antecedents such as semantic networks or frames were developed.

− In phase 1, implementations of structural-type algorithms were developed, but

they only supported inexpressive DL languages.

− In phase 2, implementations of tableaux algorithms were developed, which

supported more expressive DLs.

− In phase 3, optimized implementations for very expressive logic were developed.

− In phase 4, “industrial strength DL systems employing very expressive DLs” were

developed, together with implementations specifically focused on less expressive

languages, such as OWL 2 profiles.

Fuzzy ontologies are based on fuzzy DLs [BCE+15]. Although there has been

considerable work in the field, we believe that there is still a long way to go until

4

they are as mature as classical ones. If we analyze the state of the art, we can conclude

that phases 3 and 4 have not yet finished.

Regarding phase 3, although there are several implementations of fuzzy ontology

reasoners, many of them focus on poorly expressive languages, and most of them do not

implement any optimization techniques. Therefore, we find it necessary to continue

delving into the design, implementation, and evaluation of optimized techniques for

reasoning in fuzzy ontologies.

Regarding phase 4, there are few real world applications. Furthermore, many of

the applications based on fuzzy ontologies (for example, [LJH05]) do not use a formal

language based on logic, so it is not possible to perform any reasoning, e.g., it is not

possible to automatically check that the knowledge is logically consistent. We believe

that there are numerous real-world applications that could benefit from the use of fuzzy

ontologies for knowledge representation and reasoning. In addition, these applications

would allow a more reliable evaluation of present and future contributions to research

in fuzzy ontologies.

A possible reason for the scarcity of real applications based on fuzzy ontologies

is the lack of techniques that simplify their construction. Despite the existence of

some tools such as fuzzy ontology editors or reasoners, there are few implemented tools

easing the learning of fuzzy ontologies. The main exception is the FuzzyDL-Learner

system [LS13], which uses inductive reasoning to learn a very specific type of axiom

(axioms of inclusion between classes). We think that the existence of new techniques

for learning fuzzy ontologies would increase the number of fuzzy ontologies, which in

turn would increase the number and size of current datasets.

In addition to the above, in recent times we have witnessed a huge spread of

mobile computing in our daily lives. In fact, most of today’s web traffic comes from

mobile devices. The progress and popularity of different mobile devices (smartphones,

tablets, etc.) have attracted a huge developer community that is releasing numerous

applications (or apps) continuously. There are currently many interesting applications

that take advantage of the user’s context (for example, their geographical location).

Even if its usefulness is beyond any doubt, it seems interesting to develop semantic

apps, incorporating semantic technologies to improve these applications by combining

information from ontologies (or fuzzy ontologies) with data obtained from mobile

sensors. Despite the importance of mobile computing, semantic techniques have had in

general little regard for mobile device support. In the specific case of fuzzy ontologies,

the interest has been virtually nonexistent. For example, although there are some

semantic reasoners available for mobile devices, the implementations are limited to

classical ontologies [BYBM15].

5

Given that mobile computing poses scenarios where uncertainty management is

necessary, we believe in the need to promote the support of fuzzy ontologies on

mobile devices, through the adaptation or development of fuzzy ontology management

techniques and tools for their use. This would allow increasing the intelligence of

existing apps and, at the same time, would result in an increase in the popularity of

fuzzy ontologies. It is also interesting to note that mobile devices, which typically have

limited resources compared to desktops or cloud servers, are a good example of the

importance of developing reasoning optimization techniques with fuzzy ontologies.

1.1 Objectives

Based on the previous discussion, we propose the following research questions:

Q1. Is it possible to develop new techniques helping to create fuzzy ontologies that

use machine learning algorithms or other intelligent techniques for learning some

of the elements of fuzzy ontologies?

Q2. Is it possible to improve the current reasoning algorithms for fuzzy ontologies

through the development of optimization techniques or the identification of new

reasoning tasks?

Q3. Is it possible to propose techniques and/or implement tools that improve the

support for fuzzy ontologies on mobile devices?

Q4. Is it possible to develop new real applications based on fuzzy ontologies that allow

us to evaluate the rest of our contributions?

The general objective of this thesis is to design, implement, and evaluate new

techniques for managing fuzzy semantic knowledge. According to this general objective,

we can identify the next specific objectives (each of them corresponding to a research

question):

O1. To propose innovative algorithms and strategies to help in the process of fuzzy

ontology building through the automatic learning of their components.

O2. To develop advanced techniques for reasoning with fuzzy ontologies, including

optimization techniques, design of new algorithms, and identification of novel

reasoning tasks.

O3. To develop techniques for managing fuzzy ontologies and reasoning with them on

mobile devices and to implement tools to promote the use of fuzzy ontologies on

such devices.

6

O4. To develop applications with real-world data as proof of concepts to validate the

proposed techniques.

1.2 Structure of the thesis

This dissertation is composed of eight chapters, including this introductory one. In

Chapter 2, we present the main previous concepts needed to understand our work. We

firstly provide some background on fuzzy logic and fuzzy set theory. Next, we overview

both classical ontologies and fuzzy ontologies. We also consider Description Logics and

reasoning services for both ontology types. Then, we describe some clustering methods

as they will be used in some of our learning approaches. To finish that chapter, we

discuss mobile computing and mobile app development.

The next four chapters detail our contributions. The contributions to learning

fuzzy ontologies are in Chapter 3. There, we detail our novel strategies to learn fuzzy

datatypes from the values of numerical data properties and from the definitions of

different experts. We also describe two implementations, Datil and Fudge.

Our contributions to reasoning with fuzzy ontologies are presented in Chapter 4.

On the one hand, we improve the existing solutions to solve some problems, namely

instance retrieval, realization, similarity between individuals, and fuzzy matchmaking.

On the other hand, we propose a new reasoning task, flexible faceted instance retrieval,

and solve it by means of a new reasoning algorithms.

Our contributions to the support of fuzzy ontologies on mobile devices can be found

in Chapter 5. This includes the identification of some techniques to manage ontologies

on devices with hardware limitations, a comparison of local and remote strategies for

reasoning, the development of a serializable and incremental version of a fuzzy ontology

reasoner promoting hybrid reasoning, and the development of tools and applications.

In particular, we develop a mobile app (GimmeHop) as a use case involving real-world

fuzzy data and adapt our tools to learn fuzzy ontologies (Datil and Fudge) to mobile

devices.

Chapter 6 compiles our practical contributions. On the one hand, we evaluate some

of the approaches discussed in the previous chapters. On the other hand, we present

several real use cases and applications to validate some of our contributions. These

real-world applications include a gait recognition system to identify people from the way

they walk, a mobile application to recommend beers considering the preferences of the

user (GimmeHop), a system to generate blockchain smart contracts considering partial

agreements, a system to categorize the lifestyle of people from real data obtained from

wearable devices, and a system to answer flexible queries over Building Information

7

Modeling (BIM) data.

Finally, Chapter 7 summarizes the main conclusions drawn in this thesis and

discusses some possible directions to follow on future researches.

8

Chapter 2

Background

In this chapter, we describe the necessary concepts for reading the rest of this

dissertation. We start by defining fuzzy set theory and fuzzy logic, introduced by

L. Zadeh in 1965 [Zad65]. Under this paradigm, we can represent imprecise knowledge

and perform approximate reasoning in a similar way to human thinking. For a long

time these proposals have been studied and developed with application in many fields,

including control systems and information processing.

Another important ingredient for our work are ontologies, that make it possible to

add semantics to the representation of the knowledge in an area of interest. Classical

ontologies cannot manage imprecise or fuzzy knowledge, but fuzzy ontologies are

considered as a good solution. With the help of special software tools called reasoners,

it is possible to compute implicit knowledge from explicit knowledge. Reasoners offer

many valuable reasoning services to the users.

Some of our contributions for fuzzy ontology learning will be based on clustering

machine learning techniques. Therefore, we will overview some centroid-based

algorithms. Additionally, because part of our developments are conceived for mobile

devices, we will provide some background on mobile computing.

This chapter is organized as follows. In Section 2.1 we recall some key concepts from

fuzzy set theory and fuzzy logic, including linguistic variables, logical and aggregation

operators, modifiers, and defuzzification methods. Section 2.2 overviews classical

ontologies, including Description Logics, the language OWL, and reasoning, covering

both traditional tasks and classical reasoners. The extensions to the fuzzy case are

recapped in Section 2.3, where we talk about fuzzy ontologies, fuzzy Description Logics,

fuzzy reasoners, and the language Fuzzy OWL 2. Next, Section 2.4 presents a brief

review of some selected clustering machine learning methods. Finally, Section 2.5

describes some key notions of mobile computing and mobile app development.

9

2.1 Fuzzy sets and fuzzy logic

2.1.1 Fuzzy sets

In classical set theory, an element x either belongs to (is a member of) a set A or not.

Thus, we can define a membership function µA as follows:

µA(x) =

{
1 ∀x ∈ A
0 ∀x /∈ A

Hence, in a classical set (known as crisp or non-fuzzy) the membership degrees of

the elements are in {0, 1}, which can be modeled using two-valued logic.

Example 1. Let us show an example from a domain that will be further developed

in Section 6.2: beers. A very important issue is selecting the best temperature for

enjoying a beer. Some recommendations from the Brewery Consortium are that beers

with high levels of alcohol can be warm, but beers with low levels should be cold. A cold

temperature can be defined between 2.5 and 7 degrees Celsius1. Figure 2.1 shows the

graphical example of the membership function for the classical set of cold beers. As

a specific case, Ámbar Especial is a beer of pale lager style that is usually served in

Zaragoza’s bars. An Ámbar Especial at 6o C belongs to the class of cold beers, but the

temperature raises to 7.2o C, it is not cold anymore (it is out of the class).

Figure 2.1: Crisp set about cold temperature (for a beer).

In fuzzy set theory elements can partially belong to a set, i.e., they can belong to

some degree. Let X be a set of elements called the reference set. A fuzzy subset A of X

is completely and uniquely characterized by a membership function µA(x), or simply

A(x), which assigns to every x ∈ X a degree of truth [KY95]. Usually, degrees of truth

1http://www.craftibeer.com/beer-focus/warm-or-cold-beer

10

http://www.craftibeer.com/beer-focus/warm-or-cold-beer

are real numbers in the unit interval, so the membership function is of the form

µA(x) : X → [0, 1]

When the membership function is evaluated, we get a membership degree in [0, 1]

or, equivalently, a degree of the truth for the sentence “x belongs to A”. Larger values

denote a higher degree of membership to the fuzzy set.

Example 2. Coming back to the example of beer temperatures, for human thinking, the

fact that Ámbar beer at 7.2o C is not cold at all, seems illogical. We can define a new

boundary using the membership function in Figure 2.2. Here, temperatures in [2.5, 7]

fully belong to the set, but for temperatures in (7, 8.5) there is a partial membership

degree to the set. Therefore, Ámbar beer at 7.2o C is cold with a membership degree of

0.86.

Figure 2.2: Fuzzy membership function of cold temperature (for a beer).

There are many ways to represent membership functions. In our work we will

restrict ourselves to the trapezoidal, triangular, left-shoulder, and right-shoulder

membership functions, although there are more possibilities such as the bell shaped

function (e.g., Gaussian function). Figure 2.3 illustrates such functions, where the X

axis corresponds to the universe of discourse and Y corresponds to the membership

degree in [0, 1]. For the sake of completeness, we provide the definition of each function

next:

Trapezoidal. The trapezoidal membership function P = trap(q1, q2, q3, q4)(x) is

characterized by four real numbers such that q1 ≤ q2 ≤ q3 ≤ q4. The definition

of the trapezoidal function is the next one:

− µP (x) = (x− q1)/(q2 − q1),∀x ∈ [q1, q2]

11

− µP (x) = 1,∀x ∈ [q2, q3]

− µP (x) = (q4 − x)/(q4 − q3),∀x ∈ [q3, q4]

− µP (x) = 0,∀x ∈ [K1, q1] ∪ [q4, K2]

Triangular. The triangular membership function T = tri(q1, q2, q3)(x) is

characterized by three real numbers where q1 ≤ q2 ≤ q3 and is defined as:

− µT (x) = (x− q1)/(q2 − q1),∀x ∈ [q1, q2]

− µT (x) = (q3 − x)/(q3 − q2),∀x ∈ [q2, q3]

− µT (x) = 0,∀x ∈ [K1, q1] ∪ [q3, K2]

Left-shoulder. The left-shoulder membership function L = left(q1, q2)(x) is

characterized by two real numbers where q1 ≤ q2 and defined as:

− µL(x) = 1,∀x ∈ [K1, q1]

− µL(x) = (q2 − x)/(q2 − q1),∀x ∈ [q1, q2]

− µT (x) = 0,∀x ∈ [q2, K2]

Right-shoulder. The right-shoulder membership function R = right(q1, q2)(x) is

characterized by two real numbers where q1 ≤ q2 and defined as:

− µR(x) = 0,∀x ∈ [K1, q1]

− µR(x) = (x− q1)/(q2 − q1),∀x ∈ [q1, q2]

− µR(x) = 1,∀x ∈ [q2, K2]

Notice that all the functions have been defined over an interval [K1, K2] rather

than over (−∞,∞). Clearly, a triangular function tri(q1, q2, q3) can be represented

as a trapezoidal function trap(q1, q2, q2, q3). If the right-shoulder and left-shoulder

functions are defined over a fixed range [K1, K2], then they can also be represented

using a trapezoidal function. For example, a left-shoulder function left(q1, q2) can be

represented as trap(K1, K2, q1, q2). Note also that a crisp number x (a single real

number) can be described as tri(x, x, x).

Finally, because in practice it is often difficult to define precisely the membership

function of a fuzzy set, classical fuzzy sets (or type-1 fuzzy sets) can be generalized: in

a type-2 fuzzy set, the membership function is a (type-1) fuzzy set [Zad75].

12

(a) (b)

(c) (d)

Figure 2.3: (a) Triangular function; (b) Trapezoidal function; (c) Left-shoulder
function; (d) Right shoulder function.

2.1.2 Linguistic variables

The paradigm of fuzzy logic also includes a revolutionary concept: linguistic variables.

In a linguistic variable, the values are not numerical but linguistic. The idea is to

use linguistic labels or words, described using a membership function µA, rather than

numerical values. In our beer scenario (Example 2), we can use the linguistic label

Cold, defined as µCold, as a possible value for the variable temperature.

Typically, the domain of a linguistic variable can be partitioned in several

membership functions, each of them associated to a linguistic label that is perfectly

understandable by humans. For example, Figure 2.4 shows how to partition the

domain of the temperatures in the context of beers using a left-shoulder function,

two triangular functions, a trapezoidal function and a right function, each of them

with a specific linguistic label. A first possibility is using descriptions such as

{VeryCold,Cold,Cool,Warm,VeryWarm}2. Another option is expressing how high

or low a value is, e.g., {VeryLow,Low,Neutral,High,VeryHigh}.
Linguistic variables make it possible to treat the imprecision that naturally appears

in natural language in a progressive mode.

Example 3. Returning to the beer domain, we can say that a beer with a temperature

of 6o C has:

− a Cold (or Low) temperature with a membership degree of µCold(x = 6) =

(tri(4, 5.5, 7))(x = 6) = 0.66, and

2http://www.craftbeerjoe.com/craft-beer-tips/craft-beer-temperature

13

http://www.craftbeerjoe.com/craft-beer-tips/craft-beer-temperature

− a Cool (or Neutral) temperature with a membership degree of µCool(x = 6) =

(trap(5.5, 7, 10, 11.5)(x = 6)) = 0.33 .

Figure 2.4: Fuzzy sets and linguistic labels about temperatures in the context of beers.

2.1.3 Fuzzy logical operators

In classic set theory, there are three main logical operators which are defined using a

bivalued logic (Boolean logic). These operations are intersection (conjunction), union

(disjunction), and complement (negation). A fourth logical operator is implication.

These operations can be extended to fuzzy sets, as we will show next.

Intersection. The intersection of two fuzzy sets is defined as

µA∩B(x) = µA(x)⊗ µB(x)

where ⊗ denotes a triangular norm or t-norm. Figure 2.5 (a) shows the intersection

(bold edge) of two triangular membership functions.

A t-norm is a function ⊗ : [0, 1] × [0, 1] → [0, 1] which satisfies the following

properties:

− Associativity: α⊗ (β ⊗ γ) = (α⊗ β)⊗ γ, ∀α, β, γ ∈ [0, 1]

− Commutativity: α⊗ β = β ⊗ α, ∀α, β ∈ [0, 1]

− Monotonicity: if β ≤ γ, then α⊗ β ≤ α⊗ γ, ∀α, β, γ ∈ [0, 1]

− Neutral element: α⊗ 1 = α, ∀α ∈ [0, 1]

It can be proved that in every t-norm 0 is an absorbing element: α ⊗ 0 = 0,∀α ∈
[0, 1].

Now we will define some important families of t-norms [KMP00]. A t-norm is:

14

− Continuous if it is continuous as a function in the [0, 1]2 interval.

− Strict if it is continuous and strictly monotone.

− Nilpotent if it is continuous and each α ∈ (0, 1) is its nilpotent element, i.e., there

is some natural number n such that α⊗ α⊗ . . . α (n times) = 0.

Union. The union of two fuzzy sets is defined as

µA∪B(x) = µA(x)⊕ µB(x)

where ⊕ denotes a t-conorm (also called s-norm). Figure 2.5 (b) shows the union

(bold edge) of two triangular membership functions.

A t-conorm is a function ⊕ : [0, 1] × [0, 1] → [0, 1] which satisfies the following

properties:

− Associativity: α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ, ∀α, β, γ ∈ [0, 1]

− Commutativity: α⊕ β = β ⊕ α, ∀α, β ∈ [0, 1]

− Monotonicity: if β ≤ γ, then α⊕ β ≤ α⊕ γ, ∀α, β, γ ∈ [0, 1]

− Neutral element: α⊕ 0 = α, ∀α ∈ [0, 1]

Complement. The complement of a fuzzy set is defined as:

µĀ(x) = 	µA(x)

where 	 denotes a negation function. Figure 2.5 (c) shows the complement (bold

edge) of a triangular membership function.

A negation is a function 	 : [0, 1]→ [0, 1] which satisfies the following properties:

− Monotonicity: if α ≤ β, then 	α ≥ 	β, ∀α, β ∈ [0, 1]

− Boundary conditions: 	0 = 1 and 	1 = 0

Implication. An implication is a function ⇒: [0, 1] → [0, 1] which satisfies the

following properties:

− Antitonicity: if α ≤ β, then α⇒ γ ≥ β ⇒ γ, ∀α, β, γ ∈ [0, 1]

− Monotonicity: if β ≤ γ, then α⇒ β ≤ α⇒ γ, ∀α, β, γ ∈ [0, 1]

15

(a) (b) (c)

Figure 2.5: (a) Intersection; (b) union; (c) complement of fuzzy sets.

− Boundary conditions: 0⇒ α = 1, α⇒ 1 = 1, 1⇒ 0 = 0, and ∀α ∈ [0, 1]

There are four main families (or fuzzy logics) commonly used to represent the logical

operations over fuzzy sets, namely Gödel logic, Lukasiewicz logic, Product logic [H9́8],

and standard fuzzy logic or Zadeh logic [Zad65]. Table 2.1 shows the definition of the

operators of these logics, There are other fuzzy logics and operators, but they are out

of the scope of this thesis.

Operator Gödel Lukasiewicz Product Zadeh
α⊗ β min(α, β) max(α + β − 1, 0) α · β min(α, β)
α⊕ β max(α, β) min(α + β, 1) α + β − α · β max(α, β)

	α

{
1 if α = 0

0 otherwise
1− α

{
1 if α = 0

0 otherwise
1− α

α⇒ β

{
1 if α ≤ β

β otherwise
min(1− α + β, 1)

{
1 if α ≤ β

β/α otherwise
max(1− α, β)

Table 2.1: Some popular families of fuzzy operators [BS09].

2.1.4 Fuzzy aggregation operators

Aggregation operators (AO) are mathematical operations that are employed to combine

different pieces of information. Given a domain D, an AO is a mapping @ : DK → D,

aggregating K values of K different criteria into a single one. Some typical examples

are the average, the weighted mean, the maximum, or the minimum. According to

the previous definition, t-norms and t-conorms can be thought as AOs, but it is very

common to restricts to AOs verifying the internality property, i.e.,

min(x1, . . . , xK) ≤ @(x1, . . . , xK) ≤ max(x1, . . . , xK) . (2.1)

16

Frequently, the AOs also use as a parameter a vector of weights W = [w1, . . . , wK]

such that wi ∈ [0, 1] and
∑K

i=1wi = 1.

We will consider two cases for the domain D, one in which we want to aggregate

numbers, and another one in which we want to aggregate i.e., D = [0, 1]. The second

case happens when D is a set of linguistic labels.

AOs for numerical values. We will start by discussing the aggregation of numerical

values. Without loss of generalization, we will assume D = [0, 1]. We can see the

information to aggregate as the partial degrees of fulfillment of K different criteria,

represented using fuzzy sets. Therefore, xi ∈ [0, 1], i ∈ {1, . . . , K}.
We will focus on AOs parameterized with a vector of weights and denote them as

@([w1, . . . , wK], [x1, . . . , xK]). The classical example of such an AO is weighted mean

(WMEAN) or weighted sum, defined as:

WS([w1, . . . , wK], [x1, . . . , xK]) =
K∑
i=1

wixi . (2.2)

A similar variant is the Strict weighted sum (SWS) which has 0 as an absorbing

element, that is, the aggregated value is 0 if some criterion is 0, and the weighted sum

of the arguments otherwise [BS16a]. Formally, SWS is defined as:

SWS([w1, . . . , wK], [x1, . . . , xK]) =

{
0 if

∏K
i=1 xi = 0∑K

i=1 wixi otherwise.
(2.3)

A famous family of AOs are the Ordered Weighted Averaging (OWA)

operators [Yag88]. An OWA operator is formally defined as:

OWA([w1, . . . , wK], [x1, . . . , xK]) =
K∑
i=1

wixσ(i) (2.4)

where σ(i) is a permutation such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(K), i.e., xσ(i) is the i-th

largest of the values x1, . . . , xK to be aggregated.

Note that in this operator the criteria are sorted in decreasing order. So, the weight

wi is associated with a ordered position of the aggregate xσ(i) rather than with xi. OWA

operators verify the internality property: the extreme cases of OWA operators coincide

with the minimum (a t-norm) and the maximum (a t-conorm) using W = [0, . . . , 0, 1]

and W = [1, 0, . . . , 0], respectively. This can be seen as a degree of pessimism or

optimism respectively: the closer to minimum, the more pessimistic. A measure of the

optimism associated to a weight vector W is orness [Yag88], formally defined as.

orness([w1, . . . , wK]) =
1

K − 1

K∑
i=1

(K − i)wi . (2.5)

17

Clearly, orness([w1, . . . , wK]) ∈ [0, 1]. The orness of the minimum t-norm is 0

e.g., orness([0, . . . , 0, 1]) = 0, and the orness of the maximum t-conorm is 1 e.g,

orness([1, 0, . . . , 0]) = 1.

An inconvenient with OWA operators is how to compute the weights. In

the literature one can find two popular solutions: (i) using quantifier-based

aggregation [Yag96] and (ii) applying recursive OWA [TY05].

1. Quantifier-based aggregation. The idea is to use fuzzy quantifiers (e.g., all,

most, at many possible, etc.) to compute the vector of weights. A proportional

fuzzy quantifier Q : [0, 1] → [0, 1] is a fuzzy subset such that for each r ∈ [0, 1],

the evaluation of Q(r) indicates the degree to which the proportion r satisfies a

linguistic quantifier Q. In [Yag91], Yager proposed Regular Increasing Monotone

(RIM) quantifiers, which satisfy the boundary conditions Q(0) = 0 and Q(1) =

1, and are monotone increasing, i.e., Q(x1) ≤ Q(x2) when x1 ≤ x2. A RIM

quantifier Q can be used to define an OWA weighting vector WQ of dimension

K, where each weight wi is computed as follows:

wi = Q(
i

K
)−Q(

i− 1

K
), i = 1, ..., K (2.6)

We can verify that wi ∈ [0, 1] and
∑K

i=1wi = 1.

For details about RIM quantifier families, we refer the reader to [XS08]. In this

thesis, we will consider the following functions to build RIMS:

− Right-shoulder function: Q(x) = right(q1, q2), with q1, q2 ∈ [0, 1] (defined

in Section 2.1.1).

− Power function: Q(x) = xq, with q ∈ (0,∞), as illustrated in Figure 2.6

(a).

(a) (b)

Figure 2.6: (a) Power function; (b) Linear function.

18

− Linear function: Q(x) = lin(q1, q2), with q1, q2 ∈ [0, 1], as shown in

Figure 2.6 (b). The linear function can be defined using a single parameter

q3 ≥ 0, e.g lin(q3), defined as follows:

– lin(q3)(x) = (q2/q1)x,∀x ∈ [0, q1]

– lin(q3)(x) = 1− (x− 1)(1− q2)/(1− q1),∀x ∈ [q1, 1]

where q1 = q3/(q3 + 1) and q2 = 1/(q3 + 1).

2. Recursive OWA. The idea is starting from a desired value for the orness of the

OWA operator and calculate the weights in two recursive ways, a Left Recursive

Form (LRF) or a Right Recursive Form (RRF). The original formulation of the

OWA (Eq. 2.4) can be rewritten to obtain the LRF as follows:

OWA([wK1 , . . . , w
K
K], [x1, . . . , xK]) =

vKL ·OWA([wK−1
1 , . . . , wK−1

K−1], [xσ(1), . . . , xσ(K−1)]) + (1− vKL) · xσ(K) ,
(2.7)

where the weights are defined as:

vKL =
(K − 1) · orness

(K − 2) · orness + 1

wKi = vKL · wK−1
i , i ∈ {1, . . . , K − 1}

wKK = 1− vKL .

(2.8)

The base case happens when K = 2:

OWA([w2
1, w

2
2], [x1, x2]) = v2

L · xσ(1) + (1− v2
L) · xσ(2) (2.9)

In the same way, the original equation of OWA (Eq. 2.4) can be rewritten to

obtain the RRF as follows:

OWA([wK1 , . . . , w
K
K], [x1, . . . , xK]) =

(1− vKR) · xσ(1) + vKR ·OWA([wK−1
2 , . . . , wK−1

K], [xσ(2), . . . , xσ(K)]) ,
(2.10)

where the weights are defined as:

vKR =
(K − 1)(1− orness)

(K − 2)(1− orness) + 1

wKi = vKR · wK−1
i , i ∈ {1, . . . , K − 1}

wKK = 1− vKR .

(2.11)

AOs for fuzzy linguistic values. In this case the AOs aggregate fuzzy linguistic

numbers d1, . . . , dK rather than numerical values. In the work [Xu08] several methods

to aggregate fuzzy linguistic numbers are reviewed. We are interested in four of them:

convex combination, linguistic OWA, weighted mean (WMEAN), and fuzzy OWA

(FOWA). Again, we will assume a vector of weights W and a permutation σ over

fuzzy membership functions or numerical values such that dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(K).

19

1. Convex combination. This operator was proposed in [DVV93]. It assumes a

fixed vector of possible values for the linguistic variables L = {l1, . . . , lL} such

that li < lj if i < j.

The convex combination has a recursive definition. Indeed, we will call it

CONV–RRF, to make it explicit that it corresponds to a Right Recursive Form.

Let us start with the base case where we want to aggregate K = 2 fuzzy

values di ∈ L. The CONV–RRF of a vector [d1, d2] given a vector of weights

W = [w1, w2], is defined as

CONVRRF([w1, w2], [d1, d2]) = lc (2.12)

where dσ(1) = lj, dσ(2) = li, c = i+round(wσ(1) ·(j−i)). Note that the permutation

is applied both to the weights and to the values to be aggregated, so each wi is

associated to the value di. Now, if K > 2, then:

CONVRRF([w1, . . . , wK], [d1 . . . , dK]) =

CONVRRF
(

[wπ(1), 1− wπ(1)],[
dπ(1),CONVRRF([β2, . . . , βk], [dπ(2), . . . , dπ(K)])

])
,

(2.13)

where βh = wπ(h) /
∑K

j=2wπ(j), h = 2, . . . , K.

2. Linguistic OWA. The linguistic OWA aggregation operator is a variation of

CONV–RRF using a ordering step as in standard OWA [HHVV96]. As with

CONV–RRF, we will call it LOWA–RRF to make it explicit that it is a Right

Recursive Form. LOWA–RRF is defined as:

LOWARRF([w1, . . . , wK], [d1 . . . , dK]) =

CONVRRF([w1, . . . , wK], [dσ(1), . . . , dσ(K)]) .
(2.14)

Now, as in classical OWA, each weight wi is not associated to a value di.

3. WMEAN. It is an extension of the weighted mean aggregation operator but

considering trapezoidal functions [DW87]. Given K trapezoidal functions di =

trap(qi1, q
i
2, q

i
3, q

i
4) and a vector of weights W of size K, the result is:

WMEAN([w1, . . . , wK], [d1, . . . , dK]) =

trap
(K∑
i=1

wiq
i
1,

K∑
i=1

wiq
i
2,

K∑
i=1

wiq
i
3,

K∑
i=1

wiq
i
4

)
.

(2.15)

Now, the weights describe the importance of each number of K. An interesting

property is that, in general, the result of the aggregation is not any of the original

aggregated values.

20

4. FOWA. It is a variant of WMEAN with a reordering step [CC03], so that w1 is

associated to the largest trapezoidal function. Given a permutation σ such that

dσ(i) denotes the i-th largest trapezoidal function, FOWA is defined as:

FOWA([w1, . . . , wK], [d1, . . . , dK]) =

trap
(K∑
i=1

wiq
σ(i)
1 ,

K∑
i=1

wiq
σ(i)
2 ,

K∑
i=1

wiq
σ(i)
3 ,

K∑
i=1

wiq
σ(i)
4

)
.

(2.16)

It is important to mention that CONV–RRF, LOWA–RRF, and FOWA require

an ordering between fuzzy linguistic labels. Delgado et al. [DHHVM98] propose the

following one:

d1 ≥ d2 iff transform(d1) ≥ transform(d2) , (2.17)

where transform(d) is a transformation function from a linguistic domain

(represented by trapezoidal functions) to a numerical domain defined as:

transform(trap(q1, q2, q3, q4)) =
8(q3 + q2)H + (q4 + q1)H + 8(H + q3q4 − q1q2)

24H
,

(2.18)

where H = q4 + q3 − q2 − q1 and q1 = q2 = q3 = q4 is assumed not to hold. Other

sorting methods are described in [SSG08, KV14].

2.1.5 Fuzzy modifiers

Fuzzy modifiers, commonly referred as fuzzy hedges, change the shape of a fuzzy

set [HC76]. In other words, they transform the membership function into another

one. Some examples of modifiers are very, likely, more or less, few, etc. By applying

modifiers to the membership functions of the linguistic labels we can form new terms

such as very hot, or more or less cold, which is useful to model natural language.

Formally, a modifier m is defined using a function

fm : [0, 1]→ [0, 1] .

For instance, we may define fvery(x) = x2 and ffew =
√
x. Two famous families or

fuzzy modifiers are increasing, if fm(x) ≥ x, and weakening, if fm(x) ≤ x. For instance,

very is weakening and few is increasing.

Example 4. For example, now it is possible to express the fuzzy set of very cold

temperature in the context of beers. If we have an Ámbar Especial beer with a

temperature of that x = 6o C, we compute the degree of being very cold as:

µveryCold(x) = fvery(µCold(x)) = µCold(x)2 = (tri(4, 5.5, 7)(x))2 = (0.66)2 = 0.43

21

.

Some typical examples of fuzzy modifiers are:

− Linear modifiers of the form lin(q1, q2), defined in Section 2.1.4.

− Triangular modifiers of the form fm(x) = tri(q1, q2, q3)(x), defined in

Section 2.1.1, but restricting to the case q1, q2, q3 ∈ [0, 1].

2.1.6 Defuzzification

Fuzzification is the process to replace a real number with a fuzzy set. The inverse

process is defuzzification, which converts a fuzzy set into a single crisp number. There

are many techniques to defuzzify a fuzzy set. For an overview we refer the reader

to [LK99, SVM02]. Here, we will focus on some of them.

To start with, let us define two important families of defuzzification techniques. A

distributed technique treats the fuzzy set as a distribution for which the average value

is evaluated, whereas a maxima technique strictly focus on the elements belonging with

the highest membership degree [SVM02].

Let us recall that the membership function µA(x) is the evaluation of A with x ∈ X.

The core of a fuzzy set A, denoted core(A), is defined as the set of elements of the

universe of domain with the highest degree of membership to A3:

core(A) = {x ∈ X | ∀y ∈ X : µA(y) ≤ µA(x)}

Some common defuzzification techniques are the following ones:

Small of Maxima (SOM). The output is smallest element (value) with the

maximum evaluation of the membership function.

SOM(µA) = min core(µA) (2.19)

Largest of Maxima (LOM). The output is largest element (value) with the

maximum evaluation of the membership function.

LOM(µA) = max core(µA) (2.20)

Middle of Maxima (MOM). It is computed from the two previous values:

MOM(µA) =
SOM + LOM

2
(2.21)

3Please note that the core is often defined as the set of the elements having degree of membership
equal to 1.

22

Center of Gravity (COG). The output is a centroid of the fuzzy set, defined as:

COG(µA) =

∑n
i=1 µA(xi)xi∑n
i=1 µA(xi)

(2.22)

Example 5. Given the trapezoidal membership function shown in Figure 2.7, the core

set is core = [a, b]. Therefore, we obtain SOM = a, LOM = b, MOM = m = (a+b)/2

and COG = c (using a general formula to get the centroid in the Cartesian system).

Figure 2.7: Some defuzzification methods [Ros10].

Note that if there is a unique maximum, SOM, LOM, and MOM give the same

result. It is important to mention that COG is a distributed technique, whereas SOM,

LOM and MOM are called maxima techniques.

2.2 Semantic Web technologies

2.2.1 Ontologies

Ontologies have a philosophical origin, specifically in the branch of metaphysics, with

the meaning of the study of being in general. The first to treat it were Plato and

Aristotle who created a hierarchical categorization of species as entities and features to

group them (the tree of Porphyry, called scale of being). However, in computer science

an ontology is widely used for Artificial Intelligence systems with a different meaning.

Here the ontology is a representation that permits modeling the world. In the literature

there are many ontology definitions. Some of them are the following ones:

− The most common definition of an ontology is by Gruber (1993) as “an explicit

specification of a conceptualization” [Gru93].

− Guriano et al. (1995) define the ontology as “a logical theory which gives an

explicit, partial account of a conceptualization” [GG95].

− Borst (1997) considered Gruber’s definition too broad and modified it as “a formal

specification of a shared conceptualization” [Bor97].

23

− In 1998 Studer et al. [SBF98] interpreted Gruber and Bort’s definitions:

– “Conceptualization refers to an abstract model of some phenomenon in the

world by having identified the relevant concepts of that phenomenon.

– Explicit means that the type of concepts used, and constraints on their use

are explicitly defined.

– Formal refers to the fact that the ontology should be machine-readable.

– Shared reflects the notion that an ontology captures consensual knowledge,

that is, it is not private of some individual, but accepted by a group”.

− Noy et al. (2001) defined an ontology as “a formal explicit description of concepts

in a domain of discourse, properties of each concept describing various features

and attributes of the concept, and restrictions on slots” [NM01].

We can see different perspectives of the ontologies, from philosophical to computational.

In general, an ontology offers a common vocabulary, a terminology, a conceptual

model, and reasoning capabilities. Ontologies offer advantages such as promoting

knowledge share and reuse. They are easy to read and understand for machines

(software applications) and humans (natural form). They also provide a division of

the domain knowledge and the application level, particularly useful for intelligent

applications.

The main ingredients of ontologies to model a domain are the following ones:

− Concepts/classes : They describe the concepts within the domain. Classes are

unary predicates. For example, Beer class represents all beers. All classes are

structured in a class hierarchy (superclass-subclass) or taxonomy. For example,

Lager (a beer family made through a bottom fermentation process) is a subclass

of Beer.

− Instances/individuals : They represent particular elements of the concepts in the

ontology. For instance, the Sol beer is an instance of the Lager class.

− Datatypes/concrete domains : They are elements that do not belong to the

represented domain, but rather to a different domain that is already structured

and whose structure is already known to the machine (e.g. the machine already

knows that 1 < 2). Possible datatypes include numbers (real, rational, integer,

non-negative, etc.), strings, Booleans, dates, times, or, more generally, XML

literals [BCE+15].

24

− Properties/roles : They represent binary predicates, and represent the

relationships between a pair of elements in the domain. There are two types

of properties: object properties (or abstract roles) relate a pair of individuals,

and data properties (or concrete roles)4 link an individual with a data value (of a

concrete datatype). For example, the object property brewedBy links a beer (such

as Sol) and a brewery (such as Cuauhtémoc-Moctezuma-Heineken). Moreover, the

data property ABV (Alcohol By Volume) links a beer (such as Sol) with a real

number (4.5) denoting its alcohol degree.

− Axioms : They are constraints or restrictions to be verified by the elements of the

ontology. The axioms define how to combine the previous elements to represent

the knowledge of some concrete domain. They also make it possible to infer new

knowledge implicitly represented in the ontology.

The traditional way to represent knowledge using databases has some analogies

with ontologies but there are also notable differences. We will mention three of them:

1. Ontology axioms behave like inference rules rather than database constraints.

2. Ontologies follow an Open World Assumption, under which unknown information

is actually treated as unknown. Databases follow a Closed World Assumption

where unknown information is treated as false.

3. Unique Name Assumption (UNA) is common in databases, which require to

identify each individual with a unique name. However, ontologies do not assume

UNA, so individuals may have more than one name.

2.2.2 Description Logics

Description Logics (DLs) are “a family of knowledge representation languages that

can be used to represent knowledge of an application domain in a structured and

well-understood way” [BHLS17]. Their logic-based semantics makes it possible

reasoning to discover implicit knowledge. Each DL is usually a subset of First Order

Logic (FOL). In the following, we delineate the syntax, semantic and reasoning tasks.

Syntax. DLs have three elements: individuals (denoted a), concepts or classes

(denoted C), and roles or properties (denoted R if they are object properties, or T

if they are data properties). Complex concepts (e.g., MexicanBeer) can be built from

4In this thesis, we will also call them attributes or, if they are functional, features.

25

other concepts, roles, and individuals using different constructors, depending on the

expressivity of the language.

A DL describes the knowledge using an ontology or Knowledge Base (KB) O =

〈A, T ,R〉, including an Assertional Box or ABox (denoted A), a Terminological Box

or TBox (denoted T), and a Role Box or RBox (denoted R). The concrete axiom types

depend on the expressivity of the DL.

− An ABox includes a finite set of axioms about individuals (known as facts). ABox

axioms include concept assertions and role assertions. A concept assertion of the

form a : C states than an individual a is part of concept C. A role assertion of

the form (a, b) : R denotes the relationship of two individuals a and b via the role

R.

Example 6. Examples of concept assertions are the axiom Sol : Lager, stating

that Sol is a beer of the Lager family, and Cuauhtémoc–Moctezuma–Heineken :

Brewery. The role assertion (Sol,Cuauhtémoc–Moctezuma–Heineken) : brewedBy

says that Sol is brewed by Cuauhtémoc-Moctezuma-Heineken plant. The previous

axioms can be represented in the following ABox:

A = {Sol : Lager; Cuauhtémoc–Moctezuma–Heineken : Brewery;

((Sol,Cuauhtémoc–Moctezuma–Heineken) : brewedBy) }

− A TBox contains a finite set of axioms about concepts. Typically, they include

General Concept Inclusions (GCI) axioms which are of the form C v D, meaning

that C is subsumed by D. Note that this implies that the individuals of C belong

to D, but not vice versa. Another axiom type is the concept equivalence (or

concept definition) C ≡ D which is a shortcut for the pair of inclusions C v D

and D v C. Now, individuals in C also are in D and vice versa. TBoxes also

include other useful syntactic sugar axioms (such domain/range axioms).

Example 7. The axiom Lager v Beer states that Lager is a

specific style of Beer, while the axiom HeinekenMexicanBeer ≡ Beer u
∃breweedBy.Cuauhtémoc–Moctezuma–Heineken defines HeinekenMexicanBeer

as those beers brewed by that Mexican plant. That TBox can be expressed as:

T = {Lager v Beer;

HeinekenMexicanBeer ≡ Beeru∃breweedBy.Cuauhtémoc–Moctezuma–Heineken}

26

− An RBox contains a finite set of axioms about roles. Typically, they include

subproperty axioms and property equivalences or (or definitions). More expressive

language can include transitivity axioms, reflexivity axioms . . .

DLs also allow to represent concrete quantities for real-world applications, for

example, the price of an item or the alcohol level of a beer. This is possible by using a

concrete domain or datatype theory D = 〈∆D, ·D〉, where ∆D is the datatype domain

(e.g the set of positive integer numbers) and ·D the set of datatype predicates d.

Every datatype predicate d ∈ ·D is associated with an arity n and an n-ary predicate

dD ⊆ ∆n
D [LAHS05]. In other words, ·D assigns to each data value an element of ∆D.

For example, ≤1 is a datatype unary predicate defined over the set of positive reals.

Therefore, ∃ABV. ≤1 denotes the set of things with no more than 1 alcohol degree.

Typically, every DL is named by using a string of capital letters which identify

the constructors of the logic and therefore characterize its complexity. The standard

language for knowledge representation OWL 2 DL is equivalent to the DL SROIQ(D).

Table 2.2 shows the syntax of concepts, roles, and axioms in OWL 2 DL, where n

is a natural number. There are some additional restrictions to ensure decidability of

the language [CGHM+08] (some roles are required to be simple, the use of universal

role is restricted, RIAs must be regular, and inverse functionality of data properties is

restricted), but we omit them here for simplicity. ABox axioms are (A1)–(A7), TBox

axioms are (A8)–(A14), and RBox axioms are (A15)–(A30).

Semantics. The semantics of a DL is formally defined using an interpretation.

Specifically, an interpretation is a pair I = (∆I , ·I) where ∆I denotes a non-empty set

(the domain of interpretation) and ·I denotes a mapping function (or interpretation

function) which maps:

− to each individual a an element aI ∈ ∆I ,

− to each atomic concept A a function AI : ∆I → {0, 1},

− to each object property R a function RI : ∆I ×∆I → {0, 1}, and

− to each data property T a function T I : ∆I ×∆D → {0, 1}.

In summary, individuals are interpreted as objects, concepts as sets, and roles as

binary relations. Note that either an individual belongs to an atomic concept A or

not; and that a pair of individuals are either related via R or not. Table 2.3 shows the

semantics of complex concepts, complex roles, and axioms in OWL 2 DL.

An interpretation I is a model of an ontology O (denoted I |= O) iff it satisfies all

the axioms in the ABox A, TBox T and RBox R in O.

27

Concept
(C1) A Atomic concept
(C2) > Top concept
(C3) ⊥ Bottom concept
(C4) C1 u C2 Conjunction
(C5) C1 t C2 Disjunction
(C6) ¬C Negation
(C7) ∀R.C Universal restriction
(C8) ∃R.C Existential restriction
(C9) ∃R.{a} Value restriction
(C10) ∀T.d Concrete universal restriction
(C11) ∃T.d Concrete existential restriction
(C12) ∃T.{v} Concrete value restriction
(C13) {a1, . . . , an} Nominal
(C14) ≥ n R.C At-least cardinality restriction
(C15) ≤ n R.C At-most cardinality restriction
(C16) = n R.C Exact cardinality restriction
(C17) ≥ n T.d Concrete at-least restriction
(C18) ≤ n T.d Concrete at-most restriction
(C19) = n T.d Concrete exact restriction
(C20) ∃R.Self Local reflexivity

Role
(R1) RA Atomic role
(R2) U Universal role

Axiom
(A1) a :C Concept assertion
(A2) (a1, a2) :R Role assertion
(A3) (a1, a2) :¬R Negative role assertion
(A4) (a, v) :T Concrete role assertion
(A5) (a, v) :¬T Negative concrete role assertion
(A6) a1 = a2 Equality assertion
(A7) a1 6= a2 Inequality assertion
(A8) C1 v C2 General Concept Inclusion (GCI)
(A9) C1 ≡ C2 Concept equivalence
(A10) dis(C1, . . . , Cn) Disjoint concepts
(A11) dom(R,C) Domain role axiom
(A12) ran(R,C) Range role axiom
(A13) dom(T,C) Domain concrete role axiom
(A14) ran(T,d) Range concrete role axiom
(A15) R11 . . . R1n v R2 Role Inclusion Axiom (RIA)
(A16) R1 ≡ R2 Role equivalence
(A17) T1 v T2 Concrete RIA
(A18) T1 ≡ T2 Concrete role equivalence
(A19) inv(R1, R2) Inverse roles
(A20) fun(R) Functional role
(A21) fun(T) Functional concrete role
(A22) invfun(R) Inverse functional role
(A23) invfun(T) Inverse functional concrete role
(A24) trans(R) Transitive role
(A25) dis(R1, . . . , Rn) Disjoint roles
(A26) dis(T1, . . . , Tn) Disjoint concrete roles
(A27) ref(R) Reflexive role
(A28) irr(R) Irreflexive role
(A29) sym(R) Symmetric role
(A30) asy(R) Asymmetric role

Table 2.2: Syntax of concepts, roles, and axioms in OWL 2 DL.

28

Complex concept
(C2) ∆I

(C3) ∅
(C4) CI1 (x) ∩ CI2 (x)
(C5) CI1 (x) ∪ CI2 (x)
(C6) ∆I \ CI
(C7) {x ∈ ∆I :∀y ∈ ∆I , (x, y) /∈ RI or y ∈ CI}
(C8) {x ∈ ∆I :∃y ∈ ∆I , (x, y) ∈ RI and y ∈ CI}
(C9) RI(x, aI)
(C10) {x ∈ ∆I :∀v ∈ ∆D, (x, v) /∈ T I or v ∈ dD}
(C11) {x ∈ ∆I :∃v ∈ ∆D, (x, v) ∈ T I and v ∈ dD}
(C12) T I(x, vD)
(C13) {aI1 , . . . , aIm}
(C14) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI and y ∈ CI}| ≥ n}
(C15) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI and y ∈ CI}| ≤ n}
(C16) {x ∈ ∆I : |{y ∈ ∆I : (x, y) ∈ RI and y ∈ CI}| = n}
(C17) {x ∈ ∆I : |{v ∈ ∆D : (x, v) ∈ T I and v ∈ dD}| ≥ n}
(C18) {x ∈ ∆I : |{v ∈ ∆D : (x, v) ∈ T I and v ∈ dD}| ≤ n}
(C19) {x ∈ ∆I : |{v ∈ ∆D : (x, v) ∈ T I and v ∈ dD}| = n}
(C20) {x ∈ ∆I : (x, x) ∈ RI}

Complex role
(R2) ∆I ×∆I

Axiom
(A1) aI ∈ CI
(A2) (aI1 , a

I
2) ∈ RI

(A3) (aI1 , a
I
2) 6∈ RI

(A4) (aI , vD) ∈ T I
(A5) (aI , vD) 6∈ T I
(A6) aI1 = aI2
(A7) aI1 6= aI2
(A8) CI1 ⊆ CI2
(A9) CI1 = CI2
(A10) ∀i, j ∈ {1, . . . , n}, i < j, CIi ∩ CIj = ∅
(A11) {x ∈ ∆I :∃y ∈ ∆I , (x, y) ∈ RI} ⊆ CI

(A12) ∀x, y ∈ ∆I , (x, y) 6∈ RI or y ∈ CI
(A13) {x ∈ ∆I :∃v ∈ ∆D, (x, v) ∈ T I} ⊆ CI

(A14) ∀x ∈ ∆I ,∀v ∈ ∆D, (x, v) /∈ T I or v ∈ dD

(A15) RI11 ◦ · · · ◦RI1n ⊆ RI

(A16) RI1 = RI2
(A17) T I1 ⊆ T I2
(A18) T I1 = T I2
(A19) ∀x, y ∈ ∆I , (x, y) ∈ RI1 iff (y, x) ∈ RI2
(A20) ∀x, y, z ∈ ∆I , (x, y) ∈ RI and (x, z) ∈ RI imply y = z
(A21) ∀x ∈ ∆I ,∀v1, v2 ∈ ∆D, (x, v1) ∈ T I and (x, v2) ∈ T I imply v1 = v2

(A22) ∀x, y, z ∈ ∆I , (x, y) ∈ RI and (z, y) ∈ RI imply x = z
(A23) ∀x, y ∈ ∆I ,∀v ∈ ∆D, (x, v) ∈ T I and (y, v) ∈ T I imply x = y
(A24) ∀x, y, z ∈ ∆I , (x, y) ∈ RI and (y, z) ∈ RI imply (x, z) ∈ RI
(A25) ∀i, j ∈ {1, . . . , n}, i < j,RIi ∩RIj = ∅
(A26) ∀i, j ∈ {1, . . . , n}, i < j, T Ii ∩ T Ij = ∅
(A27) ∀x ∈ ∆I , (x, x) ∈ RI
(A28) ∀x ∈ ∆I , (x, x) 6∈ RI
(A29) ∀x, y ∈ ∆I , (x, y) ∈ RI implies (y, x) ∈ RI
(A30) ∀x, y ∈ ∆I , (x, y) ∈ RI implies (y, x) 6∈ RI

Table 2.3: Semantics of complex concepts, complex roles, and axioms in OWL 2 DL.

29

2.2.3 Web Ontology Language (OWL)

The Semantic Web architecture requires a language to model knowledge using

ontologies [BHL01]. The current standard is the Ontology Web Language (OWL),

which is a recommendation of the World Wide Web Consortium (W3C) since

2004 [W3C04b].

OWL is designed on top of other important technologies in the Semantic Web stack,

such as the eXtensible Markup Language (XML), the Resource Description Framework

(RDF), and RDF Schema (RDFS).

− XML allows user to create their own tags and add arbitrary structure to

documents, but it does not support semantics.

− RDF is a standard model for data interchange [W3C04a]. It uses a triple

representation (s, p, o) where s is a subject (a resource), o an object (a resource

or literal) and p is a predicate or property. For instance, (Ignacio, likes,

mexicanTacos) is a triple with a straight-forward meaning: “Ignacio likes Mexican

tacos”. RDF have several syntaxes, and it is possible to represent triples using

XML tags. Every element of a RDF triple is identified in the web by an Uniform

Resource Identifier (URI). Sometimes, URI fragments are presented (omitting

the prefix with the namespace) rather than complete URIS, as in our example.

RDF triples form a graph of data.

− SPARQL5 is the standard query language for RDF [PAG06], to get valuable

information from data graphs.

− RDFS is an extension of RDF with a specific vocabulary to represent subclasses,

subproperties, domain, and range restrictions.

However, OWL offers an additional vocabulary and a formal semantics to describe

more complex ontologies. As already mentioned, OWL is based on DLs. For details

about OWL syntax and semantics, we refer the user to [W3C04c].

The first version of OWL, sometimes called OWL 1, offers three sublanguages that

can be used for specific implementations and requirements, namely OWL Full, OWL

DL and OWL Lite. Each of them has a different expressivity, and therefore reasoning

has a different complexity.

5https://www.w3.org/TR/rdf-sparql-query/

30

https://www.w3.org/TR/rdf-sparql-query/

− OWL Full considers the maximum expressiveness. It was designed to be

compatible with RDFS, but reasoning becomes undecidable. Therefore, this level

is theoretically interesting but hardly interesting in practice.

− OWL DL offers a trade-off between expressiveness and complexity, as reasoning

is decidable now. OWL DL is equivalent to the DL SHOIN (D).

− OWL Lite has the least expressiveness level, so reasoning with it has a smaller

computational complexity. OWL Lite is equivalent to the DL SHIF(D).

The current OWL version is the standard ontology language called

OWL 2 [W3C12a, CGHM+08]. OWL 2 is based on the Description Logic SROIQ(D)

has new features such as extra syntactic sugar, extended datatype support, simple

meta-modelling, qualified cardinality constructors, more role axioms, and extended

annotations.

There is an undecidable version of the language called OWL 2 Full, but in practice

people usually mean the decidable version of the language OWL 2 DL when referring

to OWL 2. W3C also recommends three sublanguages (tractable profiles) of OWL 2,

namely OWL 2 EL, OWL 2 QL and OWL 2 RL [W3C12b]. These profiles have unique

properties but all of them limit the expressiveness power for the sake of computational

efficiency, having a polynomial time reasoning complexity.

− OWL 2 EL is particularly useful in applications requiring a large number of

classes and/or properties. Here, reasoning requires polynomial time in relation

with the ontology size. The EL acronym reflects that this profile is based on the

DL EL++.

− OWL 2 QL is suitable for applications that manage a large amount of instance

data, as they facilitate accessing and querying relational databases. The QL

acronym reflects that this profile can be translated to a Query Language.

OWL 2 QL is based on the DL-Lite family of Description Logics.

− OWL 2 RL is useful for domains needing scalable reasoning, which can be

performed using rule-based reasoning engines. The RL acronym actually means

Rule Language.

OWL 2 represents the axioms about classes, properties, and individuals of the

domain using different syntaxes [W3C12a]:

− RDF/XML is the primary syntax, and is designed for data interchange.

31

− OWL/XML format is backwards compatible with XML tools.

− Functional syntax makes it easier to understand the formal structure of the

ontologies.

− Turtle is a very concise syntax for RDF but can also be used for OWL [W3C14].

− Manchester syntax is one of the most compact and human-readable

formats [HDG+06, W3C09a].

2.2.4 Reasoning

Reasoning is probably the main advantage of DLs, as it plays an important role both

in the development of ontologies (to verify their correctness) and in the deployment of

real-world applications (to discover knowledge).

A special computer program that solves reasoning tasks is called a reasoner. In

other words, it infers implicit knowledge from explicit knowledge. For example, even

if beer Sol is not explicitly related to México, we can infer that it is a Mexican beer

because it is related to a brewery which is related to México.

Reasoning tasks. The most important reasoning tasks that ontology reasoners solve

are:

− Consistency/KB satisfiability : check if the ontology O has a model (i.e., an

interpretation that satisfies all the axioms in the ontology).

− Entailment : check if an axiom is a logical consequence of an ontology, i.e., if the

ontology logically entails an axiom.

− Concept satisfiability : check if a concept C can have instances.

− Subsumption: check if a concept (resp. property) is more general than (subsumes)

another concept (resp. property).

− Classification: compute a concept hierarchy and property hierarchy based on the

subsumption relationships.

− Instance retrieval : get all the instances of a given concept C.

− Realization: get all the concepts that a given instance a belongs to.

32

Reasoning engines. There are many semantic reasoners. In this thesis, we

mainly worked with three classical reasoners: JFact, HermiT [GHM+14], and

TrOWL [TPR10].

− JFact6 is an OWL DL reasoner and partially supports OWL 2 DL (it lacks

support for key constraints7 and some datatypes). It is developed on Java

language and started as a port of FaCT++ reasoner. JFact implements a

tableaux-based decision procedure.

− HermiT 8 is based on a hypertableau algorithm which is often more efficient than

previous tableaux-based algorithms. It supports OWL 2 DL and is more robust

for “hard” ontologies than other reasoners.

− TrOWL9 is a tractable reasoning infrastructure for OWL 2 ontologies. It uses

a syntactic approximation from OWL 2 DL to OWL 2 EL for TBox and ABox

reasoning. Thus, TrOWL offers reasoning support to large ontologies.

These reasoners offer an OWL API for Java language [HB11] and a plug-in for the

ontology editing tool Protégé [Mus15].

Other popular semantic reasoners are CEL [BLS06]10, ELK [KKS14]11,

FaCT++ [TH06]12, Konclude [SLG14]13, Pellet [SPC+07]14, RacerPro [HHMW12]15,

and SnoRocket [LB10]16. For more examples and details, the reader is referred to

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners.

2.3 Fuzzy extensions of Semantic Web technologies

2.3.1 Fuzzy ontologies

Several domains in the real world require managing a knowledge which is imprecise

or vague, but crisp ontologies have limitations to deal with it. Consider for example

the beer domain where there are imprecise notions such as high alcohol level, cheap

item, and low temperature. Fuzzy ontologies are an extension of classical ontologies by

6http://jfact.sourceforge.net
7Keys are a restricted type of inverse functional data properties.
8http://www.hermit-reasoner.com
9http://trowl.org/download-page

10http://tu-dresden.de/ing/informatik/thi/lat/forschung/software/cel
11http://liveontologies.github.io/elk-reasoner
12http://owl.man.ac.uk/factplusplus
13http://www.derivo.de/en/produkte/konclude.html
14http://clarkparsia.com/pellet
15http://franz.com/agraph/racer
16http://github.com/aehrc/snorocket

33

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners
http://jfact.sourceforge.net
http://www.hermit-reasoner.com
http://trowl.org/download-page
http://tu-dresden.de/ing/informatik/thi/lat/forschung/software/cel
http://liveontologies.github.io/elk-reasoner
http://owl.man.ac.uk/factplusplus
http://www.derivo.de/en/produkte/konclude.html
http://clarkparsia.com/pellet
http://franz.com/agraph/racer
http://github.com/aehrc/snorocket

considering several notions of fuzzy sets and fuzzy logic [Bob08, Str13]. Here, classes,

properties, datatypes, and axioms are fuzzy.

The elements of a fuzzy ontology are the following ones:

− Individuals denote domain elements as in classical ontologies. i.e. Sol.

− Fuzzy concepts are interpreted as fuzzy sets of individuals (unary predicates),

such as CheapBeer.

− Fuzzy object properties are interpreted as fuzzy binary relations (binary

predicates), e.g., similarTo.

− Data properties (e.g., hasPrice) are instead usually assumed to be crisp and

functional [BS09].

− Fuzzy datatypes extend crisp values (numerical values, textual, dates, etc.) by

using a fuzzy membership function. For instance, in a fuzzy datatype, instead

of using a precise number 4.5 as the value of ABV, now it is possible to use a

linguistic term LowABV. Some typical fuzzy membership functions used to define

fuzzy datatypes are the trapezoidal, the triangular, the left-shoulder and the

right-shoulder functions (see Section 2.1.1).

− Fuzzy axioms are formal statements involving these ontology elements. In

particular, fuzzy axioms express statements that are not either true or false but

hold to some degree. Some typical axioms are:

– Fuzzy class assertions state the membership of an individual to a concept.

For example, we can state that Sol beer belongs to the concept of CheapBeer

with degree greater or equal than 0.67, meaning that it is a quite cheap beer.

– Fuzzy object property assertions describe the relation between two

individuals, e.g., one can state that Sol and Corona are related via property

isSimilarTo with degree greater or equal than 0.8, meaning that they are

pretty similar.

– Fuzzy data property assertions describe the (possibly partial) relation

between an individual and a data value. For example, it is possible to

express that a beer has a style rating of 10 by relating Sol and the number

10 via styleRating.

– Fuzzy subclass axioms state that a concept is more specific (or partially more

specific) than another one. For instance, we can state that CheapBeer is a

subclass of ModerateBeer with degree greater or equal than 0.5.

34

– Fuzzy subproperty axioms state that a property, or a composition of

properties, is (possibly partially) more specific than another one. For

example, one can state that isVerySimilarTo is a subproperty of isSimilarTo

with degree greater or equal than 0.5.

It is important to mention that classical ontologies are a special case of fuzzy

ontologies, so crisp ontologies are backwards compatible.

Several methodologies to develop fuzzy ontologies from classical ones have

been proposed in the literature, such as DOF [AZ21], IKARUSOnto [AWKA12],

FODM [LMR16], and Fuzzy OWL 2 [BS11].

2.3.2 Fuzzy Description Logics

Fuzzy Description Logics are extensions of Description Logics [BCE+15] to manage

imprecise knowledge. They are the logical formalism in which the language Fuzzy

OWL 2, a de facto standard to represent fuzzy ontologies that we will consider in this

thesis, is based [BS11]. Now, we will recap syntax and semantics, reasoning tasks, and

the implemented reasoning engines.

Syntax. The main syntactic differences are fuzzy datatypes and fuzzy axioms. There

can also be some new concept and role constructors, but we will only consider

aggregation concepts.

In classical DLs, datatypes are based on concrete domains (integer, etc.). In fuzzy

DLs, there is a generalization based on fuzzy sets. A fuzzy datatype theory is defined

similarly as a classical datatype theory D = 〈∆D, ·D〉 but now ·D is a set of concrete

fuzzy domain predicates d with a fixed interpretation dD : ∆D → [0, 1] [LS08].

It is typical to restrict to the case where the datatype domain is a dense total

order [BCE+15], and to restrict to unary fuzzy predicates described using the following

membership functions:

d → left(q1, q2) | right(q1, q2) | tri(q1, q2, q3) | trap(q1, q2, q3, q4)

where left, right, tri, trap stand for left-shoulder, right-shoulder, triangular and

trapezoidal membership functions.

Example 8. Let us define a fuzzy datatype predicate LowABV, which denotes the degree

of membership to the fuzzy set of drinks with low alcohol, using a triangular function:

LowABV (x) = tri(0.5, 3.1, 6.55)(x). Now, we can define the concept LowAlcoholBeer

representing all beers with a low alcohol level:

LowAlcoholBeer ≡ Beer u ∃ABV.LowABV

35

A fuzzy ontology or fuzzy Knowledge Base is denoted as O = 〈A, T ,R〉 and

contains a fuzzy ABox A, with axioms about individuals, a fuzzy TBox T , with

axioms about concepts, and a fuzzy RBox R, with axioms about roles.

Table 2.4 shows the syntax of Fuzzy OWL 2 DL. Fuzzy ABox axioms are (A1)–(A7),

fuzzy TBox axioms are (A8)–(A14), and fuzzy RBox axioms are (A15)–(A30). Note

that the only syntactic differences with classical OWL 2 DL are 1 concept (aggregation

concepts, C21), and 6 axioms (A1–A3, A8, A15, and A17). In these axioms, the degree

of truth can be omitted if it is equal to 1, e.g., an axiom of the form 〈a : C ≥ 1〉 can

be shortened as a : C.

Notice also that aggregation concepts were not in the original version of the language

but were proposed later [BS13]. We have not defined the aggregation concept as a

binary concept to allow non-associative aggregation operators. It is trivial to extend

the syntax in order to support different types of aggregation concepts (e.g., an OWA

concept and a weighted sum concept).

Semantics. The semantics is specified with a fuzzy interpretation and a fuzzy logic

composed of operators t-norm ⊗, t-conorm ⊕, negation function 	 and implication

function ⇒ which operate on a fuzzy logic, such as Gödel, Lukasiewicz, Product,

or Zadeh (see some fuzzy operators in Section 2.1.3). In our case, we also need an

aggregation operator @.

A fuzzy interpretation I = (∆I , ·I), where ∆I is the the domain (a non-empty set)

and ·I is a fuzzy interpretation function that maps:

− to each individual a an element aI ∈ ∆I ;

− to each fuzzy concept C a function CI : ∆I → [0, 1];

− to each fuzzy object property R a function RI : ∆I ×∆I → [0, 1]; and

− to each fuzzy functional data property T a partial function T I : ∆I×∆D → {0, 1}.

Table 2.5 shows how the semantics of Fuzzy OWL 2 DL is extended to complex

concepts, complex roles, and axioms. Let φ ∈ {a:C, (a1, a2):R, C1 v C2}. A fuzzy

interpretation I satisfies (is a model of) a fuzzy axiom τ = 〈φ ≥ α〉, denoted I |= τ ,

iff φI ≥ α. Furthermore, I |= 〈a:C ≤ α〉 iff (a:C)I ≤ α.

Example 9. Assuming that the price of Sol beer is 0.51e and it has an ABV of 4.5,

Table 2.6 shows how to evaluate ϕ = CheapBeeruLowAlcoholBeer in Lukasiewicz logic.

36

Concept
(C1) A Atomic concept
(C2) > Top concept
(C3) ⊥ Bottom concept
(C4) C1 u C2 Conjunction
(C5) C1 t C2 Disjunction
(C6) ¬C Negation
(C7) ∀R.C Universal restriction
(C8) ∃R.C Existential restriction
(C9) ∃R.{a} Value restriction
(C10) ∀T.d Concrete universal restriction
(C11) ∃T.d Concrete existential restriction
(C12) ∃T.{v} Concrete value restriction
(C13) {a1, . . . , an} Nominal
(C14) ≥ n R.C At-least cardinality restriction
(C15) ≤ n R.C At-most cardinality restriction
(C16) = n R.C Exact cardinality restriction
(C17) ≥ n T.d Concrete at-least restriction
(C18) ≤ n T.d Concrete at-most restriction
(C19) = n T.d Concrete exact restriction
(C20) ∃R.Self Local reflexivity
(C21) @(C1, C2, . . . , Cn) Aggregation

Role
(R1) RA Atomic role
(R2) U Universal role

Axiom
(A1) 〈a :C{≥,≤}α〉 Fuzzy concept assertion
(A2) 〈(a1, a2) :R{≥,≤}α〉 Fuzzy role assertion
(A3) 〈(a1, a2) :¬R{≥,≤}α〉 Fuzzy negative role assertion
(A4) (a, v) :T{≥,≤} Concrete role assertion
(A5) (a, v) :¬T{≥,≤} Negative concrete role assertion
(A6) a1 = a2 Equality assertion
(A7) a1 6= a2 Inequality assertion
A8) 〈C1 v C2 ≥ α〉 Fuzzy General Concept Inclusion (GCI)
(A9) C1 ≡ C2 Concept equivalence
(A10) dis(C1, . . . , Cn) Disjoint concepts
(A11) dom(R,C) Domain role axiom
(A12) ran(R,C) Range role axiom
(A13) dom(T,C) Domain concrete role axiom
(A14) ran(T,d) Range concrete role axiom
(A15) 〈R11 . . . R1n v R2 ≥ α〉 Fuzzy Role Inclusion Axiom (RIA)
(A16) R1 ≡ R2 Role equivalence
(A17) 〈T1 v T2 ≥ α〉 Fuzzy concrete RIA
(A18) T1 ≡ T2 Concrete role equivalence
(A19) inv(R1, R2) Inverse roles
(A20) fun(R) Functional role
(A21) fun(T) Functional concrete role
(A22) invfun(R) Inverse functional role
(A23) invfun(T) Inverse functional concrete role
(A24) trans(R) Transitive role
(A25) dis(R1, . . . , Rn) Disjoint roles
(A26) dis(T1, . . . , Tn) Disjoint concrete roles
(A27) ref(R) Reflexive role
(A28) irr(R) Irreflexive role
(A29) sym(R) Symmetric role
(A30) asy(R) Asymmetric role

Table 2.4: Syntax of concepts, roles, and axioms in Fuzzy OWL 2 DL.

37

Complex concept
(C2) 1
(C3) 0
(C4) CI1 (x)⊗ CI2 (x)
(C5) CI1 (x)⊕ CI2 (x)
(C6) 	CI(x)
(C7) supy∈∆I{RI(x, y)⊗ CI(y)}
(C8) infy∈∆I{RI(x, y)⇒ CI(y)}
(C9) RI(x, aI)
(C10) infv∈∆D

{T I(x, v)⇒ dD(v)}
(C11) supv∈∆D

{T I(x, v)⊗ dD(v)}
(C12) T I(x, vD)
(C13) 1 if x ∈ {aI1 , . . . , aIn}, 0 otherwise
(C14) supy1,...,yn∈∆I{(minni=1{RI(x, yi)⊗ CI(yi)})

⊗
(⊗j<k{yj 6= yk})}

(C15) infy1,...,yn+1∈∆I{(minn+1
i=1 {RI(x, yi)⊗ CI(yi)})⇒ (⊕j<k{yj = yk})}

(C16) (≥ n R.CI(x))⊗ (≤ n R.CI(x))
(C17) supv1,...,vn∈∆D

{(minni=1{T I(x, vi)⊗ dD(vi)})
⊗

(⊗j<k{yj 6= yk})}
(C18) infv1,...,vn+1∈∆D

{(minn+1
i=1 {T I(x, vi)⊗ dD(vi)})⇒ (⊕j<k{yj = yk})}

(C19) (≥ n T.dI(x))⊗ (≤ n T.dI(x))
(C20) RI(x, x)
(C21) @(CI1 (x), CI2 (x), . . . , CIn (x))

Complex role
(R2) 1

Axiom
(A1) CI(aI){≥,≤}α
(A2) RI(aI1 , a

I
2){≥,≤}α

(A3) 	RI(aI1 , aI2){≥,≤}α
(A4) T I(aI , vD)
(A5) 	T I(aI , vD)
(A6) aI1 = aI2
(A7) aI1 6= aI2
(A8) infx∈∆I{CI1 (x)⇒ CI2 (x)} ≥ α
(A9) ∀x ∈ ∆I , CI1 (x) = CI2 (x)
(A10) ∀x ∈ ∆I ,min1≤i<j≤n{CIi (x), CIj (x)} = 0
(A11) ∀x, y ∈ ∆I , RI(x, y) ≤ CI(x)
(A12) ∀x, y ∈ ∆I , RI(x, y) ≤ CI(y)
(A13) ∀x ∈ ∆I ,∀v ∈ ∆D, T

I(x, v) ≤ CI(x)
(A14) ∀x ∈ ∆I ,∀v ∈ ∆D, T

I(x, v) ≤ dD(v)
(A15) infx1,xn+1∈∆I{supx2...xn∈∆I{RI1 (x1, x2)⊗ · · · ⊗RIn(xn, xn+1)} ⇒ RI(x1, xn+1)} ≥ α
(A16) ∀x, y ∈ ∆I , RI1 (x, y) = RI2 (x, y)
(A17) infx∈∆I ,v∈∆D

T I1 (x, v)⇒ T I2 (x, v) ≥ α
(A18) ∀x ∈ ∆I ,∀v ∈ ∆D, T

I
1 (x, v) = T I2 (x, v)

(A19) ∀x, y ∈ ∆I , RI(x, y) = RI(y, x)
(A20) ∀x, y1, y2 ∈ ∆I , if min{RI(x, y1), RI(x, y2)} > 0 then y1 = y2

(A21) ∀x ∈ ∆I ,∀v1, v2 ∈ ∆D, if min{T I(x, v1), T I(x, v2)} > 0 then v1 = v2

(A22) ∀x1, x2, y ∈ ∆I , if min{RI(x1, y), RI(x2, y)} > 0 then x1 = x2

(A23) ∀x1, x2 ∈ ∆I ,∀v ∈ ∆D, if min{T I(x1, v), T I(x2, v)} > 0 then x1 = x2

(A24) ∀x, y ∈ ∆I , RI(x, y) ≥ supz∈∆I RI(x, z)⊗RI(z, y)
(A25) ∀x, y ∈ ∆I ,min1≤i<j≤n{RIi (x, y), RIj (x, y)} = 0
(A26) ∀x ∈ ∆I ,∀v ∈ ∆D,min1≤i<j≤n{T Ii (x, v), T Ij (x, v)} = 0
(A27) ∀x ∈ ∆I , RI(x, x) = 1
(A28) ∀x ∈ ∆I , RI(x, x) = 0
(A29) ∀x, y ∈ ∆I , RI(x, y) = RI(y, x)
(A30) ∀x, y ∈ ∆I , if RI(x, y) > 0 then RI(y, x) = 0

Table 2.5: Semantics of complex concepts, complex roles, and axioms in Fuzzy
OWL 2 DL.

38

I Price
CheapBeer

ABV
LowAlcoholBeer I(ϕ)

left(50, 55)(0.51) tri(0.5, 3.1, 6.55)(4.5)
Sol 0.51 0.8 4.5 0.59 max(0, 0.8 + 0.59− 1) = 0.39

Table 2.6: An interpretation with the t-norm ⊗ Lukasiewicz operators.

It is also possible to combine operators from different fuzzy logics. For example,

in Zadeh DLs it is usual to consider two different fuzzy implications, one for universal

restriction concepts ∀R.C and another one for subclass axioms C1 v C2 [BDGR09].

2.3.3 Fuzzy OWL ontologies

Crisp ontologies are represented using the standard OWL 2 language, with a semantics

based on a classical logic. Currently, it does not exist a standard for representing fuzzy

ontologies, however Fuzzy OWL 2 is a popular option and can be seen as a de facto

standard [BS11].

Fuzzy OWL 2 extends classical OWL 2 with OWL 2 annotations of the type

fuzzyLabel encoding the fuzzy information using an XML-like syntax. The aim is start

with an OWL 2 and add annotations to encode the fuzzy information that OWL 2

cannot directly encode.

Example 10. Figure 2.8 shows an example of annotation to build a fuzzy axiom.

Given the classical assertion window001 : TallWindow, stating that window001 is an

instance of the class TallWindow, the annotation converts it into a fuzzy assertion

〈window001 : TallWindow ≥ 0.67〉, ensuring that the axioms holds with degree at least

0.67.

The main features of the language are the following ones:

− It is possible to annotate fuzzy axioms adding a degree of truth, to represent fuzzy

datatypes, and to define specific elements of fuzzy ontologies (e.g., modifiers,

aggregation concepts, etc.).

− It provides a Protégé plug-in17 that helps to add annotations while making the

syntax of annotations transparent.

− It provides an API for Java applications to import Fuzzy OWL 2 ontologies and

to translate them to fuzzyDL [BS16a] and DeLorean [BCFGR12] syntaxes. The

API makes developing similar parsers easy.

− It is one of the syntaxes supported by fuzzyDL.

17http://webdiis.unizar.es/~fbobillo/fuzzyOWL2

39

http://webdiis.unizar.es/~fbobillo/fuzzyOWL2

Figure 2.8: Snapshot of a Fuzzy OWL 2 fuzzy ontology edited in Protégé.

Example 11. Figure 2.9 shows an example of the graphical interface of the plug-in.

In particular, it shows how to build fuzzy datatypes. The user firstly choose the name

of the fuzzy datatype, then selects the type of the membership function, and finally the

value of the parameters.

2.3.4 Fuzzy reasoning

In this section we will enumerate the main reasoning tasks and the existing implemented

reasoners. Then, we will give more details about fuzzyDL reasoning algorithm.

Fuzzy reasoning tasks. fuzzy DLs extend the reasoning tasks of classical DLs to

manage the degrees of truth. Furthermore, some new reasoning tasks appear. The

main reasoning tasks are the following ones [BS15]:

− Fuzzy KB consistency/satisfiability : check if there is a logical model in the fuzzy

ontology O.

− Entailment: a fuzzy axiom τ is a logical consequence of O (or O entails τ),

denoted O |= τ , iff every model of O is a model of τ .

40

Figure 2.9: Snapshot of Fuzzy OWL 2 Protégé plugin.

− Fuzzy concept satisfiability : a fuzzy concept C is α-satisfiable w.r.t O iff there is

a model I of O such that C(x)I ≥ α for some element x ∈ ∆I .

− Fuzzy concept subsumption: C2 α-subsumes C1 w.r.t O iff every model I of O
satisfies ∀x ∈ ∆I , CI1 (x) ⇒ CI2 (x) ≥ α. Fuzzy property subsumption can be

similarly defined.

− Classification: compute a fuzzy concept hierarchy and fuzzy property hierarchy

based on the subsumption relationships.

− Best Entailment Degree (BED): the BED of φ ∈ {a : C, (a1, a2) : R, C v D}
is the maximal degree α such that every model of the fuzzy ontology entails

〈φ ≥ α〉.
bed(O, φ) = sup{α|O |= 〈φ ≥ α〉}

− Best Satisfiability Degree (BSD): the BSD of a fuzzy concept C with respect to

a fuzzy ontology O is defined as the maximal degree α such that C can have

instances that belong to it with degree α, i.e.,

bsd(O, C) = sup
I|=O

sup
x∈∆I

CI(x)

41

− Instance retrieval : given a fuzzy concept C, retrieve a set of pairs 〈i, α〉 such that

i belongs to C with degree greater or equal than α > 0.

− Realization: given an individual i, retrieve a set of pairs 〈C, α〉 such that i belongs

to C with degree greater or equal than α > 0.

Fuzzy reasoning engines. Fuzzy ontology reasoning is performed with semantic

fuzzy reasoners. In this thesis, we will work with fuzzyDL [BS16a].

fuzzyDL supports SHIF(D) fuzzy DL and supports three semantics, namely

Zadeh and Lukasiewicz fuzzy logics, but also Classical logic (for non-fuzzy ontologies)

and Gödel operators. fuzzyDL has its own syntax for the fuzzy ontologies (FDL

format) and also accepts Fuzzy OWL 2 ontologies. This fuzzy engine solves the

previously mentioned reasoning tasks, but also variable maximization/minimization

and defuzzification (using SOM, LOM and MOM methods). Indeed, it internally

reduces all tasks to variable minimization. fuzzyDL also implements several

optimizations to reduce the running time.

Other popular fuzzy reasoners are DeLorean18 [BCFGR12], Fire [SSSK06],

FPLGERDS [Hab07], GURDL [HPS07], YADLR [KA07], FRESG [WMY09],

LiFR [TDKM14], and SMT -based solver [ABB+13]. It is also worth to mention that

MiniME classical reasoner was extended to support fuzzy datatypes [RSS10].

fuzzyDL reasoning algorithm. In this section, we will give further details about

fuzzyDL reasoning algorithm. The algorithm is based on a combination of a tableaux

algorithm and an optimization problem. The idea is to build a completion-forest (a

collection of nodes arbitrarily connected by edges) while generating some constraints,

and then minimize a variable with respect to the constraint set. Each node v is labeled

with a set L(v) of concept expressions, and each edge 〈v1, v2〉 is labeled with a set

L(〈v1, v2〉) of roles.

− Firstly, there is some preprocessing. For example, in Lukasiewicz and Zadeh

fuzzy DLs, and in Classical DLs, each concept is transformed into its Negation

Normal Form [BS16a], where the negation only appears before atomic concepts.

− Then, for each individual a in the ontology, it creates a new node va.

− For each concept assertion 〈a : C ≥ α〉 ∈ O, it ensures that L(va)← L(va)∪{C},
and sets C← C ∪ {xva:C ≥ α}.

18http://webdiis.unizar.es/~fbobillo/delorean

42

http://webdiis.unizar.es/~fbobillo/delorean

− Similarly, for each property assertion 〈(a1, a2) : R ≥ α〉 ∈ O, it creates an

edge 〈va1 , va2〉 between the nodes va1 , va2 if it does not exist, sets L(〈va1 , va2〉)←
L(〈va1 , va2〉) ∪ {R}, and C← C ∪ {x(va1 ,va2):R ≥ α}.

− Next, it applies some tableau rules. As usual in classical DLs, rules transform

complex concept expressions into simpler ones, but in the fuzzy case they also

create a set of inequation constraints. For the sake of concrete illustration,

Table 2.7 shows the rules for fuzzy ALC with respect to an empty TBox, and the

encoding of the fuzzy operators is shown in Table 2.8 for Lukasiewicz (L), Gödel

(G), and Zadeh (Z) fuzzy logics, where ε > 0. In classical semantics, any of the

previous encodings is possible, but we also need to set xva:C , x(va1 ,va2):R ∈ {0, 1}
for every variable in C. These inequations need to hold to keep the semantics of

the DL constructors.

− When no more rules can be applied, the reasoner solves an optimization problem

with respect to C. This problem has a solution iff the fuzzy ontology is

consistent [BS16a]. To solve the optimization problem, fuzzyDL uses Gurobi

mathematical optimization solver19.

Remark 1. For simplicity, Table 2.7 assumes that standard Lukasiewicz negation is

representable, so that concepts can be represented in Negation Normal Form (NNF).

This is obviously the case in Zadeh and Lukasiewicz fuzzy DLs, but in Gödel ALC it

requires extending the logic with standard negation, as fuzzyDL does. Similar rules

can be defined when concepts cannot be represented in NNF (e.g., in Gödel DLs), see

e.g., [BCE+15].

In Lukasiewicz, Gödel, and Zadeh fuzzy DLs, we obtain a bounded Mixed Integer

Linear Programming (MILP) problem [Str05]; in other fuzzy DLs more complex

optimization problems can be obtained. A MILP problem consists in minimizing a

linear function with respect to a set of constraints C that are linear inequations in

which rational and integer variables can occur [BS09]. In particular, a constraint set

C can contain linear equations w1x1 + · · · + wnxn ./ w0 or restrictions of the form

xi ∈ {0, 1} (forcing xi to be a binary value), where xi denotes a variable taking values

in R ∩ [0, 1], wi denotes a rational number, and ./∈ {≤,≥,=}.
Let the connection relation C between two variables z1, z2 be defined as follows:

define z1 C z2 if ∃ψ ∈ C with a term w1z1 and a term w2z2 and then, extend C to

its transitive closure. The following result can be shown:

19http://www.gurobi.com

43

http://www.gurobi.com

Rule Preconditions Actions

(⊥) ⊥ ∈ L(v) C = C ∪ {xv:⊥ = 0}
(>) > ∈ L(v) C = C ∪ {xv:> = 1}
(¬) ¬A ∈ L(v) C = C ∪ {xv:¬C = 	xv:C}
(u) C1 u C2 ∈ L(v) L(v) = L(v) ∪ {C1, C2}

C = C ∪ {xv:C ⊗ xv:D = xv:C1 u C2
}

(t) C1 t C2 ∈ L(v) L(v) = L(v) ∪ {C1, C2}
C = C ∪ {xv:C ⊕ xv:D = xv:C1 t C2

}
(∃) ∃R.C ∈ L(v) create a new node w

L(〈v, w〉) = L(〈v, w〉) ∪ {R}, and

L(w) = L(w) ∪ {C}, and
C = C ∪ {x(v, w):R ⊗ xw:C = z, z ≥ xv:∃R.C}

(∀) ∀R.C ∈ L(v) L(w) = L(w) ∪ {C}
R ∈ L(〈v, w〉) C = C ∪ {xv:∀R.C ≥ z, z = x(v, w):R ⇒ xw:C}

Table 2.7: Reasoning rules for fuzzy ALC with an empty TBox (based on [BS17]).

Restriction Logic Encoding
	x = z G

{
z ≤ 1− x, x+ z ≥ ε, z ∈ {0, 1}

}
 L, Z

{
1− x = z

}
x1 ⊗ x2 = z G, Z

{
z ≤ x1, z ≤ x2, x1 ≤ z + y, x2 ≤ z + (1− y), y ∈ {0, 1}

}
 L

{
x1 + x2 − 1 ≤ z, x1 + x2 − 1 ≥ z − y, z ≤ 1− y, y ∈ {0, 1}

}
G, Z

{
z ≥ x1, z ≥ x2, x1 + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}

}
x1 ⊕ x2 = z L

{
x1 + x2 ≤ z + y, y ≤ z, x1 + x2 ≥ z, y ∈ {0, 1}

}
G

{
2y + x1 ≥ x2 + ε, x1 ≤ x2 + (1− y), y + x2 ≥ z, x2 ≤ z + y, z ≥ y, y ∈ {0, 1}

}
x1 ⇒ x2 = z L

{
1− x1 + x2 ≤ z + y, y ≤ z, 1− x1 + x2 ≥ z, y ∈ {0, 1}

}
Z

{
z ≥ 1− x1, z ≥ x2, (1− x1) + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}

}
Table 2.8: Encoding of some popular fuzzy logic operators [BS17].

44

Lemma 1 ([BS15]). A constraint set C can be partitioned into a set of constraint sets

{C1,C2, . . . ,Cn} verifying the following conditions:

(OP1) If z occurs in Ci then z does not occur in Cj, ∀i, j ∈ {1, . . . , n}, i 6= j,

(OP2)
⋃
i∈{1,...,n}Ci = C,

(OP3) ∀zj, zk occurring in Ci, zj C zk, ∀i ∈ {1, . . . , n}.

C has a solution iff Ci has a solution for every i ∈ {1, . . . , n}. Furthermore,

given the MILP problem of minimizing an objective variable z with respect to C, the

solution is the same as the solution of minimizing with respect to Cj, where Cj is the

optimization problem where z appears.

Computing the partition can be reduced to the problem of computing all the

connected subgraphs of a graph. Given a constraint set C, it is possible to build

an undirected graph with as many nodes as variables in C and an edge linking two

nodes nz1 , nz2 for every pair of variables z1 and z2 appearing in the same constraint

ψ ∈ C. The connected subgraphs indicate the constraint sets, i.e., if a variable z is in

the i-th connected component, then the constraints where z occurs should be placed

in Ci [BS15].

2.4 Clustering

Clustering is an unsupervised technique in machine learning that discovers groups

(known as clusters) of data points with similar properties or behavior. The aim of

the clustering algorithm consists in finding the most similar (or dissimilar) data points

between them to form clusters, according to some specific metrics such as distance

measures (e.g., Euclidean, Manhattan, etc.).

An exhaustive analysis about clustering traditional methods and modern techniques

applied to different domains is described in [XT15]. In this thesis, we will focus on

centroid-based methods, where each cluster is characterized by a single value, the

centroid.

More formally, clustering algorithms group n data values into k clusters. The set

of data values is denoted X = {xj}, j = 1, . . . , n, and the set of clusters is denoted

C = {Ci}, i = 1, . . . , k. ci denotes the centroid of the cluster Ci.

In the following, we will describe three clustering methods, namely k-means, fuzzy

c-means and mean-shift.

45

k-means. It is one of the most famous clustering algorithms [Llo82]. k-means needs

to fix the number of clusters k a priori. The main idea is to minimize the mean

square error. The main steps are the following ones:

1. The k initial centroids ci are randomly computed.

2. Each point xj is assigned to its nearest cluster, denoted C(xj), according to

Euclidian distance [SYR13]:

C(x) = Ck if argmini || xj − ci ||2= k (2.23)

3. The centroids are recomputed:

ci =

∑
xj∈Ci

xj

|Ci|
(2.24)

4. Steps 2 and 3 are repeated until the algorithm reaches a maximum number

of iterations or there are no more changes in the centroids after two complete

iterations.

k-means is very sensitive to the initial randomly selected centroids and does not

work well with outliers.

Fuzzy c-means. This algorithm is an extension of k-means where every point can

belong to several clusters with different partial degrees in the unit interval

[0, 1] rather than being associated with just one cluster [Bez81]. Processes

of initialization, iteration, and ending are the same as in k-means. Fuzzy

c-means considers c fuzzy clusters20 and a matrix of membership degrees µ,

where µij ∈ [0, 1] denotes the membership degree of the datum xi to the j-th

cluster [CDB86]. So, the new mathematical operations are:

− The location of the centroids are computed as:

ci =
(
∑n

j=1 µ
m
ijxj)∑n

j=1 µ
m
ij

(2.25)

where m ≥ 1 is a parameter indicating a fuzziness degree.

− The membership degrees are updated as:

µij = (
c∑

k=1

||xj − ci||2/(m−1)

||xj − ck||2/(m−1)
)−1 (2.26)

20The symbol c is used for historical reasons, although the number of clusters in k-means was
denoted as k.

46

Mean-shift. It is a popular method used for clustering and image segmentation

[Che95, CM02]. Mean-shift works with a sliding-window for each point, computes

the mean of the data points in the sliding-window, and then moves its center to

the mean. The aim of this method is to find modes or the local maxima of

density in a data space. It requires a Kernel function such as a Gaussian Kernel

Kg to keep track of the nearest neighbors of each xi according to a bandwidth

(or window size) h. The Gaussian Kernel function is represented as the follows:

Kg(xj − xi) =
1√
2π
exp(−1

2
||xj − xi

h
||2) (2.27)

The bandwidth may be computed with the rule of thumb in [Tur99]:

h = 1.06σ2n−1/5 (2.28)

where σ2 is the variance of n size data points.

Given a candidate point xi for each iteration of the algorithm, the point is updated

according to the next operation:

xi = m(xi) (2.29)

where m is the mean-shift vector defined as:

m(xi) =

∑
xj∈N(xi)

N(xj − xi)xi/h∑
xj∈N(xi)

N(xj − xi)1/h
(2.30)

where N(xi) is the neighborhood of data points within a given a local seeking

distance such as l = h/2 around xi.

Mean-shift vector converges into a set of centroids after removing data points at

a too close distance. Note that this method does not need to create an initial

number of clusters.

Table 2.9 shows some important features of the previous algorithms. All of them are

centroid-based, many of them needs to fix the number of centroids (column “Fixed k”),

and few works support partial membership to a cluster (column “Partial membership”)

or require additional parameters to define a sliding window (“Window”).

47

Algorithm Centroid-based Fixed k Partial membership Window
k-means • •

fuzzy c-means • • •

mean-shift • •

Table 2.9: Comparison of some clustering algorithms.

2.5 Mobile computing

In the last decade mobile devices (smartphone, tablets, etc.) have changed the behavior

of the people in their lifestyles, including how to buy, travel, work out, do business,

etc. According to the International Data Corporation (IDC), the smartphone market

will reach 1.492 billion units in 202421. Statista stats show that in 2021 there are 6.4

billion smartphone users worldwide22, if the current world population23 is 7.9 billion

then 81% are smartphone owners.

In the first quarter of the year 2021, the average daily time people spent using

mobile devices, specifically at mobile applications, was about 4 hours 12 minutes24.

The pandemic changed consumer behavior on mobile devices and a daily time of 4

hours was reported for the first time in the USA, Turkey and México. In countries

such as Brazil or South Korea, the daily time was more than 5 hours. At the start

of 2021, the average smartphone data usage was 8.4GB per smartphone according to

Ericsson25. The experts predict a grow up of traffic from mobile devices from 10 GB

to 35 GB by 2026 as a result of user activity (mostly video streaming).

Mobile devices have many technical advantages as connection (wireless technologies

GSM, Wi-Fi, NFC, 4G, 5G, etc.), mobility, sensors (e.g., geographic location) and

increasing computation power. However, they have some limitations with respect to

desktop computers, although the differences are being reduced, e.g., smaller screen size,

memory, or CPU power, less stable connectivity, battery duration, etc.

Mobile applications are usually called apps. They typically make it possible to

interact with the user in a different way than desktop applications. Furthermore, they

can also interact with external services (e.g., cloud services). In order to develop apps,

there are three main approaches, namely, web, native, and hybrid [Hel13]. We describe

them in the following:

− Web. The development of this type of app integrates standard web technologies

21https://www.idc.com/promo/smartphone-market-share
22https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
23https://www.worldometers.info/world-population/#growthrate
24https://www.appannie.com/en/insights/market-data/q1-2021-market-index
25https://www.businessofapps.com/data/app-statistics/#3.6

48

https://www.idc.com/promo/smartphone-market-share
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.worldometers.info/world-population/#growthrate
https://www.appannie.com/en/insights/market-data/q1-2021-market-index
https://www.businessofapps.com/data/app-statistics/#3.6

(HTML, CSS, and JavaScript) with libraries such as JQuery Mobile (based on

JQuery) [Smu12]. The web application is uploaded to a conventional web server.

Finally, the users interact with the app by means of the mobile web browser.

Web app is independent of the hardware and may work with different browsers.

− Native. The developers use mobile software development kits (SDK’s). The

tools, APIs, and programming languages are native to a specific mobile Operating

System (OS) [TH10]. The most installed operating systems for mobile devices

are Android26 (open source software sponsored by Google) and iOS27 (developed

by Apple). In 2021, StatCounter reported that the smartphone market share was

71.89% for Android and 27.34% for iOS28. Native apps have a higher performance

and support a higher degree of customization thanks to the access to hardware

resources and specific features by means of the APIs of each OS. The negative

aspect is the development cost, as it requires different developments for different

individual platforms.

− Hybrid. The development is a combination of the developments of web and

native types. The hybrid apps are developed employing open source libraries

and cross-platforms SDK’s that permit the access to hardware devices (such as

sensors or camera) and to the OS (e.g., to the file system) [LLNE16]. Here,

mobile hardware access is limited compared to native apps but is better than

in web apps. Web technologies and frameworks which permit converting web

apps into native apps for different OS are commonly used. The benefits of the

hybrid development are smaller cost and time than in native apps, but the app

performance is worse.

Table 2.10 compares the previous types of app development according to the SDK,

programming languages, execution mode, programming access to the OS and hardware,

and time and cost of development.

In this thesis, we will develop mobile native apps for the Android platform for many

reasons:

− Smartphone market demands: it is the most used platform nowadays, so there

are more potential users.

26https://developer.android.com/
27https://developer.apple.com/
28https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-202101-

202112-bar

49

https://developer.android.com/
https://developer.apple.com/
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-202101-202112-bar
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-202101-202112-bar

Web Native Hybrid

SDK
JQuery mobile, Android Studio (Android) Flutter, Ionic, Phonegap, React Native,

JQtouch Xcode (iOS) Titanium, Xamarin [MBHG17]
Programming HTML5, Java, Kotlin (Android) HTML5,

language JavaScrip, CSS Objctive-C, Swift (iOS) JavaScrip, CSS

Execution mode Web browser OS
Embedded web browser

and part on OS
OS API access Limited Full Partial

Hardware access Limited Full Partial
Development time Fast Medium/High Fast
Development cost Low Medium/High Low/Medium

Table 2.10: Mobile development types.

− Most of the APIs that we will use to access some tools (e.g., reasoners, parsers,

etc) are implemented in Java language, which is also a language to write Android

applications.

− Access to real Android devices for debugging, testing and deploying is easy and

cheap.

− There is a lot of information on Internet about Android development.

Another interesting point is reasoning with ontologies on mobile devices. Three

different scenarios have been proposed: external reasoning, local reasoning and hybrid

reasoning [BBMP17].

− Local reasoning means that all the reasoning is done on a mobile device. It

requires that a reasoner is installed on the mobile device and it computes the

reasoning tasks without any external intervention. This mode does not depend

on a server, but reasoning can be challenging because of the limitations of mobile

devices in terms of CPU power, memory, or battery, and the lack of optimization

techniques for mobile devices (as ontology reasoners are typically optimized for

desktop computers). Indeed, there is some evidence that reasoning time is only

affordable in small or not very expressive ontologies [BYBM15].

− Remote reasoning (or external reasoning) needs a powerful hardware (e.g., a

server on the cloud) where reasoning is actually performed. The mobile user

makes petitions to the server and gets the answers from it. That architecture

is suitable for large ontologies and complex axioms, as they typically require

high CPU processing and memory size, and traditional ontology reasoners are

optimized for desktop computers. Furthermore, one can consider a server which

is as powerful as required by the application. However, in ubiquitous and mobile

scenarios where context-awareness and privacy preserving play a crucial role,

50

sending sensitive data to a remote server might be an important privacy breach,

and even sending non-sensitive data might be dangerous as it could enable the

inference of sensitive information. Some disadvantages are data privacy, as the

ontology could include confidential data, the fact that a high amount of data

to transfer through the network, and the need for a good connectivity, but this

requires assuming that the connectivity is fast and stable enough, which is not

often the case in mobile computing environments.

− Hybrid reasoning does a part of the reasoning externally, and a part locally.

Hybrid reasoning seems to be as a promising trade-off between the other options:

on the one hand, it can benefit from the speed of an external device to

preprocess the ontology, and on the other hand it can also add new sensitive

information without compromising it (the information is added on the user’s

device). Moreover, this approach does not require to communicate with the

server too many times (typically, only to download the preprocessed ontology).

This latter aspect is interesting because in mobile computing environments

connectivity is often unreliable and battery consuming.

Local reasoning can use native (developed for a specific platform) or ported

reasoners (reusing the desktop versions). Bobed et al. made a rigorous study about

the reuse of ontology reasoners on Android platform [BYBM15], showing that some

reasoners could be imported directly on an Android project (e.g., TrOWL), making

ported versions of reasoners (e.g., HermiT) available, and noting that a considerable

number of reasoners are not compatible with the platform due special classes or third

party libraries (such as fuzzyDL).

According to [BYBM15], there are 9 reasoners available for Android devices,

namely CB [Kaz09], ELK, HermiT, jcel [Men12], JFact, MORe [ARCGHJR13], Pellet,

TReasoner [GI13], and TrOWL. To date, there are no similar ports for iOS devices

and none of the previously existing reasoners are implemented in the languages natively

supported on iOS (Objective-C or Swift).

Regarding native reasoners, there are implementations for the following mobile

operating systems:

− Android: MiniME [SRL+14]29 and the system in [WA18].

− iOS: MiniME-Swift [RSG+19].30

29http://sisinflab.poliba.it/swottools/minime
30http://sisinflab.poliba.it/swottools/minime-swift

51

http://sisinflab.poliba.it/swottools/minime
http://sisinflab.poliba.it/swottools/minime-swift

− J2ME: COROR [TKO15], µ-OR [AK09], Pocket KRHyper [SK05], and the

systems in [KDS+08, MHLN06].

− Windows Mobile: mTableau [SKG09] and MiRE4OWL [KPHL10].

− Multiplatform: Tiny-ME [RSB+22] works in Windows, Linux, macOS, Docker

containers, Android, and iOS.

− Others:

– LiRoT [BMSL22] is implemented in C for constrained devices such as

Arduino Due or ESP32.

– The system in [SS11] is implemented in CLIPS,

– There is no information about Delta [MHK12].

Currently, three of these native reasoners support OWL 2 RL [SS11, TKO15,

WA18], and the other ones cannot fully support OWL 2 or any of its profiles.

To implement hybrid reasoning on mobile devices, four strategies have been

proposed [BBMP17]:

1. The server can send an expanded ontology (with all the inferences explicitly

represented) back.

2. If the mobile device has a copy of the ontology, the server can send only a list of

the inferences and the axioms can be integrated on the mobile device.

3. If the reasoner is serializable, the external server can send instead a copy of the

reasoner. The mobile device avoids the cost of loading and preprocessing the

ontology, but requires that both devices (the server and the mobile) use the same

reasoner and version, and a common serialization strategy.

4. If the mobile device has a copy of the ontology, the external server can provide a

serialized version of the reasoner but not including the original ontology, which

will be locally integrated. This requires some additional time to add the axioms

but reduces the transmission size.

Finally, we conclude this analysis by noting that to the best of our knowledge there

does not exist any fuzzy ontology reasoner for mobile devices.

52

Chapter 3

Contributions to fuzzy ontology
learning

In this chapter, we describe several novel methods to learn some elements of fuzzy

ontologies. In particular, we will focus on learning fuzzy datatypes for numerical data

properties. The first two sections focus on learning fuzzy datatypes from examples

of numerical data. On the one hand, Section 3.1 focuses on local fuzzy datatypes,

specific of one individual, and resulting in one triangular fuzzy membership function

per each individual and data property. On the other hand, Section 3.2 studies global

fuzzy datatypes that are learned using unsupervised clustering methods. Finally,

Section 3.3 focuses on learning fuzzy datatypes from several experts: it describes a

technique using linguistic aggregations operators to merge the definitions of different

experts (represented using fuzzy datatypes) into a unique consensual fuzzy datatype.

This approach is appropriate for scenarios without learning examples. While existing

approaches assume that a single expert defines the fuzzy datatypes, we argue that

having several experts is a better and more flexible option.

3.1 Learning local fuzzy datatypes

Motivation

As already stated in the introduction, it is difficult for ontologists to develop fuzzy

ontologies. In particular, we will focus in the case of fuzzy datatypes, which are

important to represent, for example, the fact that a product is cheap or a product

is small.

The definitions of the linguistic labels are particularly subjective and context

dependent. For instance, both Carrauntoohill (Ireland) and Fuji (Japan) are usually

considered as high mountains by local people, although they have very different

elevations (1041 m and 3776 m, respectively). To date, the only existing methods to

53

build fuzzy datatypes are agnostic to any information about the domain. Essentially,

they either compute a uniform partitioning of the domain or assume that an expert

provides the definitions (a more detailed discussion of the related work will be provided

later). In the era of big data, very often there are a lot of data available for a given

domain. Therefore, our aim is to use existing numerical data to learn fuzzy datatypes.

As a first step to solve the problem, we will focus on local fuzzy dataypes, which can

be associated to a unique individual. For example, given different (possibly imprecise)

measurements of the calories consumed by a human over several days, our objective is

to learn automatically a fuzzy set representing the typical value of the calories consumed

by that individual on a daily basis.

Contribution

We propose a first solution to learn the values of numerical fuzzy data properties

describing them using local fuzzy datatypes. That is, each fuzzy datatype is related

to one individual via some numerical data property. In our setting, the value will

be described using a fuzzy set, characterized by its fuzzy membership function. In

particular, we propose to represent the value using a different triangular membership

function tri(q1, q2, q3) for each individual i. Recall that the triangular function is one

of the fuzzy datatypes supported in Fuzzy OWL 2 language.

To obtain the values of the parameters q1, q2, and q3 of a fuzzy datatype d, we

assume that we have an array of data with the values of the data property p for each

individual i. Then, we compute the mean of the values (denoted x) and the standard

deviation (denoted σ) and build the following fuzzy set:

tri(x− σ, x, x+ σ) (3.1)

This can be represented in Fuzzy OWL 2 by adding an annotation to a datatype

D (via the fuzzyLabel annotation property) of the form:

<fuzzyOwl2 fuzzyType =" datatype">

<Datatype type=" triangular" a="x-σ" b="x" c="x+σ" />

</fuzzyOwl2 >

Once the fuzzy ontology has been updated to define a fuzzy datatype d, it is

associated to each individual i using an axiom of the form:

i : ∃p.d

Example 12. For some person (an individual) personF024197 we have different

(imprecise) measures of the functional data property velocityStep. Assume that

the mean of the values is x = 1.224 and the standard deviation σ =

54

0.193. Figure 3.1 (a) shows how to build a triangular fuzzy membership function

step1rec1personF024197velocityStep = tri(1.031, 1.224, 1.417) from those values. Figure

(b) shows a fuzzy datatype annotation to represent this value of velocityStep. Finally,

a concept assertion stating that personF024197 is an instance of the fuzzy concept

∃velocityStep . step1rec1personF024197velocityStep is needed.

Note that although these fuzzy datatypes are local in principle, as they are

computed from data corresponding to a single individual, there is not any problem

if two different individuals share the same definition for the same data property.

Our solution is general and can be used in different domains. In Section 6.1, we will

give more details about an implemented gait recognition system that uses sequences

of data from walking people obtained using the Microsoft Kinect sensor. In particular,

we represent the values of some biometric features of the people using fuzzy datatypes

learned as explained in this section.

Before concluding this section, it is important to add a technical remark. Because

fuzzy data properties are assumed to be functional, it is not possible to represent

directly that an individual is linked to different values of a data property. However,

it is possible to use an indirect representation. As we will see in Section 6.1, a person

can be linked with several frames, and for each frame the value of the data property

can be different.

a) b)

Figure 3.1: Fuzzy datatype representation: (a) Triangular function, (b) Fuzzy OWL 2
annotation.

Related work

Although some methodologies to build fuzzy ontologies have been proposed in the

literature, such as DOF [AZ21], IKARUSOnto [AWKA12], FODM [LMR16], or Fuzzy

OWL 2 [BS11], they mention the need to fuzzify some elements of an ontology, but

do not actually detail how to fuzzify them. In other cases, there are some details but

55

not enough. Abulaish and Dey discuss how to build fuzzy hedges from a dissimilarity

matrix, but they do not explain how to obtain such matrix [AD07]. Furthermore,

how to learn fuzzy datatypes is not addressed, and fuzzy axioms are not allowed. Gu

et al. pointed out the need to build a fuzzy matrix with the degrees of truth of the

relationships between pairs of concepts (for example, fuzzy subclass axioms), but do

not detail how to compute the degrees [GLGS07].

In the following, we will overview previous approaches to learn the elements of a

fuzzy ontology, except fuzzy datatypes, which will be covered in Section 3.2.

Widyantoro and Yen described the construction of a fuzzy ontology and the

application for query refinement in a search engine [WY01]. The fuzzy ontology

contains two types of fuzzy relationships between pairs of terms: fuzzy narrower than

and fuzzy broader than relations. The degrees of the truth of these relationships are

computed from the frequency of co-occurrences of the terms. The authors also describe

a mechanism to prune the fuzzy ontology by eliminating redundant, less meaningful,

and unrelated term relations. This approach can be used to learn fuzzy object property

assertions (if terms are represented as individuals) or fuzzy subclass axioms (if terms

are represented as concepts).

The application of Fuzzy Formal Concept Analysis to build fuzzy ontologies

has also been studied. Quan et al. proposed FOGA (Fuzzy Ontology Generation

frAmework) [QHFC06, QHF06]. Their approach is based on fuzzy clustering and Fuzzy

Formal Concept Analysis, and is able to build fuzzy ontologies with fuzzy relations

between concepts (mainly, fuzzy subclass axioms) and fuzzy object property assertions

(although the authors call it the “attribute value of an object”). It is also worth to note

that they use clusters to group similar concepts, while we will use clustering to build

fuzzy datatypes in Section 3.2. In a similar approach, Chen et al. built a fuzzy ontology

with fuzzy subclass axioms using Fuzzy Formal Concept Analysis and fuzzy clustering

to group concepts [CYZW09]. The approach was evaluated in an information retrieval

scenario, showing that fuzzy ontologies improve the precision.

It is also possible to build fuzzy ontologies using information from crisp concept

networks such as Wordnet or ConceptNet. Angryk et al. studied the automatic

creation of fuzzy ontologies including a fuzzy concept hierarchy of terms [ADP06]. The

fuzzy subclass axioms were computed using the semantic relations in Wordnet, and

the degrees of truth are computed assuming that all the possible senses in WordNet

are equiprobable. The authors also proposed an algorithm to find common hypernyms

of two concepts and the generalization degree. Furthermore, Jai et al. discussed

how to build a fuzzy concept ontology with fuzzy relations between concepts derived

from ConceptNet (in particular, with fuzzy subclass axioms and fuzzy equivalence

56

axioms) [JSJ21]. The degrees of truth are computed using the weight values of the

semantic relationships between the entities in ConceptNet. The approach is applied to

semantic query enrichment in information retrieval.

Another possibility is to adapt classical learning algorithms. The works [LS13,

LS15, SM15, CS21] use the FuzzyDL-Learner 1 software to learn fuzzy concept inclusion

axioms using adaptations of learning techniques such as Inductive Logic Programming

or boosting algorithms. This family of learning algorithms will be mentioned again in

the next section, as they involve fuzzy datatypes.

In a series of works, researchers have also proposed to build fuzzy ontologies

by exporting fuzzy databases models or fuzzy modeling diagrams. In particular,

Ma et al. described a framework to build fuzzy ontologies from fuzzy

relational databases [MLY08], while Zhang et al. built fuzzy ontologies

from fuzzy entity-relationship models [ZMYC13], from fuzzy object-oriented data

bases [ZMYW12], from fuzzy XML models [ZMY13], and from fuzzy UML

models [MZYC11]. However, the only fuzzy elements in their approaches are fuzzy

concept assertions and fuzzy role assertions.

3.2 Learning global fuzzy datatypes

Motivation

Section 3.1 studied how to learn local datatypes, i.e., fuzzy datatypes that are

associated to only one individual. In particular, for each individual and each data

property, we learned a unique fuzzy datatype. As an illustrating example, we could

compute the value of the data property calories for each individual i (Calories i) starting

from data about the consumed calories of this specific individual over several days.

Another possibility is to learn global fuzzy datatypes, i.e., fuzzy datatypes that can

be associated to more than one individual. For example, we can define the linguistic

terms LowCalories and NeutralCalories as possible values of calories. Furthermore, we

might want to associate and individual with both fuzzy datatypes with different degrees

of truth, e.g., i consumes a number of calories which belongs to LowCalories with degree

0.8 and which belongs to NeutralCalories with degree 0.6.

Rather than computing a uniform partitioning of the domain, the idea is to compute

the parameters of the fuzzy membership functions using numerical real data from more

than one individual (e.g., using measures of the consumed calories of several people)

1http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner/index.html

57

http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner/index.html

Contributions

In this section, we describe a novel approach to learn multiple fuzzy datatypes for a

data property with a numerical range. The general idea is the following: for each data

property we have a list of numerical values which are used to partition the range of

the data property using fuzzy memberships functions. The partition can be computed

using different centroid-based clustering algorithms. These algorithms compute a set

of centroids that we use to create fuzzy membership functions. Furthermore, we

propose to automatically create linguistic labels to identify the new fuzzy datatypes.

Figure 3.2 shows a general view of our approach to learn fuzzy datatypes. First, we

retrieve the array of values of each data property. Next, values of a property (calories)

are clustered to compute some centroids {c1, c2, c3}, which are used to build the

membership functions and their linguistic labels, e.g., left-shoulder function left(c1, c2)

has a linguistic label LowCalories, triangular function tri(c1, c2, c3) has a linguistic

label NeutralCalories, and right-shoulder function right(c2, c3) has HighCalories label.

Example 13 shows how the fuzzy sets are computed from a numerical vector.

Example 13. Given a vector with information about the consumed calories

cal = [9, 11, 19, 21, 30], a clustering algorithms computes a set of centroids c =

{10, 20, 30}. From this set, we can build three fuzzy membership functions, left(10, 20),

tri(10, 20, 30) and right(20, 30).

Figure 3.2: General outlook to learn fuzzy datatypes.

Learning algorithm. Algorithm 1 shows how to compute fuzzy datatypes for fuzzy

ontologies. The first part (Lines 1–3) is an initialization that can be computed just

once. Firstly, we retrieve all data properties (Line 2) and individuals (Line 3) of a

fuzzy ontology O. The rest of the code (Lines 5–43) implements the proper learning

algorithm. Lines 7–12 compute the array A of values of property p. Only numerical

58

values are accepted. The standard deviation σ of the array is calculated in Line 14.

The fuzzy datatypes are defined over a range [k1, k2] rather than over [−∞,∞]. For

each data property p, our algorithm uses several strategies to compute such k1, k2

(Lines 15–21):

− First, checking if the range of p is of the form[>= r1, <= r2], where >= and

<= denote xsd:minInclusive and xsd:maxInclusive OWL 2 facets, respectively, that

constrain the possible values of an OWL 2 numerical datatype.

− Otherwise, it computes the minimum (min) and the maximum (max) of the

array of the data property p and defines k1 = min− σ and k2 = max+ σ.

Line 23 and Line 26 assume that a clustering algorithm provides a set of centroids C

from the array of values of p. Some clustering methods do not require an initial number

of clusters N but compute it automatically (Line 24). The centroids are used as the

parameters to build fuzzy membership functions partitioning the domain (Lines 28–41).

Assuming that N ≥ 2, using a set of centroids {c1, c2, . . . , cN}, and an interval [k1, k2],

we create:

− a left-shoulder function with parameters c1 and c2 (Line 29),

− a right-shoulder function with parameters cN−1 and cN (Line 31), and

− k−2 triangular functions, where the j−th triangular function has parameters cj,

cj+1, and cj+2 (Line 34).

If the set of centroids has a unique centroid c1, it creates one triangular function

with parameters c1−σ, c1, c1 +σ, and the interval is recalculated (Line 39). The reason

to use a ε to compute the range of k1 and k2 when there is a single fuzzy datatype is

to ensure that the parameters of the triangular function are within the range of the

fuzzy datatype, as we could have c1 − σ < k1 or c1 + σ > k2.

In all previous cases, when a fuzzy datatype d is created, the ontology is updated

with new axioms encoding the annotations of the fuzzy datatypes. Finally, the fuzzy

ontology is returned.

Some salient features of our algorithm are the following ones:

− It is domain independent and can be employed in different contexts where

attributes are represented using numerical values (e.g integer, reals, etc.) and

there is a large volume of data.

59

Algorithm 1 Algorithm to learn fuzzy datatypes for numerical data properties.

Input: A fuzzy ontology O
Input: An optional number of centroids N
Input: A tolerance ε
Output: An updated version of O

1: // Initialization
2: P ← Retrieve all data properties p of O
3: I ← Retrieve all individuals i of O
4: // Learning fuzzy datatypes
5: for all p ∈ P do
6: A← ∅
7: for all i ∈ I do
8: v ← Retrieve the value of the data property p for i in O
9: if v 6= null and v is numerical then

10: A← A ∪ v
11: end if
12: end for
13: if A 6= ∅ then
14: σ ← standardDeviation(A)
15: if DataPropertyRange(p, [>= r1, <= r2]) ∈ O then
16: k1 ← r1

17: k2 ← r2

18: else
19: k1 ← min(A)− σ
20: k2 ← max(A) + σ
21: end if
22: if N = null then
23: C ← clustering(A)
24: N ← size(C)
25: else
26: C ← clustering(A,N)
27: end if
28: if N ≥ 2 then
29: d← left(c1, c2) over the interval [k1, k2]
30: O ← O ∪ d
31: d← right(cN−1, cN) over the interval [k1, k2]
32: O ← O ∪ d
33: for j ← 1 to N − 2 do
34: d ← tri(cj, cj+1, cj+2) over the interval [k1, k2]
35: O ← O ∪ d
36: end for
37: else
38: // unique centroid
39: d← tri(c1 − σ, c1, c1 + σ) over the interval [k1 − ε, k2 + ε]
40: O ← O ∪ d
41: end if
42: end if
43: end for
44: return O

60

− We can also create readable names for the fuzzy datatypes labels. For a

small number of clusters (N ≤ 7), the final name of a fuzzy datatype is

the concatenation between a label with a linguistic prefix (e.g, VeryLow) and

the property name, as shown in Table 3.1. For example, Figure 3.3 shows

the partition of the domain in 7 clusters and their linguistic labels. For the

property calories the algorithm creates 7 fuzzy datatypes VeryVeryLowCalories,

VeryLowCalories, LowCalories, NeutralCalories, HighCalories, VeryHighCalories, and

VeryVeryHighCalories. If the number of cluster was 6, NeutralCalories would be

omitted. For an arbitrary number of clusters N > 7, label names can be formed

by concatenating the name of the data property p and an integer number denoting

the order of the fuzzy datatype according to an increasing value of the smaller

centroid (e.g., calories8).

− It uses a classical reasoner to retrieve the values of the data properties (Line 8).

− It could be customized for diverse input and output file formats.

− It supports any method or clustering algorithm that returns a set of centroids.

− In the case of mean-shift clustering algorithm, we could define σ = h/2, where h

is computed as in Equation 2.28.

Figure 3.3: Fuzzy membership functions for seven linguistic labels.

Implementation: Datil. Datil (DATatypes with Imprecision Learner) is a software

that automatically learns fuzzy datatypes for fuzzy ontologies from different types of

inputs. Datil implements Algorithm 1 and several unsupervised clustering algorithms:

k-means (Eq. 2.24), fuzzy c-means (Eq. 2.25), and mean-shift (Eq. 2.30). For k-means

and fuzzy c-means, the number of clusters N (used to build K fuzzy datatypes) should

61

Number Label prefixes
of labels

2 { Low, High }
3 { Low, Neutral, High }
4 { VeryLow, Low, High, VeryHigh }
5 { VeryLow, Low, Neutral, High, VeryHigh }
6 { VeryVeryLow, VeryLow, Low, High, VeryHigh, VeryVeryHigh }
7 { VeryVeryLow, VeryLow, Low, Neutral, High, VeryHigh, VeryVeryHigh }

Table 3.1: Label prefixes for different number of labels.

be chosen by the end user. If we do not know the number of clusters, mean-shift is

the right choice, as it does not require the number of clusters in advance. The tool is

publicly available2.

Input formats. Datil supports three possible input file formats: OWL, FDL, and

CSV.

− OWL format (.owl) corresponds to ontologies in the standard language OWL 2.

Files can be classical ontologies but also fuzzy ontologies in Fuzzy OWL 2; in the

latter case previous annotations with the fuzzy information are discarded. Datil

restricts itself to data property assertions and range restrictions. A semantic

reasoner is used to retrieve both explicit and implicit axioms.

− FDL (.fdl) is the native syntax of fuzzyDL reasoner to define fuzzy

ontologies [BS16a]. As in the previous case, Datil restricts itself to data property

assertions and range restrictions and does not consider any fuzzy information

(not even the degree of truth of the assertions).

− CSV (Comma-Separated Values, .csv) format consists of large data (numbers

and text) in plain text. Each record (row) in the file contains one or more fields

(columns) separated by commas. In this case, the clustering algorithm takes as

an input all the values for a given column.

To retrieve the data properties (Line 2), we assume that the first line of a CSV

file is special and contains the column names, which correspond to the data

properties in the ontology. Furthermore, rather than retrieving all individuals

(Line 3), we chose to represent the data of each individual in a separate CSV file.

Output format. Datil supports two possible output file formats: OWL, and FDL.

The output is a fuzzy ontology with some fuzzy datatype definitions that can be

represented as OWL 2 annotations (as specified in Fuzzy OWL 2) or as fuzzyDL

2http://webdiis.unizar.es/~ihvdis/Datil

62

http://webdiis.unizar.es/~ihvdis/Datil

axioms (FDL). If the output is a FDL file, apart from the definition of the fuzzy

datatypes, Datil adds further axioms required by fuzzyDL reasoner (functional and

range data property axioms). If the input is an ontology (OWL or FDL), the output

is an extension with the new elements. If the input is a CSV file, the output ontology

is created from scratch.

Example 14. Let us consider Figure 3.7. An excerpt of the output in FDL syntax is:

(functional SkinTemperatureToWork)

(range SkinTemperatureToWork *real* 14 , 37)

% DataProperty: SkinTemperature SegmentType: ToWork

% Learned using k-means

% Centroids results: [15.19][22.02][34]

(define -fuzzy -concept LowSkinTemperatureToWork left -shoulder (14 ,37 ,15.19 ,22.02))

(define -fuzzy -concept NeutralSkinTemperatureToWork triangular (14 ,37 ,15.19 ,22.02 ,34))

(define -fuzzy -concept HighSkinTemperatureToWork right -shoulder (14 ,37 ,22.02 ,34))

An excerpt of the output (the definition of LowSkinTemperatureToWork) in Fuzzy

OWL 2 Manchester syntax is:

Datatype: LowSkinTemperatureToWork

Annotations:

fuzzyLabel "<fuzzyOwl2 fuzzyType =" datatype">

<Datatype type=" leftshoulder" a="15.19" b="22.02" />

</fuzzyOwl2 >"

EquivalentTo:

(xsd:decimal[>= "14"^^ xsd:decimal] and xsd:decimal[<= "37"^^ xsd:decimal])

Dependencies. Datil is implemented in Java and uses some external libraries:

− OWL API [HB11] is an ontology API to manage OWL 2 ontologies in Java

applications and provides a common interface to interact with DL reasoners.

− HermiT is an OWL 2 ontology reasoner [GHM+14]. We use it to retrieve all the

data property assertions, not only those explicitly represented in the ontology

but also the implicit ones.

− Java-ML (Java Machine Learning Library)3 is a collection of machine learning

algorithms and a common Java interface for those algorithms. Although Java-ML

provides an implementation of k-means, we have implemented our own version of

the algorithm. However, we do use its Java data structures in all of our clustering

algorithms.

− fuzzyDL is a fuzzy ontology reasoner [BS16a]. The possible input formats are

Fuzzy OWL 2, its own syntax in FDL format, and a Java API. We use fuzzyDL

to translate FDL fuzzy ontologies into Fuzzy OWL 2.

Configuration options. Datil requires several parameters:

3http://java-ml.sourceforge.net

63

http://java-ml.sourceforge.net

− The input and output formats.

− The input file. The output file is not a parameter; Datil uses the same filename

(with a different filename extension if there is a format change).

− The selected clustering algorithm.

− The properties for which to learn the fuzzy datatypes.

− The number of clusters (only for k-means and fuzzy c-means) for all the

properties, or a different number for each property.

− Use of zeros (only for CSV files): zero values can be either taken into account or

skipped (in practice, they are often used just to represent empty data).

− Use of segments (only for CSV files). Segments are special properties that make

it possible to split the data. This is useful in applications where we have a lot of

data but we do not want to consider all of them in a joint way. For example, we

might have information about the time a person is walking, but we might want

to differentiate whether s/he is walking to work or walking during the work. This

way, we can learn fuzzy datatypes for the group of values of a data property that

correspond to a specific segment value.

Example 15. In Figure 3.4, we can restrict the values of the data property

calories to the segment atWork, building a vector of data about calories consumed

while working (caloriesAtWork) from which Datil can learn some fuzzy datatypes.

Figure 3.4: Example of an input CSV file.

64

User interface. Now we will describe the user interface for desktop computer; an

interface for mobile devices will be described in Section 5.4.1.

Figure 3.5 shows a snapshot of the main user interface, where the user can configure

most of the previously mentioned parameters: input and output formats, input file,

use of zeros and segments, clustering algorithm, and global number of clusters. In case

of CSV files, the user can select a folder with several files rather than a single one. By

default, Datil learns fuzzy datatypes for all data properties with a numerical range.

It is also possible to use a configuration file to select a subset of the data properties

and/or select a different number of clusters for each of them if the clustering algorithm

is not mean-shift. Figure 3.6 shows how Datil supports the creation of the file by

making its syntax transparent to the user. Thanks to the configuration file the user

does not need to repeat the selection in future executions. If the system does not find

it, it runs with the default values.

The user interface uses some strategies to obtain automatically the fuzzy datatype

range [k1, k2] for each data property of the input file. This automatic values can be

customized by the user; for example, if there are outliers, or to reduce/amplify the

range that will be considered to compute the fuzzy datatypes. To do so, there are two

columns in the interface to specify the k1 (Min) and k2 (Max) values for each data

property. For example, in Figure 3.6, the range of SkinTemperatureToWork could be

modified to Min=0 and Max=42.

Figure 3.5: Snapshot of the main user interface of Datil.

In general, the main features of Datil software are the following ones:

− It makes an automatic partition domain using unsupervised clustering algorithms.

− It is domain independent.

65

Figure 3.6: GUI to create a configuration file in Datil.

Figure 3.7: Learned fuzzy datatypes for the temperatureToWork data property.

66

− It not interfere in data acquisition and data prepossessing stages as shown in

Section 6.6.2.

− It enriches the fuzzy ontologies with the fuzzy datatypes computed. In special

cases, additional information needed by fuzzyDL is included (functional and range

axioms data property axioms).

− It offers readable and interpretable way of fuzzy datatypes for humans and

machines. For example, for an athlete it is easier to read and understand the

label HighCalories than a simple amount of them.

− It uses reasoning (using HermiT reasoner) to get all the data property assertions

explicit and implicit represented4.

− Although 5 ± 2 is widely accepted as the optimal number of linguistic labels to

make them more easily understandable by a person, Datil supports n > 7 number

of labels.

− It implements a segmentation option for CSV format. For example, Figure 3.7

illustrates the fuzzy memberships and the linguistic labels computed using

k-means algorithm, number of clusters k = 3 for skin temperature property values

related to the segment toWork.

− It has an intuitive Graphic User Interface5 and a mobile version for Android

devices (described in Section 5.4.1).

− It supports different input formats (CSV, OWL 2, and Fuzzy OWL 2) and output

formats (Fuzzy OWL 2 and FDL).

As we will see later, we have successfully evaluated Datil on some real use cases,

such as lifestyle profiling (Section 6.6.2), gait recognition (Section 6.6.3), and beer

recommendation (Section 6.2). Furthermore, Datil has also been independently used

by Riali et al. to build the fuzzy datatypes in a medical decision support system

that uses a fuzzy ontology and a fuzzy Bayesian network to improve the diagnosis of

hepatitis C. diagnosis [RFIB].

Related work

There are many applications using fuzzy ontologies with fuzzy datatypes which,

rather than explaining how to actually learn the fuzzy datatypes, assume that

4We use the method getDataPropertyValues.
5The first version of the tool, https://github.com/NataliaDiaz/Ontologies/tree/master/

Lifestyles-KG, had a command-line interface

67

https://github.com/NataliaDiaz/Ontologies/tree/master/Lifestyles-KG
https://github.com/NataliaDiaz/Ontologies/tree/master/Lifestyles-KG

an expert defines them. We can find the examples in different fields such as

recommender systems [CBM12], computational perception [MCvdHST12], ambient

intelligence [DRPCLD14], diet recommendation [LWH10], matchmaking [RSB+08,

RSS10], summarization [LJH05], robotics [EHK+14], aerospace industry [Rod13],

diabetes diagnosis [ESAA+18], Alzheimer diagnosis [SRES+21], breast cancer

diagnosis [OEA21], Internet of Things-based healthcare monitoring [AIK+18],

automatic hotel reservation [AKK15], web content classification [AKR+17],

interoperability of electronic health records [AESB+21], air quality assessment [GZ22],

software design [DMS15], architectural design [NMNS19], or construction [GRBR+15].

In the following, we will focus on the very few works that actually involve other

approaches to learn fuzzy datatypes.

As already mentioned in Section 3.1, a series of works have presented different

algorithms to learn fuzzy general concept inclusion axioms by adapting classical

learning techniques to the fuzzy case [LS13, LS15, SM15, CS21]. These algorithms

are implemented in FuzzyDL-Learner reasoner. Because such axioms might include

fuzzy datatypes, they must also be learned. In particular, the most recent work [CS21]

learns the fuzzy datatypes using k-means with three possible numbers of clusters (3, 5,

or 7). Our approach instead is more general, as it supports three different clustering

algorithms and any number of clusters (at least 2). As we will see in Section 6.6.2, it is

possible to adapt FuzzyDL-Learner to use fuzzy datatypes learned using our approach.

Lisi and Mencar have proposed a granular computing approach to compute granular

views over individuals of a classical ontology [LM18]. Essentially, the idea is to compute

fuzzy concepts of the form C u∃T.d representing the instances of a classical concept C

that have a value of the data property T that is compatible with the fuzzy datatype d.

Then, information granules can be quantified by evaluating some quantified sentences

involving fuzzy quantifiers. The approach is implemented in the GranulO system.

However, GranulO does not use an ontology reasoner but SPARQL queries, thus having

limited inference capabilities. To learn the fuzzy datatypes, the authors suggest the

use of fuzzy c-Means algorithm, although the implemented algorithm in GranulO is not

clear. While the objective of the authors is to compute views to summarize a classical

ontology, because several individuals could be replaced by information granules, our

aim is to enrich a fuzzy ontology by adding some datatypes. Furthermore, our learning

strategy is not restricted to the instance of a given concept, but considers all values

of the data properties. Finally, our approach is more general as it supports more

clustering algorithms, more input formats, more customization parameters, and has a

mobile version.

El-Sappagh et al. proposed to build fuzzy datatypes from numerical data

68

by combining a clustering algorithm (k-means) and hierarchical fuzzy partitioning

(HFP) [ESAA+18]. The partition is similar to ours, with fuzzy sets being represented

using triangular and semi-trapezoidal (i.e., left-shoulder and right-shoulder) functions.

In the evaluation of this work, the authors showed that this partitioning method

outperforms uniform partitions (which should thus be used only when no training data

are available) according to three objective measures, namely the partition coefficient

(PC), the partition entropy (PE), and the Chen index (CI). In contrast, our work offers

more than one clustering method, does not need to fix the number of clusters, addresses

the naming of the linguistic labels, supports more input formats, proposes a learning

algorithm that takes into account an input fuzzy ontology, discusses the format of the

output fuzzy ontology, and provides an implementation with a mobile version.

3.3 Learning consensual fuzzy datatypes

Motivation

In the previous sections of this chapter, we have seen how to build fuzzy datatypes

from real data. However, in some cases there are no real data to learn or they are not

useful enough (there are not enough samples, data are noisy, etc.). In some cases, the

typical solution is to require an human expert to provide the definitions of the fuzzy

datatypes. Nevertheless, this also has some drawbacks, as the definitions might be

biased to the opinion of the expert.

For example, most people across the world have different perceptions of what strong

coffee means6. For example, Brazilians expect a coffee heavily roasted (dark roast is a

synonym of strong). In Italy, many people associate a strong coffee with long notes of

bitterness (a huge impact in the mouth), a low acidity, and reduced caffeine content.

Citizens of Indonesia, however, consider a strong coffee to be dark, hot, bitter, and

with an intense caffeine content. Therefore, providing a definition of strong coffee is

not easy. Some coffee companies such as Nespresso7 or Lavazza8 have defined coffee

intensity scales with discrete levels. However, the problem is the same, there is not

a common intensity scale, e.g., Nespresso’s rating 8 is different from Lavazza’s rating

8. To reach a global understanding of the meaning of strong coffee between drinkers,

baristas, café owners, and roasters, we propose not to use a single expert but several

ones. That is, to learn a fuzzy datatype, the idea is to fuse the definitions provided by

6http://perfectdailygrind.com/2020/08/strong-coffee-definitions-from-around-the-

world
7http://www.nespresso.com/es/en/variedades-capsulas-cafe#!/by-intensity
8http://www.lavazza.com/en/magazine/coffee-culture/the-coffee-book/i-for-

intensity.html

69

http://perfectdailygrind.com/2020/08/strong-coffee-definitions-from-around-the-world
http://perfectdailygrind.com/2020/08/strong-coffee-definitions-from-around-the-world
http://www.nespresso.com/es/en/variedades-capsulas-cafe#!/by-intensity
http://www.lavazza.com/en/magazine/coffee-culture/the-coffee-book/i-for-intensity.html
http://www.lavazza.com/en/magazine/coffee-culture/the-coffee-book/i-for-intensity.html

different experts into a unique consensual definition.

Contributions

In this section we propose a novel approach to learn fuzzy datatypes for Fuzzy OWL

2 ontologies by using linguistic aggregation operators that merge a group of fuzzy

datatype definitions provided by different experts into a unique fuzzy datatype.

We will start by providing an algorithm to build consensual fuzzy datatypes based

on linguistic aggregation operators. Then, we will propose two novel aggregation

operators and compare them with some existing ones. Finally, we will describe an

implementation: Fudge software.

Algorithm to build fuzzy datatypes. At first, let us define formally the problem

we will address. We assume that there is a group of experts E1, E2, . . . , EN providing

the definitions of the membership functions F1, F2, . . . , FN characterizing several fuzzy

datatypes of a fuzzy ontology. dij denotes the definition of the datatype Fi according

to expert Ej. dij is assumed to be a linguistic value. Furthermore, there could be

missing data, i.e., expert Ej might not provide his/her definition of some datatype Fi.

Therefore, for each datatype Fi we have a number of definitions denoted K, with K ≤
N . Our objective is to define each Fi as a consensus of the definitions 〈di1, di2, . . . , diK〉.
We will sometimes omit the subscript i when the particular Fi is not important.

We assume that all the definitions are given using trapezoidal functions of the

form trap(q1, q2, q3, q4), as they are those supported by Fuzzy OWL 2. Note that

triangular (denoted tri), right-shoulder (denoted right), and left-shoulder (denoted

left) functions can be represented as trapezoidal fuzzy functions, provided that

right-shoulder and left-shoulder functions are defined over a fixed range [k1, k2] (see

Section 2.1.1).

Now, for each fuzzy datatype Fi, we compute @(W, [di1, di2, . . . , diK]) as a

consensual definition, for some aggregation operator @ taking as input a vector of

numerical weights W and a vector of trapezoidal functions, returning as output a

trapezoidal function, and satisfying internality. Possible choices for the aggregation

operator include CONV (Eqs. 2.12 and 2.13), LOWA (Eq. 2.14), WMEAN (Eq. 2.15),

and FOWA (Eq. 2.16).

An advantage of such a consensus process is that the individual opinions of the

ontology builders are only used to build the final consensual values, thus respecting

the privacy of the experts by hiding their individual opinions.

Example 16. For the sake of illustrative purposes, let us consider the problem of paper

70

reviewing. We assume that we want to build a general fuzzy ontology with the relevant

definitions (e.g., a hierarchy of publication types, the steps of the reviewing process, the

different roles that take part in the process, etc.) to reuse it in other applications, to

enable interoperability, or to detect inconsistencies automatically.

We assume that there are 5 possible decisions for a submission (Reject, WeakReject,

Borderline, WeakAccept, Accept) and that we need to define them by aggregating the

definitions given by 4 experts9. For example, these decisions could correspond to reject,

reject and encourage re-submission, major revision, minor revision, and accept as it is,

respectively. Table 3.2 shows the definitions of the fuzzy datatypes given by each expert.

Table 3.3 shows instead the consensual aggregation for several aggregation functions.

For CONVEX RRF and WMEAN, we used a vector of weights W = [0.2, 0.25, 0.25, 0.3]

taking into account the experience (years in academia) of the experts, while for

LOWA–RRF and FOWA we used a fuzzy quantifier right(0.3, 0.8), leading to a vector

of weights W = [0, 0.4, 0.5, 0.1].

The resulting datatypes for each aggregation strategy are illustrated in Figure 3.8. It

is worth to note that all methods result in a left-shoulder and a right-shoulder function,

but there are differences for the rest of functions:

− CONV–RRF results in 3 triangular and 0 trapezoidal functions,

− LOWA results in 2 triangular and 1 trapezoidal functions, and

− both WMEAN and FOWA result in 3 trapezoidal and 0 triangular functions.

Note also that CONV–RRF and LOWA–RRF result in 4 datatypes with the

definitions given by Expert 3; CONV–RRF and LOWA–RRF coincide in 3 definitions

out of 5.

Now, let us discuss how to evaluate a given submission. We assume that each

submission has a numerical score from 0 to 10 that combines the evaluation of

several criteria (e.g., originality, technical soundness, significance, presentation, and

relevance) given by different reviewers10. For a paper p0 with a score of 7.5, the

membership degrees to each category are shown in Table 3.4.

Therefore, the optimal decision depends on the aggregation strategy: for WMEAN,

it is WeakAccept, while for the other ones the optimal choice is Accept.

9The definitions were actually provided by the coauthors of [HBGRS20].
10This involves the aggregation of numerical values, which is a well-known problem and out of our

scope.

71

(a) (b)

(c) (d)

Figure 3.8: Consensual datatypes using (a) CONV; (b) LOWA; (c) WMEAN; and (d)
FOWA.

Alternative Expert 1 Expert 2 Expert 3 Expert 4
Reject left(3.5, 4.5) left(3.5, 4) left(3, 4) left(1, 2)

WeakReject tri(3.5, 4.5, 5.5) trap(3.5, 4, 4.5, 5) tri(3, 4, 5) trap(1, 2, 3, 4)
Borderline tri(4.5, 5.5, 6.5) tri(4.5, 5, 5.5) tri(4, 5, 6) trap(3, 4, 6, 7)

WeakAccept tri(5.5, 6.5, 8) trap(5, 5.5, 6.5, 7.5) trap(5, 6, 7, 8) trap(6, 7, 8, 9)
Accept right(6.5, 8) right(6.5, 7.5) right(7, 8) right(8, 9)

Table 3.2: Individual definitions of the decisions given by the experts.

Alternative CONV–RRF LOWA–RRF WMEAN FOWA
Reject left(3, 4) left(3, 4) left(2.63, 3.5) left(3, 3.8)

WeakReject tri(3, 4, 5) tri(3, 4, 5) trap(2.63, 3.5, 3.93, 4.8) trap(3, 3.8, 4.1, 4.9)
Borderline tri(4, 5, 6) tri(4, 5, 6) trap(3.93, 4.8, 5.4, 6.28) trap(3.65, 4.6, 5.4, 6.35)

WeakAccept tri(5.5, 6.5, 8) trap(5, 6, 7, 8) trap(5.4, 6.28, 7.075, 8.18) trap(5.2, 6.15, 6.75, 7.95)
Accept right(7, 8) right(6.5, 8) right(7.08, 8.175) right(6.7, 7.95)

Table 3.3: Consensual definitions of the decisions for 4 aggregation strategies.

Alternative CONV–RRF LOWA–RRF WMEAN FOWA
Reject 0 0 0 0

WeakReject 0 0 0 0
Borderline 0 0 0 0

WeakAccept 0.33 0.5 0.61 0.38
Accept 0.5 0.67 0.39 0.64

Table 3.4: Degree of satisfaction of each decision for a paper with score of 7.5.

72

The learning algorithm. Algorithm 2 computes the aggregation of fuzzy datatypes

located in several fuzzy ontologies, each of them developed by a different expert. Our

algorithm has two inputs: a group of files (fuzzy ontologies) SO and an array of weights.

Firstly, we build an output fuzzy ontology as a union of the input fuzzy ontologies

excluding the annotation assertion axioms that provide the individual definitions of the

fuzzy datatypes (Lines 2–9). Typically, all input fuzzy ontologies will share a common

schema and only the definitions of the fuzzy datatypes will be different. If this is the

case, the for loop in Line 2 could be restricted to just one of the input fuzzy ontologies.

Secondly, we create an associative array where the keys are fuzzy datatype names

and the values are lists of the definitions given by the experts (Line 10). Next, each

fuzzy datatype definition in each fuzzy ontology is represented using a trapezoidal

datatype and then added to the associative array (Lines 11–20).

Thirdly, for each fuzzy datatype, a consensual definition is built using some

aggregation operator and the result is added to the output fuzzy ontology (Lines 21–24).

Finally, the algorithm returns the output fuzzy ontology.

Note that aggregate function can be implemented using diverse aggregation

strategies: any linguistic aggregation operator aggregating trapezoidal membership

functions given a vector of weights can be used. Table 3.5 contains six type of linguistic

aggregation operators that can be integrated in our approach.

Computing the vector of weights. In LOWA or FOWA, we propose two different

strategies to obtain the vector of weights. Namely:

− Quantifier-guided aggregation, using Eq. 2.6 as in standard OWA [Yag96]. In

this case, we propose to use right-shoulder (Figure 2.3 (d)), power (Figure 2.6

(a)) and linear (Figure 2.6 (b)) functions as RIM quantifiers.

− A recursive procedure to compute a vector of weights with a given orness, using

either Eq. 2.8 (to combine the lowest value and the aggregation of the other

ones) or Eq. 2.11 (to combine the highest value and the aggregation of the other

ones) [TY05].

Dealing with incomplete data. It could be the case that some of the experts do

not provide his/her definition of some datatype. In this case, unavailable opinions

are not taken into account during the aggregation, so a new vector of weights W is

computed. Specifically, in CONV–RRF and WMEAN, we can normalize each weight

dividing by the sum of the weights of the available experts. In LOWA–RRF or FOWA,

73

Algorithm 2 Algorithm to learn fuzzy datatypes using aggregation of definitions.

Input: A set of fuzzy ontologies SO
Input: An array of weights W
Output: A fuzzy ontology O

1: // Add background axioms
2: O ← ∅
3: for all o ∈ SO do
4: for all axiom a in o do
5: if a is not a fuzzy datatype definition then
6: O ← O ∪ a
7: end if
8: end for
9: end for

// Retrieve fuzzy datatypes
10: listDefs← new associative array
11: for all o ∈ SO do
12: for all fuzzy datatype fd in o do
13: trapFD ← trapezoidal(fd)
14: if listDefs[fd] = ∅ then
15: listDefs[fd]← trapFD
16: else
17: listDefs[fd]← listDefs[fd] ∪ trapFD
18: end if
19: end for
20: end for

// Build consensual fuzzy datatypes
21: for all key fd of listDefs do
22: newFD ← aggregate(listDefs[fd],W)
23: O ← O ∪ newFD
24: end for
25: return O

74

we can use the previously described strategies (quantifier-guided aggregation or a

recursive procedure starting from the orness) to get a vector of smaller size.

Example 17. Assume that there are 4 experts E1, E2, E3, and E4, but E3 does

not provide a definition for some datatype. To aggregate the other definitions using

CONV–RRF or WMEAN, the initial vector of weights [w1, w2, w3, w4] can be updated

as

[
w1

w1 + w2 + w4

,
w2

w1 + w2 + w4

,
w4

w1 + w2 + w4

] .

To aggregate the available definitions using LOWA-RRF or FOWA, let us firstly

assume that the vector of weights was computed using a quantifier Q = right(0.3, 0.8).

Then, the initial vector [0, 0.4, 0.5, 0.1] is replaced with [0.067, 0.667, 0.267].

Now let us assume that the vector of weights was computed from a desired orness

0.6 using a left recursive procedure. Then, the initial vector [0.368, 0.245, 0.205, 0.182]

is replaced with [0.45, 0.3, 0.25].

Left Recursive Form of CONV and LOWA. Now, we will propose some new

linguistic aggregation operators. Inspired by the rewriting of classical OWA in two

recursive forms LRF and RRF (see Eqs. 2.7 and 2.10), we may view the standard

definition of CONV (Eqs. 2.12–2.13) as a right recursive form. From that, we propose

a left recursive form (CONV–LRF).

Definition 1. The Left Recursive Form of the convex combination (CONV–LRF) of

K ≥ 2 linguistic labels given a weighting vector [w1, . . . , wK] is defined as follows:

− if K = 2, then

CONVLRF([w1, . . . , wK], [d1 . . . , dK]) = CONVRRF([w1, . . . , wK], [d1 . . . , dK])

− if K > 2, then:

CONVLRF([w1, . . . , wK], [d1 . . . , dK]) =

CONVLRF
(

[1− wK , wK],
[
CONVLRF([β1, . . . , βk−1], [d1, . . . , dK−1]), dK

])
,

(3.2)

where βh = wh /
∑K−1

j=1 wj, h ∈ {1, . . . , K − 1}.

Example 18. 4 experts provide definitions [VeryHigh,High, Low,VeryLow] and there is

a weighting vector [0.45, 0.05, 0.1, 0.4]. Let us firstly aggregate using CONV–RRF:

CONVRRF([0.45, 0.05, 0.1, 0.4], [VeryHigh,High, Low, VeryLow]) =

CONVRRF
([

0.45, 0.55
]
,
[

VeryHigh,

CONVRRF([0.09, 0.91], [High,CONVRRF([0.2, 0.8], [Low,VeryLow])
])

=

75

CONVRRF
([

0.45, 0.55
]
,
[

VeryHigh,CONVRRF([0.09, 0.91], [High,VeryLow])
])

=

CONVRRF
([

0.45, 0.55
]
,
[

VeryHigh,VeryLow
])

= Low

Now, let us compute CONV–LRF, obtaining a different result:

CONVLRF([0.45, 0.05, 0.1, 0.4], [VeryHigh,High, Low, VeryLow]) =

CONVLRF
([

0.6, 0.4
]
,
[
CONVLRF([0.83, 0.17],

[CONVLRF([0.9, 0.1], [VeryHigh,High]), Low]),VeryLow
])

=

CONVLRF
([

0.6, 0.4
]
,
[
CONVLRF([0.83, 0.17], [VeryHigh, Low]),VeryLow

])
=

CONVLRF
([

0.6, 0.4
]
,
[

VeryHigh,VeryLow
])

= High

In Section 6.7, we perform an empirical evaluation of the CONV–RRF and

CONV–LRF, showing the differences between both aggregation operators.

CONV–LRF can also be used to define a new version of the linguistic OWA based

on the left recursive form of the convex combination.

Definition 2. The Left Recursive Form of the linguistic LOWA (LOWA–LRF) of

K ≥ 2 linguistic labels given a weighting vector [w1, . . . , wK] is defined as follows:

LOWALRF([w1, . . . , wK], [d1 . . . , dK]) =

CONVLRF([w1, . . . , wK], [dσ(1), . . . , dσ(K)]) ,
(3.3)

where σ is a permutation such that dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(K).

Example 19. Let us revisit Example 16 considering CONV–LRF and LOWA–LRF.

Compared to their right recursive forms, it turns out that LOWA–LRF produces exactly

the same output and that CONV–LRF only differs in the consensuated definition of

Borderline, which is now given by trap(3, 4, 6, 7), i.e., the definition given by Expert 4.

The resulting datatypes for CONV–LRF are illustrated in Figure 3.9.

Using CONV–LRF, the membership degree of paper p0 to Borderline is also 0, as it

happens using CONV–RRF. Both CONV–LRF and LOWA–LRF return 2 triangular

and 1 trapezoidal functions (CONV–RRF returns 3 triangular functions), CONV–LRF

includes 3 datatypes defined by Expert 3 (CONV–RRF includes 4); and CONV–LRF

and LOWA–LRF coincide in 2 definitions (the right recursive forms coincide in 3).

Some properties of the linguistic aggregation operators. The first thing

to observe is that CONV–RRF and CONV–LRF (and hence LOWA–RRF and

LOWA–LRF) do not care about the concrete definitions (e.g., if a trapezoidal function

has some value of q1 or another); only the relative ordering matters.

76

Figure 3.9: Consensual datatypes using CONV–LRF.

It is also important to stress that CONV–LRF and CONV-RRF are not

commutative, as Example 20 shows.

Example 20. Assume that 3 experts provide definitions [d1, d1, d4] and we aggregate

the values using CONV–LRF and a weighting vector [0.1, 0.1, 0.8]:

CONVLRF([0.1, 0.1, 0.8], [d1, d1, d4]) =

CONVLRF
([

0.2, 0.8
]
,
[

d4,

CONVLRF([0.5, 0.5], [d1, d1])
])

=

CONVLRF
([

0.2, 0.8
]
,
[

d1, d4

])
= d3

Now, let us swap the positions of the first and the third experts. Therefore, we want

to aggregate [d4, d1, d1] given a weighting vector [0.8, 0.1, 0.1]. As we will see, the result

is different:

CONVLRF([0.8, 0.1, 0.1], [d4, d1, d1]) =

CONVLRF
([

0.9, 0.1
]
,
[

d1,

CONVLRF([0.89, 0.11], [d4, d1])
])

=

CONVLRF
([

0.9, 0.1
]
,
[

d4, d1

])
= d4

In our case, when using CONV–RRF or CONV-LRF, rather than assuming a global

vector of linguistic labels L (such as VeryLow, Low, Neutral, High, and VeryHigh), for

each fuzzy datatype Fi we assume a different vector Li = [li1, li2, . . .]. On the one

hand, it does not make sense to use the same label VeryHigh to define a coffee intensity

or a temperature. On the other hand, the linguistic labels are not defined a priori, so

we can only rely on the definitions given by the experts. Furthermore, the same set of

labels can be different for each fuzzy datatype Fi, as some experts might not provide

a definition. Thus, for each Fi, we define Li = [diσ(K), . . . , diσ(1)].

It is worth to note that a pair of labels lij, ljk ∈ Fi may have the same definition.

That is, although it is probably not very common in practice, two experts may use

the very same trapezoidal membership function to define a label. This case was not

originally considered in [DVV93] for CONV–RRF, where the authors assumed that

77

k > j. However, we consider this case because combining the same definition is not

trivial, because CONV-RRF and CONV-LRF are not associative, as Example 21 shows.

Example 21. Assume that there are 5 experts and that E1 and E2 provide the

same definition, so we have L = [Exp1&2,Exp1&2,Exp3,Exp4,Exp5] (for ease of

presentation, we assume that the i-th expert provides the i-th largest value). Given a

weighting vector [0.15, 0.15, 0.1, 0.5, 0, 1], one may verify that the consensual definition

using CONV–RRF is that of expert E3:

CONVRRF
(

[0.15, 0.15, 0.1, 0.5, 0, 1], [Exp1&2,Exp1&2,Exp3,Exp4,Exp5]) = Exp3

Note that if we group the opinion of the two first experts and assign to this new

value the sum of their weights, the result of CONV–RRF is different:

CONVRRF
(

[0.3, 0.1, 0.5, 0, 1], [Exp1&2,Exp3,Exp4,Exp5]) = Exp4

Table 3.5 summarizes some key features of the six operators that can help to choose

one of them. In particular, the table shows if the output is always one of the inputs or

not, and if weights are assigned to a specific expert or not.

Criterion CONV–RRF/LRF LOWA–RRF/LRF WMEAN FOWA
Output is always one of the input datatypes Yes Yes No No

Weights are assigned to a specific expert Yes No Yes No

Table 3.5: Comparison between different aggregation strategies.

Implementation: Fudge. We have developed an implementation of the consensual

aggregation of fuzzy datatypes described in the previous paragraphs. Our tool is

called Fudge (FUzzy Datatypes from a Group of Experts) and is available online11.

The application has two versions for desktop computers and for mobile devices (see

Section 5.4.2), and uses OWL API to manage (fuzzy) OWL 2 ontologies represented

in Fuzzy OWL 2 language.

Fudge receives a folder containing the input ontology files and imports all the

OWL files in the folder. We assume that each of the input files includes a Fuzzy

OWL 2 ontology —specifically, an OWL 2 ontology where datatypes can have an

OWL 2 annotation describing the parameters of the fuzzy function. As an output,

Fudge creates a new ontology with the axioms included in the input files, except the

11http://webdiis.unizar.es/~ihvdis/Fudge.html

78

http://webdiis.unizar.es/~ihvdis/Fudge.html

declarations of the datatypes, which are unique. That is, if two or more files have a

datatype with the same name, it only adds a consensual one to the output ontology.

In theory, all input files should contain the same axioms (ontology schema and

individuals), and only the datatype annotations may be different. In practice, it could

happen that not all ontologies contain the same axioms. In such cases, there are several

possible choices: adding to the output ontology axioms that are in all input ontologies,

adding axioms that are in some of the ontologies, adding axioms that are in most of

the ontologies, etc. Among them, we chose to add the axioms included in the input

ontology with a larger number of logical axioms.

Fudge considers as a name of an entity its full URI (e.g., http://sid.cps.

unizar.es/engines.owl#HighTemperature) rather than its fragment identifier (e.g.,

HighTemperature), as two experts could use the same fragment to denote two different

entities (e.g., in the car domain, temperature of an engine and temperature of oil).

Note that some datatype may not be annotated in some of the input files. In such

cases, only the existing annotations are taken into account, and a vector of weights of

the appropriate size is computed, as already discussed in the previous section.

The declaration of the fuzzy datatypes must conform the specification of Fuzzy

OWL 2, including an annotation (with the type of the membership function and the

values of the parameters) and a range restriction to an interval [k1, k2]. The current

implementation is restricted to trapezoidal, triangular, left-shoulder, and right-shoulder

functions, accordingly to the Fuzzy OWL 2 specification.

So far, the supported aggregation operators are CONV–LRF, CONV–RRF,

WMEAN, LOWA–LRF, LOWA–RRF, and FOWA. It is worth to stress that the

application has been designed to ensure that adding more aggregation operators is

very easy. Indeed, it is enough to (i) add a new class extending an existing one, (ii)

implement a method computing the aggregation of K trapezoidal functions, and (iii)

update the graphical interface by adding another item to a list of aggregation operators.

The following fragment of code illustrates the creation of the new class:

public class NewAO extends AggregationOperator

{

@Override

public TrapezoidalFuzzyNumber aggregate(

ArrayList <TrapezoidalFuzzyNumber > values , Double [] weights)

{

...

}

}

To obtain the weights for LOWA–LRF, LOWA–RRF, and FOWA one may use

quantifier-base aggregation (using right-shoulder, linear, and power functions) or two

recursive procedures starting from a given orness.

79

http://sid.cps.unizar.es/engines.owl#HighTemperature
http://sid.cps.unizar.es/engines.owl#HighTemperature

User interface. Now we will describe the user interface for desktop computer; an

interface for mobile devices will be described in Section 5.4.2.

Fudge is written in Java. A simple user interface allows to select the input

ontologies, the type of consensus (aggregation operator) and the necessary parameters:

a vector of weights for CONV–LRF, CONV–RRF, and WMEAN, and the type of fuzzy

quantifier and its parameters or the orness value for LOWA–LRF, LOWA–RRF, and

FOWA. Figure 3.10 shows the main tab of the user interface. Initially, the second and

the third tab are disabled.

If the user selects CONV–LRF, CONV–RRF, or WMEAN as the aggregation

operator, the fourth tab is enabled, as shown in Figure 3.11. In this case, Fudge

checks that all values are positive and normalized (i.e., that the sum is equal to 1).

If the user selects LOWA–LRF, LOWA–RRF, or FOWA as an aggregation operator,

the second and the third tab become enabled. The second tab allows to obtain the

weights from a fuzzy quantifier. Figures 3.12–3.14 show how to select the type of fuzzy

quantifier (right-shoulder, linear, and power functions) and their parameters. The user

can see a general picture of the selected fuzzy quantifier and a customized picture with

the values of the selected parameters (Figure 3.15). Fudge checks that all values are

correct; for instance, in a right-shoulder function, q2 ≥ q1. The third tab allows to use

a recursive procedure to obtain the weights. Figure 3.16 shows that the user can select

the type of recursive (left or right) and an orness value in [0, 1].

Figure 3.10: Snapshot of Fudge: selection of input files and aggregation operator.

The main features of Fudge are:

80

Figure 3.11: Snapshot of Fudge: vector of weights.

Figure 3.12: Snapshots of Fudge: selection of right-shoulder quantifier.

81

Figure 3.13: Snapshots of Fudge: selection of linear quantifier.

Figure 3.14: Snapshots of Fudge: selection of power quantifier.

82

Figure 3.15: Snapshots of Fudge: customized picture for a power quantifier.

Figure 3.16: Snapshot of Fudge: computing the weights from an orness value.

83

− For fuzzy ontology developers, it could be used to generate a consensus in the

definition of fuzzy datatypes in an automatic way.

− It is domain independent.

− It supports the case where some definitions are omitted by experts.

− It has a modular programming design that makes it very easy to add new

aggregation methods.

− It has an intuitive Graphic User Interface and a mobile version for Android devices

(described in Section 5.4.2).

Related work

Some works have previously considered aggregation operators in fuzzy ontology

scenarios [BS13, CBM12, Voj07], but the aggregation was restricted to numerical

degrees of truth. Furthermore, most of the existing work assumes a unique definition

of the fuzzy membership functions that define the fuzzy datatypes. In the following

we will focus only on the few exceptions.

In a series of papers, researchers studied the application of fuzzy ontologies to reach

a consensus on decision making scenarios [MKC+17, PWM+13]; in particular, they used

existing fuzzy ontologies as part of decision making processes. In related papers, they

also studied the process of building a fuzzy ontology; for example, [MKP+19, MPUH15,

MPUH16] discussed how to build a fuzzy ontology in scenarios of multi-granular

linguistic information. There are significant differences with respect to our proposal.

The approach in [MPUH15] does not take account the opinions of different ontology

developers to build a fuzzy ontology. On the other hand, the approach in [MPUH16]

does not focus on fuzzy datatype construction but on assigning a membership degree to

individuals of a concept. Finally, the approach in [MKP+19] considers users’ opinions

in social networks and computes the fuzzy membership function from sentiment

information (numbers of positive, neutral, and negative words). In contrast, we

compute fuzzy membership functions by aggregating the fuzzy membership functions

of each ontology builder, rather than directly obtaining the definitions of the fuzzy

membership functions from the opinions of the different users. The latter strongly

depends on the quality of the sentiment analysis and is more vulnerable to malicious

users. In summary, none of the existing approaches uses the de facto standard for

fuzzy ontology representation Fuzzy OWL 2, supports several aggregation operators,

or provides a publicly available and extensible implementation.

84

It is also worth to mention a fuzzy ontology-based approach for diet

recommendation where the fuzzy datatypes provided by each expert, described using

standard fuzzy sets, are combined into a single fuzzy datatype described using a type-2

fuzzy set [LWH10]. Instead, we are concerned with building consensual type-1 fuzzy

datatypes.

85

86

Chapter 4

Contributions to fuzzy ontology
reasoning

In this section we will propose novel reasoning algorithms for fuzzy ontologies. The

two first sections focus on the instance retrieval and the realization problems. On

the one hand, Section 4.1 proposes two specific algorithms to solve these problems,

rather than reducing them to another reasoning task as previous works did. On the

other hand, Section 4.2 proposes and solves a novel reasoning problem, which we call

flexible faceted instance retrieval, where the user does not only specify a fuzzy concept

but also a list of values, described using fuzzy datatypes, for some data properties.

As a solution we propose two minimalist reasoning algorithms for some restricted yet

useful cases. The two latter sections focus on the similarity between fuzzy ontology

elements: Section 4.3 describes a novel and general approach to compute the similarity

between two individuals, whereas Section 4.4 focus on fuzzy matchmaking between

two individuals, computing the best possible agreement satisfying their individual

restrictions.

4.1 Algorithms for instance retrieval and

realization

Motivation

As already mentioned in Section 2, two of the most important reasoning tasks

in ontologies are the instance retrieval and the realization problems. In classical

ontologies, instance retrieval consists of retrieving all the individuals i that are known to

belong to a given a concept C. In the fuzzy setting, this reasoning task can be extended

to retrieving pairs 〈i, α〉 such that each individual i belongs to a given (possibly fuzzy)

concept C with degree greater or equal than α > 0. However, there are no specific

reasoning algorithms to solve this problem in fuzzy ontologies. Instead, one needs

87

to compute a best entailment degree test for each individual i in the fuzzy ontology,

retrieving a lower bound for its membership to C. For example, this is the algorithm

implemented in the fuzzy ontology reasoner fuzzyDL [BS16a]. Clearly, running several

entailment tests is not an optimal solution, and may take a dramatic increase in the

running time for hard ontologies.

A similar problem happens with the realization problem. In classical ontologies,

realization consists in retrieving all the concepts C that a given individual i is an

instance of. In fuzzy ontologies, it requires retrieving pairs 〈C, α〉 such that i belongs

to C with degree greater or equal than α > 0. This can be computed using a

best entailment degree test for each concept C in the fuzzy ontology, but no specific

algorithms have been designed.

Contributions

In this section we will describe two specific algorithms to solve the instance retrieval

problem and realization problem for fuzzy ontologies. Such algorithms are based on

an extension of an optimization technique called optimization partitioning, originally

proposed at [HPS07] and extended at [BS15]. This optimization can be applied in

a family of algorithms to reason with fuzzy DLs that are based on a combination of

classical tableaux rules and mathematical programming [Str05], as it is the case of the

algorithm implemented by fuzzyDL. In such cases, it is possible to compute a partition

of the single optimization problem into smaller optimization problems, called constraint

group optimization problems (CGO problems). The idea is to solve independently these

CGO problems (perhaps optimizing several times the same CGO problem if necessary)

rather than optimizing several times the whole original problem. First, we will present

the novel algorithm to solve the instance retrieval problem and then the realization

problem given a fuzzy ontology.

It is worth noting that the results of [BS15] involve reasoning tasks where just one

optimization problem needs to be solved. Their experiments show that, in such cases,

splitting the optimization problem into several ones does not decrease, in general, the

running time. In this thesis, however, we address problems that require solving several

optimization problems. In instance retrieval, the basic algorithm requires as many tests

as individuals in the ontology; in realization, as many tests as atomic concepts in the

ontology. With our novel algorithm, we decrease the number of optimization problems,

and in some particular cases we are able to solve a single one.

88

4.1.1 Instance retrieval in fuzzy ontologies

The intuition behind our algorithm is to reduce the number of optimization problems

to be solved by merging them. Clearly, optimization problems cannot be merged in

general, as Example 22 shows.

Example 22. Consider an ontology O with the axiom

〈johnSmith : DemocratVoter t RepublicanVoter ≥ 1〉

stating that citizen JohnSmith either voted for the Democratic Party or for the

Republican Party in the last USA elections. If we want to retrieve all the concepts

johnSmith belongs to, the answer should be an empty set, because we cannot infer that

he is a DemocratVoter and we cannot infer that he is a RepublicanVoter.

In Lukasiewicz fuzzy DLs, the axiom in O leads to a constraint

xjohnSmith:DemocratV oter + xjohnSmith:RepublicanV oter ≥ 1 (4.1)

We can indeed compute the realization problem by (i) adding 〈johnSmith : ¬C ≥
1− xCObj〉 to O, where xCObj is a new variable, for one of the atomic concepts C ∈ O,

(ii) minimizing xCObj, and (iii) repeating the process for each of the atomic concepts in

O. For example, adding 〈johnSmith : ¬DemocratVoter ≥ 1− xDemocratV oterObj〉 leads to

a constraint

xjohnSmith:DemocratV oter ≤ xDemocratV oterObj (4.2)

and the minimum value of xDemocratV oterObj with respect to Equations 4.1–4.2 is

0, i.e., there is a solution to the MILP problem such that xDemocratV oterObj = 0 (and

xjohnSmith:RepublicanV oter = 1).

However, if we also added 〈johnSmith : ¬RepublicanVoter ≥ xRepublicanV oterObj〉, we

would have a constraint

xjohnSmith:RepublicanV oter ≤ xRepublicanV oterObj (4.3)

Now, in every solution of the optimization problem in Equations 4.1–4.3,

xDemocratV oterObj > 0 or xRepublicanV oterObj > 0 hold, which is incorrect as we are

interested in answers that hold in every model.

However, we can merge optimization problems as long as the involved variables are

independent. Based on this idea, Algorithm 3 solves the instance retrieval of a fuzzy

concept C given a fuzzy ontology O. The output is a (possibly empty) list of pairs of

the form 〈a, α〉, where a ∈ O is an individual, α > 0 and O |= 〈a : C ≥ α〉.

89

Algorithm 3 Algorithm to compute the instance retrieval problem given a fuzzy
ontology

Input: A fuzzy ontology O
Input: A fuzzy concept C

Output: A set of pairs individual–membership degree
{
〈a1, α1〉, . . . , 〈an, αn〉

}
1: for each individual a ∈ O do

2: xa:Obj = new variable

3: O ∪ 〈a : ¬C, 1− xa:Obj〉
4: end for

5: L← ∅
6: C← ApplyReasoningRules(O)

7: Ci ← Partition(C)

8: for each Ci do

9: v[i]← number of variables xa:Obj ∈ Ci

10: end for

11: Czero ←
⋃

Ci s.t. v[i] = 0

12: if Czero does not have a solution then

13: return ∅
14: end if

15: Cone ←
⋃

Ci s.t. v[i] = 1

16: if Cone does not have a solution then

17: return ∅
18: end if

19: Minimize z w.r.t. Cone ∪ {z =
∑

xa:Obj∈Cone
xa:Obj}

20: for each xa:Obj in the model of the solution do

21: if xa:Obj > 0 then

22: L← L ∪ 〈a, α〉
23: end if

24: end for

25: Ctwo or more ← (C \Czero) \Cone

26: if Ctwo or more does not have a solution then

27: return ∅
28: end if

29: for each xa:Obj ∈ Ctwo or more do

30: α← Minimize xa:Obj w.r.t. Ctwo or more

31: if α > 0 then

32: L← L ∪ 〈a, α〉
33: end if

34: end for

35: return L

90

Lines 1– 6 add a new assertion for each named concept in the ontology, create an

empty list of results L, and apply some reasoning rules that create a set of MILP

constraints. The new assertions are similar to the previous algorithm implemented in

fuzzyDL [BS16a], but now we create them together, at the beginning of the algorithm.

Lines 7– 10 partition the single constraint set with respect to C into a set of

constraint sets Ci. This is similar to the approach in [BS15]. However, we also compute

the number of variables to be minimized xa:Obj in each of the problems so that we can

consider three cases:

Czero: constraint sets without an objective variable (so that we only need to check if

they have a solution),

Cone: constraint sets with exactly one objective variable of the form xa:Obj, and

Ctwo or more: constraint sets with more than one objective variable of the form xa:Obj

(so they are dependent variables).

Lines 11– 14 address the first case. Constraint sets are merged and we check

if there is a solution to the merged constraint set to guarantee that there are not

inconsistencies. We could also solve the problems independently, but some experiments

showed empirically that it is faster to solve a single problem [BS15].

Lines 15– 24 address the second case. Constraint sets are merged and we optimize

with respect to a variable with a value equal to the sum of all the variables xa:Obj to be

minimized. This is possible only because all variables xa:Obj are independent: in this

case the minimum of the sum occurs when all the variables have its minimum value.

The value of each xa:Obj is added to the list of results if it is greater than 0.

Finally, Lines 25– 34 address the third case. In this case, constraint sets are merged,

but the merged problem is optimized independently with respect to a single variable,

and this is repeated for each variable xa:Obj introduced in Lines 1– 6 that belongs to

Ctwo or more. The minimal value of each xa:Obj is added to the list of results if it is

greater than 0.

An alternative to the third case is not to merge all the constraint sets into a single

one and optimize them independently with respect to each xa:Obj. Note that each

independent constraint set would need to be optimized two or more times.

Another alternative is to merge the first and the second case to optimize a single

optimization problem. This seems more promising in practice, as the evaluation

in [BS15] showed that solving a problem is not more expensive than solving two simpler

ones, disjoint subsets of the original one.

91

Example 23 illustrates our instance retrieval algorithm by showing some of the

variables obtained and their interdependence.

Example 23. Consider an input fuzzy ontology O = {a : A, 〈b : B ≥ 0.3〉, 〈c : B ≥
0.1〉, 〈(d, e) : R ≥ 0.8〉, d : B u ∀R.B} and let us compute the instance retrieval of the

concept B in Lukasiewicz fuzzy logic. The reasoning algorithm computes a constraint

set C, which can be partitioned into three partitions:

− Czero, including variable xa:A,

− Cone, including variables xaObj, xbObj and xcObj, and

− Ctwo or more, including variables xdObj and xeObj.

Figure 4.1 shows a graph including some variables in the constraint set C and their

partitions: orange denotes that the variable is in Czero, green denotes a variable in

Cone, and yellow denotes a variable in Ctwo or more. It suffices to check that Czero has

a solution. Cone can be solved by minimizing a variable z defined as a sum of the three

objective variables, i.e., z = xaObj + xbObj + xcObj. To solve Ctwo or more, one needs

to minimize separately xdObj and xeObj. The output of the algorithm is a set of pairs

individual-membership degree, namely 〈b, 0.3〉, 〈c, 0.1〉, 〈d, 1〉, 〈e, 0.8〉

Figure 4.1: Fragment of a dependency graph to solve an instance retrieval problem.

As our experiments will show (see Section 6.4), the particularly interesting case

when Ctwo or more is empty happens relatively often. In this case, we can solve a single

optimization problem (with the union of Czero and Cone). However, we have identified

some cases where Ctwo or more is not empty, described in Examples 24 and 25.

Example 24. Assume that a fuzzy ontology O has two domain and range axioms,

stating that the domain and range of an object property R are Cd and Cr, respectively,

92

and that there are two object property assertions relating individuals i1 and i2 with

individual i3, via R. Assume also that we want to retrieve the instances of Cd, so

the algorithm adds (among others) the pair of assertions 〈i1 : ¬ LCd, 1 − x1〉 and 〈i2 :

¬ LCd, 1 − x2〉. The first assertion causes that the objective variable x1 is connected

to xi1:Cd
. Because of the domain axiom, variables xi1:Cd

and x(i1,i3):R are connected.

Because of the range axiom x(i1,i3):R and xi3:Cr are connected, and so are xi3:Cr and

x(i2,i3):R. Moreover, the domain axiom causes that x(i2,i3):R and xi2:Cd
are connected.

Because of the assertion 〈i2 : ¬ LCd, 1 − x2〉, xi2:Cd
and the objective variable x2 are

connected. Therefore, x1 C x2, so Ctwo or more is not empty (there is a partition that

contains at least two objective variables, x1, x2). The same problem happens if we want

to retrieve the instances of a subclass of Cd.

Note that this situation does not happen without the range axiom. Although a1, a2,

and a3 would belong to the same ABox partition in the sense of [HPS07], they would

not belong to the same optimization problem partitioning.

Example 25. Consider again Example 24 without the range axiom. In expressive

languages with nominals, there is an additional rule called ∃a [BS14] that adds a

constraint of the form xi:{i} ⇒ (xij :∃R.{i} ⇒ x(ij ,i):R) ≥ 1 for each individual ij related

to i via R1. Because individuals i1, i2 are related via R to i3, variables x(i1,i3):R and

x(i2,i3):R are connected via xi3:{i3}. Therefore, x1 and x2 are connected, so Ctwo or more

is not empty.

In Section 6.4 will describe our experiments and findings about implemented

Algorithm 3 on fuzzyDL semantic reasoner. We compared the previous version of

fuzzyDL with new version.

4.1.2 Realization in fuzzy ontologies

Algorithm 3 can be easily adapted to the realization problem. Algorithm 4 solves

the realization problem of an individual a given a fuzzy ontology O. The output is a

(possibly empty) list of pairs of the form 〈A,α〉, where A ∈ O is an atomic concept,

α > 0 and O |= 〈a : A ≥ α〉.
Lines 1– 6 are similar to the same lines in Algorithm 3, but now we add a new

assertion (involving a new variable) for each named concept in the ontology. Then,

Lines 7– 10 partitions the single constraint set into several sets Ci. Next, we address

the same cases: Lines 11– 14 address the first case, Lines 15– 24 address the second

case, and Lines 25– 34 address the third case.

1If a fuzzy ontology does not use nominals, this rule does not need to be applied.

93

Algorithm 4 Algorithm to compute the realization problem given a fuzzy ontology

Input: A fuzzy ontology O
Input: An individual a

Output: A set of pairs individual–membership degree
{
〈A1, α1〉, . . . , 〈An, αn〉

}
1: for each atomic concept A ∈ O do

2: xaObj = new variable

3: O ∪ 〈a : ¬A, 1− xaObj〉
4: end for

5: L← ∅
6: C← ApplyReasoningRules(O)

7: Ci ← Partition(C)

8: for each Ci do

9: v[i]← number of variables xaObj ∈ Ci

10: end for

11: Czero ←
⋃

Ci s.t. v[i] = 0

12: if Czero does not have a solution then

13: return ∅
14: end if

15: Cone ←
⋃

Ci s.t. v[i] = 1

16: if Cone does not have a solution then

17: return ∅
18: end if

19: Minimize z w.r.t. Cone ∪ {z =
∑

xaObj∈Cone
xaObj}

20: for each solution xaObj in the model of the solution do

21: if xaObj > 0 then

22: L← L ∪ 〈A,α〉
23: end if

24: end for

25: Ctwo or more ← (C \Czero) \Cone

26: if Ctwo or more does not have a solution then

27: return ∅
28: end if

29: for each xaObj ∈ Ctwo or more do

30: α← Minimize xaObj w.r.t. Ctwo or more

31: if α > 0 then

32: L← L ∪ 〈A,α〉
33: end if

34: end for

35: return L

94

We can also consider the same alternatives as in the instance retrieval problem: in

the third case it is possible not to merge all the constraint sets, and the constraint sets

in the first and the second cases can be merged.

A particularly interesting case happens when Ctwo or more is empty. In this case,

we can solve a single optimization problem (with the union of the first and the second

case). However, in practice, those cases might not happen very often. For example,

Example 26 shows that having disjoint concept axioms introduces dependencies.

Example 26. If there is an axiom stating that two concepts C1 and C2 are disjoint, a

constraint xa:C1⊗xa:C2 = 0 is created for each individual a in the ontology, so variables

xa:C1 and xa:C2 are dependent. Computing the realization of any individual a requires

adding two assertions 〈a : ¬ LC1, 1 − xC1Obj〉 and 〈a : ¬ LC2, 1 − xC2Obj〉, so variables

xC1Obj, xC2Obj are connected as well, and thus Ctwo or more is not empty (there is a

partition that contains at least two objective variables, xC1Obj and xC2Obj).

Related work

To the best of our knowledge, no specific reasoning algorithms to solve instance retrieval

and realization problems given a fuzzy ontology are reported in the literature.

Table 4.1 shows a group of fuzzy reasoners that support the instance retrieval task

or realization task. We can see that fuzzyDL, FRESG and YADLR are the only ones

supporting instance retrieval, while FRESG and YADLR are the only ones supporting

realization.

Reasoner Instance Retrieval Realization
fuzzyDL [BS16a] •

Fire [SSSK06]
FPLGERDS [Hab07]

YADLR [KA07] • •

DeLorean [BCFGR12]
GURDL [HPS07]
FRESG [WMY09] • •

LiFR [TDKM14]
SMT-based solver [ABB+13]

Table 4.1: fuzzy reasoners.

FRESG computes instance retrieval and realization by reducing to several tableaux

algorithm tasks, and YADLR to several BEDs2. That is, if the fuzzy ontology has ni

individuals and nc atomic concepts, existing algorithms require ni tests to solve the

instance retrieval and nc tests to solve the realization problem.

2Strictly speaking, YADLR checks if an individual is a member of a given concept with an unknown
degree of truth, represented using a variable.

95

The previous version of fuzzyDL also required to compute several BED tests to

compute the instance retrieval. In this work, we have proposed specific algorithms to

solve both reasoning tasks and have implemented the instance retrieval algorithm in

fuzzyDL.

It is worth to mention a recent work that solves the realization problem given a

classical ontology (although only the most specific concepts are retrieved) [SDY22]

using ontology partitioning, as we do. While the different queries to be solved are

easier, as they involve smaller ontologies, the total number of tests is not optimized.

Furthermore, our work [HBB20] was published two years before.

4.2 Minimalist algorithms for flexible faceted

instance retrieval

Motivation

The instance retrieval problem is well known but might give too many results. For

example, retrieving all instances of Ale in a beer recommender system would include

the instances of all subclasses of Ale, which are too many. To reduce the number of

results, one can restrict to the top-k instances or filter those individuals not exceeding a

certain threshold. Another alternative is to specify the values of some data properties,

e.g., retrieving all Ale beers with a high alcohol and a high quality.

Furthermore, although we have optimized in the previous section a reasoning

algorithm to solve the instance retrieval problem, some further optimizations are

possible if we restrict to some specific cases. In particular, if we can assume that

only some parts of the fuzzy ontology are actually fuzzy, one can try to adapt the

reasoning algorithms to such cases, and to reuse as much as possible existing crisp

ontology reasoners. Specifically, a possible idea is to retrieve the instances of a concept

using a crisp ontology reasoner, and then to compute the membership degree to some

fuzzy sets (e.g., the fuzzy set of high alcoholic beers) and to combine the degrees using

fuzzy logic operators.

Contributions

Our first contribution is the definition of a novel reasoning task that we call flexible

faceted instance retrieval. The idea is to extend classical fuzzy instance retrieval to

narrow down the query results by imposing some conditions on the attribute values.

We will also propose two minimalist reasoning algorithms for some specific cases, where

the term minimalist refers to the fact that the algorithm cannot support any element

96

of a fuzzy ontology, but only a selection of them useful for the task —namely, fuzzy

datatypes and fuzzy concept assertions. This kind of queries is pervasive in real-world

problems since they can be used to obtain the domain objects that satisfy imprecise

(and probably complex) constraints defined over their data properties.

Flexible faceted instance retrieval. In particular, given a fuzzy ontology O, our

aim is to retrieve the instances of a fuzzy concept C such that the values of n functional

data properties pi with a numerical range are compatible with a fuzzy datatype Di.

Recall the previous example: retrieving all the instances of Ale beers such that their

alcohol is High and their quality is High. Furthermore, the intermediate degrees of

truth can be combined using a combination function fc (e.g., an aggregation operator

such as weighted mean or OWA, a t-norm, or a t-conorm), and the final degree can be

modified using a modifier function fh (a fuzzy hedge), e.g., the very modifier.

Definition 3 (Flexible faceted instance retrieval). Given the sextuple

〈O, C, [p1, . . . , pn], [D1, . . . , Dn], fc, fh〉, the solution to the flexible faceted instance

retrieval is an ordered list of pairs 〈ii, αi〉 such that

O |= 〈ii : C, βi〉 ,

O |= (ii, vj) : pj, j ∈ {1, . . . , n} ,

αi = fh(fc(βi, D1(v1), . . . , Dn(vn)) > 0 ,

αi ≥ αj, j > i .

(4.4)

Example 27. Consider a beer ontology O where the class Beer have 5 sibling subclasses

Ale, Lager, Wheat, Sour, and Specialty. Ale has some subclasses Stout, Trappist,

Belgian Strong Ale, and Indian Pale Ale. Such subclasses are non-direct in general, for

example, Belgian Strong Ale is a direct subclass of BelgianAle, which is a direct subclass

of Ale. There are 2 data properties alcohol and quality representing the alcohol level

and the quality of a beer, respectively, and 5 individuals (Chimay Bleue, Pauwel Kwak,

Delirium Tremens, BrewDog Punk IPA, and Guinness Draught). The following table shows

for each beer to which subclass of Ale it belongs to, the alcohol level, and the quality:

Beer Type alcohol quality
BrewDog Punk IPA Indian Pale Ale 5.6 3.78

Chimay Bleue Trappist 9 3.95
Delirium Tremens Belgian Strong Ale 8.5 3.9
Guinness Draught Stout 4.2 3.79

Pauwel Kwak Belgian Strong Ale 8.4 3.81

We want to retrieve the instances of Ale such the alcohol level is HighAlcohol

and the quality is HighQuality, using as a combination function the minimum t-norm

97

fc(x1, . . . , xk) = min{x1, . . . , xk} and using as a modifier function the fuzzy hedge very

defined as fh(x) = x2. HighAlcohol is defined as a triangular fuzzy function tri(7, 9, 11)

and HighQuality is defined as a triangular fuzzy function tri(3.5, 4, 4.5). Remember that

αi = fh(fc(βi, D1(v1), . . . , Dn(vn)) > 0. Thus:

Beer HighAlcohol HighQuality αi
BrewDog Punk IPA 0 0.56 0

Chimay Bleue 1 0.9 0.81
Delirium Tremens 0.75 0.8 0.56
Guinness Draught 0 0.58 0

Pauwel Kwak 0.7 0.62 0.38

Therefore, the answer would be:{
〈Chimay Bleue, 0.81〉, 〈Delirium Tremens, 0.56〉, 〈Pauwel Kwak, 0.38〉

}
Note that the previous general case could be simplified in different modes: C can be

a crisp concept, there can be a single property (or even none), and fh can be omitted

assuming that it is the identity function. Also, it is trivial to extend the reasoning task

to consider only the top-k results.

Specific cases. Our aim now will be to propose a reasoning algorithm for more

specific, but still common in practice, cases:

Case 1. We assume that the only fuzzy elements that the fuzzy ontology can contain

are fuzzy datatypes and fuzzy concept assertions of the form 〈i : A ≥ β〉.
Furthermore, we assume that if an individual is asserted to belong partially to a

concept, it is not asserted to fully belong to any descendant of the concept for

which we want to retrieve the instances.

Case 2. We assume that the only fuzzy elements are fuzzy datatypes.

Note that in Case 1 we only take into account those partial memberships that are

stated via a fuzzy concept assertion 〈i : C ≥ β〉 with β > 0 (that will also be propagated

to the named concepts that are superclasses of C). Therefore, if O |= 〈i : C ≥ β〉 and

β < 1, there is at least a fuzzy concept assertion of the form 〈i : C ′ ≥ β〉 ∈ O, for some

subclass C ′ of C (so O |= C ′ v C). Note in particular that the case C ′ = C is possible.

Example 28 shows an example of an implicit fuzzy concept assertion that is excluded.

Example 28. Let us assume {{i} v (A t A)} ∈ O under Lukasiewicz family of fuzzy

operators. Therefore, for each element x of the domain, ({i})I(x) ≤ (AtA)I(x) holds.

In particular, x = iI implies 1 ≤ (A t A)I(iI), so AI(x) ⊕ AI(x) = min{AI(iI) +

98

AI(iI), 1} ≥ 1, and thus 2 · AI(iI) ≥ 1, so AI(iI) ≥ 0.5 holds. Therefore, the fuzzy

ontology entails a fuzzy concept assertion 〈i : A ≥ 0.5〉 that is not explicitly represented

in O.

The rationale behind forbidding that an individual fully belongs to another

descendant of the concept for which we want to retrieve the instances if the individual

partially belongs to a concept, is to avoid computing the membership degrees of

individuals to classes using an ontology reasoner. We instead take one or more fuzzy

concept assertions and propagate the membership degrees to the superclasses of the

concepts. If there is more than one fuzzy concept assertion involving subclasses of C,

we can take the maximum of the membership degrees max{βi}.

Example 29. Assume that beer1 is a Stout with degree 0.9 and a Trappist with degree

0.8. Then, the membership degree to the common superclass Ale is max{0.9, 0.8} =

0.9.

Note also that we do not restrict to a specific family of fuzzy operators (Zadeh,

Gödel, Lukasiewicz, or Product). Because we only consider fuzzy datatypes and the

propagation of fuzzy concept assertions to their superclasses, where the subclasses

axioms are fully true, our algorithm does not depend on the choice of the fuzzy

operators.

To efficiently retrieve the degrees βi without using a reasoner, we retrieve them from

the Fuzzy OWL 2 annotations and store them in an appropriate data structure (such

as a NoSQL database storing triples) for an efficient data access. In particular, for each

fuzzy concept assertion 〈i : C ≥ β〉 ∈ O, we add a tuple 〈i, C, β〉 to the data structure.

Note that it is possible to visit all fuzzy concept assertions in a Fuzzy OWL 2 ontology,

by looping over all existing annotation assertions involving the fuzzyLabel property.

We avoid adding to the data structure individuals which fully belong to a concept.

That is, for each classical concept assertion i : C we do not add to the data structure a

tuple 〈i, C, 1〉. The reason is that it is not efficient to retrieve each concept C ′ such that

O |= i : C ′ but i : C ′ 6∈ O; in particular, we would need to use an ontology reasoner.

Note that if there is a classical assertion stating that an individual belongs to a

class, there is no annotation assertion. Therefore, individuals fully belonging to a class

are not stored in the data structure. Given a flexible faceted instance retrieval over a

concept C, it is fine to have an individual partially belonging to several fuzzy concepts

that are subclasses of C (i.e., appearing in more than one fuzzy concept assertion)

and it is fine to have an individual fully belonging to several fuzzy concepts that are

subclasses of C, but it is not possible to have both cases at the same time to propagate

99

a membership degree to a class C ′ to a (possibly non-direct) superclass C without

having to check (using a reasoner) if the individual fully belongs to C.

A reasoning algorithm for Case 1. Algorithm 5 shows how to compute the flexible

faceted instance retrieval of a fuzzy ontology under the restrictions enumerated in the

previous section.

The first part (Lines 2–6) is an initialization that can be computed just once,

and can be reused by future queries. Firstly, we load the ontology (Line 2), classify

the ontology by computing the hierarchy of concept names that fully subsume their

subclasses (Line 2), and store the degrees of the fuzzy concept assertions in an auxiliary

data structure DS (Lines 3–6). The rest of the code (Lines 8–33) implements the

proper query answering. The next steps retrieve all instances of C, noting that some of

them might partially belong to C (Line 8), and retrieving all subclasses of C (Line 9).

Then, we look in the data structure if each retrieved instance appears in the data

structure (partial membership) or not (fully membership). In particular, Lines 12–22

compute the maximum of the degrees in the data structure (1 if there is none). The

next step is to compute the satisfaction degrees of the linguistic labels associated to

the attributes of the instance. Therefore, Lines 23–28 retrieve the values of each data

property (which must be unique because the properties are functional) and compute

the membership degrees to the respective fuzzy datatypes (except if the value of the

property is unknown). All the obtained degrees are aggregated in Lines 29–31 using a

combination functions and a fuzzy hedge, and then added to a list of solutions. Finally,

the list is ordered and returned.

One of the key points of the algorithm is that Lines 2, 8, 9, and 24 can be obtained

using a classical ontology reasoner and, therefore, rather efficiently.

An implementation of the algorithm will be discussed in Section 6.5, where we will

describe a prototype implementation and the evaluation of our application on a real

use case for Architecture, Engineering, and Construction (AEC).

A reasoning algorithm for Case 2. Algorithm 6 is more specific than Algorithm 5

for fuzzy ontologies where there are only fuzzy datatypes. Here, the query answering

needs all instances of a specific class of an ontology and the functional data properties.

For each instance, Lines 7–12 retrieve the values of each data property and compute

the membership degrees to the respective fuzzy datatypes. The combination function

and a fuzzy hedge compute all the degrees obtained (Lines 13–15), and then the pair

〈 instance, degree 〉 is added to a list of solutions LS. Finally, the list is ordered and

returned. Example 27 illustrates how this algorithm works.

100

Algorithm 5 Algorithm to compute the flexible faceted instance retrieval in Case 1.

Input: A fuzzy ontology O
Input: A concept C
Input: A list of functional numerical data properties [p1, . . . , pn]
Input: A list of fuzzy datatypes [D1, . . . , Dn],
Input: A combination function fc
Input: A fuzzy hedge fh

Output: A list of pairs with individuals and membership degrees to C
{
〈ii, αi〉

}
1: // Initialization
2: O ← crispClassify(O)
3: DS ← ∅
4: for all 〈i : C ≥ β〉 ∈ O do
5: DS ← DS ∪ 〈i, C, β〉
6: end for
7: // Query answering
8: I ← Retrieve all instances i of C in O
9: S ← Retrieve all subclasses of C in O

10: LS ← ∅
11: for all i ∈ I do
12: A← ∅
13: for all s ∈ S do
14: if 〈i, s, β〉 ∈ DS then
15: A← A ∪ β
16: end if
17: end for
18: if A = ∅ then
19: β ← 1
20: else
21: β ← max(A)
22: end if
23: for all data property pi do
24: v ← Retrieve the value of the data property pi for i in O
25: if v 6=null then
26: D ← D ∪Di(v)
27: end if
28: end for
29: auxDegree← fc(β,D)
30: α← fh(auxDegree)
31: LS ← LS ∪ 〈i, α〉
32: end for
33: LS ← sort(LS) in decreasing order of degrees of truth
34: return LS

101

In Section 5.2 we will describe an Android app using Algorithm 6 in a beer

recommender system that will be evaluated on Section 6.2.

Algorithm 6 Algorithm to compute the flexible faceted instance retrieval in Case 2.

Input: A fuzzy ontology O
Input: A concept C
Input: A list of functional numerical data properties [p1, . . . , pn]
Input: A list of fuzzy datatypes [D1, . . . , Dn],
Input: A combination function fc
Input: A fuzzy hedge fh

Output: A list of pairs with individuals and membership degrees to C
{
〈ii, αi〉

}
1: // Initialization
2: O ← crispClassify(O)
3: // Query answering
4: I ← Retrieve all instances i of C in O
5: LS ← ∅
6: for all i ∈ I do
7: for all data property pi do
8: v ← Retrieve the value of the data property pi for i in O
9: if v 6= null then

10: D ← D ∪Di(v)
11: end if
12: end for
13: auxDegree← fc(D)
14: α← fh(auxDegree)
15: LS ← LS ∪ 〈i, α〉
16: end for
17: LS ← sort(LS) in decreasing order of degrees of truth
18: return LS

Related work

Different families of reasoning algorithms for fuzzy ontologies can be found in the

literature [Str13]. However, most of them are focused on showing the existence of

an algorithm rather than on the efficiency in practice. For example, some reasoning

algorithms are based on computing an equivalent crisp ontology, with a blowup in the

size of the ontology [BDGRS12]. DeLorean implements some of these algorithms. This

is clearly not scalable and in appropriate to answer queries over real knowledge bases,

with a very high number of individuals and axioms.

Because ontology languages provide a trade-off between expressive power and

complexity of the reasoning, a first way to guarantee an efficient reasoning is to restrict

the expressivity. In classical ontologies, the OWL 2 language has three sublanguages

or profiles with tractable reasoning (i.e., the main reasoning tasks can be solved in a

102

polynomial time), namely OWL 2 EL, OWL 2 QL, and OWL 2 RL [W3C12b]. In the

fuzzy case, it has been showed that fuzzy extensions of tractable languages are not

tractable in general [Bob16], and they can even be undecidable [BCP17]. Despite this

fact, some fuzzy extensions of tractable DLs have been investigated, including fuzzy

extensions of the logics behind OWL 2 EL [BS18, MSS+12], OWL 2 QL [PSS+08], and

OWL 2 RL [SVS15].

Another approach is to develop specific optimization techniques to make reasoning

more efficient in some common cases in practice. While many optimization techniques

are known for classical DLs, optimizations for fuzzy DLs have not received such

attention, but there are some exceptions. Haarslev et al. [HPS07] proposed caching (to

avoid repeating computations), lexical normalization (transforming concept expressions

into a canonical form to detect inconsistencies earlier), simplifications of concept

expressions, and ABox partitioning (splitting axioms about individuals—concept and

property assertions—into disjoint sets). Simou et al. [SMSS10] proposed degrees

normalization, to remove superfluous axioms when the same axioms is stated with

different degrees of truth, and some optimizations of the algorithm to compute the

best entailment degree of an axiom. Moreover, Bobillo and Straccia [BS16b] proposed

lazy unfolding, to delay the expansion of subclass axioms as much as possible, and an

absorption algorithm to increase the applicability of lazy unfolding. fuzzyDL reasoner

implements these and other optimization techniques, such as using different blocking

strategies (adapted to the expressivity of the ontology) to guarantee the termination

of the reasoning [BS16a], or using some reasoning rules for some common special cases

(such as n-ary conjunctions).

Finally, it is common to solve a reasoning task on fuzzy ontologies by reducing it

to solving another task. However, developing a specific reasoning algorithm is often

more efficient. For example, we can mention a specific algorithm for the classification

problem [Str13].

In Section 4.1, we also proposed specific algorithms for the realization and instance

retrieval problems. In this section, we provide a novel reasoning algorithm to solve

the instance retrieval problem. The main difference is that we can reuse a classical

ontology reasoner, but imposing some restrictions on the language (for example, we do

not support fuzzy role assertions). Reusing classical reasoners is interesting because

existing fuzzy ontology reasoners have limitations: most of them cannot completely

support Fuzzy OWL 2 (e.g., fuzzyDL [BS16a]) and the only current exception,

DeLorean, implements a non-scalable algorithm [BDGRS12].

103

4.3 Similarity between individuals

Motivation

Apart from the standard inference services enumerated in Section 2.3.4, many

applications require alternative reasoning tasks. In particular, determining the

similarity between individuals is a relevant operation in many intelligent applications

such as knowledge-intensive case-based reasoning, clustering, or information

retrieval [SOGP16]. Unfortunately, most of the research on similarity in fuzzy

ontologies has been restricted to the similarity between fuzzy concepts, but the

similarity between individuals of a fuzzy ontology has not received enough attention.

Contributions

Our main contribution is an algorithm (Algorithm 7) to compute the degree of

similarity between two individuals from a fuzzy ontology based on the values of several

fuzzy functional data properties, where the values of the data properties are described

using fuzzy sets. We will assume that an individual i is characterized by the values of

n fuzzy data properties pi, i.e., i = 〈p1, p2, . . . , pn〉.
The first part (Lines 2–3) retrieves all the ontology data properties and initializes

an empty list of degrees. The next part is computing the similarity between two

individuals (Lines 5–18). Lines 6–7 get the value of a particular data property for the

respective individuals, represented by means of fuzzy membership functions. Line 8

ensures that the data property is defined for both individuals. A key part of our

algorithm is the similarity between the values vj1, vj2 of a data property pj for two

different individuals i1, i2 (Line 10). We can think of different ways to compute its

similarity sim(vj1, vj2). For example, we can compute the intersection of the two fuzzy

sets and then defuzzify it into a single value, i.e., given the intersection set dj1 ∩ dj2
characterized by its membership function µdj1∩dj2(x) = µdj1(x)⊗ µdj2(x), where µd(x)

denotes the membership degree of x to the fuzzy set d (the value of a functional data

property), we can compute:

sim(dj1, dj2) = µdj1∩dj2

(
defuzzify(dj1 ∩ dj2)

)
(4.5)

where ⊗ and defuzzify are a t-norm operator [KMP00] and a defuzzification

function [LK99], respectively. For example, ⊗ can be the minimum and def can be

the mean of maxima MOM.

Example 30. Figure 4.2 shows the intersection between two fuzzy datatypes d1 and

d2 described using two triangular functions. For example, the output of method MOM

104

is 2.29 and µdj1∩dj2(2.29) = 0.791, while the output of the method COG is 2.39 and

µdj1∩dj2(2.39) = 0.716.

Algorithm 7 Algorithm to compute the similarity between individuals.

Input: A fuzzy ontology O
Input: Two individuals i1 and i2
Input: A tolerance ε > 0
Output: A degree of similarity between two individuals

1: // Initialization
2: P ← Retrieve all data properties pj of O
3: D ← ∅
4: // Similarity between two individuals
5: for all pj ∈ P do
6: dj1 ← Retrieve the value of data property pj for i1 in O
7: dj2 ← Retrieve the value of data property pj for i2 in O
8: if dj1 6= null and dj2 6= null then
9: // Similarity between two data property values

10: sim← µdj1∩dj2(defuzzify(dj1 ∩ dj2))
11: // Aggregation of the new similarity
12: if sim = 0 then
13: D ← D ∪ ε
14: else
15: D ← D ∪ sim
16: end if
17: end if
18: end for
19: degree← @(D)
20: return degree

Lines 12–16 store the similarities between data properties sim(dj1, dj2) in a list D.

To avoid the fact the a single 0 value in the similarities between two data properties

would turn the whole result into 0, in practice, Line 13 replaces a 0 value with ε.

Finally, Line 19 computes the similarity of a pair of individuals as an aggregation

of the similarities between pairs of data property values:

sim(i1, i2) = @n
j=1sim(dj1, dj2) (4.6)

where @ : [0, 1] × [0, 1] → [0, 1] is a combination function (e.g., product t-norm or

an aggregation operator). Finally, Line 20 returns the similarity degree between the

two individuals.

Example 31. Assume that there are two individuals, ind1 with step1 and ind2 with

step2, and let us compute the similarity based on two properties height and lengthStep.

Assume that the similarity for height (using MOM) is = 0.791 (see Figure 4.2, where

105

Figure 4.2: Similarity between two fuzzy sets computed using the defuzzification of the
intersection.

the value for ind1 is shown in blue, and the value for ind2 is shown in orange) and the

similarity for lengthStep is 0.8. Those degrees can be aggregated using product, so the

global result is @(0.791, 0.8) = 0.791 · 0.8 = 0.633.

Now, we will add some interesting remarks:

− Note that if @ is not associative, it is possible to store all values computed in the

for loop and to aggregate all of them after the loop.

− Furthermore, we only take into account those fuzzy data properties which are

defined for both individuals, but it would be possible to state that if some

property is undefined for some individual, the similarity corresponding to that

fuzzy data property is amost zero (sim(dj1, dj2) = ε).

− If the values of some data property are crisp values, the intersection is either

an empty set or the crisp value; so the local similarity would be in {0, 1}. The

algorithm could also be adapted to use similarity measures sim(dj1, dj2) between

crisp values.

Finally, let us anticipate that this approach to compute the similarity between

individuals has been evaluated on a real use case: gait recognition (Section 6.1).

Related work

In this section we describe some previous approaches focusing on the similarity between

fuzzy ontology elements. Firstly, we will discuss other previous approaches to compute

the similarity between individuals. Then, we will overview the similarity between

concepts (although it is not directly related to our work).

106

Similarity between individuals. Armengol et al. studied similarities between

individuals in fuzzy ontologies using a non-geometrical interpretation [ADG16]. They

proposed to use a Similarity Box (SBox) in fuzzy DL languages, including axioms

to represent the properties of the so-called fuzzy abstract properties that encode

similarities between pairs of individuals. The authors mention that an SBox could

also represent similarities of two objects with respect to their attributes, but without

representing this information using ontology axioms. A local similarity is computed for

each property, comparing the values of the property for the two compared individuals.

As an example, a formula to compute the local similarities between two numerical

values is shown. Then, global similarities are computed as an aggregation using a

t-norm of the local similarities. The authors also mention that other aggregation

operators could be used, such as uninorms or OWA. Instead, our work is able to

compute local similarities between individuals when the values of the data properties

are fuzzy datatypes rather than numerical values. Furthermore, our global similarity

is more general as it supports any aggregation operator. Finally, we discuss the case

where two individuals do not have the same properties.

Bobillo et al. proposed fuzzy similarity relationships between individuals in [BS12]

to build fuzzy rough ontologies. In our work the aim is to calculate the similarity for

individuals, while in that work, from the existing similarity relation, upper and lower

approximations of rough concepts are computed.

Similarity between concepts. Bahri et al. considered four types of similarity

relations between pairs of fuzzy concepts, namely MoreGeneral, LessGeneral,

Equivalent, and Disjoint [BBG07]. The authors propose some formulae to compute

the similarity degree between two concepts, based on the conjunction of two fuzzy

sets. The authors propose to compute the conjunction degree using a possibility-based

approach, and study the particular case of fuzzy attribute-based and fuzzy number

restriction-based concepts. Their approach is restricted to Zadeh fuzzy logic.

Other works consider similarity between elements of different ontologies. Ying et

al. proposed a similarity function between a pair of fuzzy concepts from different fuzzy

ontologies [YRbJb09]. The global similarity measure is a weighted sum combining

three local similarities: linguistic similarity (combining the edit distance between the

label strings and the similarity between Wordnet synsets), fuzzy set similarity (using a

sup-min set operation), and context similarity (called facet similarity by the authors,

based on the common ancestors, successors, instances, and properties). It is worth to

note that the authors categorize fuzzy concepts into three types, namely “fuzzy set

concepts”, “fuzzy linguistic terms”, and “fuzzy numbers and linguistic qualifiers”, but

107

fuzzy linguistic terms, fuzzy numbers, and fuzzy linguistic qualifiers are actually fuzzy

datatypes rather than fuzzy concepts. Our approach to compute the global similarity

is more general, as we do not restrict to a weighted sum. Furthermore, local similarities

are computed in a different way.

Chandran and Crockett follow a very different path: rather than computing the

similarity between fuzzy ontology elements, they use fuzzy ontologies to improve

semantic similarity measures, as a fuzzy ontology makes it possible to compute the

relatedness between pairs of concepts representing fuzzy words [CC16]. In particular,

the authors study which structure is more appropriate for the fuzzy semantic similarity

measure FAST.

Finally, it is worth to mention that the similarity between concepts has been used

to define the semantics of threshold concepts [BG17]. Although they are crisp concepts

used in crisp ontologies, the idea is very similar to that of fuzzy concepts: threshold

concepts require that every individual belongs to a concept with a degree ./ α, with

./∈ {<,≤,≥, >} and α ∈ [0, 1].

4.4 Matchmaking between individuals

In the business world, transactions are done between several parts (typically, a buyer

and a seller). Sometimes, an intermediary is used to support and facilitate the

transactions (in particular, to achieve an agreement) [OBT04]. This intermediary

uses information about the interests and preferences of the parts and computes an

appropriate match of the alternatives, providing a compromise solution that can be

acceptable for both parts. The process can be more complex, as parts can follow the

negotiation by proposing more offers and counter-offers.

We are interested in computing a fair agreement between several parts, taking their

preferences into account, without human intervention. To do so, a software agent

would be responsible of computing an agreement between all parts. A possible way to

so is representing the information using ontologies and formulating the problem as an

ontology reasoning task. Furthermore, because imprecise or vague knowledge naturally

appears in many real-world domains, fuzzy ontologies seem even more promising.

In some classical scenarios, such as blockchain smart contracts, either an agreement

is found or not. However, sometimes one cannot find a solution that completely satisfies

both parts, but it is often possible to find a partial agreement, where the terms are

partially fulfilled in such a way that they are acceptable for everybody. Using fuzzy

ontologies, a fuzzy matchmaking makes it possible to compute an optimal common

satisfiability degree so that all involved parts are partially satisfied.

108

Contributions

Our contribution is a novel strategy (Algorithm 8) to compute a fuzzy matchmaking (a

partial agreement) between individuals from a fuzzy ontology. Individuals represent the

different parts that want to reach an agreement. For the sake of clarity, the algorithm is

restricted to two individuals, but the generalization to more individuals is trivial. Our

approach guarantees Pareto optimality of the solutions and is based on the computation

of the Best Satisfiability Degree (BSD) of the combinations of the restrictions of each

individual.

Algorithm 8 Algorithm to compute an agreement between two individuals.

Input: A fuzzy ontology O
Input: Two individuals i1 and i2
Input: A Boolean parameter and
Input: An optional vector of weights W
Output: A degree of agreement between two individuals
Output: A model of O

1: // Initialization
2: P ← Retrieve all data properties pj of O
3: C1 ← >
4: C2 ← >
5: // Create local combinations of the restrictions
6: for all pj ∈ P do
7: dj1 ← Retrieve the value of data property pj for i1 in O
8: dj2 ← Retrieve the value of data property pj for i2 in O
9: if dj1 6= null and dj2 6= null then

10: C1 ← C1 u ∃pj.dj1
11: C2 ← C2 u ∃pj.dj2
12: end if
13: end for
14: // Compute the global satisfaction degree
15: if and = true then
16: return 〈bsd(O, C1 u C2), model of O〉
17: else
18: return 〈bsd(O,@W(C1, C2)), model of O〉
19: end if

The algorithm requires a common ontology O, the individuals to be considered,

a Boolean parameter determining if the user wants to combine the values using a

conjunction or using an aggregation operator, and an optional vector of weights.

The algorithm is divided into three parts: an initialization (Lines 2–4), a

local combination of the restrictions of each individual (Lines 6–13), and a global

combination of all restrictions (Lines 15–19).

During the initialization, the ontology is loaded, a set of data properties is retrieved,

109

and two concepts are initialized to build inductively a combination of the restrictions

of each individual.

Next, for each data property such that its value is known for both individuals,

we retrieve its value, described using a fuzzy datatype. For each individual, all its

restrictions of the form ∃p.d are combined locally, forming two concepts C1 and C2

(Lines 10–11). The following is an example of a concept definition:

C1 ≡ ∃T1.d11 u ∃T2.d12 u · · · u ∃Tm.d1m (4.7)

Next, we compute the BSD of a global combination of the concepts C1 and C2

encoding the restrictions of each individual. According to the Boolean parameter, the

combination can use a t-norm or an aggregation operator with respect to the input

vector of weights.

Example 32. Let us assume a car sale with a pair of agents (Main part, or seller, and

Secondary part, or buyer) being involved. A buyer is looking for a car on a mobile app,

s/he wants to pay less than 165 Ethers3 but if there is a good car, s/he can afford to

pay 185. S/he is not sure about speed of the car, but the app suggests around 240 km/h

(at least 180 km/h and no more than 320 km/h). S/he needs the car in a range of days

from 10 to 30. In a fuzzy ontology, this can be encoded as follows:

Secondary = ∃unitPrice.left(0, 200, 165, 185)
u∃speed.tri(0, 500, 180, 240, 320)
u∃deliveryTime.left(0, 30, 10, 30)

A seller posts in the app a new car with a negotiable price between 165 and 169

Ethers, and a maximum speed of 250 km/h. The seller proposes a delivery time of 14

days but might do it in 7 days. This can be encoded as:

Main = ∃unitPrice.right(0, 200, 165, 169)
u(= speed 250)
u∃deliveryTime.right(0, 30, 7, 14)

In summary, there are two parts involved and three attributes. The Main part has

two soft restrictions (price and delivery time) and a hard restriction (speed of the car).

The Secondary part has three soft restrictions.

Using Lukasiewicz t-norm to compute the BSD we have:

bsd(O,Main u L Secondary) = 0.475

An excerpt of the ontology model providing the optimal solution is the following:

3A cryptocurrency used in Ethereum network, as we will see in Section 6.3.

110

− a unitPrice = 169, that satisfies the buyer with degree 0.8 and the seller with

degree 1 (Figure 4.3 (a)),

− a speed = 250, that satisfies the buyer with degree 0.875 and the seller with degree

1 (Figure 4.3 (b)), and

− a deliveryTime = 14, that satisfies the buyer with degree 0.8 and the seller with

degree 1 (Figure 4.3 (c)).

This model leads to the following satisfaction degrees:

− the buyer is satisfied with degree 0.8⊗0.875⊗0.8 = max{0.8+0.875+0.8−2, 0} =

0.475,

− the seller is fully satisfied, with degree 1⊗ 1⊗ 1 = max{1 + 1 + 1− 2, 0} = 1, so

− the BSD is 0.475⊗ 1 = max{0.475 + 1− 1, 0} = 0.475.

a) b) c)

Figure 4.3: Partial agreements on (a) unit price, (b) speed, and (c) delivery time.

Example 33. The agreement in Example 32 might be seen as a little bit unfair as one

part is very satisfied and the other is not. To solve it, we can use Strict Weighted Sum

to aggregate the constraints of the customer and the seller. Now, we get

bsd(O,@SWS
[0.25,0.75](Main, Secondary) = 0.6134

An excerpt of a possible ontology model is:

− a unitPrice = 169, that satisfies the buyer with degree 0.8 and the seller with

degree 1,

− a speed = 250, that satisfies the buyer with degree 0.875 and the seller with degree

1, and

111

− a deliveryTime = 10, that satisfies the buyer with degree 1 and the seller with

degree 0.4286.

We can check that:

− the buyer is satisfied with degree 0.8⊗ 0.875⊗ 1 = 0.675,

− the seller is satisfied with degree 1⊗ 1⊗ 0.4286 = 0.4286, so

− the global satisfaction is 0.75 · 0.675 + 0.25 · 0.4286 = 0.6134.

Let us now discuss some important aspects of the algorithm:

− It is important to check (Line 9) that all compared individuals define the same

attributes (using concrete existential restrictions). For example, assume that a

buyer defines that he wants a pink product, but a seller does not define the color.

Because of the Open World Assumption, the result could be satisfiable (there

could be a model of the ontology satisfying it), but the seller has not confirmed

that he has actually that product in store. This restriction should also affects

other approaches to compare two fuzzy concepts, e.g., [RSB+08].

− fuzzyDL reasoner makes it possible to obtain not only the result of the BSD but

also a (possibly not unique) model of the ontology built during the computation

of the BSD.

− The restrictions of each individual are combined using a conjunction

(Lines 10–11). We propose to use Lukasiewicz t-norm because it is Pareto

optimal, and supported by fuzzyDL. More generally, these restrictions could

be combined using an associative function f1 : [0, 1]m → [0, 1], where m is

the number of data properties that are considered in the agreement. Note in

particular that it could be possible not to use a t-norm, e.g., to modify the

algorithm such that

C1 ≡ @(∃T1.d11,∃T2.d12, . . . ,∃Tm.d1m)

for some associative aggregation operator @, such as the SWS.

− The global combination (Lines 15–19) could be computed using a function f2 :

[0, 1]n → [0, 1], where n is the number of involved individuals. We propose to use

 Lukasiewicz t-norm or the Strict Weighted Sum because they are Pareto optimal,

as we will see later, and supported by fuzzyDL.

112

Pareto optimality. An agreement is Pareto optimal if it is not possible to improve

the satisfaction degree of one part without lowering the satisfaction degree of the

opponent’s one. That is, if the satisfaction degrees of the two parts are α and β,

and the common satisfaction degree γ = α⊗β > 0 is optimal, there cannot be another

α′ > α such that γ = α′ ⊗ β.

Note that the BSD gets the maximum value over all models, so in general it does

not provide a Pareto optimal solution, as the following example shows.

Example 34. If there is a solution S1 (a model of the fuzzy ontology) where the

satisfaction degree of the seller is 0.8 and the satisfaction degree of the customer is 0.6,

using Gödel t-norm the common satisfaction degree is min{0.8, 0.6} = 0.6. However,

there could be another solution S2 where the satisfaction degree of the seller is 0.9

and the satisfaction degree of the customer is 0.6, with a common satisfaction degree

min{0.9, 0.6} = 0.6. Although the mutual satisfaction degree is the same, the latter

solution is preferable.

Pareto optimality of the solution was already known for Lukasiewicz fuzzy DLs, but

we will generalize it here, including among others Product t-norm and Strict Weighted

Sum.

Proposition 1 ([RSB+08]). In Lukasiewicz fuzzy DLs, if the maximum of α⊗ β, with

〈α, β〉 ∈ [0, 1]× [0, 1], is positive then the maxima are also Pareto optimal.

Proposition 2. Let f : [0, 1]2 → [0, 1] be a strictly increasing aggregation function

having 0 as an absorbing element. If the maxima maxα,β∈[0,1]2 f(α, β) > 0, then the

maxima are also Pareto optimal.

Proof. Firstly note that f(α, β) > 0 implies β > 0, as 0 is an absorbing element.

Now let us assume that there is a solution 〈α′, β〉 with α′ > α. Since f is strictly

increasing, f(α′, β) > f(α, β) follows, which contradicts the premise that f(α, β) was

a maximum.

Corollary 1. If the maxima maxα,β∈[0,1]2 f(α, β) > 0, then the maxima are also Pareto

optimal in the following cases:

− if f is Product t-norm,

− if f is a strict t-norm (isomorphic to the Product), or

− if f is a Strict Weighted Sum.

113

Note in particular that this not hold for the usual weighted sum, where it would be

possible to have one the parts completely unsatisfied, but a positive aggregated value.

 Lukasiewicz t-norm is supported by fuzzyDL reasoner. However, it is nilpotent

and easily collapses to zero when aggregating several values. Therefore, in practice, it

should be used when satisfaction degrees of the attributes are high or when the number

of attributes is low.

Proposition 2 can be easily generalized to n involved parts, and to use two functions

f1 (to combine the constraints of each of the parts) and f2 (to combine the local

satisfaction degrees). For example, f1 can be Lukasiewicz t-norm and f2 can be the

strict weighted sum.

Proposition 3. Let f1 : [0, 1]m → [0, 1] and f2 : [0, 1]n → [0, 1] be

strictly increasing aggregation functions having 0 as an absorbing element.

If the maxima maxα,β∈[0,1]2 f2

(
f1(x11, x12, . . . , x1m), f1(x21, x22, . . . , x2m), . . . ,

f1(xn1, xn2, . . . , xnm)
)
> 0, then the maxima are also Pareto optimal.

This approach to compute the similarity between concepts has been evaluated on

a real use case: blockchain smart contracts (Section 6.3).

Related Work

In this section, we will discuss some previous work on matchmaking in fuzzy ontologies.

There are many works studying how to represent the restrictions in matchmaking

scenarios and how to compute an agreement. For example, Ouksel et al. analyzed

matchmaking scenarios where a seller is matched to a single buyer, and evaluate

empirically different arbitration protocols (conflict resolution mechanisms) such

as maximal (non-weighted) sum protocol, Nash function, preference arbitration,

deterministic compensational arbitration (where positive weights are assigned to the

parts), and probabilistic compensated arbitration [OBT04]. The authors also consider

Pareto optimality of the solutions. However, weights are assigned (in some protocols)

to the parts, while we associate them to the individual criteria (data properties).

Furthermore, this approach does not consider background knowledge (ontologies) nor

imprecision (fuzzy logic). Our arbitration protocol is thus very different.

Other works use ontologies to represent matchmaking scenarios:

− For example, Grimm and Hitzler proposed two methods (based on autoepistemic

logic and on circumscription) to perform local close-world reasoning with OWL

ontologies [GH07]. The authors show that semantic matchmaking can be

computed using standard DL inference services such as concept satisfiability

114

or entailment. Instead, our model considers fuzzy ontologies and Open World

Assumption, and we use a different reasoning task (Best Satisfiability Degree).

− Semantic matchmaking can also be understood as finding the best resources for

a given request, with both resources and requests described as complex concepts

and there is a background ontology. This has been explored in a series of papers

using MiniME reasoner [SRL+14] to solve standard reasoning tasks (subsumption,

satisfiability, or classification) but also non-standard ones (abduction and

contraction). Some problems that have been formulated this way are computing

Points of Interest in augmented reality explorers [SRL+14], possibly from mobile

devices, Kinect-based posture and gesture recognition [RSdS+14], or finding the

most suitable sensors in cooperative semantic sensor networks from the Semantic

Web of Things [RSP+19].

To the best of our knowledge, only a few works incorporate management of imprecise

knowledge.

− Ragone et al. proposed the use of fuzzy Description Logics to automate

matchmaking in e-marketplaces and support imprecise preferences [RSB+08].

Numerical restrictions can be hard or soft (flexible). Their approach is also

restricted to two parts (a buyer and a seller). Computing the best partial

agreements between two parts consists in maximizing the degree of satisfaction

of the conjunction (using Lukasiewicz logic) between all restrictions, which can

be solved computing the Best Satisfiability Degree.

− Fuentemilla used a similar approach, using the Best Satisfiability Degree to find

partial agreements in blockchain scenarios [Fue19]. His approach is restricted

to two numerical restrictions. Instead, we accept a finite number of numerical

restrictions rather than only two.

− Finally, Ruta et al. use MiniME to solve matchmaking queries in fuzzy ALN (D)

ontologies, where the only fuzzy elements are fuzzy datatypes, and discuss the

application to fire risk detection [RSS10]. On the contrary, our approach supports

Fuzzy OWL 2 ontologies.

The main differences with these approaches are that we support more than two

parts, take into account the Open World Assumption, and support more general

operators than Lukasiewicz t-norm. Furthermore, these approaches require to encode

the restrictions using fuzzy concepts, whereas we accept individuals as the input of the

algorithm.

115

116

Chapter 5

Contributions to the support of
fuzzy ontologies on mobile devices

People has increased the use of mobile phones with respect to desktop devices and

mobile devices changed our lifestyle and the business logic, providing new opportunities

to create, acquire, process, and share knowledge. In this chapter, we will contribute to

the management of vague knowledge in mobile devices by means of fuzzy ontologies,

proving reasoning services and developing native apps for mobile devices.

We start by mentioning some techniques that are useful for any ontology-based

system regardless of the hardware device, but that turn to be particularly useful

on mobile devices because of their limitations. Specifically, Section 5.1 discusses

the importance of optimizing reasoning and distributing knowledge bases. Then, we

develop some real-world applications or tools supporting the different ways to reason

with (fuzzy) ontologies, namely local, remote, and hybrid reasoning. On the one hand,

Section 5.2 describes GimmeHop, a fuzzy ontology-based recommender system that

supports both local and remote reasoning. On the other hand, Section 5.3 discusses

the implementation of a new version of fuzzyDL reasoner that is serializable and

incremental, thus promoting a hybrid reasoning strategy. Finally, Section 5.4 reports

the adaptation of some of the fuzzy ontology learning tools developed in the previous

chapter (Datil and Fudge) to work on mobile devices.

5.1 Transversal techniques

Motivation

Before addressing solutions specifically conceived for mobile devices, it is useful to

recall some techniques that are useful to improve the performance of managing fuzzy

ontologies on any hardware device, but that are be particularly useful when reasoning

on mobile devices because of their limitations.

117

Contributions

In this section we recall some techniques for the optimization of the reasoning

(Section 5.1.1) and discuss the distribution of the files (Section 5.1.2).

5.1.1 Optimization of the reasoning

It is clear that the last new mobile devices have good hardware specifications but they

are not yet comparable with the computing power of personal computers. So, our

contributions to optimize the reasoning discussed in Chapter 4 are particularly helpful

on mobile devices, where optimizing the reasoning is even more important.

− Our minimalist algorithm to solve the flexible faceted instance retrieval

(Section 4.2) is appropriate for fuzzy ontologies where the only fuzzy elements

are fuzzy datatypes. It makes it possible to reuse classical ontology reasoners, so

the fact that there are no implementations of fuzzy ontology reasoners for mobile

devices is not a problem. As we will see in Section 6.2, our experiments with

a native beer recommender app show that it is possible to use fuzzy ontologies

with 3000 individuals in a low-powered mobile.

− Our instance retrieval and realization algorithms for fuzzy ontologies (proposed

in Section 4.1) reduce the number of tests needed to solve a query.

Our implementation extended fuzzyDL fuzzy ontology reasoner for desktop

computers. Unfortunately, we can not evaluate the performance of those

algorithms on mobiles because fuzzyDL does not have yet a mobile version,

but a future mobile version would benefit from our optimized version. Another

possibility is that a native fuzzy ontology reasoner could implement our

algorithms.

5.1.2 Distributed ontology files

In this section, we examine the use of a distributed ontology architecture on any

computer, which is particularly interesting on mobile devices.

Using a centralized model, with a unique ontology file, can be problematic in

real applications, where large ontologies are often needed. We found examples where

ontologies could not be loaded on a desktop computer (a gait recognition system, see

Section 6.1), and examples where the loading time on a mobile device was very high

or the app crashed (a beer recommender system, see Section 6.2).

In such cases, we propose to use a distributes architecture where ontologies are split.

If there are a lot of individuals but a relatively small number of classes and properties,

118

we propose to use a main ontology with the schema (including classes, properties,

TBox axioms, and RBox axioms) and several individual ontologies which import the

schema and populate it with instances, their membership to classes, the values of their

properties, their relationships, and other ABox axioms. In other scenarios with large

numbers of classes and/or properties, one would have to split the schema, possibly

using ontology modules [SPS09].

In future chapters, we will apply this distributed architecture to three real-world

domains, namely gait recognition, beer recommendation, and blockchain-based

e-commerce.

− In Section 6.1, we will present a gait recognition system, using one ontology with

the schema and many ontologies populating the schema. Such ontologies include

gait data (step sequences) and biometric features of a human person, and there

is one ontology for each individual. The distributed architecture leads to a better

performance of our classification algorithm.

− In Section 6.2, we will present a recommender system in the beer domain, using

one ontology schema and many ontologies populating the schema with beer and

brewery data. This way, bars, breweries, stores, and other actors involved in the

beer industry can create their own personal ontologies populating the schema.

Furthermore, this makes it easier to develop ontologies with different sizes to

evaluate the performance of the system.

− In Section 6.3 we will propose an e-commerce scenario, based on the blockchain,

where partial agreements are possible. The system uses 4 ontologies: an ontology

schema, one ontology for each of the involved parts in the commercial transaction

(e.g., buyer and seller), and a common ontology. The personal ontologies of the

involved parts import the schema and populate it with their specific preferences.

The common ontology contains all the information required for the transaction,

including the values of the attributes that lead to an agreement. Using this

distributed architecture, only the agreement and not the personal preferences

are stored in the blockchain. It is important to mention that the architecture

is flexible and there could be more than two parts involved in the commercial

transaction.

The main advantages of this model of distributed ontologies are the following ones:

− It leads to smaller files, and promotes using different subsets of the data (for

example, ontologies with different numbers of beers). This is a good option for

large ontologies.

119

− It leads to a better distribution of the knowledge, splitting schema and factual

data.

− For humans, it might be easier to read and understand the representation of files.

− It is independent of the domain.

− It promotes local reasoning to work offline. This is crucial when Internet access

is limited.

− It has a reasonable performance on mobile devices. Our experiments show that

ontologies with an important number of individuals can be loaded and the running

time of the local reasoning is acceptable.

5.2 GimmeHop app: Beer recommender system

Motivation

The mobile development statistics in Android about Shopping and Food&Drink are

eighth and ninth position respectively from 49 categories in the distribution of apps

by category1. In the Food&Drink category, we can notice a bigger number of free apps

(129127) than paid apps (597). In summary, there is a great consumer interest/demand

in food and beverage industry.

Beer market is a hot topic which is receiving a notable attention in the last years:

more foreign beers are imported by many stores and bars, the number of artisan beers

is growing significantly, new beer recipes are being investigated, and users are willing to

try new beer styles, thanks in part to the phenomenon of home-brewing. Thus, software

tools providing users with good recommendations about beers seem very interesting.

The already mentioned increasing importance of mobile computing on our daily

lives invites us to develop a recommender system for mobile devices. Furthermore,

given the imprecise nature of several terms in the beer domain (such as low-alcohol

beer or dark beer), it seems convenient to use fuzzy logic as part of our solution.

As already mentioned in Section 2.5, semantic reasoning on mobile devices can

be performed in local, remote, and hybrid ways. Hybrid reasoning is not an option

yet (Section 5.3 will discuss some advances in that direction), but it seems crucial to

develop apps that can support both local and remote reasoning strategies to compare

their advantages and limitations in a practical scenario, evaluating with empirical data

their feasibility and scalability.

1https://42matters.com/stats

120

https://42matters.com/stats

Contributions

We have developed a beer app recommender system for Android platform called

GimmeHop. The prototype has been developed in Java 1.8 using the IDE Android

Studio 5.3.3. It is able to deal with user context (in particular, user location), user

preferences, and supports both local and remote reasoning.

Query types. GimmeHop supports three types of queries or searches:

− Basic search: the input is the name (or part of the name) of a beer or a brewery,

and the output is a list of beers or breweries matching syntactically.

− Advanced search: the input is a beer type, and optionally, values of some features,

namely ABV (alcohol level) and/or IBU (bitterness). The output is an ordered

list of beers together with the recommendation degrees (i.e., the satisfiability

degree of the query). The list is decreasingly ordered by the recommendation

degrees (see Section 6.2 for details). Moreover, the user is also able to select

some user preferences (for example, which is the most important property for

his/her). For this query type we implemented the minimalist reasoning solution

in Algorithm 6. Recall that this algorithm assumes that the only fuzzy elements

are fuzzy datatypes (e.g., LowABV).

Note that the system also takes into account the rating of each beer, but this

is not shown in the user interface because users are interested in items with the

best possible rating.

− Similarity search: the input is a beer and the output is a ordered list of similar

beers together with their similarity degrees.

The app supports two ways to solve the queries: local and remote reasoning. This

involves using a local semantic reasoner or an external one, respectively. Local mode

computes the reasoning in the mobile device, so Android versions of classical ontology

reasoners are needed. Instead, the remote mode uses a client/server architecture where

the server hosts an ontology reasoner to compute the solution.

Main features. The most relevant characteristics of GimmeHop app are:

− It has an intuitive graphic user interface. Figure 5.1 (a) shows the main view of

the app, where the end user has two options, a basic search and an advanced

search. Figure 5.1 (b) shows the form to submit an advanced search. The

user must select the style. Optionally, s/he can set the degrees of alcohol and

121

bitterness, using linguistic labels rather than numerical values (it is also possible

to select “Indifferent”). The user can also choose the most important property

between ABV, IBU, style rating, or indifferent. We wanted to make the interface

as simple as possible, a possible extension would be to ask for a complete ordering

of the three properties in terms of importance. Figure 5.1 (c) illustrates the

output of the advanced search with respect to the query specified in Figure 5.1

(b). We can see that the beers are decreasingly ordered and the numbers

(the recommendation degrees) are colored to illustrate the importance of the

recommendation (going from green to red as the quality of the recommendation

decreases). Figure 5.2 (a) shows the output of a basic search, a list of beers

relevant to the name “Ámbar” beer. The system retrieves all the coincidences

with beer names in the ontology, without any numerical degree. If the user

taps on any beer presented in a list of results, s/he navigates to another page

displaying information about the beer (name, brewery, style, bitterness, alcohol,

country, and rating). Figure 5.2 (b) illustrates this information when clicking on

the “Ámbar especial” beer. If the user taps on the button “similar”, a similarity

search is performed. The result of the similarity search is a list of beers as shown

for advanced search.

− It supports two semantic reasoners. We use classical semantic reasoners to

discover implicit knowledge and then perform some fuzzy reasoning to solve the

flexible queries. The app is integrated with Hermit 1.3.8 and TrOWL 1.5. HermiT

is an adapted version for Android SO, summarized in [BYBM15]. TrOWL

reasoner can be directly imported in Android projects, but some tasks are solved

not supported by TrOWL and are solved using the OWL API (for example,

retrieving the values of the data properties of each individual is supported by

Hermit but not by TrOWL).

− It runs as an Android service. For long running operations such as loading a

large ontology (fuzzy beer ontology is described in Section 6.2) classify it (using

a classical reasoner), or computing the queries, we use the Service class2. This

way, the app performance is better than using a local thread3.

− It uses a group of linguistic labels rather than numbers in the GUI. That helps

the end user to choose the preferences for each item. For example, in a hot day

users typically prefer to select a Lager style beer with a Low degree of alcohol.

2https://developer.android.com/guide/components/services
3https://www.geeksforgeeks.org/services-in-android-with-example

122

 https://developer.android.com/guide/components/services
https://www.geeksforgeeks.org/services-in-android-with-example

− It uses user context (location). In general, context can be “any information that

can be used to characterize the situation of an entity” [Dey01]. In our case, we

consider the location of the user, so GimmeHop can be seen as a location-based

service. The app obtains the location (country) to give a higher score to local

beers. It gets the location via network or GPS using Android’s Network Provider,

which is faster and cheaper (in battery consumption) than GPS Provider4. The

app uses the country code location (e.g., ES for Spain) rather than the GPS

position because it does not require a lot of accuracy.

− It works with user preferences. Users can select the relative importance of the

different criteria, the reasoning mode, the reasoner, the fuzzy quantifier type,

and its parameters. For example, some preferences are depicted in Figure 5.2 (c),

where the user selects Hermit reasoner and configure the type of fuzzy quantifier

and its parameters. The complete list of user settings is:

– Reasoners: TrOWL and HermiT.

– Quantifiers: right-shoulder (Figure 2.3 (d)), power function (Figure 2.6 (a))

and linear (Figure 2.6 (b)).

– Value parameters for the quantifiers: possible values are shown in Table 5.1.

The default values are TrOWL reasoner and right-shoulder quantifier with the

parameters q1 = 0.3 and q2 = 0.8.

In the future, we will consider allowing to configure the maximum number of

beers (200 so far).

− It manages weights internally. To aggregate the information, the user does not

need to specify the numerical values of the weights. If the user selects a feature

as the most important one, the system automatically gives a higher weight to

this feature. Otherwise, the user can just choose a fuzzy quantifier instead of the

weight values.

− It supports incomplete knowledge. To deal with missing data, GimmeHop is able

to adjust the weights in a transparent to the user way.

Example 35. Given a right-shoulder fuzzy quantifier with q1 = 0.3 and q2 = 0.8,

if the number of available features for a beer is n = 3, the vector of weights is

[0.067, 0.667, 0.267], and if n = 2, the vector of weights is [0.4, 0.6].

4https://developer.android.com/training/location/retrieve-current#java

123

https://developer.android.com/training/location/retrieve-current#java

− It respects the Android security measures using app permissions. GimmeHop

needs to save files, Internet access (only to visualize beer images),

and location access, which requires some specific permissions, namely

READ EXTERNAL STORAGE, INTERNET, and ACCESS FINE LOCATION.

Sometimes, it is necessary to manually allow the permission on the mobile

device.

a) b) c)

Figure 5.1: Some screenshots of GimmeHop: (a) initial page, (b) advanced search form,
and (c) result of an advanced search.

Right Power Linear
q1 q2 q q3

0.2 0.7 0.5 0.5
0.3 0.8 1.1 1.1
0.31 0.9 1.5 1.5

Table 5.1: Definitions of the fuzzy quantifiers.

Local reasoning. To perform local reasoning, GimmeHop uses Android versions of

HermiT and TrOWL. To solve advanced searches, the app implements our Algorithm 6

for the flexible faceted instance retrieval problem given a fuzzy ontology. In particular,

the inputs of the algorithm are:

124

a) b) c)

Figure 5.2: Snapshots of GimmeHop: (a) result of a basic search, (b) detailed
information about a beer, and (c) settings

− A Fuzzy Beer ontology O (see Section 6.2.1 for details).

− A concept C representing a beer type.

− Three data properties pn: ABV, IBU, and style rating.

− Three fuzzy datatypes Dn related to the data properties. The values of ABV and

IBU are defined using Fuzzy OWL 2 datatypes. The rating is a normalization to

[0, 1] of the original percentage (e.g., RatingDegree(70) = 0.7).

− The combination function fc is OWA (Eq. 2.4) or WMEAN (Eq. 2.2).

− The fuzzy hedge fh is the increasing modifier ffew =
√
x (Section 2.1.5).

To solve similarity searches, a specific beer is compared each other beer in the

system. The local similarities between the styles, the values of the ABV, and the

values of the IBU are computed and aggregated using an average.

Finally, to address location-based reasoning, we use a fuzzy hedge fh to increase

the recommendation degree if the country of the beer is the same as the user location.

Remote reasoning. Now we will describe the remote mode. As it is well known,

the client/server architecture is an usual solution on Internet, and semantic reasoning

is not an exception.

125

We developed on the client side a native Android app with an intuitive user interface

(including location-based capabilities). The app is able to send request to answer

queries and the GUI can show the responses processed by a third part.

The server is an instance of Amazon Web Service (AWS), where the reasoning

algorithm to compute the flexible faceted instance retrieval is implemented. Classical

semantic reasoners (Hermit and TrOWL) are running here to support the reasoning

task. The server computes and filters the top–k results, and sends them to the client

side. The base of the communication is the TCP protocol and a socket. All services

are codified on the server, and all the project is developed on Java language. A fuzzy

ontology is loaded and classified when the server is started. It is also possible to

choose the reasoner when the server is loaded.

We found some advantages and disadvantages about the remote mode. The main

advantages are the following ones:

− All the reasoning and query execution are computed on the server side.

− It offers high speed in the query answering system, with powerful resources such

as memory and processing.

− It supports a multi-threaded mode to solve requests in parallel.

− It is able to work with large fuzzy ontologies. For example, in our experiments

in Section 6.2 we used 15317 individuals.

But the remote mode also has some disadvantages:

− The free version of the AWS has limitations in the use of the hardware. Once

such limits are reached, it is necessary to pay for a better service. Therefore, app

developers need to evaluate if the management cost is convenient and affordable.

− General problems of Internet applications such as security, connection, or network

quality.

In Section 6.2 we will present the results of our evaluation of GimmeHop, including

the query answering time, the quality of queries, data traffic, and a comparison of local

and remote reasoning.

Related work

In this section we overview some related work in two directions: semantic reasoning

(inference engines) for mobile devices and mobile applications using web semantic

technologies.

126

Semantic reasoners for mobile devices. There are several possibilities to do

semantic reasoning on mobile devices [BBMP17]. The most direct way is to use

an external solution, relying on servers on the cloud which would perform all the

calculations. The main advantage is that one can consider a server which is as powerful

as required by the application. However, in ubiquitous and mobile scenarios where

context-awareness and privacy preserving play a crucial role, sending sensitive data to

a remote server might be an important privacy breach, and even sending non-sensitive

data might be dangerous as it could enable the inference of sensitive information.

Furthermore, this requires assuming that the connectivity is fast and stable enough, but

this is not often the case in mobile computing environments. It is also possible trying

to use a local solution, which can be challenging because of the limitations of mobile

devices in terms of CPU power, memory, or battery. Indeed, there is some evidence that

reasoning time is only affordable in small or not very expressive ontologies [BYBM15].

For the sake of completeness, let us also mention that it is possible to develop hybrid

strategies.

As already discussed in Section 2.5, there are two options to perform local semantic

reasoning:

− To reuse or port previously existing reasoners. In particular, Android Semantic

project made 9 reasoners available for Android devices [BYBM15] .

− To implement native reasoners for mobile devices. However, none of the existing

native reasoners support the expressivity of our ontology (OWL 2 EL), so we

needed to reuse existing reasoners not specifically designed for mobile devices.

Semantic apps. The roots of semantic apps can be traced back to knowledge

mobilization (KMob), which consists of making knowledge available for real-time use

in a form which is adapted to the context of use and to the needs and cognitive profile

of the user [GR08]. One of the main requisites of KMob systems is that they should

be ubiquitous and, in particular, accessible from mobile devices. Our system was

indeed designed to meet some of the common requirements of KMob systems, such as

being proactive, integrative, context-aware, declarative, concise, extensible, and easily

maintainable.

Many of the so-called semantic applications do not actually use a semantic reasoner.

For instance, Punya is an open source, web-based platform based on MIT App Inventor

that helps to build mobile apps using Linked Data but there is no support for ontology

reasoners [PWS+21].

127

Early examples of semantic application for mobile systems were very different to the

more recent examples, and they typically relied on external servers. For example, PDA2

system supports the diagnosis of psychological disorders on PDAs [DGRMPP05].

PDA2 uses an OWL 2 ontology to represent the relevant knowledge and accesses a

semantic reasoner stored on an external server.

More recent examples using local semantic reasoners include location-based services

providers (e.g., Sherlock can infer that both a cab and a tram are interesting for a

certain mobile user, given the information obtained from sensors on his/her device such

as the location and time [YMII14]), health apps (e.g., Rafiki infers possible diseases for

a patient given his/her symptoms and context [PYJF14]), privacy control applications

(e.g., Faceblock infers whether information about a user should be shared with

other people or applications according to his/her context [YPD+14]), and navigation

applications (e.g., MAR is a mobile augmented reality explorer to discover points of

interest [SRL+14, RSG+19]).

It is also mandatory to give some credit to Alegre, who developed a first version

of GimmeHop, restricted to remote reasoning version [Ale17]. A detailed comparison

with this work is performed in Section 6.2.

The interested reader can find more semantic apps in a survey paper [YP15].

Unfortunately, most of the existing semantic apps do not use fuzzy logic (with the

exceptions of [MMWHVC16] and [ST22] that we will discuss in Section 6.2) or supports

both local and external reasoning, as our system does.

5.3 Serializable and incremental fuzzyDL

Motivation

A serializable semantic reasoner can clone the data structures that represent its internal

object state, obtaining two or more independent instances of the reasoner that can

evolve in parallel. We will also assume that they can be written into a file. Such

file could be computed by a server and downloaded by a mobile device using hybrid

reasoning. However, serializable reasoners depend on the version of the reasoner, and

small changes in the code of the reasoner could require changes in the serialization.

They also require a common serialization strategy (e.g., a Java virtual machine –on

the server– does not serialize data in the same way as a Dalvik/ART virtual machine

–on an Android device).

A less restrictive concept is that of persistent semantic reasoner. A persistent

semantic reasoner can save its internal state together with some precomputed

inferences and reload it (for a given ontology). If it receives as input a previously

128

considered ontology, it reuses previously computed inferences, avoiding to recompute

them. For example, it can store the inferred class hierarchy obtained in an ontology

classification.

An incremental semantic reasoner can manage changes in the ontology without

restarting the reasoning from scratch: that is, avoiding reloading the ontology and

repeating computations (such as reclassifying the ontology). Incremental reasoners are

useful, for example, when we want to submit several queries to the same ontology.

As already mentioned in Section 2.5, semantic reasoning on mobile devices can be

performed in three modes: local, remote, and hybrid. To implement hybrid reasoning

on mobile devices, four strategies have been proposed. We are interested in the third

one, where an external server can load and preprocess an ontology, and send a copy

of the reasoner to the mobile device. This requires that the reasoner is serializable (to

store a copy of the reasoner) and incremental (so that we can add new axioms while

reusing the previous inferences). Therefore, to promote hybrid reasoning, serializable

incremental semantic reasoners seem helpful. Unfortunately, although there are some

serializable and some incremental semantic reasoners, there are no semantic reasoners

yet that are both serializable and incremental.

Contributions

In this section, we will explain some changes to the fuzzy ontology reasoner fuzzyDL.

Firstly, we detail how we converted it into a serializable reasoner. Secondly, we discuss

how it was turned into an incremental reasoner.

Serializable fuzzyDL. In Java applications, to make a class serializable it has to

implement an interface called Serializable. Furthermore, all other classes used by a

serializable class must be serializable as well. This can be a problem if an application

uses third-party libraries such that the source cannot be modified to implement the

serializable class. Furthermore, serialization converts objects into bytes, but it does

not convert class variables (static variables in Java).

fuzzyDL’s main class KnowledgeBase encodes a reasoner state and a fuzzy ontology,

not only with the original axioms but also with some inferred ones. In the serializable

version there are two new methods:

− writeToFile makes it possible to save a KnowledgeBase object into a binary file.

− readFromFile obtains a KnowledgeBase object from a serialized binary file.

To make fuzzyDL serializable we needed to revise the code allowing to do three

things:

129

− Ensure that all necessary classes (KnowledgeBase and the classes that it uses, e.g.,

class Individual) implement the Serializable interface.

− Encode class variables as object variables.

− Store the data using our own classes rather than Gurobi classes, acting as a

wrapper. Thus, we have all the required data to create Gurobi objects when

needed.

Incremental fuzzyDL. fuzzyDL applies some preprocessing that transform a given

fuzzy ontology into an expanded version that can be reused to answer different queries.

For simplicity, we will describe here the preprocessing when behaving like a classical

semantic reasoner (i.e., without managing fuzzy logic operators or degrees of truth),

which includes the following tasks (for more details, see [Str13, BS16a])

1. Determine the language of the fuzzy ontology, e.g., ALC. This is useful to know

which inference optimizations methods can be applied.

2. Convert strings into integers. For each data property assertion of the form (i, s) :

T where s is a string, replace s with an integer number. Integers are assigned in

such a way that the lexicographic order of all strings in the ontology is preserved.

This is needed in order to deal with string based operators within MILP.

3. Solve inverse roles. For each object property assertion of the form (i1, i2) : R, it

adds an assertion (i1, i2) : RI if RI is an inverse role of R.

4. Compute the property hierarchy. For example, if R1 is a sub-property if R2 and

R2 is a sub-property of R3, add that R1 is a sub-property of R3.

5. Solve object property assertions. For example, for each object property assertion

of the form (i1, i2) : R1 and for each super property R2 of R1, we add an assertion

R(i1, i2) : R. Furthermore, if there is a pair of assertions of the form (i1, i2) : R

and (i2, i3) : R for a transitive role R, we add an assertion (i1, i3) : R.

6. Solve reflexive roles. For each reflexive role R and each individual i in the

ontology, add an assertion (i, i) : R.

7. Solve functional roles. If there is a pair of assertions of the form (i1, i2) : R and

(i1, i3) : R for a functional role R, then state that i2 and i3 must be the same

individual.

130

8. Preprocess TBox. In the current version, there is an absorption algorithm that

splits the TBox into an acyclic part and a general part [BS16b]. In the acyclic

part, it is possible to reason using an optimization called lazy unfolding. The

intuitive idea is that TBox axioms are not applied to every individual but only

to those individuals that are known to belong to some classes, decreasing the

number of applications of the rules. In the general part, harder reasoning rules

are needed and even simple TBox axioms (where the left side of the axiom is a

named concept) are represented as GCIs. In the future, we plan to implement a

classification algorithm to expand the class hierarchy (see [Str13] for a preliminary

version).

9. Compute blocking type. Depending on the language of the fuzzy ontology,

different blocking strategies are needed: subset (of labels), simple equality (of

labels), simple pairwise, anywhere subset, anywhere equality, and anywhere

pairwise [GHM+14]. Of course, one wants to use the simplest strategy that

provides correct results for a given language.

10. Solve concept assertions. For each concept assertion a : C in the ontology, we

apply some tableau rules to decompose C into simpler concepts.

Once the preprocessing has been done, to solve a query, the reasoner reuses the

expanded version of the fuzzy ontology, but creates a local copy. For instance, to

check if an ontology entails a concept assertion of the form a : C, fuzzyDL adds a new

assertion of the form a : (¬C). Since this new assertion is added to the local copy, it

will not affect other future queries.

For the moment, we have only evaluated the serializable and incremental version of

fuzzyDL on a laptop computer (see details in Section 6.8), with good results. Although

a mobile version is not implemented yet (it would require to have a mobile version of

Gurobi, or another alternative working on Android), we are optimistic and confident

on the possibility to use fuzzyDL on Android and get reasonable results.

Related work

In this section, we will describe some semantic reasoners that are serializable or

incremental, but none of them is serializable and incremental, as shown in Table 5.2:

− JFact is serializable in the versions 3.5.* and 4.0.*. It also takes advantage of

the Java mechanisms for serialization and is able to save a binary file. However,

incremental reasoning is not implemented in those versions, so if one adds new

axioms it is necessary to start from scratch.

131

− FaCT++ is claimed to be incremental (only in the non-buffered mode) and

persistent, although not serializable. Indeed, it is able to save a text file with

a representation of the ontology (with some changes, e.g., URIs are encoded as

integers), the reasoner state, etc. Being persistent could be acceptable sometimes,

but we have checked that incremental reasoning using a restored version of the

reasoner over a serialized ontology does not always give the correct results.

− Pellet is incremental and persistent. As in Fact++, it uses Java serialization to

save a binary file with the reasoner state. It is also worth to remark that in Pellet

2.2 the incremental version of the reasoner does not support datatypes [BBIM14],

and the situation seems similar in the most recent version 2.3.

− Finally, other semantic reasoners, such as CEL, ELK, and SnoRocket, implement

some kind of incremental reasoning but, to the best of our knowledge, do not

support serialization.

Reasoner Serializable Incremental
JFact 3.5.* and 4.0.* •

Fact++n [TH06] •

Pellet [SPC+07] •

CEL [BLS06] •

ELK [KKS14] •

SnoRocket [LB10] •

Table 5.2: Set of reasoners serializable or incremental.

It is also worth to note that the support for incremental reasoning is usually

restricted to the non-buffered mode. In the buffered mode, ontology changes are stored

in a buffer and are only taken into account when the user invokes a flushing method.

In the non-buffered mode, ontology changes are processed as soon as they are received.

Currently, fuzzyDL does not implement a buffered mode.

Another possible application of serializable and incremental reasoners is the

implementation of a semantic reasoner managing volatile information [BBMP17]. The

idea was not to develop a new reasoner from scratch, but to build a metareasoner using

a serializable and incremental semantic reasoner. In particular, the authors discuss a

Java implementation using the OWL API that would be able to use any serializable

and incremental ontology reasoner accessible via the OWL API. Currently, fuzzyDL

does not implement the OWL API.

It is also worth to note that Fact++ only has a partial support of OWL 2 datatypes,

which are crucial in mobile and dynamic scenarios [BBMP17], as well as in fuzzy

ontologies [Str13, BS11].

132

5.4 Learning fuzzy ontologies on mobile devices

Motivation

To promote the use of fuzzy ontologies in mobile computing, it is necessary to have

tools that are able to run on mobile devices, including fuzzy ontology editors, reasoners,

and other examples of application software. In particular, it is convenient to adapt the

tools that we have developed in this thesis implementing our novel algorithms to learn

fuzzy ontologies to mobile devices. This way, it would be possible to create fuzzy

ontologies from mobile devices, so that other apps can use them, or to enrich fuzzy

ontologies developed from other apps with new fuzzy datatypes.

Contributions

In this section, we show the contributions to create fuzzy datatypes for fuzzy ontologies

using mobile applications. The aim is to make Datil and Fudge compatible with mobile

devices by adapting their user interfaces. In particular, we will discuss Datil app in

Section 5.4.1 and Fudge app in Section 5.4.2, both of them for Android OS.

5.4.1 Datil app

Datil version for desktop computers was presented in Section 3.2. Now, we will describe

a mobile version for Android platform. The app learns fuzzy datatypes locally, avoiding

external servers.

The main features of the Datil app version are:

− To the best of our knowledge, it is the first app that learns fuzzy datatypes for

fuzzy ontologies.

− It uses OWL API, Fuzzy OWL 2, and fuzzyDL API. fuzzyDL API requires

Gurobi library to solve MILP problems but there is no version for mobile devices.

Therefore, the Gurobi library was excluded in our project from fuzzyDL API

because we only need the FuzzydlToOwl2 method to convert FDL files into Fuzzy

OWL 2.

− Mobility makes it possible to learn fuzzy datatypes anytime and anywhere, and

to take into account in the learning the user context, such as sensor data obtained

from the sensors of a smartphone.

− Learnt ontologies could be used later on another device.

133

− Easy portability from desktop version to mobile app. Datil app reuses classes

and methods from the desktop version because Android supports the Java

programming language. However, we had to develop a new GUI.

− The GUI uses Android components and usability techniques to make it a friendly

app. We use elements that provide an easy and intuitive way to use the app. e.g,.

help to search for files and to create configuration files.

− It uses the API of an adapted version of HermiT 1.3.8 for Android [BYBM15]. On

mobile devices, there were some conflict names (in methods and classes) between

HermiT, fuzzyDL API, and OWL API. After a meticulous review, we removed

duplicate folders from fuzzyDL API.

− It respects the Android security measures using app permissions. Datil

needs to read and save files, so we needed READ EXTERNAL STORAGE and

WRITE EXTERNAL STORAGE permissions.

Figure 5.3 (a) shows the main screen of the mobile version, while Figure 5.3 (b)

shows how to compute a configuration file for all the data properties, including the

Minimal (Min) and Maximal (Max) limits for each property.

a) b)

Figure 5.3: Datil app: (a) main screen, (b) options for the data properties.

Section 6.6 describes the evaluation of Datil app versus the desktop version.

134

5.4.2 Fudge app

In Section 3.3 we described the desktop version of Fudge. In this section, we describe

the features of Fudge as a mobile application to compute fuzzy datatypes without

numerical values, using instead a set of fuzzy ontology files, each of them including the

definitions of an expert on a common domain.

The main features of the Fudge app are:

− To the best of our knowledge, it is the first app that creates a consensus from

fuzzy datatypes definitions for fuzzy ontologies.

− It uses OWL API and Fuzzy OWL 2. Note that it does not require a reasoner.

− Mobility makes it possible to learn fuzzy datatypes anytime and anywhere.

− Learnt ontologies could be used later on another device.

− Easy portability from the desktop version to the mobile app. In our experience,

the development time for Fudge app was minimal except for the need to develop

a new GUI.

− It respects security and uses the same store permissions as Datil app

(Section 5.4.1).

− Usability techniques were used to improve user interaction. Notably, we included

in our project Google chart library5 to customize the quantifiers chart to the

parameters selected by the user.

Fudge app which contains all the elements of the desktop version. Figure 5.4 (a)

the main screen where user can select the input fuzzy ontologies and the aggregation

operator. Depending of the aggregation operator, s/he will be able to select different

ways to compute the weights:

− Figure 5.4 (b) shows how to obtain the weights for LOWA–LRF, LOWA–RRF,

and FOWA from a quantifier; a customized picture of the quantifier is shown in

Figure 5.4 (c).

− Figure 5.5 (a) shows how to obtain the weights using the recursive procedure; an

example of vector is shown in Figure 5.5 (b).

− Figure 5.5 (c) shows how to manually set the vector of weights for CONV–LRF,

CONV–RRF, and WMEAN.

5https://developers.google.com/chart

135

https://developers.google.com/chart

a) b) c)

Figure 5.4: Fudge app: (a) selection of input fuzzy ontologies and aggregation operator,
(b) quantifiers interface, and (c) customized picture of a power quantifier with q = 3.

a) b) c)

Figure 5.5: Fudge app: (a) interface for recursive learning of the weights, (b) LFR
vector of weights, and (c) vector of weights for CONV and WMEAN.

136

Chapter 6

Practical contributions: real-world
applications and evaluation

In this chapter of the thesis, we will discuss the evaluation of the techniques presented

in previous sections. In some cases, we have developed a real-world application in

different domains (all of them related whit the management of fuzzy knowledge) as a

proof of concept. In other cases, we perform an empirical evaluation and discuss the

main results and findings.

To start with, we evaluate the developed reasoning algorithms. Firstly, Section 6.1

describes a gait recognition system taking advantage of the similarity between

individuals. Secondly, Section 6.2 describes GimmeHop, a beer recommender system

using our flexible faceted instance retrieval algorithm, and both local and remote

reasoning. Thirdly, Section 6.3 details a blockchain system taking advantage of the

matchmaking between individuals. Fourthly, Section 6.4 evaluates our novel instance

retrieval algorithm. Next Section 6.5 discusses a Building Information Modeling

application using our faceted instance retrieval algorithm.

Then, we evaluate the two developed tools to learn fuzzy datatypes. On the one

hand, Section 6.6 presents an evaluation of Datil, comparing the desktop and the

mobile versions, and discussing two use cases, namely life style profiling and data

summarization of gait recognition data. On the other hand, Section 6.7 evaluates the

novel aggregation strategies implemented in the Fudge tool.

To conclude this chapter, we evaluate the techniques for mobile devices that were

not included in none of the previous sections. In particular, Section 6.8 evaluates the

serializable and incremental version of fuzzyDL reasoner.

Table 6.1 summarizes the contributions described in previous sections and explains

in which chapter we can find an evaluation of them.

137

Section Technique Application/evaluation
3.1 Learning local data properties Section 6.1.1
3.2 Datil tool Section 6.6
3.3 Fudge tool Section 6.7
4.1 Instance retrieval algorithm Section 6.4
4.2 Faceted instance retrieval algorithm Sections 6.2.2, 6.5
4.3 Similarity between individuals Section 6.1.6
4.4 Matchmaking between individuals Section 6.3.2

5.1.1 Optimization of the reasoning Sections 6.2.2, 6.4, 6.5
5.1.2 Distribution of the files Sections 6.1.3, 6.2.1, 6.3.1
5.2 Local and remote reasoning Section 6.2.2
5.3 fuzzyDL serializable and incremental Section 6.8
5.4 Datil app Section 6.6.1

Table 6.1: Subsections of this chapter where we can find the evaluation or applications
of each of the previous sections.

6.1 Gait recognition system

Motivation

The problem of gait recognition consists of automatically classifying human people

by analyzing data about their movement patterns. Gait recognition has many

applications, including security (e.g. authentication and surveillance) and medicine

(e.g. automatic support for the diagnosis of neurological diseases). Compared to

other biometric measures for human recognition, gait has several advantages: it

is non-intrusive, does not require any collaboration from the subject, involves less

confidential data than other techniques (such as face recognition), and is relatively

difficult to manipulate (e.g., by simulating a different walking style that does not seem

unnatural).

In the last years we have witnessed an increase in the number of low cost sensors

to capture pose sequences. An example is Microsoft Kinect [Dav12], a motion sensing

input device originally conceived as a peripheral for video game consoles but used in

many other applications, such as diagnosis of Parkinson’s disease stages [DLG+18].

Pose sequences provided by the sensor could be used to compute biometric measures

related to the human gait which could eventually be used for human gait recognition

Although there is a notable effort in the gait recognition using Microsoft Kinect,

existing approaches have some limitations in terms of reuse and interpretability of the

collected data, as well as in the management of imprecise and incomplete data.

Existing approaches generate big amounts of data which are difficult to understand

by a non-expert or to reuse between different applications. For this reason, we advocate

138

for the combination of Semantic Web technologies to represent human Microsoft Kinect

data and the biometric features for human gait motion analysis computed using them.

Rather than using classical ontologies, and because of the intrinsic imprecision of

the sensor data, we propose to use fuzzy ontologies. This way, it is possible to replace

precise values with more flexible fuzzy sets.

Contributions

In this section we propose gait recognition system based on Kinect data and fuzzy

ontologies. A key aspect of the system is that we propose to divide each sequence of

gait data frames into steps, as in conditions with incomplete data, step data would be

easier to be managed. We also propose and evaluate a novel recognition algorithm of

a sequence (i.e., recognizing its author) basing on the similarity between two steps (a

step coming from training data and a step obtained at production stage of the system).

This section starts by describing the architecture of our gait recognition system. It

has four main components as illustrated in Figure 6.1:

Figure 6.1: Architecture of the system.

− A data capture phase that uses a Kinect sensor to obtain the skeleton data of

a person walking. The settings used to build a new dataset are described in

Section 6.1.1.

139

− A preprocessing phase, in charge to remove the data that were incorrectly

obtained by the sensor or that contain too many inferred values, to segment

the gait steps from a sequence of skeletons, and compute the associated features

(Section 6.1.2).

− A fuzzy ontology to represent the imprecision of the values (Section 6.1.3).

− A decision phase to classify a sequence of gait steps, where each gait step

includes several features described using triangular fuzzy membership functions

(Section 6.1.4)

After a discussion of the four main components of the architecture of our system

(Sections 6.1.1–6.1.4), Section 6.1.5 describes existing datasets and a new dataset that

we ourselves have built, and Section 6.1.6 discusses an empirical evaluation.

6.1.1 Data capture

The Data Capture module interacts directly with the sensor and collects raw data

from a Microsoft Kinect sensor. The Kinect sensor actually integrates several sensors

(e.g., RGB camera, depth sensor, or infrared sensor) from which several joint points

of the human skeleton are obtained. These joint points are retrieved as points in a

3D-space where the coordinate origin is located at the center of the Kinect sensor. For

each joint point, the sensor also shows if the value is tracked or inferred.

As an example, Figure 6.1 (Data Capture) shows how a sequence of frames

(skeletons) captured by a Kinect sensor could be. The skeletons capture the pose

of a person during a walk. The joints of each skeleton are represented in the figure as

red dots.

Kinect sensor has two versions: v1 (with 20 joint points) and v2 (with 25 joint

points, as a superset of v1). In this module we use Kinect v2. It is worth to mention a

more recent effort, Nuitrack,1 with 19 joint points which are a subset of those in Kinect

v2.

To capture the data, a sensor was placed in a hall at 1 meter above the ground.

We designed a square-like path and asked the participants to walk in a normal way

(as natural as possible) in a straight line direction and facing to the sensor. This is

illustrated in Figure 6.2, where the solid line shows the path fragment that was actually

captured by the sensor. A longer segment is not possible as the sensor is not able to

capture closer or farther objects. The path was repeated 10 times, so we obtained 10

sequences for each individual, with each sequence including between 69 and 163 frames.

1http://download.3divi.com/Nuitrack/doc

140

http://download.3divi.com/Nuitrack/doc

Each sequence was physically stored as a different recording. The resulting dataset will

be described more deeply in Section 6.1.5.

6.1.2 Data preprocessing

Next, the data captured in the previous phase are preprocessed. The Data

Preprocessing module contains several algorithms for identification of gait steps, noise

reduction, data alignment, and feature extraction. This step does not require any

human intervention.

Identification of gait steps Our system uses a gait step-based identification

approach rather than using entire sequences as other approaches do (for

example [AdRMA15, YDL+16]). Sequence means in this context a Kinect register

of a person walking towards the camera. We consider a gait step as the sequence of

frames (skeletons) from the moment when one foot strikes the floor to the other foot

striking the floor. Usually, sequences contain 3-4 gait steps. In order to detect the

gait steps in a sequence, a strategy based on local maximums of the distance between

the feet time series in the X-axis (horizontal) and Z-axis (depth) is used. The frames

(skeletons) registered from one local maximum (included) until the next local maximum

(excluded) were considered as a gait step. Figure 6.1 (Data Preprocessing) shows an

example of two steps segmentation, where each gait step is represented by a set of

skeletons.

Noise reduction Each detected gait step is considered valid if only one foot is

detected as moved. The movement of each foot is calculated based on its position

in the last frame of the considered gait step with respect to its position in the first

frame of the considered gait step. The frames corresponding to invalid gait steps

were not considered for the next analysis steps. At this stage, frames with a large

difference in length between limbs of the same type were also removed for further

analysis. Specifically, frames, where the length of a bone differs by more than a third

part of the average length calculated for that bone, considering all the frames of the

gait step, are eliminated.

Some other strategies have been used for noise reduction purposes: based on height

of a person (we considered that a person can not measure more than 2.7 m), based

on the distance in the frontal plane between legs (the separation between the ankles

in the frontal plane should not exceed 1 m for a person who walks), and based on

the variation of the movement direction in a gait step (the position of the spine base

joint follows a fairly straight trajectory during one gait step; frames whose spine base

141

Figure 6.2: Our data capture scenario.

joint is more than 0.2 radians of that trajectory have been considered noisy). Another

possibility could be taking into account the percentage of inferred values in a frame,

but this was not used in this version of our system.

Data alignment Since the walking direction of a person may vary and is not always

straight to the location of the camera, an angular rotation over the Y-axis (vertical

axis) has been applied to each frame in order to align the skeleton joints with the hips

position in the frontal (XY) plane. This kind of alignment it is widely used in the

related work [CSM14, KTT+15, KNJ18]). A few features to be calculated (see below)

need a different alignment of the skeletons. Specifically, for the calculation of the length

and width of the gait step, a rotation over the Y-axis (vertical axis) has been applied in

order to align the skeletons with the direction of the displacement (direction computed

based on the variation of the spine base joint).

Some of the related works use also a second rotation over the X-axis (horizontal

axis) in order to align each skeleton with the position of the spine. This rotation

may be useful when the Kinect camera is placed with a certain inclination toward the

ground [CSM14]. As in the recordings that we have used in this work the camera is

straight, we have not applied that second rotation on the skeletons.

Feature extraction Then, the features extraction is performed for each of the gait

steps identified previously. Studying the related work, we have identified 8 types of

features:

1. Spatiotemporal features : step length, step width, velocity, and cadence. These

142

kind of features were used in related works as [AdRMA15].

2. Anthropometric features : height of the subject and length of each of the bones of

the skeleton (head, up and low spine, left and right humerus, forearm, thigh, shin,

foot, and hand), computed as Euclidean distance of the corresponding adjacent

joints. These kind of features are commonly used in the related work on person

recognition using Kinect, to compare with or to reinforce the performance of

recognition based on gait kinematic features [AdRMA15, JWZS15, YDL+16].

3. Bones angles features : angles of the projections on the XY, XZ and YZ

plane of each of the bones corresponding to upper and lower limbs. Some

of these features, generally related to the limbs position, were previously used

in [AdRMA15, JWZS15, KTT+15]. Additionally, we have computed the spine

projection angles.

4. Vertical distance features : distance between a skeleton joint and the ground; e.g.

left knee distance to the ground: kneeLeft(Y). These kind of features were

proposed in [AAJS14].

5. Relative distance features : distances according to the X,Y and Z-axis between

symmetrical skeleton joints (e.g. right and left knees according to the X-axis:

abs(kneeLeft(X)− kneeRight(X))) or between head and symmetrical skeleton

joints; e.g. the position of the head joint with respect to both foots joints

according to the X-axis: abs(head(X) − (footLeft(X) + footRight(X))/2)).

These kind of features where used in [AAJS14] (X-axis distances) and [YDL+16]

(some X, Y and Z-axis distances, selected with a greedy procedure - forward

selection). In this work we have calculated the distances in all the axis, for each

combination of joints proposed in the mentioned works.

6. Relative joint position features : position of each skeleton joint (25 for Kinect

V2, 20 for Kinect V1) in X, Y, and Z-axis with respect to a fixed joint of the

skeleton, namely the spine base. These kind of features have been proposed

in [CSM14, KNJ18].

7. Connected joints angles features : angles formed by different connected joints (e.g.,

the angle between the upper and lower left leg, formed by hipLeft(X, Y, Z),

kneeLeft(X, Y, Z) and ankleLeft(X, Y, Z)). While this type of joint angles

seems natural to take into account, it is not a type of features that has been

commonly used for Kinect based gait recognition. Note that, to the best of our

143

knowledge, these features had never been considered before in gait recognition

using Kinect.

8. Relative joint movement : Euclidean distance showing the joint movement from

frame to frame, with respect to a fixed joint of the skeleton, namely the spine

base. These features have been proposed in [KNJ18].

Example 36. The movement of the left knee is computed as

EuclideanDistance
(

(kneeLeft(Xi, Yi, Zi)− spineBase(Xi, Yi, Zi)),
(kneeLeft(Xi−1, Yi−1, Zi−1)− spineBase(Xi−1, Yi−1, Zi−1)))

,

where i and i− 1 represent two consecutive frames.

We consider all the features used in the bibliography on purpose, as we want to propose

a backwards compatible model. There could be some dependencies between features,

but we still consider them separately as computing some of them from another features

is not possible in general using standard ontology reasoning.

Table 6.4 summarizes the number of features of each type. In total, there are 211

biometric features. All these measures, except the first type, may vary from frame

to frame, thus we compute mean and standard deviation of them, for each detected

gait step. It should be clarified that the mean aggregation usually characterizes the

individual’s pose while walking (except the anthropometric features where the average

is a way to compute a bone length from different noisy values). For example, the

mean of the relative position of the right foot joint on each of the axes would mean

the average of the right foot pose during one step. On the other hand, the standard

deviation aggregation usually characterizes here the amplitude of the movement. For

instance, low standard deviations of the relative position of the right hand joint

on each of the axes would mean that the individual does not move his right arm

while walking. These kind of aggregations are commonly used in the related work

at different levels: [YDL+16] considers them at a sequence level of the feature time

series, [AdRMA15] at a mixture between a sequence level and peak and valley level

of the feature time series, [AAJS14] at a gait cycle level, and [CSM14] at different

fractions of a gait cycle level.

In this system we propose the aggregation of the feature values at the level of a

gait step, since even in conditions with short gait recordings, a gait step data would

be easier to be managed than a complete sequence or a complete gait cycle with two

steps (a gait step with right foot moving and another one with left foot moving). In

144

an incomplete sequence scenario and splitting the gait cycle in four divisions, [CSM14]

has observed that the subjects achieved one or two divisions in 100% of the cases (one

gait step would correspond to two divisions here).

6.1.3 Fuzzy ontologies for gait recognition

Our fuzzy ontology is able to represent raw Kinect data about the movement of a

person but also biometric features computed from them. The former type of knowledge

is represented using a classical ontological semantics, as we want to represent sensor

data almost as they come from the sensor (only after some preprocessing, described in

the previous section).

Because of the huge amount of data we are trying to manage, we propose a

distributed architecture (see Section 5.1.2) formed by a general schema ontology, with

the definitions of the classes and properties, and a collection of instantiated ontologies

that populate the schema ontology with individuals and their attribute values. This

architecture is illustrated in Figure 6.3.

The cornerstone of our architecture is the schema ontology. It contains 4 classes,

9 object properties, 391 data properties and 1409 logical axioms. The expressivity of

the ontology is that of the Description Logic ALCRIF(D). To represent the Kinect

data, we consider 4 mutually disjoint classes. For each instance of Human, there are

several recordings. Every recording obtained using Kinect is represented as an instance

of Sequence and each sequence is composed of several instances of Frame. After some

preprocessing, we can also divide a sequence in several instance of Step, so that each

step is related to a unique sequence. Each step contains several frames, but each frame

is associated at most to one step (if the human stops walking at some point of the

video, there might be frames not associated to any step).

We also have object and data properties with their corresponding domain, range,

and functionality restrictions. Relationships between classes are modeled using object

properties personIsInRecording, recordingHasFrame, recordingHasStep, and stepIsInFrame,

together with their inverses recordingHasPerson, frameIsInRecording, stepIsInRecording,

and frameHasStep, respectively. Figure 6.4 shows the classes and their relationships.

We use subproperty chains to infer missing information. For example, the chain

frameIsInRecording ◦ recordingHasStep is a subproperty of frameHasStep.

Figure 6.5 shows a fragment of the data property hierarchy in the schema ontology.

For example, we can see that stepAttribute contains the 8 types of biometric features

enumerated in Section 6.1.2 plus some additional attributes (otherAttributes, with the

moving leg and some IDs), all the four type 1 features, and both a comment and a

range restriction on the functional property velocityStep.

145

Figure 6.3: Organization of our fuzzy ontologies: a schema ontology and several
instantiated ontologies.

Figure 6.4: An excerpt of our ontology scheme.

146

Figure 6.5: Some properties (type 1) of our schema ontology.

We have an instantiated ontology for each gait sequence of each individual.

Instantiated ontologies can be logically classified in a dataset, as we will describe in the

next section. Sequences to be classified are also represented as an instantiated ontology.

An instantiated ontology firstly imports the schema ontology and then populates it

with individuals (persons, recordings, frames, and steps), and axioms (class/property

assertions).

We worked with sequences (recordings) of walking people recorded using the

Microsoft Kinect V2 sensor. While one could consider using a better sensor, we aim

at using low cost devices and thus must deal with such imprecision. Therefore, the

values of the data properties are fuzzy datatypes. In our scenario, fuzzy datatypes

replace precise crisp values with a more general fuzzy membership function, as seen

in Section 3.1. Recall that the values of the biometric features are computed for each

step.

Each frame has 25 data properties linking it with each of the 25 joints identified by

the Kinect V2 sensor (see Figure 6.6). For example, sensor0 related a frame with a real

number (xsd:decimal). The names of these data properties use the common numeration

of the joints, but the ontology schema also has 25 equivalent data properties with more

147

readable names. For example, spineBase is equivalent to sensor0. To represent Kinect

V1 or Nuitrack data, one would only use the relevant 20 or 19 (respectively) properties.

Regarding the biometric features, each step has several data properties, such as

meanHeight (average value of the height of a person) or meanThighRightXZ (average

value of the angles formed by the right thigh). Similarly, our ontology also allows

representing biometric features of a sequence (although we do not currently use them)

such as the total cadence (cadenceTotal, number of steps per unit of time).

To the best of our knowledge, none of the existing ontologies is suitable for our

needs, so we needed to develop our ontology from scratch. It has been developed using

Protégé ontology editor. Classes, properties, individuals, and most of the axioms are

represented as usual. To represent the fuzzy datatypes, we have used Protégé plug-in

called Fuzzy OWL 2 that can be used to create and edit fuzzy ontologies.

The main version of the ontologies is encoded in OWL 2 Manchester syntax, but

we also experimented with another version in RDF using Turtle syntax (TTL format).

RDF triples are appropriate to answer SPARQL queries, but this is not necessary in

our gait recognition scenario.

Before concluding this section, let us illustrate how our approach leads to more

readable datasets than the related work. Figure 6.7 (a) shows a fragment of a file

included in the dataset built by Kastanioitis et al. [KTT+15], whereas Figure 6.7 (b)

shows how one of our instantiated fuzzy ontologies represent some of the same data (the

first four rows), corresponding to the first frame of the first recording of the twenty-first

person.

6.1.4 Decision: gait recognition algorithm

The final step of our system is a decision module to classify a sequence of steps.

Algorithm 9 shows how to identify the individual that is the author of the sequence or

to recognize that it is an unknown individual. The inputs are a sequence of steps r1, a

fuzzy ontology O with the dataset, and a threshold Θ.

The first part is the initialization (Lines 2–4), where an array to store the number

of votes of each individual is created; initially every individual has zero votes.

The next part computes the similarity of steps (Lines 6 –16). For each data property

assertion relating an step s1 with the input sequence r1, and for each step s2 of

the dataset, the algorithm computes the similarity between the pair of steps using

Algorithm 7 (Line 9). Next, it compares this similarity with the highest one previously

found, in order to store the individual which is the author of the step with the highest

value of similarity (Lines 10–13). When all steps in the dataset are compared to s1,

the individual which is the author of the step with the highest value of similarity to s1

148

Figure 6.6: 25 skeleton joints captured by Microsoft Kinect V2 sensor[OVB19].

Figure 6.7: (a) Original representation; (b) Fuzzy ontology representation.

149

receives one vote (Line 15).

Next, the algorithm computes the most probable individual. In particular, when

all steps s1 are processed, the algorithm retrieves the individual x with the highest

number of votes (Line 17).

Finally, the algorithm returns the result of the classification (Lines 19–23). It

retrieves the individual with more votes x only if it received a percentage of the votes

greater or equal than an electoral threshold Θ ∈ [0, 1], otherwise the system assumes

that the individual is unknown (i.e., it is none of the individuals in the training dataset)

and returns a new individual.

Algorithm 9 Algorithm to compute the classification of a sequence.
Input: A sequence r1,
Input: A fuzzy ontology O with the dataset,
Input: A threshold Θ
Output: An individual x

1: // Initialization
2: for all individual i in O do
3: votes[i]← 0
4: end for
5: // Similarity of steps
6: for all data property assertion (s1,r1):stepIsInRec in O do
7: maxSim← −1
8: for all instance of Step s2 in O do
9: sim← similarity(s1, s2,O, ε) using Algorithm 7

10: if sim > maxSim then
11: r2 ← Retrieve the value of the data property stepIsInRec for s2 in O
12: i← Retrieve the value of the data property recHasPerson for r2 in O
13: end if
14: end for
15: votes[i]← votes[i] + 1
16: end for
17: x← argmaxi votes[i]
18: // Comparison with threshold
19: if votes[x]/

∑
i votes[i] > Θ then

20: return x // Individual more similar or voted
21: else
22: return new individual
23: end if

Let us now discuss some important issues of our algorithm or implementation

details.

− For an easier presentation of Algorithm 9, we assumed a single fuzzy ontology,

but we actually work with sequences ri, each of them represented by a different

150

fuzzy ontology (see Section 6.1.3). Similarly, to compute the similarity between

two steps we need a pair of ontologies with the values of the data properties

described using fuzzy datatypes.

− Regarding Algorithm 7, the values of the features f are now described using

triangular fuzzy membership functions (for example, f1 = tri(a11, a12, a13) and

f2 = tri(a21, a22, a23)). To compute its similarity, we restricted to the minimum

t-norm to make the computation easier. The minimum of two triangular fuzzy

membership functions depend on several cases, as illustrated in Figure 6.8. As

defuzzification methods, we have tried the Middle of Maxima (MOM, Eq. 2.21)

and the center of gravity (COG, Eq. 2.22). Note that in this case there is a single

maximum (possibly zero), so the well-known smallest (SOM, Eq. 2.19), largest

(LOM, Eq. 2.20), and middle of maxima defuzzification methods coincide. We

have also tried with several other measures that we call the average (AVG):

sim(p1, p2) = 1− µp1(a22) + µp2(a12)

2
(6.1)

and the minimum (MIN):

sim(p1, p2) = min
{
µp1(a22), µp2(a12)

}
(6.2)

As the aggregation operator @, we use a t-norm, namely the product. Lukasiewicz

t-norm collapses to zero very easily, and the minimum of a lot of aggregated

values is not as discriminant as the product. We work with very small values

but we checked in practice that they can be successfully managed as Java double

numbers.

− In the voting-based scheme, in case of a tie we retrieve the step with the highest

value of similarity. It would also be possible to associate a fuzzy degree α ∈ [0, 1]

to the classification result, and retrieve not only the winner individual but also

a numerical value given by the ratio between the number of votes obtained

by the winning individual and the total number of steps. This would also

make it possible to retrieve the top–k individuals, decreasingly ordered by the

classification degree.

− To avoid the fact that a single similarity(s1, s2) = 0 in Algorithm 7, in Line 9

we replace the 0 value with a very small ε > 0.

− Finally, an important problem is how to select the value of Θ. A possible approach

is to compute the percentages of correct classifications of the known people and

of the new people, and find a trade-off between both values using the ROC curve.

151

Case 1 Case 2 Case 3

Case 4 Case 5

Figure 6.8: Different cases to compute the minimum of two triangular functions.

6.1.5 Zaragoza dataset: OWL and RDF representation

Before presenting our evaluation of the system, we will describe existing datasets and

a new one developed by us.

Recall that each dataset is a collection of instantiated fuzzy ontologies, with respect

to a schema ontology. To the best of our knowledge, there are only three existing

datasets using Kinect to record people walking on straight lines or semi-circle paths,

so we built a new one.

Kastanioitis et al. proposed the two first ones, denoted Kas1 [KTT+15] and

Kas2 [KTT+15] , where individuals walk a straight line. V. O. Andersson et

al. proposed a dataset with lateral recordings using a moving camera, denoted

And1 [AdRMA15]. For the purpose of this thesis, we have built a new dataset, denoted

Zar2. More details about the datasets can be found online, subject to legal compliance2.

− Kas1 contains 30 individuals (15 males and 15 females). Each person contain

5 sequences and each sequence has between 1 and 5 steps. Data were acquired

using a Microsoft Kinect V1 sensor.

− Kas2 includes 30 individuals (17 males and 13 females). There are 10 sequences

for every person. Each sequence has between 1 and 5 steps. Data were obtained

using a Microsoft Kinect V2 sensor.

− And1 includes 164 individuals. For each of them there are 5 or 6 sequences with

a number of gait steps detected by our algorithm between 6 and 62. Data were

2http://webdiis.unizar.es/~ihvdis/gait_recognition

152

http://webdiis.unizar.es/~ihvdis/gait_recognition

recorded using a Microsoft Kinect V1 sensor.

− Zar2 was built to increase the small number of individuals walking a straight

line using Kinect V2 in Kas2. We had help of 91 volunteers walking a straight

line, 34 women and 57 men with ages between 18 and 60. For each volunteer, 10

sequences were recorded in the experimental scenario, but a total of 8 sequences

were discarded because they wore reflective clothes (such as leather jackets) that

provided too many errors. Every sequence contains between 1 and 6 steps. Data

were captured using a Microsoft Kinect V2 sensor, as described in Section 6.1.1.

Figure 6.9 shows the number of steps in the different datasets. We can see that

most of the sequences in Zar2 and Kas2 contain between 3 and 5 steps, while most

of the sequences in Kas1 have between 2 and 3 steps. Because of the moving camera,

sequences in And1 have a much larger number of steps.

Figure 6.9: Number of steps in each dataset.

Let us conclude with some statistical information. Table 6.2 shows for each dataset

(Dataset) the Kinect version (Kinect) and the total numbers of People (#People),

Sequences (#Sequences), and Steps (#Steps). The table also shows the average number

of Individuals (I), Frames (F), Fuzzy Datatypes (FD), Class Assertions (CA), Object

Property Assertions (OPA), and Data Property Assertions (DPA) for each sequence

of the respective dataset. Overall, there are 2172 OWL instantiated files (so, 2172

sequences).

6.1.6 Results and discussion

In this section we evaluate the accuracy of the classification, the accuracy of each type

of features, the size of the datasets, and the running time.

153

Table 6.2: Statistics of OWL ontologies

Dataset Kinect #People #Sequences #Steps I F FD CA OPA DPA

Kas1 V1 30 150 408 91 86 574 664 101 5180

Kas2 V2 30 298 1058 107 101 749 856 122 7611

Zar2 V2 91 902 3178 107 102 743 850 123 7619

And1 V1 164 822 16745 621 598 4298 4919 746 35914

Classification analysis. To evaluate the performance of the classification, we

considered 4 datasets (Kas1, Kas2, Zar2, And1), 4 defuzzification strategies (COG,

MOM, AVG, MIN), and 2 training setups (20/80 and 80/20). For example, 20/80

means that we took 20% of the sequences of each individual as training data, and the

remaining 80% was used as test data. Experiments were repeated 20 times and for

each of them the selection of the sequences was random. We also include as baselines

the best results computed by other authors: for Kas1 and Kas2 we include the results

of the EK+RH method [KTEF16], and for And1 we include the results of the method

in [KNJ18]; these are the best methods so far for straight lines and lateral recordings,

respectively. We also include the results of a previous version of our work [BDB17],

using a different classification algorithm (nearest neighbor with Euclidean distance,

restricting triangular functions to the average value) and only 12 biometrical features.

Table 6.3 shows the percentage of correct classification of the methods (average

and, if available, standard deviation) for all feature types; please recall that details

such as Kinect version, number of individuals, and number of sequences can be found

in Table 6.2.

In datasets where individuals walk a straight line (Kas1, Kas2, and Zar2), our

method outperforms EK+RH, the best method so far. For the best defuzzification

strategy, the new method obtained an increment in the precision of 3–4%. In particular,

our method was able to classify precisely all individuals of Zar2 for the case 80/20.

However, for the dataset with lateral recordings using a moving camera, our system

achieves worst classification results. This shows that our algorithm would require some

changes to manage such datasets, but we leave this as future work. In particular, we

would need different preprocessing techniques, as the type of noise is different, and

possibly more flexible fusion operators than a t-norm (because every t-norm produces

a value which is smaller or equal than the minimum of the aggregated values, a single

small value is enough to produce a global small value).

The best defuzzification strategy depends on the dataset. AVG is usually the best

one (in Kas1, Kas2, and And1), but MOM is the best one in Zar2. In datasets where

individuals walk a straight line there are not significant differences between the different

154

Table 6.3: Classification results for various methods and training sizes using feature
types 1-8.

Dataset
Method Correct Classification Rate

Training/Test Size (%) 20/80 80/20

Kas1

EK+RH [KTEF16] No data 95.67
COG 88.37±1.88 99.33±1.37
MOM 89±1.61 99.33±1.37
AVG 86.88±1.01 97.17±1.22
MIN 84.38±1.85 95.67±2.44

Kas2

EK+RH [KTEF16] 92.27 97.05
[BDB17] No data 89.03

COG 93.51±1.07 99.83±0.53
MOM 94.01±1.05 99.66±0.71
AVG 96.83±1.35 100±0
MIN 94.92±1.26 99.66±0.71

Zar2

COG 98.34±0.54 100±0
MOM 98.45±0.57 100±0
AVG 97.86±0.95 100±0
MIN 97.39±1.09 100±0

And1

[KNJ18] No data 97.0±0.5
COG 31.74±2.34 66.25±6.33
MOM 33.75±2.80 68.56±4.97
AVG 69.07±5.54 95.66±2.53
MIN 61.54±6.17 93.84±3.57

155

defuzzifications, but in And1 the differences between AVG and MIN, on the one side,

and COG and MOM, on the other side, is really important (close to 30%).

Note that the sensor Kinect V2 (datasets Kas2 and Zar2) makes it possible to

obtain very good results for the case 20/80, almost comparable to the case 80/20. This

means that only 20 % of the data (i.e., 2 sequences for each individual) is enough as

training data. However, for Kinect V1 (datasets Kas1 and And1), it seems preferable

to use a 80/20 configuration (i.e., 4 sequences for each individual).

Note also that our system gets better results in Zar2 with 91 individuals than in

Kas2 with 30 individuals. It has to be taken into account that Kas2 has been recorded

with a sensor angle of 30 degrees on the direction of displacement. Therefore, the

worst results in Kas2 might be caused by a problem of body self-occlusion, a problem

previously reported in [MIGL17]. These results suggest that 3D sensor based gait

recognition could be more appropriate in scenarios where the sensor is located frontally

or combining information from different side placed sensors, that have vision on both

sides of the body.

Features analysis. We considered the Zar2 dataset, 4 defuzzification strategies

(COG, MOM, AVG, MIN), and a 20/80 scenario. Table 6.4 shows the results of

each type of features (as defined in Section 6.1.2), and the number of features of each

type. Experiments were repeated 20 times and we show the average and the standard

deviation.

We can see that using all the feature types provides the best results. It is worth

to stress that a feature selection step to reduce the number of variables was proposed

in [BDB17], and some preliminary experiments showed that they did not have an

influence in the results. However, the results with a high number of individuals show

that when all variables are considered, the precision of the classification is higher.

Indeed, feature selection is more common in classification scenarios with a fixed number

of labels to be classified, but in our case the number of classes increases every time a

new individual enters the system.

Table 6.4: Results of each type of attributes on Zar2 dataset (20/80).

Type

1 2 3 4 5 6 7 8 1-8

Size 4 16 27 21 33 60 25 25 211

COG 1.47±0.33 68.96±3.10 52.72±3.45 52.54±2.58 92.83±1.65 95.54±1.43 83.89±2.37 4.65±0.41 98.34±0.54

MOM 1.53±0.40 72.43±3.63 61.30±3.33 56.37±3.54 93.79±1.40 95.94±1.45 84.46±2.72 7.10±0.94 98.45±0.57

AVG 0.87±0.28 59.57±2.70 35.70±3.11 44.29±2.83 71.14±3.11 94.72±1.23 67.75±3.47 6.29±0.97 97.86±0.95

MIN 0.70±0.23 50.92±2.52 20.99±2.47 36.13±2.27 62.36±3.30 90.80±1.67 59.83±4.44 5.33±0.98 97.39±1.09

156

We can also see that choice of the defuzzification strategy is quite significant. In

general, when using only some type of features, COG and MOM perform better.

Using just some type of variables might provide good enough results. For example,

type 6 has a higher precision than the method EK+RH (for the case of MOM). Then,

if we add more attributes to the model, precision grows. Indeed, we can obtain simpler

models if needed for scalability reasons, although as we will see later the running time

of our system seems very reasonable. Consider for example the case of MOM. While

the full model has 211 attributes and a precision of 98.5%, a model based on type 6

has a precision only 2.5% smaller with between a third and a quarter of the attributes

(60). Then, a model based on type 5 has a precision only 2% smaller than the model

based on type 6 with about half of the attributes (33). Type 7 also provides a good

precision (it is the third best type) with only 25 features, despite not having being

widely used in the literature. Because type 7 features are those with less dependency

of the height, this confirms again that how a person walks is actually useful to identify

him/her.

Space and time analysis. Table 6.5 shows the space required by the OWL (OWL 2

ontologies in Manchester syntax) and TTL (RDF triples in Turtle syntax) versions of

our fuzzy ontologies. We can see that OWL files require a much smaller size than TTL

files. Indeed, OWL Manchester syntax is known to be a rather succinct syntax.

Table 6.5: Size (in MB) for each input format and dataset.

Format
Dataset

Kas1 Kas2 Zar2 And1

OWL 111 304 939 4190

TTL 205 557 1750 8080

Next, we will detail some experiments to measure the running time. Firstly, we

measured the starting time of the system; in particular, the loading time of the datasets

in memory. This step is only performed once, during the initialization of the system. To

manage TTL files, we used the server Apache Jena Fuseki 3.14 and Jena Java API3.

As a baseline, we also considered a CSV (text files with comma-separated values)

version of the fuzzy ontologies that only stores data about the biometric features and

not the raw Kinect data (as they are not used during the classification). The CSV

version represents triangular fuzzy functions by separately storing the average x and

the standard deviation σ.

3http://jena.apache.org

157

http://jena.apache.org

Table 6.6 shows the results of the time (in seconds) needed to load the different

datasets for different input formats: CSV, OWL, and TTL. Of course, the time depends

on the number of individuals and steps, and so on the dataset. TTL requires much

more time than OWL, as managing RDF triples and SPARQL queries using Apache

Jena Fuseki Server was more costly than retrieving OWL 2 individuals and their data

property values using the OWL API. Managing CSV is also significantly faster than

OWL, so if the system is going to be restarted often, one could consider having a CSV

copy of the datasets to speed the initialization up. Another suggestion is to split each

OWL/TTL file into two files: one with the raw Kinect data, and another one with

data about the biometric features, so that only the second one is loaded during the

initialization of the system.

Table 6.6: Loading time (in s) for each input format and dataset.

Format
Dataset

Kas1 Kas2 Zar2 And1

CSV 0.14 0.30 0.97 3.39

OWL 15 47 172 654

TTL 62 418 4267 16224

Secondly, we analyze the time (in seconds) needed to classify a new sequence using

only features of type 6 (the type with a better precision) and using all of them. The

experiment is repeated for each dataset and the results are shown in Table 6.7. On

average, type 6 requires about a third of the total time, making it possible to have a

good trade-off between running time and classification accuracy. It is worth to note

that for very big datasets, such as And1, the difference between the defuzzification

methods is relatively significant, with AVG and MIN being the faster ones.

Table 6.7: Classification time (s) of one individual.

Type Method
Dataset

Kas1 Kas2 Zar2 And1

6

COG 0.03 0.07 0.10 5.49

MOM 0.02 0.07 0.09 5.21

AVG 0.02 0.06 0.12 4.42

MIN 0.02 0.06 0.12 4.44

1-8

COG 0.07 0.22 0.30 17.37

MOM 0.07 0.21 0.27 16.52

AVG 0.06 0.18 0.35 14.59

MIN 0.06 0.18 0.36 14.68

158

Evaluation of the discovery of new individuals. We have used Zar2 dataset to

find an estimation of Θ. First, Zar2 dataset was split into a training set (80 %) and

a test set (20 %). then, we computed for any gait sequence of any individual p in the

test set, the rate of votes obtained by p when there are other sequences of p in the

training set, and the maximum rate of votes obtained by an individual q (6= p) when

all sequences of p are removed from the training set. The experiment was repeated 20

times with different training/test sets.

Figure 6.10 shows the ROC curve and the AUC (area under the curve). It is shown

that the best founded electoral threshold Θ is equal to 0.917, and AUC = 0.881, that

is, with this method it can be correctly classified the 88.1% of the sequences with a

95% confidence interval (0.874, 0.889).

Related Work

This section summarizes the previous work on gait recognition using the Kinect sensor

on the use of ontologies to represent Kinect data.

Gait recognition and Kinect. There is a long history of research on the recognition

of people through the gait using video recordings [BHP05]. The release in 2011 of the

Kinect depth camera has led to another approach to the gait recognition. Since then,

several research papers have addressed the gait analysis for human recognition with

skeleton data captured by a Kinect sensor.

We can find in the literature some prospective works that use their own datasets,

with few individuals (usually less than ten), to investigate the possibilities of this

technology. In this sense we can mention the approach of [PKWLP12], where the

authors observed promising results concerning person recognition using a Naive Bayes

classifier and a simple set of features obtained from 9 people. Another work to

mention here is the one in [JWZS15]. In that case the features are characterized as

static (height, length of bones) or dynamic (angles of joints). Several distances where

used between these features and finally a K-nearest neighbor (KNN) classifier [FH51]

obtained around 80% accuracy for ten people. In [AAJS14] the authors use their own

dataset with lateral recordings from 20 participants. They extract some vertical and

horizontal features, use a KNN based method and obtain 92% recognition rate.

Other kind of proposals use broader datasets with 30 people recordings [KTEF16,

KTT+15]. In [KTT+15] a framework for gait-based recognition is proposed. The

authors provide a new dataset captured from 30 people walking in a straight line. For

each subject, the dataset contains five sequences (corresponding to 5 walks in front

of the Kinect camera) captured in three separate sessions during the same day. The

159

Figure 6.10: ROC curve: best threshold Θ = 0.917, AUC= 0.881 (95% confidence
interval (0.874, 0.889)).

,

authors extract from the dataset 16 dimensional vectors that encode the direction of

every limb using two Euler angles. Then use several dissimilarity tests and achieve

93.29% identification rate. Some steps further are taken in [KTEF16] with a new

method for fusing information from Riemannian and Euclidean features representation

that achieves 95.67% accuracy on the same dataset. Moreover, the authors provide a

new dataset for gait recognition captured from 30 people walking in a straight line and

using the more recent Kinect v2, dataset available on demand. There are 10 sequences

for every recorded person. As far as we know, that is the only dataset available captured

with Kinect v2. The authors obtained 97.05% accuracy on that dataset.

A different approach to the problem of recognition of people is addressed

by [CSM14]. Specifically, the authors address the problem of recognition from

sequences with partial gait cycles, considered common at the airport security

checkpoints. They use an own dataset with 60 distinct subjects and a hierarchical

method for frontal gait recognition using Kinect depth and skeleton streams and achieve

66.67% accuracy.

An even more extensive dataset (90 people) of freestyle walks has been provided

by [KNJ18], although it is not covered in our evaluation. Moreover, the authors propose

a recognition method based on a KNN classifier with the Manhattan distance, applied

at a frame level. The features used in this case are the relative joint positions with

respect to a fixed joint, namely the spine base. They enforce the method with a new

kind of features, the relative joint movement with respect to the same fixed joint, and

achieve 96.8% accuracy.

160

The most extensive Kinect skeleton dataset that we found in the literature is

described in [AdRMA15]. The authors provide a dataset with lateral recording of

the subjects. Each sequence represents a round of the subject in front of a Kinect

camera on a semi-circle path. The Kinect camera was placed at the center of the

semi-circle, on a spinning dish and was rotated to keep the subject in the center of the

view. Several recognition methods were tested on this dataset, most of them based

on the nearest neighbor [CH67] (KNN method with K=1) with Manhattan distance,

with variations in the type of features used. In particular, [AdRMA15] obtained 87.7%

accuracy, [YDL+16] achieved 95.4% accuracy, and [KNJ18] reached 97% recognition

rate.

Details of the features used by each related work can be found in subsection 6.1.2.

Ontologies and Kinect. There have also been some previous approaches to

represent Kinect-related data using classical ontologies [DRWL+13] and fuzzy

ones [DRPCLD14]. The authors even developed the so-called Kinect ontology.

However, despite this generic name, their approach is strongly focused on a different

application, recognition of human activity, and cannot be reused in our scenario. On

the one hand, Kinect ontology was not designed to encode the information directly

obtained from the sensors. On the other hand, its fuzzy extension does not provide a

fuzzy representation of the relevant features for gait recognition that we discussed in

Section 6.1.2.

Our work is a followup to [BDB17], which proposed the use of fuzzy ontologies

for gait recognition. The main differences are an extended fuzzy ontology, a

distributed architecture of the ontology files, a novel approach to learn the fuzzy

datatypes (Section 3.1), a novel classification algorithm based on the similarity between

individuals (Section 4.3) and a voting schema, the development of a new dataset with

data from 91 volunteers, a detailed empirical evaluation of our classification algorithm,

the use of linguistic summaries to improve the interpretability of the system (Section

6.6.3), and a solution to the problem of identifying new individuals.

6.2 Beer recommender system

Contributions

This section describes the system called GimmeHop, a knowledge-based and

context-aware recommender system. It receives the user preferences for the items

that s/he expects to receive (the values of some attributes) and provides a ranked list

of beers, taking into account contextual information in order to recommend different

161

beers under different circumstances.

Most of the features of GimmeHop were already discussed in Section 5.2. In the

following, Section 6.2.1 describes our Fuzzy Beer ontology, while Section 6.2.2 reports

an evaluation of the quality of the linguistic labels and the recommendations, but also

a evaluation about the performance of the system in terms of running time and data

traffic.

6.2.1 Fuzzy ontology

Firstly, we proposed an distributed architecture to work with the knowledge mentioned

in the Section 5.1.2. For this domain, two files are used, the schema ontology that

contains the vocabulary about beers (definition of types and properties). Another file

that populates the ontology scheme with beer instances and their attribute values. The

distributed architecture is illustrated in Figure 6.11.

Our ontology is encoded in OWL 2 EL [W3C09b], one of the tractable profiles of

OWL 2. The ontology schema has 411 axioms (215 logical axioms), 121 classes, 5

object properties, 14 data properties, 10 fuzzy datatypes, and 22 country individuals.

There are two additional files populating the schema with individuals (we will give

more details later on). The main features of schema ontology are:

Classes. Figure 6.12 (a) shows the main classes of the ontology. The most important

ones form a hierarchy of beer types, grouped in 5 main styles: Ale, Lager, Sour, Wheat,

and Specialty. These classes are abstract and cannot have instances, but have subclasses

(that can be abstract or not). The depth of the subontology with the beer types is 5.

There are also some classes representing a brewery (Brewery), a location (Country),

a currency (Currency) to specify the beer price, a won award (Award), and a hierarchy

Figure 6.11: Ontology schema and two instance files.

162

of ingredients (Ingredient).

Our ontology imports DBpedia [LIJ+15] and uses its list of countries (e.g.,

dbpedia:Mexico)4 and its list of currencies (e.g., dbpedia:Mexican pesos).

a) b)

Figure 6.12: Ontology representation, (a) classes and (b) data and object properties.

Properties. The main properties of the ontology are depicted in Figure 6.12 (b).

Our 5 object properties link instances of Beer or Brewery with instances of Country

(locatedAt), and instances of Beer with instances of Award (wonAward), Brewery

(brewedBy), Currency (usesCurrency), and Ingredient (hasIngredient). Note that we do

not represent their inverse properties, as they are not allowed in OWL 2 EL [W3C09b].

Data properties make it possible to represent different beer attributes:

− ABV (Alcohol By Volume) is a standard measure of how much alcohol is contained

in a given volume of an alcoholic beverage. It is measured in [0, 100].

− IBU (International Bitterness Units) denotes the bitterness degrees, measured in

[0, 1000].

− color is a numerical value representing the color in Standard Reference Method

(SRM) units, measured in [0, 40].

4Note that some of them do not belong to the class dbpedia:Country, such as dbpedia:Scotland.

163

− turbidity is a numerical value representing how hazy a beer is in European Brewery

Convention (EBC) units, measured approximately in [0, 200].

− aroma, flavor, and foam represent some information using string values. These

properties are not functional so that several values can be attached to a single

beer. For example, we can have a data property assertion stating that it smells

like bananas and another one stating that it tastes like clove.

− fermentation has the following possible values: top, bottom, any, wild, and aged.

− era indicates if the beer was brewed in a modern style, in a traditional style, or if

belongs to a historical period and is no longer available.

− price is a numerical property representing the cost of the beer (recall that the

object property usesCurrency indicates the semantics of the number).

− overallRating and styleRating are numerical values in [0, 100] representing the

percentile of the rating, compared to all the beers or to the beers of the same

style, respectively, given by the community of users.

− industrial is a Boolean property (true indicates a industrial beer, false an artisan

one).

− img is the path of an image file with a picture of the beer that could be displayed

in the GUI.

In the future, the ontology could be extended with a hierarchy of classes representing

aromas, flavors, and foam types; and replacing the data properties with object

properties. However, because our aim is to manage fuzzy datatypes and there is no

easy way to represent those attributes using fuzzy membership functions defined over

a numerical scale, we have left it as future work.

Fuzzy datatypes. The ontology stores precise values using data property assertions

(e.g., that the alcohol degree of Corona Extra is 4.5), but also includes 10 fuzzy

datatypes, 5 associated to the alcohol and 5 associated to the bitterness. There are

more data properties to which one could also associate fuzzy datatypes, such as price,

color, or turbidity. However, our beer data did not include that information and hence

they were not considered in the current version. Furthermore, we chose not to define

fuzzy datatypes for the ratings because in a recommender system the user is interested

in items with the best possible rating, as long as they satisfy his/her requirements.

164

To compute the linguistic values of the data properties of an ontology, we used Datil

tool (see Section 3.2). Recall, Datil implements several clustering algorithms such as

k-means, fuzzy c-means, and mean shift. Example of fuzzy membership functions built

after the centroids (denoted by broken lines) is shown in Figure 6.16.

After our first experiments, we noticed that the results were counter-intuitive

because of the existence of beers with very high alcohol values. Figure 6.13 shows the

number of beers for each alcohol degree (with 1 digit precision). We can see that there

are several beers with more than 20 degrees; one of them (Schorschbräu Schorschbock)

with 57.7◦. A consequence of having such values is that the centroids used to build

the fuzzy membership functions are much higher than the expected values for a human

expert. With Datil is possible to specify a minimal and a maximal threshold (denoted

Θ1 and Θ2, respectively), so that lower and greater values, respectively, are ignored for

the clustering algorithm. We will report later some experiments to select the thresholds

Θ1 and Θ2, and the best clustering algorithm.

Figure 6.13: ABV of beers.

Class axioms. There are also some axioms imposing some restrictions on the classes.

Firstly, there are disjointness axioms stating that two classes cannot share any instance.

For example, Ale and Lager are disjoint. Note however that Ale, Sour, and Wheat, three

of the five families of beer types, are not disjoint; indeed, BerlinerWeisse is a subclass

of those three classes.

We can also find some necessary conditions of the beer types. For example, Lager

restricts the value of the property fermentation to be low. Another typical restriction

165

involves the color, for instance, Schwarzbier restricts the value of the property color to

be in [17, 30] (SRM).

There are also a few General Concept Inclusion (GCI) axioms that make it possible

to infer that if a beer is brewed by a brewery located in a country (e.g., México), that

country should also be associated to the beer, e.g.,
(

brewedBy some (locatedAt value

dbpedia:Mexico)
)
SubClassOf (locatedAt value dbpedia:Mexico)5.

Individuals. A first file (denoted O1) populates the ontology with 15317 beer

individuals and 4510 brewery individuals. In general, for each beer we know its

beer type (membership to a class), its brewery and country (via 2 object property

assertions), and the values of the data properties ABV, IBU, img, overallRating, and

styleRating (via 5 data property assertions). Figure 6.14 illustrates a sample individual.

Figure 6.14: Example of a beer individual.

Table 6.8 shows some statistics about the individuals in ontology O1. In particular,

it includes the number and the percentage of beers for which information about some

features (alcohol, bitterness, country, and style rating) is available. While the alcohol

degree is always known, this is not the case for other attributes (indeed, bitterness

is unknown for 82% of the beers, and the country is unknown for 72% of the beers).

Therefore, a beer recommender system needs to take the existence of missing data into

account.

Since the number of beers in the ontology is too high, we selected a subset to be used

in the evaluation of our system. In particular, we defined another file (denoted O2) as

a subset of O1, with 30 beer individuals and 24 brewery individuals. These beers are

likely to be rather popular, to make it easier finding human experts that could evaluate

5We use OWL 2 Manchester syntax for readability, but it does not actually provide any support
for GCIs.

166

Data property # Individuals % Individuals
ABV 15317 100
IBU 2786 18

country 4365 28
styleRating 14378 94

Table 6.8: Statistics of available values for some features of the fuzzy ontology O1.

them. The first three columns on Table 6.9 detail the selected beers, the alcohol degrees,

and the linguistic labels, computed using Datil (we will explain later the procedure to

obtain them). The table shows the label with the highest membership degree; note

that in the case of Mahou Clásica there are two maxima (the membership degrees to

Low and Neutral are the same ones). The list of beers include many examples from

Spain (and, in particular, from Zaragoza), because most of the experts that took part

in the evaluation live there. Note also that there are no examples with very low or very

high alcohol.

Beer ABV Datil label # OK % OK # Valid reply % Valid reply
Carling 4 Low 10 21.7 23 50

Guinness Draught 4.2 Low 2 4.3 43 93.5
Bud Light 4.2 Low 13 28.3 33 71.7

Pilsner Urquell 4.4 Low 11 23.9 32 69.6
Mort Subite Kriek 4.5 Low 4 8.7 24 52.2

Coronita 4.5 Low 18 39.1 46 100
Mahou Clásica 4.8 Low-Neutral 36 78.3 37 80.4
Quilmes Cristal 4.9 Neutral 18 39.1 33 71.7

Cruzcampo Premium Lager 5 Neutral 17 37 40 87
Amstel 5 Neutral 27 58.7 41 89.1

Asahi Super Dry 5 Neutral 8 17.4 25 54.3
Budweiser 5 Neutral 22 47.8 43 93.5

Franziskaner Hefe-Weissbier 5 Neutral 12 26.1 41 89.1
Heineken 5 Neutral 24 52.2 45 97.8

Ámbar CaesarAugusta 5.2 Neutral 9 19.6 29 63

Ámbar Especial 5.2 Neutral 24 52.2 38 82.6
Mahou 5 Estrellas 5.5 Neutral 26 56.5 39 84.8

BrewDog Punk IPA 6 Neutral 9 19.6 24 52.2
Alhambra 1925 6.4 Neutral 13 28.3 38 82.6

Hijos de Rivera 1906 Extra 6.5 Neutral 9 19.6 32 69.6
Leffe Blonde 6.6 Neutral 11 23.9 37 80.4

Ámbar Export 7 Neutral 9 19.6 33 71.7
Chimay Rouge 7 Neutral 9 19.6 27 58.7

Voll Damm 7.2 Neutral 2 4.3 38 82.6
Paulaner Salvator 7.9 Neutral 10 21.7 32 69.6

Pauwel Kwak 8.4 High 4 8.7 14 30.4
Delirium Tremens 8.5 High 12 26.1 27 58.7

Judas 8.5 High 16 34.8 33 71.7
Chimay Bleue 9 High 10 21.7 25 54.3

Ámbar 10 10 High 6 13 22 47.8

Table 6.9: List of beers in fuzzy ontology O2 and replies of our experts.

167

6.2.2 Evaluation

In this part we firstly report our evaluation of the quality of the linguistic labels, then

an evaluation of the running time, and next the traffic data. Finally, we discuss the

overall behavior of the system with the help of some sample queries.

Evaluation of the linguistic labels. As already mentioned, Datil offers several

choices to compute the linguistic labels associated to the alcohol and to the bitterness.

We will describe the evaluation of the quality of the results given by different clustering

algorithms and parameters.

We invited some beer aficionados to evaluate the linguistic labels associated to the

30 beers in O2 and got 46 answers. We designed a webpage where each expert was

asked to classify the alcohol of each beer using the following scale:

{NoReply (0), V eryLow (1), Low (2), Neutral (3), High (4), V eryHigh (5)}

Experts were specifically asked to select NoReply if they had never tried the beer

or, more generally, did not feel qualified to answer properly (in the following, we will

use the term valid answers to exclude no replies). They did not know the information

about the numerical value of the ABV, they just answered according to their user

experiences. Beers were presented sequentially, only one at a time. We restricted to

the alcohol level, as we think that bitterness is much harder to evaluate, in particular

if the answers are not given during a beer tasting. Then, we compared the answers

given by the experts with the results given by Datil, selecting the best match.

Datil currently supports 3 clustering algorithms. For k-means and fuzzy c-means

we tried with different number of clusters, namely 5 and 7. In mean shift the number

of labels is not an input parameter; in all cases the value turned out to be 5. The value

of Θ1 was always 0; the values of Θ2 were in {14, 15, 17, 20}. Figure 6.15 shows the

number of beers per each group of alcohol degree for O1 ontology; the biggest group is

between 5◦and 14◦, with 9882 beers. Recall that Figure 6.13 shows the distribution of

the ABV of beers.

For each clustering algorithm, we take into account two measures:

− The number of coincidences, i.e., the cases when both the expert and Datil gave

the same classification.

− The distance between the classification given by the expert and Datil. For

instance, if an expert classifies some beer as having Low alcohol and Datil chose

High, the distance is abs(2− 4) = 2.

168

Figure 6.15: Alcohol level of beers.

Note that some answers are not directly comparable, as the expert scale has 5 linguistic

labels and some clustering algorithms produced 7. To compute the distance in such

cases, we merged the two lowest values and the two greatest ones (that is, we merged

V eryV eryLow and V eryLow, as well as V eryV eryHigh and V eryHigh).

Table 6.10 shows the results: it includes the absolute number of coincidences (#

OK), the percentage of coincidences out of the valid answers (% OK), the absolute

sum of distances (Distance) and the average distance (Avg. distance, where the sum is

divided by the number of evaluated beers and the number of valid answers). In all cases

the best results are obtained by using mean shift with Θ2 = 15; the linguistic labels

corresponding to that case are depicted in Figure 6.16(a). For the sake of completeness,

Figure 6.16(b) shows the linguistic labels associated to the bitterness (IBU). The best

average distance (0.779) could seem too high at first sight, but the use of fuzzy logic

ensures that there is usually a non-zero membership degree to the precedent and the

subsequent linguistic labels, so the set of linguistic labels behaves well in practice.

The four latter columns of Table 6.9 show, for each beer in O2, the number (absolute

and percentage) of coincidences and the number (absolute and percentage) of valid

answers, respectively, for the best clustering algorithm (mean shift with Θ2 = 15). We

can see that there are beers not as popular as expected (such as Pauwel Kwak, with

30.4% of valid answers), and also popular beers with a small percentage of coincidences,

such as Guinness (4.3%). Guinness is an example of counter-intuitive result: the

majority of experts thought that it had a high ABV, which is not the case (4.2◦).

Evaluation of the running time. Here, we evaluate the running time of

GimmeHop, both in the local and in the remote modes. We also try to determine

the maximal number of individuals that are acceptable from the perspective of user

169

Clustering Θ2 # Labels # OK % OK Distance Avg. distance

K–means

14 5 113 11.4 1598 1.606
14 7 71 7.1 1888 1.897
15 5 233 23.4 1138 1.144
15 7 283 28.4 1009 1.014
17 5 290 29.1 940 0.945
17 7 88 8.8 1753 1.762
20 5 110 11.1 1634 1.642
20 7 65 6.5 1960 1.970

Fuzzy
c–means

14 5 272 27.3 997 1.002
14 7 177 17.8 1437 1.444
15 5 285 28.6 995 1
15 7 174 17.5 1456 1.463
17 5 279 28 1032 1.037
17 7 181 18.2 1432 1.439
20 5 245 24.6 2416 2.428
20 7 98 9.8 1830 1.839

Mean
shift

14 5 286 28.7 936 0.941
15 5 401 40.3 775 0.779
17 5 386 38.8 779 0.783
20 5 212 21.3 1181 1.187

Table 6.10: Results for different clustering algorithms and parameters.

a) b)

Figure 6.16: Linguistic labels (using Datil and mean-shift) for (a) ABV and (b) IBU.

170

experience.

We considered two mobile devices for these experiments: a tablet (denoted as A1)

and a smartphone (denoted as A2). The tablet A1 is a Lenovo Yoga 2 10.1 (Android

5.0, Quad-core 1.86 GHz, Intel Atom Z3745, 2 GB RAM, released in 2014). The

smartphone A2 is a ZTE Blade A610 (Android 6.0, Quad-Core 1.3 GHz ARM Cortex

A-53, 2 GB RAM, released in 2016). We also used Amazon Web Services (AWS)

and created an instance (denoted S1). S1 is a Ubuntu server 16.04 LST, amd64 xenial

image, general purpose type t2.micro, 1 CPU and 1 GB RAM, located in the EU region

(Paris). The versions of the semantic reasoners were Hermit 1.3.8 and TrOWL 1.5.

We considered two advanced searches (Q1 and Q1′), a basic search (Q2), and a

similarity search (Q3). There are two advanced searches because the first one (Q1)

might be significantly slower than the next ones (such as Q1′) . We also separated the

loading time, as it is only necessary once. Note that this task could be run when the

server starts and not when the client starts.

Firstly, Figure 6.17 shows the results on the server for both reasoners. Of course,

remote reasoning is much faster than local reasoning. We can see that there are

significant differences for both reasoners. TrOWL is much faster, although it does not

support exact reasoning on OWL 2 (for more expressive languages than OWL 2 EL,

reasoning is approximate). We can see that indeed the first advanced query (Q1) is

slower than the next one (Q1′). Furthermore, the advanced query is not always more

complex than Q2 and Q3. Using TrOWL it is possible to get the answer to Q1 about

O1 in 1.5 seconds (not including the loading time), and the next one in 0.9 seconds.

Of course, times are much faster on smaller ontologies, such as O2.

Figure 6.17: Running time of Load and all queries on S1.

We will show now the results on the Android devices. In this case, we additionally

171

tested further subontologies of O1 with different numbers of individuals, between 30

and 15300. Figure 6.18 and 6.19 show the results of Q1 and Q1′ on A1 and A2 using

HermiT and TrOWL, respectively. Similarly, Figure 6.20 and 6.21 show the results

for Q2 and Q3. Again, TrOWL was always faster than HermiT, and device A2 was

always slower than A1 (the differences are much higher when using HermiT). There

are some missing data because local reasoning was not possible with ontologies with

10000 individuals or more. As expected, Q1 was slower than Q1′, Q2, and Q3. When

using TrOWL and the ontology with 250 individuals there was a strange outlier on

both A1 and A2, as this ontology is a superset of O2 and a subset of the ontology with

500 individuals.

Figure 6.22 summarizes the result of the first advanced query (including the loading

time) for the three devices, the two reasoners, and different ontology sizes. We could

say that remote reasoning is feasible even with all the individuals, but local reasoning

requires a smaller number. In such case, we must check that the latency of the first

query is not much longer than the average time that mobile users are willing to wait.

On A2 it seems feasible handling up to 2000 beer individuals; the first advanced query

might take almost 16 seconds, but the next ones take less than 2 seconds. On A1 it

seems feasible handling up to 3000 beer individuals.

Figure 6.18: Running time of Load+Q1, Q1 and Q1’ on HermiT.

172

Figure 6.19: Running time of Load+Q1, Q1 and Q1’ on TrOWL.

Figure 6.20: Running time of Q2 and Q3 on HermiT.

173

Figure 6.21: Running time of Q2 and Q3 on TrOWL.

Figure 6.22: Running time of Load+Q1 on all devices and reasoners.

174

Evaluation of the data traffic. Users of apps requiring Internet connection are very

often concerned of the data traffic, so we decided to investigate the cost of GimmeHop

when using a remote reasoner.

In order to measure the data traffic of our application, we use the “Data Usage

Monitoring” (DUM)6 free app and the app-info utility of Android. The DUM makes

it possible to analyze the data in a deeper way, as it provides not only mobile data but

also Wi–Fi data, and makes it possible to obtain both sent and received data.

We considered the remote reasoning approach, and two ontologies with 150 (O3)

and 15317 beers (O1). The reason to define O3 is that the size of O2 is appropriate

for the evaluation of the linguistic labels, but it seems not enough to evaluate the data

traffic.

We considered the following sequence of queries:

− Firstly, we considered an advanced query. We selected the most populated

families and half of the times no other specification about the other attributes

(ABU and IBU). This led to the worst case, when the number of results that the

server sends back to the user is maximal.

− Then, we submitted a basic query, asking to retrieve a beer from its name. We

also clicked on the result to display the beer information, including its image.

− Finally, we asked to retrieve similar beers to that one.

This sequence was repeated 12 times and we computed the average values. Table 6.11

presents the results of our evaluation in KB. The results show that the three methods

used to measure the traffic coincide, and we think that the results are acceptable even

for the very large ontology O1 (recall that the times include 3 queries).

Individuals Wi–Fi DUM App–info
150 56.33±6.11 54.85±6.27 54.83±6.19

15317 132.57±1.5 132.19±0.69 132.5 ±0.8

Table 6.11: Data traffic for a sequence of 3 queries (KB).

Recall that the server currently only sends the top k results back, with k = 200,

and note that data traffic could be optimized by making k a configurable parameter

and setting smaller values.

We also noticed that selecting the value of the attributes in the advanced search did

not make an impact in our cases, although this is not always the case. In ontology O1,

6http://play.google.com/store/apps/details?id=com.jsk.datausagemonitor

175

http://play.google.com/store/apps/details?id=com.jsk.datausagemonitor

the number of individuals was 200 even after restricting the attributes. In ontology

O2, the number of individuals could be slightly different but without changes in the

total data traffic.

When using local reasoning, retrieving the picture of a beer is the only

data-consuming operation. We measured that the average traffic data is about 10.3

KB, although there is a big standard deviation because pictures can have very different

file sizes.

Evaluation of the system and query examples. Table 6.12 shows 3 new examples

of advanced queries. For each of them, the degree of satisfiability of each beer is shown

in the two last columns (both when the user location is unknown and when the user

is located in Belgium, respectively). In all three queries the user asks for an Ale beer,

with a neutral alcohol and a neutral bitterness. The difference is that in the two

first queries the user selects a preference in the most important attribute (alcohol and

rating, respectively), so a weighted mean is used to combine the information. However,

in the third query no attribute is selected as the most important, so an OWA operator

is used.

Beer ABV IBU Rating Country Partial degrees Degree Degree
Country=? Country=BE

Query (WMEAN): ABV=Neutral, IBU=Neutral, Style=Ale, Important property=Alcohol
Leffe Blonde 6.6 - 90 Belgium [abv=0.98, rating=0.9] 0.95 (1st) 0.97 (1st)

Chimay Rouge 7 - 100 Belgium [abv=0.85, rating=1] 0.91 (2nd) 0.95 (2nd)
Pauwel Kwak 8.4 - 90 Belgium [abv=0.38, rating=0.9] 0.59 (4th) 0.77 (3rd)

Delirium Tremens 8.5 - 92 Belgium [abv=0.35, rating=0.92] 0.57 (5th) 0.76 (4th)
Chimay Bleue 9 - 100 Belgium [abv=0.18 , rating=1] 0.51 (7th) 0.71 (5th)

BrewDog Punk IPA 6 60 69 Scotland [abv=0.84, rating=0.69, ibu=0] 0.67 (3rd) 0.67 (6th)
Judas 8.5 - 37 Belgium [abv=0.35 , rating=0.37] 0.35 (8th) 0.6 (7th)

Guinness Draught 4.2 - 87 Ireland [abv=0.31, rating=0.87] 0.53 (6th) 0.53 (8th)
Query (WMEAN): ABV=Neutral, IBU=Neutral, Style=Ale, Important property=Rating

Chimay Rouge 7 - 100 Belgium [abv=0.85, rating=1] 0.94 (1st) 0.97 (1st)
Leffe Blonde 6.6 - 90 Belgium [abv=0.98, rating=0.9] 0.93 (2nd) 0.97 (2nd)
Pauwel Kwak 8.4 - 90 Belgium [abv=0.38, rating=0.9] 0.69 (3rd) 0.83 (3rd)

Delirium Tremens 8.5 - 92 Belgium [abv=0.35, rating=0.92] 0.69 (4th) 0.83 (4th)
Chimay Bleue 9 - 100 Belgium [abv=0.18, rating=1] 0.67 (5th) 0.82 (5th)

Guinness Draught 4.2 - 87 Ireland [abv=0.31, rating=0.87] 0.65 (6th) 0.65 (6th)
Judas 8.5 - 37 Belgium [abv=0.35, rating=0.37] 0.36 (8th) 0.6 (7th)

BrewDog Punk IPA 6 60 69 Scotland [abv=0.84, rating=0.69, ibu=0] 0.6 (7th) 0.6 (8th)
Query (OWA): ABV=Neutral, IBU=Neutral, Style=Ale,Important property=Indifferent

Leffe Blonde 6.6 - 90 Belgium [abv=0.98 rating=0.9] 0.93 (1st) 0.97 (1st)
Chimay Rouge 7 - 100 Belgium [rating=1 abv=0.85] 0.91 (2nd) 0.95 (2nd)
Pauwel Kwak 8.4 - 90 Belgium [rating=0.9 abv=0.38] 0.59 (3rd) 0.77 (3rd)

Delirium Tremens 8.5 - 92 Belgium [rating=0.92 abv=0.35] 0.58 (4th) 0.76 (4th)
Chimay Bleue 9 - 100 Belgium [rating=1 abv=0.18] 0.51 (7th) 0.71 (5th)

Judas 8.5 - 37 Belgium [rating=0.37 abv=0.35] 0.36 (8th) 0.6 (6th)
Guinness Draught 4.2 - 87 Ireland [rating=0.87 abv=0.31] 0.54 (5th) 0.54 (7th)

BrewDog Punk IPA 6 60 69 Scotland [abv=0.84 rating=0.69 ibu=0] 0.52 (6th) 0.52 (8th)

Table 6.12: Results for 3 sample queries.

The first column of Table 6.12 includes the name of the beer. Columns 2–5 include

the values of some features (ABV, IBU, style rating, and country); note that some

values are missing. These values are the same ones for each query, but the order of the

beers might be different. Column 6 includes the values to be aggregated, that is, the

176

membership degrees to the fuzzy membership functions defined over ABV and IBU,

and the normalized rating.

Note that user preference indeed plays a role when ordering the beers. For instance,

the best beer for the first query is Leffe Blonde, but the best beer for the second one is

Chimay Rouge. Note that the user location also plays a role in the recommendation.

For example, in the first query BrewDog Punk IPA drops from the third position to

the sixth one when taking into account the user location.

We also tried three fuzzy quantifiers described using a right-shoulder, a linear, and

a power function. It seems that the best results were obtained using the right-shoulder.

For example, an effect of the power function is that the weight vector is always ordered

in increasing order (if q < 1) or decreasing order (if q > 1).

We carefully checked this and other similar examples and concluded that the

behavior of the system is reasonable when providing the recommendations. The final

degrees might be too small for the user, but the system is effective at providing an

ordering among the beers. In several cases where the user was not happy with the

result, the reason was that s/he was wrong about the real ABV/type of the beer.

Related work

This section reviews some related work. Our aim is to highlight our contribution with

the previous work on the domain (beers) and fuzzy semantic apps.

Beer ontologies and intelligent applications. There is a previous effort to build

a Beer ontology7. However, the ontology only contains 19 beer types and 9 beers.

Another limitation is that the only existing axioms are subclass/subproperty axioms.

On the contrary, we impose some conditions on the beer types (such as necessary

conditions or concepts disjointness), and include class assertions (representing beers,

breweries, etc.), data property assertions representing attributes of each beer instance,

and fuzzy datatype definitions allowing to deal with linguistic definitions of some

attributes.

Another relevant work is the use of Artificial Intelligence to develop new beers or

optimize existing ones [BPKP21]. In particular, the authors created 10, 000 new beer

recipes using machine learning techniques. As a proof of concept, they crafted Deeper,

the first beer built using an Artificial Intelligence recipe.

The automatic classification of beer styles has also been addressed by different

authors [ACMM21, CCF17]. It is worth to stress that these approaches use fuzzy logic

(fuzzy rules) but not ontologies.

7http://dbs.uni-leipzig.de/files/coma/sources/fd/beer.owl

177

There are many examples of the interest of the beer industry in Artificial

Intelligence. To mention some examples:

− IntelligentX company use algorithms, machine learning, and customer preferences

to adjust their beer recipes8,

− IBM enhances the beer manufacturing line using data collected and analyzed by

Watson IoT platform in the Sugar Creek Brewing project9, and

− Carlsberg Research Laboratory works on a sensor platform using advanced

analytics and intelligent cloud technology to get a better flavour and new

fermentation organisms10.

Instead, our approach offers a semantic recommender system using fuzzy ontologies,

a novel minimalist reasoning algorithm, and a mobile application based on the user

location that supports incomplete knowledge.

Semantic apps using fuzzy logic. MoveUp is a quite recent Android app that

categorizes users according to the their activity [ST22]. The approach uses fuzzy logic

and focuses on the mHealth domain. The app uses fuzzy IF-THEN rules to compute

the profile from different input variables, where different types of user characteristics

(physical, psychological, and social) are described using fuzzy sets. The app was

evaluated on real scenarios during the COVID-19 pandemic [SST22]. Unlike our work,

MoveUp does not use ontologies or semantic reasoning, and that the fuzzy membership

functions are not automatically learned from real data.

We have extended the first version of Gimmehop recommender beer system

described in [Ale17]. The author designed an initial beer ontology and populated

all the beers. However, we consider a more complex ontology with more classes, roles,

axioms and updated fuzzy datatypes for ABV. Also, we use a new architecture to

support larger files. The initial work implemented a remote version supporting basic,

similar and advanced queries, and a prototype for local reasoning using only HermiT

reasoner. In contrast, we extended the advanced query implementing the minimalist

algorithm (employing OWA and diverse fuzzy quantifiers when data are missing) and

completely support both local and remote modes (with HermiT and TrOWL reasoners

8https://www.forbes.com/sites/bernardmarr/2019/02/01/how-artificial-intelligence-

is-used-to-make-beer/?sh=3c0472d570cf
9https://www.ibm.com/blogs/think/2019/04/ai-and-iot-help-perfect-the-brew-at-

sugar-creek-brewing-company/
10https://www.carlsberggroup.com/newsroom/carlsberg-research-laboratory-behind-

beer-research-project-based-on-artificial-intelligence/

178

https://www.forbes.com/sites/bernardmarr/2019/02/01/how-artificial-intelligence-is-used-to-make-beer/?sh=3c0472d570cf
https://www.forbes.com/sites/bernardmarr/2019/02/01/how-artificial-intelligence-is-used-to-make-beer/?sh=3c0472d570cf
https://www.ibm.com/blogs/think/2019/04/ai-and-iot-help-perfect-the-brew-at-sugar-creek-brewing-company/
https://www.ibm.com/blogs/think/2019/04/ai-and-iot-help-perfect-the-brew-at-sugar-creek-brewing-company/
https://www.carlsberggroup.com/newsroom/carlsberg-research-laboratory-behind-beer-research-project-based-on-artificial-intelligence/
https://www.carlsberggroup.com/newsroom/carlsberg-research-laboratory-behind-beer-research-project-based-on-artificial-intelligence/

being supported). Another important contribution of the present work is the empirical

evaluation of Gimmehop in both modes, offering an available local reasoning for fuzzy

ontologies.

To the best of our knowledge, there is only one previous application of fuzzy

ontologies working on mobile devices: a wine recommender system [MMWHVC16].

The authors represent wine attributes such as price, alcohol level, sugar, or acidity using

fuzzy membership functions. Then, a Java application uses fuzzyDL reasoner [BS16a]

to solve instance retrieval queries, where the output is a list of wines that satisfy some

features combined using an OWA operator. This application is stored on a server and

can be accessed from an Android app. However, there are several differences with our

approach. The main one is that the authors do not use a semantic reasoner running on

a mobile device but require it to be stored on an external server. On the contrary, we

support both reasoning mechanisms: using a local reasoner or storing it on an external

server. Furthermore, the authors require a concrete fuzzy ontology reasoner, while we

can use any standard OWL 2 EL reasoner (of course, we need further computations to

take care of the fuzzy part). We also take into account user preferences (by supporting

weighted mean aggregation in addition to OWA) and manage the user context in a

different way (by using fuzzy hedges). Last but not least, we address the problem of

dealing with incomplete data by using qualified-guided OWA. It is worth to mention

that the wine recommender system includes a procedure to reach a consensus between

multiple users that could also be adopted in our app.

6.3 Blockchain smart contracts

Motivation

In recent years, there is a growing interest in the use of the blockchain paradigm

in distributed transactional applications, including payments using cryptocurrencies,

electronic voting, or managing medical histories [PMM+18]. While in traditional

distributed transactional scenarios a trusted intermediary is needed, in the blockchain

paradigm this is replaced by the use of a consensual distributed protocol. This protocol

makes it possible to guarantee that the transactions, grouped in blocks, are stored in

a verifiable and permanent way. Blockchain is a data structure composed by a linked

list (or chain) of blocks using cryptographic tools, so that it is not possible to modify

data already stored in the blockchain. In particular, each block has a hash value that

depends both on the own contents of the block and on the hash of the predecessor

block in the chain.

One of the most popular applications of the blockchain are cryptocurrencies.

179

In particular, Bitcoin11 was the first blockchain. Another popular blockchain is

Ethereum [Woo14]12. Ethereum is based on a cryptocurrency called Ether (ETH),

with a subunit Wei (1 ETH = 10−18 Wei). Ethereum includes networks with real

money converted into Ethers, but also test networks (or testnets) with virtual Ethers,

like Rinkeby13.

A key feature of the blockchain paradigm are smart contracts. A smart contract SC

is a piece of software that automatically processes the terms of a contract. For example,

it can control cryptocurrencies (like ETH) or other valuable digital assets. SCs can be

encoded in a procedural (imperative) or logical (declarative) language. They include

a collection of rules (constraints) that are validated, in such a way that every part

that executes the contract gets the same result. The SC can be agreed (in this case,

typically, new transactions are added to the blockchain) or refused.

A use case where agreements are necessary can be found in the online shopping

activity which has a huge demand on website and apps in 2019 and the first semester

of 2020. For example, the current online marketplaces are a 56% of online sales and are

estimated to be a 67% of global e-commerce sales by 2022. At the same time, shopping

using mobile devices (m-commerce) is popular among consumers, and by 2021 the

m-commerce is expected to be a 54% of total online sales14.

Note that all the constraints in a smart contract are hard, so they must be fully

satisfied. Instead, it could be interesting to replace some of them with soft constraints,

so that they can be partially satisfied, and there is a partial agreement between

the involved parts. For example, in an electronic commerce scenario, the seller and

the customer could define their desired delivery time using a right-shoulder and a

left-shoulder function, respectively. The longer the delivery time, the more the seller is

satisfied, and the shorter the delivery time, the more the buyer is satisfied. Sometimes

one cannot find a solution that completely satisfies both parts, but it is often possible

to find a partial agreement, where the delivery time is acceptable for everybody.

Contributions

In this section, we show how to extend existing blockchain systems by using fuzzy

ontologies. Firstly, this makes it possible to add knowledge into the process, taking

profit of the advantages of ontologies, such as promoting reuse and interoperability or

avoiding disambiguations. More importantly, this makes it possible to make smart

contracts more flexible, including terms represented using fuzzy sets that can be

11http://bitcoin.org
12http://www.ethereum.org
13https://www.rinkeby.io
14https://www.europarl.europa.eu/thinktank/en/home.html

180

http://bitcoin.org
http://www.ethereum.org
https://www.europarl.europa.eu/thinktank/en/home.html

partially satisfied, leading to partial agreements among two or more involved parts

(thanks to our matchmaking algorithm between individuals proposed in Section 4.4).

The remainder of this section is organized as follows. First, in Section 6.3.1 we

describe the ontologies used to represent the knowledge. Then, Section 6.3.2 proposes

an architecture to find partial agreements on an Ethereum blockchain for e-commerce

scenarios.

Figure 6.23: Ontology schema and instances files.

6.3.1 Ontologies

Our proposal is based on four types of fuzzy ontologies (using our distributed

architecture in Section 5.1.2), as illustrated in Figure 6.23:

− Schema fuzzy ontology. It contains the vocabulary of the domain, such as classes,

properties, or range definitions. For example, the price and the delivery time.

An excerpt of the schema ontology is shown in Figure 6.24, where classes are

denoted in yellow, object properties in blue, and data properties in green. The

main classes are Contract, Transaction, Product, MainPart, and SecondaryPart.

The hierarchy of class and properties is shown in Figure 6.25. It is important to

mention that the data properties linked to a contract or a transaction are always

present, but product attributes depend on the application.

− Main part ontology. It includes the personal definitions of the main part of

the contract (e.g., the seller of a product). This ontology imports the schema

ontology and populates it. For example, the seller part can define the car price.

181

The personal definitions are attributes or restrictions of a good/service and could

be flexible or hard. Flexible restrictions are represented in the form ∃T.d, where

T is a data property and d is a fuzzy datatype. Hard restrictions could be defined

using singleton crisp sets.

− Secondary part ontology. It is similar to the previous one, but includes the

definitions of the secondary part of the contract. For example, the customer

part can define the price of the car to buy.

− Common ontology. It includes only the personal definitions of each part (main

and secondary) that are important for a transaction. The other ontologies are

not imported as usual, but the relevant information is physically stored in the

ontology to make it self-contained.

Actually, our fuzzy ontology model does not restrict to just having one main part

and one secondary part. We require that there are at least two parts, but there can be

zero or more main parts, and zero or more secondary parts.

Figure 6.24: An excerpt of our ontology schema

6.3.2 Architecture

We focus on the specific case of smart contracts managing transactions where ether

is transferred from a secondary part to a main part. Our smart contracts execute

the terms of a contract: they firstly check if there is a (possibly partial) agreement

between the involved parts, i.e., if all their constraints can be (possibly partially)

satisfied. In that case they actually perform the transaction with the parameters that

maximize the mutual satisfaction. We assume that both parts have already agreed on

the codeProduct, e.g., the event for which a ticket is being sold is fixed.

182

Figure 6.25: Classes and properties in the ontology schema.

The complete architecture is detailed in Figure 6.26. Let us now detail the steps of

the process.

Figure 6.26: Architecture proposed.

1. The involved parts (typically, a main part and a secondary part, but recall that

there could be n involved parts) submit their personal fuzzy ontologies, developed

in Fuzzy OWL 2, including their definitions for a previously agreed transaction.

For example, the desired delivery time or the expected price. Some information

regarding the transaction is also needed, e.g., product id or number of units.

2. The system ensures that there are at least two parts and computes a self-contained

common fuzzy ontology O. To create local combinations of the restrictions, we

use Algorithm 8 (Lines 6–13) extended to n individuals. To manipulate the input

183

ontologies, we use the OWL API, in Java. The common fuzzy ontology is encoded

using fuzzyDL syntax (FDL format).

Example 37. Figure 6.27 shows a common ontology O from Example 32. Line

1 defines Lukasiewicz fuzzy logic as the default semantics. Lines 9- 13 encode the

fuzzy datatypes that will be used in the restrictions of each part. The definition

of the concepts are in Lines 15–18. We used the fuzzyDL reasoner with its Java

API [BS16a] to obtain the BSD (Lukasiewicz t-norm). For more details about the

fuzzy matchmaking process between the two parts, please review Section 4.4.

Figure 6.27: Example of common fuzzy ontology in fuzzyDL syntax.

Then, we use Algorithm 8 (Lines 15–19) extended to n individuals to find

an optimal agreement between all instances of the classes MainPart and

SecondaryPart. We use the fuzzyDL reasoner with its Java API [BS16a] to

obtain the BSD of the combination using Lukasiewicz t-norm of the restrictions

of each part. In particular, in Example 37, we compute bsd(O,MainPart u L
SecondaryPart). The algorithm is extended to retrieve not only the similarity

degree but also a model of the fuzzy ontology, including the values of the data

properties that lead to the Pareto optimal agreement

3. The system creates a smart contract with the values in the model of the partial

agreement. It is encoded in Solidity (version 0.5.12). To create and compile it, we

use the development environment Remix IDE15. We also use the Web3j16 library

to translate a Solidity binary file (with extension .sol) into Java.

15http://remix.ethereum.org
16https://docs.web3j.io

184

4. The system runs the smart contract. To do so, we install an Ethereum node

and use the testnet Rinkeby, where we run the contract [Fue19]. The first time

we create two accounts (for the two parts) and get some Ethers to simulate the

transaction. To manage the transaction of Ethers between the accounts, we use

the wallet MetaMask17. When the smart contract finishes, it emits an event

(Eventheum) to backend services or clients to inform about the status of the

execution.

Rinkeby tesnet was installed in an Ethereum node. Here the contracts are

executed. We implemented a service of events (Eventheum) to inform the status

of execution to the clients.

5. If the smart contract does not run successfully (e.g., if the secondary does not have

enough ether), the process finishes. Otherwise, the common fuzzy ontology is

updated with a hashcode of the transaction payment (where ethers are transferred

from the secondary to the main part). This could be needed, for example, to

return items in the future.

6. The common ontology is uploaded to the IPFS network, which guarantees the

security (persistence and immutability) and avoids storing large volumes of data

in the blockchain.

7. The personal fuzzy ontologies are updated with the IPFS hash of the common

ontology file and with the hash of the contract (notified by the contract using

another Eventheum). This way, future access to them is possible.

Finally, the main features of our proposed architecture are the following ones:

− The proposal is independent of the domain. The ontology schema could be

updated to the user needs.

− It supports partial agreements using fuzzy logic to compute a global satisfaction

degree using fuzzy matchmaking. It offers a efficient and fair consensus.

− It uses blockchain technology avoiding intermediaries or referees. There is no

centralization and it offers high security in the transactions and storing.

− It is possible to avoid the ambiguity of natural language because the involved

parts use a formal language (Fuzzy OWL 2 ontologies) to represent the knowledge

of an application domain, as well as to infer implicit knowledge or check for

inconsistencies.
17https://metamask.io

185

Related work

Some authors have studied the use of logic-based languages in smart contracts.

For example, Ugarte is one of the first researchers to envision the combination

of Semantic Web technologies and blockchain systems [Uga17], using the term

“semantic blockchain”. He proposed three possible ways to semantify the blockchain:

mapping Blockchain data to RDF, sharing RDF data on the Blockchain, and building

semantic-ready Blockchains. Our approach combines features of the two first ways.

The author also mentioned BLONDiE ontology to describe the blockchain structure,

some technologies to link blockchains, and JSON-LD to encode smart contracts. We

instead propose use a logic-based language supporting fuzzy ontology reasoning.

Governatori et al. compared the use of imperative and declarative languages,

including a retractable logic (deontic defeasible logic) [GIM+18]. An inference engine

is also used to check the correctness of a program. They verified if a smart contract

is correct in terms of legal validity. However, we consider the family of logic-based

languages, based on fuzzy logic and Semantic Web technologies.

Regarding smart contracts, D. McAdams develops a non-OWL ontology to describe

smart contracts [McA07] based on states and transitions. Third and Domingue

created a Linked Data index to query and retrieve data stored on the blockchain in

disparate locations, to link data to other sources of information [TD17], and (with

some limitations) to index smart contracts. Kim et al. used an ontology to describe

the structure of smart contracts in the government domain [KLN18]. They also

encoded some axioms of a non-OWL ontology (TOVE Traceabiliy Ontology) into smart

contracts that could enforce traceability constraints [KL18]. Instead, our proposal

is more general, supports a fuzzy extension of OWL, independent of the domain,

and supports partial agreements. Choudhury et al. proposed a methodology to

auto-generate smart contracts from ontologies (defining the domain-specific knowledge)

and SWRL rules (defining the constraints) [CRS+18]. Instead, our smart contracts take

into account the ontologies at running time, as solving a fuzzy ontology reasoning task

is needed to check if there is a partial agreement.

Ruta el al. used Description Logics for the discovery and composition of services

and resources in a blockchain based on the semantic distance between terms [RSI+17].

Instead, we propose to use standard fuzzy semantic reasoning services to compute a

(possibly partial) agreement among the involved parts.

Fuentemilla developed an application combining ontologies and the Ethereum

blockchain [Fue19]. The author used an ontology (only one) for shopping activity

on the testnet Ethereum. He detailed the use of Rinkeby network, electronic wallets

186

and the Java library for programming in this scenario. As in our work, the author

proposed to use fuzzyDL reasoner to evaluate a specific agreement but restricted

only to two parts. Instead, we have extended this work in several ways. Firstly,

our architecture is more general and includes distributed ontology files. Secondly, we

propose a novel matchmaking algorithm to generate smart contracts, trigger events,

and compute partial agreements. Thirdly, our approach supports more than two parts

and a finite number of restrictions. We also study Pareto optimality of the solutions

and propose the use of more general fuzzy operators.

6.4 Evaluation of the instance retrieval algorithm

Contributions

In this section we describe the evaluation of our novel reasoning algorithm to solve

the instance retrieval problem described in Section 4.1. Our experiment consists in

comparing the implementation of the novel algorithm with the previous algorithm

implemented in fuzzyDL ontology reasoner. Because fuzzyDL did not previously

implement an algorithm for concept realization, the evaluation of that algorithm is

left as future work.

The structure of this section is the following. First, Section 6.4.1 describes the

datasets and the experimental setup, and then Section 6.4.2 discusses the results.

6.4.1 Experimental setup

Ontology setup. The set of ontologies used to evaluate the instance retrieval

algorithm is based on:

− Absorption dataset, developed in [BS16b]. It includes 51 ontologies: a fuzzy

ontology (Fuzzy Wine) developed by humans, and fuzzy extensions of 50 crisp

ontologies, randomly generated. For each of the original 50 crisp ontologies,

there are several fuzzy versions with different semantics and percentage of fuzzy

axioms. In this section, we will consider fuzzy ontologies of the form l.66, with a

semantics given by Lukasiewicz fuzzy logic and 66% of fuzzy axioms.

− Fuzzy Beer, a fuzzy ontology with information about beers described in

Section 6.2. Recall that has 15317 beer individuals and 10 fuzzy datatypes (5 of

them for the alcohol level ABV).

For the experiments in this section, we firstly translated the ontologies into FDL

format, the native syntax supported by fuzzyDL, using an existing parser [BS11]. For

187

Fuzzy beer, the parser discarded for each instance of the class Country an axiom that

fuzzyDL was not able to support (an axiom to deduce the country associated to a beer

given the brewery associated to a beer and the country associated to a brewery).

Because of the number of individuals, running time is very high. Indeed, the

old approach takes several days to finish an instance retrieval query. Therefore, we

restricted to several subsets of the Fuzzy Beer ontology, with different numbers of

beers. In the following, we will use Beern to denote the subset of Fuzzy Beer with n

beer individuals. Note that the total number of individuals is actually higher than n,

as there are also breweries and countries.

In Fuzzy Beer (and in its subsets Fuzzy Beeri), Otwo or more constrain is empty,

so it is possible to solve the instance retrieval with a single optimization problem.

However, we have considered a harder version Fuzzy Beerh (with its corresponding

subsets Beerhi) with two additional axioms, stating the range of two object properties

(brewedBy and country).

Parameters of the experiments. Firstly, we solved 20 times Beer500 and studied

the standard deviation. In particular, we repeated 20 times the process of randomly

selecting a subset of Fuzzy Beer with 500 beers and solving the instance retrieval

problem. The average, standard deviation, and coefficient of variation (or CV, defined

as the ratio of the standard deviation to the mean) are shown in Table 6.13 for both

the old and the new algorithm. The new algorithm has a slightly higher CV (6.6%

versus 4.3%) but it is still rather stable. Therefore, for the rest of the fuzzy ontologies

Beeri we just solved once the instance retrieval problem to decrease the time needed

to finish our experiments.

Measure Old New
Average (ms) 80126.0 2047.7

Standard deviation 3438.7 135.3
Coefficient of variation 4.3% 6.6%

Table 6.13: Coefficient of variation for the Fuzzy Beer500 ontology.

In general, we randomly selected an atomic concept to retrieve their instances, but

for Fuzzy Beeri we also considered a complex concept; the list of queries can be found

in Table 6.14. During our experiments, we set a timeout of 6 hours to solve the instance

retrieval problem using the new algorithm (as the old seems to take even more time).

Implementation issues. To make the comparison fair, we slightly optimized the

previous algorithm implemented in fuzzyDL. The existing approach simply looped

188

over all concept assertion entailment problems, and for each of them expanded both

the original fuzzy ABox and the new fuzzy concept assertions. However, we made sure

that the original fuzzy ABox is expanded only the first time and a cloned copy is shared

by the next tests.

Equipment and tools. All experiments were performed on a laptop computer with

Intel Core i7-8550U 1.8 GHz, 16 GB RAM under Windows 7 64-bits. We used Java

1.8 and Gurobi 8.1.0 build V8.1.0rc1 (Academic License).

Ontology Query
cancer my.l.66 WomanUnderIncreasedBRCRisk
earthrealm.l.66 IgeneousRock
Economy.l.66 ElectricDevice

fmaOwlDlComponent 1 4 0.l.66 Right humerus
FuzzyBeer Lager
FuzzyBeer ∃ hasABV.LowABV

FuzzyWine.l.66 SweetWine
goslim.l.66 Cytoskeleton
GRO.l.66 BindingToProtein
lubm.l.66 Employee

people.fd.l.66 cat liker
pizza.l.66 SpicyPizza

po.l.66 Person
process.l.66 Communications
propreo.l.66 HPLC experimental data collection

thesaurus.l.66 astric Body Carcinoma
Transportation.l.66 Waterway

Table 6.14: List of queries.

6.4.2 Results and discussion

Table 6.15 shows the results for 15 fuzzy ontologies of the Absorption dataset. For

each ontology we include the number of individuals, the running time in seconds of

the previous algorithm (denoted “Old (s)”), the running time in seconds of the novel

algorithm (denoted “New(s)”), and some optional observations (“Comments”).

We can see that the new algorithm outperforms the previous one in the case

of consistent ontologies. However, in inconsistent ontologies (process.l.66 and

propreo.l.66), the old algorithm solves a simpler case (as it only needs to add a single

axiom to find the inconsistency) and finishes faster. In general, all the partitions were

independent, so Otwo or more was empty and it was enough to solve a single MILP

problem. There were only two exceptions: FuzzyWine.l.66, and lubm.l.66.

189

Ontology #individuals Old (s) New (s) Comments
cancer my.l.66 20 13 3
earthrealm.l.66 167 6 0.8
Economy.l.66 482 9 0.5

fmaOwlDlComponent 1 4 0.l.66 98 1 0.6
FuzzyWine.l.66 138 5165 384 9 objective dependent variables

goslim.l.66 79 1 0.2
GRO.l.66 1 0.4 0.2
lubm.l.66 115 9409 6027 719 objective dependent variables

people.fd.l.66 22 5 1
pizza.l.66 5 0.3 0.2

po.l.66 20 3 0.5
process.l.66 167 0.68 1.40 Inconsistent ontology
propreo.l.66 46 20402 20544 Inconsistent ontology

thesaurus.l.66 8 5 2
Transportation.l.66 181 4 0.3

Table 6.15: Running time (s) for the Absorption dataset.

Table 6.16 shows some information about the fuzzy ontologies in the Absorption

dataset that could not be considered: 29 ontologies do not have any individual and

7 reached a timeout; in 4 cases the timeout is not surprising as there are more than

25000 individuals.

Table 6.17 shows the results for the Fuzzy Beeri and Fuzzy Beerhi ontologies. In

this case, we show the number of individuals, the running time (in s) for Beeri using

the old algorithm and the new one, the running time (in s) for Beerhi using the new

algorithm, and the number of objective dependent variables to solve Beerhi . The table

does not include the number of variables to solve Beeri because Otwo or more was always

empty and it was enough to solve a single MILP problem. Also, the table does not

show the time needed by the old algorithm to solve Beerhi because it is very similar to

the time to solve the easier version Beerhi . We show the results for a query involving

an atomic concept, but we also tried a complex concept (see Table 6.14) obtaining a

similar trend.

Similarly as for the Absorption dataset, we can observe that the new algorithm

outperforms the previous one, and the improvement gets more spectacular as the

number of individuals grows. This is illustrated in Figure 6.28. The three functions

exhibit quadratic growth, but the new algorithms grow in a notably slower way. We

can also observe that when it is possible to solve a single MILP problem (in Beeri), the

running time of the new algorithm is much smaller than in the harder case (Beerhi).

Next, we did some experiments with inconsistent versions of the Beeri and Beerhi

fuzzy ontologies, obtained by asserting that one the beer instances has two different

alcohol levels. The results are shown in Table 6.18. We can see that the old algorithm

is faster than the new one, as with the Absorption dataset. Furthermore, we can

190

Ontology #individuals Problem
AirSystem.l.66 0 No individuals
amino-acid.l.66 0 No individuals

atom-common.l.66 0 No individuals
biochemistry-complex.l.66 0 No individuals

chebi.l.66 487944 Timeout (many individuals)
chemical.l.66 0 No individuals

chemistry-complex.l.66 0 No individuals
cton.l.66 0 No individuals

EMAP.obo.l.66 0 No individuals
FBbt XP.l.66 25148 Timeout (many individuals)

FMA.l.66 94228 Timeout (many individuals)
galen-ians-full-doctored.l.66 0 No individuals
gene ontology edit.obo.l.66 0 No individuals

heart.l.66 0 No individuals
legal-action.l.66 0 No individuals

matchmaking.l.66 0 No individuals
mosquito insecticide resistance.obo..l.66 0 No individuals

mygrid-moby-service.l.66 0 No individuals
NCI.l.66 0 No individuals
norm.l.66 0 No individuals

ontology.l.66 0 No individuals
organic-compound-complex.l.66 0 No individuals

pathway.obo.l.66 0 No individuals
periodic-table-complex.l.66 0 No individuals

photography.l.66 46 Timeout
PRO.l.66 277804 Timeout (many individuals)

reaction.l.66 27 Timeout
relative-places.l.66 0 No individuals

SIGKDD-EKAW.l.66 0 No individuals
so-xp.obo.l.66 0 No individuals

spatial.obo.l.66 0 No individuals
subatomic-particle-complex.l.66 0 No individuals

teleost taxonomy.obo.l.66 0 No individuals
time-modification.l.66 0 No individuals

worm phenotype xp.obo.l.66 0 No individuals
yowl-complex.l.66 79 Timeout

Table 6.16: Problems found in the Absorption dataset.

191

Fuzzy Beeri Fuzzy Beerhi
#individuals Old (s) New (s) New (s) Comments

500 80 2 15 110 objective dependent variables
1000 432 6 125 212 objective dependent variables
2000 2719 23 1371 427 objective dependent variables
3000 8197 68 5155 641 objective dependent variables
4000 20434 158 11184 866 objective dependent variables
5000 36128 263 18329 1093 objective dependent variables

Table 6.17: Running time (s) for subsets of the Fuzzy Beer ontology.

Figure 6.28: Running time for subsets of the Fuzzy Beer ontology.

observe that the new algorithm performs similarly for Beeri and Beerhi . The reason is

that although the hard versions of the ontologies require solving several optimization

problems, after one of them is found to be inconsistent there is no need to solve the

remaining ones. Furthermore, the problems solved by Beerhi are smaller than the single

problem solved by Beeri.

Fuzzy Beeri Fuzzy Beerhi
#individuals Old (s) New (s) New (s)

500 1 2 2
1000 4 5 5
2000 13 22 21
3000 33 62 58
4000 75 121 130
5000 160 222 220

Table 6.18: Running time (s) for subsets of the inconsistent Fuzzy Beer ontology.

192

6.5 Building Information Modeling

Motivation

Digitalization is a major innovation factor in the construction sector. The incorporation

of new information management technologies is transforming how buildings are

designed, planned and operated [SRI20]. A key element to achieve this vision is the

Building Information Model (BIM), a digital representation of a building for integrated

design, modeling, planning and operation during its whole lifecycle [AMCJ18], from

inception to decommission. BIMs can help to optimize construction and maintenance

costs, improve transparency and collaboration between different stakeholders, manage

complex projects, and adapt to changing requirements quickly.

The BIM concept brings together several pieces of interconnected information,

including a 3D geometric model of the building elements and a description of the

materials used and their properties. To encode these data, the buildingSMART18

organization proposed the Industry Foundation Classes (IFC), a neutral and open ISO

standard for BIM data [CCP18]. The IFC specification defines a conceptual schema

for BIM elements, encoded in the data modeling languages EXPRESS (ISO 10303-11)

or XSD (XML Schema Definition), and file formats for specific building data, namely

IFC-SPF (IFC STEP Physical Format) and ifcXML. Although these formats are light

and easy to use, they lack the capabilities for sophisticated knowledge representation

and reasoning offered by ontologies. Hence, there are several initiatives to evolve BIMs

into semantic BIMs [PZL17], powered by Semantic Web technologies.

It has been shown that fuzzy ontologies can accomplish information retrieval tasks

not available in current BIM systems; e.g., cross-domain information integration,

flexible querying, and imprecise parametric modeling [GRBR+15]. Unfortunately,

semantic BIM tools and fuzzy inference engines suffer some limitations in terms of

scalability, efficiency, and ease of use, which make them unsuitable for medium-scale

models.

These problems can be addressed by using new fuzzy ontology reasoning algorithms.

In particular, the flexible faceted instance retrieval problem is arguably the most

common task in BIMs (and in many other domains). Our new Algorithm 5, which

imposes some restrictions to ensure efficiency, seems very promising. Our research

approach is aligned to recent BIM research initiatives [Eur19], which highlight the

need for leveraging BIM data models and validating them on real use cases.

18https://www.buildingsmart.org

193

https://www.buildingsmart.org

Contributions

In this section, we describe the implementation of the novel algorithm to solve the

flexible faceted instance retrieval problem in a software prototype. We also evaluate

the performance to answer some fuzzy queries over a real-world BIM, proving that the

new algorithm can be useful to reason efficiently with real-world data.

This section is structured as follows. Firstly, we describe the implementation of

the tool in Section 6.5.1. Next, we describe the dataset, taken from a real use case, in

Section 6.5.2, and the results of an empirical evaluation in Section 6.5.3.

6.5.1 Implementation

The reasoning engine is the first point to be taken into consideration in the

implementation of Algorithm 5. Line 8 requires solving the instance retrieval concept,

Line 9 requires solving the classification problem, and Line 24 requires retrieving the

values of data property, possibly not explicitly stored in the ontology. While the two

former tasks are relatively well supported by a number of reasoners, this is not the case

of last one. HermiT reasoner is one of the few exceptions, as it has indeed a method

getDataPropertyValues to solve Line 24. TrOWL is a reasoner for the OWL 2 EL

profile and by means of the OWL API it is possible to access to the values of the data

properties. Pellet reasoner also needs a supports for OWL 2 DL and OWL 2 EL profile,

but it needs a programmatic way to retrieve the values of the data properties.

There is another way to get the real values: using a SPARQL query. For example,

Figure 6.29 illustrates the results of a simple query to obtain the overallHeight and

overallWidth values of the instances of IfcWindow class from an RDF file obtained using

IFC-to-RDF converter [THP19]. It is clear that if we need to infer knowledge or to

classify the ontology, SPARQL is not appropriate.

We developed a prototype tool which is available online19. It implements

Algorithm 5 and a graphical interface to submit queries. It is a Java (1.8)

implementation using the OWL API to manage OWL 2 ontologies represented in Fuzzy

OWL 2 language. The classical semantic reasoner used is TrOWL 3.4. To reduce the

time to access the ontology, we stored the fuzzy concept assertions using a hash table

and a NoSQL database (MongoDB 4.0.10). As a baseline, we also considered direct

calls to the OWL API. A graphical user interface (for desktop computers) makes it

possible to submit queries about building elements.

The general functionality of this software is shown next. The tool contains three

tabs:

19http://webdiis.unizar.es/~ihvdis/fuzzyBIMgui.html

194

http://webdiis.unizar.es/~ihvdis/fuzzyBIMgui.html

Figure 6.29: SPARQL query over an RDF file.

− The first one (see Figure 6.30) specifies the path of the ontology and the base URI

(it corresponds to the IFC2X3 schema). By default, the converter software uses

the base URI http://linkedbuildingdata.net/schema/IFC2X3#. Sometimes

that URI could change, as it depends on the converter or the version schema.

The fuzzy ontology file can have .owl or .ttl extensions. The user also needs to

select the IFC element (a class) from the schema, such as IfcWindow.

In this tab the user also needs to select the operator to combine the values and

a fuzzy modifier. Possible operators include minimum (T-norm Min), maximum

(T-conorm Max), weighted mean (WMEAN), and OWA. Figure 6.34 shows an

example of OWA operator built using quantifier-guided aggregation. Possible

modifiers are none, very, few, linear, and triangular. Figure 6.30 shows as an

example the definition of very.

− The second tab shows all the data properties in the ontology and the user has

the possibility to select some of them. Figure 6.31 shows an example where

overallHeight and overallWidth properties are checked.

− The third tab allows to select or create the fuzzy datatypes for the chosen data

properties (see Figure 6.32). One way is to select fuzzy datatypes already defined

in the ontology file. It is also possible to create a new fuzzy datatype, using labels

like VeryLow, Low, Neutral, High, and VeryHigh, and membership functions such

as left-shoulder, triangular, trapezoidal, and right-shoulder.

Initially, the Run button is disabled until all necessary parameters are specified.

When the “Run” button is clicked, a process is executed to solve the query. Eventually,

195

http://linkedbuildingdata.net/schema/IFC2X3#

a dialog with a sorted list of instances is displayed, as shown in Figure 6.33.

Figure 6.30: User interface: loading fuzzy BIM ontology, selection of a class, and fuzzy
operators.

Figure 6.31: User interface: selection of data properties.

Example 38. Assume we need to retrieve a set of windows with high width and

very high height from the fuzzy ontology. So, we use the desktop tool and ask

for a IFC building element called IfcWindow. We consider two data properties of

a window, namely overallWidth and overallHeight. We define two fuzzy datatypes

HighOverallWidth, using a triangular fuzzy function triangular(900, 1200, 2000), and

VeryHighOverallHeight, using a right-shoulder fuzzy function right(1700, 2500). We

choose the maximum t-conorm operator (auxDegree) and the fuzzy modifier very.

196

Figure 6.32: User interface: selection or creation of fuzzy datatypes.

Figure 6.33: User interface: final result.

197

Figure 6.34: User interface: use of a quantifier to get the parameters of the OWA
aggregation operator.

Table 6.19 shows the evaluation of 12 window instances their names are shortened

for space limitations). βi denotes the degree used in the fuzzy concept assertion, and

was added randomly to each window in the fuzzy ontology. Figure 6.33 shows the result:

a sorted list of windows (colored using the satisfaction degree of the query αi).

Window overallWidth overallHeight tri right βi auxDegree αi
GUID kMl 1430 2512 1 0.71 0.20 1 1
GUID O8D 940 1760 0.13 0.75 0.70 0.70 0.48
GUID 7nV 940 1760 0.13 0.07 0.10 0.13 0.01
GUID S27 940 1760 0.13 0.07 0.60 0.60 0.36
GUID eYJ 1430 2512 0.71 1 1 1 1
GUID RyI 916 1760 0.05 0.07 0.50 0.50 0.25
GUID wCu 940 1760 0.13 0.75 0.40 0.40 0.16
GUID jtL 1430 2512 0.71 1 0.10 1 1
GUID hhq 1430 2512 0.71 1 0.90 1 1
GUID pct 916 1760 0.05 0.07 0.80 0.80 0.64
GUID 41F 940 1760 0.13 0.07 0.30 0.30 0.09
GUID lLC 916 1760 0.05 0.07 0.20 0.20 0.04

Table 6.19: Set of individuals from IFCWindow.

6.5.2 Dataset

We evaluated our proposal using the Schependomlaan public BIM dataset20. This

project was developed and built by Hendriks Bouw en Ontwikkeling21 and comprises

10 apartments located in Nijmengen, Netherlands. The dataset contains a design

20https://github.com/openBIMstandards/DataSetSchependomlaan
21https://www.hendriksbouwenontwikkeling.nl/en

198

https://github.com/openBIMstandards/DataSetSchependomlaan
https://www.hendriksbouwenontwikkeling.nl/en

model in IFC, extract, suppliers, point clouds, schedules, and construction log files.

Figure 6.35 shows the 3D model visualized on the academic version of Archicad 2222.

Figure 6.35: Use case: 3D representation.

For our purpose, we need to obtain a representation of our BIM model using an

OWL 2 ontology, obtained from from the IFC model of the use case. The ontology

that we need should consider classes, individuals, and relationships (data and object

properties). For example, the class IfcDoor has the instance IfcDoor 01 with a data

property overallHeight equals to 2282 mm and an object property representation linking

it to the b179 instance.

Firstly, we need a conversion from IFC to RDF. After testing four IFC

converters (IFC-to-RDF Version 1.023 [THP19], IFC2LD24 [HT15], IFCtoRDF25, and

IFCtoLBD26 [BOP+18]) we selected IFC-to-RDF. However using more sophisticated

parsers could be possible.

Secondly, it involves using an OWL schema to categorize BIM elements. In this

work, we used the ifcOWL ontology. Another option is the Building Typology Ontology

(BOT)27, or the BIM schemas used by other conversion tools.

In order to reduce both the file size and the reasoning time, we divided the

use case in six submodules (the six stories of the original IFC building model) that

22https://www.graphisoft.es/archicad
23Not available online anymore. Latest version (1.5) is called Ifc2Rdf and is available at https:

//github.com/Web-of-Building-Data/Ifc2Rdf/tree/master/software
24https://github.com/Web-of-Building-Data/ifc2ld.git
25https://github.com/pipauwel/IFCtoRDF
26http://github.com/jyrkioraskari/IFCtoLBD
27http://www.student.dtu.dk/~mhoras/bot/index-en.html

199

https://www.graphisoft.es/archicad
https://github.com/Web-of-Building-Data/Ifc2Rdf/tree/master/software
https://github.com/Web-of-Building-Data/Ifc2Rdf/tree/master/software
https://github.com/Web-of-Building-Data/ifc2ld.git
https://github.com/pipauwel/IFCtoRDF
http://github.com/jyrkioraskari/IFCtoLBD
http://www.student.dtu.dk/~mhoras/bot/index-en.html

correspond to foundation, ground floor, first floor, second floor, third floor, and roof.

The fragmentation task was manually done with the help of the graphical environment

Archicad. Next, we exported it to IFC format and then used the converter to obtain

the ontology.

We focused on the third floor, because it has the smaller .ifc and .ttl files, and

that makes reasoning more feasible without loss of generality. Table 6.20 shows some

statistical data about the ontology representing the third floor.

In general, when dealing with real data, one needs to split the ontology into smaller

subontologies. In this work, we did it manually. It would be possible to study methods

to compute a split automatically given some restrictions. In particular, one could

consider using a method to reduce the geometrical data (e.g., position and orientation

of the building elements) which are not necessary unless one wants to reason with

spatial semantics [DB14]. This makes it possible to reduce the size of the ontology

while having a more efficient representation for some queries, e.g., those involving

intersections of building elements.

Furthermore, we defined a modified version by making the following changes:

1. We removed the graphic elements that do not have property values that are

needed for our queries. For example, walls or columns that do not have a height

and a width. The priority was to have a high number of windows. The initial

ontology has 12 windows, and 8 of them have values. The modified ontology was

updated to have the 12 windows (we used the tool Measure of Archicad to obtain

the missing sizes).

2. We modified in the schema file the range of the data properties overallHeight and

overallWidth, to make it xsd:double.

3. We added some new classes representing specific styles defined in Archicad, and

created some new instances of them (via concept assertions).

− For the IfcWindow class we added 9 subclasses, namely BasicWindow

(with 8 instances), DormersAndSkylights, EmptyWindowsOpenings,

HistoricWindow, SingleDoubleHungWindow, SindingWindow, SpecialWindow

(with 4 instances), StoreFronts, and TerraceDoors.

Tool Classes Data Properties Object Properties Individuals
IFC-to-RDF 1085 929 1502 10127

Table 6.20: Statistics of the conversion of the third floor.

200

− For IfcDoor class we added 8 subclasses, namely Bed, EmptyDoorOpenings,

GarageDoor, HingedDoor (with 2 instances), RotatingDoor, SidingDoor,

SidingFoldingDoor, and Table.

− For IfcWall class we added 5 subclasses: GenericWall, ExteriorWall,

InteriorWall, PartitionalWall, and StructuralWall.

Finally, we fuzzified the ontology representing the third floor for testing our novel

algorithm. We firstly defined a fuzzy ontology (called Fuzzy1) using the plugin Fuzzy

OWL 2 for Protégé 4.3. In particular:

− We added 12 fuzzy concepts assertion, adding a degree of truth to some axioms at

BasicWindow and SpecialWindow classes. The degree values in (0,1) were chosen

in a random way.

− 10 fuzzy datatypes were created based on our experience about size

windows [BS11]. The definition of the window labels is shown in Figure 6.36.

A common problem in fuzzy ontology development is how to obtain the linguistic

labels, i.e., the concrete definitions of the fuzzy datatypes. We did it manually in this

use case but it would be recommendable to use supporting tools, such as Datil (see

Section 3.2) or Fudge (see Section 3.3).

We also created another version (Fuzzy2) by adding more individuals to the fuzzy

ontology (in particular, 6498 individuals, with 1400 windows and 100 doors).

(a) (b)

Figure 6.36: Linguistic labels for a) overallWidth and b) overallHeight.

The fuzzy ontology and schema were saved using OWL/XML syntax. The ontology

lost some valuable data (such as graphic placement and anonymous nodes) but this

does not affect the result of our queries.

201

6.5.3 Results and discussion

Firstly, we evaluated the initialization time of our tool, which includes loading the

ontology, computing the classification, and the initialization of a data structure with

the degrees of truth. Secondly, we evaluated the proper query time, as well as the

time to retrieve the values of the data properties. The evaluation was performed on a

Intel Core i7-8550U 1.8 GHz, 16 GB RAM (7 GB were allocated for the JVM) laptop

running Windows 7 64-bits.

Initialization time. Before describing the evaluation of the initialization time, it

is worth to recall that it must be computed just once. Firstly, we tested three

classical reasoners (Hermit 1.3.8, TrOWL 3.4, and Pellet 2.3.3) to measure the load and

classification times for the original, modified, and fuzzy ontologies of the third floor.

Table 6.21 shows the ontology, file size, reasoner used, time and number of named

individuals. Time includes the time to load the ontology, to classify it by precomputing

the class hierarchy and the class assertions, and to perform a consistency test. Note

that HermiT run out of memory in all cases, after approximately 20 minutes. TrOWL

also run out of memory for the original ontology, but the modified versions could be

successfully processed. Pellet detected an inconsistency in all the ontologies (because

of the datatypes).

We also evaluated the use of the auxiliary data structures to reduce the answering

time (Lines 3–6). The results are shown in Table 6.22. For ontology Fuzzy1, OWL

API method was slightly faster than the hash table, so it seems to be the best option

to avoid the cost of maintaining the data structure. In particular, for such ontologies

with a small number of fuzzy concept assertions, the database performs worse than

the OWL API. For the ontology Fuzzy2, hash table is clearly faster than the other two

methods.

Query time. Next, we evaluated the time to obtain the values from the data

properties (height and width) of each individual (Lines 23–28). We used TrOWL

Ontology File size (MB) Reasoner Time (s) Individuals
Original 27.8 HermiT OutOfMemoryError 10127
Modified 15.1 HermiT OutOfMemoryError 5498
Fuzzy1 56.4 HermiT OutOfMemoryError 5498
Original 27.8 TrOWL OutOfMemoryError 10127
Modified 15.1 TrOWL 80.38 5498
Fuzzy1 56.4 TrOWL 83.28 5498

Table 6.21: Time (s) to load and classify the ontology.

202

Ontology Hash table Database OWL API
Fuzzy1 0.07 1.09 0.01
Fuzzy2 0.32 2.04 6.52

Table 6.22: Time (s) to create the data structures.

reasoner and SPARQL for the modified and Fuzzy1 versions. For the SPARQL queries

we used the server Apache Jena Fuseki 3.14 and Jena Java API. It is worth to note,

however, that a SPARQL query cannot be used in general to solve any query to the

ontology. Table 6.23 shows the results (the average of 5 executions) for the fuzzy

ontology. For the first query, the SPARQL query is solved faster than using the reasoner

because it only needs to load the ontology, but the reasoner performs a more complex

preprocessing including classification. However, for the next queries the reasoner is

faster.

Then, we evaluated the full query time (Lines 8–34). Starting from the ontology

Fuzzy1 (with 5498 individuals where 12 are windows and 2 doors), we created a set of 6

queries, 5 of them about IfcWindow class and 1 about IfcDoor class. Queries were solved

5 times and we computed the average values. Table 6.24 summarizes the queries and

the results. The first columns include the query ID and the parameters of the query:

the class, the data property, the label (fuzzy datatype), the aggregation operator, and

the modifier. The final columns include the query time (in seconds) when using a hash

table, a NoSQL Database Mongo DB, or only calls to OWL API methods. As already

discussed, hash table is slightly preferable.

We also repeated the same queries for the ontology Fuzzy2. Figure 6.37 shows the

result of the query times. We can see that using the best data structure, query time is

very fast (less than 0.62 s), making our algorithm acceptable for such models.

The previous query times assume that the system has already been initialized.

Table 6.25 shows the total time for the first query. Likewise for the query time, OWL

API performs similarly to the hash table version for Fuzzy1, but hash table performs

clearly better for Fuzzy2.

Ontology Reasoner Loading + classification time (s) Query time (s)
Modified Jena 4.40 1.160
Modified TrOWL 80.38 0.007
Fuzzy1 TrOWL 83.28 0.007

Table 6.23: Time (s) to get the data properties values in the IfcWindow class.

203

ID Class Property Label Operator Modifier
Time (s)

Hash table Database OWL API

1 IfcWindow
overallWidth High

Maximum very, x2 0.14 0.18 0.18
overallHeight VeryHigh

2 IfcWindow
overallWidth Neutral

Minimum few,
√
x 0.11 0.12 0.11

overallHeight High

3 IfcWindow
overallWidth Low

OWA lin(0.3)(x) 0.06 0.10 0.06
overallHeight Neutral

4 IfcWindow
overallWidth Low

WMEAN tri(1000, 1500, 2000)(x) 0.05 0.11 0.05
overalHeight Neutral

5 IfcWindow
overallWidth Neutral

Minimum None 0.05 0.09 0.03
overallHeight Low

6 IfcDoor
overallWidth High

Maximum few,
√
x 0.10 0.09 0.08

overallHeight High

Table 6.24: Queries and query time (s) for ontology Fuzzy1.

Figure 6.37: Query time (s) for ontology Fuzzy2.

Ontology Task
Time (s)

Hash table DB OWL API
Loading + Classification 83.28 83.28 83.28

Data structure 0.07 1.09 0.01
Fuzzy1 Query 0.08 0.11 0.1

Total 83.43 84.48 83.39
Loading + Classification 112.63 112.63 112.63

Data structure 0.32 2.04 6.52
Fuzzy2 Query 0.37 22.30 9.49

Total 113.32 136.97 128.64

Table 6.25: Total time (s) for the first query.

204

Verification. Our reasoning algorithm is correct, i.e., all retrieved instances satisfy

the query. However, the solution is only complete if the fuzzy ontologies satisfies some

restrictions.

Regarding the quality of the solutions, they depend on the quality of the linguistic

labels. In this regard, it is worth mentioning that Datil’s algorithm to learn fuzzy

datatypes has been evaluated in the field of beer recommendation, showing that it

provides similar results to a human expert (see Section 6.2.2).

Related work

In this section, we describe some previous approaches about querying and reasoning

for semantic BIM.

The use of ontologies in the domains of architecture, engineering and construction

(AEC) has notably increased over the last years, giving raise to the so-called semantic

BIMs. Pauwels, Zhang and Lee stated that there are several motivations behind this

interest [PZL17]: (1) facilitating interoperability and information exchange between

heterogeneous tools, (2) linking cross-domain information to exploit synergies of

related domains, and (3) equipping AEC data models with logic-based representation

capacities. These authors concluded that are still many research gaps than remain

unexplored, such as the combination of declarative and procedural techniques, and the

automation of the data integration and retrieval procedures.

Recently, Mendes de Farias et al. explored the capabilities of rule-based reasoning

in semantic BIMs [MdFRN18]. They proposed the concept of view to represent a

minimal usable sub-graph of elements extracted from an IFC file modeling a whole

facility. The view is materialized as a knowledge graph based on the ifcOWL

ontology [PT16], created by applying logical rules in SWRL (the Semantic Web Rule

Language), and queried in the same language. The Stardog28 triplestore is used to solve

SPARQL [HS13] queries on RDF data and SWRL inferences. We perform a similar

process to translate the heavyweight IFC files into a simpler OWL model, but we rely

instead on the creation of modules based on the physical features of the building via

a graphical user interface. We also leverage this interface to facilitate the creation of

fuzzy queries over the IFC entities, instead of directly using SPARQL—which can be

difficult for non-expert users. Our algorithm also reduces the time required to solve

the queries, which may take hours in their case.

Werbrouck et al. analyzed the limitations of IFC regarding modularity of BIM

models and their support for query-solving [WSB+19]. Focusing on data represented

28https://www.stardog.com/

205

https://www.stardog.com/

as RDF triples, they presented a comparative of the usability and the performance

of SPARQL against GraphQL-LD [TVV18] and HyperGraphQL [Sem20], two query

languages based on the REST API language GraphQL. The transformation between

IFC and RDF was done with IFCtoLBD, which we also use in this work. The

authors showed that BIM models can exploit standard Linked Data languages for

pattern-based query and data federation, but their expressivity is low: mostly simple

RDF property-value and type-of queries on BIM elements are addressed. Our proposal

supports instead a richer fuzzy extension of OWL 2, and at the same time, allows using

existing reasoning engines.

Another proposal is that of Fahad et al., who focused on formal verification of IFC

models by means of a Linked Data consistency checker—namely, the Semantic BIM

Reasoner (SBIM-Reasoner) [FBF18]. This issue was indeed mentioned in [WSB+19]

(and also in [SMSW20], where the Shapes Constraint Language (SHACL) is suggested

to address this issue). To that end, Fahad et al. developed a processing pipeline to

extract geometry data from an IFC file, filter relevant information to reduce the model

size, and create a resulting RDF graph. This model was managed with the Stardog

triplestore via SPARQL queries and SWRL rules, in a similar way as in [MdFRN18]. In

contrast, our proposal explores how fuzzy ontologies can be applied to define imprecise

restrictions on data with the purpose of flexible querying. Fuzzy constraint satisfaction

still remains as a future work.

To the best of our knowledge, the first approach to augment semantic BIMs with

capabilities to manage imprecision and vagueness is proposed by Gómez-Romero et al.

in [GRBR+15]. The authors used fuzzy ontologies and the fuzzy ontology reasoner

DeLorean [BDGRS12] to propose solutions to several AEC tasks: cross-domain

knowledge linking (e.g. with partial concept inclusions and graded relationships),

imprecise BIM queries (e.g. by using linguistic labels and imprecise topological

relations) and fuzzy parametric modeling (e.g. by means of fuzzy axioms and

maximization of their degree of fulfillment). In this thesis, we further develop these

ideas and focus on one unsolved issue: the efficiency and the scalability of the reasoning

algorithms. To that aim, we present a new algorithm for instance retrieval in large BIM

models, which is evaluated on a real-world BIM.

Abualdenien and Borrmann highlighted that vague, imprecise, and incomplete

information is frequent in the AEC industry, and acknowledged that it should be

somehow incorporated into the BIM methodology [AB20]. These authors focused

on the visualization of uncertain aspects of the building design, and particularly,

vagueness of geometrical properties. In contrast to our work, they did not use a formal

framework for the representation of uncertainty and imprecision. Our approach, based

206

on Description Logics, allows us to guarantee the computational properties of the

inference process and to use existing fuzzy and crisp reasoning engines.

6.6 Evaluation of Datil

Our main aim in this section is to perform an evaluation of fuzzy datatypes learning

from numerical data properties using Datil software (described in Section 3.2). Our

first experiment focuses on the learning time, and then we describe two applications

to real use cases. The structure of this section is the following. First, Section 6.6.1

describes the evaluation of Datil for desktop and mobile devices. Next, Section 6.6.2

explains the integration of Datil with another systems for categorizing human life style.

Finally, Section 6.6.3 describes the use of Datil to create linguistic summaries using

gait data. An evaluation of the quality of the fuzzy datatypes can be found later (in

Section 6.2.2), as part of the evaluation of GimmeHop system.

6.6.1 Running time on mobile devices

Contributions

In this part, we perform an empirical evaluation of Datil for desktop and mobile devices.

Both Datil versions were described in Section 3.2 and Section 5.4.1 respectively. Our

experiment consists of computing the learning time of the fuzzy datatypes for the Fuzzy

beer ontology (described in Section 6.2.1). In particular, we generated 6 ontologies with

a number of individuals ranging from 500 to 3000, and we learned fuzzy datatypes for

two numerical data properties, namely the alcohol level (ABV) and bitterness (IBU).

The setup was defined using a configuration file. For each Datil version, we

considered all the implemented clustering algorithms, namely k-means, fuzzy c-means

and mean-shift. The number of clusters for k-means and fuzzy c-means was k = 5

for both data properties. The selected output was Fuzzy OWL 2 format and we

used the ontology reasoner HermiT (in the mobile version, using a ported version

of HermiT to Android). Experiments were performed on a laptop (Intel Core i7-8550U

1.8 GHz, 16 GB RAM, running Windows 7 64-bits), denoted PC, and a smartphone

(ZTE Blade A610 running Android 6.0, Quad-Core 1.3 GHz ARM Cortex A-53, 2 GB

RAM, released in 2016). Experiments were repeated 3 times for each ontology and

device, and the shown learning time is the average of the 3 executions.

Figure 6.38 shows (in logarithmic scale) the time to learn the fuzzy datatypes on

both devices. Although time is higher on the smartphone, it could be acceptable since

learning can be done just once for each fuzzy ontology (i.e., less than 8 minutes for

207

1500 individuals). Clustering algorithm has an impact, and mean-shift can be 20%

slower than k-means on the smartphone.

Figure 6.38: Running time on PC and smartphone.

Related work

A complete evaluation of the performance of DL semantic reasoners for Android

operative system is performed in [BYBM15]. The authors started by describing the

experience to port DL reasoners to Android devices (the platform supports OWL API)

and some challenges. Then, they made an empirical evaluation of 9 ported reasoners

(e.g., HermiT 1.3.8) and more than 300 non-fuzzy ontologies (from the ORE 2013

ontology set) on a smartphone and a tablet. This approach opened the door to generate

more intelligent apps using semantic technologies and inference engines.

To the best of our knowledge, there is not any previous research that implements

and evaluates techniques to learn fuzzy ontologies on mobile devices.

6.6.2 Lifestyle profile

Contributions

The aim in this section is to integrate two fuzzy ontology learning techniques and

to validate them using real data. The first technique is proposed in Section 3.2

and implemented in Datil tool. It uses the values of data properties to build

fuzzy membership functions (fuzzy datatypes). Then, we can use the output of

Datil as an input for the second technique, which learns fuzzy General Concept

Inclusions GCI using datatypes. Starting from the (possibly partial) membership of

208

individuals to classes, it is possible to automatically compute some partial inclusions

between (possibly fuzzy) concepts. This learning strategy is implemented in the Fuzzy

DL-Learner software. Interestingly, Fuzzy DL-Learner can use those fuzzy datatypes

learned by Datil to learn fuzzy GCIs.

Lifestyle can be defined as a collection of routines and behaviors shaped by the

social, economic, and environmental structure around a person. Healthy living is a hot

topic in our current lives. The daily activity monitoring of our lifestyle could be used to

improve it [Org99]. Currently, the daily activity monitoring can be done unobtrusively

via sensors such as wearables, telecare technology, etc. Those sensors generate a large

amount of heterogeneous data to be processed. A very important problem is how to

categorize the lifestyle of humans in relation to the activities over time and space, for

examples the sport time in the morning, habits, frequency of visited spaces, etc. Given

a set of digital traces such as sleep and activity sensors, computational systems can

serve to provide intuitive lifestyle categorizations. A model of lifestyle can be based on

the matching of a predefined semantic template to the data.

In this section, we will describe a methodology to categorize the lifestyle of a group

of people: starting from data obtained from sensors, we want to classify them in

different profiles (such as MediterraneanWorker) using learning of fuzzy datatypes and

fuzzy ontology axioms.

Firstly, we mention the tools used in our approach:

− Datil software, to learn fuzzy datatypes (see Section 3.2).

− Fuzzy DL-Learner29 software, to learn fuzzy subclass axioms defining a rule for

each profile.

− fuzzyDL reasoner, to solve the fuzzy instance retrieval task.

− Lifestyles-KB, a crisp ontology for wearable sensors30. Note that in this thesis

we have renamed some data properties to provide more readable names.

To compute the categorization of a person into some lifestyle pattern, we propose

to follow the following steps:

1. Build a crisp ontology O with the features of interest, using domain experts,

e.g. data scientists, specialists in diet, specialists in monitoring cardiac disease

patients, etc. At this point, experts should identify lifestyle patterns like

MediterraneanWorker but without providing their definition. In our case, we use

Lifestyles-KB.

29http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner
30http://github.com/NataliaDiaz/Ontologies

209

 http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner
http://github.com/NataliaDiaz/Ontologies

Example 39. Figure 6.39 shows a screenshot of the ontology Lifestyles-KB.

Yellow circles represent classes (e.g., User) and green circles represent data

properties (e.g., endTime). The ontology also includes axioms, e.g., stating

that the range of the data property endTime is xsd:decimal and that endTime is

functional.

Figure 6.39: Fragment of Lifestyles-KB.

2. Create an ontology OD by populating O with data property assertions obtained

from sensors.

Example 40. Assume that the end time (corresponding to the data property

endTime) of user1 is 1089 minutes (i.e., 18 hours and 15 minutes), obtained at

segment atWork31. This is represented using the OWL 2 axiom:

DataPropertyAssertion(endTimeAtWork user1 "1089"^^xsd:decimal)

where the data property endTimeAtWork is the result of restricting the data

property endTime to the segment atWork.

3. Use Datil to learn some fuzzy datatypes from the data property assertions in OD,

and add such fuzzy datatypes to both O and OD.

Example 41. A vector of centroids is computed for the property endTimeAtWork

using the fuzzy k-means method. The fuzzy datatype HighEndTimeAtWork is

learned as a triangular function tri(1039.74, 1100.97, 1246.59). In fuzzyDL

syntax, the definition is encoded as:

31As we will discuss later, days will be divided into segments.

210

(define -fuzzy -concept HighEndTimeAtWork

triangular (-10000, 10000 , 1039.74 , 1100.97 , 1246.59))

assuming a range [−10000, 10000] for the data property.

4. Ensure that OD satisfies the functionality restrictions. That is, if there is an

individual such that there is more than one data property assertion involving

the same data property (or, if segments are used, the same data property and

segment), all but one of them must be removed, or all of them can be replaced

by an average of the values. This is necessary because fuzzy data properties are

required to be functional. Note that this step was not mentioned in [HSDRB18].

5. Add to OD the definition of some preliminary rules (concept equivalence axioms)

with the help of an expert. Some of the concepts will have complex definitions,

being defined in terms of the learned datatypes. For example, one can define the

concept of MediterraneanWorker from the (late) starting and end times.

Example 42. Given HighStartTimeAtWork and HighEndTimeAtWork fuzzy

datatypes (encoding the working hours for Mediterranean people using trapezoidal

functions), the concept MediterraneanWorker can be defined from the (late)

starting and ending times as:

(define -concept MediterraneanWorker (g-and

(some startTimeAtWork HighStartTimeAtWork)

(some endTimeAtWork HighEndTimeAtWork)

))

6. Ask a fuzzy semantic reasoner (fuzzyDL) to retrieve all the instances of each of

the defined concepts in OD together with the degrees of membership.

Example 43. The fuzzyDL instance retrieval query

(all -instances? MediterraneanWorker)

returns person001 with a membership degree 0.84.

7. Represent it as fuzzy concept assertions and add them to the fuzzy ontology OD.

Example 44. We would add to fuzzyDL the following axiom:

(instance person001 MediterraneanWorker 0.84)

211

8. Run a learning algorithm (Fuzzy DL-Learner) computing the final subclass

axioms from the memberships to fuzzy classes in OD and add them to O. The

learned axioms are complex definitions of lifestyle pattern concepts, similar to

the preliminary rules but automatically derived from the real data.

Example 45. A possible output of Fuzzy DL-Learner is:

(define -primitive -concept MediterraneanWorker (g-and

(some startTimeAtWork HighStartTimeAtWork)

(some endTimeAtWork HighEndTimeAtWork)

(some activityDurationAtWork HighActivityDurationAtWork)

))

Validation. In order to populate the ontology, the only information that we have

used are real data obtained from digital traces such as sleep and activity sensors and

other wearable devices. In particular, we used 40 records of volunteers of middle age

living in the Eindhoven area (The Netherlands). These data were provided by a private

company (Philips Research) and are confidential (little details are thus given in this

dissertation for privacy reasons). However, we would like to point out that this scenario

is a typical case where we do not have data about the membership to classes but we

do know the values of several data properties.

Each record contains data corresponding to one individual, obtained over different

days. For each day, there are 14 day segments, such as atWork or toHome. We

considered 68 data properties with numerical range (e.g., heartRate, calories, etc.). In

the step 3 of our approach, we learned fuzzy datatypes. If we use k-means with k = 5

fuzzy datatypes, we end up trying to learn 4760 fuzzy datatypes, although for some

combinations of data property and day segment there were no data. Finally, the result

of the categorization was approved by human experts from the private company, but

details about the final categorization are confidential.

Note that indeed the fuzzy datatypes add more knowledge, in the sense that we can

make new inferences. For example, two individuals with slightly different heart rates

at work, even if such values are different than the center of the triangular function

(20.7), would be compatible with the fuzzy datatype LowHeartRateAtWork, possibly

with different degrees of truth.

Related work

Automatic lifestyle profiling tries to categorize users according to their daily routine

based lifestyles is an unexplored area. In a computational application the behaviors can

212

be represented by measurements from wearable sensors. The lifestyle of an individual

can then be modeled by the statistics of the measurements conditioned by the elements

of the surrounding structure. A model of a lifestyle can be discovered blindly from the

data using clustering methods or it may be based on matching a predefined semantic

template to the data. A blind method to model routines as linear combinations of eigen

behaviors was proposed in [EP09]. The use of blind modeling is difficult because the

discovered routines lack semantics that is needed to provide understandable feedback to

the user. The lifestyle model proposed in [WHC+16] was based on matching a semantic

template of workday and weekend routines to the wearable data. Semantic template

models have also been used for mining personalized insights from wearable sensor

data [IL11] to attach semantics to recurring ambulatory patterns [HG17]. Instead, we

propose an approach based on fuzzy ontologies that supports imprecise definitions and

uses two strategies to learn the elements of the fuzzy ontology from real data.

MoveUp app categorizes users in the mHealth domain according to the their activity

using fuzzy logic [ST22]. Quoting the authors, their “fuzzy models developed are not

devoted to discover the lifestyle of a person”, like in our work, “but to derive a synthetic

representation of real-time data of a person with declared, problematic lifestyle, to

promote a behavior change”. Another differences with respect to our work are that

MoveUp does not use ontologies or semantic reasoning, and that the fuzzy membership

functions are not automatically learned from real data.

Semantically meaningful and interpretable models to better understand the

underlying statistics of individual lifestyle patterns of people is not a trivial task

because of the variability of the individuals. Even if technology allows for a broad

spectrum of sensors, it is not straightforward to choose the most appropriate data

acquisition, data imputation and data fusion techniques [LKR07]. Attention should

also be put into semantic definitions in order to achieve matching of lifestyle coaching

programs, to target compatible profiles (i.e., accounting for the user’s devices -and

their metric units-, their diseases, time schedules, and hobbies). Common-sense

representation can enhance data-driven processes and improve accuracy and precision

of recognition in human activities [DRCC+14, DRCLD14, DRPCLD14]. Likewise,

knowledge-driven human activity models can be upgraded through data-driven learning

techniques [AAdIC15, AY09] improving accuracy and clustering techniques.

213

6.6.3 Fuzzy linguistic summaries

Contributions

In this section, we discuss another application of Datil to real data. The aim is

to summarize the set of attribute data using a more human-friendly representation,

namely linguistic terms described using fuzzy sets. This technique is an example of

Explainable Artificial Intelligence (XAI), which “produces details or reasons to make

its functioning clear or easy to understand” [BDRD+20].

In the domain of biometric systems, we developed a gait recognition system to

identify people based on the way they walk (see Section 6.1). To test it, we generated

a novel dataset with records of 91 volunteers walking a straight line, obtained using

Kinect Microsoft version 2. In particular, each individual has 211 biometric features

(with numerical range) associated, for example, the stepLength.

In order to describe the physical features of a human by means of linguistic

labels, we used Datil tool to generate the fuzzy membership functions from dataset

biometric features. For example, the linguistic label HighLengthStep was defined using

a triangular fuzzy membership function. Furthermore, we can evaluate the membership

degree of an individual with stepLength= 0.5467 as shown in Figure 6.40.

Figure 6.40: Membership degree to HighLengthStep of an individual with stepLength=
0.5467.

The main features of this approach are:

− It uses biometric features from a real use case and makes it possible to summarize

them.

− It helps users to read and understand linguistic labels rather than single numbers

to describe the features of a person. For instance, it provides explanations of

specific properties as height or humerus size.

214

− Regarding the dataset, it permits to enrich the fuzzy ontologies with new fuzzy

datatypes and use them in the description of a domain, e.g., in our gait recognition

system.

− Regarding the gait recognition system, it improves system interpretability. For

example, the recognition system can return the most similar individual and the

summary can explain the biometric values using linguistic labels.

Related work

Yager introduced in 1989 the idea of building linguistic summaries to synthesize

information [Yag89]. The most common scenario is building fuzzy linguistic summaries

from numerical input data. For example, some of the applied techniques include

clustering [SPL17], fuzzy decision trees [PS05] or hierarchical fuzzy partitioning [GC04].

For a good introduction to the field we refer the reader to [Yag21]; a more detailed

overview of the state of the art can be found in [BMM12].

However, the combination of fuzzy linguistic summarization with fuzzy ontologies

has not received a lot of attention. The only exception we are aware of is a fuzzy

ontology-based approach to news summarization in Chinese language [LJH05]. To the

best of our knowledge, ours is the first application of fuzzy linguistic summarization to

biometric features (used in a gait recognition system).

6.7 Evaluation of Fudge aggregation

Contributions

In this section we describe the evaluation of the novel aggregation operator CONV–LRF

(Eq. 1), supported in the Fudge software described in Section 3.3. In particular, we

performed an evaluation comparing CONV–LRF with the existing similar operator

CONV–RRF. Our objective is to give some insights about the similarities and

differences of both operators.

Because these operators can be used to define LOWA–RRF and LOWA–LRF, our

findings will affect these operators as well. However, because the difference between

CONV and LOWA are whether weights are assigned to a specific expert or not, an

evaluation of the LOWA operators does not seem necessary.

Experiment 1. To understand the differences between CONV–LRF and

CONV–RRF, we computed the results of the aggregation of four values (i.e.,

the opinions of four experts) with different vectors of weights. Specifically, we

215

evaluated the combination of the vector [d4,d3,d2,d1] with each possible combination

of degrees wi = k · 0.01,
∑4

i=1 wi = 1, k ∈ {1, 2, . . . , 100}, i ∈ {1, 2, 3, 4}. Out of the

156849 possibilities, CONV–LRF and CONV–RRF give the same value in 114259

cases (72.85 %). In 39538 cases (25.2 %), CONV–LRF returns a higher value, whereas

in 3052 cases (1.95 %) CONV–RRF returns a higher value. Therefore, CONV–LRF

seems to have a slightly higher orness than CONV–RRF. When the weights associated

to the higher value or to the smaller value were greater than 0.83, both approaches

coincided. This was also the case when the other weights were greater than 0.74.

Experiment 2. This experiment is similar but considering a different ordering of

the labels to be aggregated, i.e., [d1,d2,d3,d4]. Now, out of the 156849 possibilities,

CONV–LRF and CONV–RRF give the same value in 114210 cases (72.82 %). In 39997

cases (25.50 %), CONV–RRF returns a higher value, whereas in 2642 cases (1.68 %)

CONV–LRF returns a higher value. Therefore, it is CONV–RRF the one with a slightly

higher orness. Analyzing the results of the first two experiments, when the labels are

presented in a decreasing order, CONV–LRF returns higher values in general, but when

the labels are presented in an increasing order, CONV–RRF returns higher values in

general.

Experiment 3. This experiment generalizes Experiments 1 and 2 by considering all

possible combinations of values to be aggregated, and different numbers of experts

(from 2 to 5, always with non-zero weights). The number of total labels was fixed to

5, which is a very common option in practice.

Table 6.26 shows the results of the evaluation: the number of experts (“# Experts”),

total number of cases (“# Cases”), percentage of cases where CONV–LRF gives a

higher value (“% CONV–LRF”), percentage of cases where CONV–RRF gives a higher

value (“% CONV–RRF”), and percentage of cases where both operators coincide (“%

Coincidence”).

It is clear that for 2 experts both operators always coincide. Indeed, it is the base

case and both operators have the same definition. With a higher number of experts,

both operators do not always coincide, and the percentage of coincidences is inversely

proportional to the number of experts. It is also interesting to remark that both

operators return a higher value in more or less the same number of cases, regardless of

the number of experts.

To conclude this section, note that [HBGRS20] only includes Experiment 1, which

suggests that CONV–LRF has a higher orness than CONV–RRF, but Experiment 3

216

Experts # Cases % CONV–LRF % CONV–RRF % Coincidence
2 2500 0 0 100
3 631250 6.62 6.67 86.71
4 107312500 10.74 10.83 78.43
5 13816484375 13.45 13.52 73.03

Table 6.26: Results of the comparison between CONV–LRF and CONV–RRF.

shows that the ornesses are similar, with the orness of CONV–RRF being actually

slightly higher.

6.8 Evaluation of the serializable and incremental

fuzzyDL reasoner

Contributions

In this part, we describe our experimentation with the serializable and incremental

version of fuzzyDL (explained in Section 5.3), the first reasoner of this type. We

only compare fuzzyDL reasoner with JFact because it is the only serializable semantic

reasoner (see Table 5.2).

The structure is the following. First, Section 6.8.1 describes the datasets and the

experimental setup used in our evaluation. Then, Section 6.8.2 shows and discusses

the results.

6.8.1 Experimental setup

Ontology setup. To perform our evaluation we used three datasets:

− Fuzzy Beer ontology, detailed in Section 6.2.

− Absorption dataset, detailed in Section 6.4.1. In this section, we will consider the

original 50 crisp ontologies and Fuzzy Wine.

− ORE 2013 dataset, developed in [GBJR+13]. We considered 36 large OWL 2 DL

ontologies. ORE 2013 dataset contains 200 ontologies per profile (i.e., OWL 2 EL,

OWL 2 RL, and OWL 2 DL) from the NCBO BioPortal32, the Oxford Ontology

Library33, and the Manchester Ontology Repository34. Ontologies are classified

according to their number of logical axioms as small (≤ 500), medium (between

500 and 4999), and large ontologies (≥ 5000).

32http://bioportal.bioontology.org
33http://www.cs.ox.ac.uk/isg/ontologies
34http://rpc295.cs.man.ac.uk:8080/repository

217

http://bioportal.bioontology.org
http://www.cs.ox.ac.uk/isg/ontologies
http://rpc295.cs.man.ac.uk:8080/repository

In total, we considered 88 ontologies but, as we will discuss later, there were errors

while reading or managing some of them.

Parameters. Since we compare fuzzyDL with the crisp ontology reasoner JFact, in

this section fuzzyDL assumes a semantics based on classical logic. When using JFact,

ontologies are encoded in OWL 2 syntax, and when using fuzzyDL in FDL format.

Both reasoners use the Java serialization strategy. While fuzzyDL computes the

preprocessing discussed in Section 5.3, JFact uses the method precomputeInferences

to compute the following axioms: class assertions, class hierarchy, object property

assertions, data property assertions, object property hierarchy, data property hierarchy,

same individuals, different individuals, and disjoint classes.

During our experiments, we set a timeout of two hours to solve the required tasks.

Experiments were repeated 5 times and we took the standard average of the computed

values.

Equipment and tools. All experiments were performed on a laptop computer with

Intel Core i7-8550U 1.8 GHz, 16 GB RAM under Windows 7 64-bits. The versions

of the software were Java 1.8, JFact 4.0.4, OWL API 4.2.7, and Gurobi 8.1.0 build

V8.1.0rc1 (Academic License); these are the versions of JFact and OWL API that were

used in a comparison between JFact serialization and Fact++ persistence [BBMP17].

6.8.2 Results and discussion

Firstly, we discuss an evaluation of the serialized files (size and time) and then we

discuss an evaluation of the reasoning time.

Evaluation of the serialized files: size and time. In this part of the evaluation,

for each ontology in the datasets, we preprocess it, we serialize the reasoner (including

the expanded fuzzy ontology) into a file, and we deserialize it.

The results of our experiments are shown in Table 6.27 for those ontologies that

were successfully processed by both JFact anf fuzzyDL (datasets are separated using

horizontal lines). For both reasoners we show three values:

− SeriSize: size in MB of the serialized reasoner (including the fuzzy ontology)

after preprocessing the ontology.

− SaveTime: time in seconds needed to obtain a serialized version of the reasoner

and to save it into a file.

218

− LoadTime: time in seconds needed to restore a version of the reasoner from a

serialized file.

JFact FuzzyDL
Ontology SeriSize (MB) SaveTime (s) LoadTime (s) SeriSize (MB) SaveTime (s) LoadTime (s)

Beer 120.89 65.96 91.88 18.95 7.46 11.47
amino-acid 0.22 0.25 0.30 0.04 0.03 0.04
cancer my 0.31 0.32 0.40 0.04 0.04 0.05
chemical 0.16 0.22 0.27 0.02 0.03 0.02

EMAP.obo 26.41 8.67 12.72 2.85 1.34 2.14
FMA 1079.97 104.26 150.88 43.71 25.13 34.71

FuzzyWine 1.24 0.88 1.17 0.17 0.17 0.23
galen-ians-full-doctored 6.67 3.57 5.5 1.35 0.42 0.74
gene ontology edit.obo 6.67 3.54 5.19 4.97 2.59 3.83

goslim 0.30 0.18 0.27 0.05 0.06 0.06
lubm 8.66 4.76 6.86 3.83 3.02 3.90

matchmaking 0.27 0.30 0.37 0.03 0.03 0.03
pathway.obo 0.82 0.54 0.72 0.09 0.07 0.09

people.fd 0.25 0.53 0.65 0.04 0.04 0.05
pizza 0.38 0.40 0.45 0.05 0.08 0.12

po 0.86 0.56 0.74 0.06 0.08 0.08
SIGKDD-EKAW 0.34 0.33 0.42 0.03 0.03 0.04

so-xp.obo 2.64 1.39 2.01 0.31 0.17 0.24
spatial.obo 0.26 0.28 0.36 0.05 0.03 0.05

teleost taxonomy.obo 33.58 19.37 27.90 4.84 2.63 3.81
worm phenotype xp.obo 2.90 1.38 2.20 0.46 0.18 0.30
teleost-taxonomy.1081 27.60 23.11 27.83 5.20 3.22 5.31

Table 6.27: Serialization of the ontologies in all datasets using JFact and FuzzyDL.

As we can see, fuzzyDL always computes smaller files. The differences are significant

for (Fuzzy) Beer and for the Absorption dataset, but are quite impressive for ORE 2013.

For example, while JFact requires 120.89 MB to serialize Fuzzy Beer ontology, fuzzyDL

only uses 18.95 MB. It is worth to recall, however, that JFact does include some

information that fuzzyDL does not (inferred class hierarchy).

Regarding the serialization and the deserialization times, we can see that

deserialization is slightly slower than serialization. As both reasoners use the Java

serialization strategy, and because fuzzyDL manages smaller files, it is not surprising

that fuzzyDL is always faster. The differences can also be very important; for the

example discussed in the previous paragraph, JFact requires 65.96 s to serialize and

91.88 s to restore, whereas fuzzyDL requires 7.46 s and 11.47 s, respectively.

22 ontologies (25%) were supported by both reasoners and in 66 ontologies (75%)

at least one of two reasoners failed, 31 in the Absorption dataset (61 % of the dataset)

and 35 in the ORE 2013 dataset (97 % of the dataset). Ontologies where at least one of

the two reasoners failed are shown in Table 6.28 for Absorption dataset and Table 6.29

for ORE 2013 dataset.

JFact failed in 53 ontologies and fuzzyDL in 40. Focusing on fuzzyDL, we found

the following problems:

219

− 21 timeouts,

− 12 ontologies included OWL 2 elements that are not currently supported by

fuzzyDL, e.g., object property chains, cardinality restrictions, enumerations, or

universal data property restrictions.

− 2 parsing errors when importing the ontology (for example, because of a

non-ASCII character “á”), and

− 5 null pointer exceptions, requiring further investigation.

Ontology JFact FuzzyDL
AirSystem Could not load imported ontology Null pointer

atom-common Could not load imported ontology
biochemistry-complex Could not load imported ontology Timeout

chebi Stack overflow
chemistry-complex Could not load imported ontology Timeout

cton Stack overflow
earthrealm Could not load imported ontology
Economy Illegal redeclarations of entities
FBbt XP Timeout

fmaOwlDlComponent 1 4 0 Timeout
GRO Timeout
heart Timeout

legal-action Could not load imported ontology Timeout
mosquito insecticide resistance.obo Could not load imported ontology Null pointer

mygrid-moby-service Could not load imported ontology
NCI Stack overflow
norm Could not load imported ontology Timeout

ontology Timeout
organic-compound-complex Could not load imported ontology Timeout

periodic-table-complex Could not load imported ontology
photography Timeout

PRO Timeout
process Could not load imported ontology
propreo Non simple role used as simple
reaction Could not load imported ontology Timeout

relative-places Could not load imported ontology
subatomic-particle-complex Could not load imported ontology

time-modification Could not load imported ontology Timeout
thesaurus Illegal redeclarations of entities

Transportation Unfound datatype
yowl-complex Could not load imported ontology Timeout

Table 6.28: Ontologies from Absorption dataset with errors during the serialization.

Evaluation of the reasoning time. In this part of the evaluation, we focus on the

reasoning time of the serialized incremental version of fuzzyDL. We do not compare

fuzzyDL with JFact because it is not incremental, as discussed in Section 5.3. For each

of the 48 ontologies where fuzzyDL did not fail, Table 6.30 shows several measures:

− LoadTime: time to load the ontology from a text file. This value is used to

compare with the non-incremental version of the reasoner.

220

Ontology JFact FuzzyDL
00004 Timeout
00035 Out of memory
00347 Stack overflow Null pointer
00368 Stack overflow
00371 Timeout
00374 Timeout
00386 Illegal redeclarations of entities
00390 Illegal redeclarations of entities
00398 Timeout
00400 Illegal redeclarations of entities
00462 Timeout ObjectPropertyChain not supported
00463 ObjectPropertyChain not supported
00631 Timeout
00678 ObjectPropertyChain not supported
00680 ObjectPropertyChain not supported
00761 Stack overflow Timeout

01c1c6df-2a38-46ce-a554-35f273f2ed1a 1245 Stack overflow Timeout
16a2cd46-f29d-4d82-94e8-b4a225a5cb5a bo Out of memory Timeout

290113a0-5a1b-4f85-a716-ced96a6499e9 links Stack overflow
3ebf89a1-6a06-4e1e-b03e-a8ddb0d6c335 rocess Stack overflow Null pointer
42d22996-95bc-4375-9552-f011acffebfb cation Parser error
5043d1d7-86d8-4e78-af21-f5eca30cab3f tology Inconsistent ontology OneOf, Cardinality not supported
53f9f8e8-9463-4612-b082-45508fb37137 chains Relevant vertex of type bad-tag DataAllValuesFrom not supported
63153319-5b25-43ed-86b2-f0714c0acd7c O-full Inconsistent ontology Cardinality not supported
645a3ff8-698d-4904-9cff-9bf134ff6a0c tology Literal time cannot be found OneOf, Cardinality not supported

7e1c9977-4d4b-49ab-808f-1ca185be99c5 BCR Inconsistent ontology DataOneOf, Cardinality not supported
cbe2e729-0b10-4b02-80f5-e91b1c8bedf7 test2 Timeout Timeout

cell-line-ontology.1245 Stack overflow Timeout
d0e20d33-6bfa-4115-aba4-3a3f4ba8d586 mplied Stack overflow

d5c7f91d-b5eb-4af1-9293-d90e7ff63b1e 1070 Stack overflow
e5c03a5b-05db-440a-ae23-4eadcaa1114f oOntol Parser error

ebf8d261-ed24-4f9f-8cc5-cd52bb1f5e1d cton Stack overflow Null pointer
FMA-constitutionalPartForNS ALCOI(D) Stack overflow OneOf, DataHasValue not supported

GALEN-Full-Union ALCHOI(D) NumberFormatException OneOf not supported
GALEN-Heart ALCHOI(D) NumberFormatException OneOf not supported

Table 6.29: Ontologies from ORE 2013 dataset with errors during the serialization.

221

Ontology LoadTime (s) CloneTime (s) PreprocessTime (s) SubTime (s) SatTime (s) EntTime (s)
Beer 0.95 0.040 11.91 0.02 2247.33 2250.22

amino-acid 0.02 0.0004 0.003 0.87 0.27 Timeout
atom-common 0.01 0.0004 0.001 0.02 0.008 Timeout

cancer my 0.01 0.001 0.003 0.11 2.75 2.65
chebi 3.36 1.823 0.55 0.09 0.01 Timeout

chemical 0.01 0.0004 0.002 5.00 4.59 Timeout
cton 0.17 0.005 0.10 0.03 0.007 Timeout

earthrealm 0.05 0.003 0.02 0.39 0.36 0.34
Economy 0.01 0.003 0.02 0.01 0.07 0.06

EMAP.obo 0.11 0.005 0.05 0.02 0.006 Timeout
FuzzyWine 0.09 0.001 0.02 0.02 284.51 272.19

fmaOwlDlComponent 1 4 0 0.44 0.007 0.09 0.07 Timeout Timeout
FMA 0.96 0.167 0.33 0.12 0.029 Timeout

galen-ians-full-doctored 0.08 0.007 0.04 Timeout 0.008 Timeout
gene ontology edit.obo 0.21 0.012 0.09 0.02 0.009 Timeout

goslim 0.01 0.001 0.001 0.004 0.02 0.02
lubm 0.38 0.007 2.31 0.003 495.16 516.7

matchmaking 0.01 0.0004 0.001 0.03 0.002 Timeout
mygrid-moby-service 0.04 0.0006 0.01 0.02 0.002 Timeout

NCI 0.25 0.011 0.13 0.04 0.02 Timeout
pathway.obo 0.02 0.0004 0.006 0.01 0.002 Timeout

people.fd 0.01 0.001 0.002 0.01 0.85 0.85
periodic-table-complex 0.01 0.0002 0.004 0.07 0.03 Timeout

pizza 0.04 0.000 0.01 163.51 0.01 0.01
po 0.01 0.001 0.003 0.81 0.84 0.81

process 0.07 0.003 0.02 0.44 0.37 0.40
propreo 0.03 0.001 0.01 Timeout 394.95 Timeout

relative-places 0.01 0.0002 0.001 0.10 0.06 Timeout
SIGKDD-EKAW 0.02 0.0004 0.002 0.41 0.002 Timeout

so-xp.obo 0.04 0.001 0.02 0.02 0.002 Timeout
spatial.obo 0.02 0.0002 0.006 0.06 0.002 Timeout

subatomic-particle-complex 0.02 0.0004 0.003 0.10 0.06 Timeout
teleost taxonomy.obo 0.17 0.017 0.08 0.03 0.01 Timeout

thesaurus 0.67 0.031 0.37 0.40 0.19 0.20
Transportation 0.01 0.001 0.004 0.01 0.03 0.03

worm phenotype xp.obo 0.05 0.002 0.01 0.01 0.003 Timeout
00035 0.13 0.003 0.11 Timeout 0.01 Timeout
00368 0.40 0.216 0.15 0.02 0.01 305.19
00371 0.48 0.167 0.30 Timeout 0.01 346.26
00374 0.66 0.166 0.43 0.03 0.01 388.31
00386 0.50 0.192 0.30 Timeout 0.01 343.11
00390 0.41 0.170 0.29 Timeout 0.01 304.40
00398 0.46 0.165 0.28 Timeout 0.01 346.48
00400 0.43 0.163 0.36 Timeout 0.01 421.10

290113a0-5a1b-4f85-a716-ced96a6499e9 links 0.22 0.013 0.10 0.01 Timeout 5.15
d0e20d33-6bfa-4115-aba4-3a3f4ba8d586 mplied 0.21 0.007 0.16 0.02 0.01 Timeout

d5c7f91d-b5eb-4af1-9293-d90e7ff63b1e 1070 0.30 0.011 0.14 0.06 0.01 Timeout
teleost-taxonomy.1081 0.26 0.021 0.13 0.05 0.02 Timeout

Table 6.30: Evaluation of different parts of the reasoning in fuzzyDL.

222

− CloneTime: time to obtain a copy of an object representing the reasoner. This

value is used to compare with the time needed to load the state of a reasoner

from its serialization.

− PreprocessTime: time to preprocess the ontology, computing all the inferences

that can be shared when solving any query.

− SubTime: time to solve a concept subsumption query, assuming that the ontology

has already been preprocessed. This query considers two randomly selected

named concepts in the ontology.

− SatTime: time to solve a concept satisfiability query, assuming that the ontology

has already been preprocessed. This query considers a randomly selected named

concept in the ontology.

− EntTime: time to solve an entailment query, assuming that the ontology has

already been preprocessed. In particular, we consider the entailment of a concept

assertion axiom involving an individual and a named concept in the ontology,

both randomly selected.

Based on these values, Table 6.31 shows the following times35:

− TimeR (restore): time to prepare incremental and serializable reasoning, i.e.,

time to deserialize the reasoner.

− TimeO (old): time to solve a query without incremental reasoning. This includes

the time to load the ontology from a text file, the time to preprocess it, and the

time to solve the query.

− TimeD (download): time to obtain a remote serialized file and to prepare

incremental and serializable reasoning. This includes the time to download the

file, and the time to deserialize the reasoner. The time to download the file is

estimated by dividing the size file (shown in Table 6.27) by the data transfer

speed. The data transfer speed depends on the technology (e.g., WiFi, mobile

broadband, etc.) and is typically rather variable; we have assumed 17.6 Mbps,

as it was the global (after analyzing 87 countries) average mobile connection in

2019 [Boy19].

35Note that, while TimeR and TimeD are independent of the query type, TimeO and TimeQ have
to be considered for each query type (concept subsumption, concept satisfiability, and entailment of
a concept assertion).

223

Subsumption Satisfiability Entailment
Ontology TimeR (s) TimeD (s) TimeO (s) TimeQ (s) TimeO (s) TimeQ (s) TimeO (s) TimeQ (s)

Beer 11.47 20.08 12.89 0.06 2260.19 2247.37 2263.09 2250.26
amino-acid 0.04 0.06 0.89 0.87 0.28 0.27 Timeout Timeout

atom-common 0.02 0.02 0.03 0.02 0.02 0.01 Timeout Timeout
cancer my 0.05 0.07 0.12 0.11 2.76 2.76 2.66 2.65

chebi 157.46 223.07 4.00 1.91 3.92 1.83 Timeout Timeout
chemical 0.02 0.03 5.01 5.00 4.60 4.59 Timeout Timeout

cton 2.15 3.51 0.31 0.04 0.28 0.01 Timeout Timeout
earthrealm 0.80 1.11 0.45 0.39 0.43 0.36 0.40 0.34
EMAP.obo 2.14 3.44 0.18 0.02 0.17 0.01 Timeout Timeout
Economy 0.47 0.72 0.03 0.01 0.09 0.07 0.09 0.07

FuzzyWine 0.23 0.30 0.13 0.02 284.62 284.52 272.3 272.19
fmaOwlDlComponent 1 4 0 2.26 3.45 0.60 0.08 Timeout Timeout Timeout Timeout

FMA 34.71 54.58 1.41 0.29 1.31 0.20 Timeout Timeout
galen-ians-full-doctored 0.74 1.36 Timeout Timeout 0.13 0.01 Timeout Timeout
gene ontology edit.obo 3.83 6.09 0.33 0.04 0.31 0.02 Timeout Timeout

goslim 0.06 0.09 0.01 0.01 0.03 0.02 0.03 0.02
lubm 3.90 5.64 2.69 0.01 497.85 495.17 519.39 516.71

matchmaking 0.03 0.05 0.04 0.03 0.02 0.003 Timeout Timeout
mygrid-moby-service 0.12 0.19 0.08 0.02 0.05 0.003 Timeout Timeout

NCI 4.36 7.73 0.43 0.05 0.40 0.03 Timeout Timeout
pathway.obo 0.09 0.13 0.03 0.01 0.03 0.003 Timeout Timeout

people.fd 0.05 0.07 0.02 0.02 0.85 0.85 0.85 0.85
periodic-table-complex 0.05 0.07 0.08 0.07 0.05 0.03 Timeout Timeout

pizza 0.12 0.15 163.56 163.51 0.06 0.01 0.06 0.01
po 0.08 0.11 0.82 0.81 0.85 0.84 0.82 0.81

process 0.98 1.30 0.53 0.45 0.46 0.37 0.49 0.40
propreo 0.10 0.16 Timeout Timeout 394.99 394.95 Timeout Timeout

relative-places 0.02 0.03 0.11 0.10 0.08 0.06 Timeout Timeout
SIGKDD-EKAW 0.04 0.05 0.42 0.41 0.02 0.003 Timeout Timeout

so-xp.obo 0.24 0.38 0.08 0.02 0.06 0.002 Timeout Timeout
spatial.obo 0.05 0.07 0.08 0.06 0.02 0.003 Timeout Timeout

subatomic-particle-complex 0.05 0.07 0.12 0.10 0.08 0.06 Timeout Timeout
teleost taxonomy.obo 3.81 6.01 0.28 0.04 0.27 0.02 Timeout Timeout

thesaurus 11.47 21.04 1.44 0.43 1.23 0.22 1.24 0.23
Transportation 0.21 0.28 0.02 0.01 0.05 0.03 0.04 0.03

worm phenotype xp.obo 0.30 0.51 0.07 0.01 0.06 0.01 Timeout Timeout
00035 2.09 3.98 Timeout Timeout 0.25 0.01 Timeout Timeout
00368 21.36 33.84 0.57 0.24 0.55 0.22 305.73 305.40
00371 20.87 33.39 Timeout Timeout 0.78 0.18 347.03 346.42
00374 28.93 41.45 1.12 0.20 1.10 0.17 389.40 388.47
00386 27.02 39.56 Timeout Timeout 0.80 0.20 343.90 343.30
00390 20.7 32.53 Timeout Timeout 0.71 0.18 305.10 304.57
00398 21.06 33.25 Timeout Timeout 0.75 0.17 347.22 346.65
00400 22.59 35.61 Timeout Timeout 0.81 0.17 421.89 421.26

290113a0-5a1b-4f85-a716-ced96a6499e9 links 3.99 6.33 0.35 0.04 0.33 0.02 Timeout Timeout
d0e20d33-6bfa-4115-aba4-3a3f4ba8d586 mplied 3.06 4.95 0.39 0.03 0.38 0.01 Timeout Timeout

d5c7f91d-b5eb-4af1-9293-d90e7ff63b1e 1070 6.10 7.99 0.51 0.07 0.46 0.02 Timeout Timeout
teleost-taxonomy.1081 5.46 7.82 0.45 0.07 0.41 0.04 Timeout Timeout

Table 6.31: Reasoning times of the classical version and the serializable version of
fuzzyDL.

224

− TimeQ (query): time to solve the queries using incremental and serializable

reasoning: time to clone the restored version of the reasoner plus time to solve

the query.

The main finding of our experiments is that being an incremental reasoner clearly

decreases the reasoning time: to answer the first query, the reasoning time is the same

in both non-incremental and incremental versions (because both need to expand the

ontology and solve the query), but for the next queries, it is possible to save the time

to compute the ontology and get all the inferences (PreprocessTime). Instead, one

needs to compute a local copy of the reasoner (CloneTime), which is much faster. We

can indeed see that TimeQ is always smaller than TimeO, for all query types (see

Table 6.31). The decrease in the reasoning time is modest for easy ontologies, but

can be quite significant for relatively complex ones. For example, in Fuzzy Beer, the

incremental version requires 0.06 s instead of 12.89 s to solve the Subsumption query.

However, there are also ontologies where PreprocessTime is much smaller than the

query time (e.g., subsumption in Pizza in Table 6.27), so in this case the decrease of

the reasoning time in the incremental version is very small.

The time to restore the ontology (TimeR) can be significant, even higher than

TimeO, but the advantage is that only needs to be computed once for a given ontology.

If we also need to download the serialized version of the reasoner (TimeD), the time

slightly increases but because it is only done once, the decrease in the reasoning time

makes it worth.

225

226

Chapter 7

Conclusions and future work

In this chapter, we summarize the main conclusions of this thesis, dedicated to the

advance management of fuzzy semantic knowledge. Conclusions are grouped in several

categories: contributions to fuzzy ontology learning (Section 7.1), fuzzy ontology

reasoning (Section 7.2), support for mobile devices (Section 7.3), and development

of real-world applications (Section 7.4). Finally, we discuss the main directions to

follow in future work (Section 7.5).

7.1 Fuzzy ontology learning

In this section, we summarize the main conclusions to the learning of elements of fuzzy

ontologies, which demonstrates that objective O1 has been met.

− We proposed a strategy to learn local fuzzy datatypes, specific of one individual.

Using the values of numerical data properties, we build a triangular fuzzy

membership function per each data property using the average and the standard

deviation. This approach has been validated on a gait recognition application,

where the imprecision of the device used to capture the data can be managed by

combining the values corresponding to different video frames.

− We proposed a strategy to learn global fuzzy datatypes from the values of

numerical data properties. After running a centroid-based clustering algorithm,

it uses the centroids as the parameters of some fuzzy membership functions that

partition the domain. This approach was implemented in the Datil system,

which supports different input and output formats, three well-known clustering

algorithms, and can extend crisp ontologies to the fuzzy case but also enrich

existing fuzzy ontologies. The tool automatically computes readable names for

the discovered fuzzy datatypes. We have also discussed how fuzzy datatype

227

learning has been applied to three real-world applications: semantic lifestyle

profiling, beer recommendation, and gait recognition.

– In lifestyle profiling, we characterized the lifestyle of people given their

digital footprints: we used numerical data obtained from different sensors

to build fuzzy datatypes using Datil, so that the definitions of categories use

linguistic terms that are easily interpretable by human users.

– In gait recognition, Datil was used to compute linguistic summaries of the

features of the individuals in the knowledge base. This can be used to

provide explanations of the decisions of the system, promoting Explainable

Artificial Intelligence.

– In the beer domain, Datil computed the definition of fuzzy dataypes

representing, for example, a low alcohol degree, or a very high bitterness.

A group of experts evaluated the quality of the linguistic labels computed

by Datil, showing that it is similar to the definitions given by humans.

Furthermore, we were able to identify the best learning strategy: using

mean-shift clustering algorithm.

− We solved the problem of building a single fuzzy datatype from multiple fuzzy

datatype definitions by using linguistic aggregation operators. Our proposal

supports Fuzzy OWL 2 fuzzy datatypes and is implemented in the Fudge system.

While aggregation operators have been previously used in fuzzy ontologies

to combine numerical values in [0, 1], we focus on the aggregation of fuzzy

membership functions. Our approach can use new and existing aggregation

operators. In particular, we have proposed two new operators, namely a left

recursive form of the convex combination (CONV–LRF) and of the linguistic

OWA (LOWA–LRF). An empirical analysis shows that the percentage of

coincidences between both operators is inversely proportional to the number of

experts, and that both operators have a similar orness degree.

Regarding existing aggregation strategies, we have studied CONV–RRF,

standard linguistic OWA (LOWA–RRF), weighted mean (WMEAN), and fuzzy

OWA (FOWA). We discussed the most relevant characteristics of all these

aggregation strategies, e.g. the possibility to assign a weight to a specific expert,

and the possibility to obtain as an output a value which was not provided by any

expert. Furthermore, we showed how to obtain the weights from fuzzy quantifiers

or an orness value in problems with incomplete data —in which not all experts

provide a definition for every fuzzy datatype.

228

7.2 Reasoning

This section summarizes the main conclusions to fuzzy ontology reasoning, proving

that objective O2 has been met.

− We proposed two specific algorithms to solve the instance retrieval and the

realization problems. To the best of our knowledge, this is the first work not

repeating a (best entailment degree) test for all individuals or concepts of the

ontology. Our approach can be implemented in a family of algorithms to reason

with fuzzy DLs combining a tableaux algorithm and an optimization problem, and

is based on merging the optimization problems into three optimization problems

according to the number of variables to be optimized: zero, one, or more than one.

The key is that the first two problems can be solved just once. Furthermore, our

experience shows that in practice, the latter problem is often empty, i.e., instance

retrieval often leads to independent optimization problems that can be merged

to be solved as a single problem.

Our instance retrieval algorithm has been implemented in the fuzzyDL fuzzy

ontology reasoner and we performed an empirical evaluation with several fuzzy

ontologies, some of them with an important number of individuals. Our

experiments confirm that our novel algorithm to compute instance retrieval

outperforms the previous implementation in all cases involving consistent

ontologies, and the reduction of the reasoning time is more important as the

number of individuals in the ontology grows. Furthermore, in almost all cases,

it was enough to solve a single optimization problem. However, in inconsistent

ontologies, the basic algorithm finds the inconsistency faster.

− We identified a novel reasoning task, flexible faceted instance retrieval, that

extends the traditional fuzzy instance retrieval to narrow down the query results

by imposing some conditions, described using fuzzy datatypes, on the values

of some data properties. We also identified some cases that are common in

practice (possible restrictions in the elements of the ontology that are actually

fuzzy) and simplify the solution of the problem. In particular, we proposed two

minimalist reasoning algorithms whose main idea is to reduce the problem to

classical crisp inference, which can be solved by any classical semantic reasoner,

and then perform some additional computation managing the fuzzy part of the

ontologies. These algorithms have proved their validity on a beer recommender

system and in querying Building Information Modeling files.

229

− We provided a novel approach to compute the fuzzy similarity between individuals

in a fuzzy ontology. Compared to the only existing similar work, our approach

is able to compute local similarities (i.e., between the values of a data property)

when the values are represented using fuzzy datatypes instead of numerical values,

and it is based on the defuzzification of an intersection of fuzzy sets. Furthermore,

our global similarity (combining local similarities) is very general as it supports

any aggregation operator. We also discussed the case where two individuals do

not have the same properties. This approach was successfully evaluated in a gait

recognition application.

− We provided a novel approach to compute a fuzzy matchmaking between

individuals in a fuzzy ontology. We formulated our problem as a fuzzy ontology

reasoning task, computing the best satisfiability degree of a combination of fuzzy

concepts representing the constraints of each of the parts. We extended previous

approaches by considering more than two involved parts and by allowing more

general functions. We also showed that strict weighted sum and strict t-norms

lead to Pareto-optimal solutions. Using strict weighted sum, we can control too

unfair agreements by weighting the importance of the involved parts. We also

showed that all parts should include existential restrictions involving the same

properties to deal correctly with the Open World Assumption.

7.3 Mobile devices

In this section, we summarize the main conclusions to the support for fuzzy ontologies

on mobile devices, demonstrating that objective O3 has been met.

− In order to increment the plethora of tools supporting fuzzy ontologies on mobile

devices, we developed two Android versions of Datil and Fudge. To the best

of our knowledge, these are the first apps to learn fuzzy datatypes on mobile

devices. Our evaluation of Datil shows that although the time required to finish

the learning process is higher on a smartphone, it is acceptable. Furthermore, we

observed that the difference with respect to a laptop computer depends on the

choice of the clustering algorithm used in the learning.

− To enlarge the number of real-world fuzzy ontology-based apps, to promote local

and remote reasoning on mobile devices, and to illustrate the usefulness of having

distributed fuzzy ontology files, we developed GimmeHop, a beer recommender

system for Android devices. It is a proof of concept showing that fuzzy logic,

fuzzy ontologies, semantic reasoners, and both local and remote reasoning can

230

be combined in mobile applications. Our experiments about the data traffic and

running time show that remote reasoning is feasible and cheap (in terms of both

data traffic and time). Local reasoning is only feasible if we limit the number

of individuals. The tested devices were able to support 2000–3000 beers, which

in our opinion would be enough in practice for most bars or stores interested in

recommending beers to their users.

− To promote hybrid reasoning on mobile devices, we developed a new version

of the fuzzy ontology reasoner fuzzyDL to make it the first semantic reasoner

that is both serializable and incremental. fuzzyDL can expand a fuzzy ontology

with some inferences that can be reused when answering different queries. It is

possible to serialize the Java object that represents the reasoner and save it into

a file (serializable) and reuse those inferences without restarting from scratch

(incremental). These features are particularly interesting for mobile devices, but

can be used on any device.

Our experiments show that fuzzyDL computes smaller serialized files than JFact,

the only other semantic reasoner that is serializable. fuzzyDL is also faster at both

serializing and deserializing. While being incremental is helpful at decreasing the

reasoning time, being also serializable slightly increases the cost of the first query

because it is necessary to restore the serialized version of the file. We have also

estimated the cost of downloading the file from a remote server before restoring

the reasoner and it seems acceptable. Therefore, the idea of reusing from a mobile

device a fuzzy ontology that was previously expanded in a different place (e.g.,

in a fast dedicated server) seems promising.

7.4 Real-world applications

This section summarizes the main conclusions to the development of fuzzy

ontology-based real-world applications, demonstrating that objective O4 has been met.

Profiling. We developed a system to define categories to classify the lifestyle profile

of a person. To do so, we considered a large volume of heterogeneous data

obtained from wearable sensors (used by a group of 40 volunteers) and described

a methodology to learn subclass fuzzy ontology axioms to define categories of

people. This methodology combines two fuzzy ontology learning techniques, the

algorithm to learn fuzzy datatypes implemented in Datil, and the algorithm to

learn subclass axioms implemented in Fuzzy DL-Learner. Both the data and the

231

results of the evaluation are owned by a private company and are confidential, so

only a few details are given here.

Recommendation. We developed GimmeHop, a beer recommender system for

Android mobile devices, using fuzzy ontologies and semantic reasoners. The

application domain, beers, is a hot topic which is receiving a notable attention

in the last years. In fact, two local companies were interested in the results of

our project. Using a fuzzy ontology with more than 15000 beers, GimmeHop can

be used to retrieve beers that satisfy some desired features, but also to retrieve

similar beers to a given one. GimmeHop is able to deal with user context (in

particular the location) by using fuzzy hedges, with user preferences by using

weighted mean aggregation, and with incomplete data by using quantifier-guided

OWA to provide weighting vectors with different sizes. We performed an

extensive evaluation of several features of the system, namely the data traffic,

the running time, the quality of the recommendations, and the quality of the

linguistic labels.

Gait recognition. We described a gait recognition system based on Microsoft Kinect

and fuzzy ontologies. This has several possible applications, including security

and medicine. Our system is rather quick at computing the recognition, making

it suitable for real-world scenarios. The main characteristic of our system is

the use of fuzzy ontologies, which has several benefits: they are more robust

against small changes in the values of the biometrical measures across different

steps, allow more detailed (by assigning a degree to the classification of a person)

and interpretable results (thanks to linguistic summaries), and all the benefits of

classical ontologies, such as providing automated reasoning (e.g., to check that

there are no inconsistencies), more readable datasets, or making maintenance and

data integration across applications easier. We have proposed an architecture

based on a schema ontology and several instantiated fuzzy ontologies including

biometric features of individuals. Our approach makes it possible to represent

both Microsoft Kinect V1 and V2 data and Nuitrack data, and all of the biometric

features reported in the literature, plus some new ones (211 in total). We have

also built a new dataset with 91 individuals (called the Zar2 dataset), discussed

how to build the fuzzy ontology (enumerating several preprocessing techniques

to improve the quality of the data), and showed how to use fuzzy logic to obtain

linguistic descriptions of the biometric features.

Such fuzzy ontologies were used to train a novel gait recognition algorithm from

Kinect data. The algorithm is based on step segmentation of the sequences,

232

use of fuzzy logic to deal with the imprecision of the sensor, and a voting

scheme to aggregate the values obtained for each step. Our system provides

an answer in a short time after the data are loaded in memory. The results of

our experiments show that our new method outperforms existing algorithms in

the case of individuals walking a straight line. We have also evaluated different

defuzzification operators, with some differences in the accuracy depending on

the dataset. Additionally, we evaluated our algorithm for lateral recordings

using a moving camera. In this case, our algorithm usually performs worse

and only the average defuzzification is comparable. We have also approached

the problem of recognizing new individuals not included in our knowledge base,

showing promising results.

Blockchain. We proposed a novel procedure to integrate fuzzy ontologies in

blockchain systems. This way, users can represent flexible restrictions using

fuzzy sets, and it is possible to develop smart contracts where there is a partial

agreement among the involved parts. For example, this is useful for commercial

transactions where some parameters are not strict but flexible, such as the price

or the delivery time. Another advantage is that it is possible to avoid the

ambiguity of natural languages, as well as to infer implicit knowledge or check for

inconsistencies, because the involved parts use a formal language to represent the

knowledge of an application domain. In particular, we proposed an architecture

based on a common ontology schema, a personal fuzzy ontology for each of the

involved parts, and a common ontology including the agreed values of the smart

contract. Our approach has been implemented in the Ethereum network, using

fuzzyDL reasoner to obtain the partial agreements, and IPFS P2P network to

store the common ontology. To compute partial agreements, we used a novel

strategy to compute a Pareto optimal fuzzy matchmaking between individuals.

Construction. We proposed a novel strategy to reason with larger Building

Information Modeling files, closer to those used in real-world applications,

based on flexible-faceted instance retrieval, and developed a prototype desktop

application. We considered a real BIM model as a case of study. The model was

converted from IFC to OWL (RDF syntax) using an existing tool. We showed

that such a big model could not be supported by two classical reasoners. Hence,

the final ontology was fragmented; for operativeness, we restricted the tests and

evaluations to just the third floor of the dataset. Also, with this submodule we

built a fuzzy ontology updated with new property assertions, concept assertions

and fuzzy datatypes.

233

We evaluated the performance of our proposal by measuring the times of retrieval

of the data property values of each individual. We conclude that TrOWL reasoner

give us satisfactory results. We also found that the query times can be reduced

when using additional data structures (an extra hash table). Another finding

is that our tool requires a considerable initial time to classify the ontology, but

following queries require less time.

7.5 Future work

To conclude this thesis, let us mention some possible directions for our future research.

Fuzzy ontology learning

− We plan to evaluate Datil on more real-world domains, as this practical experience

will surely provide more ideas to extend our tool. It would also be interesting to

evaluate Datil taking into account some objective measures, such as the partition

coefficient (PC), the partition entropy (PE), or the Chen index [ESAA+18]. We

could also implement more sophisticated clustering algorithms such as DBSCAN,

which is more robust as it manages the noise [EKSX96, SSE+17], or incremental

algorithms [BKT20] to support a dynamic update of the definitions.

− The modular design of Fudge makes it very easy to incorporate more fuzzy

operators. Therefore, we plan to add more general linguistic aggregation

operators, e.g., some not verifying internality or assuming a vector of

non-numerical weights [Xu12]. More general linguistic operators include the

linguistic weighted OWA [Tor97] or the fuzzy triangular ordered weighted

arithmetic operators (based on a t-norm and a t-conorm) [SG18]. It would be

interesting to support different quantifiers, or alternative rankings between fuzzy

membership functions. Last but not least, it would be interesting to study other

scenarios in which the experts are allowed to use already existing linguistic terms,

possibly different to the labels used by other experts. To this aim, we plan to

leverage existing work on defining reasoning-preserving mappings between local

linguistic terms [ACEG+94].

− As some users have requested, we plan to wrap our implementations of Datil

and Fudge as Protégé plug-in in order to better integrate the tool into the fuzzy

ontology development process. This way, it would be possible to directly create

a fuzzy ontology, learn some fuzzy datatypes, and query the aggregated ontology

from Protégé. Right now, these steps can be carried out, but an intermediate step

234

involving Datil or Fudge is needed. The plug-ins may also be good for gathering

data from user usage to carry out a more extensive experimental validation.

− Since datatype learning is a complementary technique to other approaches for

fuzzy ontology learning, our implementations of Datil and Fudge could be used

to extend Fuzzy DL-Learner, a system learning fuzzy subclass axioms.

− We would also like to study how to learn the definitions for non-numerical data

properties, such as dates.

Fuzzy ontology reasoning

− Regarding the flexible faceted instance retrieval, it would be interesting to develop

similar algorithms for other similar sets of restrictions on the fuzzy ontology.

− Regarding the instance retrieval algorithm, we could evaluate it with more fuzzy

ontologies, either real or artificial, with more dependent variables. In such cases,

we would like to study the best strategy to solve the optimization problems (i.e.,

merging all problems in Otwo or more, solving all of them independently, or using

a hybrid approach).

− We would also like to implement (by extending fuzzyDL) and evaluate the

realization algorithm.

− Developing more specific algorithms for other reasoning tasks, such as the

classification, would also be interesting.

− The similarity between individuals could be evaluated on more real applications,

to have a better understanding of the impact of alternative fuzzy operators.

− Regarding the fuzzy matchmaking algorithm, a fuzzy similarity degree between

non-numerical constraints would be useful.

Mobile devices

− The main task is developing a version of fuzzyDL working on mobile devices.

Because it is implemented in Java, it seems easier to develop an Android version.

So far, the only problem is that it uses a third-party library (Gurobi) for

which currently there is no Android version. A possibility could be to replace

Gurobi with another library solving mathematical optimization problems (in

particular, Mixed Integer Linear Programming problems) completely developed

in the fragment of Java compatible with Android. With this Android version,

235

one could investigate whether in mobile devices with limited resources the time

to expand a fuzzy ontology, which is expected to be higher, will be higher than

the deserialization time more often than in our evaluation. Another obvious

idea is the development of a new version of fuzzyDL supporting the OWL API,

so that it is possible to manage volatile information as proposed in [BBMP17].

Fortunately, to make the communication between the metareasoner and fuzzyDL

possible, it might be possible to implement only a very small fragment of the

OWL API. Last but not least, fuzzyDL parser to load OWL 2 ontologies could

be improved (we found some bugs in ontologies encoded in the fragment of OWL 2

that fuzzyDL supports) and fuzzyDL preprocessing could be extended (e.g., with

class classification [Str13]) in order to reduce the query time.

− We could also evaluate the performance of the Android version of Fudge,

comparing the performance on mobile devices and desktop computers.

− Finally, the evaluation of the performance of Datil on mobile devices could be

improved by considering more ontologies and more heterogeneous mobile devices.

Applications

− Regarding the identification of categories to profile people, we would like to

consider other real-world domains using open data, so the evaluation is more

reproducible. Furthermore, given the importance of sensor data, we could think

of developing a mobile version of the system using Datil and without any remote

computing.

− Regarding GimmeHop, the main direction for the future work is to take user

feedback into account for future recommendations. So far, we take into account

a global rating defined by the community, but it would also be interesting

to take into account the user personal rating. Another possible extension is

providing social recommendations, i.e., recommending products that a user with

similar profiles liked. This would require a characterization of the user profile

and letting the aggregation operator take into account the similarity between

user profiles. As already discussed, it would also be desirable to build more

complex representations of the possible values for some attributes of a beer, such

as flavor, aroma, or foam. Furthermore, the individuals of the ontology could

include values for the attributes price, color, or turbidity. In that case, we could

use Datil to compute their associated linguistic labels and to include them in

the recommendation process as well. Our definition of context could also be

236

extended to consider other factors, such as the temperature (e.g., Berliner Weiße

is particularly appropriate for summer) or food to combine with (e.g., Guinness

is a good choice to combine with a chocolate cake). Moreover, we could introduce

fuzziness at other levels. For instance, we could assume that a beer belongs to

a type with some degree, or that a beer type is a subtype of another one with

some degree. In this case, data acquisition seems particularly challenging.

− Regarding our gait recognition system, there are many ideas for future work.

Firstly, other Artificial Intelligence techniques could be applied to this problem

to learn the biometric features. In particular, we think that neural networks

and deep learning might be interesting: a preliminary step in this direction is

described in [DALV+18]. Secondly, fuzzy logic theory provides a plethora of

different operators that could be applied. For example, we could apply alternative

defuzzification operators to compute the similarity between two features, or

aggregation operators to compute the similarity between two steps. It seems

particularly promising the use of alternative operators to compute the similarity

between two sequences. When the number of steps is very high, as it happened

in the dataset And1, a t-norm seems too strong, and other aggregation operators,

such as a weighted mean or OWA, might be more suitable. Thirdly, it could be

interesting to investigate the optimal number of sequences for each individual.

If it is possible to keep the accuracy of the system, the smaller the training

size, the faster the classification. Fourthly, we noticed when building our dataset

that reflective clothing affects the quality of the recordings. We would like to

understand the limits of the sensor by studying whether different footwear (e.g.,

high heels vs. flat shoes) or clothing (e.g. wide clothes vs. tight clothes) in

the training and test data has an impact on the classification. We expect some

measures to keep having similar values (such as the length of the bones), but the

global effect is still unknown. Fifthly, human gait is not exactly symmetrical.

So far, although our fuzzy ontology stores the moving leg of a step, we do not

take it into account to compute the similarity between steps. We think that

the two most similar steps should correspond to the same leg, but we have not

checked that empirically. This could allow to reduce the number of comparisons

by half, as only steps of the same leg should be considered. Last but not least,

more sophisticated procedures to identify new individuals involving the degree of

similarity between the steps might be interesting.

− Regarding our blockchain system, we need to evaluate our proposed architecture

on a real scenario with multiple users and transactions in real time. The

237

evaluation could include the running time, the performance of the Eventheum

events of the system, as well as a security and vulnerability analysis. In

this regards, we could do a security analysis of smart contracts as suggested

in [NSA+19]. Hopefully, the use of logical languages can also help to improve the

security of blockchain systems.

− Regarding the prototype to query BIM models, we could improve the size of the

fragments that can be supported, as the whole ontology is not currently supported

by the classical reasoners and could not be evaluated. For example, a possible

strategy would be using a preprocessing step to filter the ontology (or fragments)

and reduce the sizes guided by some specific classes (used as an initial signature

to be preserved). Another future work could be improving the implementation to

automatically split the ontology into subontologies, or using more sophisticated

parsers to translate the BIM model into OWL. Finally, it would be interesting to

test a set of use cases with a high-level digital representation of a real building.

238

Conclusiones y trabajo futuro

En este caṕıtulo, resumimos las principales conclusiones de esta tesis, dedicada a la

gestión avanzada del conocimiento semántico difuso. Las conclusiones se agrupan en

varias categoŕıas: contribuciones al aprendizaje de ontoloǵıas difusas, razonamiento

con ontoloǵıas difusas, soporte para dispositivos móviles y desarrollo de aplicaciones

del mundo real. Finalmente, discutimos las principales direcciones a seguir en el trabajo

futuro.

Aprendizaje de ontoloǵıas difusas

En esta sección, resumimos las principales conclusiones del aprendizaje de elementos

de ontoloǵıas difusas, lo que demuestra que se ha cumplido el objetivo O1.

− Propusimos una estrategia para aprender tipos de datos difusos locales,

espećıficos de un individuo. Usando los valores numéricos de las propiedades de

datos, construimos una función de pertenencia triangular para cada propiedad

de los datos usando el promedio y la desviación estándar. Este enfoque se ha

validado en una aplicación de reconocimiento de la marcha, donde la imprecisión

del dispositivo utilizado para capturar los datos se puede gestionar combinando

los valores correspondientes a diferentes fotogramas de v́ıdeo.

− Propusimos una estrategia para aprender tipos de datos difusos globales a partir

de los valores numéricos de las propiedades de datos. Tras ejecutar un algoritmo

de agrupamiento basado en centroides, utiliza los centroides como parámetros de

algunas funciones de pertenencia difusas que dividen el dominio. Este enfoque

se implementó en el sistema Datil, que admite diferentes formatos de entrada

y salida, tres algoritmos de agrupamiento bien conocidos y puede extender

ontoloǵıas clásicas al caso difuso, pero también enriquecer las ontoloǵıas difusas

existentes. La herramienta calcula automáticamente nombres legibles para los

tipos de datos difusos descubiertos. También hemos discutido cómo el aprendizaje

de tipos de datos difusos se ha aplicado a tres aplicaciones del mundo real: perfiles

239

semánticos de estilo de vida, recomendación de cerveza y reconocimiento de la

forma de andar.

– En el perfil de estilo de vida, caracterizamos el estilo de vida de las personas

a partir de sus rastros digitales: usamos datos numéricos obtenidos de

diferentes sensores para construir tipos de datos difusos usando Datil, de

modo que las definiciones de categoŕıas usan términos lingǘısticos que son

fácilmente interpretables por usuarios humanos.

– En el reconocimiento de la marcha, se utilizó Datil para calcular

resúmenes lingǘısticos de las caracteŕısticas de los individuos en la base

de conocimiento. Esto se puede utilizar para proporcionar explicaciones de

las decisiones del sistema, promoviendo la Inteligencia Artificial Explicable.

– En el dominio de la cerveza, Datil calculó la definición de tipos de datos

difusos que representan, por ejemplo, un bajo grado de alcohol o un amargor

muy alto. Un grupo de expertos evaluó la calidad de las etiquetas lingǘısticas

calculadas por Datil, demostrando que es similar a las definiciones dadas por

humanos. Además, pudimos identificar la mejor estrategia de aprendizaje:

usar el algoritmo de agrupamiento mean-shift.

− Resolvimos el problema de crear un solo tipo de dato difuso a partir de múltiples

definiciones de tipos de datos difusos mediante el uso de operadores de agregación

lingǘıstica. Nuestra propuesta admite los tipos de datos difusos del lenguaje

Fuzzy OWL 2 y está implementada en el sistema Fudge. Si bien los operadores

de agregación se han utilizado previamente en ontoloǵıas difusas para combinar

valores numéricos en [0, 1], nos enfocamos en la agregación de funciones de

pertenencia difusas. Nuestro enfoque puede utilizar operadores de agregación

nuevos y existentes. En particular, hemos propuesto dos nuevos operadores, una

forma recursiva por la izquierda de la combinación convexa (CONV–LRF) y del

OWA lingǘıstico (LOWA–LRF). Un análisis emṕırico muestra que el porcentaje

de coincidencias entre ambos operadores es inversamente proporcional al número

de expertos, y que ambos operadores tienen un grado de orness similar. En

cuanto a las estrategias de agregación existentes, hemos estudiado CONV–RRF,

OWA lingǘıstico estándar (LOWA–RRF), media ponderada (WMEAN) y OWA

difusa (FOWA). Discutimos las caracteŕısticas más relevantes de todas estas

estrategias de agregación, por ejemplo, la posibilidad de asignar un peso a un

experto espećıfico y la posibilidad de obtener como resultado un valor que no fue

proporcionado por ningún experto. Además, mostramos cómo obtener los pesos

240

de cuantificadores difusos o un valor orness en problemas con datos incompletos,

en los que no todos los expertos brindan una definición para cada tipo de datos

difuso.

Razonamiento con ontoloǵıas difusas

Esta sección resume las principales conclusiones del razonamiento de la ontoloǵıa difusa,

demostrando que se ha cumplido el objetivo O2 .

− Propusimos dos algoritmos espećıficos para resolver los problemas de recuperación

de instancias y realización. Hasta donde sabemos, este es el primer trabajo que no

repite una tarea de razonamiento (mejor grado de implicación lógica) para todos

los individuos o conceptos de la ontoloǵıa. Nuestro enfoque se puede implementar

en una familia de algoritmos para razonar con DLs difusas que combinan un

algoritmo tableaux y un problema de optimización, y se basa en fusionar los

problemas de optimización en tres problemas de optimización de acuerdo con la

cantidad de variables a optimizar: cero, una, o más de una. La clave es que

los dos primeros problemas se pueden resolver solo una vez. Además, nuestra

experiencia muestra que, en la práctica, este último problema a menudo está

vaćıo; es decir, la recuperación de instancias a menudo conduce a problemas de

optimización independientes que se pueden fusionar para resolverlos como un solo

problema.

Nuestro algoritmo de recuperación de instancias ha sido implementado en el

razonador de ontoloǵıas difusas fuzzyDL y realizamos una evaluación emṕırica

con varias ontoloǵıas difusas, algunas de ellas con un número importante de

individuos. Nuestros experimentos confirman que nuestro nuevo algoritmo para

calcular la recuperación de instancias supera a la implementación anterior en

todos los casos que involucran ontoloǵıas consistentes, y la reducción del tiempo

de razonamiento es más importante a medida que crece el número de individuos

en la ontoloǵıa. Además, en casi todos los casos, fue suficiente con resolver un

solo problema de optimización. Sin embargo, en ontoloǵıas inconsistentes, el

algoritmo básico encuentra la inconsistencia más rápido.

− Identificamos una tarea de razonamiento novedosa, la recuperación de instancias

flexible y facetada, que ampĺıa la recuperación de instancias difusas tradicional

para reducir los resultados de la consulta al imponer algunas condiciones,

descritas mediante tipos de datos difusos, en los valores de algunas propiedades

de datos. También identificamos algunos casos que son comunes en la práctica

241

(posibles restricciones en los elementos de la ontoloǵıa que son realmente difusos)

y simplifican la solución del problema. En particular, propusimos dos algoritmos

de razonamiento minimalistas cuya idea principal es reducir el problema a una

inferencia crisp clásica, que puede ser resuelta por cualquier razonador semántico

clásico, y luego realizar algunos cálculos adicionales manejando la parte difusa

de las ontoloǵıas. Estos algoritmos han demostrado su validez en un sistema de

recomendación de cerveza y en la consulta de ficheros de modelado de información

de construcción.

− Proporcionamos un enfoque novedoso para calcular la similitud difusa entre

individuos en una ontoloǵıa difusa. En comparación con el único trabajo similar

existente, nuestro enfoque es capaz de calcular similitudes locales (entre los

valores de una propiedad de datos) cuando los valores se representan utilizando

tipos de datos difusos en lugar de valores numéricos, y se basa en la defuzzificación

de una intersección de conjuntos difusos. Además, nuestra similitud global

(combinando similitudes locales) es muy general ya que admite cualquier operador

de agregación. También discutimos el caso donde dos individuos no tienen las

mismas propiedades. Este enfoque se evaluó con éxito en una aplicación de

reconocimiento de la marcha.

− Proporcionamos un enfoque novedoso para calcular un emparejamiento difuso

entre individuos en una ontoloǵıa difusa. Formulamos nuestro problema como

una tarea de razonamiento de ontoloǵıa difusa, calculando el mejor grado de

satisfacibilidad de una combinación de conceptos difusos que representan las

restricciones de cada una de las partes. Ampliamos los enfoques anteriores

considerando más de dos partes involucradas y permitiendo funciones más

generales. También demostramos que la suma ponderada estricta y las t-normas

estrictas conducen a soluciones que verifican la óptimalidad de Pareto. Usando

una suma ponderada estricta, podemos controlar los acuerdos demasiado injustos

al ponderar la importancia de las partes involucradas. También mostramos

que todas las partes deben incluir restricctiones existenciales sobre las mismas

propiedades para manejar correctamente la hipótesis de mundo abierto.

Soporte a dispositivos móviles

En esta sección, resumimos las principales conclusiones del soporte de ontoloǵıas difusas

en dispositivos móviles, demostrando que se ha cumplido el objetivo O3.

− Para incrementar la plétora de herramientas que admiten ontoloǵıas difusas en

242

dispositivos móviles, desarrollamos dos versiones de Android de Datil y Fudge.

Hasta donde sabemos, estas son las primeras aplicaciones que aprenden tipos de

datos difusos en dispositivos móviles. Nuestra evaluación de Datil muestra que

aunque el tiempo requerido para terminar el proceso de aprendizaje es mayor

en un teléfono inteligente, es aceptable. Además, observamos que la diferencia

con respecto a una computadora portátil depende de la elección del algoritmo de

agrupamiento utilizado en el aprendizaje.

− Para aumentar la cantidad de aplicaciones basadas en ontoloǵıas difusas del

mundo real, promover el razonamiento local y remoto en dispositivos móviles

e ilustrar la utilidad de tener ontoloǵıas difusas en ficheros distribuidos,

desarrollamos GimmeHop, un sistema de recomendación de cerveza para

dispositivos Android. Es una prueba de concepto que muestra que la lógica

difusa, las ontoloǵıas difusas, los razonadores semánticos y el razonamiento

tanto local como remoto se pueden combinar en aplicaciones móviles. Nuestros

experimentos sobre el tráfico de datos y el tiempo de ejecución muestran que el

razonamiento remoto es factible y eficiente (tanto en términos de tráfico de datos

como de tiempo). El razonamiento local sólo es factible si limitamos el número

de individuos. Los dispositivos probados fueron capaces de soportar 2000–3000

cervezas, lo que en nuestra opinión seŕıa suficiente en la práctica para la mayoŕıa

de bares o tiendas interesadas en recomendar cervezas a sus usuarios.

− Para promover el razonamiento h́ıbrido en dispositivos móviles, desarrollamos

una nueva versión del razonador de ontoloǵıa difusa fuzzyDL para convertirlo

en el primer razonador semántico serializable e incremental. fuzzyDL puede

expandir una ontoloǵıa difusa con algunas inferencias que se pueden reutilizar

al responder diferentes consultas. Es posible serializar el objeto Java que

representa el razonador y guardarlo en un archivo (serializable) y reutilizar

esas inferencias sin reiniciar desde cero (incremental). Estas caracteŕısticas son

particularmente interesantes para dispositivos móviles, pero se pueden usar en

cualquier dispositivo.

Nuestros experimentos muestran que fuzzyDL calcula archivos serializados más

pequeños que JFact, el otro razonador semántico que también es serializable.

Además, fuzzyDL es más rápido tanto en la serialización como en la

deserialización. Si bien ser incremental es útil para disminuir el tiempo de

razonamiento, ser también serializable aumenta ligeramente el costo de la primera

consulta porque es necesario restaurar la versión serializada del archivo. También

hemos estimado el costo de descargar el archivo desde un servidor remoto antes

243

de restaurar el razonador y parece aceptable. Por lo tanto, la idea de reutilizar

desde un dispositivo móvil una ontoloǵıa difusa que se expandió previamente en

un lugar diferente (por ejemplo, en un servidor dedicado) parece prometedora.

Aplicaciones reales

Esta sección resume las principales conclusiones del desarrollo de aplicaciones reales

basadas en ontoloǵıas difusas, demostrando que se ha cumplido el objetivo O4.

Perfiles. Desarrollamos un sistema de definición de categoŕıas para clasificar el

perfil de estilo de vida de una persona. Para hacerlo, consideramos un gran

volumen de datos heterogéneos obtenidos de sensores wearable (utilizados por

un grupo de voluntarios de 40) y describimos una metodoloǵıa para aprender

axiomas de ontoloǵıa difusa de subclases para definir categoŕıas de personas.

Esta metodoloǵıa combina dos técnicas de aprendizaje de ontoloǵıas difusas,

el algoritmo para aprender tipos de datos difusos implementado en Datil

y el algoritmo para aprender axiomas de subclases implementado en Fuzzy

DL-Learner. Tanto los datos como los resultados de la evaluación son propiedad

de una empresa privada y son confidenciales, por lo que aqúı solo se brindan

algunos detalles.

Recomendación. Desarrollamos GimmeHop, un sistema de recomendación de

cerveza para dispositivos móviles Android, utilizando ontoloǵıas difusas y

razonadores semánticos. El dominio de aplicación, cervezas, es un tema

importante que está recibiendo una atención notable en los últimos años. De

hecho, dos empresas locales se interesaron por los resultados de nuestro proyecto.

Usando una ontoloǵıa difusa con más de 15000 cervezas, GimmeHop puede usarse

para recuperar cervezas que satisfacen algunas caracteŕısticas deseadas, pero

también para recuperar cervezas similares a una dada. GimmeHop es capaz de

tratar con el contexto del usuario (en particular, la ubicación) mediante el uso de

modificadores difusos, con las preferencias del usuario mediante el uso de la media

ponderada como agregación y con datos incompletos utilizando cuantificadores

lingǘısticos para calcular vectores de pesos con diferentes tamaños. Realizamos

una evaluación exhaustiva de varias caracteŕısticas del sistema: el tráfico de datos,

el tiempo de ejecución, la calidad de las recomendaciones y la calidad de las

etiquetas lingǘısticas.

Reconocimiento de la marcha. Describimos un sistema de reconocimiento de la

marcha basado en Microsoft Kinect y ontoloǵıas difusas. Esto tiene varias

244

aplicaciones posibles, como la seguridad y la medicina. Nuestro sistema es

bastante rápido para calcular el reconocimiento, lo que lo hace adecuado para

escenarios del mundo real. La principal caracteŕıstica de nuestro sistema es el

uso de ontoloǵıas difusas, que tiene varios beneficios: son más robustas frente

a pequeños cambios en los valores de las medidas biométricas a lo largo de

diferentes pasos, permiten obtener información más detallada (asignando un

grado a la clasificación de una persona) y resultados interpretables (gracias a

los resúmenes lingǘısticos), y todos los beneficios de las ontoloǵıas clásicas, como

proporcionar razonamiento automatizado (por ejemplo, para verificar que no haya

inconsistencias), conjuntos de datos más legibles o facilitar el mantenimiento

y la integración de datos entre aplicaciones. Propusimos una arquitectura

basada en una ontoloǵıa de esquema y varias ontoloǵıas difusas instanciadas

que incluyen caracteŕısticas biométricas de individuos. Nuestro enfoque hace

posible representar tanto los datos de Microsoft Kinect V1 y V2 como los

datos de Nuitrack, y todas las caracteŕısticas biométricas reportadas en la

literatura, además de algunas nuevas (211 en total). También construimos un

nuevo conjunto de datos con 91 individuos (llamado conjunto de datos Zar2),

discutimos cómo construir la ontoloǵıa difusa (enumerando varias técnicas de

preprocesamiento para mejorar la calidad de los datos) y mostramos cómo usar

la lógica difusa para obtener descripciones lingǘısticas de las caracteŕısticas

biométricas.

Estas ontoloǵıas difusas se utilizaron para entrenar un nuevo algoritmo de

reconocimiento de la marcha a partir de los datos de Kinect. El algoritmo

se basa en la segmentación por pasos de las secuencias, el uso de lógica

difusa para lidiar con la imprecisión del sensor y un esquema de votación para

agregar los valores obtenidos para cada paso. Nuestro sistema proporciona una

respuesta en poco tiempo después de que los datos se cargan en la memoria.

Los resultados de nuestros experimentos muestran que nuestro nuevo método

supera a los algoritmos existentes en el caso de personas que caminan en

ĺınea recta. También hemos evaluado diferentes operadores de defuzzificación,

con algunas diferencias en la precisión según el conjunto de datos. Además,

evaluamos nuestro algoritmo para grabaciones laterales utilizando una cámara

en movimiento. En este caso, nuestro algoritmo suele funcionar peor y solo un

método de defuzzificación (el promedio) es comparable. También hemos abordado

el problema del reconocimiento de nuevos individuos no incluidos en nuestra base

de conocimiento, mostrando resultados prometedores.

245

Blockchain. Propusimos un procedimiento novedoso para integrar ontoloǵıas difusas

en sistemas blockchain. De esta manera, los usuarios pueden representar

restricciones flexibles utilizando conjuntos difusos y es posible desarrollar

contratos inteligentes donde existe un acuerdo parcial entre las partes

involucradas. Por ejemplo, esto es útil para transacciones comerciales donde

algunos parámetros no son estrictos sino flexibles, como el precio o el tiempo de

entrega. Otra ventaja es que es posible evitar la ambigüedad de los lenguajes

naturales, aśı como inferir conocimientos impĺıcitos o verificar inconsistencias,

ya que las partes involucradas utilizan un lenguaje formal para representar

el conocimiento de un dominio de aplicación. En particular, propusimos una

arquitectura basada en un esquema de ontoloǵıa común, una ontoloǵıa difusa

personal para cada una de las partes involucradas y una ontoloǵıa común que

incluye los valores acordados del contrato inteligente. Nuestro enfoque se ha

implementado en la red Ethereum, utilizando el razonador fuzzyDL para obtener

los acuerdos parciales y la red IPFS P2P para almacenar la ontoloǵıa común.

Para calcular los acuerdos parciales, utilizamos una estrategia novedosa para

calcular un emparejamiento difuso entre individuos verificando la optimalidad de

Pareto.

Construcción. Propusimos una estrategia novedosa para razonar con ficheros de

modelado de información de construcción (BIM) más grandes, más cercanos a

los que se usan en aplicaciones del mundo real, basada en la recuperación de

instancias flexible y facetada, y desarrollamos un prototipo. Consideramos un

modelo BIM real como caso de estudio, que convertimos de IFC a OWL (sintaxis

RDF) usando una herramienta existente. Mostramos que dos razonadores clásicos

no pod́ıan soportar un modelo tan grande, por lo que la ontoloǵıa final quedó

fragmentada; por operatividad, restringimos las pruebas y evaluaciones solo al

tercer piso del conjunto de datos. Además, con este submódulo construimos

una ontoloǵıa difusa actualizada con nuevos asertos de propiedades, asertos de

conceptos y tipos de datos difusos.

Evaluamos el desempeño de nuestra propuesta midiendo los tiempos de

recuperación de los valores de las propiedades de datos de cada individuo.

Concluimos que el razonador TrOWL da resultados satisfactorios. También

descubrimos que los tiempos de consulta se pueden reducir cuando se usan

estructuras de datos adicionales (una tabla hash). Otro hallazgo es que nuestra

herramienta requiere un tiempo inicial considerable para clasificar la ontoloǵıa,

pero las siguientes consultas requieren menos tiempo.

246

Trabajo futuro

Para concluir esta tesis, mencionemos algunas posibles direcciones para nuestra futura

investigación.

Aprendizaje de ontoloǵıas difusas

− Planeamos evaluar Datil en más dominios del mundo real, ya que esta experiencia

práctica seguramente proporcionará más ideas para ampliar nuestra herramienta.

También seŕıa interesante evaluar Datil teniendo en cuenta algunas medidas

objetivas, como el coeficiente de partición (PC), la entroṕıa de partición (PE)

o el ı́ndice de Chen [ESAA+18]. También podŕıamos implementar algoritmos de

agrupamiento más sofisticados como DBSCAN, que es más sólido ya que gestiona

el ruido [EKSX96, SSE+17], o algoritmos incrementales [BKT20] para admitir

una actualización dinámica de las definiciones.

− El diseño modular de Fudge hace que sea muy fácil incorporar más operadores

difusos. Por lo tanto, planeamos agregar operadores de agregación lingǘıstica

más generales, por ejemplo, algunos que no verifican la internalidad o

asumen un vector de pesos no numéricos [Xu12]. Entre los operadores

lingǘısticos más generales se hallan OWA ponderado lingǘıstico [Tor97] o los

operadores aritméticos ponderados triangulares (basados en una t-norma y

una t-conorma) [SG18]. Seŕıa interesante soportar diferentes cuantificadores,

o relaciones de orden alternativas entre funciones de pertenencia difusas. Por

último, pero no menos importante, seŕıa interesante estudiar otros escenarios en

los que se permita a los expertos utilizar términos lingǘısticos ya existentes,

posiblemente diferentes a las etiquetas utilizadas por otros expertos. Con

este objetivo, planeamos aprovechar el trabajo existente sobre la definición

de asignaciones que preservan el razonamiento entre los términos lingǘısticos

locales [ACEG+94].

− A petición de algunos usuarios, planeamos codificar nuestras implementaciones

de Datil y Fudge como plug-ins de Protégé para integrar mejor la herramienta

en el proceso de desarrollo de ontoloǵıas difusas. De esta forma, seŕıa posible

crear directamente una ontoloǵıa difusa, aprender algunos tipos de datos difusos

y consultar la ontoloǵıa desde Protégé. En este momento, estos pasos se pueden

llevar a cabo, pero se necesita un paso intermedio que involucre a Datil o Fudge.

Los plug-ins también puede ser bueno para recopilar datos del uso del usuario

para llevar a cabo una validación experimental más extensa.

247

− Dado que el aprendizaje de tipos de datos es una técnica complementaria a otros

enfoques para el aprendizaje de ontoloǵıas difusas, nuestras implementaciones de

Datil y Fudge podŕıan usarse para extender Fuzzy DL-Learner, un sistema que

aprende axiomas de subclases difusas.

− También nos gustaŕıa estudiar cómo aprender las definiciones de las propiedades

de datos no numéricos, como las fechas.

Razonamiento con ontoloǵıas difusas

− Con respecto a la recuperación de instancias flexible y facetada, seŕıa interesante

desarrollar algoritmos similares para otros conjuntos similares de restricciones en

la ontoloǵıa difusa.

− En cuanto al algoritmo de recuperación de instancias, podŕıamos evaluarlo

con más ontoloǵıas difusas, ya sean reales o artificiales, con más variables

dependientes. En tales casos, nos gustaŕıa estudiar la mejor estrategia para

resolver los problemas de optimización (es decir, fusionar todos los problemas en

Otwo or more, resolverlos todos de forma independiente o usar un enfoque h́ıbrido).

− También nos gustaŕıa implementar (extendiendo fuzzyDL) y evaluar el algoritmo

de realización.

− También seŕıa interesante desarrollar algoritmos más espećıficos para otras tareas

de razonamiento, como la clasificación.

− La similitud entre los individuos podŕıa evaluarse en aplicaciones más reales, para

tener una mejor comprensión del impacto de los operadores difusos alternativos.

− Con respecto al algoritmo de emparejamiento difuso, seŕıa útil un grado de

similitud difuso entre restricciones no numéricas.

Soporte a dispositivos móviles

− La tarea principal es desarrollar una versión de fuzzyDL que funcione en

dispositivos móviles. Debido a que está implementado en Java, parece más

fácil desarrollar una versión de Android. Hasta ahora, el único problema es

que utiliza una libreŕıa de terceros (Gurobi) para la que actualmente no existe

una versión de Android. Una posibilidad podŕıa ser reemplazar Gurobi con

otra libreŕıa que resuelva problemas de optimización matemática (en particular,

problemas de programación lineal entera mixta) completamente desarrollada en

248

el fragmento de Java compatible con Android. Con esta versión de Android se

podŕıa investigar si en dispositivos móviles con recursos limitados el tiempo de

expansión de una ontoloǵıa difusa será mayor que el tiempo de deserialización

con más frecuencia que en nuestra evaluación. Otra idea obvia es el desarrollo de

una nueva versión de fuzzyDL que admita la OWL API, de modo que sea posible

manejar información volátil como se propone en [BBMP17]. Afortunadamente,

para hacer posible la comunicación entre el meta–razonador y fuzzyDL, podŕıa

ser posible implementar solo un fragmento muy pequeño de la OWL API. Por

último, pero no menos importante, se podŕıa mejorar el analizador fuzzyDL

para cargar ontoloǵıas OWL 2 (encontramos algunos errores en las ontoloǵıas

codificadas en el fragmento de OWL 2 que admite fuzzyDL) y se podŕıa ampliar

el preprocesamiento de fuzzyDL (por ejemplo, con clasificación de clases [Str13])

para reducir el tiempo de consulta.

− También evaluamos el rendimiento de la versión Android de Fudge, comparando

el rendimiento en dispositivos móviles y computadoras de escritorio.

− Finalmente, la evaluación del desempeño de Datil en dispositivos móviles podŕıa

mejorarse considerando más ontoloǵıas y dispositivos móviles más heterogéneos.

Aplicaciones reales

− En cuanto a la identificación de categoŕıas para el perfil de personas, nos gustaŕıa

considerar otros dominios del mundo real usando datos abiertos, para que la

evaluación sea más reproducible. Además, dada la importancia de los datos

de los sensores, podŕıamos pensar en desarrollar una versión móvil del sistema

usando Datil y sin ninguna computación remota.

− Con respecto a GimmeHop, la dirección principal para el trabajo futuro es tener

en cuenta los comentarios de los usuarios para futuras recomendaciones. Hasta

ahora, tenemos en cuenta una calificación global definida por la comunidad, pero

seŕıa interesante tener en cuenta también la calificación personal del usuario.

Otra posible extensión es brindar recomendaciones sociales, es decir, recomendar

productos que le gusten a un usuario con perfiles similares. Esto requeriŕıa una

caracterización del perfil de usuario y dejar que el operador de agregación tenga

en cuenta la similitud entre los perfiles de usuario. Como ya se discutió, también

seŕıa deseable construir representaciones más complejas de los posibles valores

de algunos atributos de una cerveza, como sabor, aroma o espuma. Además,

los individuos de la ontoloǵıa podŕıan incluir valores para los atributos precio,

249

color o turbiedad. En ese caso, podŕıamos usar Datil para calcular sus etiquetas

lingǘısticas asociadas e incluirlas también en el proceso de recomendación.

Nuestra definición de contexto también podŕıa extenderse para considerar otros

factores, como la temperatura (por ejemplo, Berliner Weiße es particularmente

apropiada para el verano) o comida para maridar (por ejemplo, Guinness es una

buena opción para combinar con una tarta de chocolate). Además, podŕıamos

introducir ambigüedad a otros niveles. Por ejemplo, podŕıamos suponer que una

cerveza pertenece a un tipo con algún grado, o que un tipo de cerveza es un

subtipo de otro con algún grado. En este caso, la adquisición de datos parece

particularmente desafiante.

− Con respecto a nuestro sistema de reconocimiento de la marcha, hay muchas

ideas para trabajos futuros. En primer lugar, se podŕıan aplicar otras técnicas

de Inteligencia Artificial a este problema para aprender las caracteŕısticas

biométricas. En particular, creemos que las redes neuronales y el aprendizaje

profundo pueden ser interesantes: un paso preliminar en esta dirección se describe

en [DALV+18]. En segundo lugar, la lógica difusa proporciona una plétora

de diferentes operadores que podŕıan aplicarse. Por ejemplo, podŕıamos aplicar

operadores de defuzzificación alternativos para calcular la similitud entre dos

caracteŕısticas u operadores de agregación para calcular la similitud entre dos

pasos. Parece particularmente prometedor el uso de operadores alternativos para

calcular la similitud entre dos secuencias. Cuando el número de pasos es muy

alto, como sucedió en el conjunto de datos And1, una t-norma parece demasiado

estricta y otros operadores de agregación, como una media ponderada u OWA,

podŕıan ser más adecuados. En tercer lugar, podŕıa ser interesante investigar

el número óptimo de secuencias para cada individuo. Si es posible mantener la

precisión del sistema, cuanto menor sea el tamaño del entrenamiento, más rápida

será la clasificación. En cuarto lugar, notamos al construir nuestro conjunto de

datos que la ropa reflectante afecta la calidad de las grabaciones. Nos gustaŕıa

comprender los ĺımites del sensor al estudiar si el calzado diferente (ejemplo,

tacones altos frente a zapatos planos) o ropa (ejemplo, ropa ancha frente a

ropa ajustada) en los datos de entrenamiento y prueba tiene un impacto en

la clasificación. Esperamos que algunas medidas sigan teniendo valores similares

(como la longitud de los huesos), pero aún se desconoce el efecto global. En

quinto lugar, la marcha humana no es exactamente simétrica. Hasta ahora,

aunque nuestra ontoloǵıa difusa almacena el pie de un paso, no lo tomamos

en cuenta para calcular la similitud entre pasos. Pensamos que los dos pasos más

250

similares debeŕıan corresponder al mismo pie, pero no lo hemos comprobado

emṕıricamente. Esto podŕıa permitir reducir el número de comparaciones a

la mitad, ya que solo se debeŕıan considerar los pasos del mismo pie. Por

último, pero no menos importante, podŕıan ser interesantes procedimientos más

sofisticados para identificar nuevos individuos que involucren el grado de similitud

entre los pasos.

− Con respecto a nuestro sistema blockchain, necesitamos evaluar nuestra

arquitectura propuesta en un escenario real con múltiples usuarios y transacciones

en tiempo real. La evaluación podŕıa incluir el tiempo de ejecución, el rendimiento

de los eventos Eventheum del sistema, aśı como un análisis de seguridad y

vulnerabilidad. En este sentido, podŕıamos hacer un análisis de seguridad de

los contratos inteligentes como se sugiere en [NSA+19]. Esperemos que el uso de

lenguajes lógicos también puede ayudar a mejorar la seguridad de los sistemas

de cadena de bloques.

− En cuanto al prototipo para consultar modelos BIM, podŕıamos mejorar el

tamaño de los fragmentos que se pueden soportar, ya que toda la ontoloǵıa no

está actualmente soportada por los razonadores clásicos y no se puede evaluar.

Por ejemplo, una posible estrategia seŕıa usar un preprocesamiento para filtrar

la ontoloǵıa (o fragmentos) y reducir los tamaños guiados por algunas clases

espećıficas (usadas como signatura inicial a preservar). Otro trabajo futuro

podŕıa ser mejorar la implementación para dividir automáticamente la ontoloǵıa

en subontoloǵıas, o usar analizadores más sofisticados para traducir el modelo

BIM a OWL. Finalmente, seŕıa interesante probar un conjunto de casos de uso

con una representación digital de alto nivel de un edificio real.

251

252

Bibliography

[AAdIC15] Gorka Azkune, Aitor Almeida, Diego López de Ipiña, and

Liming Chen. Extending knowledge-driven activity models through

data-driven learning techniques. Expert Systems with Applications,

42(6):3115–3128, 2015.

[AAJS14] Mohammed Ahmed, Naseer Al-Jawad, and Azhin T Sabir. Gait

recognition based on Kinect sensor. In Proceedings of SPIE Photonics

Europe 2014, volume 9139, page 91390B. SPIE, 2014.

[AB20] Jimmy Abualdenien and Andre Borrmann. Vagueness visualization in

building models across different design stages. Advanced Engineering

Informatics, 45:101107, 2020.

[ABB+13] Teresa Alsinet, David Barroso, Ramón Béjar, Félix Bou, Marco

Cerami, and Francesc Esteva. On the implementation of a fuzzy

DL solver over infinite-valued product logic with SMT solvers.

In Proceedings of the 7th International Conference on Scalable

Uncertainty Management (SUM 2013), volume 8078 of Lecture Notes

in Computer Science, pages 325–330. Springer, 2013.

[ACEG+94] Jaume Agust́ı-Cullell, Francesc Esteva, Pere Garćıa, Llúıs Godo,

Ramon López de Mántaras, and Carles Sierra. Logical multi-valued

logics in modular expert systems. Journal of Experimental and

Theoretical Artificial Intelligence, 6(3):303–321, 1994.

[ACMM21] Jose Maŕıa Alonso, Ciro Castiello, Luis Magdalena, and Corrado

Mencar. Explainable Fuzzy Systems: Paving the Way from

Interpretable Fuzzy Systems to Explainable AI Systems, volume 970 of

Studies in Computational Intelligence, chapter Design and Validation

of an Explainable Fuzzy Beer Style Classifier, pages 169–217. Springer,

2021.

253

[AD07] Muhammad Abulaish and Lipika Dey. A fuzzy ontology generation

framework for handling uncertainties and nonuniformity in domain

knowledge description. In Proceedings of the 2007 International

Conference on Computing: Theory and Applications (ICCTA 2007),

pages 287–293. IEEE, 2007.

[ADG16] Eva Armengol, Pilar Dellunde, and Àngel Garćıa-Cerdaña. On

similarity in fuzzy description logics. Fuzzy Sets and Systems,

292:49–74, 2016.

[ADP06] Rafal A. Angryk, Jacob Dolan, and Frederick E. Petry. Development

of ontologies by the lowest common abstraction of terms using fuzzy

hypernym chains. In Soft Computing in Ontologies and Semantic Web,

volume 204 of Studies in Fuzziness and Soft Computing, pages 123–148.

Springer, 2006.

[AdRMA15] Virginia O. Andersson and de Ricardo M. Araújo. Person identification

using anthropometric and gait data from Kinect sensor. In Proceedings

of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015),

pages 425–431. AAAI Press, 2015.

[AESB+21] Ebtsam Adel, Shaker El-Sappagh, Sherif Barakat, Jong-Wan Hu, and

Mohammed Elmogy. An extended semantic interoperability model for

distributed electronic health record based on fuzzy ontology semantics.

Electronics, 10:1733, 2021.

[AIK+18] Farman Ali, S. M. Riazul Islam, Daehan Kwak, Pervez Khan,

Niamat Ullah, Sangjo Yoo, and Kyung Sup Kwak. Type-2 fuzzy

ontology-aided recommendation systems for iot-based healthcare.

Computer Communications, 119:138–155, 2018.

[AK09] Safdar Ali and Stephan Kiefer. µ-OR – A micro OWL DL reasoner

for ambient intelligent devices. In Proceedings of the 4th International

Conference on Grid and Pervasive Computing (GPC 2009), volume

5529 of Lecture Notes in Computer Science, pages 305–316. Springer,

2009.

[AKK15] Farman Ali, Eun Kyoung Kim, and Yong-Gi Kim. Type-2 fuzzy

ontology-based opinion mining and information extraction: A proposal

to automate the hotel reservation system. Applied Intelligence,

42(3):481–500, 2015.

254

[AKR+17] Farman Ali, Pervez Khan, Kashif Riaz, Daehan Kwak, Tamer

AbuHmed, Daeyoung Park, and Kyung Sup Kwak. A fuzzy ontology

and svm-based web content classification system. IEEE Access,

5:25781–25797, 2017.

[Ale17] Fernando Alegre. Desarrollo de un sistema recomendador de cervezas

basado en ontoloǵıas y lógica difusa. Undergraduate thesis project,

University of Zaragoza, 2017.

[AMCJ18] Borrmann Andre, König Markus, Koch Christian, and Beetz Jakob.

Building information modeling: Why? what? how? In Building

Information Modeling: Technology Foundations and Industry Practice,

pages 1–24. Springer International Publishing, 2018.

[ARCGHJR13] Ana Armas-Romero, Bernardo Cuenca-Grau, Ian Horrocks, and

Ernesto Jiménez-Ruiz. MORe: a modular owl reasoner for ontology

classification. In Proceedings of the 2nd International Workshop on

OWL Reasoner Evaluation (ORE 2013), volume 1015, pages 61–67.

CEUR Workshop Proceedings, 2013.

[AS21] Esther Aguado and Ricardo Sanz. Using Ontologies in Autonomous

Robots Engineering, volume 219 of Studies in Computational

Intelligence. IntechOpen, 2021.

[AWKA12] Panos Alexopoulos, Manolis Wallace, Konstantinos Kafentzis, and

Dimitris Askounis. IKARUS-Onto: A methodology to develop fuzzy

ontologies from crisp ones. Knowledge and Information Systems,

32:667–695, 2012.

[AY09] Louis Atallah and Guang-Zhong Yang. The use of pervasive sensing

for behaviour profiling — A survey. Pervasive and Mobile Computing,

5(5):447–464, 2009.

[AZ21] Houda Akremi and Sami Zghal. DOF: a generic approach of domain

ontology fuzzification. Frontiers of Computer Science, 15:153322, 2021.

[BBG07] Afef Bahri, Rafik Bouazi, and Faiez Gargouri. Dealing with similarity

relations in fuzzy ontologies. In Proceedings of the 16th IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE 2007), pages

1–6. IEEE, 2007.

255

[BBIM14] Carlos Bobed, Fernando Bobillo, Sergio Ilarri, and Eduardo Mena.

Answering continuous description logic queries: Managing static and

volatile knowledge in ontologies. International Journal on Semantic

Web and Information Systems, 10(3):1–44, 2014.

[BBMP17] Carlos Bobed, Fernando Bobillo, Eduardo Mena, and Jeff Z. Pan. On

serializable incremental semantic reasoners. In Proceedings of the 9th

International Conference on Knowledge Capture (K-CAP 2017), pages

187–190. ACM, 2017.

[BCE+15] Fernando Bobillo, Marco Cerami, Francesc Esteva, Àngel

Garćıa-Cerdaña, Rafael Peñaloza, and Umberto Straccia. Fuzzy

description logics. In Petr Cintula, Christian Fermüller, and Carles

Noguera, editors, Handbook of Mathematical Fuzzy Logic Volume III,

volume 58 of Studies in Logic, Mathematical Logic and Foundations,

chapter XVI, pages 1105–1181. College Publications, 2015.

[BCFGR12] Fernando Bobillo, Miguel Calvo-Flores, and Juan Gómez-Romero.

DeLorean: A reasoner for fuzzy OWL 2. Expert Systems with

Applications, 39:258–272, 2012.

[BCP17] Stefan Borgwardt, Marco Cerami, and Rafael Peñaloza. The

complexity of fuzzy EL under the L ukasiewicz t-norm. International

Journal of Approximate Reasoning, 91:179–201, 2017.

[BDB17] Fernando Bobillo, Lacramioara Dranca, and Jorge Bernad. A

fuzzy ontology-based system for gait recognition using Kinect sensor.

In Proceedings of the 11th International Conference on Scalable

Uncertainty Management (SUM 2017), volume 10564 of Lecture Notes

in Computer Science, pages 397–404. Springer, 2017.

[BDGR09] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. Crisp

representations and reasoning for fuzzy ontologies. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

17(4):501–530, 2009.

[BDGRS12] Fernando Bobillo, Miguel Delgado, Juan Gómez-Romero, and

Umberto Straccia. Joining Gödel and Zadeh fuzzy logics in fuzzy

description logics. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 20(04):475–508, 2012.

256

[BDRD+20] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del

Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador

Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja

Chatila, and Francisco Herrera. Explainable Artificial Intelligence

(XAI): Concepts, taxonomies, opportunities and challenges toward

responsible AI. Information Fusion, 58:82–115, 2020.

[Bez81] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function

Algorithms. Kluwer Academic Publishers, 1981.

[BG17] Franz Baader and Oliver Fernandez Gil. Decidability and complexity

of threshold description logics induced by concept similarity measures.

In Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng,

editors, Proceedings of the Symposium on Applied Computing (SAC

2017), pages 983–988. ACM, 2017.

[BHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic

Web: A new form of web content that is meaningful to computers

will unleash a revolution of new possibilities. Scientific American,

284:34–43, 2001.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An

Introduction to Description Logic. Cambridge University Press, 2017.

[BHP05] Nikolaos V Boulgouris, Dimitrios Hatzinakos, and Konstantinos N

Plataniotis. Gait recognition: a challenging signal processing

technology for biometric identification. IEEE signal processing

magazine, 22(6):78–90, 2005.

[BHS07] Franz Baaderl, Ian Horrocks, and Ulrike Sattlerl. Description logics.

In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,

Handbook of Knowledge Representation, pages 135–179. Elsevier, 2007.

[BKT20] Adil M. Bagirov, Napsu Karmitsa, and Sona Taheri. Partitional

Clustering via Nonsmooth Optimization, chapter Incremental

Clustering Algorithms, pages 185–200. Unsupervised and

Semi-Supervised Learning. Springer, 2020.

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL -

A polynomial-time reasoner for life science ontologies. In Proceedings

of the 3rd International Joint Conference on Automated Reasoning

257

(IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence,

pages 287–291. Springer, 2006.

[BMM12] Bernadette Bouchon-Meunier and Gilles Moyse. Fuzzy linguistic

summaries: Where are we, where can we go? In Proceedings of the

2012 IEEE Conference on Computational Intelligence for Financial

Engineering and Economics (CIFEr 2012), pages 317–324. IEEE,

2012.

[BMSL22] Alexandre Bento, Lionel Médini, Kamal Singh, and Frédérique

Laforest. Do Arduinos dream of efficient reasoners? In Proceedings of

the 19th Extended Semantic Web Conference (ESWC 2022), 2022.

[Bob08] Fernando Bobillo. Managing Vagueness in Ontologies. PhD thesis,

University of Granada, Spain, 2008.

[Bob16] Fernando Bobillo. The role of crisp elements in fuzzy ontologies: The

case of fuzzy OWL 2 EL. IEEE Transactions on Fuzzy Systems,

24:1193–1209, 2016.

[BOP+18] Mathias Bonduel, Jyrki Oraskari, Pieter Pauwels, Maarten Vergauwen,

and Ralf Klein. The IFC to linked building data converter: current

status. In Proceedings of the 6th Linked Data in Architecture and

Construction Workshop, volume 2159 of CEUR Workshop Proceedings,

pages 34–43. CEUR-WS.org, 2018.

[Bor97] Willem Nico Borst. Construction of Engineering Ontologies for

Knowledge Sharing and Reuse. PhD thesis, University of Twente, 1997.

[Boy19] Peter Boyland. The state of mobile network experience - Benchmarking

mobile on the eve of the 5G revolution. http://www.opensignal.

com/sites/opensignal-com/files/data/reports/global/data-

2019-05/the_state_of_mobile_experience_may_2019_0.pdf,

2019. Visited on January 2020.

[BPKP21] Marc Bravin, Daniel Pfäffli, Kevin Kuhn, and Marc Pouly. Towards

crafting beer with Artificial Intelligence. In Proceedings of the 8th

Swiss Conference on Data Science (SDS 2021), pages 54–55, 2021.

[BS09] Fernando Bobillo and Umberto Straccia. Fuzzy description

logics with general t-norms and datatypes. Fuzzy Sets Systems,

160(23):3382–3402, 2009.

258

http://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2019-05/the_state_of_mobile_experience_may_2019_0.pdf
http://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2019-05/the_state_of_mobile_experience_may_2019_0.pdf
http://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2019-05/the_state_of_mobile_experience_may_2019_0.pdf

[BS11] Fernando Bobillo and Umberto Straccia. Fuzzy ontology

representation using OWL 2. International Journal of Approximate

Reasoning, 52(7):1073–1094, 2011.

[BS12] Fernando Bobillo and Umberto Straccia. Generalized fuzzy rough

description logics. Information Sciences, 189:43–62, 2012.

[BS13] Fernando Bobillo and Umberto Straccia. Aggregation operators for

fuzzy ontologies. Applied Soft Computing, 13(9):3816–3830, 2013.

[BS14] Fernando Bobillo and Umberto Straccia. A MILP-based decision

procedure for the (fuzzy) description logic ALCB. In Proceedings of

the 27th International Workshop on Description Logics (DL 2014),

volume 1193, pages 378–390. CEUR Workshop Proceedings, 2014.

[BS15] Fernando Bobillo and Umberto Straccia. On partitioning-based

optimisations in expressive fuzzy description logics. In Proceedings

of the 2015 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), pages 1–8. IEEE, 2015.

[BS16a] Fernando Bobillo and Umberto Straccia. The fuzzy ontology reasoner

fuzzyDL. Knowledge-Based Systems, 95:12–34, 2016.

[BS16b] Fernando Bobillo and Umberto Straccia. Optimising fuzzy description

logic reasoners with general concept inclusions absorption. Fuzzy Sets

and Systems, 292:98–129, 2016.

[BS17] Fernando Bobillo and Umberto Straccia. Generalizing type-2 fuzzy

ontologies and type-2 fuzzy description logics. International Journal

of Approximate Reasoning, 87:40–66, 2017.

[BS18] Fernando Bobillo and Umberto Straccia. Reasoning within fuzzy

OWL 2 EL revisited. Fuzzy Sets and Systems, 351:1–40, 2018.

[BYBM15] Carlos Bobed, Roberto Yus, Fernando Bobillo, and Eduardo Mena.

Semantic reasoning on mobile devices: Do Androids dream of efficient

reasoners? Journal of Web Semantics, 35(4):167–183, 2015.

[CBM12] Christer Carlsson, Matteo Brunelli, and József Mezei. Decision making

with a fuzzy ontology. Soft Computing, 16(7):1143–1152, 2012.

259

[CC03] Shi-Jay Chen and Shyi-Ming Chen. A new method for handling

multicriteria fuzzy decision-making problems using FN-IOWA

operators. Cybernetics and Systems, 34(2):109–137, 2003.

[CC16] David Chandran and Keeley Crockett. Fuzzy ontologies in semantic

similarity measures. In 2016 IEEE Congress on Evolutionary

Computation (CEC), pages 4942–4949. IEEE, 2016.

[CCF17] Giovanna Castellano, Ciro Castiello, and Anna Maria Fanelli. The

FISDeT software: Application to beer style classification. In

Proceedings of the 26th IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE 2017), pages 1–6, 2017.

[CCP18] European Commission, Joint Research Centre, and Martin Poljanšek.

Building Information Modelling (BIM) standardization. Publications

Office, 2018. https://data.europa.eu/doi/10.2760/36471.

[CDB86] Robert Cannon, Jitendra Dave, and James C. Bezdek. Efficient

implementation of the fuzzy c-means clustering algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-8:248 – 255, 1986.

[CGHM+08] Bernardo Cuenca-Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter

Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL.

Journal of Web Semantics, 6(4):309–322, 2008.

[CH67] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[Che95] Yizong Cheng. Mean shift, mode seeking, and clustering.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(8):790–799, 1995.

[CLDW21] Zehong Cao, Chin-Teng Lin, Yong Deng, and Gerhard-Wilhelm

Weber. Guest editorial: Fuzzy systems toward human-explainable

artificial intelligence and their applications. IEEE Transactions on

Fuzzy Systems, 29(12):3577–3578, 2021.

[CM02] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Transactions Pattern Analysis

Machine Intelligence, 24(5):603–619, 2002.

260

https://data.europa.eu/doi/10.2760/36471

[CRS+18] Olivia Choudhury, Nolan Rudolph, Issa Sylla, Noor Fairoza, and

Amar Das. Auto-generation of smart contracts from domain-specific

ontologies and semantic rules. In Proceedings of the 2018 IEEE

Cybermatics for Cyber-enabled Hyperworld (Cybermatics 2018), pages

963–970. IEEE, 2018.

[CS21] Franco Alberto Cardillo and Umberto Straccia. Fuzzy OWL-Boost:

Learning fuzzy concept inclusions via real-valued boosting. Fuzzy Sets

and Systems, 2021.

[CSM14] Pratik Chattopadhyay, Shamik Sural, and Jayanta Mukherjee.

Frontal gait recognition from incomplete sequences using RGB-D

camera. IEEE Transactions Information Forensics and Security,

9(11):1843–1856, 2014.

[CWBM21] Roberto Confalonieri, Tillman Weyde, Tarek R. Besold, and Fermı́n

Moscoso del Prado Mart́ın. Using ontologies to enhance human

understandability of global post-hoc explanations of black-box models.

Artificial Intelligence, 296:103471, 2021.

[CYZW09] Wei Chen, Qing Yang, Li Zhu, and Bin Wen. Research on automatic

fuzzy ontology generation from fuzzy context. In Proceedings of the

2nd International Conference on Intelligent Computation Technology

and Automation (ICICTA 2009), pages 764–767, 2009.

[DALV+18] Lacramioara Dranca, Álvaro Lozano, Rubén Vigara, Jorge Bernad,

Ignacio Huitzil, and Fernando Bobillo. Técnicas de Inteligencia

Artificial aplicadas al reconocimiento a través de la marcha. In

Proceedings of the VI Congreso Nacional de I+D en Defensa y

Seguridad (DESEi+d 2018), 2018.

[Dav12] Andrew Davison. Kinect Open Source Programming Secrets: Hacking

the Kinect with OpenNI, NITE, and Java. McGraw-Hill, 2012.

[DB14] Simon Daum and André Borrmann. Processing of topological BIM

queries using boundary representation based methods. Advanced

Engineering Informatics, 28(4):272–286, 2014.

[Dey01] Anind K. Dey. Understanding and using context. Personal and

Ubiquitous Computing, 5:4–7, 2001.

261

[DGRMPP05] Miguel Delgado, Juan Gómez-Romero, Pedro Javier Magaña, and

Ramón Pérez-Pérez. A flexible architecture for distributed knowledge

based systems with nomadic access through handheld devices. Expert

Systems with Applications, 29(4):965–975, 2005.

[DHHVM98] Miguel Delgado, Francisco Herrera, Enrique Herrera-Viedma, and Luis

Mart́ınez. Combining numerical and linguistic information in group

decision making. Journal of Information Sciences, 107:177–194, 1998.

[DLG+18] Lacramioara Dranca, Urko López-de-Abetxuko, Alfredo Goñi, Arantza

Illarramendi, Irene Navalpotro-Gómez, Manuel Delgado-Alvarado, and

Maŕıa Cruz Rodŕıguez-Oroz. Using Kinect to classify Parkinson’s

disease stages related to severity of gait impairment. BMC

Bioinformatics, 19:471, 2018.

[DMS15] Tommaso Di Noia, Marina Mongiello, and Umberto Straccia. Fuzzy

description logics for component selection in software design. In

Software Engineering and Formal Methods: SEFM 2015 Collocated

Workshops, Revised Selected Papers, volume 9509 of Lecture Notes in

Computer Science, pages 228–239. Springer, 2015.

[DRCC+14] Natalia Dı́az-Rodŕıguez, Olmo León Cadah́ıa, Manuel P. Cuéllar,

Johan Lilius, and Miguel Delgado. Handling real-world context

awareness, uncertainty and vagueness in real-time human activity

tracking and recognition with a fuzzy ontology-based hybrid method.

Sensors, 14(10):18131–18171, 2014.

[DRCLD14] Natalia Dı́az-Rodŕıguez, Manuel P. Cuéllar, Johan Lilius, and Miguel

Delgado. A survey on ontologies for human behavior recognition. ACM

Computing Surveys, 46(4):1–33, 2014.

[DRPCLD14] Natalia Dı́az-Rodŕıguez, Manuel Pegalajar-Cuéllar, Johan Lilius,

and Miguel Delgado. A fuzzy ontology for semantic modelling

and recognition of human behaviour. Knowledge-Based Systems,

66(1):46–60, 2014.

[DRWL+13] Natalia Dı́az-Rodŕıguez, Robin Wikström, Johan Lilius, Manuel

Pegalajar-Cuéllar, and Miguel Delgado. Understanding movement

and interaction: An ontology for Kinect-based 3D depth sensors.

In Proceedings of the 7th International Conference on Ubiquitous

262

Computing and Ambient Intelligence (UCAmI 2013), volume 8276 of

Lecture Notes in Computer Science, pages 254–261. Springer, 2013.

[DVV93] Miguel Delgado, José Luis Verdegay, and Maŕıa Amparo Vila. On

aggregation operations of linguistic labels. International Journal of

Intelligent Systems, 8(3):351–370, 1993.

[DW87] W. M. Dong and F. S. Wong. Fuzzy weighted averages and

implementation of the extension principle. Fuzzy Sets and Systems,

21(2):183–199, 1987.

[EHK+14] Markus Eich, Ronny Hartanto, Sebastian Kasperski,

Sankaranarayanan Natarajan, and Johannes Wollenberg. Towards

coordinated multirobot missions for lunar sample collection in an

unknown environment. Journal of Field Robotics, 31(1):35–74, 2014.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.

A density-based algorithm for discovering clusters in large spatial

databases with noise. In Proceedings of the 2nd International

Conference on Knowledge Discovery and Data Mining (KDD 1996),

pages 226––231. AAAI Press, 1996.

[EP09] Nathan Eagle and Alex S. Pentland. Eigenbehaviors: identifying

structure in routine. Behavioral Ecology and Sociobiology,

63(7):1057–1066, 2009.

[ESAA+18] Shaker El-Sappagh, José M. Alonso, Farman Ali, Amjad Ali,

Jun-Hyeog Jang, and Kyung-Sup Kwak. An ontology-based

interpretable fuzzy decision support system for diabetes diagnosis.

IEEE Access, 6:37371–37394, 2018.

[Eur19] European Construction Sector Observatory. Building Information

Modelling in the EU construction sector. Technical report, European

Commission, 2019. https://ec.europa.eu/docsroom/documents/

34518.

[FBF18] Muhammad Fahad, N. Bus, and B. Fies. Semantic bim reasoner for

the verification of ifc models. In eWork and eBusiness in Architecture,

Engineering and Construction, pages 361–368. CRC Press, 2018.

[FH51] Evelyn Fix and J.L. Hodges. Discriminatory analysis. nonparametric

discrimination: Consistency properties. Technical Report 4, USAF

263

https://ec.europa.eu/docsroom/documents/34518
https://ec.europa.eu/docsroom/documents/34518

School of Aviation Medicine, Randolph Field, Texas, 1951. https:

//apps.dtic.mil/dtic/tr/fulltext/u2/a800276.pdf.

[Fue19] Álvaro Fuentemilla. Desarrollo de smart contracts en una blockchain

basados en información semántica. Undergraduate thesis project,

University of Zaragoza, 2019.

[GBJR+13] Rafael S. Gonçalves, Samantha Bail, Ernesto Jiménez-Ruiz, Nicolas

Matentzoglu, Bijan Parsia, Birte Glimm, and Yevgeny Kazakov. OWL

Reasoner Evaluation (ORE) workshop 2013 results: Short report. In

Proceedings of the 2nd International Workshop on OWL Reasoner

Evaluation (ORE 2013), volume 1015, pages 1–18. CEUR Workshop

Proceedings, 2013.

[GC04] Serge Guillaume and Brigitte Charnomordic. Generating an

interpretable family of fuzzy partitions from data. IEEE Transactions

on Fuzzy Systems, 12(3):324–335, 2004.

[GG95] Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge

bases: Towards a terminological clarification. In Towards very Large

Knowledge bases: Knowledge Building and Knowledge sharing, pages

25–32. IOS Press, 1995.

[GH07] Stephan Grimm and Pascal Hitzler. Semantic matchmaking of web

resources with local closed-world reasoning. International Journal of

Electronic Commerce, 12(2):89–126, 2007.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe

Wang. HermiT: An OWL 2 reasoner. Journal of Automated Reasoning,

53(3):245–269, 2014.

[GI13] Andrey V. Grigorev and Alexander G. Ivashko. TReasoner: System

description. In Proceedings of the 2nd International Workshop on OWL

Reasoner Evaluation (ORE 2013), volume 1015, pages 26–31. CEUR

Workshop Proceedings, 2013.

[GIM+18] Guido Governatori, Florian Idelberger, Zoran Milosevic, Regis Riveret,

Giovanni Sartor, and Xiwei Xu. On legal contracts, imperative

and declarative smart contracts, and blockchain systems. Artificial

Intelligence and Law, 26(4):377–409, 2018.

264

https://apps.dtic.mil/dtic/tr/fulltext/u2/a800276.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a800276.pdf

[GLGS07] Huamao Gu, Hexin Lv, Ji Gao, and Jinqin Shi. Towards a general

fuzzy ontology and its construction. In Proceedings of the International

Conference on Intelligent Systems and Knowledge Engineering (ISKE

2007), Advances in Intelligent Systems Research, 2007.

[GR08] Juan Gómez-Romero. Knowledge Mobilization: Architectures, Models

and Applications. PhD thesis, University of Granada, Spain, 2008.

[GRBR+15] Juan Gómez-Romero, Fernando Bobillo, Maŕıa Ros, Miguel

Molina-Solana, Maŕıa Dolores Ruiz, and Maŕıa José Mart́ın-Bautista.

A fuzzy extension of the semantic Building Information Model.

Automation in Construction, 57:202–212, 2015.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology

specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[GZ22] Abolfazl Ghorbani and Kamran Zamanifar. Type-2 fuzzy

ontology-based semantic knowledge for indoor air quality assessment.

Applied Soft Computing, page 108658, 2022.

[H9́8] Petr Hájek. The Metamathematics of Fuzzy Logic. Kluwer, 1998.

[Hab07] Hashim Habiballa. Resolution strategies for fuzzy description logic. In

Proceedings of the 5th Conference of the European Society for Fuzzy

Logic and Technology (EUSFLAT 2007), volume 2, pages 27–36, 2007.

[HB11] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API

for OWL ontologies. Semantic Web, 2(1):11–21, 2011.

[HBB20] Ignacio Huitzil, Jorge Bernad, and Fernando Bobillo. Algorithms for

instance retrieval and realization in fuzzy ontologies. Mathematics,

8(2):154:1–16, 2020.

[HBGRS20] Ignacio Huitzil, Fernando Bobillo, Juan Gómez-Romero, and Umberto

Straccia. Fudge: Fuzzy ontology building with consensuated fuzzy

datatypes. Fuzzy Sets and Systems, 401:91–112, 2020.

[HC76] Harry M. Hersh and Alfonso Caramazza. A fuzzy set approach to

modifiers and vagueness in natural language. Journal of Experimental

Psychology: General, 105:254–276, 1976.

265

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector,

Robert Stevens, and Hai Wang. The Manchester OWL Syntax. In

Proceedings of the Workshop on OWL: Experiences and Directions

(OWLED 2006), volume 216 of CEUR Workshop Proceedings.

CEUR-WS.org, 2006.

[Hel13] Kim Hellbom. Mobile web apps as an alternative to native mobile apps:

The future of mobile web apps on the competitive marketplace. Arcada

University of Applied Sciences (Swedish: Yrkeshögskolan Arcada),

Degree thesis, 2013.

[HG17] Aki Härmä and Koen Groot. Automatic characterization of

ambulatory patterns of utilitarian and leisure trips. In Proceedings

of the 25th European Signal Processing Conference (EUSIPCO 2017),

pages 1897–1901, 2017.

[HHMW12] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The

RacerPro knowledge representation and reasoning system. Semantic

Web Journal, 3(3), 2012.

[HHVV96] Francisco Herrera, Enrique Herrera-Viedma, and José Luis Verdegay.

Direct approach processes in group decision making using linguistic

OWA operators. Fuzzy Sets and Systems, 79(2):175–190, 1996.

[HPS07] Volker Haarslev, Hsueh-Ieng Pai, and Nematollaah Shiri. Optimizing

tableau reasoning in ALC extended with uncertainty. In Proceedings

of the 20th International Workshop on Description Logics (DL 2007),

volume 250, pages 307–314. CEUR Workshop Proceedings, 2007.

[HS13] Steve Harris and Andy Seaborne. SPARQL 1.1 query language. http:

//www.w3.org/TR/sparql11-query, 2013.

[HSDRB18] Ignacio Huitzil, Umberto Straccia, Natalia Dı́az-Rodŕıguez, and

Fernando Bobillo. Datil: Learning fuzzy ontology datatypes. In

Proceedings of the 17th International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based

Systems (IPMU 2018), Part II, volume 854 of Communications in

Computer and Information Science, pages 100–112. Springer, 2018.

266

http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query

[HT15] Nam V. Hoang and Seppo Törmä. Implementation and experiments

with an ifc-to-linked data converter. In Proceedings of the 32nd CIB

W78 Conference, pages 285–294, 2015.

[HWDC09] Maja Hadzic, Pornpit Wongthongtham, Tharam Dillon, and Elizabeth

Chang. Ontology-Based Multi-Agent Systems, volume 219 of Studies

in Computational Intelligence. Kluwer Academic Publishers, 2009.

[IL11] Josue Iglesias and Jens Lehmann. Towards integrating fuzzy logic

capabilities into an ontology-based inductive logic programming

framework. International Conference on Intelligent Systems Design

and Applications, ISDA, pages 1323–1328, 2011.

[JSJ21] Shivani Jain, K.R. Seeja, and Rajni Jindal. A fuzzy ontology

framework in information retrieval using semantic query expansion.

International Journal of Information Management Data Insights,

1(1):100009, 2021.

[JWZS15] Shuming Jiang, Yufei Wang, Yuanyuan Zhang, and Jiande Sun. Real

time gait recognition system based on Kinect skeleton feature. In

Proceedings of the ACCV 2014 Workshop on Human Gait and Action

Analysis in the Wild: Challenges and Applications, volume 9008 of

Lecture Notes in Computer Science, pages 46–57. Springer, 2015.

[KA07] Stasinos Konstantopoulos and Georgios Apostolikas. Fuzzy-DL

reasoning over unknown fuzzy degrees. In Proceedings of the

3rd International Workshop on Semantic Web and Web Semantics

(SWWS 2007), Part II, volume 4806 of Lecture Notes in Computer

Science, pages 1312–1318. Springer, 2007.

[Kaz09] Yevgeny Kazakov. Consequence-driven reasoning for Horn SHIQ
ontologies. In Proceedings of the 21st International Joint Conference

on Artificial intelligence (IJCAI 2009), pages 2040–2045, 2009.

[KDS+08] Michal Koziuk, Jaroslaw Domaszewicz, Radoslaw Olgierd Schoeneich,

Marcin Jablonowski, and Piotr Boetzel. Mobile context-addressable

messaging with DL-Lite domain model. In Proceedings of the 3rd

European Conference on Smart Sensing and Context (EuroSSC 2008),

volume 5279 of Lecture Notes in Computer Science, pages 168–181.

Springer, 2008.

267

[KKS14] Yevgeny Kazakov, Markus Krötzsch, and Frantǐsek Simanč́ık. The

incredible ELK. Journal of Automated Reasoning, 53:1–61, 2014.

[KL18] Henry M. Kim and Marek Laskowski. Toward an ontology-driven

blockchain design for supply-chain provenance. Intelligent Systems

in Accounting, Finance and Management, 25(1):18–27, 2018.

[KLN18] Henry M. Kim, Marek Laskowski, and Ning Nan. A first step in

the co-evolution of blockchain and ontologies: Towards engineering

an ontology of governance at the blockchain protocol level. https:

//arxiv.org/abs/1801.02027, 2018.

[KMP00] Erich-Peter Klement, Radko Mesiar, and Endre Pap. Triangular

Norms, volume 8 of Trends in Logic. Springer, 2000.

[KNJ18] Nirattaya Khamsemanan, Cholwich Nattee, and Nitchan

Jianwattanapaisarn. Human identification from freestyle walks

using posture-based gait feature. IEEE Transactions on Information

Forensics and Security, 13(1):119–128, 2018.

[KPHL10] Taehun Kim, Insuk Park, Soon J. Hyun, and Dongman Lee.

MiRE4OWL: Mobile rule engine for OWL. In Proceedings of the 2nd

IEEE International Workshop on Middleware Engineering (ME 2010),

pages 317–322. IEEE, 2010.

[KTEF16] Dimitris Kastaniotis, Ilias Theodorakopoulos, George Economou, and

Spiros Fotopoulos. Gait based recognition via fusing information from

euclidean and riemannian manifolds. Pattern Recognition Letters,

84:245 – 251, 2016.

[KTT+15] Dimitris Kastaniotis, Ilias Theodorakopoulos, Christos Theoharatos,

George Economou, and Spiros Fotopoulos. A framework for gait-based

recognition using Kinect. Pattern Recognition Letters, 68(Part

2):327–335, 2015.

[KV14] Avinash J. Kamble and T. Venkatesh. Some results on fuzzy numbers.

Annals of Pure and Applied Mathematics, 7(2):90–97, 2014.

[KY95] George J. Klir and Bo Yuan. Fuzzy sets and fuzzy logic - theory and

applications. Prentice Hall, 1995.

268

https://arxiv.org/abs/1801.02027
https://arxiv.org/abs/1801.02027

[LAHS05] Carsten Lutz, Carlos Areces, Ian Horrocks, and Ulrike Sattler. Keys,

nominals, and concrete domains. Journal of Artificial Intelligence

Research, 23:667–726, 2005.

[LB10] Michael J. Lawley and Cyrill Bousquet. Fast classification in Protégé:

Snorocket as an OWL 2 EL reasoner. In Proceedings of the Australasian

Ontology Workshop 2010 (AOW 2010), pages 45–50, 2010.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris

Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed

Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer. Dbpedia -

A large-scale, multilingual knowledge base extracted from Wikipedia.

Semantic Web, 6(2):167–195, 2015.

[LJH05] Chang-Shing Lee, Zhi-Wei Jian, and Lin-Kai Huang. A fuzzy ontology

and its application to news summarization. IEEE Transactions on

Systems, Man and Cybernetics, Part B, 35(5):859–880, 2005.

[LK99] Werner V. Leekwijck and Etienne E. Kerre. Defuzzification: criteria

and classification. Fuzzy Sets System, 108(2):159–178, 1999.

[LKR07] Niels Landwehr, Kristian Kersting, and Luc De Raedt. Integrating

näıve Bayes and FOIL. Journal of Machine Learning Research,

8:481–507, 2007.

[LL04] Puyin Liu and Hongxing Li. Fuzzy Neural Network Theory and

Application. World Scientific, 2004.

[LLNE16] Mounaim Latif, Younes Lakhrissi, El Habib Nfaoui, and Najia Es-Sbai.

Cross platform approach for mobile application development:A survey.

In Proceedings of the 2016 International Conference on Information

Technology for Organizations Development (IT4OD), pages 1–5, 2016.

[Llo82] Stuart P. Lloyd. Least squares quantization in PCM. IEEE

Transactions on Information Theory, 28(2):129–137, 1982.

[LM18] Francesca A. Lisi and Corrado Mencar. A granular computing method

for OWL ontologies. Fundamenta Informaticae, 159(1-2):147–174,

2018.

269

[LMR16] Xin Li, José-Fernán Mart́ınez, and Gregorio Rubio. A new fuzzy

ontology development methodology (FODM) proposal. IEEE Access,

4:7111–7124, 2016.

[LS08] Thomas Lukasiewicz and Umberto Straccia. Managing uncertainty

and vagueness in description logics for the Semantic Web. Journal of

Web Semantics, 6(4):291–308, 2008.

[LS13] Francesca A. Lisi and Umberto Straccia. A logic-based computational

method for the automated induction of fuzzy ontology axioms.

Fundamenta Informaticae, 124(4):503–519, 2013.

[LS15] Francesca A. Lisi and Umberto Straccia. Learning in description

logics with fuzzy concrete domains. Fundamenta Informaticae,

140(3-4):373–391, 2015.

[LWH10] Chang-Shing Lee, M. H. Wang, and H. Hagras. A type-2 fuzzy ontology

and its application to personal diabetic-diet recommendation. IEEE

Transactions on Fuzzy Systems, 18(2):374–395, 2010.

[MBHG17] Tim A. Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli.

Comprehensive analysis of innovative cross-platform app development

frameworks. In Proceedings of the 50th Hawaii International

Conference on System Sciences (HICSS 2017), pages 6162–6171, 2017.

[McA07] Darryl McAdams. An ontology for smart contracts, 2007.

[MCvdHST12] Carmen Mart́ınez-Cruz, Albert van der Heide, Daniel Sánchez, and

Gracian Triviño. An approximation to the computational theory

of perceptions using ontologies. Expert Systems with Applications,

39(10):9494–9503, 2012.

[MdFRN18] Tarcisio Mendes de Farias, Ana Roxin, and Christophe Nicolle. A

rule-based methodology to extract building model views. Automation

in Construction, 92:214–229, 2018.

[Men12] Julian Mendez. jcel: A modular rule-based reasoner. In Proceedings of

the 1st International Workshop on OWL Reasoner Evaluation (ORE

2012), volume 858 of CEUR Workshop Proceedings, pages 1–6, 2012.

[MHK12] Boris Motik, Ian Horrocks, and Su Myeon Kim. Delta-reasoner:

A Semantic Web reasoner for an intelligent mobile platform. In

270

Proceedings of the 21st World Wide Web Conference (WWW 2012),

Companion Volume, pages 63–72, 2012.

[MHLN06] Felix Müller, Michael Hanselmann, Thorsten Liebig, and Olaf

Noppens. A tableaux-based mobile DL reasoner - An experience

report. In Proceedings of the 19th International Workshop on

Description Logics (DL 2006), volume 189 of CEUR Workshop

Proceedings, pages 1–2, 2006.

[MIGL17] Björn Müller, Winfried Ilg, Martin A Giese, and Nicolas Ludolph.

Validation of enhanced Kinect sensor based motion capturing for gait

assessment. PloS one, 12(4):e0175813, 2017.

[MKC+17] Juan Antonio Morente-Molinera, Gang Kou, Rubén González

Crespo, Juan M. Corchado, and Enrique Herrera-Viedma. Solving

multi-criteria group decision making problems under environments

with a high number of alternatives using fuzzy ontologies and

multi-granular linguistic modelling methods. Knowledge-Based

Systems, 137:54–64, 2017.

[MKP+19] Juan Antonio Morente-Molinera, Gang Kou, C. Pang, Francisco Javier

Cabrerizo, and Enrique Herrera-Viedma. An automatic procedure to

create fuzzy ontologies from users’ opinions using sentiment analysis

procedures and multi-granular fuzzy linguistic modelling methods.

Information Sciences, 476:222–238, 2019.

[MLY08] Zongmin M. Ma, Yan-Hui Lv, and Li Yan. A fuzzy ontology generation

framework from fuzzy relational database. International Journal on

Semantic Web and Information Systems, 4(3):1–15, 2008.

[MMWHVC16] Juan Antonio Morente-Molinera, Robin Wikström, Enrique

Herrera-Viedma, and Christer Carlsson. A linguistic mobile decision

support system based on fuzzy ontology to facilitate knowledge

mobilization. Decision Support Systems, 81:66–75, 2016.

[MPUH15] Juan Antonio Morente-Molinera, Ignacio J. Pérez, M. Raquel Ureña,

and Enrique Herrera-Viedma. Building and managing fuzzy ontologies

with heterogeneous linguistic information. Knowledge-Based Systems,

88:154–164, 2015.

271

[MPUH16] Juan Antonio Morente-Molinera, Ignacio J. Pérez, M. Raquel Ureña,

and Enrique Herrera-Viedma. Creating knowledge databases for

storing and sharing people knowledge automatically using group

decision making and fuzzy ontologies. Information Sciences,

328:418–434, 2016.

[MSS+12] Theofilos P. Mailis, Giorgos Stoilos, Nikos Simou, Giorgos B. Stamou,

and Stefanos D. Kollias. Tractable reasoning with vague knowledge

using fuzzy EL++. Journal of Intelligent Information Systems,

39(2):399–440, 2012.

[Mus15] Mark A. Musen. The Protégé project: a look back and a look forward.

AI Matters, 1(4):4–12, 2015.

[MZYC11] Zong Min Ma, Fu Zhang, Li Yan, and Jingwei Cheng. Representing

and reasoning on fuzzy UML models: A description logic approach.

Expert Systems with Applications, 38(3):2536–2549, 2011.

[NM01] Natalya T. Noy and Deborah L. McGuinness. Ontology development

101: A guide to creating your first ontology. Technical

report, Stanford Knowledge Systems Laboratory Technical Report

KSL-01-05 and Stanford Medical Informatics Technical Report

SMI-2001-0880, 2001. http://www.ksl.stanford.edu/people/dlm/

papers/ontology-tutorial-noy-mcguinness-abstract.html.

[NMNS19] Tommaso Di Noia, Marina Mongiello, Francesco Nocera, and Umberto

Straccia. A fuzzy ontology-based approach for tool-supported decision

making in architectural design. Knowledge and Information Systems,

58(1):83–112, 2019.

[NSA+19] Nishara Nizamuddin, Khaled Salah, Muhammad Ajmal Azad, Junaid

Arshad, and Muhammad Habib Ur Rehman. Decentralized document

version control using Ethereum blockchain and IPFS. Computers &

Electrical Engineering, 76:183–197, 2019.

[OBT04] Aris M. Ouksel, Yair M. Babad, and Thomas Tesch. Matchmaking

software agents in B2B markets. In Proceedings of the 37th Annual

Hawaii International Conference on System Sciences (HICSS 2004),

pages 1–9, 2004.

272

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html

[OEA21] Olaide N. Oyelade, Absalom E. Ezugwu, and Sunday A. Adewuyi.

Enhancing reasoning through reduction of vagueness using fuzzy

OWL–2 for representation of breast cancer ontologies. Neural

Computing and Applications, pages 1–26, 2021.

[Org99] World Health Organization. Healthy living : what is a healthy

lifestyle? Technical report, Regional Office for Europe, Copenhagen

: WHO Regional Office for Europe, 1999. https://apps.who.int/

iris/handle/10665/108180.

[OVB19] Mehdi Ousmer, Jean Vanderdonckt, and Sabin Buraga. An ontology

for reasoning on body-based gestures. In Proceedings of the ACM

SIGCHI Symposium on Engineering Interactive Computing Systems,

pages 1–6, New York, NY, USA, 2019. Association for Computing

Machinery.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. The semantics

and complexity of SPARQL. In Proceedings of the 5th International

Semantic Web Conference (ISWC 2006), volume 4273 of Lecture Notes

in Computer Science, pages 30–43. Springer, 2006.

[PB96] Frederick E. Petry and Patrick Bosc. Fuzzy Databases: Principles and

Applications. Kluwer Academic Publishers, 1996.

[Ped97] Witold Pedrycz. Fuzzy Evolutionary Computation. Kluwer Academic

Publishers, 1997.

[PKWLP12] Johannes Preis, Moritz Kessel, Martin Werner, and Claudia

Linnhoff-Popien. Gait recognition with Kinect. In Proceedings of the

1st International Workshop on Kinect in Pervasive Computing, pages

P1–P4, 2012.

[PMM+18] Deepak Puthal, Nisha Malik, Saraju P. Mohanty, Elias Kougianos, and

Gautam Das. Everything you wanted to know about the blockchain:

Its promise, components, processes, and problems. IEEE Consumer

Electronics Magazine, 7(4):6–14, 2018.

[PS05] Witold Pedrycz and Zenon A. Sosnowski. C-fuzzy decision trees. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 35(4):498–511, 2005.

273

https://apps.who.int/iris/handle/10665/108180
https://apps.who.int/iris/handle/10665/108180

[PSS+08] Jeff Z. Pan, Giorgos Stamou, Giorgos Stoilos, Edward Thomas, and

Stuart Taylor. Scalable querying service over fuzzy ontologies. In

Proceedings of the 17th International Conference on World Wide Web

(WWW 2008), pages 575–584, 2008.

[PT16] Pieter Pauwels and Walter Terkaj. EXPRESS to OWL for construction

industry: Towards a recommendable and usable ifcOWL ontology.

Automation in Construction, 63:100–133, 2016.

[PWM+13] Ignacio J. Pérez, Robin Wikström, József Mezei, Christer Carlsson,

and Enrique Herrera-Viedma. A new consensus model for

group decision making using fuzzy ontology. Soft Computing,

17(9):1617–1627, 2013.

[PWS+21] Evan W. Patton, William Van Woensel, Oshani Seneviratne, Giuseppe

Loseto, Floriano Scioscia, and Lalana Kagal. The Punya platform:

Building mobile research apps with linked data and semantic features.

In Proceedings of the 20th International Semantic Web Conference

(ISWC 2021), volume 12922 of Lecture Notes in Computer Science,

pages 563–579. Springer, 2021.

[PYJF14] Primal Pappachan, Roberto Yus, Anupam Joshi, and Tim Finin.

Rafiki: A semantic and collaborative approach to community

health-care in underserved areas. In Proceedings of the 10th IEEE

International Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom 2014), pages 322–331.

IEEE, 2014.

[PZL17] Pieter Pauwels, Sijie Zhang, and Yong-Cheol Lee. Semantic Web

technologies in AEC industry: A literature overview. Automation in

Construction, 73:145–165, 2017.

[QHF06] Thanh Tho Quan, Siu Cheung Hui, and Alvis Cheuk M. Fong.

Automatic fuzzy ontology generation for semantic help-desk support.

IEEE Transactions on Industrial Informatics, 2(3):155–164, 2006.

[QHFC06] Thanh Tho Quan, Siu Cheung Hui, Alvis Cheuk M. Fong, and

Tru Hoang Cao. Automatic fuzzy ontology generation for Semantic

Web. IEEE Transactions on Knowledge and Data Engineering,

18(6):842–856, 2006.

274

[RFIB] Ishak Riali, Messaouda Fareh, Mohamed Chakib Ibnaissa, and Mounir

Bellil. A semantic-based approach for hepatitis C virus prediction and

diagnosis using a fuzzy ontology and a fuzzy Bayesian network. Journal

of Intelligent & Fuzzy Systems, pages 1–15.

[Rod13] James A. Rodger. A fuzzy linguistic ontology payoff method for

aerospace real options valuation. Expert Systems with Applications,

40(8), 2013.

[Ros10] Timothy J. Ross. Fuzzy Logic with Engineering Applications, 3rd

edition. John Wiley & Sons, Ltd, 2010.

[RSB+08] Azzurra Ragone, Umberto Straccia, Fernando Bobillo, Tommaso Di

Noia, and Eugenio Di Sciascio. Fuzzy bilateral matchmaking in

e-Marketplaces. In Proceedings of the 12th International Conference on

Knowledge-Based and Intelligent Information & Engineering Systems,

Part III (KES 2008), volume 5179 of Lecture Notes in Computer

Science, pages 293–301. Springer, 2008.

[RSB+22] Michele Ruta, Floriano Scioscia, Ivano Bilenchi, Filippo Gramegna,

Giuseppe Loseto, Saverio Ieva, and Agnese Pinto. A multiplatform

reasoning engine for the semantic web of everything. Journal of Web

Semantics, page 100709, 2022.

[RSdS+14] Michele Ruta, Floriano Scioscia, Maria di Summa, Saverio Ieva,

Eugenio Di Sciascio, and Marco Sacco. Semantic matchmaking for

Kinect-based posture and gesture recognition. International Journal

of Semantic Computing, 8(4):491–514, 2014.

[RSG+19] Michele Ruta, Floriano Scioscia, Filippo Gramegna, Ivano Bilenchi,

and Eugenio Di Sciascio. Mini-ME Swift: the first OWl reasoner for

iOS. In Proceedings of the 16th Extended Semantic Web Conference

(ESWC 2019), Lecture Notes in Computer Science, pages 298–313.

Springer, 2019.

[RSI+17] Michele Ruta, Floriano Scioscia, Saverio Ieva, Giovanna Capurso, and

Eugenio Di Sciascio. Semantic blockchain to improve scalability in the

internet of things. Open Journal of Internet of Things, 3(1):46–61,

2017.

275

[RSP+19] Michele Ruta, Floriano Scioscia, Agnese Pinto, Filippo Gramegna,

Saverio Ieva, Giuseppe Loseto, and Eugenio Di Sciascio. CoAP-based

collaborative sensor networks in the semantic web of things. Journal

of Ambient Intelligence and Humanized Computing, 10(7):2545–2562,

2019.

[RSS10] Michele Ruta, Floriano Scioscia, and Eugenio Di Sciascio. Mobile

semantic-based matchmaking: A fuzzy DL approach. In Proceedings

of the 7th Extended Semantic Web Conference (ESWC 2010), Part

I, volume 6088 of Lecture Notes in Computer Science, pages 16–30.

Springer, 2010.

[SBF98] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge

engineering: principles and methods. Data and knowledge engineering,

25(1):161–198, 1998.

[SDY22] Mojtaba Shokohinia, Abbas Dideban, and Farzin Yaghmaee. A

method for improving reasoning and realization problem solving in

descriptive logic- based and ontology-based reasoners. Malaysian

Journal of Computer Science, 35:37–55, 2022.

[Sem20] Semantic Integration Ltd. HyperGraphQL. https://www.

hypergraphql.org, 2020.

[SG18] Ulrich Florian Simo and Henri Gwét. Fuzzy triangular aggregation

operators. International Journal of Mathematics and Mathematical

Sciences, 2018, Article ID 9209524, 13 pages, 2018.

[SK05] Alex Sinner and Thomas Kleemann. KRHyper - In your pocket.

In Proceedings of the 20th International Conference on Automated

Deduction (CADE-20), volume 3632 of Lecture Notes in Computer

Science, pages 452–458. Springer, 2005.

[SKG09] Luke Steller, Shonali Krishnaswamy, and Mohamed Medhat Gaber.

Enabling scalable semantic reasoning for mobile services. International

Journal on Semantic Web and Information Systems, 5(2):91–116,

2009.

[SLG14] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude:

System description. Journal of Web Semantics, 27-28:78–85, 2014.

276

https://www.hypergraphql.org
https://www.hypergraphql.org

[SM15] Umberto Straccia and Matteo Mucci. PFOIL-DL: Learning (fuzzy)

EL concept descriptions from crisp OWL data using a probabilistic

ensemble estimation. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing (SAC 2015), pages 345—-352.

ACM, 2015.

[SMSS10] Nikos Simou, Theofilos P. Mailis, Giorgos Stoilos, and Giorgos B.

Stamou. Optimization techniques for fuzzy description logics. In

Proceedings of the 23rd International Workshop on Description Logics

(DL 2010), volume 573 of CEUR Workshop Proceedings, pages

244–254. CEUR-WS.org, 2010.

[SMSW20] Ranjith K. Soman, Miguel Molina-Solana, and Jennifer Whyte.

Linked-Data based Constraint-Checking (LDCC) to support

look-ahead planning in construction. Automation in Construction,

120:103369, 2020.

[Smu12] Pavel Smutný. Mobile development tools and cross-platform

solutions. In Proceedings of the 13th International Carpathian Control

Conference (ICCC 2012), pages 653–656, 2012.

[SOGP16] Antonio A. Sánchez-Ruiz, Santiago Ontañón, Pedro A.

González-Calero, and Enric Plaza. Measuring similarity of individuals

in description logics over the refinement space of conjunctive queries.

Journal of Intelligent Information Systems, 47(3):447–467, 2016.

[SPC+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca-Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of

Web Semantics, 5(2):51–53, 2007.

[SPL17] Grégory Smit, Olivier Pivert, and Marie-Jeanne Lesot. Vocabulary

elicitation for informative descriptions of classes. In Proceedings of

the 17th World Congress of International Fuzzy Systems Association

and 9th International Conference on Soft Computing and Intelligent

Systems (IFSA-SCIS 2017), pages 1–8, 2017.

[SPS09] Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra,

editors. Modular Ontologies: Concepts, Theories and Techniques for

Knowledge Modularization, volume 5445 of Lecture Notes in Computer

Science. Springer, 2009.

277

[SRES+21] Nora Shoaip, Amira Rezk, Shaker El-Sappagh, Louai Alarabi,

Sherif Barakat, and Mohammed M. Elmogy. A comprehensive

fuzzy ontology-based decision support system for Alzheimer’s disease

diagnosis. IEEE Access, 9:31350–31372, 2021.

[SRI20] Anil Sawhney, Mike Riley, and Javie Irizarry. Construction 4.0: An

Innovation Platform for the Built Environment. Routledge, 2020.

[SRL+14] Floriano Scioscia, Michele Ruta, Giuseppe Loseto, Filippo Gramegna,

Saverio Ieva, Agnese Pinto, and Eugenio Di Sciascio. A mobile

matchmaker for the ubiquitous semantic web. International Journal

on Semantic Web and Information Systems, 10(4):77–100, 2014.

[SS11] Christian Seitz and René Schönfelder. Rule-based OWL reasoning for

specific embedded devices. In Proceedings of the 10th International

Semantic Web Conference (ISWC 2011), Part II, volume 7032 of

Lecture Notes in Computer Science, pages 237–252. Springer, 2011.

[SSE+17] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and

Xiaowei Xu. DBSCAN revisited, revisited: Why and how you

should (still) use DBSCAN. ACM Transactions on Database Systems,

42(3):1–21, 2017.

[SSG08] Luciano Stefanini, Laerte Sorini, and Maria Letizia Guerra. Fuzzy

numbers and fuzzy arithmetic. In Handbook of Granular Computing.

Wiley, 2008.

[SSSK06] Giorgos Stoilos, Nikolaos Simou, Giorgos Stamou, and Stefanos

Kollias. Uncertainty and the Semantic Web. IEEE Intelligent Systems,

21(5):84–87, 2006.

[SST22] Fabio Sartori, Marco Savi, and Jacopo Talpini. Tailoring mHealth

apps on users to support behavior change interventions: Conceptual

and computational considerations. Applied Sciences, 12(8), 2022.

[ST22] Fabio Sartori and Lidia Lucrezia Tonelli. Fuzzy personalization of

mobile apps: A case study from mhealth domain. In Proceedings of the

29th International Conference on Information Systems Development

(ISD 2011), volume 55 of Lecture Notes in Information Systems and

Organisation, pages 91–108. Springer, 2022.

278

[Str05] Umberto Straccia. Description logics with fuzzy concrete domains.

In Proceedings of the 21st Conference on Uncertainty in Artificial

Intelligence (UAI 2005), pages 1–9. AUAI Press, 2005.

[Str13] Umberto Straccia. Foundations of Fuzzy Logic and Semantic Web

Languages. CRC Studies in Informatics Series. Chapman & Hall, 2013.

[SVM02] Dragan Z. Saletic, Dusan M. Velasevic, and Nikos E. Mastorakis.

Analysis of basic defuzzification techniques. In N. Mastorakis and

V.Mladenov, editors, Recent Advances in Computers, Computing and

Communications, pages 247–252. WSEAS Press, 2002.

[SVS15] Giorgos Stoilos, Tassos Venetis, and Giorgos Stamou. A fuzzy

extension to the OWL 2 RL ontology language. The Computer Journal,

58(11):2956–2971, 2015.

[SYR13] Archana Singh, Avantika Yadav, and Ajay Rana. K-means with

three different distance metrics. International Journal of Computer

Applications, 67(10):13–17, 2013.

[TD17] Allan Third and John Domingue. Linked data indexing of distributed

ledgers. In Proceedings of the 26th International Conference on World

Wide Web Companion (WWW 2017 Companion), pages 1431–1436,

2017.

[TDKM14] Dorothea Tsatsou, Stamatia Dasiopoulou, Ioannis Kompatsiaris, and

Vasileios Mezaris. LiFR: A lightweight fuzzy DL reasoner. In

Proceedings of the 11th Extended Semantic Web Conference (ESWC

2014), Posters and Demo sessions, volume 8798 of Lecture Notes in

Computer Science, pages 263–267. Springer, 2014.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic

reasoner: system description. In Proceedings of the 3rd International

Joint Conference on Automated Reasoning (IJCAR 2006), pages

292–297, 2006.

[TH10] Chia-Chi Teng and Richard Helps. Mobile application development:

Essential new directions for it. In Proceedings of the 7th International

Conference on Information Technology: New Generations (ITNG

2010), pages 471–475, 2010.

279

[THP19] Seppo Törmä, Nam V. Hoang, and Pieter Pauwels. IFC-to-RDF

conversion tool. http://www.rymreport.com/pre/result/opening-

bim-to-the-web-ifc-to-rdf-conversion-software, 2019.

[TKO15] Wei Tai, John Keeney, and Declan O’Sullivan. Resource-constrained

reasoning using a reasoner composition approach. Semantic Web,

6:35–59, 2015.

[Tor97] Vicenç Torra. The weighted OWA operator. International Journal of

Intelligent Systems, 12(2):153–166, 1997.

[TPR10] Edward Thomas, Jeff Pan, and Yuan Ren. TrOWL: tractable OWL 2

reasoning infrastructure. In Proceedings of the 7th Extended Semantic

Web Conference (ESWC 2010), Part II, volume 6089 of Lecture Notes

in Computer Science, pages 431–435. Springer, 2010.

[Tur99] Berwin A. Turlach. Bandwidth selection in kernel density estimation:

A review. CORE and Institut de Statistique, pages 1–33, 1999.

[TVV18] Ruben Taelman, Miel Vander Sande, and Ruben Verborgh.

GraphQL-LD: Linked Data querying with GraphQL. In Proceedings

of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky

Ideas Tracks, volume 2180 of CEUR Workshop Proceedings, pages 1–4.

CEUR-WS.org, 2018.

[TY05] Luigi Troiano and Ronald R. Yager. Recursive and iterative OWA

operators. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 13(6):579–600, 2005.

[Uga17] Héctor E. Ugarte R. A more pragmatic web 3.0: Linked blockchain

data. Technical report, Rheinische Friedrich-Wilhelms-Universität

Bonn, 2017. http://doi.org/10.13140/RG.2.2.10304.12807/1.

[Voj07] Peter Vojtáš. EL description logic with aggregation of user preference

concepts. In Marie Duž́ı, Hannu Jaakkola, Yasushi Kiyoki, and Hannu

Kangassalo, editors, Information modelling and Knowledge Bases,

volume XVIII, pages 154–165. IOS Press, 2007.

[W3C04a] W3C. RDF Primer. http://www.w3.org/TR/rdf-primer, 2004.

[W3C04b] W3C OWL Working Group. OWL Web Ontology Language overview.

https://www.w3.org/TR/owl-features/, 2004.

280

http://www.rymreport.com/pre/result/opening-bim-to-the-web-ifc-to-rdf-conversion-software
http://www.rymreport.com/pre/result/opening-bim-to-the-web-ifc-to-rdf-conversion-software
http://doi.org/10.13140/RG.2.2.10304.12807/1
http://www.w3.org/TR/rdf-primer
https://www.w3.org/TR/owl-features/

[W3C04c] W3C OWL Working Group. OWL Web Ontology Language semantics

and abstract syntax. https://www.w3.org/TR/owl-semantics/,

2004.

[W3C09a] W3C. OWL 2: Web Ontology Language Manchester syntax. http:

//www.w3.org/TR/owl2-manchester-syntax, 2009.

[W3C09b] W3C. OWL 2 Web Ontology Language profiles: OWL 2

EL. http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

#OWL_2_EL, 2009.

[W3C12a] W3C OWL Working Group. OWL 2 Overview. http://www.w3.org/

TR/owl2-overview/, 2012.

[W3C12b] W3C OWL Working Group. OWL 2 Web Ontology Language profiles.

https://www.w3.org/TR/owl2-profiles/, 2012.

[W3C14] W3C. RDF 1.1 Turtle. http://www.w3.org/TR/turtle, 2014.

[WA18] William Van Woensel and Syed Sibte Raza Abidi. Optimizing

semantic reasoning on memory-constrained platforms using the RETE

algorithm. In Proceedings of the 15th Extended Semantic Web

Conference (ESWC 2018), volume 10843 of Lecture Notes in Computer

Science, pages 682–696. Springer, 2018.

[WHC+16] Arlette Wissen, Aki Härmä, Illapha G. Cuba, Dietwig Lowet, and Rim

Helaoui. Optimization of automated health programs by simulating

user behaviors and program effects. In Proceedings of the Conference

on Measuring Behavior (CMB 2016), pages 1–5, 2016.

[WMY09] Hailong Wang, Zongmin M. Ma, and Junfu Yin. FRESG: A

kind of fuzzy description logic reasoner. In Proceedings of the

20th International Conference on Database and Expert Systems

Applications (DEXA 2009), volume 5690 of Lecture Notes in Computer

Science, pages 443–450. Springer, 2009.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum Project Yellow Paper, https://github.

com/ethereum/yellowpaper, 2014.

[WSB+19] Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, Pierre

Bourreau, and Léon Van Berlo. Semantic query languages for

281

https://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl2-manchester-syntax
http://www.w3.org/TR/owl2-manchester-syntax
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/#OWL_2_EL
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/#OWL_2_EL
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/turtle
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper

knowledge-based web services in a construction context. In Proceedings

of the 26th International Workshop on Intelligent Computing in

Engineering (EG-ICE 2019), volume 2394 of CEUR Workshop

Proceedings, pages 1–13. CEUR-WS.org, 2019.

[WY01] Dwi H. Widyantoro and John Yen. Using fuzzy ontology for query

refinement in a personalized abstract search engine. In Proceedings of

the Joint 9th IFSA World Congress and 20th NAFIPS International

Conference (IFSA-NAFIPS 2001), volume 4, pages 610–615, 2001.

[XS08] Liu Xinwang and Han Shilian. Orness and parameterized RIM

quantifier aggregation with OWA operators: A summary. International

Journal of Approximate Reasoning, 48:77–97, 2008.

[XT15] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering

algorithms. Annals of Data Science, 2:165–193, 2015.

[Xu08] Zeshui Xu. Linguistic Aggregation Operators: An Overview. In Fuzzy

Sets and Their Extensions: Representation, Aggregation and Models,

volume 220 of Studies in Fuzziness and Soft Computing, pages 163–181.

Springer, 2008.

[Xu12] Zeshui Xu. Linguistic Decision Making: Theory and Methods.

Springer, 2012.

[Yag88] Ronald R. Yager. On ordered weighted averaging aggregation

operators in multicriteria decision making. IEEE Transactions on

Systems, Man and Cybernetics, 18(1):183–190, 1988.

[Yag89] Ronald R. Yager. On linguistic summaries of data. In Proceedings

of IJCAI Workshop on Knowledge Discovery in Databases, pages

379–389, 1989.

[Yag91] Ronald R. Yager. Connectives and quantifiers in fuzzy sets. Fuzzy Sets

and Systems, 40(1):39–75, 1991.

[Yag96] Ronald R. Yager. Quantifier guided aggregation using OWA operators.

International Journal of Intelligent Systems, 11(1):49–73, 1996.

[Yag21] Ronald R. Yager. An introduction to linguistic summaries. In

Fuzzy Approaches for Soft Computing and Approximate Reasoning:

282

Theories and Applications, volume 394 of Studies in Fuzziness and

Soft Computing, pages 151–162. Springer, 2021.

[YDL+16] Ke Yang, Yong Dou, Shaohe Lv, Fei Zhang, and Qi Lv. Relative

distance features for gait recognition with Kinect. Journal of Visual

Communication and Image Representation, 39:209–217, 2016.

[YDNG18] Aleksandr Yurievich Yurin, Nikita Olegovich Dorodnykh, Olga A.

Nikolaychuk, and Maksim Andreevich Grishenko. Designing rule-based

expert systems with the aid of the model-driven development

approach. Expert Systems, 35(5), 2018.

[YMII14] Roberto Yus, Eduardo Mena, Sergio Ilarri, and Arantza Illarramendi.

SHERLOCK: Semantic management of location-based services in

wireless environments. Pervasive and Mobile Computing, 15:87–99,

2014.

[YP15] Roberto Yus and Primal Pappachan. Are apps going semantic? A

systematic review of semantic mobile applications. In Proceedings of

the 1st International Workshop on Mobile Deployment of Semantic

Technologies (MoDeST 2015), volume 1506 of CEUR Workshop

Proceedings, pages 2–13. CEUR-WS.org, 2015.

[YPD+14] Roberto Yus, Primal Pappachan, Prajit Kumar Das, Eduardo Mena,

Anupam Joshi, and Tim Finin. FaceBlock: Privacy-aware pictures

for Google Glass. In Proceedings of the 12th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys

2014), pages 366–366, 2014.

[YRbJb09] Wang Ying, Zhang Ru-bo, and Lai Ji-bao. Measuring concept

similarity between fuzzy ontologies. In Fuzzy Information and

Engineering Volume 2, volume 62 of Advances in Intelligent and Soft

Computing, pages 163–171. Springer, 2009.

[Zad65] Lotfi A. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.

[Zad75] Lotfi A. Zadeh. The concept of a linguistic variable and its application

to approximate reasoning I. Information Sciences, 8:199–249, 1975.

[ZMY13] Fu Zhang, Zong Min Ma, and Li Yan. Construction of fuzzy ontologies

from fuzzy XML models. Knowledge-Based Systems, 42:20–39, 2013.

283

[ZMYC13] Fu Zhang, Zong Min Ma, Li Yan, and Jingwei Cheng. Construction of

fuzzy OWL ontologies from fuzzy EER models: A semantics-preserving

approach. Fuzzy Sets and Systems, 229:1–32, 2013.

[ZMYW12] Fu Zhang, Zong Min Ma, Li Yan, and Yu Wang. A description

logic approach for representing and reasoning on fuzzy object-oriented

database models. Fuzzy Sets and Systems, 186(1):1–25, 2012.

284

Appendix A

Publications

The results of this thesis have been published in 5 journal articles and 6 peer-reviewed

conference/workshops papers (4 of them in international conferences, 1 in an

international workshop, and 1 in a national conference).

Journal papers

For each journal paper, we show some relevant characteristics: impact factor and

quartile (according to Journal Citation Reports), the subject category to which it

belongs to, and the number of citations (according to Google Scholar).

Journal article 1. I. Huitzil, L. Dranca, J. Bernad, F. Bobillo. “Gait Recognition

Using Fuzzy Ontologies and Kinect Sensor Data”. International Journal of

Approximate Reasoning 113:354-371, August 2019, doi:10.1016/j.ijar.2019.

07.012.

• Impact Factor 2019: 2.678 (Q2)

• Category: Computer Science, Artificial Intelligence

• Total cites (Accessed on 15/06/2022): 17 (13 external)

Journal article 2. I. Huitzil, J. Bernad, F. Bobillo, “Algorithms for Instance

Retrieval and Realization in Fuzzy Ontologies”. Mathematics 8(2), 154:1-16,

January 2020, doi:10.3390/math8020154.

• Impact Factor 2020: 2.258 (Q1)

• Category: Mathematics

• Total cites (Accessed on 15/06/2022): 4 (2 external)

Journal article 3. I. Huitzil, F. Alegre, F. Bobillo. “GimmeHop: A Recommender

System for Mobile Devices using Ontology Reasoners and Fuzzy Logic”. Fuzzy

Sets and Systems 401:55-77, December 2020, doi:10.1016/j.fss.2019.12.001.

285

10.1016/j.ijar.2019.07.012
10.1016/j.ijar.2019.07.012
10.3390/math8020154
10.1016/j.fss.2019.12.001

• Impact Factor 2020: 3.343 (Q1)

• Category: Computer Science, Theory and Methods

• Total cites (Accessed on 15/06/2022): 11 (6 external)

Journal article 4. I. Huitzil, F. Bobillo, J. Gómez-Romero, U. Straccia. “Fudge:

Fuzzy Ontology Building with Consensuated Fuzzy Datatypes”. Fuzzy Sets and

Systems 401:91-112, December 2020, doi:10.1016/j.fss.2020.04.001.

• Impact Factor 2020: 3.343 (Q1)

• Category: Computer Science, Theory and Methods

• Total cites (Accessed on 15/06/2022): 6 (3 external)

Journal article 5. I. Huitzil, M. Molina-Solana, J.Gómez-Romero, F. Bobillo,

“Minimalistic fuzzy ontology reasoning: An application to Building Information

Modeling”, Applied Soft Computing 103:107158, February 2021, doi:10.1016/j.

asoc.2021.107158.

• Impact Factor 2020: 6.725 (Q1)

• Category: Computer Science, Artificial Intelligence

• Total cites (Accessed on 15/06/2022): 8 (7 external)

Peer-reviewed conference papers

For each conference, we show some relevant characteristics: scope (international or

national), CORE ranking, GGS ranking, and the number of citations (according to

Google Scholar).

Conference paper 1. N. Dı́az-Rodŕıguez, A. Härmä, R. Helaoui, I. Huitzil, F.

Bobillo, U. Straccia, “Couch Potato or Gym Addict? Semantic Lifestyle Profiling

with Wearables and Knowledge Graphs”, Proceedings of the 6th Workshop on

Automated Knowledge Base Construction (AKBC 2017), December 2017.

• Scope: International

• Total cites (Accessed on 15/06/2022): 5 (4 external)

Conference paper 2. I. Huitzil, U. Straccia, N. Dı́az-Rodŕıguez, F. Bobillo, “Datil:

Learning Fuzzy Ontology Datatypes”, Proceedings of the 17th International

Conference on Information Processing and Management of Uncertainty in

Knowledge-Based Systems (IPMU 2018), Part II, Springer, volume 854, pp.

100-112, Communications in Computer and Information Science, June 2018,

doi:10.1007/978-3-319-91476-3_9.

286

10.1016/j.fss.2020.04.001
10.1016/j.asoc.2021.107158
10.1016/j.asoc.2021.107158
10.1007/978-3-319-91476-3_9

• Scope: International

• CORE 2020: C

• Total cites (Accessed on 15/06/2022): 14 (5 external)

Conference paper 3. I. Huitzil, A. Fuentemilla, F. Bobillo, “I Can Get Some

Satisfaction: Fuzzy Ontologies for Partial Agreements in Blockchain Smart

Contracts”, Proceedings of the 29th IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE 2020), IEEE Press, ISBN 978-1-7281-6932-3, July 2020,

doi:10.1109/FUZZ48607.2020.9177732.

• Scope: International

• CORE 2020: B

• GGS 2020: 3

• Total cites (Accessed on 15/06/2022): 1

Conference paper 4. I. Huitzil, U. Straccia, C. Bobed, E. Mena, F. Bobillo, “The

Serializable and Incremental Semantic Reasoner fuzzyDL”, Proceedings of the

29th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020),

IEEE Press, ISBN 978-1-7281-6932-3, July 2020, doi:10.1109/FUZZ48607.2020.

9177835.

• Scope: International

• CORE 2020: B

• GGS 2020: 3

• Total cites (Accessed on 15/06/2022): 2 (1 external)

Conference paper 5. I. Huitzil, “Advanced Management of Fuzzy Semantic

Information”, 1st Doctoral Consortium at the European Conference on Artificial

Intelligence DC-ECAI 2020, (Finalist in the DC-ECAI 2020 Best Presentation

Award), August 2020.

• Scope: International

Conference paper 6. I. Huitzil, F. Alegre and F. Bobillo, “CAEPIA-APP

Competition: GimmeHop”, Actas de la XIX Conferencia de la Asociación

Española para la Inteligencia Artificial (CAEPIA 20-21), pp. 989-992, September

2021.

• Scope: National

287

10.1109/FUZZ48607.2020.9177732
10.1109/FUZZ48607.2020.9177835
10.1109/FUZZ48607.2020.9177835

	2305_Huitzil Velasco TESIS.pdf
	Introduction
	Objectives
	Structure of the thesis

	Background
	Fuzzy sets and fuzzy logic
	Fuzzy sets
	Linguistic variables
	Fuzzy logical operators
	Fuzzy aggregation operators
	Fuzzy modifiers
	Defuzzification

	Semantic Web technologies
	Ontologies
	Description Logics
	Web Ontology Language (OWL)
	Reasoning

	Fuzzy extensions of Semantic Web technologies
	Fuzzy ontologies
	Fuzzy Description Logics
	Fuzzy OWL ontologies
	Fuzzy reasoning

	Clustering
	Mobile computing

	Contributions to fuzzy ontology learning
	Learning local fuzzy datatypes
	Learning global fuzzy datatypes
	Learning consensual fuzzy datatypes

	Contributions to fuzzy ontology reasoning
	Algorithms for instance retrieval and realization
	Instance retrieval in fuzzy ontologies
	Realization in fuzzy ontologies

	Minimalist algorithms for flexible faceted instance retrieval
	Similarity between individuals
	Matchmaking between individuals

	Contributions to the support of fuzzy ontologies on mobile devices
	Transversal techniques
	Optimization of the reasoning
	Distributed ontology files

	GimmeHop app: Beer recommender system
	Serializable and incremental fuzzyDL
	Learning fuzzy ontologies on mobile devices
	Datil app
	Fudge app

	Practical contributions: real-world applications and evaluation
	Gait recognition system
	Data capture
	Data preprocessing
	Fuzzy ontologies for gait recognition
	Decision: gait recognition algorithm
	Zaragoza dataset: OWL and RDF representation
	Results and discussion

	Beer recommender system
	Fuzzy ontology
	Evaluation

	Blockchain smart contracts
	Ontologies
	Architecture

	Evaluation of the instance retrieval algorithm
	Experimental setup
	Results and discussion

	Building Information Modeling
	Implementation
	Dataset
	Results and discussion

	Evaluation of Datil
	Running time on mobile devices
	Lifestyle profile
	Fuzzy linguistic summaries

	Evaluation of Fudge aggregation
	Evaluation of the serializable and incremental fuzzyDL reasoner
	Experimental setup
	Results and discussion

	Conclusions and future work
	Fuzzy ontology learning
	Reasoning
	Mobile devices
	Real-world applications
	Future work

	Bibliography
	Publications

