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Abstract

This thesis compiles the work realised during four years of research in machine
learning algorithms and techniques. The aim of this study lays in how to execute
the inference process of machine learning algorithms in a more efficient way and
how to achieve more reliable techniques. For that, this thesis consist in three main
steps: first, the design and implementation on an FPGA of an accelerator that takes
advantage of the optimisation opportunities offered by sparsity in DNNs, second,
the design and implementation on an FPGA of an accelerator for gradient boosting
decision trees in the context of hyperspectral images classification, and third, an
analysis of bayesian networks for hyperspectral images classification to demonstrate
how the uncertainty metrics can help us in many tasks to achieve more reliable
networks.

Resumen (spanish)
Esta tesis recoge el trabajo realizado durante cuatro años de investigación en algorit-
mos y técnicas de aprendizaje automático. El objetivo de este estudio radica en cómo
ejecutar el proceso de inferencia de los algoritmos de aprendizaje automático de
una manera más eficiente y cómo conseguir técnicas más fiables. Para ello, esta tesis
consta de tres pasos principales: en primer lugar, el diseño e implementación en una
FPGA de un acelerador que aprovecha las oportunidades de optimización que ofrece
la dispersión de datos en las DNNs, en segundo lugar, el diseño e implementación
en una FPGA de un acelerador para árboles de decisión basados en la potenciación
del gradiente en el contexto de la clasificación de imágenes hiperespectrales, y en
tercer lugar, un análisis de redes bayesianas para la clasificación de imágenes hipere-
spectrales para demostrar cómo las métricas de incertidumbre pueden ayudarnos en
muchas tareas para conseguir redes más fiables.
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Introduction 1
„

— xkcd.com
(Just that guy, you know?)

This thesis compiles the work realised during four years of research in machine
learning algorithms and techniques. The aim of this study lays in two main aspects:
how to execute the inference process of machine learning algorithms in a more
efficient way, that is faster and/or with less energy consumption, to meet embedded
systems needs; and how to achieve more reliable techniques, i.e. not only accurate
but “trustworthy” in the sense of being able to detect when the received input does
not correspond to the learned information, so it is not possible to achieve a correct
prediction.

Enjoy it.

1.1 Motivation and Contributions

Machine Learning (ML) techniques have made spectacular advances in recent years.
The improvements and refinement of the models used, together with hardware
platforms that allow the exploration of increasingly complex models, trained on
larger data sets, have enabled a vast improvement in the accuracy of the models,
and opened up new fields of application.

However, the size and computation requirements of these models are increasing too.
The training process of these complex models is usually made with GPUs, which are
capable to massively parallelise the required computation, significantly reducing the
training time. In many fields this is enough, and the inference process is also carried

1



out withing a big computational system. But in the context of embedded systems,
once trained the model, the inference process is going to be executed in a small
low-power device, where the size and the energy and computational requirements
are critical.

In order to analyse these aspects we selected as test application the analysis of Hy-
perspectral Images (HI) in remote sensing, because it is a field where this challenges
are very present for two reasons. The images could be very big due to the high
number of features per pixel and the amount of information taken keeps growing,
and that implies, not only to analyse a lot of information, but also to send it to the
Earth. So efficient systems are needed in order to reduce the energy consumption
for their analysis in data centres, but also for achieving on-board analysis, so it will
be possible to avoid sending all the information for many cases of use.

The need for reliable techniques constitutes another major challenge in the HI
analysis for two main reasons: it is very difficult to generate HI datasets, so the
training information tends to be scarce and unbalanced (some classes are less
represented than others); but also, in this field is a fact that unknown inputs will
be received during inference in real-world applications because it is not feasible to
label every single material on the Earth surface, and also each pixel comprises a
large piece of terrain, which implies different and unique mixtures of materials and
surfaces.

This characteristics made HI analysis a perfect target for our study, and we used it for
several of our experiments. With that in mind, we analysed some critical applications
in that field, including the aspects related to the inference process in the most used
ML techniques and the possibilities offered by the uncertainty metrics provided
by bayesian techniques; and we developed accelerators capable of improving the
efficiency of the inference process, specially focused on embedded systems.

The two firs steps of our research focus on efficiency and consist in the design
and implementation on FPGAs of two accelerators for the inference process of two
different ML algorithms. For that we will explain first, as one of our published
contributions, an analysis of the inference process of some ML techniques, and then
we will describe the two accelerator designs. The third step focuses on the search
of reliable ML techniques, and consist in the analysis of bayesian networks for the
analysis of HI.

2 Chapter 1 Introduction



1.1.1 Contributions

Analysis of Machine Learning Models on Inference. Machine learning techniques
are widely used for pixel-wise classification of hyperspectral images. These methods
can achieve high accuracy levels, but most of them are computationally intensive
models. This poses a problem for their implementation in low-power and embedded
systems intended for on-board processing, in which energy consumption and model
size are as important as model accuracy. In this chapter, we present an overview
of the inference properties of the most relevant techniques for hyperspectral image
classification. For this purpose, we compare the size of the trained models and
the operations required during the inference step (which are directly related to
the hardware and energy requirements). Our goal is to search for appropriate
trade-offs between on-board implementation aspects (such as model size and energy
consumption) and classification accuracy.

This analysis of the inference characteristics of the main models for HI classification
is published in [21].

Step I: Sparse Convolutional Neural Networks Accelerator. Deep neural networks
(DNNs) are increasing their presence in a wide range of applications, and their
computationally intensive and memory-demanding nature poses challenges, espe-
cially for embedded systems. Pruning techniques turn DNN models into sparse by
setting most weights to zero, offering optimisation opportunities if specific support
is included. We propose a novel pipelined architecture for DNNs that avoids all
useless operations during the inference process. It has been implemented in a
field-programmable gate array (FPGA), and the performance, energy efficiency, and
area have been characterised. Exploiting sparsity yields remarkable speedups but
also produces area overheads. We have evaluated this trade-off in order to identify
in which scenarios it is better to use that area to exploit sparsity, or to include more
computational resources in a conventional DNN architecture. We have also explored
different arithmetic bitwidths. Our sparse architecture is clearly superior on 32-bit
arithmetic or highly sparse networks. However, on 8-bit arithmetic or networks
with low sparsity it is more profitable to deploy a dense architecture with more
arithmetic resources than including support for sparsity. We consider that FPGAs are
the natural target for DNN sparse accelerators since they can be loaded at run-time
with the best-fitting accelerator.

This work is published in [22] and the correspondent code is in a public repository
[44].

1.1 Motivation and Contributions 3



Step II: Gradient Boosting Decision Trees Accelerator. A decision tree is a well-
known machine learning technique. Recently their popularity has increased due to
the powerful Gradient Boosting ensemble method that allows to gradually increase
accuracy at the cost of executing a large number of decision trees. In this chapter
we present an accelerator designed to optimise the execution of these trees while
reducing the energy consumption. We have implemented it in an FPGA for embedded
systems, and we have tested it with a relevant case-study: pixel classification of
hyperspectral images. In our experiments with different images our accelerator can
process the hyperspectral images at the same speed at which they are generated
by the hyperspectral sensors. Compared to a high-performance processor running
optimised software, on average our design is twice as fast and consumes 72 times
less energy. Compared to an embedded processor, it is 30 times faster and consumes
23 times less energy.

For that work we published the GBDT accelerator developed [16], which also has
the codes in a public repository [15].

Step III: Bayesian Neural Networks for Hyperspectral Images. Machine learning
techniques, and specifically neural networks, have proved to be very useful tools for
image classification tasks. Nevertheless, measuring the reliability of these networks
and calibrating them accurately is very complex. This is even more complex in a field
like hyperspectral imaging, where labelled data are scarce and difficult to generate.
Bayesian neural networks (BNNs) allow to obtain uncertainty metrics related to the
data processed (aleatoric), and to the uncertainty generated by the model selected
(epistemic). On this chapter we will demonstrate the utility of BNNs by analysing
the uncertainty metrics obtained by a BNN over five of the most used hyperspectral
images datasets. In addition we will illustrate how these metrics can be used for
several practical applications such as identifying predictions that do not reach the
required level of accuracy, detecting mislabelling in the dataset, or identifying when
the predictions are affected by the increase of the level of noise in the input data.

This study also justifies the need of a BNN accelerator in the context of HI classi-
fication, whose design is in process and will be considered in this thesis as future
work. The study results are published in [12], and the codes to reproduce all the
experiments are available in a public repository [13].

4 Chapter 1 Introduction



1.2 Thesis Structure

The main chapters of this thesis, Chapters 3 to 6, are self-contained and each one is
dedicated to one of the contributions mentioned before. Each one of them include
their related work. The thesis is structured as follows.

Chapter 2

The second chapter gathers and explain the main concepts around this thesis such
as Hyperspectral Images (HI) and some of the most relevant Machine Learning (ML)
techniques.

Chapter 3

The third chapter shows the analysis of the inference process of the most used ML
techniques for HI classification, which is the first of the contributions mentioned
before.

Chapter 4

The fourth chapter explains the second of those contributions, the design and
implementation of an accelerator for sparse CNNs.

Chapter 5

The fifth chapter is dedicated to the third of the contributions, the design and
implementation of the GBDTs accelerator.

Chapter 6

The sixth chapter explains the study of BNNs for HI classification, which corresponds
to the fourth of the contributions mentioned before.

Chapter 7

The last chapter compiles the conclusions of the main contributions of this thesis.
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In this chapter we will contextualise some important and transversal concepts and
domains that will be present in the rest of the document.

First we will talk about machine learning, and specifically its particular needs for
embedded systems, then we will explain what is a field programmable gate array
(FPGA) and why do we use them for implementing our hardware designs, and in a
final point, we will show the characteristics of hyperspectral images (HI), as one of
our main target fields, and we will describe the HI datasets that we used for some of
our experiments.
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2.1 Machine Learning

Machine Learning (ML) techniques have been used more and more in the last years
to automatise a great number of tasks in many different fields. These methods
mainly consist in algorithms capable of identify patterns in a dataset used to train
them, so they become able to search for these patterns in new, unseen, data and,
based on that information, infer their characteristics.

One of the most frequent uses of ML, and the one selected as target in this work, is
to classify images into a series of categories with supervised learning. That means
to train the selected ML method with a dataset of images labelled with a collection
of categories, so the trained model will be able to classify new images into this
same group of categories. In particular we will focus in Hyperspectral Images (HI)
classification, and we will talk about the HI datasets in Section 2.3.

The supervised training process consist in feeding the selected ML model with the
labelled data, so it will produce an output. Then, according to the relation between
the received output and the desired one, the parameters of the model will be slightly
modified. If the parameters were modified too much, the model will only learn
to fit the latest data, but the idea is that this process, called backpropagation, will
be repeated thousands of times with very little modifications, so at the end the
model will achieve a generic configuration to identify the features of all the data
received. The learning rate is the training parameter that defines how much the
model parameters will be modified on each iteration.

This training processes require a lot of computation and they are usually carried out
using GPUs. This process is usually done using a framework, and most of them are
currently adapted to support GPU libraries, but there are also specific accelerators to
reduce the energy consumption during training.

Nevertheless, we are focusing on ML for embedded systems here, and our main
concern is not the training process, but the inference. There are a lot of cases
of use of this ML techniques deployed in small devices that need to perform the
inference process in-place, and sometimes in real time. Images classification and
pattern recognition are very used in this contexts such in autonomous vehicles,
crop automation or medical equipment. To better understand the computational
requirements of this task, in Chapter 3 we will explain and analyse in profundity the
inference process of the ML methods most used to classify HI.
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2.2 Field Programmable Gate Arrays

Our designs are meant to be deployed in a field programmable gate array (FPGA).
An FPGA is a reprogrammable device where it is possible to deploy an specific logic
circuit in an easy way compared to the manufacturing process of an Application-
Specific Integrated Circuit (ASIC). For many years they have been used as a tool for
the development process of ASICs, for research purposes and for some very specific
tasks or systems that required acceleration but didn’t worth the design cost of an
ASIC. In recent years they have become a very useful tool for developing accelerators
thanks to several factors such as the efforts to manage heterogeneous systems in data
centres, the increase of its computing and on-chip memory capacity, the developing
of better and better high level synthesis (HLS) languages and tools and the inclusion
of ML techniques in several scenarios.

Specifically in remote sensing FPGAs are very useful, because reprogramability is a
very desired quality in satellites and they use to be equipped with at least one FPGA.
To develop FPGA accelerators for ML techniques can be the best option to achieve
low-energy on-board analysis of multi and hyperspectral images.

Even though our designs could be implemented as an ASIC, they are specifically
thought for FPGAs, as they have their own constraints. We use the Zedboard Xilinx
Zynq-7000 evaluation board [10] shown in Figure 2.1, and we write our designs
directly in a hardware description language (in our case VHDL) at a register-transfer
level to be able to control the architecture of our designs and make low-level
optimisations. We synthesise and implement using the Xilinx tool Vivado, and our
codes are always available in public repositories. We will refer to them on each
chapter.

The Zynq-7000 board supports software-hardware co-design using an ARM processor,
so the FPGA can be exclusively dedicated to accelerate specific processes. It has
dedicated DSP slices to carry out complex arithmetic computations and on-chip
block RAMs to reduce the need to access to external memories. One of the reasons
of using an small board as the series 7000 is that our accelerators intend to be proof
of concept designs for embedded systems, so we actually want to develop small
low-consuming designs. There are FPGAs with much higher capacity and speed,
oriented to servers, but we are interested in low power FPGAs that can operate in a
remote embedded system.
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Figure 2.1: ZedBoard 7000 series.

The design and specific characteristics of our two accelerators will be described on
their respective chapters. Chapter 4 will describe the sparse convolutional neural
network accelerator and chapter 5 the gradient boosting decision trees accelerator.

2.3 Hyperspectral Datasets

Hyperspectral images consist of hundreds of spectral bands, where each band
captures the responses of ground objects at a particular wavelength. Therefore, each
pixel of the image can be considered as a spectral signature. Fig. 2.2 represents an
example of the multiple bands of a hyperspectral image.

In hyperspectral images pixel classification, the input is a single pixel composed of
a series of features, where each feature is a 16-bit integer. The number of features
depends on the sensor used to obtain the image. The data sets that we use in our
experiments are Botswana (BO) [2], Houston University (HU) [84], Indian Pines
(IP) [2], Kennedy Space Center (KSC) [2], Pavia University (PU) [2] and Salinas
Valley (SV) [2]. Figures 2.3 to 2.8 show an RGB representation of each image based
on the algorithm provided by [24] along with the ground truth representation of
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Figure 2.2: Hyperspectral image example.

each dataset. Table 2.1 shows the number of classes, labelled pixels of each class
and spectral bands of every dataset, and the colours legend for the ground truth
images.

Figure 2.3: BO RGB representation and ground truth.

• The BO dataset is an image with water and vegetation collected by the Hyper-
ion sensor over the Okavango Delta, Botswana, in 2001-2004. It has 1476x256
pixels with 145 spectral bands after removing the uncalibrated and noisy bands
that cover water absorption features. Each pixel has a 30m resolution. Only
3248 of the 377856 total pixels are labelled into 14 classes.

• The HU data set is an image of an urban area collected by the Compact
Airborne Spectrographic Imager (CASI) sensor over the University of Houston,
USA. It has 349x1905 pixels with 144 spectral bands. Only 15029 of the total
664845 pixels are labelled into 15 classes. As it was the benchmark dataset for
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Figure 2.4: HU RGB representation, training and testing ground truth.

Table 2.1: Hyperspectral Datasets Characteristics.

BO
HU

IP KSC PU SV
Train Test

Number of classes 14 15 16 13 9 16

Class 0 px. 270 198 1053 46 761 6631 2009
Class 1 px. 101 190 1064 1428 243 18649 3726
Class 2 px. 251 192 505 830 256 2099 1976
Class 3 px. 215 188 1056 237 252 3064 1394
Class 4 px. 269 186 1056 483 161 1345 2678
Class 5 px. 269 182 143 730 229 5029 3959
Class 6 px. 259 196 1072 28 105 1330 3579
Class 7 px. 203 191 1053 478 431 3682 11271
Class 8 px. 314 193 1059 20 520 947 6203
Class 9 px. 248 191 1036 972 404 - 3278
Class 10 px. 305 181 1054 2455 419 - 1068
Class 11 px. 181 192 1041 593 503 - 1927
Class 12 px. 268 184 285 205 927 - 916
Class 13 px. 95 181 247 1265 - - 1070
Class 14 px. - 187 473 386 - - 7268
Class 15 px. - - - 93 - - 1807

Total labelled px. 3248 2832 12197 10249 5211 42776 56975

Spectral bands 145 144 200 176 103 204
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Figure 2.5: IP RGB representation and ground truth.

Figure 2.6: KSC RGB representation and ground truth.

a contest [87], it is already divided into training and testing sets, with 2832
and 12197 pixels, respectively.

• The IP data set is an image of an agricultural region, mainly composed of
crop fields, collected by the Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) sensor in Northwestern Indiana, USA. It has 145x145 pixels with 200
spectral bands after removal of the noise and water absorption bands. Of the
total 21025 pixels, 10249 are labelled into 16 different classes.

• The KSC data set is an image with water and vegetation collected by the AVIRIS
sensor over the Kennedy Space Center in Florida, USA. It has 512x614 pixels
with 176 spectral bands after removing the water absorption and low signal-
to-noise bands. Only 5211 out of the available 314368 pixels are labelled into
13 classes.
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Figure 2.7: PU RGB representation and ground truth.

• The PU data set is an image of an urban area, the city of Pavia in Italy, collected
by the Reflective Optics Spectrographic Imaging System (ROSIS), a compact
airbone imaging spectrometer. It is composed of 610x340 pixels with 103
spectral bands. Only 42776 pixels from the total 207400 are labelled into 9
classes.

• The SV data set is an image composed of agricultural fields and vegetation,
collected by the AVIRIS sensor in Western California, USA. It has 512x217
pixels with 204 spectral bands after removing the noise and water absorption
bands. Of the total 111104 pixels, 56975 are labelled into 16 classes.
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Figure 2.8: SV RGB representation and ground truth.
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Analysis of Machine Learning
Models on Inference

3

„

— xkcd.com
(Just that guy, you know?)

3.1 Introduction

Machine Learning (ML) techniques have become the most used mechanisms to
automatically analyse and classify images. In particular, they are also used in the
field of remote sensing to deal with the complexity of analysing multispectral and
hyperspectral images. Nevertheless, most of the improvements on this area imply
a high demand of resources and energy consumption, which could not be the best
option for many problems, specifically in the context of embedded systems, such as
on-board processing of remote sensing images.
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In this chapter we analyse the inference process of the most used ML methods in
the context of HI classification, focusing on on-board processing, which requires
both performance and low-power. For that, we will first explain each method
algorithm so we can then quantify the operations and type of data they require
during inference. We will also train the models to classify some HI datasets so we
can measure accuracy.

This comparative study of the ML techniques has been published in a high quality
journal [21].

3.2 Related Work

Traditionally, the data gathered by remote sensors have to be downloaded to the
ground segment, when the aircraft or spacecraft platform is within the range of the
ground stations, in order to be pre-processed by applying registration and correction
techniques and then distributed to the final users, which perform the final processing
(classification, unmixing, object detection).

Nevertheless, this procedure introduces important delays related to the communi-
cation of a large amount of remote sensing data (which is usually in the range of
GB-TB) between the source and the final target, producing a bottleneck that can
seriously reduce the effectiveness of real-time applications [92]. Hereof, real-time
on-board processing is a very interesting topic within the remote sensing field that
has significantly grown in recent years to mitigate these limitations, and to provide
a solution to these types of applications [104, 102, 94, 83, 33].

In addition to avoiding communication latencies, the on-board processing can
considerably reduce the amount of bandwidth and storage required in the collection
of HI data, allowing for the development of a more selective data acquisition and
reducing the cost of on-the-ground processing systems [96]. As a result, low-power
consumption architectures such as field-programmable gate array (FPGAs) [93, 34]
and efficient GPU architectures [45] have emerged as an alternative to transfer part
of the processing from the ground segment to the remote sensing sensor, which
leads us to the need of an analysis of the inference operations of the most used
methods.
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3.3 Inference Characteristics of Models for
Hyperspectral Images Classification

We selected some of the most relevant techniques for HI data classification to
be compared in the inference stage. These techniques are: Multinomial Logistic
Regression (MLR), Random Forest (RF), Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), and a shallow Convolutional Neural Network (CNN) with 1D
kernel, as well as Gradient Boosting Decision Trees (GBDT), a tree based technique
that has successfully been used in other classification problems. In order to compare
them, it is necessary to perform the characterisation of each algorithm in the
inference stage, measuring the size in memory of the trained model and analysing
the number and type of operations needed to perform the complete inference stage
for the input data.

In the case of HI classification, the input is a single pixel vector composed of a series
of features, and each one of these features is a 16-bit integer value. Each model
treats the data in different ways so, for instance, the size of the layers of a neural
network will depend on the number of features of the pixels of each data set, while
the size of a tree-based model will not. We will explain the characteristics of the
different models and the inference process for each of them.

3.3.1 Multinomial Logistic Regression

The MLR classifier is a probabilistic model that extends the performance of binomial
logistic regression for multi-class classification, approximating the posterior proba-
bility of each class by a softmax transformation. In particular, for a given HI training
set Dtrain = {xi, yi}M

i=1 composed by M pairs of spectral pixels xi ∈ RB and their
corresponding labels yi ∈ Y = {1, · · · , K}, the posterior probability P (yi = k|xi, Θ)
of the k-th class is given by Eq. (3.1) [97]:

P (yi = k|xi, Θ) = exp (θk · h(xi))
K∑

j=1
exp (θj · h(xi))

(3.1)

being θk the set of logistic regressors for class k, considering Θ = {θ1, · · · , θK−1, 0}
as all the coefficients of the MLR, while h(·) is a feature extraction function defined
over the spectral data xi, which can be linear, i.e., h(xi) = {1, xi,1, · · · , xi,B}, or
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non-linear (for instance, kernel approaches [81]). In this work, linear MLR is
considered.

Standardisation of the data set is needed before training, so the data are compacted
and centred around the average value. This process implies the calculation of the
average (x) and standard deviation (s) values of the entire data set X to apply
Eq. (3.2) to each pixel xi. In HI processing, it is common to pre-process the entire
data set before splitting it into the training and testing subsets, so x and s include
the test set, which is already standardised to perform the inference after training.
Nevertheless, in a real environment, x and s values will be calculated from the
training data and then the standardisation should be applied on-the-fly, applying
these values to the input data received from the sensor. This implies not only
some extra calculations to perform the inference for each pixel, but also some extra
assumptions on the representativeness of the training data distribution. These extra
calculations are not included in the measurements of Section 3.5.2.

x′
i = xi − x

s
(3.2)

The MLR model has been implemented in this work with the scikit learn Logistic
Regression model with a multinomial approach and lbfgs solver [4]. The trained
model consists of one estimator for each class, so the output of each estimator
represents the probability of the input belonging to that class. The formulation
of the inference for the class k estimator (yk) corresponds to Eq. (3.3), where
xi = {1, xi,1, · · · , xi,B} is the input pixel and θk = {θk,0, · · · , θk,B} correspond to
the bias value and the coefficients of the estimator of class k.

yk,i = θk · xi = θk,0 + θk,1xi,1 + θk,2xi,2 + · · · + θk,Bxi,B (3.3)

As a result, the model size depends on the number of classes (K) and features (B),
having K(B + 1) parameters. The inference of one pixel requires KB floating point
multiplications and KB floating point accumulations. In this case, we have a very
small model and it does not require many calculations. However, since it is a linear
probabilistic model, its accuracy may be limited in practice, although it can be very
accurate when there is a linear relation between the inputs and outputs.
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3.3.2 Decision Trees

A Decision Tree is a decision algorithm based on a series of comparisons connected
among them as in a binary tree structure, so that the node comparisons lead the
search to one of the child nodes, and so on, until reaching a leaf node that contains
the result of the prediction. During training, the most meaningful features are
selected and used for the comparisons in the tree. Hence the features that contain
more information will be used more frequently for the comparison, whether those
that do not provide useful information for the classification problem will simply be
ignored [109]. This is an interesting property of this algorithm since, based on the
same decisions made during training to choose features, we can easily determine
the feature importance. This means that Decision Trees can be also used to find out
which features carry the main information load, and that information can be used to
train even smaller models keeping most of the information of the image with much
less memory impact.

Figure 3.1 shows the inference operation of a trained Decision Tree on a series of
feature inputs with a toy example. In the first place, this tree takes feature 4 of the
input and compares its value with the threshold value 20; as the input value is lower
than the threshold it continues on the left child, and keeps with the same procedure
until it reaches the leaf with 0.3 as output value.

Feature: 4
Cmp. value: 20

Feature: 0
Cmp. value: 10 0.7

0.3

<=

<=

>

>

Feature: 3
Cmp. value: 15

0.3 0.5

<= >

25 30 15 10 15 25

0 1 2 3 4 5

Pixel:

Inference steps:

Pixel(4) = 15 <= 20 --> left child
Pixel(0) = 25 > 10 --> right child
Pixel(3) = 10 <= 15 --> left child

Figure 3.1: Decision Tree example.

One of the benefits of using Decision Trees over other techniques is that they do not
need any input preprocessing such as data normalisation, scaling or centring. They
work with the input data as it is [55]. The reason is that features are never mixed.
As can be seen in Figure 3.1, in each comparison the trees compare the value of an
input feature with another value of the same feature. Hence, several features can
have different scales. In other Machine Learning models, as we just saw in MLR for
example, features are mixed to generate a single value so, if their values belong to
different orders of magnitude, some features will initially dominate the result. This
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can be compensated during the training process, but in general normalisation or
other preprocessing technique will be needed to speed up training and improve the
results. Besides, the size of the input data does not affect the size of the model, so
dimensionality reduction techniques such as Principal Component Analysis (PCA)
are not needed to reduce the model size, which substantially reduces the amount of
calculation needed at inference.

Nevertheless, a single Decision Tree does not provide accurate results for complex
classification tasks. The solution is to use an ensemble method that combines the
results of several trees in order to improve the accuracy levels. We will analyse
two of these techniques, Random Forest (RF) and Gradient Boosting Decision Trees
(GBDT). In terms of computation, most of the machine learning algorithms need a
significant amount of floating point operations on inference, and most of them are
multiplications. By contrast, the inference with an ensemble of Decision Trees just
need a few comparisons per tree. In terms of memory requirements, the size of this
models depends on the number of trees and the number of nodes per tree, but the
memory accesses, and therefore the used bandwidth, is much lesser than the size of
the model because Decision Trees only need to access a small part of the model to
perform an inference.

In the case of hyperspectral-images pixel classification, the input is a single pixel
composed of a series of features. Each node specialises in a particular feature during
training, meaning that, at the time of inference, one particular node performs a
single comparison between its trained value and the value of the corresponding
feature. Since the feature values of hyperspectral images are 16-bit integers, each
node just need an integer comparison to made their decision; i.e. left or right child.
This is a very important characteristic for embedded and on-board systems. In most
ML models the inputs are multiplied by a floating-point value, hence even when
the input model is an integer, all the computations will be floating-point. However,
a tree only need to know whether the input is smaller or greater than a given
value, and that value can be an integer without any accuracy loss. So in the case
of hyperspectral images pixel-classification, this technique behaves exceptionally in
terms of computation. Decision Trees are fast and efficient during inference and can
be executed even by low-power microcontrollers.

Random Forest

A typical approach to use as ensemble method is RF techniques, where several trees
are trained for the same data set, but each one of them for a random subsample of
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the entire data set. Moreover, the search of the best split feature for each node is
done on a random subset of the features. Then each classifier votes for the selected
class [101].

The RF model has been implemented with the scikit learn Random Forest Classifier
model [3]. In this implementation the final selection is done by averaging the
predictions of every classifier instead of voting, which implies that each leaf node
must keep a prediction value for each class, so after every tree performs the inference
the class is selected from the average of every prediction. This generates big models
but, as we said, it only needs to access a small part of it during inference.

Gradient Boosting

However, even better results can be obtained applying a different ensemble approach
called Gradient Boosting. This technique is an ensemble method that combines
the results of different predictors in such a way that each tree attempts to improve
the results of the previous ones. Specifically, gradient boosting method consists in
training predictors sequentially so each new iteration try to correct the residual
error generated in the previous one. That is, each predictor is trained to correct the
residual error of its predecessor. Once the trees are trained, they can be used for
prediction by simply adding the results of all the trees [103, 55].

The GBDT model has been implemented with the LightGBM library Classifier [6].
For multi-class classification, one-vs-all approach is used in GBDT implementation,
which means that the model trains a different estimator for each class. The output
of the correspondent estimator represents the probability that the pixel belongs to
that class, and the estimator with the highest result is the one that corresponds to
the selected class. On each iteration, the model adds a new tree to each estimator.
The one-vs-all approach makes it much easier to combine the results given that each
class has their own trees, so we just need to add the results of the trees of each class
separately, as shown in Figure 3.2. This accumulations of the output values of the
trees are the only operations in floating point that the GBDT need to perform.

Due to its iterative approach, GBDT model also allows designers to trade-off accuracy
for computation and model size. For example, if a GBDT is trained for 200 iterations,
it will generate 200 trees for each class. Afterwards, the designer can decide whether
to use all of them, or to discard the final ones. It is possible to find similar trade-off
with other ML models, for instance reducing the number of convolutional layers
in a CNN or the number of hidden neurons in a MLP. However, in that case, each
possible design must be trained again, whereas in GBDT only one train is needed,
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Figure 3.2: GBDT results accumulation with one-vs-all approach.

and afterwards the designer can simply evaluate the results when using different
number of trees and generate a Pareto curve with the different trade-offs.

3.3.3 Support Vector Machine

A Support Vector Machine (SVM) is a kernel-based method commonly used for
classification and regression problems. It is based on a two-class classification
approach, the Support Vector Network algorithm. To find the smallest generalisation
error, this algorithm searches for the optimal hyperplane, i.e. a linear decision
function that maximises the margin among the support vectors, which are the ones
that define the decision boundaries of each class [106]. In the case of pixel-based
classification of hyperspectral images, we need to generalise this algorithm to a
multi-class classification problem. This can be done following a one-vs-rest, or
one-vs-all, approach, training K separate SVMs, one for each class, so each two-class
classifier will interpret the data from its own class as positive examples and the rest
of the data as negative examples [97].

The SVM model has been implemented with the scikit learn Support Vector Classifi-
cation (SVC) algorithm [5], which implements one-vs-rest approach for multi-class
classification. SVM model also requires preprocessing of the data applying standard-
isation Eq. (3.2), with the same implications explained in Section 3.3.1. According
to scikit learn SVC mathematical formulation [5], the decision function is 3.4, where
K(vi, x) corresponds to the kernel. We used the Radial Basis Function (RBF) kernel,
whose formulation is 3.5. So the complete formulation of the inference operations is
3.6, where vi corresponds to the i-th support vector, yiαi product is the coefficient
of this support vector, x corresponds to the input pixel, ρ is the bias value and γ is
the value of the gamma training parameter.
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sgn
(

M∑
i=1

yiαiK(vi, x) + ρ

)
(3.4)

exp
(
−γ∥vi − x∥2

)
(3.5)

sgn
(

M∑
i=1

yiαi exp
(
−γ∥vi − x∥2

)
+ ρ

)
(3.6)

The number of support vectors defined as M on Eq. (3.6) of the SVM model will
be the number of data used for the training set. So this model does not keep too
many parameters, which makes it small in memory size, but in terms of computation,
it requires a great amount of calculus to perform one inference. The number of
operations will depend on the number of features and the number of training
data, which makes it unaffordable in terms of computation for really big data sets.
Moreover, as it uses one-vs-all, it will also depend on the number of classes because
it will train an estimator for each one of them.

3.3.4 Neural Networks

Neural Networks have become one of the most used machine learning techniques for
images classification, and they have also proved to be a good choice for hyperspectral
images classification. A Neural Network consists of several layers sequentially
connected so that the output of one layer becomes the input of the next one. Some
of the layers can be dedicated to intermediate functions, like pooling layers that
reduce dimensionality highlighting the principal values, but the main operation, as
well as most of the calculations, of a Neural Network resides in the layers based on
neurons. Each neuron implements Eq. (3.7), where x is the input value and w and b

are the learned weight and bias respectively, which are float values.

y = xw + b (3.7)

Usually, when applying groups of Neurons in more complex layers, the results of
several Neurons are combined such as in a dot product operation, as we will see
for example in Section 3.3.4, and this w and b values are float vectors, matrices or
tensors, depending on the concrete scenario. So the main calculations in Neural
Networks are float multiplications and accumulations, and the magnitude of these
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computations depends on the number and size of the layers of the Neural Network.
The information we need to keep in memory for inference consists in all these
learned values, so the size of the model will also depend on the number and size of
the layers.

Neural Network models also require preprocessing of the data. Without it, the
features with higher and lower values will initially dominate the result. This can be
compensated during training process, but in general normalisation will be needed
to speed up training and improve the results. As for MLR and SVM models, stan-
dardisation Eq. (3.2) of the data sets was applied.

Multi Layer Perceptron

A Multi Layer Perceptron (MLP) is a Neural Network with at least one hidden layer,
i.e. intermediate activation values, which requires at least two fully-connected
layers.Considering the l-th fully connected layer, its operation corresponds to Eq.
(3.8), where X(l−1) is the layer’s input, which can come directly from the original
input or from a previous hidden layer l − 1, X(l) is the output of the current layer,
resulting from applying the weights W(l) and biases ρ(l) of the layer. If the size of
the input X(l−1) is (M, N (l−1)), being M the number of input samples and N (l−1)

the dimension of the feature space, and the size of the weights W(l) is (N (l−1), N (l)),
the output size will be (M, N (l)), i.e. the M samples represented in the feature
space of dimension N (l) and defined by the l-th layer. In the case of hyperspectral
imaging classification, the input size for one spectral pixel will be (1, B), where B

is the number of spectral channels, while the final output of the model size will be
(1, K), where K is the number of considered classes.

X(l) = X(l−1)W(l) + ρ(l) (3.8)

MLP model has been implemented with PyTorch Neural Network library [7], using
the Linear classes to implement two fully-connected layers. The number of neurons
of the first fully-connected layer is a parameter of the network, and the size of
each neuron of the last fully-connected layer will depend on it. In the case of
hyperspectral images pixel classification, the input on inference will be a single
pixel (M = 1 according to last explanation) with B features and the final output
will be the classification for the K classes, so the size of each neuron of the first
fully-connected layer will depend on the number of features, while the number of
neurons of the last fully-connected layer will be the number of classes.
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As the input for pixel classification is not very big, this model keeps an small size
once trained. During inference it will need to perform a float multiplication and a
float accumulation for each one of its parameters, among other operations, so even
being small the operations needed are expensive in terms of computation.

Convolutional Neural Network

A Convolutional Neural Network (CNN) is a Neural Network with at least one
Convolutional layer. Instead of fully-connected neurons, Convolutional layers apply
locally-connected filters per layer. These filters are smaller than the input and each
one of them performs a convolution operation on it. During a convolution, the filter
performs dot product operations within different sections of the input while it keeps
moving along it. For hyperspectral images pixel classification, whose input consist in
a single pixel, the 1D convolutional layer operation can be described with Alg. (3.1),
where input pixel x has B features, the layer has F filters and each filter Q has q

values, i.e. weights in the case of 1D convolution, and one bias ρ, so the output X′

will be of shape (B − q + 1, F ). The initialisation values LAY ER_FILTERS and
LAY ER_BIASES correspond respectively to the learned weights and biases of the
layer.

1 # Layer activations and biases
2 W ← LAY ER_F ILT ERS # Matrix of F filters with q weights each
3 ρ← LAY ER_BIASES # Array of F bias values
4 # Get the input
5 x ≡ INP UT _P IXEL # Array of B values
6 # Generate empty output structure
7 X = zeros_matrix((B − q + 1, F ))
8 # For each filter
9 for f in range(F):

10 # Movement of the filter along the input
11 for i in range(B - q + 1):
12 # Dot product along the current filter and input position
13 for j in range(q):
14 X[i, f ] += W [f, j]× x[i + j]
15 # Add the bias value
16 X[i, f ] += ρ[f ]
17 # Return the output matrix
18 return X

Algorithm 3.1: 1D convolutional layer algorithm.

The CNN model has been implemented with PyTorch Neural Network library [7],
using the Convolution, the Pooling and the Linear classes to define a Network
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with respectively one 1D convolutional layer, one max pooling layer and two fully
connected layers at the end. The input of the 1D Convolutional layer will be the
input pixel, while the input of the rest of the layers will be the output of the
previous one, in the specified order. The number and size of the filters of the 1D
convolutional layer are parameters of the network, nevertheless the relation between
the profundity of the filters and the number of features will determine the size of
the first fully connected layer, which is the biggest one. The Max Pooling layer
does not affect the size of the model, since it only performs a size reduction by
selecting the maximum value within small sub-sections of the input, but it will affect
the number of operations as it needs to perform several comparisons. The fully
connected layers are actually an MLP, as explained in Section 3.3.4. The size of
the last fully connected layer will also depend on the number of classes. In terms
of computation, the convolutional layer is very intensive in calculations, as can be
observed in Alg. (3.1), and most of them are floating point multiplications and
accumulations.

3.3.5 Summary of the relation of the models with the input

Each discussed model has different characteristics on its inference operation, and
the size and computations of each one depends on different aspects of the input
and the selected parameters. Table 3.1 summarises the importance of the data set
size (in the case of hyperspectral images this is the number of pixels of the image),
the number of features (number of spectral band of each hyperspectral pixel), and
the number of classes (labels) in relation to the size and the computations of each
model. The dots in Table 3.1 correspond to a qualitative interpretation, from not
influenced at all (zero dots) to very influenced (three dots), regarding how each
model size and number of computations is influenced by the size of the data set,
the number of features of each pixel, and the number of classes. This interpretation
is not intended to be quantitative but qualitative, i.e. just a visual support for the
following explanations.

The number of classes is an important parameter for every model, but it affects
them in a very different way. Regarding the size of the model, the number of classes
defines the size of the output layer in the MLP and CNN, while for the MLR, GBDT
and SVM the entire estimator is replied as many times as the number of classes.
Since the RF needs to keep the prediction for each class on every leaf node, the
number of classes is crucial to determine the final size of the model, and affects
it much more. Regarding the computation, in the MLR, GBDT and SVM models
the entire number of computations is multiplied by the number of classes, so it
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affects them very much. Furthermore, in the SVM model the number of classes
will also affect the number of support vectors needed, because it is necessary to
have enough training data for every class, so each new class not only increases the
number of estimators, but also increases the computational cost by adding new
support vectors. In neural networks, the number of classes defines the size of the
output (fully connected) layer, which implies multiply and accumulate floating point
operations, but this is the smallest layer for both models. And in the case of RF, it
only affects the final calculations of the results, but it is important to remark that
these are precisely the floating point operations of this model.

The number of features is not relevant for decision tree models during inference,
that is why they do not need any dimensionality reduction techniques. The size of
each estimator of the MLR and the SVM models will depend directly on the number
of features, so it influences the size as much as the number of classes. In neural
networks, it affects the size of the first fully connected layer (which is the biggest
one), so the size of these models is highly influenced by the number of features.
Nevertheless, in the case of the MLP, it only multiplies the dimension of the fully
connected layer so it does not impact that much as in the case of the CNN, where
it will be also multiplied by the number of filters of the convolutional layer. In a
similar way, the number of operations of each estimator of the MLR and the SVM
models will be directly influenced by the number of features. Again, for the MLP it
will increase the number of operations of the first fully connected layer and for the
CNN also the convolutional layer, which is very intensive in terms of calculations.

The size of the data set (and specifically the size of the training set) only affect the
SVM model, because it will generate as many support vectors as the number of
different data samples used in the training process. Regarding the size of the model,
it implies to multiply the number of parameters of each estimator, so it will affect
the size of the model as much as the number of classes. Actually, both the training
set and the number of classes are related to each other. Regarding the number of
operations, the core of Eq. (3.6) depends on the number of support vectors, so its
influence is very high.

It is also worth noting that decision trees are the only ones that do not require any
pre-processing to the input data. As we already explained in Section 3.3.1, this
implies some extra calculations not included in the measurements of Section 3.5.2,
but they can also be a source of possible inaccuracies because of the implications they
could have once applied to a real system with entirely new data taken in different
moments and conditions. For instance, applying standardisation means that we will
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Table 3.1: Summary of the size and computational requirements of the considered models.

Size dependencies Computation dependencies

preprocessing data set features classes data set features classes

MLR standardisation - •• •• - •• ••
RF - - - • • • - - •
GBDT - - - •• - - ••
SVM standardisation •• •• •• • • • •• • • •
MLP standardisation - •• • - •• •
CNN1D standardisation - • • • • - • • • •

subtract the mean value of our training set to the data, and reduce it in relation to
the standard deviation of our training set.

3.4 Training Configurations for the Models Comparison

The data sets selected for these experiments are the Indian Pines (IP) [2], Pavia
University (PU) [2], Kennedy Space Center (KSC) [2], Salinas Valley (SV) [2] and
Houston University (HU) [84]. Their characteristics have been explained in Section
2.3.

The implementation of the algorithms previously analysed have been developed
and tested on a hardware environment with an X Generation Intel® Core™i9-9940X
processor with 19.25M of Cache and up to 4.40GHz (14 cores/28 way multi-task
processing), installed over a Gigabyte X299 Aorus, 128GB of DDR4 RAM. Also, a
graphic processing unit (GPU) NVIDIA Titan RTX GPU with 24GB GDDR6 of video
memory and 4608 cores has been used. We detailed in Section 3.3 the libraries and
classes used for the implementation of each model: MLR with scikit learn Logistic
Regression, Random Forest with scikit learn Random Forest Classifier, GBDT with
LightGBM Classifier, SVM with scikit learn Support Vector Classification, MLP with
PyTorch Neural Network Linear layers and CNN1D with PyTorch Neural Network
Convolutional, Pooling and Linear layers.

For each dataset we trained the models applying cross-validation techniques to select
the final training hyperparameters. After the cross-validation, the selected values not
always correspond to the best accuracy, but to the best relation between accuracy
and model size and requirements. The selected hyperparameters shown in Table 3.2
are the penalty of the error (C) for the MLR, the number of trees (n), the minimum
number of data to split a node (m) and maximum depth (d) for both the RF and
the GBDT, and also the maximum number of features to consider for each split (f)
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Table 3.2: Selected training parameters of the different tested models.

MLR RF GBDT SVM MLP CNN1D

C n m f d n m d C γ h.l. f q p f1 f2

IP 1 200 2 10 10 200 20 20 100 2−9 143 20 24 5 100 16
PU 10 200 2 10 10 150 30 30 10 2−4 78 20 24 5 100 9
KSC 100 200 2 10 10 300 30 5 200 2−1 127 20 24 5 100 13
SV 10 200 2 40 60 150 80 25 10 2−4 146 20 24 5 100 16
HU 1e5 200 2 10 40 150 30 35 1e5 2−6 106 20 24 5 100 15

for the RF, the penalty of the error (C) and kernel coefficient (γ) for the SVM, the
number of neurons in the hidden layer (h.l.) for the MLP and for the CNN, the
number of filters of the convolutional layer (f), the number of values of each filter
(q), the size of the kernel of the max pooling layer (p) and the number of neurons of
the first and last fully connected layers (f1) and (f2), respectively.

The final configurations of some models not only depend on the selected hyperpa-
rameters, but also on the training data set (for the SVM model) and the training
process itself (for the RF and GBDT models). Table 3.3 shows the number of features
(ft.) and classes (cl.) of each image and the final configurations of RF, GBDT and
SVM models. For the tree models, the shown values are the total number of trees
(trees), which in the case of the GBDT model depends on the number of classes of
each image, the total number of non-leaf nodes (nodes) and leaf nodes (leaves), and
the average depth of the trees of the entire model (depth). For the SVM model, the
number of support vectors (s.v.) depends on the amount of training data.

Table 3.3: Final configurations of RF, GBDT and SVM models.

RF GBDT SVM

ft. cl. trees nodes leaves depth trees nodes leaves depth s.v.

IP 200 16 200 28663 28863 8,39 3200 54036 57236 5,65 1538
PU 103 9 200 33159 33359 8,63 1350 36415 55646 8 4278
KSC 176 13 200 15067 15267 8,9 3900 17883 75814 2,64 782
SV 204 16 200 23979 24179 8,46 2400 50253 52653 6,02 5413
HU 144 15 200 44597 44787 12,34 2250 67601 69851 7,31 2832

3.5 Discussion of the Results of the Models
Comparison

First we will present the accuracy results for all models and images, and then
we report the size and computational measurements on inference. Then, we will
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summarise and analyse the characteristics of each model in order to target an
embedded or an on-board system.

3.5.1 Accuracy results

Figures 3.3 to 3.6 depict the accuracy evolution of each model when increasing the
percentage of pixels for each class selected for training. Neural Network models
always achieve high accuracy values, with the CNN model outperforming all other
models, and the SVM as a kernel-based model is always the next one or even
outperforming the MLP. The only behaviour out of this pattern is the high accuracy
values achieved by the MLR model on the KSC data set. Except for this case, the
results obtained by neural networks, kernel-based models and the other models
were expected [39]. Nevertheless, it is worth to mention that, for a tree based
model, GBDT achieves great accuracy values which are very close to those obtained
by neural networks and the SVM, which always provide higher values than the RF,
which is also a tree based model.
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Figure 3.3: Accuracy for different training set sizes on IP.
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Figure 3.4: Accuracy for different training set sizes on PU.
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Figure 3.5: Accuracy for different training set sizes on KSC.
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Figure 3.6: Accuracy for different training set sizes on SV.

The results obtained with the HU data set are quite particular, since it is not an
entire image to work with, but two separated structures already prepared as training
and testing sets. As we can observe in the values of the overall accuracy in Table
3.8, the accuracy of all models is below the score obtained for other images. But the
distribution of the different models keeps the same behaviour described for the rest
of the data sets, with the particularity that the MLR model outperforms the GBDT in
this case.

Tables 3.4 to 3.8 show the accuracy results of the selected configurations of each
model. For the IP and KSC images, the selected training set is composed of 15%
of the pixels from each class, while in the PU and SV it only consists of 10% of
the pixels from each class. The fixed training set for the HU image is composed of
around 19% of the total pixels.

Fig. 3.7 shows the classification maps obtained for the different data sets by all the
models. As we can observe, most of the classification maps have the typical salt and
pepper effect of spectral models, i.e. classified trough individual pixels. There are
some particular classes that are better modelled by certain models. For instance,
the GBDT and SVM perfectly define the contour of Soil-vinyard-develop class of SV,
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Table 3.4: IP data set results.

class MLR RF GBDT SVM MLP CNN1D

1 22.5 ± 6.71 18.0 ± 7.31 40.0 ± 5.0 40.5 ± 9.0 40.5 ± 20.27 33.5 ± 13.93
2 75.04 ± 1.17 62.73 ± 2.37 76.623 ± 1.967 80.3 ± 1.12 79.32 ± 2.6 81.52 ± 1.51
3 57.17 ± 1.76 50.14 ± 1.96 65.354 ± 1.759 70.06 ± 1.74 69.89 ± 3.22 68.07 ± 2.9
4 45.94 ± 3.64 30.5 ± 3.97 40.297 ± 2.356 67.82 ± 6.08 59.9 ± 6.03 60.99 ± 9.05
5 89.68 ± 2.32 86.18 ± 2.96 90.414 ± 1.338 93.19 ± 2.41 89.39 ± 1.79 90.27 ± 2.22
6 95.56 ± 1.5 94.78 ± 1.16 96.039 ± 1.011 95.97 ± 1.33 97.13 ± 1.41 97.39 ± 0.44
7 42.5 ± 16.75 8.33 ± 5.27 32.5 ± 23.482 71.67 ± 7.17 60.83 ± 10.07 53.33 ± 17.95
8 98.72 ± 0.42 97.74 ± 0.39 98.133 ± 0.481 97.3 ± 1.31 98.08 ± 0.57 99.16 ± 0.51
9 21.18 ± 7.98 0.0 ± 0.0 14.118 ± 8.804 47.06 ± 9.84 57.65 ± 15.96 50.59 ± 10.26
10 66.55 ± 2.76 66.31 ± 4.71 75.84 ± 4.367 75.62 ± 1.19 79.11 ± 0.44 75.38 ± 3.68
11 80.24 ± 1.27 89.08 ± 1.27 87.877 ± 1.18 84.99 ± 1.08 83.56 ± 1.32 85.05 ± 0.53
12 60.59 ± 3.36 47.96 ± 6.57 55.604 ± 1.551 76.83 ± 4.51 73.31 ± 1.97 83.25 ± 3.31
13 98.29 ± 1.02 92.8 ± 2.74 93.371 ± 1.933 98.86 ± 1.2 99.2 ± 0.28 99.2 ± 0.69
14 93.4 ± 0.64 95.61 ± 0.99 95.967 ± 0.607 94.07 ± 0.87 95.13 ± 0.3 94.89 ± 1.29
15 65.71 ± 2.06 40.91 ± 0.81 56.839 ± 2.016 64.8 ± 1.35 66.08 ± 2.68 69.06 ± 2.94
16 84.75 ± 3.1 82.5 ± 2.09 88.5 ± 3.102 87.75 ± 2.89 89.0 ± 4.77 89.0 ± 2.67

OA 77.81 ± 0.42 75.32 ± 0.44 80.982 ± 0.783 83.46 ± 0.35 83.04 ± 0.44 83.93 ± 0.5
AA 68.61 ± 1.51 60.22 ± 0.57 69.217 ± 1.627 77.92 ± 0.88 77.38 ± 2.45 76.92 ± 1.93

K(x100) 74.54 ± 0.47 71.42 ± 0.53 78.16 ± 0.897 81.08 ± 0.41 80.62 ± 0.51 81.61 ± 0.59

Table 3.5: PU data set results.

class MLR RF GBDT SVM MLP CNN1D

1 92.41 ± 0.86 91.35 ± 0.98 90.044 ± 0.627 93.82 ± 0.62 94.31 ± 1.09 95.37 ± 1.3
2 96.02 ± 0.21 98.25 ± 0.18 96.571 ± 0.425 98.41 ± 0.23 97.98 ± 0.39 98.16 ± 0.27
3 72.75 ± 1.13 61.51 ± 3.47 74.952 ± 1.422 78.8 ± 1.33 80.38 ± 1.12 80.55 ± 1.91
4 88.17 ± 0.74 87.2 ± 1.25 90.986 ± 1.113 93.06 ± 0.67 93.72 ± 1.02 95.43 ± 1.54
5 99.41 ± 0.3 98.43 ± 0.56 99.026 ± 0.403 98.86 ± 0.25 99.36 ± 0.48 99.8 ± 0.17
6 77.5 ± 0.72 45.2 ± 1.52 86 ± 0.837 87.97 ± 0.62 91.58 ± 1.0 92.26 ± 1.54
7 54.77 ± 4.38 75.27 ± 4.56 84.194 ± 1.245 84.58 ± 1.57 85.23 ± 2.51 89.29 ± 3.78
8 86.05 ± 0.7 88.2 ± 1.03 87.827 ± 0.805 89.67 ± 0.44 87.32 ± 1.5 88.07 ± 1.59
9 99.7 ± 0.06 99.41 ± 0.29 99.906 ± 0.088 99.53 ± 0.3 99.62 ± 0.17 99.79 ± 0.2

OA 89.63 ± 0.12 86.8 ± 0.25 91.869 ± 0.181 93.98 ± 0.15 94.26 ± 0.18 94.92 ± 0.22
AA 85.2 ± 0.54 82.76 ± 0.43 89.945 ± 0.211 91.63 ± 0.38 92.17 ± 0.16 93.19 ± 0.47

K(x100) 86.13 ± 0.17 81.98 ± 0.35 89.195 ± 0.228 91.99 ± 0.2 92.37 ± 0.24 93.25 ± 0.3
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Table 3.6: KSC data set results.

class MLR RF GBDT SVM MLP CNN1D

1 95.92 ± 1.22 95.49 ± 1.21 95.425 ± 1.188 95.12 ± 0.77 96.23 ± 0.43 97.03 ± 1.19
2 92.27 ± 3.28 88.02 ± 2.35 86.377 ± 2.013 90.92 ± 3.56 88.89 ± 2.78 91.3 ± 4.26
3 87.25 ± 4.77 86.79 ± 2.89 86.697 ± 2.228 84.95 ± 3.46 90.92 ± 2.98 92.29 ± 1.89
4 68.09 ± 4.61 71.44 ± 4.77 64.372 ± 1.705 69.4 ± 6.88 72.74 ± 3.35 81.21 ± 8.79
5 75.18 ± 3.13 57.66 ± 5.4 55.036 ± 8.644 63.94 ± 6.95 62.04 ± 4.33 76.93 ± 5.09
6 74.97 ± 3.33 51.79 ± 3.84 61.641 ± 4.344 64.92 ± 7.66 66.87 ± 3.93 78.36 ± 5.54
7 80.67 ± 5.9 78.22 ± 4.13 82.444 ± 4.411 71.33 ± 6.06 83.33 ± 7.95 85.56 ± 8.46
8 91.77 ± 1.59 83.65 ± 2.9 86.975 ± 2.541 91.77 ± 2.62 92.7 ± 2.33 93.62 ± 3.49
9 97.01 ± 0.92 94.52 ± 2.25 93.394 ± 3.033 94.75 ± 1.59 97.6 ± 0.7 98.55 ± 0.99

10 95.99 ± 0.67 88.78 ± 0.79 93.198 ± 2.172 94.83 ± 1.5 97.44 ± 1.36 98.26 ± 0.58
11 98.1 ± 1.11 97.82 ± 1.17 94.678 ± 3.012 96.92 ± 1.59 98.26 ± 0.7 97.98 ± 0.88
12 95.09 ± 0.42 89.81 ± 1.57 93.505 ± 1.12 90.75 ± 2.81 93.83 ± 1.08 96.45 ± 1.58
13 100.0 ± 0.0 99.62 ± 0.24 99.67 ± 0.129 99.16 ± 0.46 100.0 ± 0.0 99.92 ± 0.06

OA 92.69 ± 0.23 88.88 ± 0.43 89.506 ± 0.604 90.51 ± 0.56 92.42 ± 0.23 94.59 ± 0.32
AA 88.64 ± 0.61 83.36 ± 0.83 84.109 ± 0.973 85.29 ± 1.22 87.76 ± 0.4 91.34 ± 0.59

K(x100) 91.86 ± 0.26 87.61 ± 0.48 88.308 ± 0.674 89.43 ± 0.62 91.55 ± 0.26 93.97 ± 0.35

Table 3.7: SV data set results.

class MLR RF GBDT SVM MLP CNN1D

1 99.19 ± 0.47 99.64 ± 0.15 99.514 ± 0.289 99.44 ± 0.36 99.64 ± 0.46 99.87 ± 0.17
2 99.93 ± 0.06 99.86 ± 0.09 99.827 ± 0.074 99.72 ± 0.15 99.83 ± 0.21 99.86 ± 0.22
3 98.85 ± 0.29 99.08 ± 0.53 98.775 ± 0.37 99.51 ± 0.12 99.47 ± 0.2 99.63 ± 0.25
4 99.39 ± 0.31 99.54 ± 0.27 99.554 ± 0.26 99.59 ± 0.11 99.62 ± 0.12 99.46 ± 0.06
5 99.19 ± 0.26 97.96 ± 0.49 98.109 ± 0.332 98.71 ± 0.51 99.11 ± 0.32 99.0 ± 0.36
6 99.94 ± 0.03 99.72 ± 0.11 99.624 ± 0.292 99.78 ± 0.12 99.84 ± 0.09 99.9 ± 0.07
7 99.74 ± 0.07 99.34 ± 0.18 99.559 ± 0.164 99.61 ± 0.16 99.71 ± 0.12 99.7 ± 0.1
8 88.07 ± 0.11 84.26 ± 0.42 85.507 ± 0.349 89.11 ± 0.34 88.84 ± 0.7 90.36 ± 1.01
9 99.79 ± 0.07 99.01 ± 0.24 99.219 ± 0.165 99.66 ± 0.21 99.88 ± 0.07 99.85 ± 0.13

10 96.34 ± 0.52 91.35 ± 0.61 93.473 ± 0.737 95.28 ± 0.87 96.32 ± 0.79 97.63 ± 0.57
11 96.9 ± 1.0 94.2 ± 1.23 94.782 ± 0.532 98.0 ± 0.71 97.75 ± 0.76 98.42 ± 0.85
12 99.79 ± 0.03 98.42 ± 0.67 99.239 ± 0.507 99.55 ± 0.34 99.8 ± 0.11 99.93 ± 0.11
13 99.05 ± 0.33 98.08 ± 0.67 97.818 ± 0.957 98.5 ± 0.52 98.55 ± 0.7 99.25 ± 0.56
14 95.89 ± 0.17 91.48 ± 1.29 95.202 ± 0.997 95.02 ± 0.81 98.17 ± 0.55 98.05 ± 0.85
15 66.85 ± 0.18 60.42 ± 1.32 74.91 ± 0.524 71.72 ± 0.69 74.61 ± 1.66 80.02 ± 2.35
16 98.45 ± 0.36 97.31 ± 0.19 97.406 ± 1.017 98.35 ± 0.17 98.7 ± 0.72 98.94 ± 0.53

OA 92.45 ± 0.07 90.08 ± 0.17 92.544 ± 0.079 93.2 ± 0.17 93.75 ± 0.1 94.91 ± 0.16
AA 96.09 ± 0.1 94.35 ± 0.16 95.782 ± 0.056 96.35 ± 0.15 96.86 ± 0.02 97.49 ± 0.15

K(x100) 91.58 ± 0.07 88.93 ± 0.19 91.696 ± 0.087 92.42 ± 0.19 93.03 ± 0.11 94.33 ± 0.18
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Table 3.8: HU data set results.

class MLR RF GBDT SVM MLP CNN1D

1 82.24 ± 0.35 82.53 ± 0.06 82.336 ± 0.0 82.24 ± 0.0 81.29 ± 0.32 82.55 ± 0.54
2 81.75 ± 1.13 83.31 ± 0.26 83.177 ± 0.0 80.55 ± 0.0 82.12 ± 1.18 86.9 ± 3.87
3 99.49 ± 0.2 97.94 ± 0.1 97.228 ± 0.0 100.0 ± 0.0 99.6 ± 0.13 99.88 ± 0.16
4 90.81 ± 3.67 91.59 ± 0.15 94.981 ± 0.0 92.52 ± 0.0 88.92 ± 0.55 92.8 ± 3.34
5 96.88 ± 0.08 96.84 ± 0.13 93.277 ± 0.0 98.39 ± 0.0 97.35 ± 0.32 98.88 ± 0.3
6 94.27 ± 0.28 98.88 ± 0.34 90.21 ± 0.0 95.1 ± 0.0 94.55 ± 0.28 95.94 ± 1.68
7 71.88 ± 1.26 75.24 ± 0.15 73.414 ± 0.0 76.31 ± 0.0 76.03 ± 1.74 86.49 ± 1.29
8 61.8 ± 0.68 33.2 ± 0.15 35.138 ± 0.0 39.13 ± 0.0 64.27 ± 9.17 78.02 ± 6.6
9 64.82 ± 0.23 69.07 ± 0.4 68.839 ± 0.0 73.84 ± 0.0 75.09 ± 2.27 78.7 ± 4.31
10 46.18 ± 0.35 43.59 ± 0.31 41.699 ± 0.0 51.93 ± 0.0 47.28 ± 1.07 68.22 ± 10.41
11 73.51 ± 0.33 69.94 ± 0.16 72.391 ± 0.0 78.65 ± 0.0 76.11 ± 1.07 82.13 ± 1.62
12 67.74 ± 0.26 54.62 ± 0.8 69.164 ± 0.0 69.03 ± 0.05 72.93 ± 3.56 90.85 ± 2.57
13 69.75 ± 0.72 60.0 ± 0.59 67.018 ± 0.0 69.47 ± 0.0 72.28 ± 3.6 74.67 ± 3.49
14 99.35 ± 0.49 99.27 ± 0.47 99.595 ± 0.0 100.0 ± 0.0 99.35 ± 0.41 99.11 ± 0.3
15 94.38 ± 0.89 97.59 ± 0.32 95.137 ± 0.0 98.1 ± 0.0 98.1 ± 0.48 98.48 ± 0.16

OA 76.35 ± 0.27 73.0 ± 0.07 74.182 ± 0.0 76.96 ± 0.0 78.61 ± 0.44 85.95 ± 0.94
AA 79.66 ± 0.2 76.91 ± 0.06 77.573 ± 0.0 80.35 ± 0.0 81.68 ± 0.24 87.58 ± 0.8

K(x100) 74.51 ± 0.28 70.99 ± 0.07 72.101 ± 0.0 75.21 ± 0.0 76.96 ± 0.47 84.77 ± 1.02

while CNN1D exhibits a very good behaviour on the cloudy zone in the right side
of the HU data set, and both tree based models (RF and GBDT) perform very well
on the swampy area on the right side of the river in the KSC data set. Nevertheless,
the most significant conclusion that can be derived from these class maps is that
the different errors of each model are distributed in a similar way along classes for
each model, as it can be seen on Tables 3.4 to 3.8, but here we can confirm that
it is consistent for the entire classification map. In general, all the classification
maps are quite similar and well defined in terms of the contours, and the main
classes are properly classified. We can conclude that the obtained accuracy levels
are satisfactory, and the errors are well distributed, without significant deviations
due to a particular class nor significant overfitting of the models.

3.5.2 Size and computational measurements

To perform the characterisation of each algorithm in inference it is necessary to
analyse their structure and operation. The operation during inference of every
model has been explained in Section 3.3, and the final sizes and configurations of
the trained models after cross-validation for parameter selection has been detailed in
Section 3.4. Fig. 3.8 reports the sizes in Bytes of the trained models, while Fig. 3.9
shows the number and type of operations performed during the inference stage.

It is very important to remark that these measurements have been realised theoreti-
cally, based on the described operations and model configurations. For instance, the
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(a) GT (b) MLR (c) RF (d) GBDT (e) SVM (f) MLP (g) CNN1D

(a) GT

(b) MLR (c) RF

(d) GBDT (e) SVM

(f) MLP (g) CNN1D

Figure 3.7: Classification maps obtained for each dataset by the different models
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Figure 3.8: Size of the trained models in Bytes.

size measurements do not correspond to the size of a file with the model dumped on
it, which is software-dependent, i.e. depends on the data structures and it uses to
keep much more information for the framework than the actual learned parameters
needed for inference. As a result, Fig. 3.8 shows the theoretical size required in
memory to store all the necessary structures for inference, based on the analysis of
the models, exactly as it would be developed for a specific hardware accelerator or
an embedded system.

As we can observe, the size of RF models is one order of magnitude bigger than the
others. This is due to their need to save the values of the predictions for every class
on each leaf node. This is a huge amount of information, even compared to models
that train an entire estimator for each class, like GBDT. Actually, the size of MLR
and SVM models is one order of magnitude smaller than GBDT, MLP and CNN1D
models. Nevertheless, all the models (except the RF) are below 500 kilobytes, which
makes them very affordable even for small low-power embedded devices.

In a similar way, the operational measurements shown on Fig. 3.9 are based on the
analysis of each algorithm, not in terms of software executions (that depend on the
architecture, the system and the framework), and they are divided into four groups
according to their computational complexity. The only models that use integers
for the inference computations are the decision trees, and they only need integer
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Figure 3.9: Number of operations performed during the inference stage.

comparisons. Floating point operations are the most common in the rest of the
models, but they are also divided into three different categories. FP Add refers to
accumulations, subtractions and comparisons, which can be performed on an adder
and are less complex, FP Mul refers to multiplications and divisions, and FP Exp
are exponential which are only performed by the SVM model. High-performance
processors include powerful floating point arithmetic units, but for low-power
processors and embedded devices, these computations can be very expensive.

Focusing on operations, the SVM model is two or even three orders of magnitude
larger than the other models. Moreover, most of their operations are floating
point multiplications and additions, but it also requires a great amount of complex
operations such as exponential ones. In most of the data sets, it requires more
exponential operations that the entire number of operations of the other models,
except for the CNN. The number of operations required by the CNN model is one
order of magnitude higher than the rest of the models, and it is basically composed
of floating point multiplications and accumulations. MLR and RF models are the
ones that require less operations during inference, while GBDT and MLP require
several times the number of operations of the latter, sometimes even one order of
magnitude more.
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3.5.3 Characteristics of the models in relation to the results

In this section, we will review the characteristics of every model in relation to this
results. RF and GBDT models are composed of binary trees. The number of trees
of each model are decided in training time according to the results of the cross-
validation methods explained above. The non-leaf nodes of each tree keep the value
of the threshold and the number of features to compare with, which are integer
values, while the leaf nodes keep the prediction value, which is a float. In the case
of RF, leaf nodes keep the prediction for every class, which makes them very big
models. Although these models are not the smallest, during inference they do not
need to operate with the entire system; they just need to take the selected path of
each tree. In terms of operations, each non-leaf node of a selected path implies an
integer comparison, while the reached leaf node implies a float addition.

Notice that addressing operations, such as using the number of features to address
the corresponding feature value, are not taken into account and are not considered
in Fig. 3.9. The same occurs for the rest of the models, assuming that every
computational operation needs its related addressing, so the comparison is fair.

The MLR model only requires during inference one float structure of the same size
and shape as the entry, i.e one hyperspectral pixel, for each class. The operations
realised are the dot product of the input and these structures and the result of each
one of them is the prediction for the corresponding class.

The SVM model is small, in the same order of magnitude than the MLR, because
it only needs the support vectors and the constants, some of which can be already
precalculated together in just one value. But, in terms of computation, the calculation
of Eq. (3.6) requires an enormous amount of operations compared to the rest of the
methods.

The size and number of operations of the MLP model depends on the number of
neurons in the hidden layer and the number of classes. For each neuron, there is a
float structure of the same size and shape of the entry, and then for each class there
is a float structure of the same size and shape of the result of the hidden layer. The
operations realised correspond to all these dot products.

In the case of the CNN, the size corresponds to the filters of the convolutional layer
and then the structures corresponding to the MLP at the end of the model, but
this MLP is much bigger than the MLP model, because its entry is the output of
the convolutional layer, which is much bigger than the original input pixel. The
main difference with the MLP model (in terms of operations) lies on the behaviour
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of the convolutional layer. It requires a dot product between each filter and the
corresponding part of the input for each step of the convolutional filters across the
entire input. This model also has a max pooling layer that slightly reduces the size
of the model, because it is supposed to be executed on the fly, but adds some extra
comparisons to the operations.

Since embedded or on-board systems require small, efficient models, we analyse the
trade-off between the hardware requirements of each model and its accuracy results.
In summary, neural networks and SVMs are very accurate models, and they do not
have great memory requirements, but they require a great amount of floating point
operations during inference. Furthermore, most of them are multiplications or other
operations which are very expensive in terms of resources. Hence, they are the best
option when using high-performance processors, but they may not be suitable for
low-power processors or embedded systems. In the case of the RF, the number of
operations is really small, and most of them are just integer comparisons, but the
size of the model is very big compared to the other models, and it also achieves the
lowest accuracy values.

According to our comparison, it seems that the best trade-off is obtained for MLR
and GBDT models. Both models are reasonably small for embedded systems and
require very few operations during inference. GBDT is bigger, but it still has very
small dimensions. In terms of operations, even if GBDT needs to perform some
more operations than the MLR, its important to remark that MLR operations are
floating point multiplications and additions, while most of the GBDT operations are
integer comparisons, which makes them a perfect target for on-board and embedded
systems. In terms of accuracy, GBDT achieves better values in most scenarios.

3.6 Conclusion

In this chapter, we show the analysis of the size and operations during inference of
several state-of-the-art machine learning techniques applied to hyperspectral image
classification to characterise them in terms of energy consumption and hardware
requirements for their implementation in embedded systems or on-board devices.
These are the main observations:

• In terms of accuracy, neural networks and kernel-based methods (such as
SVMs) usually achieve higher values than the rest of the methods, while the
RF obtains the lowest values on every data set. The behaviour of the MLR
model is not very robust, obtaining high accuracy in some data sets and low
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values in others. The GBDT model always achieves higher accuracy than the
RF and also gets very close to the accuracies obtained by some of the SVMs
and neural networks.

• Regarding the size of the trained models, most of them are reasonably small
to fit into embedded and reconfigurable small devices, except for the RF that
is one order of magnitude bigger than the rest of the models. The SVM and
MLR models are specially small, in some cases even one order of magnitude
less than the size of the CNN, the MLP and the GBDT.

• Regarding the number and type of operations needed during inference, the
RF and GBDT models clearly stand out from the rest (not only because they
need very few operations during inference, but specially because most of these
operations are integer comparisons). The rest of the models need floating point
operations, and most of them are multiplications, which are more expensive
in terms of hardware resources and power consumption. Even when some
models (such as MLR and MLP) need few operations to perform the inference,
the type of operations are not the most suitable for low-power embedded
devices.

• Neural networks and SVMs, in turn, are very expensive in terms of computa-
tions (not only in terms of quantity, but also regarding the type of operations
they perform). As a result, for small energy-aware embedded systems, they
do not represent the best choice. Depending on the specific characteristics of
the target device and the accuracy requirements of the addressed problem, an
MLP could be an interesting option. The RF model is very big for an embedded
system and it generally achieves low accuracy values.

• The MLR is one of the smallest models, and it also performs very few operations
during inference. Nevertheless, even though the number of operations is small,
they are expensive operations because it is entirely based on floating point
additions and multiplications. Furthermore, it achieves high accuracy values
in some data sets but low values in others, so its behaviour is very dependent
on the data set characteristics. If it adapts well to the target problem, it can be
a good choice depending on the embedded system characteristics.

• From our experimental assessment, we can conclude that GBDTs present a very
interesting trade-off between the use of computational and hardware resources
and the obtained accuracy levels. They perform very well in terms of accuracy,
achieving in many cases better results than the other techniques not based
in kernels or neurons, i.e. RF and MLR, while they use less computational
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resources than the techniques based on kernels or neurons, i.e. SVM, MLP
and CNN. Moreover, most of their operations during inference are integer
comparisons, which can be efficiently calculated even by very simple low-
power processors, so they represent a good option for an embedded on-board
system.

In the next two chapters we will present two accelerators, one for DNNs, as they are
the most accurate technique, and one for GBDTs, as they represent the best trade-off
between efficiency and accuracy found in this study.
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Step I: Sparse Convolutional
Neural Networks Accelerator

4
„

— xkcd.com
(Just that guy, you know?)

4.1 Introduction

Deep neural networks (DNNs) have emerged as an outstanding model to solve
complex problems in a wide variety of fields, such as computer vision, speech
recognition, natural language processing, or audio recognition.

Convolutional neural networks (CNNs) are one of the most popular DNN models.
Their core consists of several convolutional layers where the input, called activation
or feature map, is convolved with a set of filters. The number of layers and filters,
and the size of the activations turn out these models into computationally-intensive
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and memory-demanding tasks. In computer vision, state-of-the-art CNNs require
many millions of multiply-and-accumulate (MAC) operations to process a single im-
age. High-performance general purpose processors (CPUs) and graphics processing
units (GPUs) have been the natural target to execute these models on non-battery-
dependent systems. However, more energy-efficient architectures are needed for
embedded systems.

Previous works have demonstrated that there are several strategies to reduce the
computational and memory requirements of CNNs, with minimal impact in accuracy.
Regarding the arithmetic, it is feasible to move from floating point to fixed point
[68, 58, 60], and work with lower bitwidth [72, 64, 63]. Other works propose to
speedup the MAC operations by using approximated outputs [38, 37]. Regarding the
size of the models, pruning techniques force many parameters to zero, enabling data
compression and reducing the number of useful MAC operations. This approach
enables drastic reduction, both in model size and computational workload, of DNNs,
which is essential for embedded systems.

Deep Compression [72] constitutes a good reference for these techniques. Their
authors achieve network size reductions from 35x to 49x while preserving accuracy in
several popular DNNs (AlexNet, VGG, and LeNet) by using pruning, quantization and
compression. Another relevant reference is SqueezeNet [73]. In this study, the authors
present a CNN with 50x fewer parameters than AlexNet with no loss in accuracy.
Again, this result is achieved by using pruning and compression techniques.

Pruning techniques turn the CNNs into sparse models, and this sparsity can be
exploited by including specific support to avoid useless operations, i.e., those ones
where at least an operand is zero.

Although the benefits of these techniques are proved, they also introduce some
challenges that must be carefully addressed in order to minimise their overhead.
Compression requires support to manage the irregularities that arises in addressing
and sparsity demands hardware to identify useful operations. Moreover, sparsity
generates random memory-access patterns that can significantly degrade the perfor-
mance of a parallel architecture due to the memory conflicts.

We have designed an accelerator that takes advantage of the optimisation opportu-
nities offered by sparsity in DNNs. Our accelerator works with compressed filters,
performs only useful operations, and retrieves only useful values from memory by
identifying those operations where both operands are different from zero. To this
end, we included an additional data structure, called indices tensor, consisting of a
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single bit per element that indicates whether that element is zero or not. This struc-
ture allows intelligent recognition of useful operations using simple bit operations,
and compression of data by not storing values that are zero. Moreover, we have
included specific support to reduce the memory conflicts, and we have explored the
trade-offs in performance, area, and energy efficiency.

The register-transfer level design of our accelerator has been written in VHDL
and has been implemented in a Xilinx Zynq UltraScale+ FPGA. We believe that
reconfigurable FPGAs are the natural target for our study since in these platforms
it is possible to use the same hardware resources to implement a conventional
CNN accelerator or an accelerator with specific support for sparsity. We have taken
both performance and power measures running two popular CNNs: AlexNet and
SqueezeNet. We selected these networks as benchmarks because pruned models are
available for the community [70, 69]. In addition, we have used synthetic data to
characterise the behaviour of our accelerator for different sparsity ranges.

The rest of this chapter is organised as follows. Section 4.2 is an overview of the
related work and Section 4.3 presents our contributions. Section 4.4 describes
the compression format used. Section 4.5 introduces the procedure to identify the
useful operations. Section 4.6 describes the initial architecture used as baseline
and Section 4.7 explains the additional architectural support included to efficiently
avoid the useless operations and reduce the memory conflicts. Section 4.8 describes
the memory hierarchy and the data flow. Section 4.9 analyses the scalability of the
proposed architecture. Finally, Section 4.10 evaluates the experimental results and
Section 4.11 presents our final conclusions.

The content of this chapter has been published in an international journal [22] and
the correspondent code is available in a public repository [44].

4.2 Related work

A recent survey [48] analyses the state of the art and future directions of DNN
support in ASICs and FPGAs. This survey identifies the exploitation of sparse data as
a powerful technique for reducing computational load and memory requirements in
DNNs. Another survey [52] states that “there is an emerging need for the CNN-to-
FPGA tools to support compressed and sparse”. Although low or medium values of
sparsity can be found in any model, pruning techniques are essential to build highly-
sparse models. Pruning was originally proposed in [108, 107], and, recently, many
other techniques has been proposed and studied [77, 61, 65]. These techniques
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consist in an iterative process that first identifies those weights that can be set to zero
and then fine-tunes the remaining weights. Pruned models keep a similar accuracy
than the original models with fewer meaningful parameters, allowing sparsity-based
optimisations. However, an efficient management of sparsity must overcome the loss
of regularity that arises in memory accesses. Otherwise, trying to exploit sparsity
can even negatively impact in performance as explained in [62]. [31] proposes a
technique to alleviate this by applying a bank-balanced pruning method designed to
optimise the parallel execution of the pruned model.

Some recent works have presented custom architectures for sparse DNNs. Cnvolutin
was the first accelerator to partially avoid useless operations [66]. The authors
proposed a technique to skip those operations where the value of the input activation
is zero. Han et al. presented “EIE: Efficient Inference Engine on Compressed Deep
Neural Network” [71]. This engine manages compressed weights, and includes
hardware support to compute only useful operations in fully-connected layers.
UCNN proposes a factorisation technique to replace multiplications with additions,
and takes advantage of filter sparsity [47], while SqueezeFlow [35] proposes a
technique that transforms a sparse convolution into multiple effective and ineffective
subconvolutions. After that the ineffective subconvolutions can be eliminated.
Cambricon-X [74] and NullHop [43] are other accelerators for sparse CNNs. The first
one exploits sparsity on filters but not on activations, whereas the second exploits
sparsity on activations but not on the filters.

SCNN is a high-performance oriented accelerator for CNNs [59]. It includes several
processors, and each of them computes a convolution in parallel by computing the
Cartesian product. This is a very powerful approach that allows data reuse and
avoids any operation where an operand is zero. However, this architecture requires
large buffers to store partial results, and crossbars to link the multipliers and the
buffers. As a result, their support for sparsity increases the area of their chip by 34%,
even with a 50% smaller on-chip activation memory than their dense baseline. In
terms of performance, they achieve speedups from 2.19 to 3.52 for several popular
CNNs.

Other relevant works are Eyeriss [54] and Eyeriss v2 [32] which are scalable archi-
tectures with hundreds of MAC units. Eyeriss proposes to identify when any of the
operands is zero in order to gate the data path and save energy. Eyeriss v2 compress
data in sparse column (CSC) format and directly operates with the compressed
data. With this approach they only read non-zero activation values. Then they look
for the corresponding weights. If the weights are zero they do not carry out the
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computations in order to save energy. The only penalty is that this may generate
some bubbles in the pipeline.

As a summary, only three previous designs include support to avoid all the operations
where at least one of the operands is zero: EIE, designed for fully-connected layers,
SCNN, designed for convolutional layers, and Eyeriss v2 that can deal with both
of them. Although our design supports both fully-connected and convolutional
layers, we have mainly focused on convolutional layers because they are much more
computationally intensive. Both SCNN and Eyeriss v2 are highly parallel systems
designed for high performance and include a large amount of hardware resources
whereas our design is designed for embedded systems, where hardware resources
and power budget are very limited. Hence, our primary goal is efficiency. In fact,
our architecture reaches almost peak performance in most situations, i.e., one useful
operation per clock cycle in each MAC processor, whereas SCNN is very far from peak
performance on highly-sparse layers. For instance, when processing convolutional
layers four and five in AlexNet, SCNN only reaches ∼25% peak performance [59]
whereas for the same convolutions our design reaches ∼98%. Regarding Eyeriss
v2, according to their results during the execution of AlexNet, one of our MAC
processors carries out twice the number of operations per cycle than one of their
MAC processors. This does not mean that our design is better; we just target different
problems. They try to maximise the throughput using hundreds of MACs in parallel,
whereas our design tries to maximise the performance of an embedded system with
few MAC processors.

The evaluation methodology in all these previous works quantifies the gains in terms
of performance and energy efficiency of their sparse architectures compared to dense
architectures with the same arithmetic resources. This analysis is interesting, but
it is not completely fair because the sparse architectures include more hardware
resources than the corresponding dense architectures. In our experiments we
compare architectures with similar area. To this end we include additional arithmetic
resources in the dense architecture. With this approach, for a given scenario, we
can identify whether is better to use hardware resources to exploit sparsity or to use
them to carry out more MAC operations in parallel.

Another limitation of the previous approaches is that they use on-house high-level
simulators to gather the performance metrics. Of course the authors have tried to
develop accurate simulators, but it is impossible to know if they are 100% accurate
since they have to model not only the accelerators, but also communications, and
memory accesses. In our case, instead of using a simulator, we have implemented
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our design and we have measured our performance metrics during actual executions
to guarantee that they are completely accurate.

4.3 Contributions

• We have designed a sparse architecture that is able to avoid all useless opera-
tions and manage filter compression both for convolutional and fully-connected
layers. It also includes support to reduce the impact of the memory-bank con-
flicts due to the non-uniform memory access patterns. The design has been
pipelined to improve the performance. Our architecture has been designed for
embedded systems, and its objective is to maximise performance and reduce
the energy consumption on systems with limited resources. It has been written
in VHDL and is available for the community in a GitLab repository [44].

• We propose a dense/sparse evaluation methodology that attempts to compare
architectures with similar area resources. To this end, we have designed a
dense architecture with parameterizable arithmetic resources and for each
comparison we select the dense architecture most similar in area to the sparse
design.

• We have implemented both designs on an FPGA and taken performance and
power consumption measurements. With this approach we can identify the
trade-offs between sparse and dense architectures, and identify which archi-
tecture is better for a given scenario.

4.4 Data compression

Some popular compression formats for sparse CNNs are run length encoding (RLE),
compressed sparse row (CSR) or compressed sparse column (CSC) [99]. The main
idea of RLE is to store consecutive elements of the same value as a single value and
the count of the repetitions, while CSC and CSR consist of two data sets: one that
stores only those values that are not zero, and one that stores metadata to infer the
remaining information and to calculate the addresses.

Instead of these formats, we propose to use a tensor with the same dimensions than
the uncompressed data that stores a single bit per element pointing out whether they
are zero or not. Figure 4.1 shows an example of these formats applied to matrices.
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For the comparison we used the variation of RLE format proposed in [54], using 5
bits to codify the count of consecutive zeros. Regarding to the CSC/CSR formats,
they are symmetric structures, and using one or the other will be better depending
on the selected matrix representation. In our case CSR, using column indices and
row pointers, is the one that reaches better results. Column indices store the column
of each non-zero value, and row pointers point out the first non-zero value of each
row. Its last value is the total number of non-zero elements.

Figure 4.1: Compression formats example.

Fig. 4.2 shows how these compression formats perform as a function of the sparsity.
It includes two boundaries for each format. Upper and lower bound in CSC/CSR are
calculated on matrices of 9 × 512 with 8-bit values and 1 × 16 with 32-bit values,
respectively, based on the sizes of the activations analysed. We have chosen the
indices tensor format for two reasons: first, it allows hardware-friendly identification
of those operations that are useful (further discussed in section 4.5). Second, it
yields higher compression ratios than the other formats for most scenarios and, in
those where it under-performs, size becomes negligible.

In our architecture, filters are compressed in order to reduce the size of the models.
It is also possible to compress the activation during inference, but it demands
additional resources, as it is generated on the fly. Moreover, since the compression
ratio is unknown at design time, memory resources should be allocated for the
worst case, so the benefits are limited and do not justify the overhead. Our design
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Figure 4.2: Compression ratio comparisons.

leverages the indices tensor also for the activation in order to take full advantage
of this compression format to identify useful operations, at the expense of a small
overhead.

4.5 Identifying useful operations

Our design avoids any useless operation in order to reduce memory accesses and
arithmetic computation. An efficient identification of those useful operations relies
on the compression format discussed previously. First, sections of the indices tensor
of the filter and the activation are fetched. Second, they are matched through a
bitwise and operation to find all the pairs with two non-zero values. The main steps
of this process are described in Algorithm 4.1. Activation_offset stores the position
in the section where the current pair has been found. This information is used
to calculate the address of the activation value needed. Filter_offset indicates the
number of non-zero filter values that have been skipped since the last pair found. It
is required to calculate the address of the filter value as filters are compressed and
only non-zero values are stored. Finally, when the last pair of the fetched sections is
processed, remaining_filter_offset keeps track of the number of remaining non-zero
filter values in the section. This number must be taken into account to compute the
next filter address.
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1 # Get next filter and activation sections
2 filter_section = get_filter_section ( SECTION_SIZE )
3 activation_section = get_activation_section ( SECTION_SIZE )
4 # Start mask
5 mask = ones_vector ( SECTION_SIZE )
6 # Search for the first pair
7 match , pos , last_pair = next_pair ( filter_section ,
8 activation_section )
9 if match:

10 while match:
11 # Apply mask
12 filter_section = bitwise_and ( filter_section , mask)
13 activation_section = bitwise_and ( activation_section , mask)
14 # Actualise activation and filter offsets
15 filter_offset = sum( filter_section [: pos ])
16 activation_offset = pos
17 # Actualise mask
18 for i in range(pos):
19 mask[i] = 0
20 if last_pair :
21 # Actualise remaining filter offset
22 remaining_filter_offset = sum( filter_section [pos +1:])
23 else:
24 # Search for the next pair
25 match , pos , last_pair = next_pair ( filter_section ,
26 activation_section )
27 else:
28 # Default output values
29 activation_offset = SECTION_SIZE
30 remaining_filter_offset = sum( filter_section )

Algorithm 4.1: Identification of useful operations within a section.

Notice that the next_pair function on this pseudo-code algorithm will only return
on match, activating the last flag if it is the last one, so the only situation in which
match flag will be false is when there is no matches at all in the entire section, and
the else clause is just there for this situations. After finishing with one section, the
entire algorithm will be repeated. Fig. 4.3 illustrates this process with a conceptual
example. The algorithm iteratively looks for pairs of non-zero values located in the
same section position. Notice that these non-zero values are marked as 1. In the first
iteration, the first pair is found on the section element #3. Hence, activation_offset
is 3. Filter_offset is 1 since one non-zero filter value has been skipped. Finally,
processed elements (from #0 to #3) are masked. In the second iteration, the same
procedure applies to the unmasked elements. Notice that the value of filter_offset
does not take on account the already masked bits. Additionally, last_pair flag will
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be active, as the last pair has been found, so remaining_filter_offset reports that an
additional filter value must be skipped.

Figure 4.3: Identification of useful operations.

Fig. 4.4 depicts the hardware unit responsible for this operations. Bitwise unit
carries out bitwise and operations on the filter and activation sections, and the masks
generated by Mask composer. They are both required to identify useful operations
and compute the filter offsets. The Priority encoder encodes the activation offset, i.e.,
the position where the current pair has been found. Finally, two tree adders return
the filter offsets.

Figure 4.4: Matching unit.

4.6 Baseline: dense architecture

Assessing the benefits of exploiting sparsity in CNNs requires a baseline to compare
with. We designed a dense accelerator for embedded systems able to exploit inter-
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filter parallelism, through N processing units (PUs) computing N different filters,
and intra-filter parallelism, through M multipliers per PU. It also includes support
for filter compression according to the format discussed in section 4.4. Both input
and output activations are stored on-chip through the whole inference process in
order to reduce DRAM off-chip accesses, and filters are retrieved from DRAM on
demand with a prefetch policy in order to hide fetch latency.

Fig. 4.5 depicts the architecture of our dense accelerator. Each PU includes its own
filter management and a MAC processor. The filter management includes support to
decompress filters. The MAC processor is composed of a multiplier array, a tree adder
to reduce the multipliers output, and an accumulator. Activation values memory
is composed of two memories. When processing even layers one stores the input
activation and the other one stores the output activation. When processing odd
layers they swap their roles. This memory is shared among all the PUs, and there
are no conflicts because all the PUs read the same data. In the figure, the pipeline is
divided into four stages. These stages can also be internally pipelined in order to
increase clock frequency if needed.

Figure 4.5: Dense architecture.

Stage 1: Indices fetch Filter indices for the next M operations are fetched at this
stage. These indices are used at the next stage to fetch filter values.

Stage 2: Values fetch

Filter and activation values are fetched at this stage. Activation values are fetched
by a global controller as they are shared among all the PUs. Filter values demand
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specific addressing for each PU because of compression. Decompressor is the module
responsible for addressing the filter memory based on the filter indices.

Stage 3: MAC

Operations are performed and buffered at this stage. Filter and activation values are
retrieved, the MAC operation is performed on MAC processor, and the value is stored
in a small buffer to avoid pipeline stalls because of writings. MAC processor is able
to carry out M multiplications in parallel and reduce them in a single cycle through
a tree adder.

Stage 4: Writeback

Output activation values are stored in the output activation memory. Activation
values memory is parameterized with M banks, therefore, arbitration is required for
those setups where N > M. We implemented a fixed-priority arbitration on each
bank in order to keep hardware overhead as low as possible because pressure on this
memory is very low since there are many computations between two consecutive
writings.

4.7 Sparse architecture

Based on our dense design, we made architectural changes in order to include
support for sparsity. Fig. 4.6 shows an architectural overview of our sparse design,
which is divided into five stages. As in the dense architecture, each stage can be
internally pipelined to increase clock frequency.

Stage 1: Indices fetch

Filter and activation sections are fetched at this stage. Fetching filter indices is
straightforward as they are stored in private memories. Activation indices are stored
in a shared memory, and, therefore, access conflicts among PUs may arise. We
included a multi-bank Activation indices memory, and fixed-priority arbitration for
each bank. Fetching activation indices may become a bottleneck when dealing
with very high sparsity ratios: the more sparsity the faster sections are processed,
increasing pressure on memory. We found that including as many banks as PUs,

56 Chapter 4 Step I: Sparse Convolutional Neural Networks Accelerator



Figure 4.6: Sparse architecture.

in conjunction with a section buffer used to prefetch the next section in advance,
causes minimal stalls while keeping hardware overhead low.

Stage 2: Pairing

Useful operations are identified and buffered at this stage following the procedure
explained in Section 4.5. Fig. 4.7 shows the architecture of Pairing unit. Sections
buffer manager stores the sections under processing and the next ones to be processed.
Matching unit processes both filter and activation sections and returns filter and
activation offsets to compute their values addresses. Decompressor and Activation
addressing are responsible for computing the absolute memory addresses of filter
and activation values, respectively. Finally, Match buffer stores these addresses. This
buffer is also useful to reduce stalls on accesses to Activation values memory. This is
further discussed in the next stage.

Figure 4.7: Pairing unit.
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Stage 3: Values fetch

Filter and activation values are fetched at this stage. Managing accesses to the shared
activation memory in our dense design is straightforward, as every PU requests the
same values at a given time. However, this no longer applies to our sparse design
since accessing only those values that are not zero turns regular accesses into
irregular ones, and therefore arbitration is required.

Activation values memory suffers from higher pressure than Activation indices memory.
Hence, we designed a more powerful arbitration scheme in order to prevent these
accesses to become a bottleneck. This arbiter is able to explore several requests from
each PU. These requests are stored in the Match buffer. We have included support
to process the requests out of order (multiplications can be safely reordered within
a convolution step), making grants more likely at the expense of a low hardware
overhead. Activation values arbiter grants each PU one of the requests, if possible, in
a fixed order from PU #1 to #N, where PU #1 has the highest priority.

Fig. 4.8 illustrates how our arbitration works on a conceptual example with four
PUs. Each PU requests two addresses (i.e., the depth of the Match buffer is two).
The activation memory is composed of four memory banks, so this memory supports
up to four simultaneous accesses as long as they target different banks. The arbiter
receives each pair of bank requests from each PU and grants one of them if possible.
Thus, PU #1 is granted its first request (Bank #3). As a consequence, Bank #3 is
masked for the remaining PUs. PU #2 requests Banks #3 and #1. Since Bank #3
is not available, the arbiter grants its second request (Bank #1). This procedure is
repeated for the remaining PUs as shown in the figure.

In this example, the four PUs are granted, but this is not always possible. We
empirically searched for the best trade-off between performance and hardware
overhead exploring different configurations between the number of banks of the
Activation values memory and the Match buffer size. As can be observed in Table 4.1,
we found that providing the Activation values memory with twice as banks as PUs,
and setting the depth of the Match buffer to four, i.e., the arbiter explores up to four
requests from each PU, memory access conflicts rarely occur.

As an additional optimisation, we have included support to overlap the end of a con-
volution step with the beginning of the next one. While the requests corresponding
to the last multiplications of the current convolution step are waiting to be granted,
it is possible to store requests of the first multiplications of the next convolution step.
The operations will need to wait until the last convolution ends, but the request
information of the first operations will be loaded. Hence, when a convolution step
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Table 4.1: Average conflict ratio for several configurations

Requests Banks Conflict ratio

1x 1x 34%
1x 2x 19.5%
2x 1x 16%
2x 2x 2%
4x 1x 6%
4x 2x 0.1%

finishes, the next one can have several requests ready for selection. This approach
minimises the memory accesses conflicts.

Figure 4.8: Activation values arbiter workflow.

Stage 4: MAC

Useful operations are performed and buffered at this stage. Filter and activation
values are retrieved, the MAC operation is performed on a MAC processor, and the
value is stored in a small buffer to avoid pipeline stalls because of writings.
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Stage 5: Writeback

This stage is similar to the to corresponding stage in the dense architecture.

4.8 Memory requirements and dataflow

The size of the memories in our design is parameterizable, so it can be adjusted to
the needs of each DNN. The memory hierarchy of our design includes the following
storage elements:

• Off-chip memory: it stores all the filters of the network and the image/s to be
processed. In an FPGA this will be a DDR memory.

• On-chip memory: it stores the input and output activations and the filters
under processing in the following memories:

– Filters memory: Each PU includes private resources to store both the filter
for the ongoing convolution and the next one, which is preloaded to hide
the fetch latency. As depicted in Figures 4.5 and 4.6, the filter values
and their indices are stored in two different memories, the Filter values
memory and the Filter indices memory respectively.

– Activation memory: the Activation values memory and the Activation
indices memory shown in the figure 4.6 store the activation values and
their indices in two shared memories. Both of them are multi-banked
and are accessed through arbiters to prevent conflicts. This memory
element contains both the input and the output activation of the layer
under processing.

Regarding the dataflow: first, the image is loaded into the activation memory, and
one filter is loaded into the private filter memories of each PU. Once the inference
begins, each PU will exploit reuse by convolving the filter across the whole input
activation. This scheme reduces bandwidth with off-chip memory as filters are
retrieved only once per inference. While convolving a filter, another one is retrieved
from the off-chip memory in order to hide fetch latency. Each PU stores its ongoing
convolution partial results in an accumulator register. No data is shared among PUs.
Once the output of a layer has been stored, it becomes the input activation of the
next layer.
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4.9 Scalability

Inference on CNNs is a parallel-friendly task. Many filters are convolved in each layer,
and many operations are performed in each filter. Both inter-filter and intra-filter
parallelism are free of data dependencies, making it suitable for a custom hardware
architecture to exploit it. This is indeed what we do in our dense architecture,
where adding PUs exploits inter-filter parallelism, and adding multipliers to each PU
exploits intra-filter parallelism.

When exploiting sparsity, we have to deal with conflicts in the access to the activation
data memory, which requires hardware hard to scale. Our design needs crossbars to
access multi-banked activations memories, and scaling them causes the performance-
area trade-off to plummet. Hence, our sparse architecture must be small in order
to be efficient. For that reason, it is more suitable for embedded systems. For
other contexts, like high resolution images, there are very good massively parallel
architectures with hundreds of PEs, such as SCNN [59] and EyerissV2 [32], whose
high throughput fits the needs of these problems.

Nonetheless, there are contexts where it is still possible to scale the design by
including several instances of our architecture (i.e., cores) working in parallel on
their own private activation memories. For example, if several images must be
processed, they can be assigned to each of those cores. It is also possible to assign
different regions of the activation to each core. In this case, there will be a small
overlap among the activations, and therefore some additional control hardware
would be necessary to share these overlapped data between cores.

4.10 Experimental results

We implemented our sparse and dense designs on a Xilinx Zynq UltraScale+ ZCU104
evaluation board [9]. This platform includes a SoC with an FPGA tightly coupled
with a CPU, a real-time processor, and a GPU. In our experiments, only the FPGA
and the CPU were used. The FPGA, which hosts our accelerators, performs all the
computations, and the CPU just manages the communications with the off-chip
memory.

Power consumption measurements were taken with a Yokogawa WT210 digital
power meter, a device accepted by standard performance evaluation corporation
[11]. Our power meter records the total consumption of the evaluation board,
which includes many unused elements. Hence, we have removed the static power
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consumption from our measures, and we have focused on the dynamic power
consumed by our design, i.e., the average difference of power consumed by the
board during idle and running states. To do this, we have measured the energy
consumption of our designs for one hour in each state.

The purpose of our experiments is to characterise the behaviour of our designs in
terms of performance, hardware resources, and energy efficiency, as a function of
the useful operations (which depends directly on the sparsity) and the arithmetic
bitwidth. To analyse the impact of the sparsity, we developed a set of synthetic
benchmarks with a useful operations ratio ranging from 0 to 1, i.e., we started with
a scenario where each multiplication include a zero as one of its operands, and
we progressively reduced the number of zeros until reaching the opposite scenario,
where all the operands are different from zero. To study the impact of the bitwidth
we implemented three different versions of each design using 8, 16, and 32-bit
fixed-point arithmetic. All the results in the figures of this section are normalised to
the baseline selected in each case study.

Our experimental setup is divided into three model designs:

a) Sparse: sparse architecture with one multiplier per PU.

b) Dense base: dense architecture with one multiplier per PU.

c) Dense equivalent: dense architecture where the number of multipliers per PU
is selected in such a way that the dense design is as similar as possible in area
to the sparse design.

Table 4.2 details the design parameters, hardware resources utilisation, maximum
frequency, and the dynamic power consumption of each setup. In our experiments
all the setups were clocked to 100 MHz. FPGAs include DSP blocks that can be used
to execute MACs, and synthesis tools map these operations into them whereas the
remaining functionality is implemented using look-up tables (LUTs). This makes
impossible to compare ones with each others, as MACs are implemented with a
different technology than the rest of the logic. Hence, we disabled DSP mapping in
order to map also the MAC processors into LUTs.

We first compared sparse and dense base models, which include the same arithmetic
resources (number of PUs, and multipliers per PU). Hence, both designs exploit the
same degree of parallelism. We want to assess the benefits in terms of performance
and energy efficiency of including support for sparsity, and quantify the hardware
overhead introduced.
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Table 4.2: Experimental Setups with 8 PUs

8-bits Arithmetic

Setup Mults / PU Logic (LUT %) Max. Freq Dyn. Power

sparse 1 5.94 124 MHz 131 mW
dense 1 2.04 123 MHz 39 mW
dense eq. 8 5.41 123 MHz 206 mW

16-bits Arithmetic

Setup Mults / PU Logic (LUT %) Max. Freq Dyn. Power

sparse 1 7.94 110 MHz 247 mW
dense 1 3.80 112 MHz 87 mW
dense eq. 4 7.58 115 MHz 472 mW

32-bits Arithmetic

Setup Mults / PU Logic (LUT %) Max. Freq Dyn. Power

sparse 1 12.32 106 MHz 842 mW
dense 1 8.54 101 MHz 462 mW
dense eq. 2 13.02 101 MHz 1104 mW

Fig. 4.9 depicts the speedup as a function of the useful operations. As all the
setups are clocked to 100 MHz, the speedup grows in inverse proportion to the
percentage of useful operations since the reason for this speedup is the number of
operations avoided, therefore the three different arithmetics analysed (8, 16 and 32
bits) achieve the same speedup.

Fig. 4.10 depicts the energy efficiency as a function of the useful operations. In
the top of the figure the overhead in terms of logic resources is presented. Unlike
speedup, the energy efficiency and the area overhead depend on the arithmetic
bitwidth. The reason is that arithmetic computations require less logic resources and
consume less energy for low bitwidth, whereas the area and energy consumption
due to the support included for the sparsity remains the same.

Gains in performance and energy efficiency are remarkable for highly-sparse sce-
narios. However, achieving these results involves a logic overhead ranging from
50% to almost 200%. Hence, the question is: what if we provide our dense design
with similar hardware resources? Comparison between sparse and dense equivalent
models answers this question. Setups in dense equivalent design balance hardware
resources by including more multipliers for each PU. Scaling by exploiting the intra-
filter parallelism is feasible due to the size of the filters in actual CNNs, and demands
little overhead (tree adders to reduce the multiplications, and a little more complex
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Figure 4.9: Speedup of sparse experimental setups normalised to dense base.
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Figure 4.10: Energy efficiency of sparse experimental setups normalised to dense base.
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addressing control). Our objective is to identify whether it is worthy to move from
a dense to a sparse architecture for a given scenario. For that, we are going to
compare our sparse design with a dense design with similar hardware resources, i.e.,
similar area. As can be seen in Table 4.2, for 32-bit arithmetic the dense equivalent
version includes twice the number of multipliers than the sparse version, for 16-bit
it includes 4x multipliers, and for 8-bit it includes 8x. These differences are due to
the different sizes of the multipliers for each arithmetic bitwidth.

Results in terms of performance are shown in Fig. 4.11. The results show that the
benefits of providing support for sparsity have decreased. Our sparse design working
on 8-bit arithmetic is only worthy when the useful operations are below 10%. On
16-bit, the threshold grows up to 25%, and on 32-bits, the threshold is at 50%.
Numbers of energy efficiency are more favourable to the sparse architecture (Fig.
4.12). The benefits show up when the useful operations are below 20%, 60% and
70%, respectively. Hence, for low-precision arithmetic, it is only profitable to include
support for sparsity in aggressively pruned models.

0 10 20 30 40 50 60 70 80 90 100
Useful operations (%)

0

2

4

6

8

10

12

14

Sp
ee

du
p

sparse 32b sparse 16b sparse 8b dense equivalent

Figure 4.11: Speedup of sparse experimental setups normalised to dense equivalent.

One of the goals of our design is to maximise the utilisation of arithmetic resources.
Fig. 4.13 shows that MAC utilisation is virtually 100% even for networks with a very
low useful operations ratio. It only plummets when the useful operations is under
∼5% because, in that situation, frequently the 32-bit matching unit cannot find any
useful operation in the fetched sections. Even so, this is not a undesirable scenario
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for our architecture. In fact, when no useful operations are found our architecture is
indeed skipping 32 operations in one cycle.

4.10.1 AlexNet and SqueezeNet

The previous results have been obtained using synthetic data generated randomly
for a given value for a given percentage of useful operations. However, we also
wanted to try our accelerator with representative pruned models and data sets.
Although many works have demonstrated the possibilities of pruning, deep learning
frameworks still do not include support in their main branches. However, the authors
of [72] shared two pruned models, AlexNet and SqueezeNet, on GitHub [70, 69].
These are very good benchmarks for our design since they are popular models
that use the representative data set ImageNet [91], and SqueezeNet is especially
interesting for Embedded Systems. Tables 4.3 and 4.4 detail the useful operations
ratio per layer of these two pruned networks and the MAC utilisation of our sparse
design for each layer. Overall, the useful operations ratio on AlexNet and SqueezeNet
are 18.4% and 32.0%, respectively.

Table 4.3: Useful Operations per Layer in AlexNet

Useful operations MAC utilisation

conv1 84.3% 99.3%
conv2 6.7% 98.9%
conv3 10.9% 98.2%
conv4 13.5% 98.4%
conv5 11.3% 97.6%
fc6 3.6% 51.9%
fc7 5.8% 70.3%
fc8 7.6% 90.8%

Fig. 4.14 and 4.15 depict the execution time per layer of AlexNet and SqueezeNet,
respectively. We have compared our sparse design working with 8-bit, 16-bit, and
32-bit arithmetic with their area equivalent dense designs, i.e., dense equivalent
model with 8x, 4x and 2x multipliers respectively. Results vary among layers because
of their different useful operations ratios, as shown in tables 4.3 and 4.4. When
executing AlexNet, our sparse design outperforms its dense equivalent by 2.66x on
32-bit arithmetic and 1.33x on 16-bit. On 8-bit, the dense equivalent design with
8x multipliers is superior by 1.50x. When executing SqueezeNet, our sparse design
outperforms its dense equivalent by 1.53x on 32-bit arithmetic whereas the dense
equivalent design is superior on 16 and 8-bit by 1.31x and 2.61x, respectively.
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Table 4.4: Useful Operations and percentage of MAC utilisation per Layer in SqueezeNet

Useful operations MAC utilisation

conv1 98.5% 99.6%
fire2 41.2% 95.5%
fire3 37.4% 96.8%
fire4 30.5% 97.8%
fire5 40.9% 98.1%
fire6 34.0% 98.1%
fire7 28.0% 98.2%
fire8 25.8% 97.9%
fire9 26.6% 98.5%
conv10 2.3% 51.9%

Given these execution times, our accelerator is able to process 227x227 images in
203 ms for AlexNet and in 265.2 ms for SqueezeNet, yielding a throughput of 3.8
and 4.9 images/s, respectively. These numbers are suitable for many embedded
applications. They may not look impressive at a first glance, but, in fact, they are
very close to the peak performance. For instance, processing an image with the
pruned version of AlexNet [69] involves 863,740,448 multiplications. Since most of
them include a zero as an operand, with our approach that number can be reduced
to just 159,031,554 useful multiplications. The minimum execution time using 8
multipliers clocked at 100MHz and assuming peak performance is 198.79ms, just a
bit lower than the 203ms that our sparse architecture needs.
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Figure 4.14: Execution time on AlexNet
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Figure 4.15: Execution time on SqueezeNet

4.11 Conclusion

We propose a sparse architecture for DNNs that avoids those operations with zero
as one of the operands and keeps almost peak utilisation of arithmetic resources,
even in highly-sparse scenarios. The architecture includes support to deal with
compressed filters, identify the useful operations, and reduce the memory access
conflicts generated due to the non-uniform memory accesses. It has also been
pipelined to improve the performance.

We have carried out comparisons between similar-in-area dense and sparse architec-
tures in order to identify in which scenarios including support for sparsity is superior
to providing a dense architecture with additional arithmetic resources. Sparsity is,
as expected, the key parameter to decide whether to move from dense to sparse
architectures, but arithmetic bitwidth also plays a major role. The hardware cost of
MAC units does not scale linearly with the bitwidth; therefore, the overhead ratio
of a sparse architecture is much larger on low precision. Our results show that the
benefits of exploiting sparsity are clear on 32-bit arithmetic, whereas on 8-bit it
is hard to profitably exploit sparsity given the sparsity of current state-of-the-art
CNNs. Recent works show consensus on using arithmetic of at least 16-bit [66,
71, 74, 43, 59]. For this particular arithmetic bitwidth, adding support for sparsity
improves energy efficiency as long as the useful operations are under 50%, and also
performance, when the useful operations are under 25%. In other scenarios it is
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better to use the logic resources to include more arithmetic resources than to include
support for sparsity.

We consider that FPGAs are currently the natural target for sparse accelerators,
instead of ASICs as suggested in previous works. The benefits of including support
for sparsity depend on the particular sparsity and arithmetic precision of the DNN to
process, and FPGAs can be seamlessly adapted by loading the best-fitting accelerator
for each profile.

Developing pruning techniques for DNNs is currently a very active research topic
and we expect that many aggressively pruned models are likely to be available soon.
The inclusion of support for sparsity will be needed in order to take advantage of
this powerful optimisation opportunity.
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Step II: Gradient Boosting
Decision Trees Accelerator

5
„

— xkcd.com
(Just that guy, you know?)

5.1 Introduction

Based on the result of the analysis of chapter 3, we identified that Gradient Boosting
Decision Trees (GBDTs) present a very interesting trade-off between the use of
computational and hardware resources and the obtained accuracy. Their accuracy
results were close to those obtained with convolutional neural networks, which
currently is the most accurate method, while carrying out one order of magnitude
less computational operations. Moreover, most of their operations during inference
are integer comparisons, which can be efficiently calculated even by very simple
low-power processors, and can be easily accelerated by FPGAs. For that reason they
represent a good option for embedded system.

Decision trees are a light and efficient machine learning technique that have proved
their effectiveness in several classification problems. A single decision tree is fre-
quently not very accurate for complicated tasks but, thanks to ensemble methods, it
is possible to combine several trees in order to deal with complex problems. GBDTs is
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an ensemble method that allows to improve the accuracy gradually adding new trees
in each iteration that improve the result of the previous ones [100]. Conventional
implementations of GBDT suffer from poor scaling for large datasets or a large
number of features, but recently some efficient implementations have overcome this
drawback such as XCGBoost [67], CatBoost [40], or LightGBM [57]. For instance,
LightGBM is a highly efficient open-source GBDT-based framework that offers up to
20 times higher performance over conventional GBDT. With the support of Light-
GBM, GBDTs are currently considered one of the most powerful machine learning
models due to its efficiency and accuracy. For example, recently they have been used
for many winning solutions in several machine learning competitions [25]. They can
be used for very different problems. For instance, they have been successfully used
to produce accurate forecasts for the COVID-19 evolution, and to identify factors
that influence its transmission rate [19]; to detect fraud from customer transactions
[1]; to estimate major air pollutants risks to human health [28] using satellite-based
aerosol optical depth; or to classify the GPS signal reception in order to improve its
accuracy [42].

In this chapter we present an accelerator for GBDTs that can execute the GBDTs
trained with LightGBM. Our accelerator has been designed for embedded systems,
where hardware resources and power budget are very limited. Hence, our primary
goal is efficiency. The register-transfer level (RTL) design of our accelerator has
been written in VHDL, and, to demonstrate its potential, we have implemented
it in a low-cost FPGA evaluation board (ZedBoard)[10], which includes an FPGA
for embedded systems, and we have used our implementation for the same case
study previously analysed during the comparative of the different methods. We
have measured the execution time and power consumption of our accelerator and
we have identified that our design can be used to process complex GBDT models
even when using a small FPGA. In our case study, our accelerator can process the
hyperspectral information at the same speed at which the hyperspectral sensors
generate it, and the dynamic energy consumption due to the execution is an order of
magnitude less in both cases, compared to a high performance CPU and compared
to an embedded system CPU. Hence it could be used for on-board processing in
remote sensing devices.

The content of this chapter has been published in a very prestigious journal [16],
and the codes of the accelerator are available in a public repository [15].
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5.2 Related work

Several previous works have targeted FPGA acceleration of Decision Trees. [95]
focuses on the training processes. In our case we assume that training is carried
out offline and we want to focus on inference, which will be computed online.
[82] presented a custom pipeline architecture which demonstrated the potential
of an accelerator for decision trees. However they do not support GBDT and they
apply their techniques only to simple case studies. [85] proposes to use a high-level
synthesis approach to design an FPGA accelerator. They focus on Random Forest,
which is an ensemble technique that calculates the average value of several trees
trained with different input data to generate a more accurate and robust final output.
We have decided to focus on GBDT instead of Random Forest since recently GBDT
have demonstrated an enormous potential [25] and our comparative analysis shows
that GBDT provide better accuracy while using smaller models, hence we believe
that it is a better approach for embedded systems. Another difference is that we
have designed a custom register-transfer level (RTL) architecture instead of using a
high-level synthesis that will automatically generate the RTL design from a C-code.
High-level synthesis is very interesting for portability, and to reduce the design cycle,
but with our RTL design we can fully design the final architecture and explore several
advanced optimisation options. [90] is another work that analyses the benefits of
implementing Random Forest on FPGAs. They compare the effectiveness of FPGAs,
GP-GPUs, and multi-core CPUs for random forest classifiers. They conclude that
FPGAs provide the highest performance solution, but they do not scale due to the
size of the forest. In this sense, as explained before, GBDT models require fewer trees
to obtain the same accuracy, so it is a more suitable model for FPGAs. [89] proposes
to use FPGAs to accelerate the execution of decision trees used in the Microsoft
Kinect vision pipeline to recognise human body parts and gestures. They use a high
performance FPGA, and obtain very good results for decision tress organised as
random forest. However, they identify that their design cannot be used in low-power
FPGAs due to its memory requirements.

[23] is a very recent work that presents an algorithm that produces compact and
almost equivalent representations of the original input decision trees by threshold
compaction. The main idea is to merge similar thresholds to reduce the number of
different thresholds needed, and store those values as hard-wired logic. With this
approach the size of the trees can be reduced. This technique is orthogonal to our
approach and can be beneficial to our design since it reduces the size of the trees,
which simplifies its storage in embedded systems.
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[27] is another recent work that analyses the benefits of FPGA acceleration for
Gradient-boosted decision trees. In this case they evaluate the services provided
by Amazon cloud, which include the access to high-performance FPGAs that can
be used through high-level interfaces. Therefore, this work is complementary to
ours, as it focuses on high-performance cloud servers while we focus on embedded
systems.

5.3 Design architecture of the GBDT Accelerator

After considering several options, we decided to implement an accelerator for GBDTs
trained with LightGBM library for being one of the latest and most used. LightGBM
follows a one-vs-all strategy for classification problems that consists in training a
different estimator (i.e. a set of trees) for each class, so each one of them predicts
the probability of belonging to that class. With this approach each class has their
own private trees, and the probability of belonging to a given class is obtained by
adding the results of its trees, as shown in Figure 3.2.

Hence, during inference, each class is independent from the others, and the trees
of each class can be analysed in parallel. Our accelerator takes advantage of this
parallelism by including one specific module for each class.

5.3.1 Memory Format

To design an efficient accelerator, it is essential to optimise memory resources. Our
goal is to store the trees in the on-chip memory resources of the FPGA to minimise
data transfers with the external memory. However those resources are very limited,
so a key point of the design is to optimise the format used to store the trees in order
to reduce their memory requirements.

All the trees of a class are mapped into its trees_nodes RAM memory, which is local to
the class module. Fig. 5.1 present the representation that we have selected to store
the tree structure on this memory. Our objective is to include all the information
of each node in a 32-bit word. Since we use generic parameters in our code, this
word size can be enlarged or reduced as needed. But in our experiments we have
observed that 32 bits provides a good trade-off between the accuracy to represent
the trees and the storage requirements. These 32 bits follow two different formats
taking into account whether they are leaf nodes or not.
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The format for non-leaf includes four fields. The first and the second field store the
information needed to carry out the comparison, i.e. which input will be used (8
bit), and with which value it will be compared(16 bit). Then we need to store the
addresses of the child nodes. As we only have 8 bits remaining, it is not possible
to store its absolute addresses. In fact, with the size of the memories that we are
using, we would need almost all of the 32-bits to store that information. We have
solved this issue with two solutions. First, in the trees_nodes memory, nodes are
stored using the pre-order traversal method, i.e. the left child of a non-leaf node is
always allocated in the following memory position. With this approach the address
of the left child does not need to be stored, since it can be obtained adding one to
the current address. Hence, we only have to store the address of the right child.
Second, instead of storing the absolute address of the right child, we store a relative
address that indicates its distance with the current address. This relative distance is
stored in a 7-bit field. With this approach the maximum depth of a tree is 128. This
is more than enough for all the trees that we have analysed, since GBDT does not
rely on very large trees, but in using many of them. Finally, we have included a flag
in the less significant bit of each node: This flag determines whether it is a leaf node
or not.

In the case of the leaf nodes, the 32-bits memory word includes four fields. A
16-bits field stores the output of the three. The next 14-bits are used to store the
address of the next tree. In our experiments 14 bits were enough for the absolute
addresses. The original output of the LightGBM GBDTs is a 32-bit floating point.
However, using a 16-bits fixed-point representation we obtain similar accuracy in
our experiments. In any case, if needed, it is possible to use more bits for the output
without increasing the size of the memory word by using relative addresses for the
@next_tree field instead of absolute addresses. The last two bits are two flags that
identify whether this is the last tree in the class, and whether the node is a leaf or
not.

Figure 5.2 presents a simple example in which two trees of a class are stored. As
can be seen in the figure, the root node of the first tree is stored in address 0. Then,
the entire tree structure corresponding to its left child is stored, following these
same rules recursively, and finally the right child is stored in the last place. The bits
corresponding to rel@_right_child field store the relative jump to its right child. All
the leaf nodes of the first tree indicate that the next tree begins in address 5. Finally,
the leaf nodes of the second tree indicate that there are no more trees to process.
This simple example includes 8 nodes. If we execute it in our architecture we will
visit four or five of these nodes, it depends on the result of the first comparison, and
we will need approximately one clock cycle to process each node. In larger trees,
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the number of visited nodes will be much lower than the number of total nodes, and
the execution time will remain approximately one cycle per visited node.
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Figure 5.2: Trees representation example

5.3.2 Accelerator Architecture

Figure 5.3 depicts the internal design of one of the modules that execute the trees
of a class. The design includes the previously described trees_nodes RAM memory,
a register, @_last_node, that is used to store the address of the last visited node,
and the logic that carries out the comparisons, compute the next node to visit, and
accumulate the results of the trees.

In this design the @_feature field of non-leaf nodes is used to select one feature
among all the input features of the system. The selected feature is compared with
the cmp_value field. If the value of the feature is less or equal than the cmp_value, the
left child of the non-leaf node is selected. To this end, we add 1 to the @_last_node.
Otherwise, we add the rel@_right_child to select the right child. This will generate
the @_node that will be used to address the trees_nodes RAM memory in case that
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the current node is a non-leaf (is_leaf value is 0). If the current node is a leaf (is_leaf
value is 1), and this is not the last tree (is_last_tree value is 0), the selected value
to address the trees_nodes RAM memory will be the @_next_tree field of the leaf
node. On every leaf node, the result register will accumulate the leaf_value field to
the previous result value.

According to the selected memory representation of the nodes, the maximum size of
the trees_nodes RAM will be 214 words, as we dedicate 14 bits to the @_next_tree,
and the theoretical maximum number of nodes of the same tree will be 26 due to
the size of the relative jump rel@_right_child. Regarding the size of the RAM, we
could address any number of trees just making the @_next_tree a relative address
from the current node by adding it to @_last_node, nevertheless the current size
is even bigger than our needs. In our design we dedicate 8 BRAMs of 32Kb to the
trees of each class, which is 8192 words of 32 bits, so we are actually using the 13
less significant of the 14 bits available to address the trees_nodes RAM. Regarding
the number of nodes of each tree, this is only a theoretical limit due to the relative
jump, which actually affects only the left side of each node, i.e. the left side of
each node of the tree can only have 63 nodes, so we could reach the right child in
a pre-order traversal. In any case, the maximum number of nodes of our trees is
61 and the average is between 7 and 22 depending on the dataset, so this is not a
problem either.

Once we receive the features of one pixel, we only need to wait until every class
module has finished and then check the output of the argmax module, which selects
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the number of the class with the higher result. Fig. 5.4 depicts a simplified design of
the accelerator showing this behaviour, where we omitted the control lines and the
management of the communications. To overlap the reception of the features of the
next pixel with the computation of the current one there are actually two features
registers, so we can receive in one of them while we are working in the other.

  FINISHfeatures

class 0

class N - 1

finish

finish
...... argmax... ...

REG

  PRED

result

result

Figure 5.4: Accelerator design

5.3.3 Pipeline and Multi-threading Architecture

This design can process a node per class in each clock cycle. However, in our
experiments, if we implement a system that uses most of the on-chip memory
resources, the place&routing process becomes complex and the clock frequency
is just 55 MHz. This can be solved by using a more modern FPGA, with more
capacity, and better integration technology, but it can also be improved by applying
some computer architecture optimisations similar to those that have been used to
optimise the execution of general purpose processors. We will illustrate this with
the following figures. In Figure 5.5 (a) we present the execution of the previously
described version (single-cycle implementation). The figure depicts the execution of
the nodes in one of the classes. If we have N classes all of them will be executed in
parallel. In the figure three nodes are executed in three clock cycles. However, as
explained before, the clock period is long and the system runs slow.

Our goal is to improve the speed, while trying to keep processing one node per cycle.
To reduce the clock cycle we have designed a multi-cycle implementation. We have
explored three different options: two, three and four clock cycles. In these versions,
additional registers have been added to the architecture in order to split the longest
combinational paths. From that analysis we selected the option that executes the
nodes in three cycles, because it achieves an important clock-period reduction and at
the same time provides a clear architecture, in which it is easy to identify the actions
that are carried out in each cycle. With four cycles, the benefits were very small, and
the resulting execution scheme was not intuitive. Figure 5.5 (b) presents the results
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Figure 5.5: (a) Single-cycle execution scheme. (b) Multi-cycle execution scheme.

after this step. As can be seen in the figure, the clock frequency has been improved,
but the system is slower than before, since we need three clock cycles for each node.
However, since we have partitioned the design following a clear scheme, we could
try to use a pipeline approach. As presented in figure 5.6 (a) we have three different
pipeline stages, and each one of them uses different hardware resources. Hence,
we can start executing a second node, as soon as the first one has finished the first
stage. In our design the first step is used to read the node (fetch), the second step
is used to identify the type of the node and read the needed feature (decode), and
the last step is used to compare it with the comparison value, and identify the next
node to execute (execution). The problem of this scheme is that we do not know the
next node until the previous node has finished its execution stage. Hence we cannot
fetch it in advance. Hence, a simple pipeline will not provide any benefit. This is the
same problem that conventional processors have when dealing with instructions that
include conditional branches. High-performance processors alleviate this problem
by including complex support for speculative execution, but it is not an efficient
solution for embedded systems, since it introduces important energy overheads, and
it will not achieve good results, unless it is possible to identify clear patterns for
branch predictions. Hence, there is no straightforward way to take advantage of the
pipeline architecture.

However, this problem can be solved by combining the pipeline with a multi-
threading approach. The idea is to include support to interleave the execution
of three different trees. This can be done by including three @_last_node registers
(that is the same as having three program counters in a processor). The trees in
a class are divided in three sets, and each counter manages the execution of one
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of these sets. Figure 5.6 (b) depicts how the executions of the three trees are
interleaved. In this example three different trees (n, m and l) are executed. With
this approach we have the same period that in the multi-cycle approach, and we can
execute one node per cycle, as in the single-cycle implementation.

Figure 5.7 shows the final structure of the multi-threaded class module. As can be
seen in the figure, the hardware overhead is small. We only need to include a few
registers to store the information needed for each stage, the additional @_last_node
counters, two additional registers which indicate the starting address of the first tree
in each set, three 1-bit registers which store a flag indicating whether the processing
of each set has been completed, and finally modify the control unit. Moreover, the
memory resources, which are the most critical in our design, are the same in both
versions.

The VHDL source codes of both versions are available in [15].

5.4 Experimental results

As explained in 2.3, in hyperspectral images pixel classification, the input is a single
pixel composed of a series of features, where each feature is a 16-bit integer. The
number of features depends on the sensor used to obtain the image, in our case we
used datasets from 103 to 224 features. Each node of the tree selects one of these
features, and compares it with the value stored in the node to make their decision;
i.e. whether to select the left or the right child. Our design has been written in VHDL
using generic parameters to be very customisable. Hence, it can be used for different
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images with different number of classes, of input features, of trees per class. For
the evaluation of the accelerator, we used the models previously trained for Indian
Pines (IP), Pavia University (PU), Kennedy Space Center (KSC) and Salinas Valley
(SV), with the characteristics explained in 3.3. The models codified according to the
described node representation format of Figure 5.1 are available in [15]. Table 5.1
shows the accuracy obtained executing the models with the LightGBM library, and
the achieved accuracy with the equivalent models adapted for our accelerator. As
can be seen in the table, the changes in the original decision trees almost have no
effect on the final accuracy.

Table 5.1: Compared Top1 accuracy between LightGBM training and the accelerator.

Accelerator LightGBM

IP 0.802 0.805
KSC 0.894 0.894
PU 0.922 0.924
SV 0.926 0.928

The accelerator has been designed to fit in the FPGA of the Zedboard Xilinx Zynq-
7000 evaluation board [10]. This is a very small FPGA with an old technology, so
the needs of the design are very restrictive. The main goal of using this device is to
try to reproduce the characteristics of the rad-hard and rad-tolerant FPGAs approved
for embedded on-board devices. These devices do not use the latest integration
technologies, hence it will not be realistic to use the latest generation of FPGAs.
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Table 5.2 shows the hardware resources of single-cycle and multi-threading designs
in this FPGA.

Table 5.2: Single-cycle vs multi-threading resources.

Single-cycle Multi-threading incr.

IP

LUTs 15800 (29.70%) 17027 (32.01%) 1.08
Flip-Flops 4470 (4.20%) 6250 (5.87%) 1.40
F7 Muxes 6657 (25.03%) 6657 (25.03%) 1
F8 Muxes 3328 (25.02%) 3328 (25.02%) 1
BRAMs (36Kb) 128 (91.43%) 128 (91.43%) 1

KSC

LUTs 11749 (22.08%) 12641 (23.76%) 1.08
Flip-Flops 3909 (3.67%) 5351 (5.03%) 1.37
F7 Muxes 4578 (17.21%) 4577 (17.21%) 1
F8 Muxes 2288 (17.20%) 2288 (17.20%) 1
BRAMs (36Kb) 104 (74.29%) 104 (74.29%) 1

PU

LUTs 5228 (9.83%) 5714 (10.74%) 1.09
Flip-Flops 2455 (2.31%) 3436 (3.23%) 1.40
F7 Muxes 2016 (7.58%) 2016 (7.58%) 1
F8 Muxes 864 (6.50%) 864 (6.50%) 1
BRAMs (36Kb) 72 (51.43%) 72 (51.43%) 1

SV

LUTs 17462 (32.82%) 18628 (35.02%) 1.07
Flip-Flops 4862 (4.57%) 6638 (6.24%) 1.37
F7 Muxes 7681 (28.88%) 7681 (28.88%) 1
F8 Muxes 3584 (26.95%) 3584 (26.95%) 1
BRAMs (36Kb) 128 (91.43%) 128 (91.43%) 1

The only perceptible increment is the number of LUTs and Flip-Flops, the rest are
null or negligible. These increments are not important for the design, since it uses a
small percentage of these resources. As can be seen in the table, the bottleneck of
the system are the on-chip memory resources. In fact, some images use almost all
memory resources. For that reason it was very important to optimise the memory
format used to store the trees.

Table 5.3 presents the performance results. In this case, the multi-threaded design
provides a performance improvement of 67-85%. Hence, in this accelerator the
computer architecture optimisations provide a major performance improvement
with minimal area cost.

The Multi-threaded design has a small penalty, between 1% and 4%, in terms of the
number of cycles needed to process each node (Avg. Cycles/Node), which leads to
a higher number of cycles per pixel (Avg. Cycles/px.). The reason is that the trees
are divided into three sets, which will not always be perfectly balanced. When one
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of the sets ends, only two of the three threads have useful work to do. To reduce
this problem we grouped the trees taking into account their average depth, trying to
make the workload similar in all groups. Since the depth of the trees depends on
the path chosen, and will be different for each input, we can not guarantee a perfect
balance, and these small penalties appear. Nevertheless, we achieved a very small
penalty and the frequency increase is enough to reach better throughput.

Table 5.3: Single-cycle vs multi-threading throughput.

Single-cycle Multi-threading Gain

IP

Freq. (MHz) 60.61 105.263

1.69
Avg. Cycles/px. 1658.15 1700.9
Avg. µs/px. 27.36 16.16
Avg. px/s. 36552.78 61886.65
Avg. Cycles/Node 1 1.026

KSC

Freq. (MHz) 62.5 105.263

1.67
Avg. Cycles/px. 2542.76 2564.55
Avg. µs/px. 40.69 24.36
Avg. px/s. 24579.60 41045.41
Avg. Cycles/Node 1 1.009

PU

Freq. (MHz) 66.67 125

1.80
Avg. Cycles/px. 1857.34 1938.70
Avg. µs/px. 27.86 15.51
Avg. px/s. 35895.42 64476.20
Avg. Cycles/Node 1 1.044

SV

Freq. (MHz) 55.56 105.263

1.85
Avg. Cycles/px. 1447.13 1479.37
Avg. µs/px. 26.05 14.05
Avg. px/s. 38393.23 71153.94
Avg. Cycles/Node 1 1.022

Regarding the communications, in our design we have included a DMA to read the
input data from the external off-chip memory. With this approach the latency of
sending the input data of one pixel is smaller than the computation itself, so it can
be entirely overlapped with the processing time of the previous input data, and does
not affect the throughput.

Table 5.4 shows the data provided by the VIVADO power consumption report.
The dynamic power consumption of our design is between 0.402W and 0.745W,
depending on the data set characteristics, hence, our accelerator provides high
performance for embedded systems with a small power overhead.
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Table 5.4: Power consumption.

Static (W) Dynamic (W)

Clocks Signals Logic BRAMs I/O Total

IP 0.125(15%) 0.031(4%) 0.224(31%) 0.129(18%) 0.298(41%) 0.036(6%) 0.719(85%)
KSC 0.121(17%) 0.026(4%) 0.185(32%) 0.097(17%) 0.242(41%) 0.036(6%) 0.585(83%)
PU 0.115(22%) 0.020(5%) 0.090(22%) 0.051(13%) 0.199(49%) 0.042(11%) 0.402(78%)
SV 0.126(14%) 0.033(4%) 0.237(32%) 0.140(19%) 0.298(40%) 0.037(5%) 0.745(86%)

In order to evaluate the performance of our multi-threading design, we have exe-
cuted the inference of those models in a high performance (HP) CPU, an Intel(R)
Core(TM) i5-8400 CPU @ 2.80GHz, and also in an embedded system (ES) CPU, the
Dual-core ARM Cortex-A9 @ 667 MHz that is part of the same system-on-a-chip
as the FPGA in the Zedboard evaluation board [10]. Regarding the software, for
the Intel i5-8400 we measured the execution of the LightGBM library inference,
while for the Cortex-A9, we designed an equivalent C version that uses the same
data format as the FPGA design, hence, it has the same computational and memory
requirements. This code has been compiled with gcc 7.3.1 with -O3 optimisation
level. Table 5.5 shows the total energy required for the execution of the entire test set
for each image and also the performance in pixels per second. These measurements
have been performed with a Yokogawa WT210 digital power meter, a device ac-
cepted by standard performance evaluation corporation (SPEC) for power efficiency
benchmarks [11]. In the table we only include the dynamic energy consumption, i.e.
the consumption due to the execution of the trees. To this end, we measured the
power consumption of the FPGA, the Cortex-A9 and the i5-8400 during five minutes
both in idle mode, and during the execution of the models, and from that measures
we computed the average increase in the power consumption due to the execution
of the trees in each case. The Power consumption measurements used to calculate
the energy are 75W for the HP CPU, 1.5W for the ES CPU and 2W for the FPGA.

Table 5.5: Energy and performance comparisons.

Energy (J) Performance (pixels/s)

Test pixels FPGA HP CPU ES CPU FPGA HP CPU ES CPU

IP 8721 0.280 27.750 9.858 62293 23568 1327
KSC 4435 0.136 6.150 3.024 65221 53860 2200
PU 38503 1.194 58.500 15.960 64494 49336 3619
SV 48726 1.370 171.000 36.863 71133 21332 1983

Average 0.500 36.147 11.508 65706 22422 2139

According to these results, the HP CPU execution consumes in average 72 times
more energy than the FPGA design to perform the inference of the test benches,
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while the FPGA design is twice faster. In the case of the ES CPU, it consumes 23
times more energy while the FPGA design is 30 times faster. The last comparison is
interesting, because this processor is on the same chip as the FPGA, using the same
main memory and a clock almost seven times faster. This demonstrates the benefits
of a custom accelerator both for performance, and for energy efficiency.

Finally, one of our objectives was to process the pixels at the same speed at which
they are generated by the hyperspectral sensors. According to [88] the AVIRIS
sensor that was used to obtain most of our datasets must process 62873.6 pixels per
second to fully achieve real-time performance. Our multi-threading design achieves
this speed in three of the four images (KSC, PU and SV), and achieves 98.4% of
that speed in a third one (IP). Hence, we can conclude that this design is capable of
achieving real-time performance in many scenarios even using a small FPGA.

5.5 Conclusions

In this chapter we describe the architecture of a GBDTs accelerator implemented
according to the great results that GBDTs obtained in the analysis of chapter 3.

According to the results of the analysis of ML techniques, we conclude than the
characteristics of GBDTs make them specially indicated to be accelerated in FPGAs,
since its basic operations are simple comparisons, so we developed an accelerator for
them. A key factor in the design of the accelerator has been the memory restrictions.
Optimising the format used to store the trees has been the key to allow complex
models to be implemented in small FPGAs. Moreover, after analysing the execution
of our accelerator, we have managed to find a pipeline and multi-threading execution
scheme that maximises the utilisation of the FPGA resources and achieves 67-85%
performance improvement compared to the single-cycle execution.

We have tested our accelerator with complex models for a relevant case-study,
and we have demonstrated that it can be used to process data at run-time with a
very small power-consumption overhead. Moreover, compared to the execution
of LightGBM in a high performance CPU our model is capable of achieving 2x
performance while consuming 72x less energy. In the case of an embedded system
CPU, our design reaches a 30x performance improvement while maintaining 23x less
energy consumption during the execution. Hence, this design is suitable to provide
high-performance for embedded systems, that was our original target.
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6.1 Introduction

Machine Learning techniques have made spectacular advances in recent years. The
improvements and refinement of the models used, together with hardware platforms
that allow the exploration of increasingly complex models, trained on larger data
sets, have enabled a vast improvement in the accuracy of the models, and opened
up new fields of application.

In remote sensing, neural networks (NNs) and convolutional neural networks (CNNs)
[78] have demonstrated to be one of the most useful tools for hyperspectral image
classification, with many recent relevant publications [21, 36, 18, 49]. They provide
state-of-the-art results, but they have some limitations. A NN model will provide
very good results if it is trained with data similar to the data that it will process
when deployed. However, if the training set includes data with high noise level, or
it includes mislabelled data, or it is unbalanced, or the model, once in operation,
receives inputs with different features, or different formats from those used in
training, the predictions will not be reliable. This problem is not easy to solve since
Machine Learning is based on the learn-from-data paradigm. Hence, the quality of
the results of a NN model relies on the quality of the training data. However, we
can deal with this problem in a more efficient way by enriching the models based
on NNs or CNNs so that, together with their predictions, they report uncertainty
metrics that can be used to identify these issues.

In this chapter, we will evaluate these possibilities for the problem of pixel classifica-
tion of hyperspectral images. For this purpose, we will use a simple model based
on NNs and upgrade it into a bayesian neural network (BNN), i.e. a model that
combines neural network with Bayesian inference. BNNs use distributions to model
weights and outputs. Hence, they will not generate a constant output for a given
input, but a distribution, that can be analysed to measure the prediction uncertainty.
Moreover, it allows to differentiate between the uncertainty generated by the model
itself, and the uncertainty generated by the input data. This approach can be applied
to NNs and CNNs in a similar way. We will use a simple NN model, instead of a
large CNN because our goal is not to achieve the maximum accuracy, but to explore
the utility of using BNNs instead of conventional NNs. This is orthogonal to the
size of the model, hence, following the recommendations of the Green AI paradigm
[26], we selected a model that can be trained fast with low energy consumption (we
trained hundreds of different models during this research), and provides results that
can be easily replicated by any researcher, without the need for specific hardware
platforms to train the model.
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We will demonstrate the utility of our approach, with several experiments applied to
some of the most frequently used hyperspectral data sets. First, we will propose a
scheme to test if the model is properly calibrated. Second, we will show how the
uncertainty metric can be used to achieve a requested level of accuracy by discarding
inputs that have very high levels of uncertainty. The goal is not to artificially increase
the accuracy, but to identify scenarios with high uncertainty, in order to avoid using
their outputs when making decisions. In fact, there are many situations in which it is
better to discard the output of a network than to use an output with a high level of
uncertainty thinking that it is correct. For example, the network may receive a pixel
that do not belong to any of the categories, or a pixel which include a mix of them.
It is critical to be able to identify such cases, either to simply ignore those outputs,
mark them as unreliable outputs, use an alternative method to classify them, or to
try to understand why our model fails in these situations. These situations occur
in the data sets analysed, because neither the labelling, nor our models, nor the
training process are perfect, but they will be more frequent if the models are used
in the real world, because all kinds of new spectral signatures will appear in the
input that will not belong to any of the trained categories, and therefore should not
be classified. Third, we will analyse the uncertainty of the different categories of
each data set. Finally, we will test the model response to two different experiments:
training a new network mixing the labels of two classes, and the introduction of
white noise during inference. The code used for the experiments and the trained
models are available in a public repository so that they can serve as a baseline for
applying this technique to other problems [13].

The results of this study have been published in a very prestigious international
journal [12], and the codes to reproduce all the experiments are available in a public
repository [13].

6.1.1 Motivational example

Using a simple neuron as an example we can easily illustrate the impact of bayesian
models in our prediction abilities. For that, we are going to train a neuron using the
training data represented on Table 6.1 that includes two different datasets, each of
which has three training data for the same input (0.5, 0.5). In both cases, for that
input, a trained neuron will generate a function with an output about 0.7. A possible
solution, is presented in Equation 6.1, where both weights are 0.7 and bias is 0, since
it is the output that minimise the error for both data sets. But the inputs of datasets
1 and 2 are very different. In the first case, the training data is consistent, and the
outputs are very similar for the input (0.5, 0.5), while in the second case the outputs
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have a large variance. If the models generate the same output in both cases we will
lose that information.

Table 6.1: Bayesian Neuron example inputs.

Dataset 1 Dataset 2

Data Input1 Input2 Output Input1 Input2 Output

First 0.5 0.5 0.6 0.5 0.5 0.2
Second 0.5 0.5 0.7 0.5 0.5 0.7
Third 0.5 0.5 0.8 0.5 0.5 1.2

O(I1, I2) = ReLU(I1 × 0.7 + I2 × 0.7 + 0) (6.1)

The weights and bias of a bayesian neuron are not constant values, but distributions,
as shown in Figure 6.1, so every time we call the function we will receive a different
weight value according with that distribution. If we train this bayesian neuron for
datasets 1 and 2, the mean value of the distributions on both models will be similar,
and with the same value that in the previous cases, 0.7, but the deviation will be
higher for case 2, because the distribution is wider, therefore, if we perform several
inference passes over the two models, the output average will be around 0.7 on both
of them, but we will be able to observe an important difference on the deviation of
the outputs. For the first data set, all the inference passes will provide similar results,
while for the second case, the output distribution will be wider, and the results
will have larger divergence. Uncertainty metrics make it possible to differentiate
between these two situations.

6.2 Related work

As explained in the introduction, NNs have demonstrated to be one of the most
accurate techniques for hyperspectral image classification. CNNs can exploit both
the spectral and the spatial information of hyperspectral image applying convolution
filters and pooling operations to the input data. Based on the output of the previous
layer, each new layer generate more complex feature vectors, which are finally
processed by one or several layers of fully connected neurons. Deep CNNs achieve
state of the art classification accuracy in general for image classification, and in
particular for hyperspectral images. In [21] the authors analyse different machine
learning methods evaluating its accuracy, its size, and the computations required. In
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Figure 6.1: weights of normal neuron for both datasets (top) versus bayesian neuron on
dataset 1 (centre) and dataset 2 (bottom).

this analysis CNNs achieve the best accuracy. The works described in [36, 14, 18,
49] are examples of state-of-the-art results using CNNs.

However, using deep CNNs for hyperspectral is very complex, as it requires a great
amount of labelled training data for tuning their large number of parameters, and in
remote sensing labelled samples are very difficult and expensive to collect. Moreover,
the high dimensionality of the hyperspectral data further complicates the setting of
the deep model parameters. This may lead to overfitting in many networks. These
networks will provide good results for the training data, and for the test data if it
is very similar, but their results are not generalisable for new data. This is a very
complex issue, the training data can be improved by adding more samples, or by
using data augmentation techniques to generate additional training samples by
performing several transformation to the original data set [86].

In this context, BNNs can provide added value with their ability to generate un-
certainty estimations. However, very few works have explored the possibilities of
using BNNs for hyperspectral pixel classification. The most representative is the
work presented in [46]. Their objective is to achieve higher classification accuracies
for situations with scarce labelled data. To this end, they propose to combine BNNs
with active learning for the problem of hyperspectral pixel classification. They start
the training process with very few labelled pixels and then use a BNN model to
select and introduce in the training set some of the unlabelled pixels in order to
improve the results. Their Bayesian approach is dropout based, following the main
idea described in [75].
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Another work that uses BNNs for hyperspectral images was presented in [29],
although in this case, they are not used to classify pixels, but to monitor water
quality from an unmanned aerial vehicle. In this case, they use a BNN because
it allows using a single model to generate multiple outputs, thus emulating an
ensemble of models working together, but they do not measure uncertainty.

These previous works focus on increasing accuracy, which is, of course, an important
goal. However, if we only look at accuracy, the advantages of using BNNs are not
clear, since any result obtained with a BNN could also be obtained with an ensemble
of NNs that carries out the same computations. Nevertheless, in order to use NNs
for real-world problems, the reliability of the predictions is as important as accuracy
itself [17], and the uncertainty metrics offered by BNNs can be the way to improve
reliability [56, 20]. Therefore, we believe that it is very important to analyse the
possibilities offered by BNNs to achieve more reliable neural networks in this field.
Sometimes, for classification problems, softmax layers results, i.e. the output of the
last layer of the NN, have been wrongly interpreted as a measure of the uncertainty
of the output, but as explained in [51, 41], they cannot be interpreted in such way
because their probabilities distribution are not relative to the uncertainty of the
model on their predictions. Therefore, specific uncertainty metrics are needed. A
good example of the utility of these metrics is [41]. In this work, the authors use
the uncertainty metrics of a BNN to prove that multi-spectral images offer better
reliability on classification problems than RGB images.

In this chapter, we want to analyse the opportunities offered by the uncertainty
metrics provided by BNNs for the problem of hyperspectral image pixel classification.
To illustrate them, we developed some experiments that demonstrate their added
value.

6.3 Bayesian networks and uncertainty quantification

Neural networks (NNs) have proved to be very powerful techniques to perform
image classification tasks, and they also achieved great results with hyperspectral
images as we exposed in last section. Nevertheless, there are still some gener-
alisation issues, such as overfitting, that could specially affect those areas where
the datasets are scarce and difficult to generate, as remote sensing hyperspectral
imaging. Probabilistic models such as bayesian neural networks allow us to analyse
the model uncertainty for a given prediction due to their stochastic behaviour.
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Bayesian approaches model probability distributions to express the uncertainty
over the unobserved data. For that, the model starts with a prior distribution
of probabilities that updates according to the observed data. After training, the
generated model should represent the uncertainty about each parameter value.
So, instead of weights, the calculated values to represent the network are random
variables initialised with a prior distribution p (w), and the training will consist on
calculating the posterior p (w|D), where D represents the observed data D = {y, x}
[105, 76, 30].

However, computing the exact posterior p (w|D) for big and complicated models
as NNs is intractable. Hence, bayesian neural networks are based in approximate
models. During the training phase, variational Bayesian methods are used to approx-
imate intractable integrals. One of the most commonly used is variational inference
(VI), which tries to approximate the parameters ϕ of a variational distribution qϕ (w)
to minimise its Kullback-Leibler (KL) with p (w|D) [105, 30]. Theoretically, distri-
butions could have any shape, but it is impossible to analyse the search space for
that case. To solve this issue, only symmetric and tractable distributions are used.
Gaussian functions are typically used for this purpose because they are defined with
only two parameters, which simplifies the training process, and allows BNNs to
be more compact. Therefore, compared to regular NNs, BNNs based on Gaussian
functions will have twice as many parameters. This is an important overhead for
large models, but, as explained in the previous section, a BNN can be seen as an
ensemble of models, since each inference will generate a different output. Large NN
ensembles are frequently used to reduce the variance and improve the accuracy of
the output. Hence, a single BNN can replace the complete ensemble and lead to
important reductions in the size of the model.

In this chapter we want to analyse the uncertainty of the predictions. Since BNNs are
probabilistic models, executing T stochastic inferences over the same test dataset,
will provide T different output predictions. This allows to measure the model
uncertainty, but also to separately quantify aleatoric uncertainty, which is related to
the quality of the dataset itself, and epistemic uncertainty, which is related to our
trained model. For that analysis we will use the predictive entropy (H), expected
entropy (Ep) and mutual information (MI) of the T resultant predictions.

Let K be the number of classes of the dataset and {ck}K
k=1 the set of class labels.

Predictive entropy (H) represents the overall uncertainty of the model within the
range [0, log (K)]. We already defined D as the observed data, w as the calculated
variables of the model and T as the number of stochastic forward passes. The value
of H is given by Eq. 6.2, where at = p (y = ck|x, wt) [17].
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)
(6.2)

Expected entropy (Ep), given by Eq. 6.3, represents the aleatoric uncertainty. This
variable can be used to analyse the dataset characteristics and will be a baseline to
determine how training data alterations can affect the model [17]. High aleatoric
uncertainty values indicate ambiguities in the data that can be caused by noise,
mislabelled or misrepresented data, overlapping categories, or any other issues that
make the dataset difficult to learn.

Ep(w|D) [H (y|x, w)] := 1
T

T∑
t=1

(
−

K∑
k=1

at log (at)
)

(6.3)

Mutual information (MI) captures the epistemic uncertainty of the model and will
give us information about uncertainty generated by model. The MI value is given
by Eq. 6.4 and we will often refer to it as H − Ep [17]. High epistemic uncertainty
values indicate that the model is not properly trained or that it is not the right
model.

MI (y, w|x, D) := H (y|x, D) − Ep(w|D) [H (y|x, w)] (6.4)

6.4 Datasets and model characteristics

We selected for our tests five of the most used hyperspectral datasets, Botswana
(BO) [2], Indian Pines (IP) [2], Kennedy Space Center (KSC) [2], Pavia University
(PU) [2] and Salinas Valley (SV) [2]. Section 2.3 describes the main characteristics
of the datasets.

6.4.1 Model Training

For the purposes of this research we trained for every image a NN model: a Mul-
tilayer Perceptron (MLP) with two hidden layers, the first one with 32 nodes and
the second one with 16 nodes. The framework used to generate and train the
networks is TensorFlow [79] with DenseFlipout layers, which implement bayesian
variational inference with Flipout estimator, and we used as kd_function parameter
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the kl_divergence function divided by the number of labelled pixels on the dataset
and ReLU as the activation function [8, 53]. In a previous work [21], we performed
a grid search to identify the optimal size of a neural network, among other models,
for each different hyperspectral image, and we found that the best results, without
overfitting, ranged from 80 neurons to 140 depending on the image. However,
since the goal of this research is not to identify the optimal NN configuration, but
to explore the additional possibilities offered by a Bayesian network, we selected a
smaller model, with only 48 neurons because it achieved results almost as good as a
model with twice as many neurons, but it can be trained much faster. We used the
50% of the pixels of each class for training, with 10% reserved for validation to detect
overfitting, and the other 50% for testing. We used an initial learning rate of 0.01
for every dataset. We trained the models for 50000 epochs storing the intermediate
states every 100 epochs. At the end, we analysed the accuracy obtained in each of
those intermediate states with the validation set, and chosen the ones with the best
accuracy results. Among them, we chose those with the lowest average uncertainty.
And among those with similar uncertainties, we chose the model that had been
trained the least number of epochs. The training information is summarised in Table
6.2. We used categorical_crossentropy loss function on an Adam optimiser. During
inference, we execute 100 bayesian passes to extract the uncertainty information
and to average the predictions. The entire code is available on [13].

Table 6.2: Training data.

Accuracy Uncertainty

Image Train % LR Epochs Train Test Train Test

BO 50% 0.01 17000 0.94 0.91 0.24 0.26
IP 50% 0.01 22000 0.90 0.86 0.33 0.35

KSC 50% 0.01 41000 0.93 0.92 0.24 0.26
PU 50% 0.01 1800 0.95 0.95 0.16 0.17
SV 50% 0.01 4000 0.93 0.93 0.17 0.17

6.4.2 Model Calibration

Before using a model, it is necessary to evaluate its quality. Typically, this is done by
analysing the accuracy of the test results. However, accuracy should not be the only
concern. If we want a reliable model, we must also verify that it is well calibrated,
this can be evaluated using a Reliability Diagram [56, 80, 98].

To construct a diagram for the test results of a BNN we propose a simple scheme
based on defining a bin for each range of output values (from 0 to 1). For example
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we can define 10 bins, to store values ranging from [0%, 10%), from [10%, 20%),
and so on. The output values will be interpreted as probabilities, and the diagram
provides feedback about the accuracy of theses values. For example, a value of
0.25 would indicate that there is a 25% chance that the class is correct. What our
diagram tries to check is whether, on average, these probabilities correspond to
what is observed when verifying the data obtained with the test data set. What we
expect for a well calibrated model is that there will be a correspondence between the
average accuracy of the elements assigned to a bin, and the range of values assigned
to that bin. For example, the outputs assigned to the bin ranging from [0%, 10%)
should correspond to the correct class between 0% and 10% of the time.

On every stochastic pass, the network output for each pixel will be a distribution
of K probabilities, one for each class. We then calculate the average value of the T

stochastic passes, so we will have one final prediction of K probabilities for each
pixel. These probabilities are grouped in bins. After that, each of them is evaluated,
and we compute the accuracy of each bin as the number of correct predictions
divided by the number of total predictions assigned to the bin.

Figure 6.2 shows the results of the calibration of our model for the five datasets.
We can observe that the curve of every image is very close to a perfect calibration.
From these results we can infer that the result of averaging the T stochastic passes
generates a well calibrated model.

6.5 Experimental results

6.5.1 Accuracy vs uncertainty

BNNs can be used to generate a stronger, and properly calibrated model, using
the average of several stochastic passes, in the same way that ensembles of NNs
are used for the same purpose. This is important, but it does not use one of the
most interesting features of BNNs, the uncertainty information. In this experiment,
we want to explore the relationship between uncertainty and accuracy. If there is
correlation between them, once our network is already trained and tested, it will
be possible to define an uncertainty threshold in order to filter out predictions with
very high uncertainty values. As explained in the introduction, the objective is not
to artificially increase the accuracy, but to allow our model to identify scenarios
with high uncertainty, in order to avoid using their outputs when making decisions.
If the level of uncertainty exceeds the set threshold, it means that our network is
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Figure 6.2: Reliability Diagram.

not able to provide an output with the required quality. This can be due to many
reasons. A clear example would be that the input does not belong to any of the
trained categories, or is a mixture of several of them. Other more complex cases will
be discussed later.

The upper part of Figure 6.3 depicts the relationship between accuracy and uncer-
tainty for the five datasets. As we can observe in the chart, those outputs with less
than 0.1 of uncertainty achieve almost 100% of accuracy, and those with uncertainty
values between 0.3 and 0.4 still maintain an accuracy of more than 90% on every
image. Therefore, we can adjust the uncertainty threshold to obtain the precision
we need.

The distribution of pixels with respect to the uncertainty values is also very important
because setting an uncertainty threshold that optimises the accuracy will not be
useful if we discard most of the pixels. At the bottom of Figure 6.3 can be seen that
most of the pixels have an uncertainty value of less than 0.1 and the distribution
is clearly decreasing. It can also be seen that the distribution of pixels is quite
different in each dataset. In the following experiment we want to analyse this in
detail, examining each of its classes separately.
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Figure 6.3: Percentage of pixels and accuracy along uncertainty groups.

6.5.2 Class uncertainty

Figures 6.4 to 6.8 represent the uncertainty values (H) on a comfortable scale divided
into two categories: Ep, the aleatoric uncertainty that measures the uncertainty for
the input data, and H−Ep, the epistemic uncertainty that measures the uncertainty of
the model. The average (H) values are between 0.2 and 0.4, which is between 7.5%
and 14.5% of their theoretical maximum, as explained in Section 6.3, the uncertainty
range is [0, log (K)], where K is the number of classes. We can also observe that in
all the cases most of the uncertainty is due to the data. This information can be used
to determine whether the selected model should be improved, either by changing
it, or by training it for a longer period, or whether the results are constrained by
the quality of the dataset itself. In this case using a deeper model, or training the
model longer may improve the results, but only marginally, as the main source of
uncertainty is the data used.

We can also observe that, on every image, there are significant differences between
classes, meaning that some of them are more difficult to identify. That could
be caused because there are classes with similar features, mislabelled pixels, or
because the labelled pixels of a particular class are not enough to determine all
their characteristics. For example, the uncertainty of class 8 of IP is 3.5 times higher
than average, indicating that there is a very clear problem with the data in that
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Figure 6.8: SV class uncertainty.

class. In KSC several classes duplicate the average entropy. In the description of the
dataset they already warned of this problem since they have identified that certain
vegetation types have similar spectral signatures. In SV classes 7 and 14 are clearly
harder to identify for the BNN than the rest of the classes, and the same applies
to PU classes 2 and 4. This analysis also identifies which classes work particularly
well, reporting small values in the uncertainty metrics. An intensive analysis of a
particular image, their classes and characteristics is out of the scope of our study,
but here we can see how bayesian networks can help to identify problems in the
dataset itself.

6.5.3 Uncertainty maps

A very interesting use of the information given by bayesian networks is the possibility
of studying the uncertainty maps of the entire image. That give us very valuable
information about how well our labelled data represents the entire scene, i.e.,
our prediction capabilities across the entire scene. Figures 6.9 to 6.13 show, for
each dataset, an RGB representation based on the algorithm provided by [24], the
graphical representation of the averaged bayesian prediction for the entire scene,
the uncertainty map and the ground truth to compare with the labelled classes. The
colours codification for all the images is shown in Table 6.3.
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Table 6.3: Colours codification.

Classes Ranges of uncertainty

class 0 0.0 - 0.1
class 1 0.1 - 0.2
class 2 0.2 - 0.3
class 3 0.3 - 0.4
class 4 0.4 - 0.5
class 5 0.5 - 0.6
class 6 0.6 - 0.7
class 7 0.7 - 0.8
class 8 0.8 - 0.9
class 9 0.9 - 1.0

class 10 1.0 - 1.1
class 11 1.1 - 1.2
class 12 1.2 - 1.3
class 13 1.3 - 1.4
class 14 1.4 - 1.5
class 15

Figure 6.9: From top to bottom: BO RGB representation, BO ground truth, prediction and
uncertainty maps.
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Figure 6.10: From top-left to bottom-right: IP RGB representation, IP ground truth,
prediction and uncertainty maps.
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Figure 6.11: From top-left to bottom-right: KSC RGB representation, KSC ground truth,
prediction and uncertainty maps.

Figure 6.12: From left to right: PU RGB representation, PU ground truth, prediction and
uncertainty maps.
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Figure 6.13: From left to right: SV RGB representation, SV ground truth, prediction and
uncertainty maps.

One of the first things to notice looking at the uncertainty maps is that borders and
limits are well defined an differentiated from the rest of the scene. That is expected
and perfectly understandable, as this borders can imply zones with mixed classes,
due to the great size of the surface that each pixel represents, or even paths or
other adjacent non-labelled elements. This not only gives information about the
terrain, but, being an expected behaviour, serves as a proof of the capability of this
uncertainty metrics to show us whether the network is being capable of recognise
some pixels or not.

Comparing with the ground truth, we can also appreciate how some of the classes are
easier to recognise for the network than others. A clear example is shown in Figure
6.13. In SV, for most of the classes the accuracy is very high and the uncertainty
very low. However, as previously mentioned, the model has problems in identifying
class 14. As can be seen in the prediction map, it often confuses it with class 7. In
these situations the uncertainty metric warns us by increasing its value as can be
seen in the uncertainty map.

It is also interesting to analyse the results of the non-labelled regions. In some cases,
the model clearly identifies that they belong to one of the trained classes, whereas
for other regions, it provides a prediction with a high value of uncertainty, indicating
that its output is not reliable. This is a useful feature in order to use the model in
real-world applications, since it may receive inputs that do not belong to any of the
the trained categories.
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6.5.4 Mixed classes

As a proof of concept, we are going to perform two particular tests with our datasets,
the first one will be to train new networks after mixing the pixels of two classes on
each training dataset in order to measure its effect on the aleatoric uncertainty for
these two classes. The second one will be to feed the initial BNNs with data with an
increasing level of random noise and to analyse analyse its effect on the uncertainty
metrics.

For the first experiment we selected two classes with a similar number of pixels for
each image, shown in Table 6.4, and we aleatory mixed their labels in the training
set. For example in BO, half of the 269 pixels of class 4 and half of the 269 pixels
of class 5 were selected for training, but before training their labels were randomly
mixed up in such a way that half of the training pixels labelled with a 4 belonged to
class 5 and vice versa. Since the categories are completely mixed, the model will not
be able to distinguish between them. The objective of the experiment is to test if the
model identifies this problem by increasing the aleatoric uncertainty.

Table 6.4: Selected classes and number of pixels.

First class Second class

Image Class number Pixels Class number Pixels

BO 4 269 5 269
IP 2 830 5 730

KSC 8 520 11 503
PU 3 3064 7 3682
SV 1 3726 6 3579

Table 6.5 shows the values of the aleatoric uncertainty of the BNN trainings with the
mixed data (Ep mixed) compared to the same network trained with the initial data
(Ep). As it was expected, the increase in the aleatoric uncertainty of the modified
classes is very important. This behaviour tell us about how the expected entropy
values of the different classes can be used to analyse the datasets characteristics and
determine a possible lack of information for some of them.

6.5.5 Uncertainty with Noise

Another interesting application of the bayesian networks is the detection of degra-
dation in the quality of the input data, that can be generated due to an increase
in the level of noise generated during the data acquisition or the communications.
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Table 6.5: Mixed classes aleatoric uncertainty (Ep).

First class Second class All classes average

Image Ep Ep mixed Ep Ep mixed Ep Ep mixed

BO 0.23 0.81 0.53 0.89 0.19 0.28
IP 0.28 0.98 0.14 0.83 0.29 0.50

KSC 0.17 0.93 0.23 0.92 0.19 0.41
PU 0.15 0.83 0.45 1.02 0.15 0.29
SV 0.07 1.12 0.00 0.70 0.16 0.34

The idea is that if the level of noise in the inputs increases, the uncertainty metrics
should be able to detect it.

For simulating this possible situations we progressively introduced random noise on
the test bench and observe the uncertainty values. To generate the noise we added
to each feature of each pixel a random 16 bits signed integer value multiplied by
a noise factor, which we progressively incremented by 0.01 until the uncertainty
converge to high values. The normalised values of the uncertainty are shown in
Figure 6.14, where each coloured line corresponds to the average uncertainty value
normalised to the theoretical maximum uncertainty value of each dataset, which
depends on the number of categories.
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Figure 6.14: Uncertainty level, normalised to the maximum uncertainty of each dataset,
when increasing noise.

6.5 Experimental results 107



As we can observe, while we increment the noise factor the uncertainty value grows.
It is not our intention here to try to determine a measure of the noise, as this will
depend on the noise source and the sensor and image characteristics, while we just
used random generic noise added to the data. Analysing the figures, we can see that
BO, IP, KSC and SV exhibit a similar behaviour and its uncertainty grows very fast
from the beginning until it stabilises at around 0.04 noise factor. On the contrary,
Pavia University (PU) dataset seems to be much more resistant to noise than the
rest of datasets, with constant slower growth. Being robust to noise depends on
many factors such as data structure (number of observations, number of predictors,
number of classes) and model complexity [50].

The results illustrate the utility of the uncertainty metrics to verify the quality of the
input data. In the context of Remote Sensing, this is a very important feature, as
the sensors and the data received are exposed to many external variations, such as
climatic ones.

6.6 Conclusion

In this chapter we wanted to evaluate how BNN models can help us to obtain
calibrated and reliable solutions for a relevant problem: pixel classification of
hyperspectral images. To this end, we trained a simple BNN for five of the most
used hyperspectral images datasets and then explored the additional information
that BNNs provide. First, we analysed the calibration of our model, which is an
orthogonal task that can be done with any NN model, but is usually neglected. In
the case of BNNs, using several stochastic passes contributes to achieve a good
calibration. If network outputs are going to be used for decision-making, checking
that the network is well calibrated should be a mandatory step. Next, we analysed
the reliability of our models using the uncertainty metrics given by the probabilistic
nature of the BNNs. The clear correlation between accuracy and uncertainty makes
it possible to identify the outputs that provide a requested level of accuracy by
selecting an appropriate uncertainty threshold. The output of the BNNs allows the
uncertainty to be decomposed into two categories: aleatoric, caused by the data,
and epistemic, caused by the model. Analysing the epistemic uncertainty we can
verify that our model is appropriate for the given problem and is well trained, and
with the aleatoric uncertainty we can analyse the quality of the dataset themselves,
and also the quality of the data received during inference. A close exploration of the
data sets showed that these datasets have important uncertainty differences between
classes, which indicates that some of the classes are either miss-represented on the
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dataset, or they are too similar, or mislabelled. This can be helpful to identify that
some data classes need more samples, or that two very similar categories should be
unified, since their features are indistinguishable.

In order to further illustrate the added value of using BNNs, we performed two
different experiments. First, we trained new BNNs after mixing the pixels of two
classes on each training dataset. This leads to a large increase in uncertainty. Hence,
the BNN was able to identify that there were problems with these classes. Second, we
used the original BNNs and feed them with data with an increasing level of random
noise. In the experiments, we observed that uncertainty works as an excellent
measure of the input data quality during inference, giving us important information
about possible noise factors or communication interference.

After these experiments, we believe that the benefits of upgrading models from NNs
to BNNs are very clear. BNNs provide uncertainty metrics that can be used to identify
problems in their outputs, or to evaluate the quality of the training data. The tools
for designing BNNs have improved a lot in recent years, and some of the most widely
used design environments, such as Tensorflow or Pytorch, include them. On the
downside, the models used need twice as many parameters as an equivalent NN
model. This can make it difficult to train very large models. This issue is interesting,
and we would like to study it in the future, but in any case, we believe it is better to
have a smaller but very reliable model, than a very large deep model that slightly
improves the results, but does not provide uncertainty metrics.
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Conclusions 7
„

— xkcd.com
(Just that guy, you know?)

In this thesis we analysed some Machine Learning (ML) challenges, searching for
reliable ML techniques and efficient computing from the point of view of embedded
systems. For each one of them we made different contributions, all of them published
in relevant international journals.

We analysed the inference process of Multinomial Logistic Regression (MLR), Ran-
dom Forest (RF), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN) and Gradient Boosting Decision Trees (GBDT).
Thanks to this analysis we get to know better this techniques and decided to imple-
ment an accelerator for CNNs, for being the most used and accurate, and another
one for GBDTs, for presenting the best trade-off between the use of computational
and hardware resources and the obtained accuracy levels.

This analysis is published in an international journal [21].

We developed an accelerator for DNNs, specially focused on CNNs, capable of taking
advantage of the sparsity by avoiding all useless operations, i.e. with zero as one of
the operands, and managing filter compression, both for convolutional and fully-
connected layers. It keeps almost peak utilisation of arithmetic resources, even in
highly-sparse scenarios.

We also proposed a novel comparison between similar-in-area dense and sparse
architectures in order to identify in which scenarios including support for sparsity is
superior to providing a dense architecture with additional arithmetic resources. Our
results show that the benefits of exploiting sparsity are clear on 32-bit arithmetic,
whereas on 8-bit it is hard to profitably exploit sparsity given the sparsity of current
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state-of-the-art CNNs. While, for 16-bit arithmetic, adding support for sparsity
improves energy efficiency as long as the useful operations are under 50%, and also
performance, when the useful operations are under 25%.

The design and implementation of this accelerator, along with the similar-in-area
comparison proposal have been published in an international journal [22] and the
correspondent code is available in a public repository [44].

We developed another accelerator for GBDTs achieving 2x performance while con-
suming 72x less energy compared to the execution of LightGBM in a high perfor-
mance CPU. Compared to an embedded system CPU, our design reaches a 30x
performance improvement while maintaining 23x less energy consumption during
the execution.

The design and implementation of this accelerator has been published in [16], and
the codes of the accelerator are available in a public repository [15].

We carried out an extensive analysis of the benefits of using the uncertainty informa-
tion given by bayesian networks in the context of hyperspectral images classification.
Thanks to this analysis we found that bayesian networks may help us to identify
problems in the outputs, or to evaluate the quality of the training datasets. Even
more, they also allow us to carry out inference in very complex contexts where
some of the received inputs may not be related to the characteristics of the training
dataset.

The results of this study have been published in [12], and the codes to reproduce all
the experiments are available in a public repository [13].

7.0.1 Future Work

Our last analysis was focused on bayesian neural networks (BNNs) in the context of
hyperspectral images (HI) classification. It shows how BNNs can be very useful to
address some of the HI classification challenges. Taking that on account, our future
work, already in process, will consist on the development of an specific accelerator
for BNNs.

From this study we extract at least two possible future areas of interest:

• Generate a bayesian accelerator, capable of generate the stochastic weights
on-the-fly during inference.
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• Work around the idea of bayesian trees and the possibility of adapting our
GBDTs accelerator to accept bayesian ones.

7.1 Conclusiones (spanish)

En esta tesis hemos analizado algunos retos del Machine Learning (ML), buscando
técnicas de ML fiables, así como métodos eficientes de calcularlas desde el punto de
vista de sistemas empotrados. Para cada uno de ellos hemos realizado diferentes
aportaciones, todas ellas publicadas en revistas de impacto internacional.

Hemos analizado el proceso de inferencia de técnicas como Multinomial Logistic
Regression (MLR), Random Forest (RF), Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN) y Gradient Boosting Decision
Trees (GBDT). Gracias a este análisis hemos podido caracterizar estas técnicas
y decidido implementar un acelerador para CNNs, por ser las más utilizadas y
precisas, y otro para GBDTs, por presentar el mejor trade-off entre el uso de recursos
computacionales y de hardware y los niveles de accuracy obtenidos.

Este análisis está publicado en una revista interncional [21].

Hemos desarrollado un acelerador para DNNs, especialmente enfocado a las CNNs,
capaz de aprovechar la sparsity evitando todas las operaciones inútiles, es decir,
con cero como uno de los operandos, y gestionando la compresión de los filtros,
tanto para las capas convolucionales como para las fully-connected. Mantiene una
utilización casi máxima de los recursos aritméticos, incluso en escenarios de alta
dispersión de datos.

También hemos propuesto un novedoso método de comparación entre arquitecturas
densas y dispersas que se preocupa de mantener la similitud en área, con el fin de
identificar en qué escenarios incluir soporte para la dispersión de datos es preferible
a dotar a una arquitectura densa de recursos aritméticos adicionales. Nuestros
resultados muestran que los beneficios de explotar la dispersión de datos son claros
en la aritmética de 32 bits, mientras que en la de 8 bits es difícil explotarla de forma
rentable dada la dispersión de las CNNs actuales. Mientras que, para la aritmética
de 16 bits, añadir soporte para dispersión de datos mejora la eficiencia energética
siempre que las operaciones útiles sean inferiores al 50%, y también el rendimiento,
cuando las operaciones útiles son inferiores al 25%.
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El diseño y la implementación de este acelerador, junto con la propuesta de com-
paración similar-en-área han sido publicados en una revista internacional [22] y el
código correspondiente está disponible en un repositorio público [44].

Desarrollamos otro acelerador para GBDTs logrando el doble de rendimiento y
consumiendo 72 veces menos energía en comparación con la ejecución de LightGBM
en una CPU de alto rendimiento. En comparación con una CPU de un sistema
empotrado, nuestro diseño alcanza una mejora de rendimiento de 30x manteniendo
un consumo de energía 23x menor durante la ejecución.

El diseño y la implementación de este acelerador también se ha publicado en [16], y
los códigos del acelerador están disponibles en un repositorio público [15].

Hemos llevado a cabo un extenso análisis de las ventajas de utilizar la información
de la incertidumbre dada por las redes bayesianas en el contexto de la clasificación
de imágenes hiperespectrales. Gracias a este análisis encontramos que las redes
bayesianas pueden ayudarnos a identificar problemas en las salidas, o a evaluar la
calidad de los conjuntos de datos de entrenamiento. Es más, también nos permiten
realizar inferencia en contextos muy complejos donde algunas de las entradas
recibidas pueden no estar relacionadas con las características del conjunto de datos
de entrenamiento.

Los resultados de este estudio han sido publicados en [12], y los códigos para
reproducir todos los experimentos están disponibles en un repositorio público [13].

7.1.1 Trabajo Futuro

Nuestro último análisis se centró en las redes neuronales bayesianas (BNNs) en el
contexto de la clasificación de imágenes hiperespectrales (HI). Muestra cómo las
BNN pueden ser muy útiles para abordar algunos de los retos de la clasificación de
HI. Teniendo en cuenta esto, nuestro trabajo futuro, ya en proceso, consistirá en el
desarrollo de un acelerador específico para BNNs.

De este estudio extraemos al menos dos posibles áreas futuras de interés:

• Diseñar un acelerador bayesiano, capaz de generar los pesos estocásticos al
vuelo durante la inferencia.

• Trabajar en torno a la idea de los árboles bayesianos y la posibilidad de adaptar
nuestro acelerador de GBDTs para aceptar árboles bayesianos.
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