000124348 001__ 124348
000124348 005__ 20230914083543.0
000124348 0247_ $$2doi$$a10.1142/S1793557122502035
000124348 0248_ $$2sideral$$a131384
000124348 037__ $$aART-2022-131384
000124348 041__ $$aeng
000124348 100__ $$aIslam, Md. N.
000124348 245__ $$aFractal Sobolev systems of functions associated with orthonormal systems of functions
000124348 260__ $$c2022
000124348 5060_ $$aAccess copy available to the general public$$fUnrestricted
000124348 5203_ $$aThis paper introduces the α-fractal Sobolev system of functions corresponding to Sobolev orthonormal system of functions. An approximation-related result similar to Weierstrass theorem is derived. It is shown that the set of α-fractal versions of Sobolev sums is dense and complete in the weighted Sobolev space Wr,2ρ(I). A Schauder basis and a Riesz basis of fractal type for the space Wr,2ρ(I) are found. The Fourier–Sobolev expansion of an α-fractal function fα corresponding to a certain set of interpolation points is presented. Moreover, some results on convergence of Fourier–Sobolev expansion of fα with respect to uniform norm and Sobolev norm are established.
000124348 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000124348 592__ $$a0.321$$b2022
000124348 593__ $$aMathematics (miscellaneous)$$c2022$$dQ3
000124348 594__ $$a1.3$$b2022
000124348 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000124348 700__ $$aKaish, I.
000124348 700__ $$aAkhtar, Md. N.
000124348 700__ $$0(orcid)0000-0003-4847-0493$$aNavascués, M. A.$$uUniversidad de Zaragoza
000124348 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000124348 773__ $$g15, 11 (2022)$$tAsian-European Journal of Mathematics$$x1793-5571
000124348 8564_ $$s341064$$uhttps://zaguan.unizar.es/record/124348/files/texto_completo.pdf$$yPostprint
000124348 8564_ $$s1661517$$uhttps://zaguan.unizar.es/record/124348/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000124348 909CO $$ooai:zaguan.unizar.es:124348$$particulos$$pdriver
000124348 951__ $$a2023-09-13-13:23:17
000124348 980__ $$aARTICLE