000124411 001__ 124411
000124411 005__ 20240705134146.0
000124411 0247_ $$2doi$$a10.1021/acs.nanolett.2c03593
000124411 0248_ $$2sideral$$a132834
000124411 037__ $$aART-2023-132834
000124411 041__ $$aeng
000124411 100__ $$aRubio-Ruiz, Belén
000124411 245__ $$aIn Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation
000124411 260__ $$c2023
000124411 5060_ $$aAccess copy available to the general public$$fUnrestricted
000124411 5203_ $$aBioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells
000124411 536__ $$9info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742684-CADENCE$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-099019-A-I00
000124411 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000124411 592__ $$a3.411$$b2023
000124411 593__ $$aBioengineering$$c2023$$dQ1
000124411 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000124411 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ1
000124411 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000124411 593__ $$aMechanical Engineering$$c2023$$dQ1
000124411 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000124411 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000124411 700__ $$aPérez-López, Ana M.
000124411 700__ $$0(orcid)0000-0002-4678-7465$$aUson, Laura
000124411 700__ $$aOrtega-Liebana, M. Carmen
000124411 700__ $$aValero, Teresa
000124411 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, Manuel$$uUniversidad de Zaragoza
000124411 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000124411 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Victor$$uUniversidad de Zaragoza
000124411 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000124411 700__ $$aUnciti-Broceta, Asier
000124411 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000124411 773__ $$g23, 3 (2023), 804-811$$pNano lett.$$tNano Letters$$x1530-6984
000124411 8564_ $$s6774879$$uhttps://zaguan.unizar.es/record/124411/files/texto_completo.pdf$$yVersión publicada
000124411 8564_ $$s3120826$$uhttps://zaguan.unizar.es/record/124411/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000124411 909CO $$ooai:zaguan.unizar.es:124411$$particulos$$pdriver
000124411 951__ $$a2024-07-05-12:47:21
000124411 980__ $$aARTICLE