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Abstract
Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences
play a capital role in the search for accurate methods able to provide explanations for past events and rigorous forecasts
of future situations. We propose a thermodynamics-informed active learning strategy for fluid perception and reasoning
from observations. As a model problem, we take the sloshing phenomena of different fluids contained in a glass. Starting
from full-field and high-resolution synthetic data for a particular fluid, we develop a method for the tracking (perception)
and simulation (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera. This
approach demonstrates the importance of physics and knowledge not only in data-driven (gray-box) modeling but also in
real-physics adaptation in low-data regimes and partial observations of the dynamics. The presented method is extensible to
other domains such as the development of cognitive digital twins able to learn from observation of phenomena for which they
have not been trained explicitly.

Keywords Physics-informed incremental learning · GENERIC · Liquid simulation · Dynamic data driven application ·
Hybrid twins

1 Introduction

The research community has witnessed great advances in
deep learning and artificial intelligence (AI) with respect to
the imitation of human-like skills [33,43]. However, despite
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experiencing great growth, work is still in transition to the
development of the so-called Artificial General Intelligence
(AGI) [15]. In this next step of AI, we approach more anthro-
pomorphic skills, independence, and high-level reasoning
for decision making [48] and behavior learning [2,32]. One
of the requirements to cross the boundary between AI and
AGI is to improve the development of sensory and physics
perception in machine systems. Physics perception refers to
the interpretation and reasoning skills that interpret sensed
data to make predictions. These technologies play an impor-
tant role in robotics, especially in planning and controlling
tasks [43]. To develop systems capable of reasoning about
their surroundings, we need interactive real-time simulators
of real-world physics, constructed by judicious mixing of
theory, data, and computation [33].

In some sense, these systems resemble digital twins. How-
ever, these new systems, capable of perceiving and reasoning
about physics, are more aligned with the concept of cogni-
tive or hybrid digital twin [8]. Cognitive, or hybrid, twins
are enriched with new measurements to correct the predic-
tions that result from comparing the output of the simulation
with the ground truth to optimize the accuracy of the solu-
tion in new scenarios that the user does not control. This

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02279-x&domain=pdf
http://orcid.org/0000-0003-1017-4381


578 Computational Mechanics (2023) 72:577–591

framework arises as a solution to complement current tech-
niques in the so-called smart data paradigm, to profit from
data and perform the desired update, adaptation, and knowl-
edge enrichment promoting the efficient use of data.

This can be seen, alternatively, as a particular case
of Dynamic Data Driven Applications Systems (DDDAS)
[10,11]. In this context, data is introduced dynamically in a
continuous learning loop to improve the performance of the
obtained forecasting. Data-driven physics-informed simula-
tors reach a higher generalization than unconstrained models
or purely theoretical approximations. However, there are still
difficulties in matching the model output to an evolving real
physical environment [3]. For this reason, the learned simu-
lator of real physics can be formulated as a hybrid twin, or
more generally, a DDDAS, to adapt to new scenarios through
continuous observation and measurement of labeled data.

Blakseth et al. propose the system CoSTA [6]. They
develop a hybrid strategy to complement a physics-based
model with a second data-driven term that will be in charge
of learning the corrections. In [36], the authors proposed
a hybrid twin of a hyperelastic beam with moving loads,
displayed by means of augmented reality. In the field of per-
ception and reasoning, Blakseth et al. [6] exploits DDDAs
in scene understanding in unknown scenarios. Schenck and
Fox [44,45] propose a system for physical reasoning about
liquids that is corrected from observations without physical
priors.

In this work, we take a sloshing fluid in a glass as the
model problem. Despite its apparent simplicity, the fluid is
highly deformable (something always difficult for percep-
tion systems), highly nonlinear, and dissipative (conservative
problems have been demonstrated to be much easier to
learn). We develop a method for the perception (tracking
of the free surface of the fluid) and reasoning (providing
the user with full-field information—velocity, stress, ...—
predictions) about the physical state of a sloshing fluid
instead of performing reconstruction and estimation of the
liquid dynamics on based on images without physical knowl-
edge [40].

Instead of developing a general integrator to perform
physics simulation (see [1,5,42,47], for instance), ourmethod
constructs on the fly a learned simulator. This means that
we learn the simulator to perform predictions based on the
current state of the system. This learned simulator is ini-
tially built with synthetic full-field data from one single
fluid. At runtime, when faced with video streams of a pre-
viously unseen surrounding reality, the simulator makes use
of an active learning strategy in a thermodynamics-informed
setting to correct systematic deviations of the observed real-
ity from its predictions. Our approach ensures compliance
to the first principles—conservation of energy, nonnegative
entropy production—of the resulting simulations, even if
they are constructed from partial observations of the real-

ity (in our case, the observation of the free surface of the
fluid).

Both the simulator originally learned and the active
learning strategy are based on the use of the General Equa-
tion for Non-Equilibrium Reversible-Irreversible Coupling
(GENERIC) formalism as an inductive bias to guide training
according to the laws of thermodynamics [21]. Furthermore,
the imposition of inductive biases could be advantageous in
the correction process to reduce error bounds and adapt to
new scenarios more efficiently [16]. The physical knowl-
edge already gained in the source model is preserved for the
sake of the physical interpretability of the results and the
success of the adaptation. The proposed thermodynamically
informed scheme will adapt to the inherent dissipative nature
of real phenomena. Although the source algorithm is trained
with nonmeasurable state variables required to capture the
thermodynamical evolution of the system, the model can be
corrected from the sole observation of the free surface of the
new liquid if biased deviations are noticed.

As a result, we obtain a corrected, augmented intelligence
system that performs the integration of the fluid dynamics
in real-time from the evaluation of the free surface. The out-
put is the prediction of the future states of the fluid as a
result of its integration in time. This approach is coupledwith
a computer vision system to build a closed-loop algorithm
that learns liquid slosh from real measurements. The adapta-
tion is performed in an off-line phase to perform correction
with online acquired data. After the correction, the simula-
tion of the dynamics is accomplished in real-time, obtaining
improved predictions of the phenomena taking place in the
physical world.

The development of this method revolves around the con-
vergence of the aforementionedDDDAS, active learning, and
transfer learning strategies. Transfer learning profits from a
model already trained to apply the gained knowledge to new
tasks (in our case, previously unseen fluids). The goal is not to
learn a new simulator without forgetting the basic features of
fluid dynamics to compensate for the lack of measurements.
This technique has also been considered in the a posteriori
correction of models such as manifold learning in reduced
order modeling of fluids [34] and dynamical optimization
[19,22,30].

We propose a correction system that adapts to new, pre-
viously unseen, liquids to ensure an accurate simulation of
their behavior. We train an initial model for glycerine. The
algorithm, which is initially trained on full-field data, will
be adapted to perform a physically sound integration with
evaluations of the position of the free surface. Then, this
system will make use of transfer learning to adapt to new
liquids in scarce data regimes from the evaluations of the
free surface of these new liquids without forgetting the ther-
modynamical insights already acquired in the first training.
This work is structured as follows. Section 2 presents the
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formulation of the problem. Section 3 exposes the basic
concepts of the thermodynamic formulation used in the
algorithm. The source algorithm is presented in Section 4.
Section 5 is dedicated to explaining the method in detail,
from data acquisition to the correction algorithm. Section 6
shows the results of the method applied in real and com-
putational settings. Finally, Sect. 7 summarizes the main
results and conclusions observed in the application of the
method.

2 Problem formulation

We describe the evolution of a complex physical system as
a function of a set of state variables sn that fully defines
its thermodynamical state. Both the initial simulator and the
correction algorithmuse theGENERIC equation as an induc-
tive bias [21]. GENERIC proposes amesoscopic formulation
of dynamical systems to describe their behavior in terms
of the evolution of energy and entropy in the system. This
approximation for dynamical systems can be discretized in
time and its constituting terms can thus be inferred from the
data [17]. The so-called Structure-Preserving Neural Net-
works (SPNNs) [24,25] are deep learning architectures that
employ theGENERIC formalism as an inductive bias to learn
dynamical patterns from data and perform simulations with
physically meaningful guarantees.

Our method constructs in a first step a learned simula-
tor trained offline with synthetic data from computational
simulations [37]. This level of description is consistent with
theories that have shown that human reasoning about fluid
physics can be understood as a learned simulator operat-
ing at a coarse-grained level of description [4]. For this first
simulator, we employ data from the simulation of full-field
and high-fidelity smoothed particle hydrodynamics (SPH)
simulations [35] of a source fluid—in our case, glycerine
(viscosity μ = 0.950Ns/m2 and density ρ = 1261kg/m3)
[20]. We apply different initial velocities to the glass to trig-
ger the slosh and build the training database. We employ the
same glass and volume of liquid for all experiments because
we are interested in adapting to different materials, but initial
training and correction could be extended to new shapes and
volumes.

Figure 1 describes the architecture of the original simula-
tor. The final algorithm consists of three networks. First, we
off-line train an autoencoder to find a low-dimensional man-
ifold of the dynamics under study and run simulations under
stringent real-time constraints [18].In this way, we compress
the information of the initial dataset, which consists of the
position, velocity, energy, and stress tensor of all the particles
of the SPH discretization. This knowledge is transferred to
two new networks. On the one hand, a network is dedicated
to learning the physics of the problem. For this purpose, we

train the time integrator of the evolution of the dynamics in
the latent manifold based on structure-preservingNN.On the
other hand, our learned simulator is faced with online mea-
surements performed by a commodity camera. During this
online phase, we only have access to the position of the free
surface of the fluid.We substitute the encoderwith a recurrent
neural network to connect these partial measurements of the
free surface of the liquid to the already unveiled latent man-
ifold of the dynamics. The assembly of these three networks
performs a simulation in the loop. The recurrent neural net-
work is needed continuously to handle constant input from
the camera.

However, this network is not accurate if we evaluate new
fluids. In addition, it is unfeasible to learn a general simulator
for any type of fluid that can be encountered in real life.
We propose a correction algorithm that adapts to these new
materials. Thenetworkwill be corrected, but at the same time,
it will preserve the knowledge gained in the previous training
about fluid dynamics. This already acquired knowledge about
thermodynamical insights of the fluid will be preserved to
compensate for the limitations of the observations. Hence,
our goal is not to enrich the model to be general to all fluids
but to adapt to the new flow observed and profit from the
proposed thermodynamical framework.

3 Physics-constrained learning

Once data are captured, either in computational, synthetic
form or as a recording of the physical reality, our aim is
to identify the state of the observed scene (perception) in
terms of observable and non-observable variables—such as
stresses, for instance—and to predict future states of the
system (reasoning) by learned simulation. In the last years,
a growing interest has been noticed in the incorporation
of known physics in the form of inductive biases to this
learning procedure. These representations will be essential
for the generalization and interpretability of the method.
Of particular importance, when some form of conserva-
tion (related to symmetries through Noether’s theorem) is
present, this can be imposed on the learning procedure by
invoking Lagrangian or Hamiltonian frameworks. Despite
their success,manydynamical systems are also compromised
by dissipative effects, which implies that this framework of
techniques is no longer valid for application. This premise
also matches the dissipative nature of the real world and
the entropy that arises from the lack of information. Fluid
dynamics, as well as other dissipative dynamical systems,
has a so-called metriplectic structure [28]. This formalism
is suitable for cases in which the conservative Hamilto-
nian description of a dynamical system includes unresolved
degrees of freedom that are not included in mesoscopic
descriptions and that introduce dissipation by the fluctuation-
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Fig. 1 Initial learned simulator. It is composed of three parts. We first
train an off-line autoencoder from synthetic full-field data sn to find a
low-dimensional manifold of the dynamics under study. (Left) There
we train a structure-preserving network to determine its constituents:
the symplectic matrix L, the dissipation matrix M, an approximation
to the gradient of energy, DE , and an approximation to the gradient
of entropy, DS. (Right) Since we only have access to the free surface
of the fluid (pink entries zn in the input vectors sn), a recurrent neural
network exploits knowledge in sequences of data to find the embedding

to the low-dimensional manifold discovered off-line from full-field data
(transfer learning). The Structure-Preserving Neural Network (SPNN)
propagates in time the evolution of the dynamics in themanifold, fulfill-
ing the principles of thermodynamics as a major requirement. Finally,
the autoencoder decoder projects the new state of the fluid in the world
coordinates to recover the volume of the liquid and other quantities of
interest (v velocity, e energy, σ normal stress, τ shear stress, grouped
in the full field vector sn+1), whose knowledge is used to integrate in
the latent manifold

dissipation theorem [29]. Consider an initial microscale
description at the molecular dynamics scale that can be
expressed in terms of a purely conservative formulation. The
degrees of freedom, and therefore knowledge, that we omit
growing from the micro to the meso and macro scales intro-
duce dissipation that is included in the metric part of the
formulation.

This structure-preserving formulation guarantees the con-
servation of critical quantities (mass and momentum) and
the thermodynamical admissibility of the evolution of the
system under study. GENERIC is the thermodynamic frame-
work chosen to derive a structure-preserving time integrator
to describe the time evolution of a system regarding the
evolution of its energy and entropy functionals [21]. As a
consequence, this framework is also valid for dynamical
systems that go beyond equilibrium in a thermodynamical
context. The GENERIC formulation is usually written as fol-
lows:

ds
dt

= L∇E + M∇S.

Here s denotes a set of independent state variables that
fully describe the thermodynamical state of the fluid. With-
out that information, we lack a GENERIC structure. Fluid
dynamics is fully described in terms of the position and
momentum of the liquid particles, the internal energy, and,
in the case of learning more complex fluids, the extra-
stress tensor related to their microscopic evolution [14].
E(s) and S(s) are the global energy and entropy of the
system. L(s) is the Poisson matrix. It is skew-symmetric
and, together with the energy gradient ∇E , character-
izes the reversible part of the dynamics studied. M(s) is
the friction matrix, which describes the dissipative irre-
versible characteristics of the system in conjunction with
the entropy gradient ∇S. M is symmetric positive semidef-
inite.
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On top of the formulation and matrix descriptions men-
tioned above, we must also ensure the fulfillment of the
so-called degeneracy conditions:

L
∂S

∂s
= M

∂E

∂s
= 0,

that guarantee that the energy E is not involved in the pro-
duction of entropy of the dissipative part of the dynamics,
and that entropy S does not contribute to the conservation of
energy.

The GENERIC equation can be discretized in time by a
forward Euler scheme formulated in time increments�t , and
the resulting formulation is subsequently inferred from the
data:

sn+1 = sn + �t

(
Ln

DEn

Dsn
+ Mn

DSn
Dsn

)
,

subjected to the degeneracy conditions:

Ln
DSn
Dsn

= 0, Mn
DEn

Dsn
= 0, (1)

ensuring the thermodynamical consistency of the resulting
model.

An explicit time integration algorithm could be jeopar-
dized by a selection of an inappropriate time step. In our
work, the maximum time step is constrained by the data
acquisition and real-time representation frequency of the
camera. The camera interacts with reality at 60 Hz, which
corresponds to a time step �t = 0.017 seconds. This time
step is sufficiently small to capture the evolution of the slosh
and ensure the stability of the time integration. In addi-
tion, synthetic data was obtained using a stable time step.
Hence, the neural network is trained over a stable dynamical
evolution. In any case, Romero and coworkers have deeply
studied the stability of time integration schemes based on the
GENERIC formalism. Their conclusion is that GENERIC-
based integrators are robust and stable even for large time
steps, see [39].

Structure-preserving neural networks (SPNN) embed
GENERIC in a deep learning architecture to reveal the value
of themain elements of equation [24,25,31,49]. In this frame-
work, discretized gradients of energy and entropy are targets
of network optimization. Additionally, although L andM are
generally known in the literature, they are unknown in the
low-dimensional manifold where we simulate the dynamics.
Therefore, the network learns L,M, DEn

Dsn
, DSn
Dsn

from the data.
This is represented in Fig. 1.

4 Initial learned simulator

The initial glycerine simulator is trained with synthetic
data coming from the simulation of a fluid discretized into

particles based on the smoothed particle hydrodynamics
technique. This coarse level of description is appropriate
to have sufficient information about the dynamics to train
learned simulators without compromising time. The state of
the fluid is described by a set of state variables (position,
velocity, energy, and stress tensors of each particle) evalu-
ated in each particle of the discretization.

Due to the complexity of the problem, the simulator
involves three different steps, and transfer learning is applied
to carry the knowledge from simpler architectures to more
elaborate ones. First, we train a fully connected autoencoder
to embed the data in a low-dimensional manifold where we
will perform the integration in time. It consists of two parts:
the encoder and the decoder. The encoder learns a mapping
φ : R

D → R
d to a low-dimensional manifold where the

dynamics are embedded. The decoder ψ : Rd → R
D has

the same structure as the encoder, but is inverted, to project
the state vectors of the latent space to the full order space.
Not only will the computational cost for training the integra-
tor be reduced, but the pre-processing will also facilitate the
learning process. By applying model order reduction, we are
already triggering the emergence of the patterns and encour-
aging the network to learn the main features of data. In spite
of the correlations between the state variables, one single
fully connected autoencoder resulted inefficient to learn the
features of all the state variables given the size of the problem.
Instead, we train five autoencoders in parallel, one per each
group of the state variables already mentioned, to capture the
intrinsic insights of each of them.

The final latent manifold results from the merging of
the latent subspaces of each autoencoder. The bottleneck
of each autoencoder is truncated to reduce the dimension-
ality by forcing sparsity on its learning. Thus, for a given
bottleneck, only a few latent values have a similar order
of magnitude greater than zero. The decoder mirrors the
encoder. The resulting latent manifold has 13 dimensions.
The decoder is part of the newmodel, but it is not considered
in the correction. Sparsity is imposed with a L1 regularizer
that penalizes activation in the bottleneck to enforce a higher
reduction. This penalization complements the mean squared
error reconstruction loss of the solution of the autoencoder:

LAE = 1

N

N∑
i=1

(si − ŝi )2 + λreg

N∑
i=1

|xi |.

Sparsity loss is weighted by a lambda factor to control its
influence on the learning process. In the source model, the
weight factor is defined within the range λreg = 0.001 −
0.005. As we train an autoencoder for each group of state
variables, it is chosen according to each case.

The full-field state of the fluid cannot be evaluated. That
is, we cannot measure with a camera the internal energy
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of points of the fluid; we train a mapping from the avail-
able information of the free surface to the latent manifold in
the second step of the procedure. Therefore, we transfer the
information from the previously obtained latentmanifold to a
recurrent neural network to substitute the encoder. The recur-
rent neural network exploits the analysis of sequences of data
to distill insights about the dynamics that enable one to find
a mapping between the observations and the latent manifold,
which contains complete information about the embedded
dynamics. We employ a gated recurrent unit (GRU) struc-
ture [9]. This architecture will be trained with the decoder
frozen. We need a sequence of at least 16 snapshots to cor-
relate the measurements of the free surface with the latent
manifold. The net consists of three GRU hidden layers of
26 neurons, and one last fully connected feedforward layer
to connect the last GRU layer to the latent space of size 13.
The sequence used contains the snapshot at time t , and the
15 previous snapshots. The network learns a mapping from
each snapshot sequence to the representation of the state of
the snapshot at time t in the latent manifold. We evaluate
the precision of the mapping by measuring the discrepancy
between the output of the GRU, the predicted reduced order
representation, and the ground truth latent vector:

LGRU = 1

Nsnap

Nsnap∑
n=1

(xn − x̂n)2.

The architecture designed for the GRU was also tested
with vanilla RNN and LSTM networks. Although ordinary
RNN did not succeed in finding a mapping, LSTM reached
a performance similar to that of GRU. However, we decided
to use the GRU for simplicity.

Finally, the structure-preserving neural network is trained
for time integration of the dynamics based on the reconstruc-
tion accuracy of the solution in the latent manifold, as well as
the compliance of the degeneracy conditions. This network
is composed of 13 hidden layers of size 195 with ReLU acti-
vations but for the first and last layers, which have linear
activations. The loss LSPNN used for the training includes
the mean squared error reconstruction error of the predic-
tion Lmse

SPNN and the loss related to the degeneracy conditions

Ldeg
SPNN. The reconstruction error is weighted by a λ factor

to prioritize this term. In this model, λSPNN = 103. In other
words,

Lmse
SPNN = 1

Nsnap

Nsnap∑
n=1

(xn+1 − x̂n+1)
2,

Ldeg
SPNN = 1

Nsnap

Nsnap∑
i=1

(LnDSn)2 + (MnDEn)2,

LSPNN = λmse
SPNNLmse

SPNN + LSPNN
deg .

The parameters used for reproducibility are shown in
Table 1.

5 Method

5.1 Data acquisition

5.1.1 Computational datasets

First, we perform a set of purely computational experi-
ments. This allows us to obtain accurate error measurements
against high-fidelity simulations that are considered ground
truth. Synthetic data are obtained fromcomputational simula-
tions using the softwareAbaqus (Dassault Systèmes, Simulia
Corp).

The method was tested against a total of ten differ-
ent liquids presenting both Newtonian and non-Newtonian
behavior. We initially train a learned glycerin simulator [20].
With this simulator, we try to understand the behavior of
water and melted butter, for instance, both described as
Newtonian fluids. Although blood is sometimes considered
Newtonian, it has been described as non-Newtonian [46]. It
is considered to be shear thinning, becoming less viscous
under the stress applied. The general description of the rhe-
ology and change of fluid properties is made based on the
Herschel–Bulkley model [26]

τ (t) = kγ n(t) + τ 0,

Table 1 Training parameters of
the source model

lr wd Hidden layers Input size Output size λ Epochs

Autoencoder q 1e−4 1e−6 N = 2 of 120 neurons 6402 20 2000 10,000

Autoencoder v 1e−4 1e−5 N = 4 of 200 neurons 6402 20 2000 10,000

Autoencoder e 1e−4 1e−5 N = 3 of 40 neurons 2134 10 2000 10,000

Autoencoder σ 1e−4 1e−5 N = 3 of 200 neurons 2134 20 2000 10,000

Autoencoder τ 1e−3 1e−6 N = 3 of 200 neurons 6402 20 2000 10,000

SPNN 1e−3 1e−5 N = 13 of 195 neurons 13 195 1000 5000

GRU 1e−3 1e−5 3 GRU × 26 + 1 FC × 13 16 × 42 13 – 10,000
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where τ is the shear stress, τ 0 the yield stress, γ the shear
rate, k the consistency index, and n the flow index. For shear-
thinning fluids, τ 0 is greater than 0, and the flow index is
n > 1. In the proposed case of computational blood, the com-
putational liquid is defined by the constants k = 0.017Pas,
n = 0.708, and τ 0 = 0.

These data sets are publicly available at https://github.
com/beatrizmoya/sloshingfluids/.

5.1.2 Real world dataset

We then employed a stereo camera for the acquisition of data
of the free surface of real-world liquids. Although there are
known applications for sophisticated tools such as PIV cam-
eras [7,38],we assume that one only has access to the position
of the free surface with an ordinary stereo camera. The cam-
era chosen is a Real-Sense D435 https://www.intelrealsense.
com/depth-camera-d435/.We deliberately omit the possibil-
ity of using PIV systems, for instance, to force our system to
work in a partial data regime, i.e. without any velocity data
other than the reconstruction of the free surface.

In a camera model, the correlation of pixels in a picture,
or frame, with the point they represent in the real world pw is
given by extrinsic and intrinsic parameters. Extrinsic parame-
ters, rotation R, and translation t matrices define the position
and orientation of the camera referring to the world frame. It
outputs the relative position of the camera in the real world.
On the other hand, the intrinsic parameters K map the pixel
coordinates to the camera coordinates. The camera provides
the intrinsic and extrinsic parameters to convert the pixel
coordinates on the image directly to three-dimensional coor-
dinates they represent in the real world,

⎡
⎣u

v

1

⎤
⎦ =

⎡
⎣ fx 0 cx
0 fy cy
0 0 1

⎤
⎦

⎡
⎣r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

⎤
⎦

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ ,

or, in brief,

x̃s = K [R|t] pw.

The camera has stereoscopic depth technology to perceive
the depth field of every pixel in the frame. With two lenses,
triangulation [23] gives the 3D position of the points.

Despite the accuracy of the camera, fine-tuningwas neces-
sary due to the lack of texture of the glass and liquids. These
conditions difficult the tracking points, resulting in errors.
The application of filters (hole-filling and edge-preserving
filters) improves the performanceof depth estimation. In opti-
mal conditions, the error in depth reconstruction is lower than
2% in a 0–2m range. After the fine-tuning of the camera, in
the threshold where we locate the glass for the recording,
the camera noise in depth estimation is of the order of two
millimeters.

Given a sufficient quality of depth resolution, we perform
the observation and tracking of the free surface. We extract
the profile of the free surface from binary (black and white)
images. Under appropriate adjustment, this representation
shows a black-to-white gradient between the liquid and the
environment, see Fig. 2. These color changes enable tracking
the free surface. We extract the depth maps of the pixels of
the aforementioned boundary. No further smoothing of the
data is performed. Real-time tracking is performed with a

Fig. 2 Representation of surface tracking. Each color frame is con-
verted to a binary frame in which the surface is detected (shown in red
in the corresponding color frame). The depth map is built upon these

points. For transparent liquids, such as the glass of water shown in
the picture, the depth map is of lower quality, resulting in incomplete
detection of the surface
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camera resolution of 480 × 640 pixels.
From the acquired map, we project the pixel coordinates

of the free surface to real-world coordinates and select their
horizontal and vertical coordinates, or 2D real coordinates.
Given the density of points detected on the free surface, we
perform a simple linear interpolation to output the vertical
displacement at equally spaced points of the free surface.
This state information of the free surface is assembled in
sequences to feed the source algorithm.

The data set of the free surface measurements performed
on real liquids has been made publicly available: https://
github.com/beatrizmoya/RLfluidperception

5.2 Correction algorithm

As already stated, our system is initially trained to perceive
and reason about glycerine. However, it then faces different,
previously unseen fluids. To provide useful and credible pre-
dictions for these new fluids, an active learning strategy is
employed.

The sloshing dynamics is described by its dynamical state
sn ∈ S, where S represents the state space in which the
dynamics are embedded. From that state sn , we have access
to a partial observation zn ⊂ sn . If sn refers to the fully
dynamical description of the slosh, zn represents the degrees
of freedom observed on the free surface. Free surface detec-
tion and tracking are performed employing computer vision
techniques. The slosh evolves over time, and the integra-
tor provides results for future states st+1, not only for the
observed states zt+1. For its calculation, a fully connected
neural network based on the GENERIC formalism estimates
the parameters of the equation. The ultimate objective of this
work is to correct the existingmodel so that we obtain a satis-
factory estimate of the GENERIC parameters, which results
in an accurate reconstruction of the motion of the liquid.

The loss used for adaptation is related to the accuracy
of the free surface motion reconstruction. We choose an L2

norm for this purpose. We also seek solutions that fulfill the
degeneracy conditions established in the GENERIC formal-
ism. As a result, the loss is composed of these two terms,
adequately weighted to control the influence of each term on
the optimization of the network. The degeneracy condition
is thus considered a soft constraint:

Lcorrection = λ
1

N

∑
N

∥∥zn+1 − ẑn+1
∥∥2

+ 1

N

∑
N

(∥∥∥∥Ln DEn

Dsn

∥∥∥∥
2

+
∥∥∥∥Mn

DSn
Dsn

∥∥∥∥
2
)

. (2)

In each correction loop, the algorithm is fed with N data
samples. With them, the network parameters are updated.

This process is repeated until we reach convergence in the
adaptation process.

Algorithm 1 Update pseudocode
Require: Free surface information zn ∈ Z as a subset of the full state
sn ∈ S, and the source model πθ

Ensure: Next dynamical states in time sn+1
for Iterations until convergence do

for n=1 to N sequences do
Encoder xn ← φGRU(zn);
Compute forward propagation and determine action an ←

πθ (xn), with an = [Ln,Mn,DEn,DSn];
Determine next integration step x̂n+1 ← �t(LnDEn +

MnDSn) + xn ;
Decoder ŝn+1 ← ψ(̂xn+1);

end for
Extract free surface of ŝn+1;
Compute loss Lcorrection;
Backward propagation and update behavior of πθ ;

end for
return Optimized perception and reasoning approximation πθ

As described in the algorithm, we first collect informa-
tion from the observation of a fluid. Then, we compute the
actions to obtain L,M, DSn

Dsn
, DEn
Dsn

and perform the time inte-
gration for each given state. We then computed the loss with
this information and perform backpropagation to update the
neural network.

The backpropagation is computed through selected layers
of the whole source model. This approach, in conjunction
with low learning rates, ensures a minimum loss of informa-
tion from the previous model to preserve the insights already
learnedwithGENERIC.Weprofit from these knownpatterns
to deal with the limitations coming from partial observations
and low-data regimes.

6 Results

6.1 Cognitive digital twins in a purely
computational scenario

The employ of pseudo-experimental data coming from sim-
ulations allows us to compute precise error measurements on
the different adaptation strategies and their effect on diverse
quantities of interest. Given a learned simulator trained
offline for glycerine data, we first apply the updated method-
ology to learn three different liquids presenting rather diverse
behaviors: water and butter as Newtonian fluids, and blood,
simulated as a non-Newtonian liquid. We employ synthetic
data consisting of snapshots taken from four simulations for
each liquid performed under different velocity conditions to
trigger various sloshing results. From this information, we
prepare the dataset with sequences of the positions of the
particles that belong to the free surface. That is, we track the
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particles on the free surface, take their positions, and prepare
sequences of 16 snapshots for each time step �t (the time
instant of interest and the 15 previous states of the free sur-
face). The length of 16 was found to be the minimum length
of the sequences to find an embedding of the free surface
measurements on each fluid’s latent manifold, already com-
puted offline. The water data set has 750 snapshots in total
and butter and blood have 480. Synthetic data are available
at a sampling frequency of 200Hz, which is a time step of
�t = 0.005s. Therefore, the source model was built for this
availability of data and time step. However, the snapshots
are sampled at every frequency of 60Hz, or equivalently
�t = 0.015s, which matches the performance frequency
of the commodity camera that will be used in the real sce-
nario. Therefore, the change in the time step also affects the
model that should be corrected. The sequences of the data
set are randomly split into two subsets: 80% for training and
20% for testing.

We carry out the correction in the integration scheme and
the embedding onto a lower-dimensional manifold. The cor-
rection is accomplished by activating the backpropagation in
the last layer of the GRU network, and the four last layers,
out of 13, of the SPNN. Since these are precedent layers of
the decoder, and we train the network as a whole, we achieve
the desired reconstruction without the need of altering the
last structure of the network. The adaptation converges after
2000 epochs, at a small learning rate lr = 0.0005 and weight
decay wd = 0.00001. We choose Adam optimizer [27]. The
reconstruction is weighted by a factor λ = 2000. Figure 3
shows the transition from the original manifold, trained off-
line, to the new latent space that fits the emulated dynamics.
In particular, we show the first three state variables of the
latent vector z, which correspond to the latent variables of
position. Because the liquids bear similarity to the original
liquid, glycerine, their manifolds show no drastic changes in
their structure compared to those of the initial solution. This
fact also highlights the generality of the dynamics patterns
learned in the source glycerine simulator.

The height reference is placed at the bottom of the glass
and, therefore, the relative error is calculated with the total
height of the points on the free surface selected for the eval-
uation:

error = 1

N

√√√√ N∑
n=1

z2n − ẑ2n
z2n

,

with N the number of samples in the data set and zn and ẑn the
ground truth and the simulated free surface data, respectively.

The relative error is represented in Fig. 4. The update
algorithm improves the performance of the simulator, signif-
icantly reducing the reconstruction error of the free surface.
The relative error is also presented for the complete data set

Fig. 3 Representation of the correction of the latent manifold of the
position. The latent representation evolves to match the features of the
new liquid

of each liquid, reconstructing the 80% used in the correction
and the 20% considered for testing purposes. The four sim-
ulations can be distinguished in the graph. The error peaks
appear in the top peaks of the sloshing of each simulation,
where the surface deformation is greater. However, the error
continues to be in the low range.
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Fig. 4 (Top) Relative error of the reconstruction of the free surface
for the four simulations used for training and test. The relative error
obtained with the source model is reduced after optimization. (Bottom)

Detail of the sloshing height reconstruction of the most critical simula-
tion. The method correctly emulates the behavior not only in magnitude
terms but also, notably, in the precise time occurrence of the peaks

Water presents a higher sloshing than glycerine. Thus, the
desired solutions were out of the source database. In this
case, the maximum error drops from 12 to 4–6%, remain-
ing at an average of not more than 3%. Butter reconstruction
error is reduced from 6% to less than 2%. Finally, the algo-
rithm manages accurately to evolve from a Newtonian to
a non-Newtonian fluid to replicate the behavior of blood.
For this liquid, the maximum relative error goes from 7 to
3.5%. It is worth mentioning that, provided that we employ
a meshless method (SPH) to generate synthetic data, we can
observe some errors coming from the different particle distri-
butions. Although the movement matches the ground truth,
we can have twodifferent particle configurations. This results
in different interpolated free surfaces that cause small errors
despite their strong resemblance.

We analyze the performance of the correction by evalu-
ating the maximum height of the slosh in the most critical
simulation for each liquid in Fig. 5 This detail is correlated
with the correspondent segment of the relative error graphs.
Finally, it isworth highlighting that the reconstruction adjusts
better not only to the magnitude of the slosh but also to their
occurrence in time. Before the correction, some peaks appear
to be delayed or skipped.

6.2 Adaptation to a real-world scenario

Employing pseudo-experimental data coming from simula-
tions has the great advantage of allowing the computation of
precise error measurements. However, the ultimate objective
of this work is to develop a methodology for real-life scenar-

ios. In this scenario, the algorithm must adapt to previously
unseen real liquids with different properties that result in dif-
ferent frequencies and magnitudes of slosh and dissipation
and duration of slosh. This correction will be done by evalu-
ation of the free surface of liquids tracked by using computer
vision. This problem presents various challenges, such as
errors in depth estimation, difficulty in detecting and track-
ing the free surface, the complexity of real liquids to capture
all the dynamical features of the recorded videos, and user
actuation. The last statement refers to the direction of move-
ment of the liquid. In this work, we limit the experiment to a
plane movement in two possible directions (move the glass
to the left or right), but we can experience slight deviations in
the actuation. We impose this restriction to bound the prob-
lem to a case where we can properly evaluate the free surface
from a fixed position of the camerawith the detectionmethod
employed.

Four different liquids are evaluated in the updated frame-
work proposed here: water, honey, beer, and gazpacho
(traditional Spanish cold soup). These four materials cover
a wide spectrum of behaviors and textures, from lower to
higher viscosities compared to glycerine. In addition, the
liquids selected are daily products of interest in real manip-
ulation that can show different behaviors depending on the
production process. The glass used is of the same shape as
the computational container used in the simulations of the
source model, and the vessel is filled approximately to the
same height.

There are two recordings for each selected liquid. The first
video, divided into 80% snapshots for training and 20% for
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Fig. 5 Fluid reconstruction before and after correction of water, blood,
and butter. Representation of the sloshing peaks of ground truth (in
blue) compared to the network results before (in red) and after (in yel-
low) applying the correction to adapt to observations in selected critical
snapshots, indicated in the figure. (Color figure online)

validation to prevent overfitting, is used in the update algo-
rithm. The second video evaluates the performance of the
newmodels on unknown datasets. Given these data, we apply
the correction scheme for each liquid individually, obtaining
four new simulators, adapted for each scenario. Similarly
to the computational test case, correction is performed in
selected active layers. Considering the complexity of the liq-

uids’ behavior and the noise of the samples, the last layer of
the recurrent neural network (GRU) and the 5 last layers, out
of 13, of the SPNN are activated for the correction. Correc-
tion of the recurrent neural network will adapt the manifold
to the new liquid, while partial activation of the SPNN will
adapt the simulation to the new dynamics observed. The
real benchmarks require more correction than the compu-
tational benchmarks. However, we maintain low learning
rates and partial activation to prevent the network from learn-
ing the measurements’ noise and forgetting the previously
learned dynamical patterns. The correction converges after
4000 epochs, with a small learning rate lr = 0.0001 and
weight decaywd = 0.00001. The reconstruction is weighted
by a factor λ = 2000.

Figure 6 shows the results of the correction in the training
and testing recordings of the four liquids. The four exhibit
an improvement in the sloshing reconstruction compared to
the performance of the source model before correction. Fur-
thermore, the temporal integration with data from the test
datasets presents a notable performance considering that this
information is new to the network. The training recordings
are shorter than 10 seconds and only three or four sloshes are
captured in these datasets. However, the newmodel learns the
new target behavior. Although we work in a low-data regime
to perform complex liquid correction, the method success-
fully reproduces the train and test benchmarks. These results
are obtained because of the inductive biases learned and pre-
served in the correction, leading to an efficient correction
from limited data and partial measurements, in this case only
considering the free surface for the reconstruction.

Thewater and gazpacho present slightly higher errors than
the other liquids in the test dataset. This is probably due to
the difficulties experienced in the data acquisition and the
noise of the samples in the experiment. In addition, water has
higher slosh frequencies and a longer slosh time. Therefore,
more data would be needed to reduce the error, even in a
low-data regime. Despite this, the method already performs
the adaptation on train and test information correctly.

Finally, Fig. 7 shows renders of the simulation results
before and after correction compared to the snapshot that they
predict in time. Additionally, the renders are complemented
by a comparison between the discretized particle solution
and the free surface of the ground truth. The absolute error
is indicated in mm on a colored scale to visually analyze
the magnitude of the distortions more accurately. It is worth
mentioning that, although the particle configuration could be
distorted after training tomatch the free surface (since it is the
only information available) losing the sense of the geometry,
the method manages to preserve the fluid volume configu-
ration. The time is indicated to correlate each render to the
error in Fig. 7. Despite the correction, the algorithm outputs
a shape that corresponds to the real entity. As a result, giv-
ing only the free surface of the observed fluids, the networks
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Fig. 6 Results of adaptation to a new computational liquid for beer,
water, gazpacho, and honey. The relative errors of the reconstruction
for the training database and the information of an unseen recording
are presented. Despite the complexity and the few data employed, the

correction in the test dataset is also noticeable. Relative error represen-
tations are accompanied by the maximum height reconstruction of one
of the states perceived to compare the performance of before and after
correction

integrate in time the dynamical evolution of the liquid and
provide a three-dimensional reconstruction of the fluid vol-
ume. Particle discretization represents a fluid volume that can
be translated to the user through rendering and augmented
reality. This representation bridges the gap between reality
and the virtual environment to provide augmented informa-
tion to the machine and the user for decision-making.

7 Conclusion

The present work shows a DDDAs methodology for cog-
nitive digital twins guided by GENERIC as an inductive
bias for perception and reasoning about fluid sloshing. The
algorithm learns from observations to accurately mimic new
fluid behaviors from the observation of the free surface. The
method provides a tool for model inference with real data
from partial observations of complex dynamics. Correction
of the perception of physics enables themachine to adapt and
learn previously unseen liquids present in daily tasks with

unknown properties. We start from a source model trained
with computational data to learn a physically sound simu-
lator of the sloshing dynamics upon GENERIC to ensure
the physical consistency and generalization of the results.
Calculations are performed in a low-dimensional manifold
to ensure real-time performance. Thus, we obtain real-time
interaction with the environment in which the model, or digi-
tal twin of the real liquid, operates to have response capacity.

We illustrate the benefits of physics-informed deep learn-
ing for correction. Given an off-line learned simulator for one
particular fluid (glycerine in our case), our method manages
to evolve to a new representation of the dynamics to match
the behavior of previously unseen liquids. The recorded data
are approximately 10 seconds. In this low-data regime, the
method adapts to the new dynamics perceived. The good
performance of the method can also be observed in the test
recording, which has not been seen by the network before.
The success is attributed to the insights learned in the source
modelwith simulation data and the inductive bias imposed by
GENERIC, which ensures the fulfillment of the principles of
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Fig. 7 Reconstruction of volume before and after correction. The algorithm outputs a discretization of the fluid particles that can be presented as a
three-dimensional rendering of the volume for visualization and interpretation. The figure shows the peaks of the dynamics observed in one of the
recordings
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Table 2 Update parameters lr wd GRU layers selected/total SPNN layers selected/total λ Epochs

Comp. water 5e−5 1e−5 1/3 4/13 2000 2000

Comp. blood 5e−5 1e−5 1/3 4/13 2000 2000

Comp. butter 5e−5 1e−5 1/3 4/13 2000 2000

Real water 1e−4 1e−5 1/3 5/13 2000 4000

Real beer 1e−4 1e−5 1/3 5/13 2000 4000

Real gazpacho 1e−4 1e−5 1/3 5/13 2000 4000

Real honey 1e−4 1e−5 1/3 5/13 2000 4000

thermodynamics. These are sufficiently general and precise
to allow the simulator to evolve smoothly to new liquids.
Table 2 summarizes the parameters used in the correction
step.

The inductive biases already used can be complemented
by other known restrictions that not only benefit the learn-
ing and correction but also the interpretability. For example,
inspired by Galerkin projection methods, a continuation
of this work would consider including restrictions such as
orthogonality in the autoencoder to have amore interpretable
reducedorder space [13]. In addition, the restrictionswill also
boost the optimization of the learning procedure, constrain-
ing the neural networks to learning specific structures from
data.

We have obtained satisfactory results using an autoen-
coder as a nonlinear model order reduction technique. In the
next step, new neural network structures are considered to
efficiently learn the correlations among the state variables
and adapt to the geometry of the problem including spatial
information with Convolutional and Graph neural networks.

A challenge in physics perception is the balance between
adaptivity and the risk of learning noise coming from the
experimental nature of the data acquisition technique. Liq-
uids and vessels are non-Lambertian; i.e., they do not have a
diffusely reflecting surface or matter, which is convenient for
depth estimation. Despite the fine-tuning of the camera, the
measurements include noise and invalid measurements from
which the free surface has to be reconstructed. By applying
transfer learning and performing slow training, we prevented
the network from learning meaningless information from
measurements. Moreover, the patterns already learned help
reconstruct the information to learn the new behaviors with
precision.

Despite the precision observed in the reconstruction of
train and test recordings, the performance of the method
could be further improved over the last model learned by
retraining with new data sets acquired by the same means.
Therefore, it can make corrections not only to persist in
improving the reconstruction but also to adapt to the evolving
nature of the scenario.

The observed results can be a starting point for adapting
the method to new geometries and including this new param-

eter in the optimization from the application of geometric
deep learning. Furthermore, this problem could be further
extended with more general liquid detection techniques
[12,41] capable of analyzing transparent and nontextured ele-
ments from different perspectives.
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