000124437 001__ 124437
000124437 005__ 20241125101136.0
000124437 0247_ $$2doi$$a10.1016/j.matcom.2022.07.004
000124437 0248_ $$2sideral$$a132850
000124437 037__ $$aART-2023-132850
000124437 041__ $$aeng
000124437 100__ $$aSelva Castañeda, Antonio Rafael
000124437 245__ $$aSpatio temporal dynamics of direct current in treated anisotropic tumors
000124437 260__ $$c2023
000124437 5060_ $$aAccess copy available to the general public$$fUnrestricted
000124437 5203_ $$aThe inclusion of a diffusion term in the modified Gompertz equation (Cabrales et al., 2018) allows to describe the spatiotemporal growth of direct current treated tumors. The aim of this study is to extend the previous model to the case of anisotropic tumors, simulating the spatiotemporal behavior of direct current treated anisotropic tumors, also carrying out a theoretical analysis of the proposed model. Growths in the mass, volume and density of the solid tumors are shown for each response type after direct current application (disease progression, partial response, stationary partial response and complete remission). For this purpose, the Method of Lines and different diffusion tensors are used. The results show that the growth of the tumor treated with direct current is faster for the shorter duration of the net antitumor effect and the higher diffusion coefficient and anisotropy degree of the solid tumor. It is concluded that the greatest direct current antitumor effectiveness occurs for the highly heterogeneous, anisotropic, aggressive and hypodense malignant solid tumors.
000124437 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-109045GB-C31
000124437 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000124437 590__ $$a4.4$$b2023
000124437 592__ $$a0.969$$b2023
000124437 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b38 / 170 = 0.224$$c2023$$dQ1$$eT1
000124437 593__ $$aApplied Mathematics$$c2023$$dQ1
000124437 591__ $$aMATHEMATICS, APPLIED$$b4 / 332 = 0.012$$c2023$$dQ1$$eT1
000124437 593__ $$aComputer Science (miscellaneous)$$c2023$$dQ1
000124437 591__ $$aCOMPUTER SCIENCE, SOFTWARE ENGINEERING$$b15 / 132 = 0.114$$c2023$$dQ1$$eT1
000124437 593__ $$aModeling and Simulation$$c2023$$dQ1
000124437 593__ $$aNumerical Analysis$$c2023$$dQ1
000124437 593__ $$aTheoretical Computer Science$$c2023$$dQ2
000124437 594__ $$a8.9$$b2023
000124437 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000124437 700__ $$aMariño del Pozo, Josue
000124437 700__ $$aRamirez-Torres, Erick Eduardo
000124437 700__ $$aRoca Oria, Eduardo José
000124437 700__ $$aBolaños Vaillant, Sorangel
000124437 700__ $$0(orcid)0000-0001-6120-4427$$aMontijano, Juan I.$$uUniversidad de Zaragoza
000124437 700__ $$aBergues Cabrales, Luis Enrique
000124437 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000124437 773__ $$g203 (2023), 609-632$$pMath. comput. simul.$$tMATHEMATICS AND COMPUTERS IN SIMULATION$$x0378-4754
000124437 8564_ $$s3038425$$uhttps://zaguan.unizar.es/record/124437/files/texto_completo.pdf$$yVersión publicada
000124437 8564_ $$s2139000$$uhttps://zaguan.unizar.es/record/124437/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000124437 909CO $$ooai:zaguan.unizar.es:124437$$particulos$$pdriver
000124437 951__ $$a2024-11-22-12:01:00
000124437 980__ $$aARTICLE