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Abstract

The inclusion of a diffusion term in the modified Gompertz equation (Cabrales et al., 2018) allows to describe the
patiotemporal growth of direct current treated tumors. The aim of this study is to extend the previous model to the case
f anisotropic tumors, simulating the spatiotemporal behavior of direct current treated anisotropic tumors, also carrying out a
heoretical analysis of the proposed model. Growths in the mass, volume and density of the solid tumors are shown for each
esponse type after direct current application (disease progression, partial response, stationary partial response and complete
emission). For this purpose, the Method of Lines and different diffusion tensors are used. The results show that the growth
f the tumor treated with direct current is faster for the shorter duration of the net antitumor effect and the higher diffusion
oefficient and anisotropy degree of the solid tumor. It is concluded that the greatest direct current antitumor effectiveness
ccurs for the highly heterogeneous, anisotropic, aggressive and hypodense malignant solid tumors.
2022TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation

IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Modified Gompertz equation; Anisotropic and heterogeneous malignant solid tumors; Electrochemical therapy; Diffusion tensor

1. Introduction

Low-level direct current (DC) has been used to treat all types of superficial or visceral tumors, both malignant
nd benign [78]. It is easy to perform as well as safe, effective and inexpensive, inducing a minimum of adverse
ffects on the organism. It can be carried out on an out-patient basis and applicable to tumors when oncoespecific
e.g., surgery, chemotherapy, and radiotherapy) and biological (e.g., immunotherapy) therapies fail. Furthermore, DC
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may be best suitable for cancers near critical organs where surgery and/or radiation therapy have failed or could not
be performed without damaging other normal parts. This physical magnitude not only reduces costs of chemotherapy,
radiotherapy, hyperthermia, electroporation and immunotherapy, but also improves compliance. Additionally, DC
may be suitable for nonresectable tumors and can save functional tissues [13,40,42,46,48,78]. Unlike radiotherapy,
electrochemical treatment actives the immune system [39,40] and inhibits metastasis [81]. These results are generally
reported for a single DC stimulus of duration 30–60 min (preclinical studies) [13,31,33,39,40,42,46,48] or 1–3 h
(clinical studies) [42,78].

Pupo et al. [58] summarize the different DC antitumor mechanisms reported in the literature, such as:
electrochemical; immune system stimulation; both electrochemical reactions (fundamentally those in which reactive
oxygen species are involved) and immune system stimulation; lost of tissue water for electro-osmosis; change in
the membrane potential of tumor cells; increased expression of dihydronicotinamide adenine dinucleotide phosphate
dehydrogenase (NADPH) oxidase subunits-derived reactive oxygen species which subsequently induces apoptosis.
Despite this diversity of DC antitumor mechanisms, the most accepted is the electrochemical one [8,29,36,39,46,
48,58]. This latter may be argued because the tumor areas around the positive electrode (anode) becomes highly
acidic due to the attraction of negatively charged chloride ions and the formation of hydrochloric acid (pH < 3)
when DC is applied to the tumor. The tumor areas around the negative electrode (cathode) become highly basic
(pH > 10) due to the attraction of positively charged sodium ions and the formation of sodium hydroxide. In
addition, chlorine gas and hydrogen gas emerge from the entry points of the anodes and cathodes, respectively [58].
These changes in pH lead to depolarization of cancer cell membranes and cause tumors to be gently destroyed.
Furthermore, the DC application causes electrolysis, electrophoresis, electro-osmosis and electroporation that lead
to both microenvironmental chemical and micro-electrical field changes [8,36,39,48,58,78]. Other biochemical
alterations around the anode and cathode in DC treated tumors are the following: acid hemoglobin around the anode,
tissue hydration, hydrogen ions (from water electrolysis), and oxygen and chlorine gas emissions. Meanwhile, in
the cathode, they report tissue dehydration, hydroxyl ions, (from water electrolysis), and hydrogen gas emissions.
Water concentration and pH do not change halfway through the pair of electrodes and the areas away from them
when tumors are treated with DC [48,58].

On the other hand, the death of several mice bearing the F3II mammary carcinoma (highly invasive and metastatic
tumor) is observed during and after DC application [31,33]. Furthermore, DC therapy is not recognized as an
oncoespecific therapy because its action mechanism is poorly understood and an electrode array has not been
established yet [7,8,31,33,59]. Although, temporary changes of mass and volume in untreated and DC treated tumors
are frequently reported in the literature [13,31,40,42,48,78], changes in space–time density are less commonly
found [5]. From the experimental point of view, knowledge of these aspects requires a significant amount of time,
animal handling and financial resources. Therefore, the use of mathematical modeling is preferred. A survey on
mathematical models applied to problems in oncology and further references can be found in [47].

The DC intensity applied to the tumor is introduced in the Gompertz conventional equation, named modified
Gompertz equation (MGE), to describe different types of tumor responses after DC application, such as: disease
progression (DP), stable disease (SD), partial response (PR), stationary partial response (SPR) and complete
remission (CR) [4]. Cabrales et al. [4] report that these five types of tumor responses depend on (i/ i0) ratio, where

is DC intensity applied to the tumor and i0 the induced in the tumor due to DC action. CR and SPR are obtained
or i/ i0 values greater than (i/ i0)th , where (i/ i0)th is a threshold value of i/ i0. It is important to notice that the
onventional Gompertz equation is a particular case of MGE when DC intensity is equal to zero. Subsequently,
abrales et al. [5] introduce the diffusion term MGE, named MGE-d, to know how the mass, volume and density
f spherical and isotropic solid tumors change for DP, SD, PR and CR. These four antitumor responses are reported
hen electrochemical therapy [31,33,42,48,78] and other types of anti-cancer therapies [50] are used.
Although the spherical tumor model is used in different experimental [63,79] and theoretical [5,59] studies, the

ancer generally adopts a non-spherical geometry during its growth with prevalence of intra-tumor heterogeneity
nd anisotropy [9,14,21,30,31,33]. Intra-tumor heterogeneity is due to the fact that different cancer cells may
how distinct morphological and phenotypic profiles (cellular morphology, gene expression, metabolism, motility,
roliferation and metastasis). Intra-tumor heterogeneity, tumor anisotropy (due to space-dependent blood perfusion)
nd large inhomogeneous vascularization have essential roles for the progression and metastasis of cancer,
neffectiveness of the immune system and the resistance to anti-cancer therapies [10,16,49].

The tumor density has been associated to the highest probability of cancer risk [20], the limited penetration
f antitumor drugs in solid tumors [35], correlation with early tumor responses [76], regulation of matrix metallo
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proteinases to enhance cancer cell migration [44], among others [53]. In addition, diffusion-weighted magnetic
resonance imaging allows differentiating the intra-tumor density, anisotropy and heterogeneity between the tumor
and the surrounding normal tissue [18]. That is why, the diffusion tensor should be included in the mathematical
approach developed in [5], as in other experimental [17,28] and theoretical [38,43,56,61,70] studies.

Despite the unquestionable scientific advances mentioned above, we are not aware of how the space–time maps
of the solid tumor density and its temporal behaviors of mass and volume change with the degree of anisotropy
and the type of tumor response after application of DC. Therefore, the aim of this study is to simulate the MGE-d
to know how the mass, volume and density of the DC treated tumor change with its degree of anisotropy as well
as the post-treatment tumor response type.

First, in Section 2 we propose the mathematical model that includes a diffusion tensor to reproduce the anisotropic
growth of the tumor, and we analyze it theoretically, giving conditions on the parameters of the model to guarantee
the boundedness of the tumor. In Section 3, we show some simulations and in Section 4, we give a discussion.
Finally, we give some conclusions.

2. Materials and methods

2.1. Mathematical model

Cabrales et al. [5] propose the MGE-d (Eq. (1)) for the isotropic and spherical solid tumors:

dv(x, t)
dt

= α∗v(x, t) − βv(x, t)ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐+ v(x, t)
(α∗)′

β

(
1 − e−βt

)
+ ν∆xv(x, t), (1)

ith

α∗
=
[
a1
(
1 − e−γ t)

+ a2
]
α, (2)

(α∗)′ = αγ a1e−γ t , (3)

a1 =

(
i
i0

)(
2 −

i
i0

)
, (4)

nd

a2 =

(
1 −

i
i0

)
, (5)

here, the variable x represents each point (x, y, z) inside the tumor and t the time (in days). v(x, t) is the tumor
ensity at the point x at time t and vob(x) is a reference density related to the maximum capacity of growth as
uggested in [9]. v(x, t) and vob(x) are given in g/mm3. dv(x, t)/dt (in g/mm3 days) is the first derivate of v(x, t)
espect t . The parameter ν (in mm2/days) is the diffusion coefficient, which is independent of x for anisotropic
umor. ∆xv(x, t), is the Laplacian of v(x, t) respect x. The parameters α and α∗ are the rates of tumor growth before
nd after DC application, respectively. Both parameters are given in days−1. The parameter (α∗)′ (in days−2) is the
rst derivate of α∗ with respect to time. The parameter β (in days−1) is the tumor deceleration factor associated with

he anti-angiogenesis endogenous process. The dimensionless parameters a1 and a2 depend merely on i/ i0 ratio,
here i (in mA) is DC intensity applied to the tumor and i0 (in mA) the induced in the tumor due to DC action. i0

s the polarization current that appears in the tumor due to the polarization induced in it during the application of
he steady electric field. Cabrales et al. [4] report that DP, SD, PR, SPR and CR depend on (i/ i0) ratio. CR and SPR
re obtained for i/ i0 values greater than (i/ i0)th , where (i/ i0)th is the threshold value of i/ i0 and depends on the
umor histological variety. Ciria et al. [13] and González et al. [31] report experimentally that Ehrlich, fibrosarcoma
a-37 and F3II mammary solid tumors reach their complete responses from a certain (i/ i0)th value. This may be
xplained from the electrosensitivity of each cancer tumor histological variety. The parameter γ (in days−1) is the
rst order exponential decay rate of the net effect induced in the solid tumor after DC is removed and its inverse

s the decay constant (or decay-time) that characterizes the duration of such effect [5,13,31,33,58].
We use the gompertzian model in Eq. (1) because the Gompertz model is more feasible to fit tumor growth
inetics (TGK) than other models (e.g., the logistic model) [30,52,71]. Furthermore, DC parameters only appear
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explicitly in MGE and MGE-d. These two equations uniquely describe the different responses of DC treated tumors.
None of the equations reported in the literature to describe TGK contemplates these two aspects. These issues
constitute the advantages of our model with regards to similar models.

The structure of Eqs. (2), (4), and (5) may be argued by the following reasons:

1. In Eq. (2), the modification to parameter α∗ may be justified by the necrosis and/or apoptosis induced into
the solid tumor after DC treatment.

2. If the solid tumor is not perturbed with DC (i = 0), then α∗
= α, condition that is valid if the term inside

the bracket is equal to 1, which is guaranteed for a1 = 0 and a2 = 0.
3. The solid tumors may be considered as real dielectrics because their values of electric permittivity and electric

conductivity are different from zero [26] and in analogy to the dielectric materials, a general relation between
the polarization, the electric field (E⃗) and the higher terms in E⃗ may be established [45].

4. The term e−γ t was also introduced to explain the solid tumor dielectric relaxation when the polarization
disappears due to the removal of external electric field.

5. We believe that in dependence on the (i/ i0) ratio and the sign of parameter α∗, a DC treated tumor response
is reached, which is guaranteed with Eqs. (2), (4), and (5).

The first term in the right-hand side of Eq. (1) is linked to the DC treated tumor growth, which depends on
he tumor histological variety, durability of tissue damage induced in the tumor and i/ i0 ratio, as experimentally

corroborated in previous studies [4,13,31,33]. The second term is responsible for the sigmoidal growth (a non-
exponential growth type) of the untreated solid tumors by an overexpression of different endogenous anti-angiogenic
factors (e.g., thrombospondins, angiostatin and endostatin) that inhibit pro-angiogenic factors [3,4,31,33].

Although the influence of DC on endogenous anti-angiogenic factors has not been experimentally demonstrated,
the third term may represent how i/ i0 and γ parameters may promote/inhibit endogenous anti-angiogenic factors for
a tumor histological variety given. This may suggest that DC may behave like an antiangiogenesis therapy (potentiate
angiogenic micovascular endothelial cells) when tumor growth is inhibited and metastasis is restricted. These occurs
for i/ i0 values greater than (i/ i0)th and lower γ values, conditions for which SPR and CR are reached [4]. By
ontrast, DC therapy may stimulate angiogenesis (grow of new blood vessels from pre-existing vessels) when tumor
rowth, progression, and metastasis are stimulated. This happens for i/ i0 values lower than (i/ i0)th and greater γ

alues. For this case, DP, SD and PR are observed [4]. This aspect may be justified from ischemia–reperfusion
njury induced in solid tumors during and after DC application, as documented several researchers [41]. ischemia–
eperfusion injury or reoxigenation injury is the tissue damage caused when blood supply returns to tissue after a
eriod of ischemia or hypoxia (lack oxygen). The fourth term is introduced to represent diffusion processes that
appen in solid tumors, as reported in [9,30,47,77]. Diffusion processes in cancer may be studied by means of
iffusion-weighted imaging and Restriction Spectrum Imaging, which allow to estimate tumor cellularity on the
asis of apparent diffusion coefficient maps. This coefficient is negatively correlated with Cellularity (cell packing
ensity) [77].

Anisotropic tumor growth has been observed in preclinical [4,9,13,30,31,33] and clinical [42] studies. Conse-
uently, we introduce the diffusion tensor in Eq. (1) to simulate how the mass, volume and density of the solid
umor change during and after DC treatment. Diffusion tensor has been considered in other studies [17,28,56,70].

.2. Assumptions

1. The solid tumor is assumed as a linear, anisotropic and non-homogeneous three-dimensional medium, and
it has ellipsoidal geometry with three orthogonal diameters well defined during its growth, as we observed
in the experiment [4,9,13,30,31,33,42]. A schematic representation of scalene ellipsoid tumor and its three
diameters (L1, L2 and L3) are shown in Fig. 1. L1, L2 and L3 are the tumor major diameter (along the x
axis), tumor medium diameter (along the y axis) and tumor minor diameter (along the z axis), respectively.
The x, y and z axes are tumor growth directions. These three diameters satisfy L1 ≫ L2 > L3, aspect verified
in preclinical [9,13,21,31,33,40,48,50] and clinical [42,78] studies. Typical values of L1, L2 and L3 cannot
be given because they depend on the tumor histological variety and its initial size (choose by the researcher
for the experiment in animals or the first volume detected by the physician in clinics. It should be noted that

tumor size should not exceed 10% of body weight of animals in preclinical studies [9,21,31,33].
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Fig. 1. Scheme of solid tumor with scalene ellipsoid geometry. L1 (tumor major diameter), L2 (tumor medium diameter) and L3 (tumor
minor diameter). The x , y and z axes are specified.

2. The parameter α∗ changes in the time due to the necrosis and/or apoptosis induced into the solid tumor
during and after EChT treatment [13,22,33,40,42,48,66,73,78].

3. The solid tumor is centered at the origin of the coordinate system and cancer cells flow from tumor center
towards to its periphery [19].

4. Solid tumor is only formed by the cancer cells, whose total number is the sum of the numbers of viable
tumor cells, dead cells and calcified cells, as assumed in [12].

5. The tumor is assumed spherical at t = 0 days, as we observe in preclinical studies [4,13,30,31,33]. In this
case, all cancer cells concentrate in an initial cellular cluster without voids, as reported in [12].

6. The diffusion process is analyzed from the minimum experimentally measured tumor size. In preclinical
studies, the initial tumor volume at t = 0 days may be any size higher and equal than the minimum
measurable tumor volume [4,6,9,30,31,33].

7. A single DC stimulus during 30 min is applied when the solid tumor reaches its minimum measurable
volume at t = 0 days. A single DC stimulus is often delivered to different histological varieties of tumors in
vitro [37,39,46], preclinical [4,13,19,31,33,36,40,48,66,73,81] and clinical [42,78] studies.

8. The tumor irregular border, complex processes that occur in the boundary [19] and diffusion of cancer cells
into the surrounding healthy tissue [31,33,81] are not considered in simulations. This may be argued from
our experience in mice. We observe that Ehrlich, fibrosarcoma Sa-37 and F3II solid tumors (growing in
BALB/c/Cenp and C57BL6/Cenp mice) exhibit regular borders for tumor volumes between 20 and 2000 mm3.
Therefore, L1, L2 and L3 can be measured with vernier calipers. On the contrary, tumor irregular borders
are observed for tumor volumes higher than 2000 mm3 in these mice. Consequently, it is difficult to measure
L1, L2 and L3 [4,9,13,21,58].

Taking into account these assumptions, Eq. (1) can be extended to the case of an anisotropic tumors as

dv(x, t)
dt

= α∗v(x, t) − βv(x, t)ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐+ v(x, t)
(α∗)′

β

(
1 − e−βt

)
+ ∇

[
D(x)∇v(x, t)

]
, (6)

here D(x) is the second order tensor of diffusion tumor, that we will assume symmetric and positive definite. The
Eq. (6) allows us to know approximately how v(x, t) maps change in terms of t, α, β, ν, i/ i0 ratio, and diffusion
oefficients.

The L2
− norm of the density v(x, t) given by

∥v(x, t)∥L2(Ω) =

[∫
|v(x, t)|2 dx

]1/2

, (7)

Ω
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is sometimes called the total intensity of the function. It represents a mathematical measure of the “size” of the
function and is related to the mass of the tumor. It will be useful for the study of the growth rate and boundedness
of the tumor (see details in [5]).

2.3. Analysis of the model

In order to analyze the evolution of the solution, let us give first a Lemma.

Lemma 1. If D is a symmetric and positive definite matrix, then

−xT Dx ≤ −ν∥x∥
2
2 (8)

where ν, is the minimum eigenvalue of D.

Proof. See Appendix A.

Theorem 1. Let Ω ∈ R3 be an open set with smooth boundary. Let v0 ∈ W 1,2
o (Ω ). Let v be a solution to Eq. (6)

which is assumed to be zero on the boundary Ω , that is, v(x, t)|∂Ω=0. Then, the total intensity is bounded by

∥v(x, t)∥2
L2(Ω) ≤ e−bt

∥v(x, 0)∥2
L2(Ω) + g(t)∥vob∥

2
L2(Ω). (9)

ith

g(t) = e−bt
∫ t

0
ebtβe

2c(t)
β dt, b = 2νλ2

1 + β and c(t) = α∗
+

(α∗)′

β
(1 − e−βt ). (10)

roof. See Appendix B.

heorem 2. When time tends to infinity we have

lim
t→∞

g(t) = lim
t→∞

e−btβ

∫ t

0
ebt e

2c(t)
β dt ≤ e

2α
β (a1+a2) (11)

roof. See Appendix C.

emark 1. From Theorem 1, it is clear that

lim
t→∞

∥v(x, t)∥2
L2(Ω) ≤ ∥vob(x, t)∥2

L2(Ω) lim
t→∞

g(t) (12)

The function g(t) does not tend to zero, and therefore we cannot ensure that the total intensity tends to zero.
owever, we can consider that the tumor remits if the limit of the total intensity is bounded by a small enough
uantity. If we assume that we have full remission if the total intensity is smaller than a threshold ε, then this is

guaranteed if

lim
t→∞

g(t)
1/2 ≤ e

α(a1+a2)
β < ε∥vob∥L2(Ω) (13)

and this is obtained if

a1 + a2 <
β

α
ln
(
ε∥vob∥L2(Ω)

)
(14)

which gives us a sufficient condition on the ratio i/ i0 to get full remission of the tumor.

Two states for cancer cells are possible in vitro and in vivo studies: cancer cells exist or not. The existence of
cancer cells is represented by v(x, t) values different from zero. The non existence of cancer cells is represented
by v(x, t) = 0, which makes the natural logarithm in Eq. (14) undefined. That is why, we chose 0.001 as the
threshold value for v(x, t) (see inequality Eq. (12)). In preclinical and clinical studies, this threshold value of v(x, t)
may represent the fibrous tissue that replaces that damaged (induction of necrosis and apoptosis) by DC cytotoxic
614
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action [13,31,33,42]. Furthermore, very small value of this threshold for v(x, t) guarantees tumor destruction and
voids confusion with v(x, t) values in cancer.

The particular case where D(x) is proportional to the identity matrix represents the isotropic growth of a spherical
olid tumor (observed at the first stages of TGK [9,30,31,33] and in vitro studies [79] and used in mathematical

models [51,75] and its simulation is performed to confirm results documented in [5]). The tensor corresponding to
this case is named D1(x). In preclinical studies, solid tumor adopt an ellipsoid geometry during their growth with
hree orthogonal diameters well defined L1, L2 and L3 (see assumption 1 in Section 2.2).

Depending on the tumor histological variety and the host region where it grows, we observe two possibilities
or the tumor growth: L1 > L2 ≫ L3 or L1 > L2 > L3 [4,9,13,30,31,33,42], in accordance with other
tudies [36,40,48,51,66,71,73,78] and imaging techniques [56,65,66,69,72]. This indicates that diffusion along z
xis for the case L1 > L2 ≫ L3 is slower than that for the case L1 > L2 > L3. The tensor corresponding to the
ase L1 > L2 ≫ L3 is named D2(x) and the tensor corresponding to the case L1 > L2 > L3 is named D3(x).

.4. Numerical simulation

For simplicity we are going to consider that the tensor D(x) is diagonal. As the second-order tensor of diffusion
s symmetrical and positive, there exists an orthonormal basis (which defines the principal axes of the medium)
rom which D(x) is represented by a diagonal matrix.

D(x) =

⎡⎣Dxx 0 0
0 Dyy 0
0 0 Dzz

⎤⎦ , (15)

here Dxx , Dyy and Dzz are the main diagonal elements. The form of D(x) in Eq. (15) has been suggested in [21,70].
The Eq. (6) is numerically solved by the Method of Lines [57,64]. This method transforms the partial differential

quation Eq. (6) into a system of ordinary differential equations. For the numerical calculation, the methodology
eported in [5] is followed in this study. The simulations are made in a cube centered at the origin of the coordinate
ystem, with sides equal to 8 mm. The domain considered is

Ω =
{
x = (x, y, z) ∈ R3

: |x | ≤ 4, |y| ≤ 4, |z| ≤ 4
}
. (16)

A uniform mesh in the spatial domain is made with a step h = 0.08 mm. A system of 106 ordinary differential
equations is obtained. The explicit Runge–Kutta–Chebyshev method is proposed to solve this system [67]. It is a
stabilized Runge–Kutta method for large nonlinear stiff systems of ordinary differential equations. In addition, the
good stability of this method benefits from the stability function based on the first kind Chebyshev polynomials [67].
The integration domain has been taken large enough to guarantee that the density of the tumor is practically zero
at the edges. That is why Dirichlet boundary conditions are established (v(x, t) = 0 for x ∈ ∂Ω ).

For the calculations the non existence of tumor volume at the point x is assumed when v(x, t) < 0.001.
onsequently, the tumor volume (in mm3) in time t , named V (t), and its mass (in g) in time t , named M(t),
re calculated from the following expressions

V (t) =

∫
x∈Ω,v(x,t)>0.001

1dx, M(t) =

∫
Ω

v(x, t)dx. (17)

The initial conditions for V (t) and M(t) satisfy V (t = 0) = Vo and M(t = 0) = Mo, respectively, where
Mo is the initial tumor mass whereas Vo its initial volume. As the tumor volume is often used in the experiment,

e establish the initial condition for this variable (Vo = 20 mm3, whose initial radius (ro) satisfies the initial
ondition ro = r (t = 0) = 1.6838 mm). This tumor size is the minimum that we have measured in preclinical
tudies and observed at the TGK avascular phase. We observe that solid tumors keep spheroidal geometry for
0 ≤ Vo ≤ 50 mm3 [6,9,13,30,31,33]. As this tumor initial size is very small, we assume that v(x, t) reaches its
aximum in the tumor center, named maxxv(x, t), and decays exponentially with the increase of sphere radius
= (x2

+ y2
+ z2)1/2, so that the condition v(x, t) < 0.001 is satisfied outside the sphere. Taking into account these

ssumptions, the initial condition established for the numerical simulation is given by

v(x, 0) = e−(x2
+y2

+z2)/0,410478. (18)
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Table 1
Values of model parameters for simulations.

Casesa Values

γ (days−1) Dxx Dyy Dzz

Case 1 0.02 0.08 0.08 0.0800
Case 2 0.02 0.80 0.13 0.0008
Case 3 0.02 0.80 0.13 0.0800
Case 4 1.00 0.08 0.08 0.0800
Case 5 1.00 0.80 0.13 0.0008
Case 6 1.00 0.80 0.13 0.0800

aFor each Case, α(0.4 days−1), β(0.2 days−1) and i/ i0 ratio (0.0, 0.3, 1.5 and 2.25)
are kept constants.

To simulate the tumor anisotropic growth we performed numerical simulations of the equations Eqs. (6) and (17).
ach simulation case is identified with unique label in order to avoid repeating the list of parameter values. For this,
ix cases are proposed, named Case 1, Case 2, Case 3, Case 4, Case 5 and Case 6. For each of these cases, the values
f γ , Dxx , Dyy and Dzz are shown in Table 1, keeping constant the values of α and β. In addition, four values of
/ i0 ratio (0.0, 0.3, 1.5 and 2.25) are used for simulations of Eq. (6). It should be noted that values of Dxx , Dyy and

Dzz shown in Table 1 are not obtained from the experiment. These values were arbitrarily chosen to represent the
nisotropy degree of the solid tumor, taking into account the different tumor geometries observed in the experiment:
pheroid [58,79] (cases 1 and 4), scalene ellipsoid [13,40,50] (cases 3 and 6) and oblate ellipsoid [31,33] (cases 2
nd 5). Taking into account theoretical and experimental results shown in [4–6,13,31,33], we simulate the untreated
umor growth for i/ i0 = 0 and three types of tumor responses after DC application: DP/SD (for i/ i0 = 0.3), PR (for
/ i0 = 1.5) and CR (for i/ i0 = 2.25). Furthermore, the time t is varied from 0 to 70 days in the graphs V (t) versus
and M(t) versus t because DC treated mice are cured from 50 days post-treatment, as reported experimentally

n [6,13,31]. That is why, values of v(x, t) are not shown for t ≥ 50 days. The spatial maps of v(x, t) are shown at
= 0, 5, 10 and 50 days.

A computer program was implemented in GNU fortran 95 to calculate the mass, volume and v(x, t) in the tumor.
hese quantities were obtained by approximating the integrals in (17) by sums by

Vh(t) ≃

∑
vi jk>0.001

h3, Mh(t) ≃

∑
Ω

vi jk(t)h3, (19)

n a 4-core High-performance-computing (HPC) with 256 GB RAM of Instituto Universitario de Matemáticas y
plicaciones (IUMA), Universidad de Zaragoza, Spain. All calculations took approximately 12 h.

. Results

The graphs of V (t) versus t (Fig. 2) and M(t) versus t (Fig. 3) are obtained for Case 1 (Figs. 2, 3a), Case 2
Figs. 2, 3b), Case 3 (Figs. 2, 3c), Case 4 (Figs. 2, 3d), Case 5 (Figs. 2, 3e) and Case 6 (Figs. 2, 3f). Figs. 2 and

reveal that time behaviors of V (t) and M(t) depend on γ value, i/ i0 ratio and anisotropy degree.
For i/ i0 = 0.0, V (t) and M(t) increase in the time up to an asymptotic value when the tumor grows isotropically

Figs. 2–3a,d). Nevertheless, these two physical quantities increase up to their respective maximum values and then
ecrease asymptotically when the tumor grows anisotropically (Figs. 2–3b,c,e,f), being marked for Dxx = 0.8,

Dyy = 0.13 and Dzz = 0.08 (Figs. 2–3c,f). According Eq. (6), these time behaviors of V (t) and M(t) do not
epend on γ parameter.

Depending on the values of γ , i/ i0 ratio, Dxx , Dyy and Dzz , we observe different time behaviors of V (t) and
M(t) for i/ i0 ̸= 0.0. As expected, volume and mass of the solid tumor follow similar trends in their temporal
ehaviors. For both time behaviors of V (t) and M(t), significant tumor growth delay, named TGD, is visualized
hen the γ value decreases, i/ i0 ratio increases and the tumor grows in its three directions, but not for i/ i0 = 0.3

Figs. 2 and 3). Simulations reveal that TGD is observed for PR (for i/ i0 = 1.5) and CR (for i/ i0 = 2.25).
PR characterizes by an increase of tumor volume up to its maximum value and then it decreases in two different

odes. First, tumor volume decreases until its minimum is reached and then it regrows (for i/ i0 = 1.5 in Figs. 2–

a,b,c). For this case, the tumor mass decreases until its minimum is reached and then it increases smoothly with
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Fig. 2. Time behavior of tumor volume for (a) Case 1 (γ = 0.02 days−1 and Dxx = Dyy = Dzz = 0.08); (b) Case 2 (γ = 0.02 days−1,
Dxx = 0.8, Dyy = 0.13 and Dzz = 0.0008); (c) Case 3 (γ = 0.02 days−1, Dxx = 0.8, Dyy = 0.13 and Dzz = 0.08); (d) Case 4 (γ = 1
ays−1 and Dxx = Dyy = Dzz = 0.08); (e) Case 5 (γ = 1 days−1, Dxx = 0.8, Dyy = 0.13 and Dzz = 0.0008) and (f) Case 6 (γ = 1
ays−1, Dxx = 0.8, Dyy = 0.13 and Dzz = 0.08). For each case, α(0.4 days−1), β(0.2 days−1) and i/ i0 ratio (0.0, 0.3, 1.5 and 2.25) are
ept constants.
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Fig. 3. Time behavior of tumor mass for (a) Case 1 (γ = 0.02 days−1 and Dxx = Dyy = Dzz = 0.08); (b) Case 2 (γ = 0.02 days−1,
Dxx = 0.8, Dyy = 0.13 and Dzz = 0.0008); (c) Case 3 (γ = 0.02 days−1, Dxx = 0.8, Dyy = 0.13 and Dzz = 0.08); (d) Case 4 (γ = 1
ays−1 and Dxx = Dyy = Dzz = 0.08); (e) Case 5 (γ = 1 days−1, Dxx = 0.8, Dyy = 0.13 and Dzz = 0.0008) and (f) Case 6 (γ = 1
ays−1, Dxx = 0.8, Dyy = 0.13 and Dzz = 0.08). For each case, α(0.4 days−1), β(0.2 days−1) and i/ i0 ratio (0.0, 0.3, 1.5 and 2.25) are
ept constants.
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Fig. 4. Space–time map of tumor density for Case 1 (α = 0.4 days−1, β = 0.2 days−1, γ = 0.02 days−1, and Dxx = Dyy = Dzz = 0.08),
our instants of time (0, 5, 10 and 50 days) and three values of i/ i0: (a) i/ i0 = 0.0. (b) i/ i0 = 0.3. (c) i/ i0 = 2.25. Dashed white line
epresents the tumor periphery.

ime (Figs. 3a–c). Second, tumor volume decreases and then it tends asymptotically to a certain value (for i/ i0 = 1.5
n Figs. 2–3d,e,f). For this case, the tumor mass decreases asymptotically towards a certain value (Figs. 3d–f). CR
haracterizes by an initial increase of the tumor volume up to its maximum value and then it asymptotically decreases
o zero, being noticeable for the tumor that grows in its three directions (Figs. 2a–f). Nevertheless, the tumor mass
symptotically decreases to zero (Figs. 3a–f).

Figs. 4–9 show the spatial maps of v(x, t) in (x, y, z) at z = 0 for Case 1 (Fig. 4), Case 2 (Fig. 5), Case 3 (Fig. 6),
ase 4 (Fig. 7), Case 5 (Fig. 8) and Case 6 (Fig. 9) for four instants of time (0, 5, 10 and 50 days) and three values
f i/ i0: i/ i0 = 0.0 (Figs. 4–9a), i/ i0 = 0.3 (Figs. 4–9b) and i/ i0 = 2.25 (Figs. 4–9c). In these figures, bright
ed, bright blue and white dashed line represent maxxv(x, t), the condition v(x, t) < 0.001 and tumor periphery,
espectively.

As expected for i/ i0 = 0.0 and t = 0, the maximum value of v(x, 0), named maxxv(x, 0), observes at the
umor center whereas values of v(x, 0) < 0.001 are seen at the tumor periphery (Figs. 4–9), according to the initial
ondition assumed for v(x, 0) (Eq. (18)). For i/ i0 = 0.0 and t > 0, the v(x, t) values distribute in different isodense
nd concentric layers that adopt spherical or ellipsoidal geometry in the tumor that grows isotropically (Figs. 4, 5a)
nd anisotropically (Figs. 6–9a). As v(x, t) values do not depend on γ values for untreated tumors, the space–time
aps of v(x, t) during the growth of these tumors are the same for Cases 1 and 4 (Figs. 4, 5a); Cases 2 and 5

Figs. 6, 7a); and Cases 3 and 6 (Figs. 8, 9a). Geometries that adopt tumor diffusion depend on values of Dxx ,
Dyy and Dzz . We observe that maxxv(x, t) in the center and v(x, t) in each isodense-concentric spherical layer
ecrease in time when the untreated tumor grows anisotropically, being marked for the Case 3/Case 6. In contrast,
axxv(x, t) and v(x, t) values first decrease during isotropic growth of these untreated tumors (Figs. 4, 5a).
For i/ i0 > 0.0 and t > 0, the space–time maps and values of v(x, t) obtained for DC treated tumors differ

rom those for untreated tumors and depend on the values of i/ i0 ratio, γ , Dxx , Dyy and Dzz (Figs. 4–9b,c). For
/ i0 = 0.3 and keeping constant each value of Dxx , Dyy and Dzz , we see that space–time maps of v(x, t) adopt
imilar patterns to those for the untreated tumors (Figs. 4–9b). Higher maxxv(x, t) and v(x, t) values are observed
or this i/ i0 ratio, being marked for the Case 4 (Fig. 5b). Furthermore, lower maxxv(x, t) and v(x, t) values are
bserved for the Case 3/Case 6 for this value of i/ i0 and maintaining constant the γ value, being slightly remarkable
or γ = 0.02 days−1 during the first 10 days after DC application (Fig. 8 b). In contrast, maxxv(x, t) and v(x, t)

alues tend to zero in time for i/ i0 = 2.25 (Figs. 4–9c), being faster for the Cases 3 and 6 (Figs. 8, 9c).
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Fig. 5. Space–time map of tumor density for Case 4 (α = 0.4 days−1, β = 0.2 days−1, γ = 1 days−1, and Dxx = Dyy = Dzz = 0.08),
our instants of time (0, 5, 10 and 50 days) and three values of i/ i0: (a) i/ i0 = 0.0. (b) i/ i0 = 0.3. (c) i/ i0 = 2.25. Dashed white line
epresents the tumor periphery.

Fig. 6. Space–time map of tumor density for Case 2 (α = 0.4 days−1, β = 0.2 days−1, γ = 0.02 days−1, Dxx = 0.8, Dyy = 0.13 and
Dzz = 0.0008), four instants of time (0, 5, 10 and 50 days) and three values of i/ i0: (a) i/ i0 = 0.0. (b) i/ i0 = 0.3. (c) i/ i0 = 2.25. Dashed

hite line represents the tumor periphery.

. Discussion

Computed Axial Tomography (CT) allows differentiating hyperdense (white color), isodense (gray tones) and
ypodense (black color) regions in cancer patients. CT protocols without contrast agents reveal that the necrosis,
620
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Fig. 7. Space–time map of tumor density for Case 5 (α = 0.4 days−1, β = 0.2 days−1, γ = 1 days−1, Dxx = 0.8, Dyy = 0.13 and
Dzz = 0.0008), four instants of time (0, 5, 10 and 50 days) and three values of i/ i0: (a) i/ i0 = 0.0. (b) i/ i0 = 0.3. (c) i/ i0 = 2.25. Dashed

hite line represents the tumor periphery.

Fig. 8. Space–time map of tumor density for Case 3 (α = 0.4 days−1, β = 0.2 days−1, γ = 0.02 days−1, Dxx = 0.8, Dyy = 0.13 and
Dzz = 0.08), four instants of time (0, 5, 10 and 50 days) and three values of i/ i0: (a) i/ i0 = 0.0. (b) i/ i0 = 0.3. (c) i/ i0 = 2.25. Dashed

hite line represents the tumor periphery.
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Fig. 9. Space–time map of tumor density for Case 6 (α = 0.4 days−1, β = 0.2 days−1, γ = 1 days−1, Dxx = 0.8, Dyy = 0.13 and
Dzz = 0.08), four instants of time (0, 5, 10 and 50 days) and three values of i/ i0: (a) i/ i0 = 0.0. (b) i/ i0 = 0.3. (c) i/ i0 = 2.25. Dashed

hite line represents the tumor periphery.

ater, fat, cancer parenchyma (made up of cancer cells that determine the tumor biologic behavior), blood vessels,
dema and inflammation seem as hypodense zones whereas the bone, calcification, fibrosis and fresh blood appear as
yperdense regions. Nevertheless, blood vessels reveal themselves as hyperdense when contrast agents (i.e., iodine)
re used in CT protocols [76,80]. In addition, in cancer patients we can observe that the solid tumor may be
yperdense or hypodense depending on the amount of blood. These imaging findings may be used to interpret the
ange of colors shown in the space–time maps of v(x, t) for untreated and DC treated solid tumors.

In analogy to CT imaging, we perform the bright red color (v(x, t) = 1) as the most hyperdense regions of the
umor, corresponding in CT with the highest tissue density (e.g., the bone: +2000 U H and white color). The bright
lue color (v(x, t) = 0) depicts the tumor hypodense regions, equivalent in CT with lowest tissue density (e.g., the
ir: −2000 U H and dark color). The intermediate colors between red and blue show the tumorisodense regions,
nalogous in CT with the gray tones (−2000 U H < tissue densi ty < +2000 U H ). The value v(x, t) = 0.5 (green
olor) may represent the value 0 (distilled water) notified in CT. Each isodense layer indicates tumor regions that
ontain cancer cells with their own phenotypic and genotypic characteristics.

.1. Untreated tumor at t = 0

The main limitation of our model is that its results are not experimentally validated with imaging techniques
i.e., CT imaging or Imaging Nuclear Magnetic Resonance). Among other limitations may be mentioned, such as:
1) results shown in this study are valid if solid tumor is formed at a point in tissue/organ and then grows. (2)
he model does not specify for which electrode array geometry the result is obtained. Despite these weaknesses,
imulations of the tumor mass and volume behaviors mimic our previous experimental results [4,9,13,30,31,33] and
ive an approximated idea of cell diffusion and space–time distribution of density in cancer for different anisotropy
egrees. Furthermore, our experience indicate that these behaviors are obtained for different DC intensities with
arious electrode array geometries. From these strengths of our model, we expose its main results for untreated and
C treated tumors.
At t = 0, the spatial map of v(x, 0) confirms the tumor spherical geometry, high intra-tumor heterogeneity and
imited diffusion in space of the cancer cells at the avascular phase of TGK [15,51,74,75] and the first stages of
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TGK [6,13,31,33]. High micro-heterogeneity and micro-anisotropy in tumors are suggested at very early stages
of avascular phase of TGK [30]. At avascular phase of TGK, Cabrales et al. [6] suggest that central force fields
are responsible of the spherical shape of the tumor. Nevertheless, Chen and Lowengrub [12] explain this spherical
shape from the small duct radius and the static contact angle less than 90◦ between the cancer cell and basement
membrane. This leads to the cell–cell adhesion (initial cellular packaging) because cancer cells prefer to adhere
tightly to one another than to the basement membrane. Consequently, tumor layers spread faster. They explain
tumor layers from small duct radius to guarantee the availability of nutrients and oxygen to the tumor cells.

The intra-tumor heterogeneity at avascular phase of TGK has been explained from the competence by nutrients,
oxygen and space of cellular clusters formed by cancer cells with different phenotypic and genotypic characteris-
tics [6,30]. From Eq. (18) and very small tumor size (20 mm3), the intra-tumor heterogeneity shows the highest
cell density in the tumor center, which is quantified by maxxv(x, t) and marked with bright red color. The highest
ell density in the tumor center may be explained from hydroxyapatite microcalcification microstructures in the
umor [1,11,12,34,60] and the pre-existing vasculature in the stroma [12].

Although mechanisms for which the microcalcifications form are unknown [60], it has been suggested that they
enerate when calcium leaves in the cancer cells (calcified cells), via apoptosis and/or necrosis, because of lack of
utrients and oxygen [12,13,30]. Consequently, they calcify due to fluid volume loss [12]. Bright red color (tumor
ell) in the map of v(x, 0) may corroborate results of Chen and Lowengrub [12], who document that calcified
ells tend to form a solid-like mass within the tumor and they diffuse more slowly than other cell types. This may
xplain why calcified cells concentrate in the tumor center and cells that are actively proliferating migrate towards
he tumor periphery. In simulations, these proliferating cells are marked with the dark blue color, whose v(x, 0)
alues correspond to the interval 0.01 < v(x, 0) < 0.3.

.2. Untreated tumor growth kinetics

Chen and Lowengrub [12] report that larger adhesion between tumor cells and the basement membrane occurs
or large contact angles, which are related to more concave shape, faster growth and greater elongation of the
ntreated solid tumor in time. This facilitates that more tumor cells access to nutrients and oxygen, and the tumor
ontour spreads much faster. Elongated untreated tumors are often observed in preclinical [4,6,9,13,30,31,33] and
linical [18,42,78] studies, and corroborated in simulations of V (t), M(t) and v(x, 0) for t > 0, i/ i0 ratio = 0.0,

Dxx = 0.8, Dyy = 0.13 and Dzz = 0.08. These aspects may explain why the cancer cells distribute in several
oncentric, very poor differentiated and flattened ellipsoid-shaped layers with lowest maxxv(x, t), and v(x, t) values
lower density) during its growth. We hypothesize that v(x, t) values of multiple layers may be related to the
ntreated cancer differentiation grade. Very similar values of v(x, t) among layers may simulate undifferentiated
Grade 4) or badly differentiated (Grade 3) tumors, which are very aggressive and metastatic. In addition, layers
ith different v(x, t) values may represent poorly differentiated cancer, in agreement with Bertoni et al. [2].
Heterogeneous multiple ellipsoidal layers in space–time maps of v(x, t) confirm that the most heterogeneous

nd anisotropic untreated solid malignant tumors grow faster, as confirmed experimentally in aggressive ma-
ignant tumors (for example, sarcoma, fibrosarcoma, glioma and glioblastoma multiforme) [14,18,21,31,33,56].
urthermore, the heterogeneity and anisotropy of solid tumors have been related to their resistance to anticancer

herapies [10,16,37,56,76].
A decrease in intra-tumor density means that the tumor is softer, which leads to macroscopic deformations [11];

nstabilities, intrinsic dynamic structural transformations, fractality and geometry changes [9,30,32]; the stochastic
ature [25]; among others [30,31,50] involved in untreated solid tumor during its growth. Additionally, Fenner
t al. [24] report a strong correlation between the macroscopic deformation of the tumor, the deformation of its
ells at the microscopic level and the spread of metastasis, suggesting that the overall hardness of a tumor does not
ecessarily correlate with its aggressiveness, invasion and metastasis, in accordance with the simulations shown in
his study for the greater degree of tumor anisotropy. The change of the spheroid to ellipsoidal geometry of the
ntreated tumor is observed in preclinical studies [4,6,13,30,31,33] and related to the jump from the avascular phase
o the vascular phase of the TGK [6,30]. This jump may correspond to the maximum values of volume and mass
f the untreated tumor, being marked for the solid tumor that grows with unequal diameters (three diameters well
efined), in agreement with [30].

Unlike tumor that grows anisotropically, well-defined multilayers are observed in the spherical tumor, in which

axxv(x, t) in the tumor center increases during its growth (represented with the faint red color). This red color may
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A.R.S. Castañeda, J.M.d. Pozo, E.E. Ramirez-Torres et al. Mathematics and Computers in Simulation 203 (2023) 609–632

c
a

e
q
a

b
b
h
b
c

m
f
d
t

4

h
γ

a
o
i
i
t
a

t
t
c
I
c
a
l
c

e
t
i
o

be explained from the formation of calcified cells due to the central necrosis resulting from a lack of nutrients and
oxygen in the central region of the untreated tumor during its growth, in agreement with [13]. This is marked for
the tumor that grows spherically because its well-defined layers offer more resistance to the passage of nutrients and
oxygen towards the tumor center, a manner that agree with results of Chen and Lowengrub [12]. We do not rule out
that the red color associated to the maxxv(x, 50) may be influenced by the tumor fibrosis due to reparative or reactive
process associated with physiological central necrosis. The fibrosis causes an increase in collagen production, which
explains the hyperdensity of fibrous tissue [12].

In contrast, the blue color observed in space–time maps of v(x, t) may be explained by the migration of cancer
ells from tumor center to its periphery and new blood vessels (process known as endogenous angiogenesis) arranged
t the tumor surface during its growth, being marked for untreated tumor growths with Dxx = 0.8, Dyy = 0.13 and

Dzz = 0.08, as reported in [12,51]. This may explain the untreated solid tumor radial growth and why its greater
lectro-physiological activity is concentrated in regions near its periphery, in accordance with [37,73]. As a result, a
uestion can be asked: Is intra-tumor central necrosis derived from radial diffusion of cancer cells or lack of oxygen
nd nutrients, or both?

The range of colors from red to blue in space–time maps of v(x, t) may correspond with the space-dependent
lood perfusion reported by Lodi et al. [49]. These authors suggest that the tumor vascular architecture results in a
lood perfusion that decreases suddenly from the tumor periphery to its center. We assume that tumor zones with
igher blood perfusion may correspond to blue color in space–time maps of v(x, t), whereas tumor zones with low
lood perfusion with the red color, as its center. Blood vessels are seen as hypodense zones in CT [76,80]. This
onfirms the large inhomogeneous vascularization in solid tumors in agreement with Lodi et al. [49].

Although simulations are not shown, the findings reported in this study for untreated tumors become even
ore noticeable when α increases with respect to β, which confirms that the tumor histological variety also has a

undamental role in its growth, as documented in [6,13,30,31,33]. A close relationship of α and β with the fractal
imensions of the mass and contour of a solid tumor is reported in [9]. In addition, these parameters are linked to
he coefficients of Avrami formulations [5].

.3. Direct current treated tumor growth kinetics

Previous studies suggest that the tumor response type after DC application depends on the i/ i0 ratio, the
istological variety of the tumor (α and β values) and the duration of the DC-induced antitumor effect (inverse of
) [5,6,13,31,33,39]. González et al. [31] report experimentally that each DC treated tumor response type depends
lso on the exposure time of the DC. Nevertheless, the simulations of this study demonstrate that it depends not
nly on these parameters, but also on intra-tumor heterogeneity (space–time map of v(x, t)) and the degree of
ntra-tumor anisotropy (values of Dxx , Dyy and Dzz). The fastest decrease of M(t), V (t), maxxv(x, t) and v(x, 50)
n time corresponding to the greater value of i/ i0, lower value of γ and the greater degree of anisotropy of the
umor confirm that most heterogeneous, anisotropic and aggressive tumors are the most sensitive to DC action, in
ccordance with previous studies [4,31,33].

The space–time extension of decrease of v(x, t) in the tumor (hypodense region identified in blue color) and
ime decreases of M(t), V (t), maxxv(x, t) and v(x, t) values confirm the increase in space–time of the DC treated
umor destruction observed in simulations [7,8,66], potato pieces [8,29], in vitro [39], preclinical [13,22,48,66] and
linical [42,78] studies. This aspect is confirmed by fluorescence imaging [62] and pathological anatomy [13,22].
n addition, this decrease in the time of maxxv(x, t) and v(x, t) values in ellipsoidal tumors may be due to the
oagulative necrosis around the anode (necrosis caused by ischemia and causing the appearance of fibrous tissue)
nd liquefactive necrosis around the cathode (type of necrosis that results in a transformation of the tumor into a
iquid viscous mass) induced by DC action [13,42]. A criterion to stop the DC application is when the tumor texture
hanges from hard to soft or from soft to softer, depending on the tumor histological variety [42,78].

The tendency to zero of M(t), V (t), maxxv(x, t) and v(x, t) values for i/ i0 ≥ 2.25 confirms theoretically the
xistence of (i/ i0)th , from which the CR of the tumor can be achieved (most dark blue) for any value of γ , degree of
umor anisotropy and diffusion geometry (spherical or ellipsoidal), as reported theoretically [4,6] and experimentally
n preclinical studies (mice bearing Ehrlich tumor, fibrosarcoma Sa-37 [4,13], and breast carcinoma F3II [31,33]

ther tumor histological varieties [22,36,39,40,48,66]; and in clinical studies [36,42,78]).
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In contrast, quick growths of M(t), V (t), maxxv(x, t) and v(x, t) values are observed for i/ i0 < (i/ i0)th , the
ighest value of γ and the lower degree of tumor anisotropy. This aspect is notable for the lower value of i/ i0
nd corroborates that very small DC intensities may stimulate the tumor growth compared to that of the untreated
umor, a matter that agrees with [4]. In this case, the increases of maxxv(x, t) and v(x, t) values during and after
C treatment (red color) explain the increase of the tumor density (hyperdense regions) by ischemia–reperfusion,
ecrosis and apoptosis induced by this physical therapy. This tissue damage leads to the fibrous tissue observed
ays after DC treatment [6,13,31,33,42] and the formation of calcified cells [1,11,12,34,60].

It can be verified that other values of γ , Dxx , Dyy and Dzz to those shown in Table 1 do not change the simulation
esults for volume, mass and density of the solid tumor when i/ i0 ≥ 2.25. This does not happen for 0 < i/ i0 < 2.25.
or this case, higher growth delays of three physical magnitudes are observed for the lower values of γ (< 0.02
ays−1) and greater values of i/ i0, being marked when Dxx increases respect to Dyy , and at the same time Dyy
ncreases regards to Dzz . These results confirm the existence of an i/ i0 threshold value, as suggested in previous
tudies from theoretically [4] and experimentally [13,31,33] points of view.

The results of this study and those reported in [4–6,13,30,31,33] suggest the need to know in depth the ratio i/ i0,
n terms of the therapy parameters (i , exposure time, number of application and geometry of the array of electrodes),
he variable γ , the ratio α/β, the degree of anisotropy of the tumor, tumor fractal dimensions (tumor mass and
ts contour), biological and electrical microenvironment, and the variable that describes cellular loss mechanisms.
or this, results reported in [9,19,27,30,32,55] should be considered. This will permit to establish and customize

he value of (i/ i0) so that the EChT makes the cancer reach always its SPR or CR in an organism, as proposed
n [4,6].

.4. Future works and research directions

One limitation of the present study is that the model has not been tested with data of real tumors. With the
resented simulations we can deduce that the model provides correct information about the time evolution of the
umor. Obtaining data of the evolution of the density of tumors and fitting the parameters of the model to this data
ill give valuable information.
Despite its limitations, this study focused on knowing how at first approximation the anisotropy degree influence

n volume, mass and density in both unperturbed and DC perturbed tumors during their growths. The mathematical
ormalism shown here generalize that reported by Cabrales et al. [5]. These simulations in both studies are valid if
he solid tumor originates from a unique cellular clone and grows monofocally in a single organ (i.e., cancers of
reast and liver). Nevertheless, multifocal and multicentric breast cancer are observed in clinics. Multifocal breast
ancer is defined when there is more than one distinct tumor within the same quadrant of this tissue. Multicentric
reast cancer is defined when cancers develop in different quadrants of this tissue [54]. At present, the same ideas
f this study are being implemented to multifocal and multicentric solid tumors to know approximately how the
nisotropy degree influence in volume, mass and density of both unperturbed and DC perturbed tumors during their
rowths.

The simulations of this study and those reported in [5] do not explicitly take into account the information of
ifferent geometries of electrode arrays for the treatment of solid tumors when DC is applied [31,33,36,59]. We
re developing a further study to include these electrode array geometries in the formalism shown here. Other
deas for the validation of v(x, t) maps are being developed taking into account real data of densities (measured in
mages obtained with TAC) or intensities (measured in images obtained with imaging nuclear magnetic resonance)
rom different parts in a solid tumor. This will solve one of the limitations of this study: v(x, t) maps are not
xperimentally verified.

The ideas of this study will be extended to other equations used to describe TGK [9,30,32]. For this, DC
arameters and diffusion term will be introduced in these equations, which reveal several findings that differ from
hose reported with MGE and MGE-d.

. Conclusions

We have proposed a model for anisotropic tumor growth. This has been theoretically analyzed obtaining
onditions on the parameters, that guarantee the limits of the solutions and allow to deduce conditions in which the

umor remits under the effect of EChT. The simulations of this model allowed obtaining spatio-temporal maps of
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the distribution of mass, volume and density for each type of response after applying DC. These results show that
the greatest DC antitumor effectiveness occurs for the greatest ratio i/ i0 and the highly heterogeneous, anisotropic,
aggressive and hypodense malignant solid tumors.
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Appendix A. Proof of Lemma 1

Proof. Since D is symmetric and positive definite matrix, there exist an orthogonal matrix Q that leads D to
diagonal form. Moreover, the eigenvalues of D are real and positive

D = QT C Q wi th C =

⎡⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦ .

Then,

xT Dx
xT x

=
xT QT C Qx
xT QT Qx

=
Y T CY
Y T Y

,

Consequently,

in fx̸=0
xT Dx
xT x

= in f
Y T CY
Y T Y

= in f
λ1 y2

1 + λ2 y2
2 + λ3 y2

3

y2
1 + y2

2 + y2
3

≥ min{λ1, λ2, λ3} = ν,

and it is obtained

xT Dx ≥ νxT x. (A.1)

Appendix B. Proof of Theorem 1

Proof. If both sides of Eq. (6) are multiplied by v(x, t), the following equation results

v(x, t)
dv(x, t)

dt
= α∗v2(x, t) − βv2(x, t)ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐+ v2(x, t)
(α∗)′

β

(
1 − e−βt

)
+v(x, t)∇

[
D(x)∇v(x, t)

] (B.1)

Integrating on both sides,

1
2

d
dt

∫
Ω

|v(x, t)|2dx = α∗

∫
Ω

|v(x, t)|2dx − β

∫
Ω

|v|
2ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐ dx

+
(α∗)′

β

(
1 − e−βt

) ∫
Ω

v2(x, t)dx

+

∫
Ω

v(x, t)∇
[
D(x)∇v(x, t)

]
.

(B.2)

Applying the following vector identity

∇ ·
[
v(x, t) · D(x)∇v(x, t)

]
= ∇v(x, t) ·

(
D(x)∇v(x, t)

)
+ v(x, t)∇ ·

(
D(x)∇v(x, t)

)
, (B.3)
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e

L

i

it is obtained

1
2

d
dt

∫
Ω

|v(x, t)|2dx =

[
α∗

+
(α∗)′

β

(
1 − e−βt)] ∫

Ω

|v(x, t)|2dx

−β

∫
Ω

|v(x, t)|2ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐ dx

+

∫
Ω

∇ ·
[
v(x, t) · D(x)∇v(x, t)

]
dx

−

∫
Ω

∇v(x, t) ·
(
D(x)∇v(x, t)

)
dx .

(B.4)

Denoting by ν the minimum eigenvalue of the matrix D(x) (recall that it is positive definite and therefore their
igenvalues are all positive), and using Lemma 1, we have

−∇v(x, t) ·
(
D(x)∇v(x, t)

)
≤ −ν|∇v(x, t)|2. (B.5)

In this way, it is obtained that

−

∫
Ω

∇v(x, t) ·
(
D(x)∇v(x, t)

)
dx ≤ −ν

∫
Ω

|∇v(x, t)|2dx . (B.6)

Furthermore, as v(x, t) = 0 at the boundary, it results

1
2

d
dt

∫
Ω

|v(x, t)|2dx ≤

[
α∗

+
(α∗)′

β

(
1 − e−βt)] ∫

Ω

|v(x, t)|2dx

−β

∫
Ω

|v(x, t)|2ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐ dx − ν

∫
Ω

|∇v(x, t)|2dx .

(B.7)

Inequality of Poincaré [23] states that

|v|L2(Ω) ≤ C p|∇v|L2(Ω). (B.8)

From the theorem of Rayleigh quotient [68], the best constant in this inequality is the lower eigenvalue of the
aplacian operator C p = λ−1

1 ,resulting∫
|v|

2dx ≤ λ−2
1

∫
|∇v|

2dx (B.9)

Consequently,

1
2

d
dt

∫
Ω

|v(x, t)|2dx ≤

[
α∗

+
(α∗)′

β

(
1 − e−βt)] ∫

Ω

|v(x, t)|2dx

−β

∫
Ω

|v(x, t)|2ln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐ dx − νλ2
1

∫
Ω

|v(x, t)|2dx .

(B.10)

This equation can be rewritten as

1
2

d
dt

∫
Ω

|v(x, t)|2dx ≤

∫
Ω

|v(x, t)|2
[

c(t) +
β

2
− βln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐
]

dx

−

(
νλ2

1 +
β

2

)∫
Ω |v(x, t)|2dx,

(B.11)

f s = v(x, t), u = c(t) +
β

2 and s0 = v(x, 0) is obtained the following function

f (s) = s2

(
u − βln

s
s

)
. (B.12)
0
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b

w

w

A

P

The maximum of f (s) is obtained by means of the computation of the first derivate f ′(s), given by

f ′(s) = −s

(
2βln

s
s0

− 2u + β

)
= 0, (B.13)

eing the maximum

s1 = s0e
u
β

−
1
2 . (B.14)

Substituting this maximum in the original expression for f (s), gives

f (s1) = s2
0
β

2
e

2u
β

−1
. (B.15)

In this way, the following condition can be established

s2

(
u − βln

s
s0

)
≤ s2

0
β

2
e

2u
β

−1
. (B.16)

Consequently,

|v(x, t)|2
[

c(t) +
β

2
− βln

⏐⏐⏐⏐⏐v(x, t)
vob(x)

⏐⏐⏐⏐⏐
]

≤ |vob(x)|2
β

2
e

2c(t)
β . (B.17)

Therefore, it can be written that

d
dt

∫
Ω

|v(x, t)|2dx ≤ βe
2c
β

∫
|vob(x)|2dx − 2

(
νλ2

1 +
β

2

)∫
Ω

|v(x, t)|2dx

= a(t)
∫

|vob(x)|2dx − b
∫
Ω

v(x, t)|2dx,

(B.18)

here

a(t) = βe
2c(t)

β , b = 2νλ2
1 + β.

It may be argued that the square of the total intensity is bounded by the solution of the following non-
homogeneous differential equation of constant coefficients

y′
= a(t)yob − by. (B.19)

Then, the following boundedness is satisfied∫
|v(x, t)|2dx ≤ e−bt

∫
|v0(x, t)|2dx + g(t)

∫
|vob(x, t)|2dx .∀t (B.20)

ith

a(t) = βe
2c(t)

β , b = 2νλ2
1 + β, g(t) = e−bt

∫ t

0
a(t)ebt dt. (B.21)

Recall that

c(t) = α∗
+

(α∗)′

β

(
1 − e−βt) . (B.22)

ppendix C. Proof of Theorem 2

roof. The expression (10) for the function g(t) can be decomposed as

g(t) = βe−bt

[∫ t̂

0
ebse

2c(s)
β ds +

∫ t

t̂
ebse

2c(s)
β ds

]
(C.1)

for any t̂ ∈ [0, t]
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R

Suppose that the function e
2c(s)

β in Eq. (C.1) in the interval [t̂, t] attains it maximum at t∗. Then

g(t) ≤ βe−bt

[∫ t̂

0
ebse

2c(s)
β ds + e

2c(t∗)
β

∫ t

t̂
ebsds

]
, (C.2)

when t tends to infinity, the previous bound becomes

lim
t→∞

g(t) ≤
β

b
e

2α
β (a1+a2)e

2
β

(
−a1αe−γ t∗

+
αγ a1e−γ t∗

β

(
1−e−βt∗

))
(C.3)

Since this bound holds for all t̂ and t∗
≥ t̂ , making t̂ tend to infinity, it is conclude that

lim
t→∞

g(t) ≤
β

b
e

2α
β (a1+a2)

≤ e
2α
β (a1+a2) (C.4)

and therefore

lim
t→∞

∫
Ω

|v(x, t)|2dx ≤ e
2α
β (a1+a2)

∫
Ω

|vob(x)|2dx,
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[52] M. Marušić, S. Vuk-Pavlovic, J.P. Freyer, Tumor growth in vivo and as multicellular spheroids compared by mathematical models,
Bull. Math. Biol. 56 (4) (1994) 617–631, http://dx.doi.org/10.1007/BF02460714, Publisher: Elsevier.

[53] A.M. McCarthy, W.E. Barlow, E.F. Conant, J.S. Haas, C.I. Li, B.L. Sprague, K. Armstrong, P. Consortium, Breast cancer with
a poor prognosis diagnosed after screening mammography with negative results, JAMA Oncol. 4 (7) (2018) 998–1001, http:
//dx.doi.org/10.1001/jamaoncol.2018.0352, Publisher: American Medical Association.

[54] A. Neri, D. Marrelli, T. Megha, F. Bettarini, D. Tacchini, L. De Franco, F. Roviello, Clinical significance of multifocal and multicentric
breast cancers and choice of surgical treatment: A retrospective study on a series of 1158 cases, BMC Surg. 15 (1) (2015) 1–10,
http://dx.doi.org/10.1186/1471-2482-15-1.

[55] E.J.R. Oria, L.E.B. Cabrales, J.B. Reyes, Analytical solution of the bioheat equation for thermal response induced by any electrode
array in anisotropic tissues with arbitrary shapes containing multiple-tumor nodules, Revista Mexicana De Física 65 (3) (2019) 284–290,
http://dx.doi.org/10.31349/revmexfis.65.284, Publisher: Sociedad Mexicana de Física.

[56] K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: The use of diffusion tensor imaging (DTI) data to predict the
anisotropic pathways of cancer invasion, J. Theoret. Biol. 323 (2013) 25–39, http://dx.doi.org/10.1016/j.jtbi.2013.01.014, Publisher:
Elsevier.

[57] R. Pregla, W. Pascher, et al., The method of lines, in: Numerical Techniques for Microwave and Millimeter Wave Passive Structures,
Vol. 1, Wiley, New York, 1989, pp. 381–446.

[58] A.E.B. Pupo, L.E.B. Cabrales, R.P. Jiménez, Electrotherapy on Cancer: experiment and Mathematical Modeling, Citeseer, 2011,
http://dx.doi.org/10.5772/25765.

[59] A.E.B. Pupo, M.M. González, L.E.B. Cabrales, J.B. Reyes, E.J.R. Oria, J.J.G. Nava, R.P. Jiménez, F.M. Sánchez, H.M.C. Ciria, J.M.B.
Cabrales, 3D current density in tumors and surrounding healthy tissues generated by a system of straight electrode arrays, Math.
Comput. Simulation 138 (2017) 49–64, http://dx.doi.org/10.1016/j.matcom.2017.01.004, Publisher: Elsevier.

[60] A. Rizwan, S.K. Paidi, C. Zheng, M. Cheng, I. Barman, K. Glunde, Mapping the genetic basis of breast microcalcifications and their
role in metastasis, Sci. Rep. 8 (1) (2018) 1–10, http://dx.doi.org/10.1038/s41598-018-29330-9, Publisher: Nature Publishing Group.

[61] T. Roque, L. Risser, V. Kersemans, S. Smart, D. Allen, P. Kinchesh, S. Gilchrist, A.L. Gomes, J.A. Schnabel, M.A. Chappell,
A DCE-MRI driven 3-D reaction-diffusion model of solid tumor growth, IEEE Trans. Med. Imaging 37 (3) (2017) 724–732,
http://dx.doi.org/10.1109/TMI.2017.2779811, Publisher: IEEE.

[62] M.B. Sano, M.R. DeWitt, S.D. Teeter, L. Xing, Optimization of a single insertion electrode array for the creation of clinically
relevant ablations using high-frequency irreversible electroporation, Comput. Biol. Med. 95 (2018) 107–117, http://dx.doi.org/10.1016/
j.compbiomed.2018.02.009, Publisher: Elsevier.

[63] I. Saénz-de Santa-María, L. Celada, M.-D. Chiara, The leader position of mesenchymal cells expressing N-Cadherin in the collective
migration of epithelial cancer, Cells 9 (3) (2020) 731, http://dx.doi.org/10.3390/cells9030731, Publisher: Multidisciplinary Digital
Publishing Institute.

[64] W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Elsevier, 2012.
[65] F.C. Schmeel, Variability in Quantitative Diffusion-Weighted MR Imaging (DWI) Across Different Scanners and Imaging Sites: Is

There a Potential Consensus that Can Help Reducing the Limits of Expected Bias? Springer, 2019, http://dx.doi.org/10.1007/s00330-
018-5866-4.
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