000124451 001__ 124451
000124451 005__ 20241125101150.0
000124451 0247_ $$2doi$$a10.1007/s00009-022-02242-9
000124451 0248_ $$2sideral$$a132841
000124451 037__ $$aART-2023-132841
000124451 041__ $$aeng
000124451 100__ $$0(orcid)0000-0003-4847-0493$$aNavascués, M.A.$$uUniversidad de Zaragoza
000124451 245__ $$aNon-Stationary a-Fractal Surfaces
000124451 260__ $$c2023
000124451 5060_ $$aAccess copy available to the general public$$fUnrestricted
000124451 5203_ $$aIn this paper, we define non-stationary fractal interpolation surfaces on a rectangular domain and give some upper bounds for their fractal dimension. Next, we define a fractal operator associated with the non-stationary fractal surfaces, and study some properties of it. In particular, we hint at the existence of a Schauder basis consisting of non-stationary fractal functions.
000124451 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000124451 590__ $$a1.1$$b2023
000124451 592__ $$a0.604$$b2023
000124451 591__ $$aMATHEMATICS$$b98 / 490 = 0.2$$c2023$$dQ1$$eT1
000124451 593__ $$aMathematics (miscellaneous)$$c2023$$dQ2
000124451 591__ $$aMATHEMATICS, APPLIED$$b163 / 332 = 0.491$$c2023$$dQ2$$eT2
000124451 594__ $$a1.8$$b2023
000124451 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000124451 700__ $$aVerma, S.
000124451 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000124451 773__ $$g20, 1 (2023), 48 [18 pp.]$$pMediterranean Journal of Mathematics$$tMediterranean Journal of Mathematics$$x1660-5446
000124451 8564_ $$s452891$$uhttps://zaguan.unizar.es/record/124451/files/texto_completo.pdf$$yVersión publicada
000124451 8564_ $$s1386651$$uhttps://zaguan.unizar.es/record/124451/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000124451 909CO $$ooai:zaguan.unizar.es:124451$$particulos$$pdriver
000124451 951__ $$a2024-11-22-12:06:42
000124451 980__ $$aARTICLE