000124462 001__ 124462 000124462 005__ 20240731103401.0 000124462 0247_ $$2doi$$a10.1088/1755-1315/1136/1/012037 000124462 0248_ $$2sideral$$a132836 000124462 037__ $$aART-2023-132836 000124462 041__ $$aeng 000124462 100__ $$0(orcid)0000-0001-8221-523X$$aEcheverribar, I. 000124462 245__ $$aA model for computing thermally-driven shallow flows 000124462 260__ $$c2023 000124462 5060_ $$aAccess copy available to the general public$$fUnrestricted 000124462 5203_ $$aIn many natural disasters such as overland oil spills or lava flows, physical fluid properties as density change when considering non-homogeneous spatial and time variable distributions of the temperature. This effect is even more remarkable when these flows show a non-Newtonian behaviour due to the sensitivity of their rheological properties as viscosity or yield stress to temperature. In these cases, temperature becomes a significant variable that drives the fluid behaviour, which must be solved using an energy equation coupled with the free surface flow system. Special attention is devoted to thermal source terms which must include all the heat fluid exchanges, and their modelling sometimes can govern the complete flow behaviour. Fluid density, viscosity and yield stress, also affected by temperature, must be recomputed every time step. Summarizing, this work presents a 2D free surface flow model considering density and temperature variations, which could even modify viscosity and yield stress, with heat transfer mechanisms. The model is applied to oil spill overland simulations and heating/cooling test cases are carried out to ensure the system energy balance. As conclusions, it can be said that the numerical results demonstrate the importance of the heat exchange effects and those of the density, viscosity and yield stress variations. 000124462 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T32-20R$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00 000124462 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000124462 592__ $$a0.199$$b2023 000124462 593__ $$aEarth and Planetary Sciences (miscellaneous)$$c2023 000124462 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023 000124462 593__ $$aEnvironmental Science (miscellaneous)$$c2023 000124462 594__ $$a1.0$$b2023 000124462 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000124462 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza 000124462 700__ $$0(orcid)0000-0002-3635-6223$$aFernández-Pato, J.$$uUniversidad de Zaragoza 000124462 700__ $$aGarcía, R. 000124462 700__ $$0(orcid)0000-0002-0415-0001$$aBrufau, P.$$uUniversidad de Zaragoza 000124462 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza 000124462 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos 000124462 773__ $$g1136 (2023), 012037[8 pp.]$$pIOP conf. ser. Earth environ. sci.$$tIOP Conference Series: Earth and Environmental Science$$x1755-1307 000124462 8564_ $$s1053944$$uhttps://zaguan.unizar.es/record/124462/files/texto_completo.pdf$$yVersión publicada 000124462 8564_ $$s1163079$$uhttps://zaguan.unizar.es/record/124462/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000124462 909CO $$ooai:zaguan.unizar.es:124462$$particulos$$pdriver 000124462 951__ $$a2024-07-31-09:59:12 000124462 980__ $$aARTICLE