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RESUMEN

Los algoritmos de Aprendizaje Automático/Machine Learning tradicionales procesan

la información recibida asumiendo una distribución estacionaria subyacente. Por ejemplo,

los modelos predictivos se entrenan con conjuntos históricos de datos en forma de (input,

output) o (variables predictivas, variables objetivo), de forma que puedan ser usados para

obtener predicciones sobre nuevos datos. Sin embargo, resulta habitual que estos nuevos datos

lleguen en forma de flujos/streams, produciendo gran cantidad de información a analizar

cuyo contenido es susceptible de evolucionar en el tiempo. Esto conlleva un cambio entre

la distribución de los datos inicial (con los que entrenamos los modelos pertinentes) y la

distribución de las nuevas instancias de datos que se reciben a lo largo del tiempo, fenómeno

que se conoce como concept drift. Dado que puede afectar al rendimiento de los modelos, es

de vital importancia la detección de concept drift y posterior adaptación para mantener la

precisión requerida.

ABSTRACT

Traditional Machine Learning models assume that data is drawn from a stationary

distribution. For instance, predictive models are trained using historical data given as a

set of pairs (input, output) so they can be afterwards applied for predicting the output for

new unseen input data. However, very often data comes in the form of streams, resulting in

large volumes of data, whose content is changing and evolving over time. This results in a

change between the distributions of training data seen so-far and the distribution of newly

coming data, which is known as concept drift. Because it can affect our model’s predictive

performance it is of utmost importance to detect and adapt to concept drifts in order to

maintain the accuracy and reliability of our predictions.
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Índice

1. Introducción 1

2. Machine Learning:

Definiciones Previas 3

2.1. Aprendizaje Supervisado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Regresión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2. Clasificación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Aprendizaje No Supervisado . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Aprendizaje Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Concept Drift:

Definición, Detección y Adaptación 9

3.1. Tipos de Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Detección de Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1. Análisis secuencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2. Control estad́ıstico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3. Análisis de distribuciones . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. Adaptación en presencia de Concept Drift . . . . . . . . . . . . . . . . . . . . 19

3.3.1. Adaptación pasiva/blind . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2. Adaptación activa/informed . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Casos Prácticos:

Regresión 21

4.1. Regresión Lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2. Abrupt Concept Drift (Dataset II) . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1. Adaptación activa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2. Adaptación pasiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3. Gradual Concept Drift (Dataset III) . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1. Adaptación Activa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2. Adaptación Pasiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

III



5. Casos Prácticos:
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Caṕıtulo 1

Introducción

Desde hace unos años y de forma cada vez más frecuente, encontramos que gran

parte de la información disponible llega a nosotros en forma de flujos/streams1, debido

fundamentalmente a la prevalencia de la telefońıa móvil y el Internet of Things (IoT)2.

La técnicas de Aprendizaje Automático o Machine Learning tradicionales asumen que los

procesos que generan tales datos son estacionarios, siguiendo por tanto una distribución de

probabilidad fija aunque desconocida, y se crean aśı algoritmos y modelos predictivos con esa

base. No obstante, en la mayoŕıa de escenarios con que uno se encuentra en el mundo real

tal asunción resulta incorrecta. Efectivamente, el proceso generativo es intŕınsecamente no

estacionario y se producen en cambios en la relación existente entre la variable que el modelo

busca predecir y el resto de datos que usa para ello. Este problema se conoce como concept

drift y puede conllevar una degradación significativa en la capacidad predictiva.

En este trabajo centramos la atención en hacer una caracterización matemática tanto del

concept como del concept drift, tal y como se definen en el estado del arte referente al tema.

Continuaremos el estudio analizando los métodos y algoritmos más utilizados, acompañados

de su aplicación sobre ciertos conjuntos de datos de naturaleza sintética.

Los contenidos desarrollados se estructuran como sigue. En el Caṕıtulo 2 se introduce el

Aprendizaje Automático o Machine Learning y se establecen las principales definiciones

que permitirán avanzar en la lectura. El Caṕıtulo 3 introduce formalmente el concept drift,

con su tipoloǵıa y la metodoloǵıa comunmente seguida para su detección y adaptación. Un

ejemplo práctico del tratamiento con concept drift se trata para el caso de regresión en el

Caṕıtulo 4 y para clasificación en el Caṕıtulo 5, expandiendo aśı todo lo expuesto en caṕıtulos

anteriores. Finalmente en el Caṕıtulo 6 se incluyen las conclusiones obtenidas y se establecen

las directivas a seguir de cara a continuar el trabajo en un futuro.

1Toda secuencia continua y ordenada (a través de un ı́ndice temporal o timestamp) de datos se conoce
como flujo de datos/data stream. Resulta imposible controlar el orden de llegada de las diferentes instancias
y dada su extensión puede ser imposible tratarlos en su totalidad; son grandes cantidades de datos que llegan
con elevada frecuencia.

2El Internet of Things (IoT)[1] describe objetos f́ısicos (o conjuntos de ellos) con diferentes sensores,
capacidad de procesamiento, software y otras tecnoloǵıas que les permitan conectarse e intercambiar datos e
información con otros dispositivos y sistemas a través de internet u otras redes de comunicaciones.
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Caṕıtulo 2

Machine Learning:
Definiciones Previas

Podemos definir el Aprendizaje Automático o Machine Learning[2] (ML) como el

subcampo de las ciencias de computación y una rama de la Inteligencia Artificial, Artificial

Intelligence (AI), cuyo objetivo es desarrollar técnicas y algoritmos capaces de “aprender”.

Es decir, técnicas y algoritmos con la capacidad de aprovechar la información proporcionada

por los datos tratados con el objetivo de mejorar el rendimiento de ciertas tareas, como puede

ser la obtención de predicciones precisas.

Puesto que el éxito obtenido con los diferentes algoritmos de aprendizaje depende en gran

medida de los datos empleados, el machine learning muestra una profunda relación con el

campo de la anaĺıtica de datos y la estad́ıstica matemática. Es más, las técnicas empleadas

se basan en el tratamiento de datos combinando conceptos fundamentales de computación

con estad́ıstica, probabilidad y optimización.

Antes de proseguir resulta conveniente establecer una serie de definiciones previas:

− Instancias/ observaciones. Son cada uno los elementos individuales del conjunto de datos

usados en las diferentes labores de aprendizaje, validación de modelos... Considerando

los datos en forma de tabla, cada fila corresponde a una instancia individual.

− Features/ variables predictoras/ explicativas/ independientes o covariables. El conjunto

de atributos o caracteŕısticas asociados a cada instancia; en el caso tabular estaŕıan

representadas por columnas.

Matemáticamente las representamos con el vector x ∈ X , siendo X el conjunto de todos

sus posibles valores.

− Etiquetas/ labels/ variables objetivo. Son valores/clases asociados a cada instancia

y, dado un modelo predictivo, es aquello que buscamos obtener/predecir. En

representación tabular pueden verse como una columna (o columnas) de especial

importancia; aunque en ocasiones se consideran por separado.

3



Generalmente trataremos con un único valor por instancia y matemáticamente quedan

representadas, en una dimensión, por y ∈ Y, con Y el conjunto de sus posibles valores.

− Hiperparámetros. Parámetros libres θ asociados al algoritmo (en algunos casos no hay)

que permiten controlar el proceso de aprendizaje. Por ejemplo, en el caso de una red

neuronal, los hiperparámetros definen el número de neuronas y el tamaño de la red.

Se distinguen del resto de parámetros en que los valores de estos últimos se derivan del

ajuste sobre los datos del conjunto de entrenamiento.

− Conjunto de entrenamiento. Conjunto de instancias usado en la fase de entrenamiento

del algoritmo para ajustar los diferentes parámetros, como pueden ser los coeficientes

de un modelo de regresión lineal1.

− Conjunto de validación. Este conjunto de instancias se emplea durante la fase de

entrenamiento para evaluar el ajuste de los parámetros, aśı como para elegir los valores

óptimos de los hiperparámetros. Usando las etiquetas de cada instancia, se toman

aquellos valores que ofrecen los mejores resultados predictivos.

− Conjunto de prueba/ test. Conjunto de instancias utilizado para medir la

calidad/rendimiento del algoritmo de aprendizaje una vez definidos los valores de los

diferentes parámetros e hiperparámetros. Se comparan aśı las predicciones sobre cada

instancia con su respectiva etiqueta.

A diferencia del conjunto de validación no esta disponible en la fase de entrenamiento.

− Función de pérdida. Función que mide la diferencia (o pérdida) entre la predicción

asociada a cada instancia y su respectiva etiqueta. Sea Ŷ el conjunto de todos los

posibles valores de las predicciones, ŷ ∈ Ŷ (normalmente Ŷ = Y), la función de pérdida

establece entonces la aplicación

L : Y × Ŷ −→ R+

(y, ŷ) −→ L(y, ŷ)

Notar que siempre es mayor o igual que 0 (no consideramos pérdidas negativas).

Se muestran ejemplos de estas funciones en secciones posteriores.

− Conjunto de hipótesis. Conjunto H de funciones que relacionan las features x con las

etiquetas predichas, ŷ. Identificamos aśı cada hipótesis con una aplicación de X en Ŷ

h : X −→ Ŷ

x −→ ŷ = h(x)

1Se desarrollará más adelante, en la Sección 4.1
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Machine learning trata fundamentalmente la generalización. Aśı, el problema t́ıpico de

aprendizaje consiste en elegir una función de las del conjunto de hipótesis (la más adecuada)

con el objetivo de etiquetar todas las instancias, incluidas aquellas más recientes y no

consideradas en el conjunto de entrenamiento/validación o prueba.

Aśı mismo, podemos establecer diferentes escenarios en función de cómo se lleve a cabo

la labor de aprendizaje. Efectivamente, en función de cómo se presente la información

inicialmente disponible, aśı como el orden y la forma en que vayan llegando nuevos datos

distinguimos principalmente los siguientes casos.

2.1. Aprendizaje Supervisado

En este escenario, el algoritmo de aprendizaje recibe un conjunto inicial de datos que

incluye los valores reales de la variable que buscamos predecir (las etiquetas reales). Este

conjunto se divide en los diferentes subconjuntos de entrenamiento, validación y prueba2 y

con ello se determinan los valores de los diferentes parámetros e hiperparámetros. Obtenemos

aśı un modelo que permite obtener predicciones sobre el conjunto de prueba, ofreciendo

información sobre el rendimiento de nuestro algoritmo mediante una función de pérdida.

Una vez entrenado, validado y probado/testeado, el algoritmo se emplea para obtener

predicciones a partir de los nuevos datos que van llegando. Dentro del escenario supervisado

se distinguen principalmente los casos de regresión y clasificación.

2.1.1. Regresión

En problemas de regresión, la etiqueta de cada instancia toma valores reales en un

continuo. En estos casos suele considerarse una función de pérdida cuadrática, que para

un instancia i toma la expresión

L(yi, ŷi) = (ŷi − yi)
2 . (2.1)

Como ejemplo podemos encontrar la predicción de variables meteorológicas, aśı como la

producción de enerǵıa solar o eólica.

2.1.2. Clasificación

En este caso, la etiqueta y asociada a cada instancia es una variable categórica y por

consiguiente toma valores discretos, correspondientes a cada una de las diferentes clases. En

este tipo de problemas resulta muy común hacer uso de la función de perdida 0-1, que para

2El tamaño de cada conjunto depende de diversas consideraciones, como puede ser el número de
hiperparámetros del modelo. No obstante, como norma general, se suele definir un tamaño para el conjunto
de entrenamiento sensiblemente superior al del resto.
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una instancia i queda definida como sigue

L(yi, ŷi) =

{
0 si yi = ŷi ,

1 si yi ̸= ŷi ,
(2.2)

es decir, la pérdida es nula si la predicción de clase es correcta y vale 1 si es incorrecta. Notar

que en el caso de tratar múltiples clases, la pérdida es la misma indiferentemente de qué clase

sea predicha, con tal de que no sea la correcta.

Como ejemplo de este tipo de problemas puede considerarse la clasificación de correo como

spam o no spam. En este caso la clasificación es binaria (dos clases).

2.2. Aprendizaje No Supervisado

Al contrario que los problemas de aprendizaje supervisado, donde los datos que se

usan en el entrenamiento del algoritmo están previamente etiquetados, en aprendizaje

no supervisado el conjunto inicial que recibe el algoritmo no incluye las etiquetas reales

asociadas a cada instancia. Por tanto, el objetivo de estas técnicas de aprendizaje se centra

en encontrar patrones o asociaciones entre los diferentes datos (o variables).

Entre los problemas aśı tratados encontramos el clustering[3], que consiste en particionar

las instancias en diferentes subconjuntos homogéneos (clusters). Se comienza “a ciegas” y

dado el conjunto de datos, se trata de encontrar tanto el número de clases en las que se

podŕıan agrupar las instancias (no siempre están predefinidas) como el número de ellas

que pertenecen a cada clase. Dada la falta de etiquetas puede resultar complicado medir

el rendimiento del algoritmo debiendo recurrir a argumentos heuŕısticos (subjetivos) para

validarlo. Como ejemplo podemos considerar el caso del análisis de redes sociales, donde

se intenta agrupar a gran cantidad de gente en diferentes comunidades más reducidas (los

clústeres) según su comportamiento.

Aśı mismo, se utilizan técnicas de aprendizaje no supervisado para reducir la dimensionalidad

de un problema agrupando variables.

A medio camino entre el aprendizaje supervisado y el no supervisado encontramos el caso

del aprendizaje semi-supervisado, mezclando instancias con y sin etiquetas. El objetivo en

este caso es hacer predicciones para toda instancia. Por otro lado, también podemos distinguir

el caso en que el conjunto de entrenamiento/validación presenta etiquetas mientras que en el

conjunto de prueba están ausentes. El objetivo se centra en predecir únicamente sobre este

último y se conoce como transductive inference.
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2.3. Aprendizaje Online

En contraste con los escenarios de aprendizaje definidos con anterioridad, en el

caso del aprendizaje online[4, 5] se suceden numerosas etapas (se pueden asociar con

instantes temporales) en las que las fases de entrenamiento y prueba/testeo se encuentran

interconectadas. De esta forma, en cada etapa el algoritmo recibe una instancia (o más de

una) sin su etiqueta correspondiente, se realiza una predicción y al recibir el valor real se

puede medir la pérdida cometida. El objetivo en esta situación consiste en minimizar la

pérdida acumulada a lo largo de las diferentes etapas.

Surge como una solución para tratar con grandes conjuntos de datos, como puede ser el caso

de los flujos de datos/data streams, en los que nuevas instancias van llegando a velocidades

tan elevadas que pueden complicar el análisis. Es este el escenario en que centraremos nuestra

atención en caṕıtulos posteriores. Estos métodos cumplimentan a aquellos más tradicionales

(offline o batch3 learning) tratados anteriormente, en los que el conjunto de datos empleado

para entrenar nuestro modelo es inmutable. Es decir, los datos se encuentran disponibles

desde el primer momento y el modelo se entrena aśı una única vez. Por el contrario, en

el aprendizaje online, los datos se procesan de forma secuencial, creando aśı un modelo

inicial sin disponer de todo el conjunto de entrenamiento. Con el transcurso del tiempo van

llegando nuevas instancias que se emplean para actualizar el modelo.

Otro escenario en el que se mezcla entrenamiento y prueba es el de aprendizaje por

refuerzo o reinforcement learning. En este caso el algoritmo interacciona de forma activa con

el entorno en el que se encuentra desplegado (pudiendo llegar a afectarle) y tras cada acción

realizada recibe información de éste en forma de alguna noción de “recompensa”. El objetivo

es entonces maximizar esta recompensa, acumulada a lo largo de las diferentes acciones.

3Entendiendo por batch un conjunto de múltiples instancias.
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Caṕıtulo 3

Concept Drift:
Definición, Detección y Adaptación

Con todo lo expuesto en la sección anterior, hemos establecido las bases para proseguir

nuestros desarrollos. Concretamente centramos nuestra atención en el problema del concept

drift, ligado a la no estacionariedad de los escenarios de aprendizaje online.

Comenzamos definiendo qué se entiende por concept. Recurrimos aśı al marco de aprendizaje

PAC (Probably Approximately Correct)1 y expresamos concept como la aplicación de X en Y

c : X −→ Y

x −→ y = c(x)
(3.1)

Es decir, relaciona las etiquetas reales con las features de cada instancia. No obstante,

muchos autores adoptan una definición probabiĺıstica del término concept, asociándolo a

la distribución de probabilidad conjunta, p(x, y), especialmente popular en tratados sobre

concept drift [6, 7, 8, 9, 10].

Con esta definición podemos tratar el caso más general de aprendizaje supervisado, donde

se asume la existencia de una distribución fija y desconocida D, definida sobre X × Y. Es

decir, D define la distribución de probabilidad conjunta p(x, y) y el conjunto de entrenamiento

consiste en una muestra S de variables independientes e idénticamente distribuidas (i.i.d.)

según D

S = {(x1, y1), ..., (xm, ym)} .

Las etiquetas están definidas por un concept c tal que yi = c(xi), con i = 1, ...,m. Notar

aśı la estrecha realción entre c y p(x, y) y podemos interpretar concept como el conjunto de

instancias/datos cuya distribución de probabilidad subyacente es estacionaria.

1El aprendizaje PAC (Probably Approximately Correct) permite establecer un marco de referencia para el
análisis matemático de las técnicas tratadas en Machine Learning.
En este escrito utilizaremos algunos resultados básicos pero si se desea disponer de información más detallada
al respecto recomendamos consultar otras fuentes[2]. Este libro de referencia cubre los principales temas y
tópicos del machine learning más actual, proporcionando las bases y fundamentos teóricos necesarios para
nuestros posteriores desarrollos.
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En la labor de aprendizaje se considera el conjunto H de posibles hipótesis y se usa la muestra

S para elegir aquella hipótesis h ∈ H que resulte en un menor error de generalización respecto

al concept c, R(h), definido como

R(h) = P
(x, y)∼D

[h(x) ̸= c(x)] = E
(x, y)∼D

[L(h(x), c(x))] = E
(x, y)∼D

[L(ŷ, y)] , (3.2)

siendo L (y, ŷ) una función de perdida. El desconocimiento tanto del concept c como de la

distribución D nos impide obtener el valor de R(h). Sin embargo, podemos hallar el error

emṕırico sobre S definido como

R̂S(h) =
1

m

m∑
i=1

L(h(xi), c(xi)) =
1

m

m∑
i=1

L(ŷi, yi) . (3.3)

El error emṕırico de h es el promedio de la pérdida cometida al aplicar la hipótesis sobre la

muestra S mientras que el error de generalización es el valor esperado de la pérdida basado

en la distribución D. Aśı, el en el caso de regresión con (2.1), R̂S(h) representaŕıa el error

cuadrático medio o Mean Squared Error. En el caso de clasificación, usando (2.2) la expresión

anterior daŕıa cuenta del cociente entre clasificaciones erróneas y clasificaciones totales.

Por contraste, en el aprendizaje online se mezclan las fases de entrenamiento y prueba

y no se asume ninguna distribución estacionaria D. Aśı mismo, en vez de disponer de una

muestra inicial fija S, consideramos que en cada etapa t el algoritmo recibe datos en forma

de tuplas St = {(xt, yt)}. Procediendo aśı, consideremos T etapas, de forma que en la etapa

t-ésima el algoritmo recibe una instancia con sus correspondientes features xt y realiza una

predicción ŷt. Antes de la etapa t+1, es decir, antes de disponer de xt+1, el algoritmo recibe

el valor real yt e incurre una pérdida L(ŷt, yt). Esta información es usada por el algoritmo en

el aprendizaje con el objetivo de minimizar la pérdida acumulada a lo largo de las sucesivas

etapas, que escribimos como

LT =
T∑
t=1

L(ŷt, yt) . (3.4)

Como antes, yt = ct(xt), aunque en este caso denotamos el concept en cada etapa con el

respectivo sub́ındice t, indicando que puede variar (en escenarios offline solo se considera un

único concept). Efectivamente, el flujo de datos/data stream toma la forma de una sucesión,

{St}, de longitud potencialmente infinita y no es realista considerar que el concept es el

mismo en todas las etapas. Del mismo modo, al no hacer asunciones sobre la estacionariedad

de la distribución subyacente, asumimos la posibilidad que ésta puede cambiar con el tiempo,

especialmente en entornos con alta variabilidad y donde prima la no estacionariedad, dando

lugar al problema del concept drift.

Notar que siempre disponemos de las valores reales de las etiquetas asociadas a cada

instancia, aunque sea con posterioridad a realizar cada predicción. Por tanto, hay algunos
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autores[7] que enmarcan el concept drift dentro de un escenario de aprendizaje online

supervisado. Ambos casos se refieren a lo mismo, tratando además problemas tanto de

clasificación como de regresión, aunque este último caso no se encuentra tan desarrollado,

de modo que escasea la literatura al respecto. Con motivos de remediar esta situación,

en posteriores caṕıtulos trataremos de analizar casos de regresión en presencia de concept drift.

Usando la definición de concept más habitual, como distribución de probabilidad conjunta

p(x, y), el concept drift entre dos etapas o instantes de tiempo t y t + 1 puede expresarse

formalmente

∃x : pt(x , y) ̸= pt+1(x , y) , (3.5)

donde pt(x , y) y pt+1(x , y) definen las distribuciones conjuntas en sendas etapas/instantes

temporales. Entonces, como podemos descomponer p(x , y) = p(x) p(y |x), cambios en los

datos analizados pueden caracterizarse como cambios en las componentes de esta relación,

estableciendo la siguiente clasificación:

− Real Concept Drift. Se refiere a cambios en p(y |x), que pueden venir acompañados o

no de cambios en p(x)

pt(x) = pt+1(x) ∧ pt(y |x) ̸= pt+1(y |x)

ó

pt(x) ̸= pt+1(x) ∧ pt(y |x) ̸= pt+1(y |x) .

(3.6)

Causan un deterioro de la capacidad predictiva del modelo y por tanto requieren de

actuación inmediata.

− Virtual Concept Drift. Se refiere a cambios en p(x) sin afectar a p(y |x). Es decir

pt(x) ̸= pt+1(x) ∧ pt(y |x) = pt+1(y |x) . (3.7)

Estos cambios no afectan a la capacidad predictiva y por tanto, en la práctica no es

estrictamente necesario su tratamiento. Sin embargo, puede resultar instructivo para

comprender como se comportan los datos con el paso del tiempo.

Como ejemplo para facilitar la compresión podemos remitirnos al caso de una

aplicación/plataforma de entretenimiento con la función de recomendar programas y series de

televisión, aśı como peĺıculas, a sus usuarios en base las preferencias de cada uno (como puede

ser el caso de Netflix). Según esto, para un cierto usuario, los programas de la plataforma

se clasificarán en interesantes o no interesantes (variable objetivo predicha ŷ) según las

caracteŕısticas de los mismos (variables predictoras x: el género, la duración...). Aśı, por cada

elección que realiza el usuario (en cada etapa), el algoritmo recibe un feedback estableciendo
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si efectivamente era de su gusto o no (llegada del valor real y) y el modelo aprende para

realizar posteriores sugerencias (predicciones en etapas posteriores).

Asumamos por ejemplo que el algoritmo establece como no interesantes aquellos contenidos

audiovisuales cuya duración sea inferior a 40 minutos, como es el caso de muchas series. Esto

es indicativo de la preferencia del usuario por las series más extensas o peĺıculas y podemos

plantear los siguientes escenarios:

− Si el usuario últimamente solo consume peĺıculas dado que dispone de más tiempo

de ocio, la distribución de las caracteŕısticas del material consumido experimentará un

cambio en la variable que define la duración (cambio en p(x)). No obstante, la restricción

anterior sigue siendo totalmente válida pues la gran mayoŕıa de peĺıculas superan los 40

minutos de duración y por tanto no hay cambio en las predicciones (no cambia p(y |x)).

Estamos ante virtual concept drift.

− Si por el contrario el usuario comienza a ver más series cortas por falta de tiempo,

entonces tenemos de nuevo cambio en p(x), pero la restricción anterior pierde su validez.

Por tanto cambia p(y |x) y estamos ante real concept drift. Por otro lado, puede ser

que un mismo usuario, sin modificar sus preferencias, le permita elegir qué contenido

visualizar a un tercero. Estamos por tanto ante una persona con gustos que pueden ser

muy diferentes e incluso aunque no vaŕıe p(x), el cambio puede ser notable en p(y |x).

Con este ejemplo resulta fácil entender la importancia que tiene la detección del concept

drift aśı como su adecuado tratamiento en el mantenimiento de los modelos predictivos. No

obstante, encontramos que su utilidad se extiende a ámbitos de diversa ı́ndole, como pueden

ser los campos de la medicina, la industria o la educación.

En nuestro caso, el entorno industrial resulta unos de los principales focos de atención y

por tanto, el tratamiento del concept drift tiene gran uso en el control y monitorización.

Podemos considerar aśı el tratamiento de las medidas proporcionadas por diferentes sensores,

donde la detección del drift puede llegar a evitar problemas en gran variedad de procesos

industriales e incluso llegar a indicar un deterioro en el propio sensor (con una consecuente

pérdida tanto de información como monetaria).

3.1. Tipos de Concept Drift

Una vez comprendido mejor qué se entiende por concept drift resulta interesante estudiar

la tipoloǵıa de cambios que engloba. Aśı, atendiendo a la velocidad con la que ocurre el

concept drift, comúnmente se establece una división en diferentes tipos[7, 8, 11], como se

indica en la Figura 3.1:
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(a) Abrupt Concept Drift/ Concept Drift Abrupto. En muy pocas instancias el nuevo

concept reemplaza al ya establecido. La precisión se degrada rápidamente.

(b) Gradual Concept Drift/ Concept Drift Gradual. Cuando el nuevo concept reemplaza

al anterior a lo largo de un periodo ciertamente extenso; progresivamente encontramos

más ocurrencias del nuevo concept y menos de las del antiguo. Es decir, las instancias

se generan a partir de una mezcla de concepts hasta que, normalmente, terminan por

predominar instancias de un solo concept.

(c) Incremental Concept Drift/ Concept Drift Incremental. Aparecen concepts intermedios

en el cambio del concept inicial al final. Se caracterizan por ser los drifts más lentos.

(d) Recurring Concept Drift/ Concept Drift Recurrente. Cuando un concept que se dio con

anterioridad vuelve a estar presente tras cierto tiempo. No confundir con estacionalidad

pues no es periódico; el drift es impredecible.

También resulta importante considerar

(e) Blips. Son cambios muy repentinos en el concept (anomaĺıa). Pueden interpretarse como

outliers en una distribución estacionaria de datos.

(f) Noise/ Ruido. Se tratan de desviaciones aleatorias en el concept que deben ser

debidamente filtradas.

Estos dos últimos casos no suponen concept drift y por lo tanto no se consideran dentro

de la tipoloǵıa. No obstante, su correcto tratamiento resulta indispensable para el correcto

funcionamiento de nuestros algoritmos.

Figura 3.1: Tipos de concept drift atendiendo a la velocidad. Imagen adaptada[11].
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3.2. Detección de Concept Drift

Hemos visto como la no estacionariedad de la distribución subyacente implica cambios

en el concept que nuestro algoritmo intenta “aprender” dando lugar al problema del concept

drift. En esta situación no resulta conveniente hacer uso de las métricas más tradicionales,

estableciendo un conjunto de prueba sobre el que evaluar el error emṕırico (3.3). Puesto que

las predicciones se realizan de forma secuencial, de etapa en etapa, únicamente disponemos

de la pérdida acumulada al final de cada una (3.4). Este enfoque predictivo secuencial o

precuencial (prequential)[12] nos lleva a calcular el error del algoritmo a partir de esta suma.

Aśı, dado St = {(xt, yt)} en una etapa t ≥ 1 computamos la función de pérdida, L (yt, ŷt), y

el error precuencial se define como

Pe(t) =
1

t

t∑
k=1

L (yk, ŷk) , (3.8)

o de forma iterativa, puesto que hay situaciones en las que no es posible disponer de todas

las predicciones de etapas anteriores (por ejemplo si hay poca memoria disponible)

Pe(t) =
L (yt, ŷt) + (t− 1)Pe(t− 1)

t
, con Pe(t = 0) = 0 . (3.9)

De este modo, la evaluación precuencial permite monitorizar cómo evoluciona el aprendizaje

del modelo, ofreciendo cierta robustez frente al ruido y potenciales outliers.

Sin embargo, el error precuencial, calculado de esta forma puede estar altamente influenciado

por las predicciones realizadas en las primeras etapas, comprometiendo nuestros resultados.

Esto es especialmente notable en aquellos algoritmos incrementales, donde el modelo inicial

se obtiene a partir de una muestra de tamaño reducido y se va actualizando en cada etapa.

Es por ello que resulta interesante computar el error cometido implementando algún tipo de

mecanismo que permita “olvidar aquella información más antigua”. Esto puede conseguirse

mediante el uso de ventanas (windowing), que permiten hacer particiones del conjunto de

datos total en diferentes subconjuntos, cuyo tamaño puede variar. Aśı, asumiendo una ventana

de tamaño w, el error se expresa como

Pw(t) =
1

w

t∑
k=t−w+1

L (yk, ŷk) . (3.10)

En este caso resulta conviente mantener en memoria al menos un número de datos recientes

igual al tamaño de la ventana considerada w.

Otra forma consiste en usar factores α que permitan dar menor peso conforme más antigua

es la predicción. Se conocen como fading factors y el error se expresa

Pα(t) =

t∑
k=1

αt−k L (yk, ŷk)

t∑
k=1

αt−k

, con 0 ≪ α ≤ 1 , (3.11)
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o de forma iterativa

Pα(t) =
Sα(t)

Nα(t)
, (3.12)

definiendo

Sα(t) = L(yt, ŷy) + αSα(t− 1) , con S(t = 0) = 0 , (3.13)

Nα(t) = 1 + αNα(t− 1) , con N(t = 0) = 0 , (3.14)

Se ha demostrado además[12], que el error precuencial es pesimista y en problemas de

clasificación tiene como ĺımite inferior, el error bayesiano2.

Una vez definidas las métricas que permiten evaluar nuestros algoritmos en escenarios

de aprendizaje online podemos proceder a definir mecanismos que permitan una detección

expĺıcita del concept drift al monitorizar cambios en este error y por tanto cambios en p(y |x).

No existe una clasificación fija para los diferentes métodos de detección pues vaŕıa según el

autor y está en continua evolución, aunque hay que notar que en muchos casos vienen a

ser prácticamente equivalentes. Nuestro objetivo principal es la implementación de varios de

estos métodos y por ello propondremos una división en tres categoŕıas[7, 13].

3.2.1. Análisis secuencial

Se analiza la existencia de patrones en los nuevos conjuntos de datos (aquellos que van

llegando) y se generan alarmas de posible concept drift cuando el cambio en su distribución

excede un ĺımite/umbral/threshold previamente especificado.

Como ejemplo tenemos el Page-Hinkley Test [14, 15]. Este test permite analizar los

datos (errores) que van llegando de forma secuencial en el tiempo, {xt}. Se emplea t́ıpicamente

en la detección de cambios en la media de una señal gaussiana (sigue una distribución normal)

pero ofrece resultados robustos al aplicarse sobre distribuciones no gaussianas y por ello es

ciertamente usado para la detección de concept drift en flujos de datos. El test considera una

variable cumulativa mT , definida como la diferencia acumulada entre los valores observados

y su media hasta esa instancia T , es decir

mT =

T∑
t=1

(xt − x̄T − δ) , con m0 = 0 , (3.15)

donde x̄T = 1/T
∑T

t=1 xt y δ controla la magnitud de los cambios permitidos.

También guardamos el valor mı́nimo de esta variable MT = mı́n (mt , t = 0 , 1 , ..., T ), de

modo que el test monitoriza la diferencia entre ambas, mT −MT , y cuando esta supera un

cierto umbral/threshold, λ, señala un cambio en la distribución y por tanto un cambio en

el concept. El valor de este parámetro λ vendrá fijado por el usuario, de modo que un valor

2Dado un problema de clasificación, se define el clasificador bayesiano como aquella hipótesis h tal que su
error de generalización R(h) es mı́nimo. Éste es el error bayesiano, análogo al error irreducible.
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pequeño puede ocasionar falsas alarmas en la detección de concept drift mientras que un valor

mayor dará lugar a menos falsas alarmas pero puede llegar a retrasar la detección e incluso

no detectar los cambios.

3.2.2. Control estad́ıstico

Se basan en el output de los modelos midiendo las fluctuaciones en la tasa de error.

Entre los ejemplos más destacables encontramos elDrift Detection Method (DDM)[6,

7, 16], uno de los primeros algoritmos expĺıcitos desarrollados que permite la detección de

concept drift en problemas de clasificación.

Supongamos una secuencia de instancias de la forma (xi , yi), donde para cada valor de i el

modelo de decisión predice ŷi, que puede ser True (ŷi = yi) o False (ŷi ̸= yi). Para el conjunto

de instancias el error cometido en la predicción puede entenderse como una variable aleatoria

que sigue una distribución binomial y representa el número de errores en una muestra con

n datos. Aśı, por cada instancia i en esta secuencia, la tasa de error es la probabilidad de

observar False, pi, con desviación estándar dada por si =
√
pi (1− pi)/i.

De acuerdo con el marco de aprendizaje PAC (Probably Approximately Correct)[2, 17],

se asume que si la distribución subyacente de la sucesión de datos estudiada permanece

estacionaria, la tasa de error de nuestro algoritmo de clasificación, pi, disminuirá a medida

que aumente el número de instancias3. Por lo tanto, un incremento significativo en la tasa de

error sugiere un cambio en la distribución de probabilidad de la variable y (cambio de concept)

y el modelo deja de ser apropiado. Aśı mismo, con un número de datos lo suficientemente

elevado la distribución binomial se aproxima a una distribución normal (o gaussiana) con

igual media y varianza. Entonces, el intervalo de confianza 1 − δ/2 para la variable con un

número de datos suficiente (generalmente n ≥ 30) es aproximadamente pi ± α · si.

Con todo esto en mente, el método de detección del concept drift aqúı estudiado trabaja con

los valores de mı́nimos, pmı́n y smı́n, actualizándolos cuando al procesar una nueva instancia,

la suma pi + si es inferior al valor pmı́n + smı́n. Por el contrario, cuando pi + si es superior a

pmı́n + smı́n distinguimos

− pi + si ≥ pmı́n +2 · smı́n establece un nivel de confianza del 95% (δ = 0.95) para indicar

alarma/warning, es decir, se alerta de posible concept drift en las instancias siguientes.

Por ello, desde este instante, se van almacenando las instancias que van llegando en

preparación para el posible concept drift.

− pi + si ≥ pmı́n + 3 · smı́n establece un nivel de confianza del 99% (δ = 0.99) para

señalar que ha ocurrido un cambio de concept y es necesario reconsiderar el modelo de

clasificación. Aśı mismo, se reinician los valores mı́nimos pmı́n y smı́n.

3Tendiendo al error bayesiano para una sucesión infinita.
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Una vez detectado el drift, el nuevo concept se declara empezando en la instancia que primero

hizo saltar la señal de alarma y se crea un nuevo modelo de decisión usando solo estos datos

(desde la alarma hasta que se explicita la detección). Por otro lado, en caso de indicarse el

nivel de alerta seguido de un descenso en la tasa de error sin llegar a detectar drift, asumiremos

que se trata de una falsa alarma sin incurrir en cambio de concept.

También resulta interesante considerar el Early Drift Detection Method

(EDDM)[16]. Este algoritmo se basa en el anterior Drift Detection Method y se desarrolló

para mejorar la detección de concept drift gradual manteniendo un buen rendimiento en la

detección de concept drift abrupto. Principalmente consiste en monitorizar la distancia entre

errores, representada por el número de etapas entre dos malas clasificaciones consecutivas,

en lugar del número de ellas. Como con DDM, sucede que si la distribución de los datos

es estacionaria la distancia entre errores aumentará a medida que aumenta el número de

muestras analizadas, de modo que una disminución en la distancia implicará un cambio en

dicha distribución (cambio de concept). Por ello consideraremos la distancia promedio entre

errores, p′i, aśı como su desviación estándar, s′i, y guardamos los valores p′máx y s′máx que

maximizan la suma p′i + 2 · s′i. El valor p′máx + 2 · s′máx se corresponde con el punto en el que

la distribución de la distancia entre errores es máxima y es entonces donde la hipótesis del

modelo mejor se aproxima al concept. Igual que en el caso de DDM, se definen dos niveles:

− (p′i + 2 · s′i) / (p′máx + 2 · s′máx) < α define el nivel de alarma/warning, indicando que se

acerca un posible cambio de concept. Por ello, desde este instante, se van almacenando

las instancias que van llegando en preparación para el posible concept drift.

− (p′i + 2 · s′i) / (p′máx + 2 · s′máx) < β define el nivel de drift, indicando que ha ocurrido

concept drift y la necesidad de reconsiderar el modelo de clasificación empleado. Aśı

mismo, se reinician los valores máximos p′máx y s′máx para posteriores detecciones.

También se define un número mı́nimo de errores (generalmente en torno a 30 errores) previos a

la ocurrencia del concept drift. Una vez transcurrido este número mı́nimo, los diferentes niveles

se encargan de la detección, para los que se han determinado (tras cierta experimentación)

valores de los parámetros α = 0.95 y β = 0.90.

En el caso de tratarse de una falsa alarma, las instancias almacenadas terminan por ser

eliminadas y la detección continúa su curso natural.

3.2.3. Análisis de distribuciones

Generalmente se basan en dividir los datos en dos ventanas, una incluyendo aquellas

instancias más antiguas y otra con la información más reciente. Se comparan aśı las

distribuciones en cada una de estas ventanas usando test estad́ısticos con la hipótesis nula de

que ambas son idénticas. Si se detecta cambio se declara la presencia de concept drift.
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Un buen representante de esta metodoloǵıa (y probablemente uno de los más utilizados)

es el algoritmo ADaptive-WINdowing (ADWIN)[18] que consiste en tomar ventanas

móviles (sliding windows) cuyo tamaño, en vez de fijarse a priori vaŕıa en función de los

cambios observados en los datos contenidos en la propia ventana. El algoritmo aumenta de

forma automática el tamaño de la ventana (con las instancias más recientes) cuando no se

detecta ningún cambio y, en caso de detectarse, disminuye su tamaño permitiendo mantener

aquellos datos más relevantes del concept actual. La ventana considerada contiene bits o

números reales, de modo que puede usarse para monitorizar el error del modelo de predicción.

Como entrada al algoritmo tenemos un parámetro definido por el usuario que da cuenta de

la confianza δ ∈ [0 , 1] y una secuencia de valores reales {xt} posiblemente infinita. Cada

valor xt está disponible solamente a partir de la etapa/instante t y sigue una distribución

Dt (de media desconocida µt) de forma independiente para cada t. Aśı mismo asumimos que

los valores se encuentran en el intervalo [0 , 1], lo cual se cumple fácilmente imponiendo un

simple re-escalado.

Sea W la ventana móvil conteniendo valores hasta el más reciente (xt) y n su tamaño,

computamos el valor promedio (observado) de sus elementos, µ̂W , asociado al valor esperado

desconocido µt, con t = W . La idea principal consiste en que cuando dos subventanas “lo

suficientemente grandes” de W muestran promedios “lo suficientemente distintos”, podemos

concluir que los valores esperados correspondientes son diferentes y por tanto podemos

prescindir de la porción de datos más antigua de W . Para ello debemos establecer un valor

de corte, ϵcut, para toda partición de W en W0 y W1. Aśı, sean n0 y n1 sus correspondientes

tamaños (n = n0 + n1), µ̂W0 y µ̂W1 los promedios observados en cada subventana y µW0 y

µW1 los valores esperados escribimos

m =
1

1/n0 + 1/n1
, δ′ =

δ

n
, (3.16)

ϵcut =

√
1

2m
· log

(
4

δ′

)
. (3.17)

El test estad́ıstico propuesto simplemente comprueba si los promedios observados en cada

subventana difieren entre śı más de ϵcut, es decir, si su diferencia excede el umbral ϵcut

propuesto. Procediendo de este modo eliminamos los elementos más antiguos de W mientras

se cumpla |µ̂W0 − µ̂W1 | ≥ ϵcut.

En la práctica, la definición (3.17) puede resultar demasiado conservadora4. La diferencia

µW0 − µW1 tiende a una distribución normal para grandes ventanas y tomamos

ϵ′cut =

√
2

m
· σ2

W · log
(
2

δ′

)
+

2

3m
log

(
2

δ′

)
. (3.18)

4La primera definición de ϵcut está basada en la desigualdad de Hoeffding[19] y es válida para todas
las distribuciones pero tiende a sobre estimar en gran medida la probabilidad de grandes desviaciones en
distribuciones con pequeña varianza.
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3.3. Adaptación en presencia de Concept Drift

Una vez definidos algunos de los (numerosos) métodos para detectar el concept drift,

debemos estudiar las diferentes formas en que podemos afrontar la adaptación al nuevo

concept, tratando aśı con algoritmos adaptativos.

No obstante, puesto que el método de adaptación depende en gran medida del problema

tratado y esto influencia la forma en que se encuentra disponible la información usada en el

aprendizaje, resulta indispensable mencionar diferentes situaciones que pueden presentarse.

Aśı, encontramos casos en los que las instancias que llegan en cada etapa no están disponibles

en etapas posteriores, normalmente debido a la reducida memoria con la que se trabaja. Por

otro lado, pueden darse situaciones en las que la memoria del sistema permita disponer de

múltiples instancias a medida que se suceden las etapas. Entonces, puede resultar interesante

considerar algún tipo de mecanismo para mantener únicamente aquellas más recientes, pues

presentan la información más relevante. Para ello, lo más común resulta tomar ventanas

(igual que con el error precuencial) cuyo tamaño puede ser variable o fijo; aśı mismo, puede

considerarse darle menor importancia a aquellas instancias de etapas más distantes.

Una vez conscientes de las limitaciones en el tratamiento de la información, se establecen

dos enfoques de adaptación diferente que siguen los algoritmos en escenarios de aprendizaje

online con posibilidad de concept drift.

3.3.1. Adaptación pasiva/blind

Las estrategias seguidas en este contexto no buscan una detección expĺıcita del concept

drift, sino que directamente asumen que el concept es susceptible de cambiar al sucederse

las etapas. Asumen por tanto que la distribución de probabilidad de los datos cambia en el

tiempo de forma impredecible y actúan al respecto. Para adecuarse a los nuevos concepts se

realiza una adaptación continua del modelo empleado con la llegada de nueva información.

Dado que esta adaptación se extiende en el tiempo, la metodoloǵıa resulta de gran utilidad

en casos de concept drift gradual y concept drift incremental, es decir, aquellos cambios más

lentos. Distinguimos diferentes casos:

− Modelos individuales. Muy útil en casos con flujos de datos masivos dado su menor

coste computacional. Aqúı se encuentran enmarcados los algoritmos incrementales, en

los que el modelo empleado se actualiza en cada etapa t, de modo que no es necesario

mantener instancias en memoria (una forma puede ser modificando los parámetros del

modelo). Aśı mismo, también puede hacerse uso de ventanas (lo que implica almacenar

cierta cantidad de información pasada) con las que realizar un re-entrenamiento

periódico con las instancias más recientes.
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− Conjunto/ensemble de modelos. Basados en el empleo de múltiples modelos a la vez

ofrecen una combinación (ponderada/weighted) de las predicciones como resultado final.

Son más costosos computacionalmente pero proporcionan resultados más precisos y

con menos varianza y permiten una fácil incorporación de nuevos datos mediante la

adición de nuevos modelos. La adaptación tiene lugar modificando los pesos usados en

el computo de las predicciones, pudiendo ser nulos para los modelos irrelevantes.

Es importante mencionar que resultan de gran utilidad en casos de concept drift

recurrente pues puede suceder que los pesos de modelos individuales que en un concept

ofrećıan buenos resultados (y tras ocurrir el drift vean su importancia/peso reducido)

vuelvan a adquirir validez al retomarse el antiguo concept. Basta entonces con recalcular

los pesos, evitando una costosa reconstrucción/re-entrenamiento.

Aunque los algoritmos pasivos no emplean una detección expĺıcita del concept drift para

adaptarse a un entorno en continuo cambio, es interesante hacer notar que sigue siendo

totalmente válido usar los métodos de detección. Aunque no se utilicen en la adaptación,

proporcionan información muy valiosa sobre la dinámica del proceso generativo de los datos.

3.3.2. Adaptación activa/informed

Se basan en la detección expĺıcita de concept drift a través de diversos mecanismos,

algunos de los cuales se tratarion en la sección anterior. La idea principal consiste en

mantener un número significativo de instancias recientes en memoria de forma que una

vez detectado el cambio de concept se inicia una reconstrucción del modelo, usando dichas

instancias para su entrenamiento. Esto permite que el modelo se adapte correctamente al

nuevo concept y resulta especialmente adecuado para tratar concept drift abrupto puesto

que el cambio en es más fácil de detectar que en el caso de concept drift gradual.

Como ejemplo tenemos los casos de DDM y EDDM en los que al indicarse la señal de alarma

o warning, se empiezan a almacenar en memoria instancias con las que reconstruir el modelo

en caso de ocurrir el concept drift. Por otro lado ADWIN ofrece una ventana cuyo tamaño se

adapta automáticamente, permitiendo disponer en todo momento de aquellas instancias más

relevantes. En el caso del Test de Page-Hinkley, solo se indica la ocurrencia del concept drift.

En el Apéndice A se detallan los algoritmos anteriormente tratados. Aśı mismo, hemos

optado por realizar una implementación en el lenguaje de programación R (muy usado en el

Máster) de los diferentes diferentes métodos y algoritmos tratados en la sección anterior para

la detección de concept drift. Todo el código pertinente puede encontrarse en el Apéndice C.
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Caṕıtulo 4

Casos Prácticos:
Regresión

Para facilitar la comprensión de todo lo desarrollado hasta ahora aplicaremos los diferentes

métodos adaptativos en casos prácticos, comenzando con regresión. A pesar de que en este

caso hay mucha menos literatura referente al concept drift, podemos crear conjuntos de

datos de forma sintética[20] y asumir un tratamiento online de los mismos, considerando

que las instancias van llegando en forma de tuplas asociadas a un flujo/stream {St}.

Para ello utilizamos una serie de 300000 valores para 5 variables predictoras continuas,

x = (x1, x2, x3, x4, x5)
T , independientes y distribuidas todas ellas de forma uniforme en

el intervalo [0 , 1]. Con ellas definiremos una variable objetivo y mediante tres funciones

lineales diferentes para establecer aśı 3 concepts:

y = c1(x) = 10x1 + x2 + 20 (x3 − 0.5) + 10x4 + 5x5 + ϵ , (4.1)

y = c2(x) = 0.5x1 − x2 + 100x3 + 10x4 − 54x5 + ϵ , (4.2)

y = c3(x) = 3x1 + 22x2 − 8 (x3 − 0.5) + 2x4 − 5x5 − ϵ . (4.3)

En cada caso se ha añadido ruido aleatorio en forma de una distribución normal de media 0

y varianza 1 (ϵ ∼ N(0 , 1)). Podemos entonces definir 3 conjuntos de datos diferentes:

− Dataset I. Este conjunto simula un flujo de datos sin presencia de concept drift. La

función utilizada para crear la variable objetivo en todo instante es (4.1).

− Dataset II. Este conjunto simula la presencia de concept drift abrupto. Para ello se

introducen 3 puntos en los que cambia el concept a partir de un cambio en los parámetros

que definen y. Concretamente, el concept inicial se corresponde con (4.1) y a partir

de la instancia 75000 cambiamos la expresión de y a la función dada por (4.2). A

continuación, al rededor de la instancia 150000, volvemos a introducir un cambio en el

concept, utilizando ahora (4.3). Finalmente implementamos un último drift, retomando

el concept definido por (4.2), sobre la instancia 225000. De esta forma cada cuarto del

dataset está definido por un concept.
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− Dataset III. Este conjunto simula la presencia de concept drift gradual. Para ello se

introducen 2 puntos en los que comienza el concept drift redefiniendo de nuevo los

parámetros de que depende y. Inicialmente tenemos una vez más la expresión de y

dada por (4.1) y el concept drift se inicia por primera vez en la instancia 100000. A

partir de entonces van apareciendo gradualmente instancias del nuevo concept, definido

por (4.2) y cada 500 instancias aumenta la probabilidad de generar instancias de este

nuevo concept (en nuestro caso optamos por un incremento fijo de la probabilidad en

los puntos indicados). Una vez transcurridas 50000 instancias solo se encuentran puntos

definidos por (4.2). Finalmente comienza otro concept drift (procediendo de igual forma)

a partir de la instancia 200000; usamos ahora (4.3) y acaba imponiéndose transcurridas

otras 50000 instancias.

Notar como para cada concept podemos definir una media y una varianza para la

distribución de y, dependiente de x. Efectivamente, sabiendo que para una distribución

uniforme en el intervalo [0, 1] la media es 0.5 y su varianza 1/121 y que además ϵ presenta

media nula y varianza unidad, en el caso en que y está definida por (4.1) se tiene

E[y(x)] =10E[x1] + E[x2] + 20 (E[x3]− 0.5) + 10E[x4]+

5E[x5] + E[ϵ] = 13 ,

V ar[y(x)] =102 V ar[x1] + V ar[x2] + 202 V ar[x3] + 102 V ar[x4]+

52 V ar[x5] + V ar[ϵ] = 638/12 ≈ 53.1667 .

(4.4)

Del mismo modo, para (4.2)

E[y(x)] =0.5E[x1]− E[x2] + 100E[x3] + 10E[x4]−

54E[x5]− E[ϵ] = 27.75 ,

V ar[y(x)] =0.52 V ar[x1] + V ar[x2] + 1002 V ar[x3] + 102 V ar[x4]+

542 V ar[x5] + V ar[ϵ] = 1085.771 .

(4.5)

Finalmente, con (4.3)

E[y(x)] =3E[x1] + 22E[x2]− 8 (E[x3]− 0.5) + 2E[x4]−

5E[x5]− E[ϵ] = 11 ,

V ar[y(x)] =32 V ar[x1] + 222 V ar[x2] + 82 V ar[x3] + 22 V ar[x4]+

52 V ar[x5] + V ar[ϵ] = 598/12 ≈ 49.8333 .

(4.6)

Puede comprobarse que cuadran perfectamente con los resultados de tomar la media y

varianza muestral para y. Resulta entonces evidente cómo se producen cambios en los

1Resultados triviales para la distribución uniforme. En el caso general, tomando el intervalo [a, b] se tiene:

media =
a+ b

2
, varianza =

(b− a)2

12
.
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parámetros de la distribución de probabilidad p(y |x) (sin cambios en p(x)), lo que implica

real concept drift y por tanto es necesario tratarlo. Podemos visualizarlo a través de los

histogramas para la variable y, de forma que tras normalizar los resultados y estableciendo

una distinción entre concepts obtenemos la Figura 4.1.
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Figura 4.1: Histogramas para la variable y en el caso del Dataset II (a) y el Dataset III (b).
Con lineas verticales de colores indicamos el valor promedio para cada definición de concept.

Notar la similitud de resultados y se aprecia cómo el cambio secuencial entre los diferentes

concepts afecta a la distribución subyacente de la variable objetivo. Podŕıa detectarse el

concept drift mediante test estad́ısticos que establecieran la diferencia entre las distribuciones,

como puede ser el Test de Kolmogorov-Smirnoff2. No obstante, para hacer una detección

expĺıcita del concept drift haremos uso de los métodos y algoritmos expuestos anteriormente.

En este caso no resulta necesario realizar un tratamiento previo de los datos y, además,

es importante fijarse en que el hecho de que la dependencia de la variable objetivo y con las

variables independientes x sea lineal (más ruido) nos facilita mucho la obtención del modelo

predictivo. Basta considerar un simple modelo de regresión lineal múltiple[21, 22, 23], que

desarrollaremos a continuación.

4.1. Regresión Lineal

La regresión lineal es probablemente el modelo estad́ıstico más tratado y a pesar de su

simpleza tiene gran aplicabilidad dentro del mundo de los modelos predictivos. Establece que

la relación de dependencia entre la variable dependiente unidimensional, y ∈ R y las variables

independientes, x = (x1, ..., xp)
T ∈ Rp, es lineal, incorporando un término ϵ ∼ N(0, σ) que

da cuenta del ruido aleatorio de las observaciones. El caso con p = 1 se conoce como regresión

lineal simple, mientras que si p > 1 tenemos una regresión lineal múltiple.

2Se trata de una prueba no paramétrica que determina la bondad de ajuste de dos distribuciones de
probabilidad entre śı. En este caso permite establecer que la diferencia entre distribuciones de probabilidad y
por ende la diferencia de concepts.
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La dependencia entre variables se expresa como

y = β0 + β1 x1 + ...+ βp xp + ϵ , (4.7)

donde β = (β0, , β1, ..., βp)
T son los parámetros que especifican cada una de las posibles

hipótesis hβ(x) ∈ H. Una vez fijado el valor de β (y elegida la hipótesis), podremos expresar

la predicción para una nueva instancia xj = (xj1, ..., xjp)
T como

ŷj = hβ(xj) = β0 + β1 xj1 + ...+ βp xjp . (4.8)

Para obtener el valor de β hacemos uso de una muestra de tamaño n, es decir, nuestro

conjunto de entrenamiento es S = {(x1, y1), .., (xn, yn)}, de forma que

yi = β0 + β1 xi1 + ...+ βp xip + ϵi , i = 1, ..., n . (4.9)

Es común agrupar las n ecuaciones tomando una representación matricial

y = Xβ + ϵ , (4.10)

donde

y =


y1
y2
...
yn

 , X =


1 x11 ... x1p
1 x21 ... x2p
... ... ... ...
1 xn1 ... xnp

 , β =


β0
β1
...
βp

 , ϵ =


ϵ1
ϵ2
...
ϵn

 . (4.11)

Existen diferentes métodos para obtener β y con ello ajustar el modelo a la información

proporcionada por el conjunto de entrenamiento. Sin embargo, la forma más común de

proceder es realizar una estimación por medio del criterio de mı́nimos cuadrados ordinario.

Aśı, buscamos minimizar la pérdida cuadrática cometida, es decir, dado

g(β) =
n∑

i=1

L(yi, ŷi) =
n∑

i=1

(yi − ŷi)
2 = ||y−Xβ||2 = (y−Xβ)T (y−Xβ) (4.12)

tomamos como parámetros del modelo

β̂ = argmı́n
(
g(β)

)
. (4.13)

Para hallar β̂ diferenciamos esta expresión e igualamos a 0

∂g(β)

∂β
= −2XTy+ 2XTX β̂ = 0 . (4.14)

Por consiguiente

β̂ = (XTX)−1XTy si existe (XTX)−1 (4.15)

y la predicción del modelo lineal para nuestra instancia xj se expresa

ŷj = hβ̂(xj) = β̂0 + β̂1 xj1 + ...+ β̂p xjp . (4.16)
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Estos resultados pueden usarse para definir una hipótesis que se adapte correctamente al

primer concept. Entonces, una vez ocurra el concept drift la implementación de alguno de

los mecanismos de detección para monitorizar el error precuencial indicará la necesidad de

modificar nuestra hipótesis y en este caso procederemos a realizar un re-entrenamiento. Es

decir, estamos considerando una adaptación activa en entornos con concept drift. También

puede realizarse una adaptación pasiva, dada la fácil implementación de un algoritmo

incremental basado en la regresión lineal. Se conoce como algoritmo de Widrow-Hoff y

coincide con la aplicación de técnicas de Descenso de Gradiente sobre el modelo de regresión

clásico, de forma que los parámetros β se actualizan en cada etapa.

El Descenso de Gradiente o Gradient Descent [22, 23, 3] es un algoritmo de optimización

de primer orden para encontrar el mı́nimo de una función objetivo diferenciable F (x). Se

basa en la observación de que si la función F (x) es diferenciable en la vecindad del punto a,

entonces F (x) decrece de forma más rápida al desplazarse desde a en dirección opuesta a su

gradiente, es decir −∇F (a). Por consiguiente, si

an+1 = an − η∇F (an) (4.17)

para un paso o tasa de aprendizaje, η ∈ R+, lo suficientemente pequeña, se cumple la

condición F (an) ≥ F (an+1). De esta forma, para llegar al mı́nimo, se comienza tomando

x0 como nuestro punto inicial y consideramos la secuencia x0, x1, x2, ... tal que

xn+1 = xn − ηn∇F (xn), n ≥ 0 . (4.18)

Tenemos aśı una secuencia monótona tal que F (x0) ≥ F (x1) ≥ F (x2) ≥ ... y esperamos

que {xn} converja al mı́nimo local buscado. Notar la dependencia en n de ηn, indicando la

posibilidad de variar la tasa de aprendizaje con cada iteración.

En el caso que nos atañe, tratando un modelo de regresión lineal, la función objetivo a

minimizar es la función de pérdida cuadrática, que en la etapa t toma la forma

L(yt, ŷt) = (yt − ŷt)
2 . (4.19)

Notar que a diferencia de g(β), en este caso solo aparece una única etiqueta y predicción. La

técnica se conoce entonces como Descenso de Gradiente Estocástico y comenzamos definiendo

un valor inicial β0. Considerando las nuevas tuplas que van llegando St = {(xt, yt)}, con t > 0,

buscamos adaptar los parámetros β del modelo de regresión lineal utilizando el gradiente de

esta función, evaluado en dicha tupla

∇L(yt, ŷt) =

(
∂L(y, ŷ)

∂β0
,
∂L(y, ŷ)

∂β1
, ...,

∂L(y, ŷ)

∂βp

)T
∣∣∣∣∣
(xt, yt)

=

= 2
(
(ŷt − yt) , (ŷt − yt)xt1, ..., (ŷt − yt)xtp

)T
.

(4.20)
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Una vez establecida la tasa de aprendizaje η (en nuestro caso hemos optado por tomar η

constante e igual a 0.005) tenemos

βt = βt−1 − η∇L(yt, ŷt) , con t > 0 . (4.21)

Podemos ver la implementación en forma de algoritmo en el Apéndice A.

4.2. Abrupt Concept Drift (Dataset II)

Aplicamos estos desarrollos al Dataset II con concept drift abrupto.

4.2.1. Adaptación activa

En este caso definiremos un modelo predictivo inicial y solo será actualizado en caso de

detectarse concept drift. Para ello, puesto que disponemos del Dataset I, podemos consideralo

como nuestro conjunto de entrenamiento inicial y emplearlo para crear un modelo que se

adapte al primer concept. A continuación se muestra un resumen del modelo de regresión.

Estimación Std. Error t value Pr (> |t|)
β0 -9.995022 0.008125 -1230.2 < 2 · 10−16

β1 9.9955523 0.007060 1415.8 < 2 · 10−16

β2 0.9944626 0.007064 140.8 < 2 · 10−16

β3 19.999440 0.007052 2835.8 < 2 · 10−16

β4 9.990476 0.007059 1415.3 < 2 · 10−16

β5 5.005923 0.007062 708.9 < 2 · 10−16

Tabla 4.1: Cuadro resumen de los parámetros del modelo.

Los parámetros de (4.1) se encuentran perfectamente dentro del intervalo de confianza de

las estimaciones. Aśı mismo, Pr (> |t|) es menor que 2 · 10−16 en todos los casos y podemos

rechazar que los parámetros sean nulos con el 95% de confianza. Por otro lado el p−valor es

también inferior a 2 · 10−16, indicando que el modelo se ajusta correctamente a los datos y el

valor R2 = 0.9813 indica que somos capaces de explicar un 98% de la variabilidad de y en el

conjunto de entrenamiento. Además, representamos el plot cuantil-cuantil en la Figura 4.2 y

muestra como la hipótesis de errores/residuos normales se cumple perfectamente.
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Figura 4.2: Plot cuantil-cuantil de los residuos frente a los valores teóricos (normales).
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Utilizamos el modelo aśı obtenido para empezar a computar las predicciones sobre el

Dataset II. Para ello consideraremos que en cada etapa t se tiene una única tupla St =

{(xt, yt)} con su correspondiente predicción ŷt. De esta forma hasta la aparición de concept

drift en la instancia 75000 el modelo ofrece buenas predicciones, como permite apreciar la

Figura 4.3. Observamos los buenos resultados del modelo en el primer concept y cómo el drift

afecta a la capacidad predictiva del modelo.
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Figura 4.3: Comparativa entre valores reales y predicciones.

Para poder actuar al respecto y adaptar nuestro modelo al nuevo concept cuanto antes

necesitamos conocer el error cometido con cada predicción. Para ello tomamos un enfoque

precuencial usando una función de pérdida cuadrática (2.1) y consideraremos además

diferentes fading factors (3.11) para ver cómo pueden afectar a la detección del concept

drift. Nos remitimos a la Figura 4.4, donde el error en el primer concept es mı́nimo y una vez

ocurre el drift notamos cómo aumenta, más rápidamente cuanto menor es el valor de α, pues

menos afectan las predicciones anteriores, más precisas. En el caso de α = 1, es decir, dando

igual importancia a todas las predicciones anteriores, la variabilidad del error es menor, lo que

puede llegar dificultar la detección. No obstante, dada la simplicidad del problema tratado,

resulta posible indicar el cambio de concept por simple inspección visual.
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Figura 4.4: Error precuencial para diferentes fading factors.
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Este error entra como input en los diferentes métodos de detección expĺıcita, y al tratar

problemas de regresión haremos uso del Test de Page-Hinkley y de ADWIN, implementando

ambos a modo de comparación.

Para el Test de Page-Hinkley monitorizamos la variable mt − Mt, como puede verse en la

Figura 4.5a. En todos los casos se ha establecido un idéntico valor del parámetro que controla

la magnitud de cambios permitidos, δ = 10−11 y con puntos rojos indicamos las instancias en

que se detecta el concept drift. Notar cómo la elección del valor de λ puede ocasionar tanto

falsas alarmas como retrasos en la detección del concept drift si no se hace correctamente,

especialmente notable en el caso de α = 1.

ADWIN permite mostrar la evolución en el tamaño de las ventanas, como se aprecia en la

Figura 4.5b (se ha limitado la representación a la cercańıa del concept drift pues el crecimiento

previo es totalmente lineal al ser instancias de un mismo concept).
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Figura 4.5: Aplicación del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

En la Tabla 4.2 aparecen los puntos en los que se detectó concept drift según cada algoritmo

y con los diferentes fading factors.

Fading Factor (α) Punto de detección (PH Test) Punto de detección (ADWIN)

0.990 75186 75178 (160)
0.995 75316 75195 (177)
0.997 75358 75209 (185)
1.000 78363 75224 (195)

Tabla 4.2: Instancias en que se detectó concept drift. Para ADWIN la detección se indica
cuando comienza a decrecer el tamaño de la ventana; entre paréntesis se indica el tamaño
una vez detectado el cambio.

Notar que todos los puntos son posteriores a la instancia 75000 (que marca la verdadera

ocurrencia del concept drift), lo que indica la presencia de un retardo en la detección

inevitable. Sin embargo, un menor valor de α permite una detección más temprana del drift,

tanto más cuanto menor sea α. Aśı mismo, se aprecia cómo ADWIN ofrece los mejores
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resultados y además permite definir una ventana con la que elegir aquellos datos más

relevantes para re-entrenar nuestro modelo y adaptarlo al nuevo concept (Page-Hinkley solo

indica el cambio). Para todo α, la ventana solo incluye instancias posteriores a la instancia

75000, es decir, pertenecientes al nuevo concept y es aqúı donde entra la adaptación activa,

redefiniendo nuestro modelo de regresión lineal.

Por evitar repeticiones innecesarias y dada la detección más temprana, tomaremos la ventana

dada en el caso de α = 0.990 y el resumen del modelo resultante se muestra en la Tabla 4.3.

Estimación Std. Error t value Pr (> |t|)
β0 0.71619 0.26313 2.722 0.00724
β1 -0.03163 0.23828 -0.133 0.89458
β2 -0.94677 0.25774 -3.673 0.00033
β3 99.55415 0.23691 420.212 < 2 · 10−16

β4 9.88866 0.23591 41.917 < 2 · 10−16

β5 -54.33132 0.24858 -218.568 < 2 · 10−16

Tabla 4.3: Cuadro resumen de los parámetros del nuevo modelo.

Notar cómo en este caso los resultados no son tan buenos cómo los de nuestro primer modelo.

Esto es debido a la menor cantidad de datos empleados (160 vs 300000) aunque podŕıan

mejorarse los resultados considerando re-entrenamientos o actualizaciones de β posteriores.

No obstante, al ser un problema sencillo resulta inncesario. Es más, el plot cuantil-cuantil de

la Figura 4.6 muestra como la hipótesis de residuos normales se cumple perfectamente. Un

p−value menor que 2 · 10−16 y R2 = 0.9994 indica una correcta adaptación al nuevo concept.

−2

−1

0

1

2

−3 −2 −1 0 1 2 3
Cuantiles Teóricos

C
ua

nt
ile

s 
de

 lo
s 

R
es

id
uo

s

Figura 4.6: Plot cuantil-cuantil para el nuevo modelo de regresión lineal.

Aplicando este nuevo modelo sobre las tuplas entrantes puede observarse como

recuperamos los bajos valores del error predictivo. En la Figura 4.7a mostramos una

comparativa del error precuencial sin adaptación y con adaptación via re-entrenamiento.

Por otro lado, en la Figura 4.7b aparece la curva de error que nuestro algoritmo adaptativo

mostraŕıa en la práctica (limitando los valores del eje de ordenadas para facilitar la

visualización). Es decir, tras unas pocas etapas con error muy elevado dado el concept drift,
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la detección y actuación ante el mismo permite recuperar buenos resultados predictivos.

Por comodidad se ha representado solamente el caso con α = 0.990.
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Figura 4.7: (a) Comparación de errores precuenciales con α = 0.990. (b) Representación
gráfica del error precuencial con α = 0.990 tras la adaptación al nuevo concept.

En la cercańıa de la instancia 150000 tenemos otro cambio abrupto de concept, pero

consideramos que no merece la pena discutirlo con la profundidad con que se trató el primero,

puesto que el procedimiento a seguir es análogo. Por tanto, obviamos el tratamiento de este

drift aśı como el de los siguientes y mostramos directamente los resultados de la adaptación

en la Figura 4.8. De nuevo se ha elegido α = 0.990, limitando el eje de ordenadas.
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Figura 4.8: Error precuencial (α = 0.990) resultante de la adaptación a los sucesivos cambios
de concept. Recordemos que el último concept es idéntico al segundo.

4.2.2. Adaptación pasiva

En este caso emplearemos la adaptación incremental de la regresión lineal, de modo que

cada nueva tupla St = {(xt, yt)} se usará para evaluar la predicción del modelo y actualizarlo

en concordancia, sin hacer posterior uso de ella (no almacenamos nada). Además, tomaremos

las primeras 1000 instancias para realizar una estimación inicial de los parámetros β0.

30



Puede verse aśı, en la cercańıa de la instancia donde ocurre el drift, cómo el modelo muestra

su capacidad adptativa (Figura 4.9). Antes del concept drift el modelo realiza predicciones

correctas y una vez ocurrido, se tarda un cierto número de etapas en recuperar la precisión.
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Figura 4.9: Predicciones frente a valores reales.

Tenemos entonces un modelo capaz de adaptarse al nuevo concept sin necesidad de haber

detectado expĺıcitamente el concept drift. Esto queda además reflejado en el error, calculado

de forma precuencial y considerando de nuevo diferentes fading factors, como puede apreciarse

en la Figura 4.10. Vuelve a suceder que, cuanto menor es el factor α, es decir, cuanta menor

importancia se le da a los valores anteriores, más rápido aumenta el error una vez se produce el

drift y mejor se aprecia; es más, para poder visualizar el caso α = 1 necesitamos representarlo

por separado.
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Figura 4.10: (a) Errores precuenciales para diferentes fading factors. (b) Error precuencial
con α = 1 por separado para apreciarlo mejor.

Además, como se procedió siguiendo el enfoque activo, mostramos la adaptación a lo largo

de los diferentes concepts en la Figura 4.11. También se ha usado α = 0.990 y se ha limitado

el eje de ordenadas.
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Figura 4.11: Error precuencial (α = 0.990) resultante de la adaptación a los sucesivos cambios
de concept.

Al tratarse de una adaptación pasiva no es necesario realizar una detección expĺıcita del

concept drift. No obstante, resulta una práctica interesante y comenzamos usando el Test

de Page-Hinkley, cuyos resultados al monitorizar la variable mt − Mt pueden verse en la

Figura 4.12a, con δ = 1.5 · 10−11. También aplicamos el método ADWIN, mostrando la

evolución de los tamaños de las ventanas en la Figura 4.12b.
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Figura 4.12: Aplicación del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Un resumen de los puntos en los que se detectó la presencia de concept drift según los

diferentes algoritmos y con los diferentes fading factors se muestra en la Tabla 4.4.

Fading Factor (α) Punto de detección (PH Test) Punto de detección (ADWIN)

0.990 75036 75134 (126)
0.995 75089 75139 (131)
0.997 75404 75141 (134)
1.000 79108 75155 (145)

Tabla 4.4: Instantes de detección según los diferentes métodos. Entre paréntesis mostramos
los tamaños de la ventana tras la detección de drift (en caso de almacenar información).

Como en el caso activo, el aumento de α para el Test de Page-Hinkley conlleva una detección

más tard́ıa; también se aprecia con ADWIN aunque la magnitud del retardo es menor.
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No tiene sentido usar ADWIN para definir el tamaño de las ventanas con las que llevar

a cabo un re-entrenamiento (hemos especificado que no almacenamos las instancias) pero se

ha hecho con motivos ilustrativos. Aśı, tomamos la primera ventana y comparamos el error

obtenido de forma precuencial usando α = 0.990, mostrando los resultados obtenidos en la

Figura 4.13. Apreciamos entonces como el error tras realizar un re-entrenamiento al detectar

concept drift acaba por coincidir con el obtenido sin el re-entrenamiento, al cabo de varias

etapas. Esto esta totalmente de acuerdo con lo expresado en la Figura 4.9, remarcando la

falta de necesidad de re-entrenar.
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Figura 4.13: Comparación de errores precuenciales con y sin re-entrenamiento (a) y vemos
cómo terminan por igualarse tras pocas instancias (b).

Hemos visto cómo tratar el caso abrupto mediante una adaptación tanto activa como

pasiva. Puesto que una vez ocurre el drift solo hay presentes instancias del nuevo concept, un

re-entrenamiento del modelo con objetivo de adaptarlo cuanto antes resulta lo más adecuado,

al ser directamente implementable, y menos costoso computacionalmente.

4.3. Gradual Concept Drift (Dataset III)

Una vez tratado el caso de concept drift abrupto, realizamos un tratamiento con cambios

más graduales, en el Dataset III.

4.3.1. Adaptación Activa

De nuevo comenzamos considerando una adaptación activa y, puesto que el concept inicial

coincide con el definido en el Dataset I, procederemos como en el caso anterior reutilizando ese

modelo de regresión lineal. De esta forma, podemos comprobar cómo el concept drift afecta a

las predicciones, en la Figura 4.14a. También resulta interesante computar la diferencia entre

predicciones y valores reales, como muestra la Figura 4.14b. Se observa el carácter gradual

ya que al coexistir ambos concepts, las instancias pertenecientes al primero ofrecen buenas
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predicciones, mientras que aquellas pertenecientes al segundo presentan grandes desviaciones.

Tras la instancia 150000, al existir un único concept solo están presentes estas últimas.
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Figura 4.14: Aplicación del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Dada la mezcla de concepts no se aprecia un incremento en el error tan notable como en

el caso abrupto de la Figura 4.4. Efectivamente, para ver esto volvemos a calcular el error

precuencial con diferentes fading factors, representado en la Figura 4.15. Encontramos como

el error no tiende a estabilizarse hasta que solo hay presente un único concept.
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Figura 4.15: Error precuencial con diferentes fading factors.

Los métodos de detección expĺıcita de concept drift entran ahora en juego para llevar a

cabo al adaptación del modelo. En el caso del Test de Page-Hinkley, se muestran los resultados

de la detección en la Figura 4.16a, con δ = 10−12 y vuelve a quedar patente la necesidad de

establecer un valor de λ adecuado para una correcta detección del concept drift. Por otro lado,

empleamos el algoritmo ADWIN sobre los diferentes errores precuenciales para detectar el

drift y mostramos la evolución del tamaño de la ventana en Figura 4.16b. De nuevo, con un

menor valor de α encontramos que el cambio en el concept se detecta con anterioridad.

Una comparativa de los puntos de detección según cada método puede verse en la Tabla 4.5.

Una vez más ADWIN ofrece los mejores resultados para la detección de concept drift y además

permite tener una ventana con instancias recientes para re-entrenar el modelo.
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Figura 4.16: Aplicación del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Fading Factor (α) Punto de detección (PH Test) Punto de detección (ADWIN)

0.990 100592 100237 (225)
0.995 100697 100248 (233)
0.997 100808 100257 (234)
1.000 109764 100278 (243)

Tabla 4.5: Instantes de detección según los diferentes métodos. Para ADWIN, entre paréntesis
mostramos los tamaños de la ventana tras la detección de drift.

Tomando la primera ventana procedemos a reconstruir/re-entrenar nuestro modelo predictivo,

obteniendo los resultados de la Tabla 4.6.

Estimación Std. Error t value Pr (> |t|)
β0 -14.300 4.207 -3.399 0.000804
β1 10.915 3.570 3.057 0.002514
β2 3.138 3.298 0.951 0.342516
β3 37.858 3.317 11.415 < 2 · 10−16

β4 12.278 3.381 3.632 0.000351
β5 -3.996 3.366 -1.187 0.236466

Tabla 4.6: Cuadro resumen de los parámetros del modelo.

Como puede observarse, los resultados no dan lugar a un buen modelo. Además, el valor

de R2 = 0.443 es muy inferior al obtenido en el caso abrupto y el plot cuantil-cuantil de la

Figura 4.17a muestra cómo no se cumple la hipótesis de errores/residuos normales.

Estamos por tanto ante un modelo que no es capaz de adaptarse al nuevo concept y sus

predicciones no serán de utilidad. Esto puede verse también computando el error precuencial

(con α = 0.990), mostrando los resultados en la Figura 4.17b. Vemos, al compararlo con el

error sin re-entrenar, como en ambos casos no se da una correcta adaptación al concept (hay

mezcla), aumentando el error hasta estabilizarse en presencia de un único concept.
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Figura 4.17: (a) Plot cuantil-cuantil para el nuevo modelo de regresión lineal. (b) Comparación
de errores precuenciales con y sin re-entrenamiento.

4.3.2. Adaptación Pasiva

Probemos ahora con una adaptación pasiva. Para ello volveremos a utilizar un modelo

incremental, equivalente al planteado para el caso del Dataset II. Realizamos una estimación

inicial de los parámetros β0 con las primeras 1000 instancias y las iremos actualizando

a medida que van llegando nuevas. Aśı, se aprecia el efecto del concept drift sobre las

predicciones en la Figura 4.18. Hemos considerado dos subfiguras para una mejor visualización

del método adaptativo. Aśı, nada más ocurre el drift, el modelo tiene dificultades para

adaptarse debido a la mezcla de concepts. No obstante, a partir de la instancia 150000,

cuando solo hay un único concept presente, el modelo es capaz de adaptarse correctamente.
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Figura 4.18: Valores reales frente a predicciones al iniciarse el drift (a) y tras establecerse un
solo concept (b).

En términos de error precuencial, podemos atender a la Figura 4.19. Una vez más, un valor

de α menor permite ver la mayor variabilidad del error, comprobando aśı la adaptabilidad

del modelo. La coexistencia de concepts se traduce en un elevado error hasta la presencia

de un único concept donde tras adaptarse, el error se reduce notablemente. Es más, puede
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apreciarse en la gráfica que si las ĺıneas verticales solida y a rayas coincidiesen, recuperaŕıamos

la Figura 4.10, donde no existe mezcla de concepts al ser un cambio abrupto.

0

100

200

300

400

100000 120000 140000 160000
Instancias

E
rr

or
 P

re
cu

en
ci

al
 c

on
 F

ad
in

g 
Fa

ct
or

s

Fading Factors: FF: 0.990 FF: 0.995 FF: 0.997 FF: 1.000

Concept Drift Presencia de un solo concept

Figura 4.19: Errores precuenciales con diferentes fading factors.

La adaptación continua a lo largo de los diferentes concepts se muestra en la Figura 4.20 para

un fading factor α = 0.990. Como ya se indicó, la presencia de un único concept permite una

correcta adaptación.
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Figura 4.20: Error precuencial (α = 0.990) resultante de la adaptación a los sucesivos cambios
graduales de concept.

Aunque ya vimos que no es necesario en un enfoque pasivo, volvemos a hacer uso de los

algoritmos de detección expĺıcita de drift. Para ello comenzamos de nuevo con el Test de

Page-Hinkley, cuyos resultados se muestran en la Figura 4.21a, con δ = 1.5 · 10−11. El uso

del algoritmo ADWIN sobre los diferentes errores precuenciales para detectar el drift permite

mostrar la evolución del tamaño de la ventana en la Figura 4.21b.

De nuevo, con un menor valor de α encontramos que el cambio en el concept se detecta antes.

Una comparativa de los puntos de detección según cada método puede verse en la Tabla 4.7.

Como ha ido ocurriendo con anterioridad, ADWIN permite una detección más rápida del

concept drift. No obstante, queda patente la mayor dificultad de detectar cambios graduales,

pues en comparación con los resultados de detección en el caso activo vemos como los

algoritmos precisan de más instancias.
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Figura 4.21: Aplicación del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Fading Factor (α) Punto de detección (PH Test) Punto de detección (ADWIN)

0.990 100556 100241 (210)
0.995 100656 100254 (222)
0.997 100760 100262 (231)
1.000 109491 100293 (256)

Tabla 4.7: Instantes de detección según los diferentes métodos. Para ADWIN, entre paréntesis
mostramos los tamaños de la ventana tras la detección de drift.

ADWIN nos proporciona una vez más una ventana que permite quedarnos únicamente

con datos posteriores a la instancia 100000 (donde ocurre el concept drift). Resulta

interesante volver a estimar los valores de β con esta ventana y proseguir con la adaptación

incremental. Sucede aśı que el error precuencial con α = 0.990 pronto iguala al obtenido sin

re-entrenamiento (Figura 4.22), mostrado una vez más que es innecesario proceder aśı.
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Figura 4.22: Comparación de errores precuenciales con y sin re-entrenamiento.

Podemos concluir aśı que una adaptación pasiva resulta mucho más adecuada para tratar

con concept drift gradual, como ya se indicó en el caṕıtulo anterior.
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Caṕıtulo 5

Casos Prácticos:
Clasificación

Puesto que conforma el tipo de problemas más tratado y estudiado en ámbito del concept

drift encontrar diferentes conjuntos de datos con los que empezar a experimentar no resulta

complicado. Concretamente nos referimos a una extensa colección de datasets[24].

Procedemos a analizar un conjunto en particular, escogiendo aśı el creado usando una función

sinusoidal. Tenemos entonces dos variables predictoras continuas, x1 y x2, uniformemente

distribuidas en el intervalo [0, 1] y la variable objetivo correspondiente es una variable

categórica que representa dos clases (en binario 0 y 1). Definimos aśı un concept inicial

en el que tomamos con y = 1 aquellos puntos que cumplan x1 < sin(x2) y con y = 0 en caso

contrario. Una vez ocurre el drift se invierte la clasificación, de forma que y = 1 para aquellos

puntos que cumplan x1 > sin(x2). Se establece aśı la creación de dos conjuntos, uno que

presente concept drift abrupto y otro con concept drift gradual. En ambos casos se usarán

20000 instancias, definiendo un cambio de concept de forma abrupta en la instancia 10000 y

un cambio gradual que se inicia en el punto 8500. En este caso hay coexistencia de concepts

durante 2000 instancias (similar a cómo se procedió en el caso de regresión.)

También es necesario indicar que existe un equilibrio de clases a lo largo de los diferentes

concepts, de modo que ambas tienen igual representación.

De nuevo resulta innecesario pre-procesar los datos puesto que estamos tratando casos

relativamente simples. Aśı mismo, dado que la variable objetivo presenta solamente dos clases,

haremos uso de un modelo de regresión loǵıstica[21, 22, 23].

5.1. Regresión Loǵıstica

Consideremos una variable objetivo categórica con dos clases, y = c1, c2. Resulta

conveniente darles un valor numérico, de modo que realizamos una asignación binaria

y = c1 ⇐⇒ y = 0 ,

y = c2 ⇐⇒ y = 1 .
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Notar que podŕıa hacerse de forma inversa y la probabilidad a posteriori de una de las clases

puede escribirse, de acuerdo con el Teorema de Bayes1, como

p(y = 1 |x) ≡ p(1 |x) = p(x | 1) p(1)
p(x)

=
p(x | 1) p(1)

p(x | 0) p(0) + p(x | 1) p(1)
=

=
1

1 + exp(−a)
= σ(a) ,

(5.1)

donde hemos definido

a = log

(
p(x | 1) p(1)
p(x | 0) p(0)

)
(5.2)

y σ(a) se conoce como función loǵıstica (o logistic sigmoid), que aparece representada en la

Figura 5.1. Sigmoid significa que toma forma de “S”.
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Figura 5.1: Gráfico de la función loǵıstica/logistic sigmoid.

Esta función satisface la siguiente propiedad2

σ(−a) = 1− σ(a) (5.3)

y su función inversa2 es

a = σ−1(σ(a)) = log

(
σ(a)

1− σ(a)

)
= Logit(σ(a)) , (5.4)

también conocida como función Logit, de forma que Logit(σ(a)) = σ−1(σ(a)). Esta expresión,

como se muestra en (5.2), representa el logaritmo del cociente de probabilidades de ambas

clases2, log
(
p(1 |x)/p(0 |x)

)
, también llamados log-odds. Eliminando el logaritmo tenemos

los odds, dados por p(1 |x)/p(0 |x).

1Consideremos un espacio muestral Ω generado por dos variables aleatorias X y Y . El Teorema de Bayes
para dos eventos, {X = x} y {Y = y}, establece

p(X = x |Y = y) =
p(Y = y |X = x) p(X = x)

p(Y = y)
.

2La demostración de este resultado puede consultarse en el Apéndice B.
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Con todo lo desarrollado, la regresión loǵıstica para las dos clases considera que, dado un

vector de entrada xj = (xj1, ..., xjp)
T , la probabilidad de yj = 1 puede escribirse haciendo

actuar la función loǵıstica sobre una combinación lineal de las de las features

p(1 |xj) = σ(β0 + β1 xj1 + ...+ βp xjp) =
1

1 + exp
(
− (β0 + β1 xj1 + ...+ βp xjp)

) (5.5)

y vemos que, como en el caso de la regresión lineal, los parámetros β = (β0, β1, ..., βp)
T

especifican las posibles hipótesis hβ ∈ H. Notar que podŕıan haberse llamado de otra forma

pero aśı establecemos un paralelismo con la regresión lineal.

Aśı mismo, tenemos que para yj = 0

p(0 |xj) = 1− p(1 |xj) =
exp

(
− (β0 + β1 xj1 + ...+ βp xjp)

)
1 + exp

(
− (β0 + β1 xj1 + ...+ βp xjp)

) . (5.6)

También podemos expresar los log-odds

log

(
p(1 |xj)

p(0 |xj)

)
= log

(
p(1 |xj)

1− p(1 |xj)

)
= β0 + β1 xj1 + ...+ βp xjp (5.7)

y los odds
p(1 |xj)

p(0 |xj)
=

p(1 |xj)

1− p(1 |xj)
= exp

(
β0 + β1 xj1 + ...+ βp xjp

)
. (5.8)

De nuevo necesitamos obtener los parámetros del modelo para fijar la hipótesis.

Procedemos realizando una estimación máximo verośımil, definiendo la verosimilitud para

una muestra (conjunto de entrenamiento) S = {(x1, y1), .., (xn, yn)} como

L(β, y, x) =
n∏

i=1

p(1 |xi)
yi=1p(0 |xi)

yi=0 =

n∏
i=1

p(1 |xi)
yi=1

(
1− p(1 |xi)

)yi=0

=
n∏

i=1

(
1

1 + e−(β0+β1 xi1+...+βp xip)

)yi
(

e−(β0+β1 xi1+...+βp xip)

1 + e−(β0+β1 xi1+...+βp xip)

)1−yi

.

(5.9)

No obstante puede resultar más sencillo trabajar con el logaritmo de esta expresión, teniendo

aśı la log-verosimilitud

log(L) =
n∑

i=1

yi (β0 + βi1 xi1 + ...+ βp xip)−
n∑

i=1

log
(
1 + eβ0+βi1 xi1+...+βp xip

)
. (5.10)

Maximizando una expresión o la otra encontramos la ecuación de verosimilitud

∂L(β, y, x)
β

= 0 (5.11)

cuya solución[21] requiere

n∑
i=1

(
yi − p(1 |xi)

)
= 0 ⇐⇒

n∑
i=1

yi =
n∑

i=1

1

1 + exp
(
− (β̂0 + β̂1 x1 + ...+ β̂p xp)

) , (5.12)

n∑
i=1

(
yi − p(1 |xi)

)
xi = 0 ⇐⇒

n∑
i=1

yi xi =

n∑
i=1

xi

1 + exp
(
− (β̂0 + β̂1 x1 + ...+ β̂p xp)

) (5.13)
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y permite obtener la estimación buscada β̂ = (β̂0, β̂1, ..., β̂p)
T . Las probabilidades de

pertenencia a cada clase predichas por el modelo para la nueva instancia xj = (xj1, ..., xjp)
T

pueden escribirse entonces como

p(1 |xj) =
1

1 + exp
(
− (β̂0 + β̂1 xj1 + ...+ β̂p xjp)

) , (5.14)

p(0 |xj) = 1− p(1 |xj) =
exp

(
− (β̂0 + β̂1 xj1 + ...+ β̂p xjp)

)
1 + exp

(
− (β̂0 + β̂1 xj1 + ...+ β̂p xjp)

) . (5.15)

No obstante la asociación de una clase a cada instancia suele hacerse en base a un umbral u

de modo que, para xj , el modelo toma la hipótesis

ŷj = hβ̂, u(xj) =

{
c2 , si p(1 |xj) ≥ u ,

c1 , si p(1 |xj) < u .
(5.16)

Una elección sencilla puede ser tomar u = 0.5. No obstante, la mejor forma de proceder

suele ser recurrir a las curvas ROC (Receiver Operating Characteristic)[3, 21], que son

una representación gráfica, para cada valor posible del umbral, de la Sensibilidad frente a

1−Especificidad3. Se presentan entonces dos formas de determinar el umbral

u =

{
valor que maximiza la suma (Especificidad + Sensibilidad) ,

valor que minimiza la suma
(
(1− Especificidad)2 + (1− Sensibilidad)2

)
.

(5.17)

Como en regresión, este modelo puede usarse para llevar a cabo una adaptación activa,

definiendo una hipótesis que se adapte al primer concept. Una vez sucede el cambio de concept

y se detecta el drift, aparece la necesidad de modificar la hipótesis y procederemos a realizar

una reconstrucción del modelo (por re-entrenamiento).

Para realizar una adaptación pasiva podemos aplicar de nuevo técnicas de Descenso de

Gradiente Estocástico actualizando en cada etapa t los parámetros β. En este caso la función

de pérdida empleada es

L(yt, p(1 |xt)) =− yt log
(
p(1 |xt)

)
− (1− yt) log

(
1− p(1 |xt)

)
=

=− yt log

(
1

1 + e−(β0+β1 xt1+...+βp xtp)

)
−

(1− yt) log

(
e−(β0+β1 xt1+...+βp xtp)

1 + e−(β0+β1 xt1+...+βp xtp)

)
.

(5.18)

Tras calcular el gradiente2 de la expresión anterior

∇L(yt, p(1 |xt)) =

(
∂L(y, p(1 |x))

∂β0
,
∂L(y, p(1 |x))

∂β1
, ...,

∂L(y, p(1 |x))
∂βp

)T
∣∣∣∣∣
(xt, yt)

=

=
(
(p(1 |xt)− yt) , (p(1 |xt)− yt)xt1, ..., (p(1 |xt)− yt)xtp

)T
,

(5.19)

3Definimos en cada caso

Sensibilidad =
# asignaciones correctas a la clase 0

# asignaciones correctas a la clase 0 + # asignaciones a la clase 1 en vez de 0
,

Especificidad =
# asignaciones correctas a la clase 1

# asignaciones correctas a la clase 1 + # asignaciones a la clase 0 en vez de 1
,
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y una vez establecida la tasa de aprendizaje η (= 0.5) el valor inicial β0 se va actualizando

βt = βt−1 − η∇L(yt, p(1 |xt)) , con t > 0 . (5.20)

Podemos ver la implementación en forma de algoritmo en el Apéndice A.

Aśı mismo, y a modo de cumplimentar lo desarrollado respecto a algoritmos incrementales,

podemos incluir dos nuevos[2], el Perceptrón y el algoritmo Winnow.

El primer algoritmo considera un vector de pesos wt (los parámetros del modelo) inicializado

con w0. En cada etapa t, al recibir xt el algoritmo predice la clase correspondiente usando el

respectivo wt. Una vez recibido el valor real, si resulta en una clasificación errónea, ŷt ̸= yt,

se actualizan los pesos añadiendo al valor actual una cantidad η ytxt, con η > 0.

El algoritmo Winnow es similar al perceptrón, pero en vez de considerar una actualización

de los pesos aditiva, en este caso es multiplicativa. Hace uso de un vector de pesos wt cuyas

componentes suman la unidad (
∑n

i=1 |wt
i | = 1), definido inicialmente como un vector de pesos

uniforme. En cada etapa t, si la predicción ŷt no coincide con el valor real yt, cada componente

i de wt se actualiza multiplicándola por un factor exp(η yt xti) y dividiendo el resultado por

una constante de normalización para asegurar que sumen 1.

5.2. Abrupt Concept Drift

Aplicamos estos desarrollos al conjunto de datos con concept drift abrupto.

5.2.1. Adaptación Activa

Con motivo de aplicar todo lo desarrollado con anterioridad, trataremos las primeras 7000

instancias como conjunto histórico con las que entrenar un modelo de regresión loǵıstica.

Consideraremos entonces que todas las instancias de etapas posteriores t van llegando de una

en una, se realiza la predicción correspondiente ŷt y el valor real yt es conocido antes de que

llegue la siguiente. En caso de detección expĺıcita de concept drift, adaptamos nuestro modelo

en concordancia, mediante un re-entrenamiento.

Nuestro modelo de regresión loǵıstica inicial muestra un resumen de su ajuste al conjunto de

entrenamiento en la Tabla 5.1.

Estimación Std. Error z value Pr(> |z|)
β0 3.7303 0.3259 11.45 < 2 · 10−16

β1 -98.8275 6.2831 -15.73 < 2 · 10−16

β2 83.9254 5.3579 15.66 < 2 · 10−16

Tabla 5.1: Resumen del modelo de regresión loǵıstica.

Los resultados muestran que todos los coeficientes son significativos y distintos de 0.

Además, podemos computar las predicciones sobre nuestro conjunto de entrenamiento usado

43



y comparar con los valores reales, como muestra la Tabla 5.2. La gran mayoŕıa de instancias

quedan clasificadas correctamente con este modelo tan sencillo.

Clases Reales
0 1

Clases Predichas
0 3433 57
1 67 3443

Tabla 5.2: Clases predichas frente a clases reales en el conjunto de entrenamiento.

Es más, podemos calcular algunas métricas que nos dan información adicional sobre la calidad

del modelo como son la Sensibilidad y la Especificidad4

Sensibilidad =
3433

3433 + 67
= 0.980857143 , (5.21)

Especificidad =
3443

3443 + 57
= 0.983714286 . (5.22)

Obtenemos valores muy próximos a la unidad, lo que da cuenta del buen ajuste realizado. Es

necesario mencionar que seŕıa más apropiado calcular estas métricas para evaluar la bondad

del ajuste sobre un conjunto de datos de prueba diferente del usado en el entrenamiento.

Una vez comprobada la validez del modelo podemos ir computando las predicciones y,

mediante una función de pérdida 0-1 (2.2), analizar el cambio de concept. Puesto que el drift

ocurre en la instancia 10000, mostramos los resultados en su cercańıa en la Figura 5.2. Notar

como una vez cambia el concept el modelo empleado comete muchas malas clasificaciones.
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Figura 5.2: Función de pérdida 0-1.

Como ya se hizo en el caso de regresión, computamos el error para diferentes fading factors

(3.11), representado en la Figura 5.3a y vemos cómo el incremento del error una vez cambia

el concept es ciertamente notable.

Necesitamos que nuestro modelo sea capaz de adaptarse al nuevo concept. Para ello haremos

uso de los métodos de detección explicita, concretamente DDM y EDDM (muy usados en

clasificación y no los hemos empleado antes). El primero de ellos monitoriza la tasa de error

4Usadas para definir el umbral u que se usará en la asignación de clases.
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(o el error precuencial con α = 1). Por otro lado, EDDM utiliza la distancia entre dos errores

consecutivos, la cual puede verse en la Figura 5.3b y una vez cambia el concept, notamos

cómo disminuye sensiblemente.
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Figura 5.3: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

Los resultados de la detección pueden consultarse en la Tabla 5.3.

Punto de detección (DDM) Punto de detección (EDDM)

10009 (10003) 10005 (10001)

Tabla 5.3: Instantes de detección según los diferentes métodos. Entre paréntesis aparece la
instancia que marcó el nivel de alerta/warning.

La detección es en todo caso posterior a la instancia 10000 donde ocurre el drift y los

algoritmos permiten disponer de una ventana para re-construir el modelo. Concretamente

consideramos aquellas instancias desde que se indicó la señal de warning hasta que se alerta

de concept drift. Sin embargo, dado que en ambos casos la detección es muy rápida (el

modelo se adapta muy bien al primer concept y al cambiar enseguida se percibe el error),

no hay suficientes datos almacenados en la ventana para re-entrenar el modelo. Un modo de

proceder consiste entonces en re-entrenar el modelo con esa ventana, pero seguir almacenando

instancias (hasta un número predefinido por ejemplo) y volver a entrenar el modelo con

todos los datos disponibles. También se puede usar ADWIN, con algún computo del error

precuencial anterior y usar esa ventana. No obstante, como ya se usó ADWIN en el caso de

regresión, procederemos de la primera forma.

Usando la ventana proporcionada por DDM creamos primera versión del nuevo modelo y lo

usaremos para predecir sobre las siguientes 50 instancias; entonces volveremos a entrenar el

modelo con todas las instancias almacenadas. Procederemos aśı hasta analizar 500 instancias.

El error precuencial con α = 0.990 computado a lo largo de todo el proceso se muestra en la

Figura 5.4, indicando una correcta adaptación.

45



0.00

0.25

0.50

0.75

1.00

8000 10000 12000 14000
Instancias

E
rr

or
 P

re
cu

en
ci

al
 c

on
 F

ad
in

g 
Fa

ct
or

s

Con re−entrenamiento Sin re−entrenamiento

Concept Drift

(a)

0.00

0.03

0.06

0.09

0.12

8000 10000 12000 14000
Instancias

E
rr

or
 P

re
cu

en
ci

al
 c

on
 F

ad
in

g 
Fa

ct
or

s

Con Re−Entrenamiento Inicial

Concept Drift

(b)

Figura 5.4: (a) Comparación entre errores precuenciales usando α = 0.990, con y sin
re-entrenamiento. (b) Errores (α = 0.990) tras el re-entrenamiento al detectar concet drift.

5.2.2. Adaptación Pasiva

Por similitud con el caso regresión, usaremos una adaptación del modelo de regresión

loǵıstica mediante técnicas de Descenso de Gradiente Estocástico, estimando β0 con las

primeras 1000 instancias. Conforme nuestro modelo va computando las predicciones y

actualizándose, calculamos el error de las mismas de forma precuencial, tomando una

función de pérdida 0-1 para dar cuenta de las instancias mal clasificadas. Para facilitar la

interpretación de los resultados mostramos únicamente la cercańıa del primer concept drift

en la Figura 5.5. Puede apreciarse cómo las malas clasificaciones aumentan de forma muy

considerable una vez cambia el concept, con pocas clases predichas correctamente.
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Figura 5.5: Función de pérdida 0-1.

La capacidad de adaptación del algoritmo queda patente al visualizar tanto el error

precuencial, mostrado la Figura 5.6a, como la distancia entre errores de predicción

consecutivos (Figura 5.6b). Notar cómo en comparación con el enfoque activo (Figura 5.3) el

error no tiende a estabilizarse sino que decrece sin necesidad de implementar un mecanismo

que detecte expĺıcitamente el concept drift. Lo mismo ocurre con la distancia entre errores,

que vuelve a aumentar tras un número de etapas.
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Figura 5.6: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

A pesar de no ser necesario, resulta interesante comprobar la detección expĺıcita del drift,

usando de nuevo tanto DDM como EDDM y mostramos los resultados en la Tabla 5.4.

Punto de detección (DDM) Punto de detección (EDDM)

10023 (10010) 10039 (10016)

Tabla 5.4: Instantes de detección según los diferentes métodos. Entre paréntesis aparece la
instancia que marcó el nivel de alerta/warning.

El punto exacto (según la creación de los datos) donde tienen lugar el concept drift es

la instancia 10000, por lo que podemos concluir que los algoritmos implementados captan

adecuadamente el cambio de concept. No obstante, la adaptación al nuevo concept es más

lenta que en el caso abrupto, como puede verse al comparar la Figura 5.6a con la Figura 5.4.

5.3. Gradual Concept Drift

Una vez comprobada la aplicabilidad de todo lo desarrollado en el caso de concept drift

abrupto, evaluamos su utilidad en la detección y adaptación con un drift más gradual.

5.3.1. Adaptación Activa

Usando de nuevo un conjunto de 7000 instancias para entrenar el primer modelo podemos

ver el efecto del concept drift sobre las predicciones mediante el uso de una función de pérdida

0-1, como muestra la Figura 5.7.

Aśı mismo, el error precuencial se muestra en la Figura 5.8a junto con la distancia entre

errores consecutivos en la Figura 5.8b. Notar cómo el modelo empeora mucho las predicciones

una vez queda establecido un único concept. Esto es aśı puesto que mientras coexistan los

concepts algunas de las instancias pertenecientes al anterior tendrán su clase objetivo predicha

correctamente. Es más, si ambas ĺıneas verticales coincidiesen, los resultados seŕıan los mismos

que en el caso abrupto, donde no hay mezcla de concepts.
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Figura 5.7: Función de pérdida 0-1.
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Figura 5.8: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

Aplicamos los algoritmos de detección expĺıcita DDM y EDDM igual que en el caso

anterior, mostrando los puntos de detección en la Tabla 5.5.

Punto de detección (DDM) Punto de detección (EDDM)

9368 (9231) 9289 (9204)

Tabla 5.5: Instantes de detección según los diferentes métodos. Entre paréntesis aparece la
instancia que marcó el nivel de alerta/warning.

En todo caso, la detección es posterior a la instancia 8500 donde ocurre el drift. Notar además,

los mejores resultados de EDDM en la detección gradual, pues este era el principal objetivo

buscado al proponerlo. Resulta entonces estar de acuerdo con todo lo desarrollado antes.

Estos algoritmos de detección permiten disponer de una ventana para re-construir el modelo.

Hacemos uso de los resultados proporcionados por EDDM para definir una ventana (de mayor

tamaño que en el caso abrupto) con la que re-entrenar el modelo y el error precuencial con

α = 0.990 se muestra en la Figura 5.9. Igual que sucedió en el caso de regresión, la coexistencia

de concepts nos impide obtener un modelo predictivo apropiado (el error cometido en ambos

casos es prácticamente el mismo). Podŕıan mostrarse los resultados del ajuste del modelo,

pero resulta mucho más visual tomar la representación gráfica del error.
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Figura 5.9: (a) Comparación entre errores precuenciales usando α = 0.990, con y sin
re-entrenamiento. (b) Errores (α = 0.990) tras el re-entrenamiento al detectar concet drift.

En vista de estos resultados desalentadores, procedemos con una adaptación pasiva.

5.3.2. Adaptación Pasiva

Actuamos ahora de forma incremental, actualizando los parámetros β en cada etapa. Con

ello, el efecto del concept drift y la posterior adaptación del modelo puede apreciarse con la

función de pérdida 0-1, como muestra la Figura 5.10.
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Figura 5.10: Función de pérdida 0-1.

Aśı mismo, computamos el error precuencial en la Figura 5.11a junto con la distancia

entre dos malas clasificaciones sucesivas, mostrada en la Figura 5.11b. Podemos apreciar

ciertas diferencias con respecto a la Figura 5.6, dado que en este caso se mezclan instancias

pertenecientes al anterior concept con instancias del nuevo. Aśı, tanto el aumento del error

como la disminución de la distancia son mucho más suaves y menos marcados que en el

caso anterior. A su vez, la capacidad de adaptación del algoritmo permite recuperar un buen

rendimiento transcurridas ciertas etapas.
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Figura 5.11: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

En ningún momento ha sido necesaria la detección expĺıcita de concept drift para

garantizar la adaptabilidad del algoritmo. No obstante resulta interesante considerarlo y por

ello volvemos a aplicar los anteriores algoritmos de detección, obteniendo aśı los resultados

de la Tabla 5.6.

Punto de detección (DDM) Punto de detección (EDDM)

9478 (9250) 9454 (9250)

Tabla 5.6: Instantes de detección según los diferentes métodos. Entre paréntesis aparece la
instancia que marcó el nivel de alerta/warning.

Según la forma en que se generaron los datos, el punto exacto en que ocurre el drift es la

instancia 8500, por lo que podemos concluir que los algoritmos implementados, una vez más,

son capaces de capturar adecuadamente el cambio de concept.

Como ya sucedió con los análisis planteados en problemas de regresión, el problema de

concept drift gradual queda mejor resuelto siguiendo metodoloǵıas de adaptación pasiva.

Sin embargo, el caso abrupto se puede tratar de ambas formas, aunque un enfoque pasivo

puede conllevar cierto retraso hasta la correcta adaptación al nuevo concept. En el caso activo

dependemos de la correcta detección del drift.
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Caṕıtulo 6

Conclusiones y Trabajo a Futuro

En este trabajo se ha definido el problema del aprendizaje en escenarios afectados por

concept drift. Es decir, buscamos algoritmos capaces de trabajar en escenarios de aprendizaje

online, donde la distribución subyacente de los datos no se asume estacionaria. Este problema

es común en muchos campos, desde la medicina hasta la industria y para dar cuenta de

la validez de los métodos desarrollados se han analizado casos de regresión y clasificación,

tratando conjuntos de datos con drifts abruptos y graduales. En ambas situaciones, la

adaptación del modelo predictivo empleado se ha realizado siguiendo un enfoque tanto activo

como pasivo, lo que nos ha permitido corroborar ciertas afirmaciones previas:

− En casos de concept drift abrupto, se obtienen mejores resultados mediante algoritmos

capaces de realizar una adaptación activa. Esto aśı puesto que el nuevo concept queda

establecido tras muy pocas instancias y por tanto los mecanismos de detección expĺıcita

son capaces de detectar el cambio de forma efectiva y con ello reconstruir el modelo con

una nueva hipótesis adecuada al concept presente tras un número (que esperamos sea

lo suficientemente) reducido de etapas.

No obstante sigue siendo totalmente válido tomar un enfoque pasivo, aunque pueda

tardar un número mayor de etapas en lograr la adaptación.

− En situaciones con concept drift gradual, se suceden etapas donde se mezclan concepts

hasta que finalmente acaba por establecerse la presencia de uno solo. Esto dificulta

la detección expĺıcita de la etapa donde se inicia el drift y también complica la

reconstrucción del modelo pues el conjunto de datos empleado para ello contiene

información del primer concept y por tanto irrelevante una vez se establezca el nuevo

concept. La mejor forma de proceder consiste entonces en tomar un enfoque pasivo,

adaptando el modelo de forma gradual mientras sucede el drift.

También resulta de gran importancia hacer notar la falta literatura sobre concept drift en

lo referente a regresión, lo que dificultó los desarrollos inicialmente pero finalmente fuimos

capaces de tratarlo adecuadamente.
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Aśı mismo, podemos establecer varias posibles directivas a seguir en una continuación

futura del trabajo expuesto en este documento:

− Estudio y desarrollo de nuevos algoritmos y técnicas para la adaptación al concept

drift. Resulta esencial conocer los últimos adelantos acontecidos en un entorno de

investigación siempre cambiante y en continua evolución (como nuestros datos). Esto

es especialmente evidente en el caso de regresión, apenas tratado y con mucho futuro,

sobre todo en entornos industriales (e.g. medidas numéricas de diferentes sensores).

− Implementación en R. Es notable la falta de libreŕıas en R que permitan hacer un

tratamiento del concept drift y, dada la familiaridad con este lenguaje de programación

(muy usado a lo largo del Máster), hemos optado por llevar a cabo la implementación

de varios de estos métodos, concretamente aquellos descritos en el trabajo. A futuro

podemos considerar ampliar el repertorio e incluso crear nuestra propia libreŕıa/paquete

de funciones de acceso público.

− Tratamiento de conjuntos de datos reales. Hemos analizado casos sintéticos, donde la

ocurrencia del drift se conoćıa de antemano y la definición de concept en cada momento

era relativamente simple. Los resultados han sido totalmente satisfactorios, pero nuestra

atención ha estado siempre centrada en una implementación y aplicación industrial del

tratamiento de concept drift. Es lógico por tanto que el siguiente paso consista en tratar

casos reales, donde el estudio de los datos resulta mucho más complicado, necesitando

casi siempre de un tratamiento previo de los mismos y una elección cuidadosa del modelo

predictivo a emplear.

− Caracterización más profunda del concept drift. Aunque a lo largo del trabajo nos hemos

centrado en la detección y adaptación en escenarios con (posible) concept drift, existen

art́ıculos[9] que tratan de desarrollar y/o sentar las bases para un estudio del propio

drift. Podemos entonces profundizar en la definición de algunas de sus caracteŕısticas:

• “Cúando” ocurre el concept drift, es decir, en qué momento se produce el cambio

de concept y cuantas etapas ocurren hasta el establecimiento de un único concept

(si es que ocurre). Retrasos en la detección o falsas alarmas pueden complicar o

incluso impedir la adaptación del algoritmo al nuevo concept.

• “Cómo” es el concept drift, refiriéndose a la severidad del mismo. Formalmente se

expresa como ∆ = δ (pt(x, y), pt+1(x, y)), con δ una función (no negativa) que

permite medir la discrepancia entre ambas distribuciones y t indica la etapa en

que ocurre el drift. Aśı, cuanto mayor el valor de ∆, más severo es el concept drift

y más se diferencian los concepts.
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5.10. Función de pérdida 0-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.11. (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores. 50

58



Lista de Tablas
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Anexos A

Algoritmos Tratados

Algoritmos para la detección expĺıcita de concept drift :

Algoritmo 1 Algoritmo para el Test de Page-Hinkley

Entrada: Parámetros δ y λ, errores (precuenciales) de predicción en cada etapa e(t)
Inicialización: sum = 0, mT = 0, MT = 1
for t desde t = 1 hasta detectar concept drift do

sum = sum + e(t)

mT = mT + e(t)− sum

t
− δ

if mT < MT then
MT = mT

end if
if mT −MT ≥ λ then

Devuelve: “concept drift a partir de la etapa t”
end if

end for

Algoritmo 2 Algoritmo para el Drift Detection Method

Entrada: Valor 0 o 1 en cada etapa, e(t), indicando si la predicción resulta en una correcta
clasificación o no, número mı́nimo de errores previos mı́nerror, niveles α y β
Inicialización: pmı́n = smı́n = 0.5 , pt = 0
for t desde t = 1 hasta detectar concept drift do

pt = (e(t) + (t− 1) pt)/t , st =
√

pt · (1− pt)/t
if
∑

t e(t) > mı́nerror then
if (pt + st) ≥ (pmı́n + α · smı́n) then

Alerta: “posible concept drift a partir de la etapa t”
Se almacena este ejemplo para reconstruir el modelo en caso de drift

end if
if (pt + st) ≥ (pmı́n + β · smı́n) then

Devuelve: “ha ocurrido concept drift en la etapa t”
Se reconstruye el modelo con los datos almacenados

else if (pt + st) < (pmı́n + smı́n) then
pmı́n = pt , smı́n = st

end if
end if

end for
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Algoritmo 3 Algoritmo para el Early Drift Detection Method

Entrada: Número de etapas entre los errores d(e), número mı́nimo de errores previos
mı́nerror, niveles α y β
Inicialización: pmáx = smáx = 1
for e (que indica el número de errores) desde e = 1 hasta detectar concept drift do

pe =
∑

e d(e)/e , se =
√∑

e(d(e)− pe)2/e
if e > mı́nerror then

if ((pe + 2 · se)/(pmáx + 2 · smáx)) < α then
Alerta: “posible concept drift a partir del error e”
Se almacena este ejemplo para reconstruir el modelo en caso de drift

end if
if ((pe + 2 · se)/(pmáx + 2 · smáx)) < β then

Devuelve: “ha ocurrido concept drift en la etapa que marca el error e”
Se reconstruye el modelo con los datos almacenados

else if (pt + st) > (pmáx + smáx) then
pmáx = pt , smáx = st

end if
end if

end for

Algoritmo 4 Algoritmo para ADaptive WINdowing

Entrada: Ventana inicialW de tamaño n conteniendo errores (precuenciales) de predicción
en cada etapa {e(1), ..., e(n)}, parámetro δ
for t desde t = n+ 1 hasta detectar concept drift do

W = W ∪ {e(t)}
for toda partición de W en W0 y W1 (n0 + n1 = n) do

µ̂W0 =
∑n0

i=1 e(i)/n0 , µ̂W1 =
∑n

i=n0+1 e(i)/n1 , ϵcut =

√
n0 + n1

2n0 n1
· log

(
4n
δ

)
while |µ̂W0 − µ̂W1 | ≥ ϵcut do

Indica: “posible concept drift”
W = W1

end while
end for
Devuelve: ventana adaptada W .

end for
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Algoritmos incrementales para aprendizaje online en problemas de regresión:

Algoritmo 5 Algoritmo incremental (Widrow-Hoff/SGD con Regresión Lineal)

Fija la tasa de aprendizaje η
Inicializa β = β0 = (β0

0 , β
0
1 , ..., β

0
p)

T

for toda etapa t > 0 do
Toma instancia xt

Calcula la predicción ŷt = βt−1
0 + βt−1

1 xt1 + ...+ βt−1
p xtp

Recibe el el valor real yt
Actualiza los parámetros βt = βt−1 − 2η

(
(ŷt − yt) , (ŷt − yt)xt1, ..., (ŷt − yt)xtp

)T
end for
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Algoritmos incrementales para aprendizaje online en problemas de clasificación:

Algoritmo 6 Algoritmo incremental (SGD con Regresión Loǵıstica)

Fija la tasa de aprendizaje η
Inicializa β = β0 = (β0

0 , β
0
1 , ..., β

0
p)

T

for toda etapa t > 0 do
Toma instancia xt

Calcula la probabilidad p(1 |xt) = σ(βt−1
0 + βt−1

1 xt1 + ...+ βt−1
p xtp)

Recibe el el valor real yt
Actualiza βt = βt−1 − η

(
(p(1 |xt)− yt) , (p(1 |xt)− yt)xt1, ..., (p(1 |xt)− yt)xtp

)T
end for

Algoritmo 7 Algoritmo incremental (perceptrón)

Fija la tasa de aprendizaje η
Inicializa w = w0

for toda etapa t > 0 do
Toma instancia xt

Calcula la predicción ŷt = signo(w · xt) =

{
−1 si w · xt ≤ 0

1 si w · xt > 0
Recibe el el valor real yt
if ŷt ̸= yt then

wt = t-1+ η ytxt

else
wt = wt−1

end if
end for

Algoritmo 8 Algoritmo incremental (Winnow)

Fija la tasa de aprendizaje η
Inicializa w = w0 = (w0

1, ..., w
0
n)

T = (1/n, ..., 1/n)T

for toda etapa t > 0 do
Toma instancia xt

Calcula la predicción ŷt = signo(w · xt) =

{
−1 si w · xt ≤ 0

1 si w · xt > 0
Recibe el el valor real yt
if ŷt ̸= yt then

for i = 1 hasta n do

wt
i =

wt−1
i exp(η yt xti)∑n

k=1w
t−1
k exp(η yt xtk)

end for
else

wt = wt−1

end if
end for
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Anexos B

Regresión Loǵıstica:
Demostraciones

En este apéndice demostramos la obtención de las expresiones mostradas en el Caṕıtulo 5.

Dem: σ(−a) = 1− σ(a)

σ(−a) =
1

1 + exp(a)
=

1

1 + exp(a)

exp(−a)

exp(−a)
=

exp(−a)

1 + exp(−a)
=

= 1− 1

1 + exp(−a)
= 1− σ(a) .

(B.1)

Dem: a = Logit
(
σ(a)

)
σ(a) =

1

1 + exp(−a)
⇐⇒ σ(a)

(
1 + exp(−a)

)
= 1 ⇐⇒

⇐⇒ σ(a) exp(−a) = 1− σ(a) ⇐⇒ exp(a) =
σ(a)

1− σ(a)
⇐⇒

⇐⇒ a = log

(
σ(a)

1− σ(a)

)
.

(B.2)

Dem: a = log(p(1 |x)/p(0 |x))

Usando el Teorema de Bayes, tenemos

p(x | 1) p(1) = p(1 |x)
(
p(x | 0) p(0) + p(x | 1) p(1)

)
, (B.3)

p(x | 0) p(0) = p(0 |x)
(
p(x | 0) p(0) + p(x | 1) p(1)

)
, (B.4)

lo que permite expresar a como

a = log

(
p(x | 1) p(1)
p(x | 0) p(0)

)
= log

(
p(1 |x)
p(0 |x)

p(x | 0) p(0) + p(x | 1) p(1)
p(x | 0) p(0) + p(x | 1) p(1)

)
=

= log

(
p(1 |x)
p(0 |x)

)
.

(B.5)
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Dem:∇L(yt, p(1 |xt)) =
(
(p(1 |xt)− yt) , (p(1 |xt)− yt)xt1, ..., (p(1 |xt)− yt)xtp

)T
donde L(yt, p(1 |xt)) toma la forma

L(yt, p(1 |xt)) = −yt log
(
p(1 |xt)

)
− (1− yt) log

(
1− p(1 |xt)

)
. (B.6)

Definimos x⃗t = (1, xt1, ..., xtp)
T de modo que podemos (diferenciarlo de xt y) expresar

más cómodamente

p(1 |xt) =
1

1 + exp
(
− (β0 + β1 xt1 + ...+ βp xtp)

) =
1

1 + exp(−x⃗Tt · β)
(B.7)

y por tanto

d p(1 |xt)

dβ
=

x⃗t exp(−x⃗Tt · β)(
1 + exp(−x⃗Tt · β)

)2 = x⃗t p(1 |xt)
(
1− p(1 |xt)

)
, (B.8)

d
(
1− p(1 |xt)

)
dβ

= −d p(1 |xt)

dβ
= −x⃗t p(1 |xt)

(
1− p(1 |xt)

)
. (B.9)

Aśı mismo

d log
(
p(1 |xt)

)
dβ

=
1

p(1 |xt)

d p(1 |xt)

dβ
= x⃗t

(
1− p(1 |xt)

)
, (B.10)

d log
(
1− p(1 |xt)

)
dβ

=
1

1− p(1 |xt)

d
(
1− p(1 |xt)

)
dβ

= −x⃗t p(1 |xt) . (B.11)

Finalmente

∇L(yt, p(1 |xt)) =
dL(yt, p(1 |xt))

dβ
=

= −yt
d log

(
p(1 |xt)

)
dβ

− (1− yt)
d log

(
1− p(1 |xt)

)
dβ

=

= −yt x⃗t
(
1− p(1 |xt)

)
+ (1− yt) x⃗t p(1 |xt) = x⃗t

(
p(1 |xt)− yt

)
=

=
(
(p(1 |xt)− yt) , (p(1 |xt)− yt)xt1, ..., (p(1 |xt)− yt)xtp

)T
(B.12)
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Anexos C

Código Empleado

A continuación se incluye una recopilación de los diferentes códigos en R utilizados en la

implementación de los diferentes métodos de detección expĺıcita de Concept Drift.

C.1. Page-Hinkley Test

### Page-Hinkley Test ###

# Devuelve el instante (indice) en que se detecta Concept Drift

# errors como un vector

Page_Hinkley <- function(errors, delta = 0, lambda = 0){

m <- dif <- warning <- c()

M <- 0

for(i in 1:length(errors)){

m[i] <- sum(errors[1:i] - mean(errors[1:i]) - delta)

if(m[i] < M) M <- m[i]

dif[i] <- m[i] - M

if(dif[i] > lambda){

cat("Se supera lambda en la iteracion ", i)

cat("\n")

warning <- c(warning, i)

}

}

return(list(dif = dif, warning = warning))

}
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C.2. Drift Detection Method (DDM)

### Driftt Detection Method ###

# Modeliza el error de clasificacion segun una distribucion binomial

# min errors indica el numero minimo de errores previos detectados

DDM <- function(error, window_length=1, min_errors=30, alpha=2, beta=3){

# Valores iniciales altos para que sean facilmente reemplazables

p_min <- s_min <- 1

p <- s <- warning <- CD <- c()

for(i in head(seq(1, length(error), window_length), -1)){

p_i <- sum(error[1:(i + window_length - 1)])/(i + window_length - 1)

s_i <- sqrt(p_i*(1-p_i)/(i + window_length - 1))

# numero minimo de errores detectados para empezar

if(sum(error[1:(i + window_length - 1)]) >= min_errors){

if((p_i + s_i) >= (p_min + alpha*s_min)){

cat("Warning en la iteracion ", i + window_length - 1)

cat("\n")

warning <- c(warning, i + window_length - 1)

if((p_i + s_i) >= (p_min + beta*s_min)){

cat("Concept Drift en la iteracion ", i + window_length - 1)

cat("\n")

CD <- c(CD, i + window_length - 1)

}

}

else if((p_i + s_i) < (p_min + s_min)){

p_min <- p_i

s_min <- s_i

}

}

p <- c(p, p_i)

s <- c(s, s_i)

}

return(list(p = p, s = s, warning = warning, CD = CD))

}
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C.3. Early Drift Detection Method (EDDM)

### Early Drift Detection Method ###

# Mejora la deteccion de Gradual Concept Drift

EDDM <- function(error, min_errors = 30, alpha = 0.95, beta = 0.90){

# Valores inciales bajos para que sean facilmente reemplazables

p_max <- s_max <- 0.5

p <- s <- dist <- warning <- CD <- c()

pos_error <- which(error == 1)

for(i in 1:(length(pos_error)-1)){

dist[i] <- pos_error[i+1] - pos_error[i]

p[i] <- mean(dist)

s[i] <- sd(dist)

if(i >= min_errors){

if(((p[i] + 2*s[i])/(p_max + 2*s_max)) < alpha){

cat("Warning en la iteracion ", pos_error[i+1])

cat("\n")

warning <- c(warning, pos_error[i+1])

if(((p[i] + 2*s[i])/(p_max + 2*s_max)) < beta){

cat("Concept Drift en la iteracion ", pos_error[i+1])

cat("\n")

CD <- c(CD, pos_error[i+1])

}

}

if((p[i] + 2*s[i]) > (p_max + 2*s_max)){

p_max <- p[i]

s_max <- s[i]

}

}

}

return(list(p = p, s = s, warning = warning, CD = CD))

}
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C.4. ADaptive WINdowing

### ADaptive WINdowing ###

# Funcion previa para evaluar que se cumpla la condicion de

# distribuciones lo suficientemente distintas

# Devuelve booleanos:

# 0 distribuciones iguales

# 1 distribuciones distintas

subwindows <- function(window, cut, delta=0.2, type=2, min_size=1){

if(length(window) == min_size) return(0)

if(max(window) != min(window))

W <- (window - min(window))/(max(window) - min(window))

else W <- window

W_0 <- W[1:cut]

W_1 <- W[(cut+1):length(W)]

mean_0 <- mean(W_0)

mean_1 <- mean(W_1)

m <- (length(W_0)*length(W_1))/(length(W_0)+length(W_1))

Delta <- delta/length(W)

eps1 <- sqrt((1/(2*m))*log(4/Delta))

eps2 <- sqrt((2/m)*var(W)*log(2/Delta)) + (2/(3*m))*log(2/Delta)

if(type == 1) return(abs(mean_0 - mean_1) > eps1)

else if(type == 2) return(abs(mean_0 - mean_1) > eps2)

# En caso de no devolver nada

stop("Parametros mal especificados")

}
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# newdata como un vector

ADWIN <- function(window, newdata, delta=0.2, type=1, dif=20,

min_size=1, entry_size=1){

ventanas <- c(length(window))

for(i in head(seq(1,length(newdata),entry_size),-1)){

# Se incluyen los nuevos valores en la ventana

window <- c(window, newdata[i:(i+entry_size-1)])

cut <- min_size

while(cut <= (length(window)-min_size)){

cut_check <- cut

while(subwindows(window, cut_check, delta=delta, type=type,

min_size=min_size) & (cut_check >= min_size)){

window <- window[-1]

# Mantenemos siempre la ventana W_1

cut_check <- cut_check - 1

#cut <- min_size - 1

}

# Para volver a evaluar todas las divisiones en subventanas

# Se repite el check en uno de los valores

cut <- cut + 1

}

ventanas <- c(ventanas, length(window))

print(c(i,length(window)))

# Para indicar concept drift si la diferencia supera un valor

#if((ventanas[i] - ventanas[i+1]) > dif){

# cat("Posible Concept Drift en la iteracion ", i)

# cat("\n")

#}

#print(mean(window))

}

return(ventanas)

}
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# Version que elimina todas las componentes de W_0

# Nos quedamos con W_1

ADWIN_all <- function(window, newdata, delta=0.2, type=1, dif=20,

min_size=1, entry_size=1){

ventanas <- c(length(window))

for(i in head(seq(1,length(newdata),entry_size),-1)){

# Se incluyen los nuevos valores en la ventana

window <- c(window, newdata[i:(i+entry_size-1)])

cut <- min_size

while(cut <= (length(window)-min_size)){

if(subwindows(window,cut,delta=delta,type=type,min_size=min_size)){

# Nos quedamos solamente con W_1

window <- window[(cut+1):length(window)]

cut <- min_size - 1

}

# Para volver a evaluar todas las divisiones en subventanas

# Se repite el check en uno de los valores

cut <- cut + 1

}

ventanas <- c(ventanas, length(window))

print(c(i,length(window)))

# Para indicar concept drift si la difrencia supera un valor

#if((ventanas[i] - ventanas[i+1]) > dif){

# cat("Posible Concept Drift en la iteracion ", i)

# cat("\n")

#}

#print(mean(window))

}

return(ventanas)

}
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