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RESUMEN

Los algoritmos de Aprendizaje Automético/Machine Learning tradicionales procesan
la informacion recibida asumiendo una distribucién estacionaria subyacente. Por ejemplo,
los modelos predictivos se entrenan con conjuntos histéricos de datos en forma de (input,
output) o (variables predictivas, variables objetivo), de forma que puedan ser usados para
obtener predicciones sobre nuevos datos. Sin embargo, resulta habitual que estos nuevos datos
lleguen en forma de flujos/streams, produciendo gran cantidad de informacién a analizar
cuyo contenido es susceptible de evolucionar en el tiempo. Esto conlleva un cambio entre
la distribucién de los datos inicial (con los que entrenamos los modelos pertinentes) y la
distribucién de las nuevas instancias de datos que se reciben a lo largo del tiempo, fenémeno
que se conoce como concept drift. Dado que puede afectar al rendimiento de los modelos, es
de vital importancia la detecciéon de concept drift y posterior adaptaciéon para mantener la

precisiéon requerida.

ABSTRACT

Traditional Machine Learning models assume that data is drawn from a stationary
distribution. For instance, predictive models are trained using historical data given as a
set of pairs (input, output) so they can be afterwards applied for predicting the output for
new unseen input data. However, very often data comes in the form of streams, resulting in
large volumes of data, whose content is changing and evolving over time. This results in a
change between the distributions of training data seen so-far and the distribution of newly
coming data, which is known as concept drift. Because it can affect our model’s predictive
performance it is of utmost importance to detect and adapt to concept drifts in order to

maintain the accuracy and reliability of our predictions.
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Capitulo 1

Introduccion

Desde hace unos anos y de forma cada vez mas frecuente, encontramos que gran

parte de la informacién disponible llega a nosotros en forma de flujos/streams®, debido
fundamentalmente a la prevalencia de la telefonfa mévil y el Internet of Things (IoT)?.
La técnicas de Aprendizaje Automaético o Machine Learning tradicionales asumen que los
procesos que generan tales datos son estacionarios, siguiendo por tanto una distribucién de
probabilidad fija aunque desconocida, y se crean asi algoritmos y modelos predictivos con esa
base. No obstante, en la mayoria de escenarios con que uno se encuentra en el mundo real
tal asuncion resulta incorrecta. Efectivamente, el proceso generativo es intrinsecamente no
estacionario y se producen en cambios en la relacién existente entre la variable que el modelo
busca predecir y el resto de datos que usa para ello. Este problema se conoce como concept
drift y puede conllevar una degradacién significativa en la capacidad predictiva.

En este trabajo centramos la atencién en hacer una caracterizacién matemaética tanto del
concept como del concept drift, tal y como se definen en el estado del arte referente al tema.
Continuaremos el estudio analizando los métodos y algoritmos mas utilizados, acompanados
de su aplicacién sobre ciertos conjuntos de datos de naturaleza sintética.

Los contenidos desarrollados se estructuran como sigue. En el Capitulo 2 se introduce el
Aprendizaje Automdtico o Machine Learning y se establecen las principales definiciones
que permitiran avanzar en la lectura. El Capitulo 3 introduce formalmente el concept drift,
con su tipologia y la metodologia comunmente seguida para su deteccién y adaptacién. Un
ejemplo practico del tratamiento con concept drift se trata para el caso de regresion en el
Capitulo 4 y para clasificacién en el Capitulo 5, expandiendo asi todo lo expuesto en capitulos
anteriores. Finalmente en el Capitulo 6 se incluyen las conclusiones obtenidas y se establecen

las directivas a seguir de cara a continuar el trabajo en un futuro.

!Toda secuencia continua y ordenada (a través de un indice temporal o timestamp) de datos se conoce
como flujo de datos/data stream. Resulta imposible controlar el orden de llegada de las diferentes instancias
y dada su extensién puede ser imposible tratarlos en su totalidad; son grandes cantidades de datos que llegan
con elevada frecuencia.

2Bl Internet of Things (IoT)[1] describe objetos fisicos (o conjuntos de ellos) con diferentes sensores,
capacidad de procesamiento, software y otras tecnologias que les permitan conectarse e intercambiar datos e
informacién con otros dispositivos y sistemas a través de internet u otras redes de comunicaciones.






Capitulo 2

Machine Learning:
Definiciones Previas

Podemos definir el Aprendizaje Automdtico o Machine Learning[2] (ML) como el

subcampo de las ciencias de computacién y una rama de la Inteligencia Artificial, Artificial
Intelligence (AI), cuyo objetivo es desarrollar técnicas y algoritmos capaces de “aprender”.
Es decir, técnicas y algoritmos con la capacidad de aprovechar la informacion proporcionada
por los datos tratados con el objetivo de mejorar el rendimiento de ciertas tareas, como puede
ser la obtencion de predicciones precisas.
Puesto que el éxito obtenido con los diferentes algoritmos de aprendizaje depende en gran
medida de los datos empleados, el machine learning muestra una profunda relacién con el
campo de la analitica de datos y la estadistica matematica. Es mas, las técnicas empleadas
se basan en el tratamiento de datos combinando conceptos fundamentales de computacién
con estadistica, probabilidad y optimizacién.

Antes de proseguir resulta conveniente establecer una serie de definiciones previas:

— Instancias/ observaciones. Son cada uno los elementos individuales del conjunto de datos
usados en las diferentes labores de aprendizaje, validaciéon de modelos... Considerando

los datos en forma de tabla, cada fila corresponde a una instancia individual.

— Features/ variables predictoras/ explicativas/ independientes o covariables. El conjunto
de atributos o caracteristicas asociados a cada instancia; en el caso tabular estarian
representadas por columnas.

Matematicamente las representamos con el vector x € X, siendo X el conjunto de todos

sus posibles valores.

— Etiquetas/ labels/ variables objetivo. Son valores/clases asociados a cada instancia
y, dado un modelo predictivo, es aquello que buscamos obtener/predecir. En
representaciéon tabular pueden verse como una columna (o columnas) de especial

importancia; aunque en ocasiones se consideran por separado.



Generalmente trataremos con un tinico valor por instancia y mateméticamente quedan

representadas, en una dimensién, por y € ), con Y el conjunto de sus posibles valores.

— Hiperparametros. Parametros libres 6 asociados al algoritmo (en algunos casos no hay)
que permiten controlar el proceso de aprendizaje. Por ejemplo, en el caso de una red
neuronal, los hiperpardmetros definen el nimero de neuronas y el tamano de la red.
Se distinguen del resto de parametros en que los valores de estos ltimos se derivan del

ajuste sobre los datos del conjunto de entrenamiento.

— Conjunto de entrenamiento. Conjunto de instancias usado en la fase de entrenamiento
del algoritmo para ajustar los diferentes parametros, como pueden ser los coeficientes

de un modelo de regresién lineal!.

— Conjunto de validacion. Este conjunto de instancias se emplea durante la fase de
entrenamiento para evaluar el ajuste de los pardmetros, asi como para elegir los valores
optimos de los hiperparametros. Usando las etiquetas de cada instancia, se toman

aquellos valores que ofrecen los mejores resultados predictivos.

— Conjunto de prueba/ test. Conjunto de instancias utilizado para medir la
calidad /rendimiento del algoritmo de aprendizaje una vez definidos los valores de los
diferentes pardametros e hiperpardmetros. Se comparan asi las predicciones sobre cada
instancia con su respectiva etiqueta.

A diferencia del conjunto de validacién no esta disponible en la fase de entrenamiento.

— Funcién de pérdida. Funcién que mide la diferencia (o pérdida) entre la prediccién
asociada a cada instancia y su respectiva etiqueta. Sea Vel conjunto de todos los
posibles valores de las predicciones, g € y (normalmente Y= V), la funcién de pérdida

establece entonces la aplicacién
L:YxY—R"
(v, 9) — L(y, 9)
Notar que siempre es mayor o igual que 0 (no consideramos pérdidas negativas).

Se muestran ejemplos de estas funciones en secciones posteriores.

— Conjunto de hipétesis. Conjunto H de funciones que relacionan las features x con las

etiquetas predichas, 3. Identificamos asi cada hipétesis con una aplicaciéon de X en y

h:X—>5/

x — g = h(x)

'Se desarrollard més adelante, en la Seccién 4.1



Machine learning trata fundamentalmente la generalizacion. Asi, el problema tipico de
aprendizaje consiste en elegir una funcién de las del conjunto de hipédtesis (la més adecuada)
con el objetivo de etiquetar todas las instancias, incluidas aquellas mas recientes y no
consideradas en el conjunto de entrenamiento/validacién o prueba.

Asi mismo, podemos establecer diferentes escenarios en funcién de cémo se lleve a cabo
la labor de aprendizaje. Efectivamente, en funcién de cémo se presente la informacion
inicialmente disponible, asi como el orden y la forma en que vayan llegando nuevos datos

distinguimos principalmente los siguientes casos.

2.1. Aprendizaje Supervisado

En este escenario, el algoritmo de aprendizaje recibe un conjunto inicial de datos que
incluye los valores reales de la variable que buscamos predecir (las etiquetas reales). Este
conjunto se divide en los diferentes subconjuntos de entrenamiento, validacién y prueba? y
con ello se determinan los valores de los diferentes pardametros e hiperpardmetros. Obtenemos
asi un modelo que permite obtener predicciones sobre el conjunto de prueba, ofreciendo
informacién sobre el rendimiento de nuestro algoritmo mediante una funcién de pérdida.
Una vez entrenado, validado y probado/testeado, el algoritmo se emplea para obtener
predicciones a partir de los nuevos datos que van llegando. Dentro del escenario supervisado

se distinguen principalmente los casos de regresién y clasificacion.

2.1.1. Regresién

En problemas de regresion, la etiqueta de cada instancia toma valores reales en un
continuo. En estos casos suele considerarse una funcion de pérdida cuadratica, que para

un instancia ¢ toma la expresion
L(ys, 9:) = (9i — vi)?. (2.1)

Como ejemplo podemos encontrar la prediccién de variables meteorologicas, asi como la

produccién de energia solar o edlica.

2.1.2. Clasificacién

En este caso, la etiqueta y asociada a cada instancia es una variable categérica y por
consiguiente toma valores discretos, correspondientes a cada una de las diferentes clases. En

este tipo de problemas resulta muy comun hacer uso de la funcién de perdida 0-1, que para

2E] tamafio de cada conjunto depende de diversas consideraciones, como puede ser el ntmero de
hiperparametros del modelo. No obstante, como norma general, se suele definir un tamano para el conjunto
de entrenamiento sensiblemente superior al del resto.



una instancia ¢ queda definida como sigue

0 siy =i
Liyi, 9) =4 V=¥ (2.2)
1 siy # 9,

es decir, la pérdida es nula si la prediccién de clase es correcta y vale 1 si es incorrecta. Notar
que en el caso de tratar multiples clases, la pérdida es la misma indiferentemente de qué clase
sea predicha, con tal de que no sea la correcta.

Como ejemplo de este tipo de problemas puede considerarse la clasificacién de correo como

spam o no spam. En este caso la clasificacién es binaria (dos clases).

2.2. Aprendizaje No Supervisado

Al contrario que los problemas de aprendizaje supervisado, donde los datos que se
usan en el entrenamiento del algoritmo estdn previamente etiquetados, en aprendizaje
no supervisado el conjunto inicial que recibe el algoritmo no incluye las etiquetas reales
asociadas a cada instancia. Por tanto, el objetivo de estas técnicas de aprendizaje se centra
en encontrar patrones o asociaciones entre los diferentes datos (o variables).

Entre los problemas asi tratados encontramos el clustering[3], que consiste en particionar
las instancias en diferentes subconjuntos homogéneos (clusters). Se comienza “a ciegas” y
dado el conjunto de datos, se trata de encontrar tanto el namero de clases en las que se
podrian agrupar las instancias (no siempre estdn predefinidas) como el numero de ellas
que pertenecen a cada clase. Dada la falta de etiquetas puede resultar complicado medir
el rendimiento del algoritmo debiendo recurrir a argumentos heuristicos (subjetivos) para
validarlo. Como ejemplo podemos considerar el caso del andlisis de redes sociales, donde
se intenta agrupar a gran cantidad de gente en diferentes comunidades més reducidas (los
clisteres) segtiin su comportamiento.

Asi mismo, se utilizan técnicas de aprendizaje no supervisado para reducir la dimensionalidad

de un problema agrupando variables.

A medio camino entre el aprendizaje supervisado y el no supervisado encontramos el caso
del aprendizaje semi-supervisado, mezclando instancias con y sin etiquetas. El objetivo en
este caso es hacer predicciones para toda instancia. Por otro lado, también podemos distinguir
el caso en que el conjunto de entrenamiento/validacién presenta etiquetas mientras que en el
conjunto de prueba estan ausentes. El objetivo se centra en predecir iinicamente sobre este

ultimo y se conoce como transductive inference.



2.3. Aprendizaje Online

En contraste con los escenarios de aprendizaje definidos con anterioridad, en el
caso del aprendizaje online[4, 5] se suceden numerosas etapas (se pueden asociar con
instantes temporales) en las que las fases de entrenamiento y prueba/testeo se encuentran
interconectadas. De esta forma, en cada etapa el algoritmo recibe una instancia (o mas de
una) sin su etiqueta correspondiente, se realiza una prediccién y al recibir el valor real se
puede medir la pérdida cometida. El objetivo en esta situacién consiste en minimizar la
pérdida acumulada a lo largo de las diferentes etapas.

Surge como una solucién para tratar con grandes conjuntos de datos, como puede ser el caso
de los flujos de datos/data streams, en los que nuevas instancias van llegando a velocidades
tan elevadas que pueden complicar el analisis. Es este el escenario en que centraremos nuestra
atencion en capitulos posteriores. Estos métodos cumplimentan a aquellos més tradicionales
(offline o batch?® learning) tratados anteriormente, en los que el conjunto de datos empleado
para entrenar nuestro modelo es inmutable. Es decir, los datos se encuentran disponibles
desde el primer momento y el modelo se entrena asi una unica vez. Por el contrario, en
el aprendizaje online, los datos se procesan de forma secuencial, creando asi un modelo
inicial sin disponer de todo el conjunto de entrenamiento. Con el transcurso del tiempo van

llegando nuevas instancias que se emplean para actualizar el modelo.

Otro escenario en el que se mezcla entrenamiento y prueba es el de aprendizaje por
refuerzo o reinforcement learning. En este caso el algoritmo interacciona de forma activa con
el entorno en el que se encuentra desplegado (pudiendo llegar a afectarle) y tras cada accién
realizada recibe informacién de éste en forma de alguna nocién de “recompensa”. El objetivo

es entonces maximizar esta recompensa, acumulada a lo largo de las diferentes acciones.

3Entendiendo por batch un conjunto de miltiples instancias.






Capitulo 3

Concept Drift:
Definicion, Deteccion y Adaptacion

Con todo lo expuesto en la seccién anterior, hemos establecido las bases para proseguir
nuestros desarrollos. Concretamente centramos nuestra atencion en el problema del concept
drift, ligado a la no estacionariedad de los escenarios de aprendizaje online.

Comenzamos definiendo qué se entiende por concept. Recurrimos asi al marco de aprendizaje

PAC (Probably Approzimately Correct)' y expresamos concept como la aplicaciéon de X en )

c: X — Y
(3.1)
x — y = c(x)
Es decir, relaciona las etiquetas reales con las features de cada instancia. No obstante,
muchos autores adoptan una definicién probabilistica del término concept, asocidandolo a
la distribucién de probabilidad conjunta, p(x, y), especialmente popular en tratados sobre
concept drift[6, 7, 8, 9, 10].

Con esta definicién podemos tratar el caso mas general de aprendizaje supervisado, donde
se asume la existencia de una distribucién fija y desconocida D, definida sobre X x ). Es
decir, D define la distribucién de probabilidad conjunta p(x, y) y el conjunto de entrenamiento
consiste en una muestra S de variables independientes e idénticamente distribuidas (i.i.d.)
segun D

S ={(x1, Y1); s (Xms Ym) } -

Las etiquetas estan definidas por un concept ¢ tal que y; = ¢(x;), con i = 1,...,m. Notar
asi la estrecha realcién entre ¢ y p(x, y) y podemos interpretar concept como el conjunto de

instancias/datos cuya distribucién de probabilidad subyacente es estacionaria.

'El aprendizaje PAC (Probably Approzimately Correct) permite establecer un marco de referencia para el
andlisis matematico de las técnicas tratadas en Machine Learning.
En este escrito utilizaremos algunos resultados basicos pero si se desea disponer de informaciéon més detallada
al respecto recomendamos consultar otras fuentes[2]. Este libro de referencia cubre los principales temas y
tépicos del machine learning més actual, proporcionando las bases y fundamentos tedricos necesarios para
nuestros posteriores desarrollos.



En la labor de aprendizaje se considera el conjunto H de posibles hipétesis y se usa la muestra
S para elegir aquella hipotesis h € H que resulte en un menor error de generalizacion respecto
al concept ¢, R(h), definido como

R(h)= P [h(x)#c(x)] = [L(h(x),c(x))] = E [L(3,9)], (3:2)
(x,y)~D (x,y)~D (x,y)~D

siendo L (y, ) una funcién de perdida. El desconocimiento tanto del concept ¢ como de la
distribucién D nos impide obtener el valor de R(h). Sin embargo, podemos hallar el error

empirico sobre S definido como

Rs(h) = 3~ L(h(xi), ex0)) = - 3~ L) (33
i=1 =1

El error empirico de h es el promedio de la pérdida cometida al aplicar la hipdtesis sobre la
muestra S mientras que el error de generalizacion es el valor esperado de la pérdida basado
en la distribucién D. Asi, el en el caso de regresién con (2.1), Rs(h) representarfa el error
cuadratico medio o Mean Squared Error. En el caso de clasificacién, usando (2.2) la expresion
anterior daria cuenta del cociente entre clasificaciones erréneas y clasificaciones totales.

Por contraste, en el aprendizaje online se mezclan las fases de entrenamiento y prueba
y no se asume ninguna distribucién estacionaria D. Asi mismo, en vez de disponer de una
muestra inicial fija S, consideramos que en cada etapa t el algoritmo recibe datos en forma
de tuplas S = {(x¢, y¢)}. Procediendo asi, consideremos T etapas, de forma que en la etapa
t-ésima el algoritmo recibe una instancia con sus correspondientes features x; y realiza una
prediccion ;. Antes de la etapa t + 1, es decir, antes de disponer de x;y1, el algoritmo recibe
el valor real y; e incurre una pérdida L(g, y¢). Esta informacién es usada por el algoritmo en
el aprendizaje con el objetivo de minimizar la pérdida acumulada a lo largo de las sucesivas

etapas, que escribimos como

T
Ly =Y L, wr) - (3.4)
t=1

Como antes, y; = ¢;(x¢), aunque en este caso denotamos el concept en cada etapa con el
respectivo subindice ¢, indicando que puede variar (en escenarios offline solo se considera un
unico concept). Efectivamente, el flujo de datos/data stream toma la forma de una sucesién,
{8}, de longitud potencialmente infinita y no es realista considerar que el concept es el
mismo en todas las etapas. Del mismo modo, al no hacer asunciones sobre la estacionariedad
de la distribucién subyacente, asumimos la posibilidad que ésta puede cambiar con el tiempo,
especialmente en entornos con alta variabilidad y donde prima la no estacionariedad, dando
lugar al problema del concept drift.

Notar que siempre disponemos de las valores reales de las etiquetas asociadas a cada

instancia, aunque sea con posterioridad a realizar cada prediccién. Por tanto, hay algunos

10



autores[7] que enmarcan el concept drift dentro de un escenario de aprendizaje online
supervisado. Ambos casos se refieren a lo mismo, tratando ademads problemas tanto de
clasificacién como de regresién, aunque este ltimo caso no se encuentra tan desarrollado,
de modo que escasea la literatura al respecto. Con motivos de remediar esta situacién,

en posteriores capitulos trataremos de analizar casos de regresion en presencia de concept drift.

Usando la definicién de concept méas habitual, como distribucion de probabilidad conjunta
p(x, y), el concept drift entre dos etapas o instantes de tiempo ¢ y ¢t + 1 puede expresarse

formalmente

Ix 1 p(x,y) # pera(x,y), (3.5)

donde py(x,y) v pr+1(x,y) definen las distribuciones conjuntas en sendas etapas/instantes
temporales. Entonces, como podemos descomponer p(x,y) = p(x)p(y|x), cambios en los
datos analizados pueden caracterizarse como cambios en las componentes de esta relacién,

estableciendo la siguiente clasificacién:

— Real Concept Drift. Se refiere a cambios en p(y|x), que pueden venir acompanados o

no de cambios en p(x)

Pe(X) = pry1(x) A pe(y|x) # pesa(y %)
6 (3.6)
pe(X) # per1(x) A pe(y %) # per1(y | x).

Causan un deterioro de la capacidad predictiva del modelo y por tanto requieren de

actuacion inmediata.

— Virtual Concept Drift. Se refiere a cambios en p(x) sin afectar a p(y|x). Es decir

Pe(x) # per1(x) A pe(y[x) = per1(y | x). (3.7)

Estos cambios no afectan a la capacidad predictiva y por tanto, en la practica no es
estrictamente necesario su tratamiento. Sin embargo, puede resultar instructivo para

comprender como se comportan los datos con el paso del tiempo.

Como ejemplo para facilitar la compresion podemos remitirnos al caso de una
aplicacién /plataforma de entretenimiento con la funcién de recomendar programas y series de
television, asi como peliculas, a sus usuarios en base las preferencias de cada uno (como puede
ser el caso de Netflix). Segin esto, para un cierto usuario, los programas de la plataforma
se clasificardn en interesantes o no interesantes (variable objetivo predicha ¢) segin las
caracteristicas de los mismos (variables predictoras x: el género, la duracién...). Asi, por cada

eleccién que realiza el usuario (en cada etapa), el algoritmo recibe un feedback estableciendo

11



si efectivamente era de su gusto o no (llegada del valor real y) y el modelo aprende para
realizar posteriores sugerencias (predicciones en etapas posteriores).

Asumamos por ejemplo que el algoritmo establece como no interesantes aquellos contenidos
audiovisuales cuya duracién sea inferior a 40 minutos, como es el caso de muchas series. Esto
es indicativo de la preferencia del usuario por las series mas extensas o peliculas y podemos

plantear los siguientes escenarios:

— Si el usuario dltimamente solo consume peliculas dado que dispone de més tiempo
de ocio, la distribucion de las caracteristicas del material consumido experimentard un
cambio en la variable que define la duracién (cambio en p(x)). No obstante, la restriccién
anterior sigue siendo totalmente valida pues la gran mayoria de peliculas superan los 40
minutos de duracién y por tanto no hay cambio en las predicciones (no cambia p(y | x)).

Estamos ante wvirtual concept drift.

— Si por el contrario el usuario comienza a ver mas series cortas por falta de tiempo,
entonces tenemos de nuevo cambio en p(x), pero la restriccién anterior pierde su validez.
Por tanto cambia p(y|x) y estamos ante real concept drift. Por otro lado, puede ser
que un mismo usuario, sin modificar sus preferencias, le permita elegir qué contenido
visualizar a un tercero. Estamos por tanto ante una persona con gustos que pueden ser

muy diferentes e incluso aunque no varie p(x), el cambio puede ser notable en p(y | x).

Con este ejemplo resulta facil entender la importancia que tiene la deteccién del concept
drift asi como su adecuado tratamiento en el mantenimiento de los modelos predictivos. No
obstante, encontramos que su utilidad se extiende a ambitos de diversa indole, como pueden
ser los campos de la medicina, la industria o la educacion.

En nuestro caso, el entorno industrial resulta unos de los principales focos de atencion y
por tanto, el tratamiento del concept drift tiene gran uso en el control y monitorizacién.
Podemos considerar asi el tratamiento de las medidas proporcionadas por diferentes sensores,
donde la deteccién del drift puede llegar a evitar problemas en gran variedad de procesos
industriales e incluso llegar a indicar un deterioro en el propio sensor (con una consecuente

pérdida tanto de informacién como monetaria).

3.1. Tipos de Concept Drift

Una vez comprendido mejor qué se entiende por concept drift resulta interesante estudiar
la tipologia de cambios que engloba. Asi, atendiendo a la velocidad con la que ocurre el
concept drift, cominmente se establece una divisién en diferentes tipos[7, 8, 11], como se

indica en la Figura 3.1:
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(a) Abrupt Concept Drift/ Concept Drift Abrupto. En muy pocas instancias el nuevo

concept reemplaza al ya establecido. La precisién se degrada rapidamente.

(b) Gradual Concept Drift/ Concept Drift Gradual. Cuando el nuevo concept reemplaza
al anterior a lo largo de un periodo ciertamente extenso; progresivamente encontramos
mas ocurrencias del nuevo concept y menos de las del antiguo. Es decir, las instancias
se generan a partir de una mezcla de concepts hasta que, normalmente, terminan por

predominar instancias de un solo concept.

(¢) Incremental Concept Drift/ Concept Drift Incremental. Aparecen concepts intermedios

en el cambio del concept inicial al final. Se caracterizan por ser los drifts mas lentos.

(d) Recurring Concept Drift/ Concept Drift Recurrente. Cuando un concept que se dio con
anterioridad vuelve a estar presente tras cierto tiempo. No confundir con estacionalidad

pues no es periddico; el drift es impredecible.
También resulta importante considerar

(e) Blips. Son cambios muy repentinos en el concept (anomalia). Pueden interpretarse como

outliers en una distribucién estacionaria de datos.

(f) Noise/ Ruido. Se tratan de desviaciones aleatorias en el concept que deben ser

debidamente filtradas.

Estos dos tultimos casos no suponen concept drift y por lo tanto no se consideran dentro
de la tipologia. No obstante, su correcto tratamiento resulta indispensable para el correcto

funcionamiento de nuestros algoritmos.

Concepts
Concepts

Instancias Instancias

(a) Abrupt (b) Gradual

Concepts
Concepts

Instancias Instancias

(¢) Incremental (d) Recurring

v
i 8
a
u ]
P (&)
Instancias Instancias
(e) Blips (F) Moise

Figura 3.1: Tipos de concept drift atendiendo a la velocidad. Imagen adaptada[l1].
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3.2. Deteccién de Concept Drift

Hemos visto como la no estacionariedad de la distribuciéon subyacente implica cambios
en el concept que nuestro algoritmo intenta “aprender” dando lugar al problema del concept
drift. En esta situacién no resulta conveniente hacer uso de las métricas mas tradicionales,
estableciendo un conjunto de prueba sobre el que evaluar el error empirico (3.3). Puesto que
las predicciones se realizan de forma secuencial, de etapa en etapa, inicamente disponemos
de la pérdida acumulada al final de cada una (3.4). Este enfoque predictivo secuencial o
precuencial (prequential)[12] nos lleva a calcular el error del algoritmo a partir de esta suma.
Asi, dado 8¢ = {(x¢, y¢)} en una etapa t > 1 computamos la funcién de pérdida, L (y¢, 9:), y

el error precuencial se define como

t
1 N
=7 E L (yx, k) (3.8)
=1

o de forma iterativa, puesto que hay situaciones en las que no es posible disponer de todas

las predicciones de etapas anteriores (por ejemplo si hay poca memoria disponible)

Ly, 9t) + (¢ = 1) Pe(t — 1)
; :

P.(t) = con P.(t=0)=0. (3.9)

De este modo, la evaluacién precuencial permite monitorizar cémo evoluciona el aprendizaje
del modelo, ofreciendo cierta robustez frente al ruido y potenciales outliers.

Sin embargo, el error precuencial, calculado de esta forma puede estar altamente influenciado
por las predicciones realizadas en las primeras etapas, comprometiendo nuestros resultados.
Esto es especialmente notable en aquellos algoritmos incrementales, donde el modelo inicial
se obtiene a partir de una muestra de tamano reducido y se va actualizando en cada etapa.
Es por ello que resulta interesante computar el error cometido implementando algin tipo de
mecanismo que permita “olvidar aquella informacién més antigua”. Esto puede conseguirse
mediante el uso de ventanas (windowing), que permiten hacer particiones del conjunto de
datos total en diferentes subconjuntos, cuyo tamafo puede variar. Asi, asumiendo una ventana

de tamano w, el error se expresa como
¢

Z (Yr> Tr) - (3.10)

—w—+

En este caso resulta conviente mantener en memoria al menos un numero de datos recientes
igual al tamano de la ventana considerada w.
Otra forma consiste en usar factores a que permitan dar menor peso conforme més antigua

es la prediccién. Se conocen como fading factors y el error se expresa

t
Z at k L yka yk)
P (t) = = ., com0<a<l, (3.11)

t
E /‘atfk

k=1
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o de forma iterativa

Po(t) = No()’ (3.12)

definiendo
Sa(t) = L(ys, 9y) + aSa(t — 1), con S(t=0)=0, (3.13)
No(t) =1+ aNy(t—1), con N(t=0)=0, (3.14)

Se ha demostrado ademds[12], que el error precuencial es pesimista y en problemas de
1 .ﬁ .z t- 1/ .t . f . 1 -b . 2
clasificacion tiene como limite inferior, el error bayesiano®.

Una vez definidas las métricas que permiten evaluar nuestros algoritmos en escenarios
de aprendizaje online podemos proceder a definir mecanismos que permitan una deteccién
explicita del concept drift al monitorizar cambios en este error y por tanto cambios en p(y | x).
No existe una clasificacion fija para los diferentes métodos de deteccién pues varia segun el
autor y estd en continua evolucién, aunque hay que notar que en muchos casos vienen a

ser practicamente equivalentes. Nuestro objetivo principal es la implementacién de varios de

estos métodos y por ello propondremos una divisién en tres categorias|7, 13].

3.2.1. Analisis secuencial

Se analiza la existencia de patrones en los nuevos conjuntos de datos (aquellos que van
llegando) y se generan alarmas de posible concept drift cuando el cambio en su distribucién
excede un limite/umbral/threshold previamente especificado.

Como ejemplo tenemos el Page-Hinkley Test[14, 15]. Este test permite analizar los
datos (errores) que van llegando de forma secuencial en el tiempo, {z;}. Se emplea tipicamente
en la deteccién de cambios en la media de una senal gaussiana (sigue una distribucién normal)
pero ofrece resultados robustos al aplicarse sobre distribuciones no gaussianas y por ello es
ciertamente usado para la deteccién de concept drift en flujos de datos. El test considera una
variable cumulativa m7, definida como la diferencia acumulada entre los valores observados

y su media hasta esa instancia T, es decir
T
mr=Y (z—ar—03), con mg=0, (3.15)
t=1

donde zp = 1/T Zthl x¢ y 0 controla la magnitud de los cambios permitidos.

También guardamos el valor minimo de esta variable Mp = min(m¢, t=0,1,...,T), de
modo que el test monitoriza la diferencia entre ambas, mp — My, y cuando esta supera un
cierto umbral/threshold, A\, senala un cambio en la distribucién y por tanto un cambio en

el concept. El valor de este parametro A vendra fijado por el usuario, de modo que un valor

2Dado un problema de clasificacién, se define el clasificador bayesiano como aquella hipétesis h tal que su
error de generalizacién R(h) es minimo. Este es el error bayesiano, andlogo al error irreducible.
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pequeiio puede ocasionar falsas alarmas en la deteccion de concept drift mientras que un valor
mayor dard lugar a menos falsas alarmas pero puede llegar a retrasar la deteccion e incluso

no detectar los cambios.

3.2.2. Control estadistico

Se basan en el output de los modelos midiendo las fluctuaciones en la tasa de error.

Entre los ejemplos més destacables encontramos el Drift Detection Method (DDM)I6,
7, 16], uno de los primeros algoritmos explicitos desarrollados que permite la deteccién de
concept drift en problemas de clasificacion.
Supongamos una secuencia de instancias de la forma (x;, y;), donde para cada valor de i el
modelo de decisién predice g;, que puede ser True (g; = y;) o False (g; # y;). Para el conjunto
de instancias el error cometido en la prediccién puede entenderse como una variable aleatoria
que sigue una distribuciéon binomial y representa el niimero de errores en una muestra con
n datos. Asi, por cada instancia i en esta secuencia, la tasa de error es la probabilidad de
observar False, p;, con desviacion estandar dada por s; = m
De acuerdo con el marco de aprendizaje PAC (Probably Approximately Correct)[2, 17],
se asume que si la distribucién subyacente de la sucesién de datos estudiada permanece
estacionaria, la tasa de error de nuestro algoritmo de clasificacién, p;, disminuird a medida
que aumente el niimero de instancias®. Por lo tanto, un incremento significativo en la tasa de
error sugiere un cambio en la distribucién de probabilidad de la variable y (cambio de concept)
y el modelo deja de ser apropiado. Asi mismo, con un nimero de datos lo suficientemente
elevado la distribucién binomial se aproxima a una distribucién normal (o gaussiana) con
igual media y varianza. Entonces, el intervalo de confianza 1 — §/2 para la variable con un
numero de datos suficiente (generalmente n > 30) es aproximadamente p; + « - s;.
Con todo esto en mente, el método de deteccién del concept drift aqui estudiado trabaja con
los valores de minimos, pmm V Smi, actualizandolos cuando al procesar una nueva instancia,
la suma p; + s; es inferior al valor Py + Smin. Por el contrario, cuando p; + s; es superior a

Pmin + Smin distinguimos

— Pi+ Si > Pmin + 2 Smi establece un nivel de confianza del 95 % (6 = 0.95) para indicar
alarma/warning, es decir, se alerta de posible concept drift en las instancias siguientes.
Por ello, desde este instante, se van almacenando las instancias que van llegando en

preparacién para el posible concept drift.

— pi + Si > Pmin + 3+ Smin establece un nivel de confianza del 99% (6 = 0.99) para
senalar que ha ocurrido un cambio de concept y es necesario reconsiderar el modelo de

clasificacion. Asi mismo, se reinician los valores minimos pmm v Smin-

3Tendiendo al error bayesiano para una sucesién infinita.
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Una vez detectado el drift, el nuevo concept se declara empezando en la instancia que primero
hizo saltar la senal de alarma y se crea un nuevo modelo de decisién usando solo estos datos
(desde la alarma hasta que se explicita la deteccién). Por otro lado, en caso de indicarse el
nivel de alerta seguido de un descenso en la tasa de error sin llegar a detectar drift, asumiremos
que se trata de una falsa alarma sin incurrir en cambio de concept.

También resulta interesante considerar el Farly Drift Detection Method
(EDDM)[16]. Este algoritmo se basa en el anterior Drift Detection Method y se desarrollé
para mejorar la deteccién de concept drift gradual manteniendo un buen rendimiento en la
deteccién de concept drift abrupto. Principalmente consiste en monitorizar la distancia entre
errores, representada por el nimero de etapas entre dos malas clasificaciones consecutivas,
en lugar del niimero de ellas. Como con DDM, sucede que si la distribuciéon de los datos
es estacionaria la distancia entre errores aumentara a medida que aumenta el nimero de
muestras analizadas, de modo que una disminucién en la distancia implicard un cambio en
dicha distribucién (cambio de concept). Por ello consideraremos la distancia promedio entre
errores, p;, asi como su desviacién estdndar, s, y guardamos los valores pl . v s, . que
maximizan la suma p} + 2 - s;. El valor p/ . +2-s! . se corresponde con el punto en el que
la distribucién de la distancia entre errores es méaxima y es entonces donde la hipdtesis del

modelo mejor se aproxima al concept. Igual que en el caso de DDM, se definen dos niveles:

— (P, +2-5)) ) (Phax + 2+ 50 4) < o define el nivel de alarma/warning, indicando que se
acerca un posible cambio de concept. Por ello, desde este instante, se van almacenando

las instancias que van llegando en preparacién para el posible concept drift.

— (P, +2-5)) ) (Phax + 2 5h4) < B define el nivel de drift, indicando que ha ocurrido
concept drift y la necesidad de reconsiderar el modelo de clasificacion empleado. Asi

mismo, se reinician los valores maximos p, . vy s, . para posteriores detecciones.

También se define un niimero minimo de errores (generalmente en torno a 30 errores) previos a
la ocurrencia del concept drift. Una vez transcurrido este niimero minimo, los diferentes niveles
se encargan de la deteccién, para los que se han determinado (tras cierta experimentacion)
valores de los pardmetros o = 0.95 y 5 = 0.90.

En el caso de tratarse de una falsa alarma, las instancias almacenadas terminan por ser

eliminadas y la deteccién continia su curso natural.

3.2.3. Analisis de distribuciones

Generalmente se basan en dividir los datos en dos ventanas, una incluyendo aquellas
instancias més antiguas y otra con la informacién més reciente. Se comparan asi las
distribuciones en cada una de estas ventanas usando test estadisticos con la hipdtesis nula de

que ambas son idénticas. Si se detecta cambio se declara la presencia de concept drift.
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Un buen representante de esta metodologia (y probablemente uno de los més utilizados)
es el algoritmo A Daptive- WINdowing (ADWIN)[18] que consiste en tomar ventanas
moéviles (sliding windows) cuyo tamano, en vez de fijarse a priori varfa en funcién de los
cambios observados en los datos contenidos en la propia ventana. El algoritmo aumenta de
forma automatica el tamano de la ventana (con las instancias més recientes) cuando no se
detecta ningin cambio y, en caso de detectarse, disminuye su tamano permitiendo mantener
aquellos datos mas relevantes del concept actual. La ventana considerada contiene bits o
nameros reales, de modo que puede usarse para monitorizar el error del modelo de prediccién.
Como entrada al algoritmo tenemos un parametro definido por el usuario que da cuenta de
la confianza § € [0, 1] y una secuencia de valores reales {x;} posiblemente infinita. Cada
valor z; estd disponible solamente a partir de la etapa/instante ¢ y sigue una distribucién
D; (de media desconocida p;) de forma independiente para cada t. Asi mismo asumimos que
los valores se encuentran en el intervalo [0, 1], lo cual se cumple facilmente imponiendo un
simple re-escalado.

Sea W la ventana mdvil conteniendo valores hasta el mas reciente (z;) y m su tamano,
computamos el valor promedio (observado) de sus elementos, [y, asociado al valor esperado
desconocido s, con ¢ = W. La idea principal consiste en que cuando dos subventanas “lo
suficientemente grandes” de W muestran promedios “lo suficientemente distintos”, podemos
concluir que los valores esperados correspondientes son diferentes y por tanto podemos
prescindir de la porciéon de datos mas antigua de W. Para ello debemos establecer un valor
de corte, €.ut, para toda particién de W en Wy y Wy. Asi, sean ng y nq sus correspondientes
tamanos (n = ng + n1), fiw, ¥y fw, los promedios observados en cada subventana y pw, y
uw, los valores esperados escribimos
1 1
m:m, ’—ﬁ, (3.16)

1 4
€cut = % . 10g (5/> . (317)

El test estadistico propuesto simplemente comprueba si los promedios observados en cada
subventana difieren entre si mas de ecut, es decir, si su diferencia excede el umbral €.yt
propuesto. Procediendo de este modo eliminamos los elementos mas antiguos de W mientras
se cumpla |jiw, — fiws] > cus.

En la prictica, la definicién (3.17) puede resultar demasiado conservadora*. La diferencia

1w, — tw, tiende a una distribucién normal para grandes ventanas y tomamos

2 2 2 2

4La primera definicién de ey estd basada en la desigualdad de Hoeffding[19] y es vélida para todas
las distribuciones pero tiende a sobre estimar en gran medida la probabilidad de grandes desviaciones en
distribuciones con pequena varianza.
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3.3. Adaptacién en presencia de Concept Drift

Una vez definidos algunos de los (numerosos) métodos para detectar el concept drift,
debemos estudiar las diferentes formas en que podemos afrontar la adaptacién al nuevo
concept, tratando asi con algoritmos adaptativos.

No obstante, puesto que el método de adaptacion depende en gran medida del problema
tratado y esto influencia la forma en que se encuentra disponible la informacién usada en el
aprendizaje, resulta indispensable mencionar diferentes situaciones que pueden presentarse.
Asi, encontramos casos en los que las instancias que llegan en cada etapa no estan disponibles
en etapas posteriores, normalmente debido a la reducida memoria con la que se trabaja. Por
otro lado, pueden darse situaciones en las que la memoria del sistema permita disponer de
multiples instancias a medida que se suceden las etapas. Entonces, puede resultar interesante
considerar algin tipo de mecanismo para mantener Unicamente aquellas mas recientes, pues
presentan la informacion mas relevante. Para ello, lo més comun resulta tomar ventanas
(igual que con el error precuencial) cuyo tamano puede ser variable o fijo; asi mismo, puede
considerarse darle menor importancia a aquellas instancias de etapas mas distantes.

Una vez conscientes de las limitaciones en el tratamiento de la informacion, se establecen
dos enfoques de adaptacién diferente que siguen los algoritmos en escenarios de aprendizaje

online con posibilidad de concept drift.

3.3.1. Adaptacién pasiva/blind

Las estrategias seguidas en este contexto no buscan una deteccién explicita del concept
drift, sino que directamente asumen que el concept es susceptible de cambiar al sucederse
las etapas. Asumen por tanto que la distribucién de probabilidad de los datos cambia en el
tiempo de forma impredecible y actian al respecto. Para adecuarse a los nuevos concepts se
realiza una adaptacién continua del modelo empleado con la llegada de nueva informacién.
Dado que esta adaptacion se extiende en el tiempo, la metodologia resulta de gran utilidad
en casos de concept drift gradual y concept drift incremental, es decir, aquellos cambios mas

lentos. Distinguimos diferentes casos:

— Modelos individuales. Muy 1util en casos con flujos de datos masivos dado su menor
coste computacional. Aqui se encuentran enmarcados los algoritmos incrementales, en
los que el modelo empleado se actualiza en cada etapa t, de modo que no es necesario
mantener instancias en memoria (una forma puede ser modificando los pardmetros del
modelo). Asi mismo, también puede hacerse uso de ventanas (lo que implica almacenar
cierta cantidad de informacién pasada) con las que realizar un re-entrenamiento

periédico con las instancias mas recientes.
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— Conjunto/ensemble de modelos. Basados en el empleo de multiples modelos a la vez
ofrecen una combinacién (ponderada/weighted) de las predicciones como resultado final.
Son mas costosos computacionalmente pero proporcionan resultados més precisos y
con menos varianza y permiten una ficil incorporacién de nuevos datos mediante la
adicién de nuevos modelos. La adaptacion tiene lugar modificando los pesos usados en
el computo de las predicciones, pudiendo ser nulos para los modelos irrelevantes.

Es importante mencionar que resultan de gran utilidad en casos de concept drift
recurrente pues puede suceder que los pesos de modelos individuales que en un concept
ofrecian buenos resultados (y tras ocurrir el drift vean su importancia/peso reducido)
vuelvan a adquirir validez al retomarse el antiguo concept. Basta entonces con recalcular

los pesos, evitando una costosa reconstruccién/re-entrenamiento.

Aunque los algoritmos pasivos no emplean una deteccién explicita del concept drift para
adaptarse a un entorno en continuo cambio, es interesante hacer notar que sigue siendo
totalmente valido usar los métodos de deteccién. Aunque no se utilicen en la adaptacion,

proporcionan informaciéon muy valiosa sobre la dindamica del proceso generativo de los datos.

3.3.2. Adaptacién activa/informed

Se basan en la deteccién explicita de concept drift a través de diversos mecanismos,
algunos de los cuales se tratarion en la seccion anterior. La idea principal consiste en
mantener un numero significativo de instancias recientes en memoria de forma que una
vez detectado el cambio de concept se inicia una reconstruccion del modelo, usando dichas
instancias para su entrenamiento. Esto permite que el modelo se adapte correctamente al
nuevo concept y resulta especialmente adecuado para tratar concept drift abrupto puesto
que el cambio en es mas facil de detectar que en el caso de concept drift gradual.

Como ejemplo tenemos los casos de DDM y EDDM en los que al indicarse la sefial de alarma
0 warning, se empiezan a almacenar en memoria instancias con las que reconstruir el modelo
en caso de ocurrir el concept drift. Por otro lado ADWIN ofrece una ventana cuyo tamano se
adapta automaticamente, permitiendo disponer en todo momento de aquellas instancias mas

relevantes. En el caso del Test de Page-Hinkley, solo se indica la ocurrencia del concept drift.

En el Apéndice A se detallan los algoritmos anteriormente tratados. Asi mismo, hemos
optado por realizar una implementacién en el lenguaje de programacién R (muy usado en el
Miéster) de los diferentes diferentes métodos y algoritmos tratados en la seccién anterior para

la deteccién de concept drift. Todo el cédigo pertinente puede encontrarse en el Apéndice C.
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Capitulo 4

Casos Practicos:
Regresion

Para facilitar la comprensién de todo lo desarrollado hasta ahora aplicaremos los diferentes
métodos adaptativos en casos practicos, comenzando con regresion. A pesar de que en este
caso hay mucha menos literatura referente al concept drift, podemos crear conjuntos de
datos de forma sintética[20] y asumir un tratamiento online de los mismos, considerando
que las instancias van llegando en forma de tuplas asociadas a un flujo/stream {S;}.
Para ello utilizamos una serie de 300000 valores para 5 variables predictoras continuas,
x = (z1, o2, 3, 24, 25)7, independientes y distribuidas todas ellas de forma uniforme en
el intervalo [0, 1]. Con ellas definiremos una variable objetivo y mediante tres funciones

lineales diferentes para establecer asi 3 concepts:

y=c1(x) =10z + 22 +20(x3 —0.5) + 10x4 + 55 + €, (4.1)
y=co(x)=05x; — 29+ 100x3 + 1024 — 5d x5 + €, (4.2)
y=c3(x) =3x1+22x9 —8(x3—0.5) +2x4 — S5 — €. (4.3)

En cada caso se ha anadido ruido aleatorio en forma de una distribucién normal de media 0

y varianza 1 (e ~ N(0, 1)). Podemos entonces definir 3 conjuntos de datos diferentes:

— Dataset 1. Este conjunto simula un flujo de datos sin presencia de concept drift. La

funcién utilizada para crear la variable objetivo en todo instante es (4.1).

— Dataset II. Este conjunto simula la presencia de concept drift abrupto. Para ello se
introducen 3 puntos en los que cambia el concept a partir de un cambio en los pardmetros
que definen y. Concretamente, el concept inicial se corresponde con (4.1) y a partir
de la instancia 75000 cambiamos la expresién de y a la funcién dada por (4.2). A
continuacién, al rededor de la instancia 150000, volvemos a introducir un cambio en el
concept, utilizando ahora (4.3). Finalmente implementamos un ultimo drift, recomando
el concept definido por (4.2), sobre la instancia 225000. De esta forma cada cuarto del

dataset esta definido por un concept.
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— Dataset III. Este conjunto simula la presencia de concept drift gradual. Para ello se
introducen 2 puntos en los que comienza el concept drift redefiniendo de nuevo los
parametros de que depende y. Inicialmente tenemos una vez més la expresién de y
dada por (4.1) y el concept drift se inicia por primera vez en la instancia 100000. A
partir de entonces van apareciendo gradualmente instancias del nuevo concept, definido
por (4.2) y cada 500 instancias aumenta la probabilidad de generar instancias de este
nuevo concept (en nuestro caso optamos por un incremento fijo de la probabilidad en
los puntos indicados). Una vez transcurridas 50000 instancias solo se encuentran puntos
definidos por (4.2). Finalmente comienza otro concept drift (procediendo de igual forma)
a partir de la instancia 200000; usamos ahora (4.3) y acaba imponiéndose transcurridas

otras 50000 instancias.

Notar como para cada concept podemos definir una media y una varianza para la
distribucién de y, dependiente de x. Efectivamente, sabiendo que para una distribucién
uniforme en el intervalo [0, 1] la media es 0.5 y su varianza 1/12' y que ademds e presenta

media nula y varianza unidad, en el caso en que y estd definida por (4.1) se tiene
Ely(x)] =10E[z1] + E[za] + 20 (E[z3] — 0.5) + 10 E[z4]+
5E[zs] + Ele] =13,

(4.4)
Varly(x)] =102 Var[z1] + Var[zs] + 20 Var|zs] + 10? Var[z)+
52 Var|zs) + Varl[e] = 638/12 ~ 53.1667 .
Del mismo modo, para (4.2)
Ely(x)] =0.5E[z1] — Elza] + 100 E[x3] + 10 E[z4]—
54 E[xs] — Ele] = 27.75,
(4.5)
Varly(x)] =0.52 Var[zi] + Varzs) + 100% Var|zs] + 10* Var|z)+
542 Var([zs] + Var[e] = 1085.771.
Finalmente, con (4.3)
Ely(x)] =3 E[z1] + 22 E[z2] — 8 (E[z3] — 0.5) + 2 E[z4]—
5E[z5] — Ele] = 11,
(4.6)

Varly(x)] =3% Var[z] + 222 Var|zs) + 8* Var|zs] + 22 Var|za)+
52 Var[xs) + Varle] = 598/12 ~ 49.8333 .

Puede comprobarse que cuadran perfectamente con los resultados de tomar la media y

varianza muestral para y. Resulta entonces evidente cémo se producen cambios en los

'Resultados triviales para la distribucién uniforme. En el caso general, tomando el intervalo [a, b] se tiene:

atb varianza = (b— a)2
2 12

media =
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pardmetros de la distribucién de probabilidad p(y|x) (sin cambios en p(x)), lo que implica
real concept drift y por tanto es necesario tratarlo. Podemos visualizarlo a través de los
histogramas para la variable ¥y, de forma que tras normalizar los resultados y estableciendo

una distincién entre concepts obtenemos la Figura 4.1.

0.04; 0.04

Densidad
°
3

Densidad
°
8

o
9
S
o
o
S

0.014 0.01

-50 0 50 100 -50 0 50 100
y y
Concept: [ 1123 Concept | 11273

(a) (b)

Figura 4.1: Histogramas para la variable y en el caso del Dataset I (a) y el Dataset IIT (b).
Con lineas verticales de colores indicamos el valor promedio para cada definicién de concept.

Notar la similitud de resultados y se aprecia como el cambio secuencial entre los diferentes
concepts afecta a la distribucién subyacente de la variable objetivo. Podria detectarse el
concept drift mediante test estadisticos que establecieran la diferencia entre las distribuciones,
como puede ser el Test de Kolmogorov-Smirnoff?>. No obstante, para hacer una deteccién
explicita del concept drift haremos uso de los métodos y algoritmos expuestos anteriormente.

En este caso no resulta necesario realizar un tratamiento previo de los datos y, ademads,
es importante fijarse en que el hecho de que la dependencia de la variable objetivo y con las
variables independientes x sea lineal (més ruido) nos facilita mucho la obtencién del modelo
predictivo. Basta considerar un simple modelo de regresién lineal multiple[21, 22, 23], que

desarrollaremos a continuacién.

4.1. Regresion Lineal

La regresién lineal es probablemente el modelo estadistico mas tratado y a pesar de su
simpleza tiene gran aplicabilidad dentro del mundo de los modelos predictivos. Establece que
la relacién de dependencia entre la variable dependiente unidimensional, y € R y las variables
independientes, x = (z1, ...,a:p)T € RP| es lineal, incorporando un término € ~ N(0, o) que
da cuenta del ruido aleatorio de las observaciones. El caso con p = 1 se conoce como regresién

lineal simple, mientras que si p > 1 tenemos una regresién lineal multiple.

2Se trata de una prueba no paramétrica que determina la bondad de ajuste de dos distribuciones de
probabilidad entre si. En este caso permite establecer que la diferencia entre distribuciones de probabilidad y
por ende la diferencia de concepts.
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La dependencia entre variables se expresa como
y=0B0+b1z1+ ...+ Bpapte, (4.7)

donde B = (Bo, ,B1, -+ BP)T son los parametros que especifican cada una de las posibles
hipétesis hg(x) € H. Una vez fijado el valor de B (y elegida la hipétesis), podremos expresar

. ey, . . T
la prediccién para una nueva instancia x; = (1, ..., Z;p)" como
ﬁj :h,B(Xj) Zﬂo—f—ﬂl le—l—...—l—ﬂpxjp. (48)

Para obtener el valor de 8 hacemos uso de una muestra de tamano n, es decir, nuestro

conjunto de entrenamiento es S = {(x1, y1), -+, (Xn, Yn)}, de forma que
y,':50+51x¢1+...+5pxip+ei, 1=1,...,n. (4.9)

Es comun agrupar las n ecuaciones tomando una representacién matricial

y=XpB+e, (4.10)
donde
Y1 Iz .. 21 Bo €1
y=|?|. x= 1 o1 ... xy . 8= B1 Ce= |, (4.11)
Yn I Zp1 . Inp ﬂp €n

Existen diferentes métodos para obtener 3 y con ello ajustar el modelo a la informacién
proporcionada por el conjunto de entrenamiento. Sin embargo, la forma méas comun de
proceder es realizar una estimacién por medio del criterio de minimos cuadrados ordinario.

Asi, buscamos minimizar la pérdida cuadréatica cometida, es decir, dado

n

9B) = Ly i)=Y wi—0)’=|ly-XB|I =y -XB)(y-X8) (412
=1

i=1
tomamos como parametros del modelo

B = argmin (9(8)) . (4.13)
Para hallar ,3 diferenciamos esta expresién e igualamos a 0
0 .
99B) _ _5xTy 1 oxTX - 0. (4.14)
B
Por consiguiente
B=X"X)"'XTy si existe (X7X)™1 (4.15)

y la prediccién del modelo lineal para nuestra instancia x; se expresa
Qj :hB(Xj) = [+ 51 Jij1—|—...+ﬁpl‘jp. (4.16)
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Estos resultados pueden usarse para definir una hipétesis que se adapte correctamente al
primer concept. Entonces, una vez ocurra el concept drift la implementacion de alguno de
los mecanismos de deteccion para monitorizar el error precuencial indicara la necesidad de
modificar nuestra hipdtesis y en este caso procederemos a realizar un re-entrenamiento. Es
decir, estamos considerando una adaptacion activa en entornos con concept drift. También
puede realizarse una adaptacién pasiva, dada la facil implementacién de un algoritmo
incremental basado en la regresién lineal. Se conoce como algoritmo de Widrow-Hoff y
coincide con la aplicacién de técnicas de Descenso de Gradiente sobre el modelo de regresion

cldsico, de forma que los parametros 3 se actualizan en cada etapa.

El Descenso de Gradiente o Gradient Descent[22, 23, 3] es un algoritmo de optimizacién
de primer orden para encontrar el minimo de una funcién objetivo diferenciable F'(x). Se
basa en la observacién de que si la funcién F(x) es diferenciable en la vecindad del punto a,
entonces F'(x) decrece de forma mas rapida al desplazarse desde a en direccién opuesta a su

gradiente, es decir —V F'(a). Por consiguiente, si
an+1 =a, —nVF(ay,) (4.17)

para un paso o tasa de aprendizaje, n € R™, lo suficientemente pequeiia, se cumple la
condiciéon F'(a,) > F(an+1). De esta forma, para llegar al minimo, se comienza tomando

X como nuestro punto inicial y consideramos la secuencia xq, X1, Xo, ... tal que
Xpt+1 = Xn — I VEF(xp), n>0. (4.18)

Tenemos asi una secuencia mondétona tal que F(xg) > F(x1) > F(xg2) > ... y esperamos
que {x,} converja al minimo local buscado. Notar la dependencia en n de 7,, indicando la
posibilidad de variar la tasa de aprendizaje con cada iteracién.

En el caso que nos atane, tratando un modelo de regresion lineal, la funcién objetivo a

minimizar es la funcién de pérdida cuadratica, que en la etapa ¢t toma la forma

L(ys, §¢) = (ye — 9¢)%- (4.19)

Notar que a diferencia de g(3), en este caso solo aparece una tunica etiqueta y prediccién. La
técnica se conoce entonces como Descenso de Gradiente Estocdstico y comenzamos definiendo
un valor inicial 3. Considerando las nuevas tuplas que van llegando S; = {(x¢, y¢)}, cont > 0,
buscamos adaptar los parametros 3 del modelo de regresién lineal utilizando el gradiente de
esta funcién, evaluado en dicha tupla

dL(y, ) OL(y.9) 6L<y,@>)T
980~ opL 7 0B,

VLG =

(¢, u2) (4.20)

=2( (9 —y)» (G — ) Tersoos (e — 1) xtp)T
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Una vez establecida la tasa de aprendizaje 1 (en nuestro caso hemos optado por tomar 7

constante e igual a 0.005) tenemos

By =Bi—1 —nVL(y,4),  cont>0. (4.21)

Podemos ver la implementacién en forma de algoritmo en el Apéndice A.

4.2. Abrupt Concept Drift (Dataset II)

Aplicamos estos desarrollos al Dataset II con concept drift abrupto.

4.2.1. Adaptacién activa

En este caso definiremos un modelo predictivo inicial y solo sera actualizado en caso de
detectarse concept drift. Para ello, puesto que disponemos del Dataset I, podemos consideralo
como nuestro conjunto de entrenamiento inicial y emplearlo para crear un modelo que se

adapte al primer concept. A continuacién se muestra un resumen del modelo de regresion.

Estimacién | Std. Error | ¢ value | Pr (> [¢)
Bo | -9.995022 | 0.008125 | -1230.2 | <2-10"10
B1 | 9.9955523 | 0.007060 | 1415.8 | <2-10716
Bo | 0.9944626 | 0.007064 | 140.8 | <2-10716
Bs | 19.999440 | 0.007052 | 2835.8 | <2-10716
Ba | 9.990476 | 0.007059 | 14153 | <2-10716
Bs | 5.005923 0.007062 | 708.9 | <2-10"16

Tabla 4.1: Cuadro resumen de los pardmetros del modelo.

Los pardmetros de (4.1) se encuentran perfectamente dentro del intervalo de confianza de
las estimaciones. Asi mismo, Pr (> [t|) es menor que 2 - 107!¢ en todos los casos y podemos
rechazar que los pardmetros sean nulos con el 95% de confianza. Por otro lado el p—valor es
también inferior a 2- 10710, indicando que el modelo se ajusta correctamente a los datos y el
valor R? = 0.9813 indica que somos capaces de explicar un 98 % de la variabilidad de y en el
conjunto de entrenamiento. Ademaés, representamos el plot cuantil-cuantil en la Figura 4.2 y

muestra como la hipdtesis de errores/residuos normales se cumple perfectamente.

Cuantiles de los Residuos

0 -5 255 510

0.0
Cuantiles Teéricos

Figura 4.2: Plot cuantil-cuantil de los residuos frente a los valores tedricos (normales).

26



Utilizamos el modelo asi obtenido para empezar a computar las predicciones sobre el
Dataset II. Para ello consideraremos que en cada etapa t se tiene una unica tupla & =
{(x¢, Y1)} con su correspondiente prediccién g;. De esta forma hasta la aparicién de concept
drift en la instancia 75000 el modelo ofrece buenas predicciones, como permite apreciar la
Figura 4.3. Observamos los buenos resultados del modelo en el primer concept y cémo el drift

afecta a la capacidad predictiva del modelo.

50

74900 74950 75( DO_ 75050 75100
Instancias

- Prediccién  Real
| Concept Drift

Figura 4.3: Comparativa entre valores reales y predicciones.

Para poder actuar al respecto y adaptar nuestro modelo al nuevo concept cuanto antes
necesitamos conocer el error cometido con cada predicciéon. Para ello tomamos un enfoque
precuencial usando una funcién de pérdida cuadratica (2.1) y consideraremos ademés
diferentes fading factors (3.11) para ver cémo pueden afectar a la deteccién del concept
drift. Nos remitimos a la Figura 4.4, donde el error en el primer concept es minimo y una vez
ocurre el drift notamos cémo aumenta, mas rapidamente cuanto menor es el valor de «, pues
menos afectan las predicciones anteriores, més precisas. En el caso de o = 1, es decir, dando
igual importancia a todas las predicciones anteriores, la variabilidad del error es menor, lo que
puede llegar dificultar la deteccion. No obstante, dada la simplicidad del problema tratado,

resulta posible indicar el cambio de concept por simple inspeccién visual.
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Error Precuencial con Fading Factors

75000 7 77000 78000

6000
Instancias
[Fading Factors: - FF: 0.990 - FF:0.995 - FF: 0.997 FF: 1.000]

| Concept Drift]

Figura 4.4: Error precuencial para diferentes fading factors.
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Este error entra como input en los diferentes métodos de deteccion explicita, y al tratar
problemas de regresién haremos uso del Test de Page-Hinkley y de ADWIN, implementando
ambos a modo de comparacion.

Para el Test de Page-Hinkley monitorizamos la variable m; — My, como puede verse en la
Figura 4.5a. En todos los casos se ha establecido un idéntico valor del parametro que controla
la magnitud de cambios permitidos, 6 = 10~ y con puntos rojos indicamos las instancias en
que se detecta el concept drift. Notar cémo la eleccién del valor de A puede ocasionar tanto
falsas alarmas como retrasos en la deteccion del concept drift si no se hace correctamente,
especialmente notable en el caso de @ = 1.

ADWIN permite mostrar la evolucién en el tamano de las ventanas, como se aprecia en la
Figura 4.5b (se ha limitado la representacién a la cercania del concept drift pues el crecimiento

previo es totalmente lineal al ser instancias de un mismo concept).
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[Fading Factors: - FF:0.990 - FF: 0.995 - FF: 0.997 FF: 1.000| [Fading Factors: - FF: 0.990 - FF:0.995 - FF:0.997 FF: 1.000]
| Concept Drift . A | Concept Drift|
(a) (b)

Figura 4.5: Aplicacién del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

En la Tabla 4.2 aparecen los puntos en los que se detecté concept drift segin cada algoritmo

y con los diferentes fading factors.

Fading Factor () | Punto de deteccién (PH Test) | Punto de deteccién (ADWIN)

0.990 75186 75178 (160)
0.995 75316 75195 (177)
0.997 75358 75209 (185)
1.000 78363 75224 (195)

Tabla 4.2: Instancias en que se detectd concept drift. Para ADWIN la deteccién se indica
cuando comienza a decrecer el tamano de la ventana; entre paréntesis se indica el tamano
una vez detectado el cambio.

Notar que todos los puntos son posteriores a la instancia 75000 (que marca la verdadera
ocurrencia del concept drift), lo que indica la presencia de un retardo en la deteccién
inevitable. Sin embargo, un menor valor de o permite una deteccion més temprana del drift,

tanto més cuanto menor sea «. Asi mismo, se aprecia como ADWIN ofrece los mejores
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resultados y ademds permite definir una ventana con la que elegir aquellos datos mas
relevantes para re-entrenar nuestro modelo y adaptarlo al nuevo concept (Page-Hinkley solo
indica el cambio). Para todo «, la ventana solo incluye instancias posteriores a la instancia
75000, es decir, pertenecientes al nuevo concept y es aqui donde entra la adaptacién activa,
redefiniendo nuestro modelo de regresién lineal.

Por evitar repeticiones innecesarias y dada la deteccién més temprana, tomaremos la ventana

dada en el caso de a = 0.990 y el resumen del modelo resultante se muestra en la Tabla 4.3.

Estimaciéon | Std. Error | ¢ value | Pr (> [t])
Bo | 0.71619 0.26313 2.722 0.00724
B | -0.03163 0.23828 -0.133 0.89458
Bo | -0.94677 0.25774 -3.673 0.00033
B3 | 99.55415 0.23691 | 420.212 | <2-10716
Bs | 9.88866 0.23591 41917 | <2-10716
Bs | -54.33132 0.24858 | -218.568 | < 2-1016

Tabla 4.3: Cuadro resumen de los parametros del nuevo modelo.

Notar como en este caso los resultados no son tan buenos cémo los de nuestro primer modelo.
Esto es debido a la menor cantidad de datos empleados (160 vs 300000) aunque podrian
mejorarse los resultados considerando re-entrenamientos o actualizaciones de 3 posteriores.
No obstante, al ser un problema sencillo resulta inncesario. Es mas, el plot cuantil-cuantil de
la Figura 4.6 muestra como la hip6tesis de residuos normales se cumple perfectamente. Un

p—value menor que 2-10716 y R? = 0.9994 indica una correcta adaptacién al nuevo concept.

Cuantiles de los Residuos

-1 0 L. 1
Cuantiles Tedricos

Figura 4.6: Plot cuantil-cuantil para el nuevo modelo de regresién lineal.

Aplicando este nuevo modelo sobre las tuplas entrantes puede observarse como
recuperamos los bajos valores del error predictivo. En la Figura 4.7a mostramos una
comparativa del error precuencial sin adaptaciéon y con adaptaciéon via re-entrenamiento.
Por otro lado, en la Figura 4.7b aparece la curva de error que nuestro algoritmo adaptativo
mostraria en la préctica (limitando los valores del eje de ordenadas para facilitar la

visualizacién). Es decir, tras unas pocas etapas con error muy elevado dado el concept drift,
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la deteccién y actuacién ante el mismo permite recuperar buenos resultados predictivos.

Por comodidad se ha representado solamente el caso con a = 0.990.

=
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Error Precuencial con Fading Factors
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Error Precuencial con Fading Factors

—t—t+— 0
70000 90000 116000 0 40000 80000 120000
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[[= Con re-entrenamiento _Sin re—entrenamiento| [[= Con Re-Entrenamiento _Inicial|
| Concept Drift] | Concept Drift]
(a) (b)

Figura 4.7: (a) Comparacién de errores precuenciales con a = 0.990. (b) Representacién
grafica del error precuencial con a = 0.990 tras la adaptacion al nuevo concept.

En la cercania de la instancia 150000 tenemos otro cambio abrupto de concept, pero
consideramos que no merece la pena discutirlo con la profundidad con que se traté el primero,
puesto que el procedimiento a seguir es andlogo. Por tanto, obviamos el tratamiento de este
drift asi como el de los siguientes y mostramos directamente los resultados de la adaptacion

en la Figura 4.8. De nuevo se ha elegido o = 0.990, limitando el eje de ordenadas.

e =
S @

Error Precuencial con Fading Factors
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kit dd i P!

0e+00 1e+05 . 2¢+05 3e+05
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Concept: -1 -2 -3 4
| Concept Drift

Figura 4.8: Error precuencial (o = 0.990) resultante de la adaptacion a los sucesivos cambios
de concept. Recordemos que el ultimo concept es idéntico al segundo.

4.2.2. Adaptacion pasiva

En este caso emplearemos la adaptacién incremental de la regresién lineal, de modo que
cada nueva tupla S; = {(x, y;)} se usara para evaluar la prediccién del modelo y actualizarlo
en concordancia, sin hacer posterior uso de ella (no almacenamos nada). Ademés, tomaremos

las primeras 1000 instancias para realizar una estimacién inicial de los pardmetros 3.
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Puede verse asi, en la cercania de la instancia donde ocurre el drift, cdmo el modelo muestra
su capacidad adptativa (Figura 4.9). Antes del concept drift el modelo realiza predicciones

correctas y una vez ocurrido, se tarda un cierto nimero de etapas en recuperar la precisién.

100;

50

=50
74900 75000 75100 . 75200 75300 75400
Instancias

- Prediccion  Real
| Concept Drift

Figura 4.9: Predicciones frente a valores reales.

Tenemos entonces un modelo capaz de adaptarse al nuevo concept sin necesidad de haber
detectado explicitamente el concept drift. Esto queda ademaés reflejado en el error, calculado
de forma precuencial y considerando de nuevo diferentes fading factors, como puede apreciarse
en la Figura 4.10. Vuelve a suceder que, cuanto menor es el factor «, es decir, cuanta menor
importancia se le da a los valores anteriores, mas rapido aumenta el error una vez se produce el
drift y mejor se aprecia; es mas, para poder visualizar el caso o = 1 necesitamos representarlo

por separado.
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| Concept Drift] | Concept Drift]
(a) (b)

Figura 4.10: (a) Errores precuenciales para diferentes fading factors. (b) Error precuencial
con o = 1 por separado para apreciarlo mejor.

Ademsds, como se procedié siguiendo el enfoque activo, mostramos la adaptacién a lo largo
de los diferentes concepts en la Figura 4.11. También se ha usado o = 0.990 y se ha limitado

el eje de ordenadas.
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Error Precuencial con Fading Factors
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Figura 4.11: Error precuencial (o = 0.990) resultante de la adaptacién a los sucesivos cambios
de concept.

Al tratarse de una adaptacién pasiva no es necesario realizar una deteccién explicita del
concept drift. No obstante, resulta una practica interesante y comenzamos usando el Test
de Page-Hinkley, cuyos resultados al monitorizar la variable m; — M; pueden verse en la
Figura 4.12a, con 6 = 1.5 - 107!, También aplicamos el método ADWIN, mostrando la

evolucién de los tamanos de las ventanas en la Figura 4.12b.
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Figura 4.12: Aplicacién del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Un resumen de los puntos en los que se detecté la presencia de concept drift segin los

diferentes algoritmos y con los diferentes fading factors se muestra en la Tabla 4.4.

Fading Factor () ‘ Punto de deteccién (PH Test) ‘ Punto de deteccién (ADWIN)

(
0.990 75036 75134 (126)
0.995 75089 75139 (131)
0.997 75404 75141 (134)
1.000 79108 75155 (145)

Tabla 4.4: Instantes de deteccién segun los diferentes métodos. Entre paréntesis mostramos
los tamanos de la ventana tras la deteccién de drift (en caso de almacenar informacién).

Como en el caso activo, el aumento de « para el Test de Page-Hinkley conlleva una deteccién

més tardia; también se aprecia con ADWIN aunque la magnitud del retardo es menor.
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No tiene sentido usar ADWIN para definir el tamano de las ventanas con las que llevar
a cabo un re-entrenamiento (hemos especificado que no almacenamos las instancias) pero se
ha hecho con motivos ilustrativos. Asi, tomamos la primera ventana y comparamos el error
obtenido de forma precuencial usando o = 0.990, mostrando los resultados obtenidos en la
Figura 4.13. Apreciamos entonces como el error tras realizar un re-entrenamiento al detectar
concept drift acaba por coincidir con el obtenido sin el re-entrenamiento, al cabo de varias
etapas. Esto esta totalmente de acuerdo con lo expresado en la Figura 4.9, remarcando la

falta de necesidad de re-entrenar.
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Error Precuencial con Fading Factors
o
5
8

Error Precuencial con Fading Factors

o

74500 75000 75500 76000 76500 76000 76500 77000 77500 78000
Instancias Instancias

[ - Con re-entrenamiento__Sin re—entrenamiento] [ - Con re—entrenamiento__Sin re—entrenamiento]
(a) (b)

Figura 4.13: Comparacién de errores precuenciales con y sin re-entrenamiento (a) y vemos
cémo terminan por igualarse tras pocas instancias (b).

Hemos visto cémo tratar el caso abrupto mediante una adaptacién tanto activa como
pasiva. Puesto que una vez ocurre el drift solo hay presentes instancias del nuevo concept, un
re-entrenamiento del modelo con objetivo de adaptarlo cuanto antes resulta lo més adecuado,

al ser directamente implementable, y menos costoso computacionalmente.

4.3. Gradual Concept Drift (Dataset III)

Una vez tratado el caso de concept drift abrupto, realizamos un tratamiento con cambios

mas graduales, en el Dataset III.

4.3.1. Adaptacién Activa

De nuevo comenzamos considerando una adaptacién activa y, puesto que el concept inicial
coincide con el definido en el Dataset I, procederemos como en el caso anterior reutilizando ese
modelo de regresién lineal. De esta forma, podemos comprobar como el concept drift afecta a
las predicciones, en la Figura 4.14a. También resulta interesante computar la diferencia entre
predicciones y valores reales, como muestra la Figura 4.14b. Se observa el caracter gradual

ya que al coexistir ambos concepts, las instancias pertenecientes al primero ofrecen buenas
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predicciones, mientras que aquellas pertenecientes al segundo presentan grandes desviaciones.

Tras la instancia 150000, al existir un tinico concept solo estan presentes estas ultimas.

100;

99800 99900 100000 100100 100200 100300
Instancias 100000 120

000 . . 140000
- Prediccién  Real Instancias (i)
| Concept Drift [ ] Concept Drift | Presencia de un solo concept]

(a) (b)
Figura 4.14: Aplicacién del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Dada la mezcla de concepts no se aprecia un incremento en el error tan notable como en
el caso abrupto de la Figura 4.4. Efectivamente, para ver esto volvemos a calcular el error
precuencial con diferentes fading factors, representado en la Figura 4.15. Encontramos como

el error no tiende a estabilizarse hasta que solo hay presente un tnico concept.

1000

5004

Error Precuencial con Fading Factors

100000 125000 150000
Instancias

\Fading Factors: - FF:0.990 - FF:0.995 - FF:0.997 FF: 1.000]
[T Concept Drift | Presencia de un solo concept|

Figura 4.15: Error precuencial con diferentes fading factors.

Los métodos de deteccion explicita de concept drift entran ahora en juego para llevar a
cabo al adaptacion del modelo. En el caso del Test de Page-Hinkley, se muestran los resultados
de la deteccién en la Figura 4.16a, con 6 = 107! y vuelve a quedar patente la necesidad de
establecer un valor de A adecuado para una correcta deteccién del concept drift. Por otro lado,
empleamos el algoritmo ADWIN sobre los diferentes errores precuenciales para detectar el
drift y mostramos la evolucién del tamafio de la ventana en Figura 4.16b. De nuevo, con un
menor valor de ov encontramos que el cambio en el concept se detecta con anterioridad.

Una comparativa de los puntos de deteccion segtin cada método puede verse en la Tabla 4.5.
Una vez mas ADWIN ofrece los mejores resultados para la deteccién de concept drift y ademas

permite tener una ventana con instancias recientes para re-entrenar el modelo.
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| Concept Drift = A | Concept Drift]
(a) (b)

Figura 4.16: Aplicacién del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Fading Factor (a) | Punto de deteccién (PH Test) | Punto de deteccién (ADWIN)

0.990 100592 100237 (225)
0.995 100697 100248 (233)
0.997 100808 100257 (234)
1.000 109764 100278 (243)

Tabla 4.5: Instantes de deteccién segun los diferentes métodos. Para ADWIN, entre paréntesis
mostramos los tamanos de la ventana tras la deteccién de drift.

Tomando la primera ventana procedemos a reconstruir/re-entrenar nuestro modelo predictivo,

obteniendo los resultados de la Tabla 4.6.

Estimacion | Std. Error | ¢t value | Pr (> |t|)
Bo -14.300 4.207 -3.399 | 0.000804
51 10.915 3.570 3.057 0.002514
B2 3.138 3.298 0.951 0.342516
B3 37.858 3.317 11.415 | <2-10716
B4 12.278 3.381 3.632 0.000351
Bs -3.996 3.366 -1.187 | 0.236466

Tabla 4.6: Cuadro resumen de los pardmetros del modelo.

Como puede observarse, los resultados no dan lugar a un buen modelo. Ademés, el valor
de R? = 0.443 es muy inferior al obtenido en el caso abrupto y el plot cuantil-cuantil de la

Figura 4.17a muestra cémo no se cumple la hipdtesis de errores/residuos normales.

Estamos por tanto ante un modelo que no es capaz de adaptarse al nuevo concept y sus
predicciones no seran de utilidad. Esto puede verse también computando el error precuencial
(con a = 0.990), mostrando los resultados en la Figura 4.17b. Vemos, al compararlo con el
error sin re-entrenar, como en ambos casos no se da una correcta adaptacién al concept (hay

mezcla), aumentando el error hasta estabilizarse en presencia de un tinico concept.
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Figura 4.17: (a) Plot cuantil-cuantil para el nuevo modelo de regresién lineal. (b) Comparacién
de errores precuenciales con y sin re-entrenamiento.

3 - =

4.3.2. Adaptacién Pasiva

Probemos ahora con una adaptacién pasiva. Para ello volveremos a utilizar un modelo
incremental, equivalente al planteado para el caso del Dataset II. Realizamos una estimacién
inicial de los parametros B, con las primeras 1000 instancias y las iremos actualizando
a medida que van llegando nuevas. Asi, se aprecia el efecto del concept drift sobre las
predicciones en la Figura 4.18. Hemos considerado dos subfiguras para una mejor visualizaciéon
del método adaptativo. Asi, nada mé&s ocurre el drift, el modelo tiene dificultades para
adaptarse debido a la mezcla de concepts. No obstante, a partir de la instancia 150000,

cuando solo hay un tnico concept presente, el modelo es capaz de adaptarse correctamente.

100;

99900 100000 100100 100200 100300 149900 150000 150100

Instancias Instancias
- Prediccién  Real - Prediccion  Real
| Concept Drift [ Presencia de un solo concept]
(a) (b)

Figura 4.18: Valores reales frente a predicciones al iniciarse el drift (a) y tras establecerse un
solo concept (b).

En términos de error precuencial, podemos atender a la Figura 4.19. Una vez maés, un valor
de a menor permite ver la mayor variabilidad del error, comprobando asi la adaptabilidad
del modelo. La coexistencia de concepts se traduce en un elevado error hasta la presencia

de un tdnico concept donde tras adaptarse, el error se reduce notablemente. Es mas, puede
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apreciarse en la grafica que si las lineas verticales solida y a rayas coincidiesen, recuperariamos

la Figura 4.10, donde no existe mezcla de concepts al ser un cambio abrupto.

100000 12000

Error Precuencial con Fading Factors

0 : 140000 160000
Instancias

[Fading Factors: - FF:0.990 - FF: 0.095 - FF:0.997 _FF: 1.000]
[_1 Concept Drift | Presencia de un solo concept|

Figura 4.19: Errores precuenciales con diferentes fading factors.

La adaptacién continua a lo largo de los diferentes concepts se muestra en la Figura 4.20 para
un fading factor o = 0.990. Como ya se indicé, la presencia de un uinico concept permite una

correcta adaptacion.

iy
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00

Error Precuencial con Fading Factors

0e+00 1le+05 . 2e+05 3e+05
Instancias

[ | Concept Drift | Presencia de un solo concept]

Figura 4.20: Error precuencial (o = 0.990) resultante de la adaptacién a los sucesivos cambios
graduales de concept.

Aunque ya vimos que no es necesario en un enfoque pasivo, volvemos a hacer uso de los
algoritmos de deteccion explicita de drift. Para ello comenzamos de nuevo con el Test de
Page-Hinkley, cuyos resultados se muestran en la Figura 4.21a, con § = 1.5 - 107!, El uso
del algoritmo ADWIN sobre los diferentes errores precuenciales para detectar el drift permite
mostrar la evolucién del tamaiio de la ventana en la Figura 4.21b.

De nuevo, con un menor valor de o encontramos que el cambio en el concept se detecta antes.
Una comparativa de los puntos de deteccién segin cada método puede verse en la Tabla 4.7.
Como ha ido ocurriendo con anterioridad, ADWIN permite una deteccién més rapida del
concept drift. No obstante, queda patente la mayor dificultad de detectar cambios graduales,
pues en comparacion con los resultados de detecciéon en el caso activo vemos como los

algoritmos precisan de mas instancias.
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Figura 4.21: Aplicacién del Test de Page Hinkley (a) y del algoritmo ADWIN (b).

Fading Factor () | Punto de deteccién (PH Test) | Punto de deteccién (ADWIN)

0.990 100556 100241 (210)
0.995 100656 100254 (222)
0.997 100760 100262 (231)
1.000 109491 100293 (256)

Tabla 4.7: Instantes de deteccién segin los diferentes métodos. Para ADWIN, entre paréntesis
mostramos los tamanos de la ventana tras la deteccién de drift.

ADWIN nos proporciona una vez mas una ventana que permite quedarnos tnicamente
con datos posteriores a la instancia 100000 (donde ocurre el concept drift). Resulta
interesante volver a estimar los valores de 3 con esta ventana y proseguir con la adaptacién
incremental. Sucede asi que el error precuencial con o = 0.990 pronto iguala al obtenido sin

re-entrenamiento (Figura 4.22), mostrado una vez mas que es innecesario proceder asi.

)
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o
)
3

Error Precuencial con Fading Factors

100000 100500 _ 101000
Instancias

[ (= Con re-entrenamiento_Sinr

Figura 4.22: Comparacién de errores precuenciales con y sin re-entrenamiento.

Podemos concluir asi que una adaptacién pasiva resulta mucho mas adecuada para tratar

con concept drift gradual, como ya se indico en el capitulo anterior.
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Capitulo 5

Casos Practicos:
Clasificacion

Puesto que conforma el tipo de problemas mas tratado y estudiado en ambito del concept
drift encontrar diferentes conjuntos de datos con los que empezar a experimentar no resulta
complicado. Concretamente nos referimos a una extensa coleccién de datasets[24].
Procedemos a analizar un conjunto en particular, escogiendo asi el creado usando una funcién
sinusoidal. Tenemos entonces dos variables predictoras continuas, 1 y x2, uniformemente
distribuidas en el intervalo [0, 1] y la variable objetivo correspondiente es una variable
categérica que representa dos clases (en binario 0 y 1). Definimos asi un concept inicial
en el que tomamos con y = 1 aquellos puntos que cumplan x; < sin(zg) y con y = 0 en caso
contrario. Una vez ocurre el drift se invierte la clasificacion, de forma que y = 1 para aquellos
puntos que cumplan z; > sin(zg). Se establece asi la creacién de dos conjuntos, uno que
presente concept drift abrupto y otro con concept drift gradual. En ambos casos se usaran
20000 instancias, definiendo un cambio de concept de forma abrupta en la instancia 10000 y
un cambio gradual que se inicia en el punto 8500. En este caso hay coexistencia de concepts
durante 2000 instancias (similar a cémo se procedié en el caso de regresion.)

También es necesario indicar que existe un equilibrio de clases a lo largo de los diferentes
concepts, de modo que ambas tienen igual representacion.

De nuevo resulta innecesario pre-procesar los datos puesto que estamos tratando casos
relativamente simples. Asi mismo, dado que la variable objetivo presenta solamente dos clases,

haremos uso de un modelo de regresién logistica[21, 22, 23].

5.1. Regresion Logistica

Consideremos una variable objetivo categérica con dos clases, y = c1, co. Resulta
conveniente darles un valor numérico, de modo que realizamos una asignaciéon binaria
y=c <<=y=0,

Yy=cp<=y=1.

39



Notar que podria hacerse de forma inversa y la probabilidad a posteriori de una de las clases

puede escribirse, de acuerdo con el Teorema de Bayes', como

e L PGP ple 1) p() )
P =B =P = T ) T b 10)p(0) + (e [1) (1) o)
1 |
= l—i—exp(—a) = O'((I),
donde hemos definido
(2 )p()
@ =log <p<x | o>p<o>) (5:2)

y o(a) se conoce como funcién logistica (o logistic sigmoid), que aparece representada en la

Figura 5.1. Sigmoid significa que toma forma de “S”.

1.00

0.75

OS,X)

0.25

0.00

-io -5 0 5 10
X

Figura 5.1: Gréfico de la funcién logistica/logistic sigmoid.

Esta funcién satisface la siguiente propiedad?

o(—a)=1-o0(a) (5.3)

y su funcién inversa?® es

a(a)

a=o0"Yo(a)) =log (1_0(@

) = Logit(o(a)), (5.4)

también conocida como funcién Logit, de forma que Logit(o(a)) = 071 (o(a)). Esta expresién,
como se muestra en (5.2), representa el logaritmo del cociente de probabilidades de ambas
clases?, log (p(1]x)/p(0|x)), también llamados log-odds. Eliminando el logaritmo tenemos

los odds, dados por p(1|x)/p(0|x).

!Consideremos un espacio muestral £ generado por dos variables aleatorias X y Y. El Teorema de Bayes
para dos eventos, {X =z} y {Y = y}, establece

pY =y[X =2)p(X =2)

PX =Y =y) = i

2La demostracién de este resultado puede consultarse en el Apéndice B.
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Con todo lo desarrollado, la regresion logistica para las dos clases considera que, dado un
vector de entrada x; = (zj1, ..., xjp)T, la probabilidad de y; = 1 puede escribirse haciendo
actuar la funcién logistica sobre una combinacion lineal de las de las features

1
1+ exp ( —(Bo+Brixzji+ ...+ Bp xjp))

p(1|Xj) :U(BO+B1 Zj1 +--~+Bpl‘jp) = (5'5)

y vemos que, como en el caso de la regresién lineal, los pardametros B = (o, S1, ..., Bp)T
especifican las posibles hipétesis hg € H. Notar que podrian haberse llamado de otra forma
pero asi establecemos un paralelismo con la regresién lineal.

Asi mismo, tenemos que para y; =0

exp (= (Bo+ Braji+ ... + Bpxjp))

p0|x;)=1—-p(1|x,) = . 5.6
También podemos expresar los log-odds
MHXﬂ) ( p(1]x;) >
log< =log| ————— | =bFo+Lizj1+..+06px; (5.7
p(0]%,) T p(1]x) j e :
y los odds
p(llx;) _ p(1]x;)
= =exp(Bo+Bizit+...+Bpxip). (5.8
b)) ~ T—pll[xy) ~ P ot Area bt o) )

De nuevo necesitamos obtener los parametros del modelo para fijar la hipdtesis.
Procedemos realizando una estimacion maximo verosimil, definiendo la verosimilitud para

una muestra (conjunto de entrenamiento) S = {(x1, ¥1), .., (Xn, Yn)} como

n
£B, v 20 = [T "= o0 )= Hp1|xyl 1 p(1]x)"°

=1

1 Yi ef(ﬁoJrﬁl zi1+...+Bp Tip) v
— 1—[1 (1 o (BotBr ot Br mip)> 1 4+ e~ (Bo+Bizirt+...+Bp wip) .
1=

No obstante puede resultar mas sencillo trabajar con el logaritmo de esta expresion, teniendo

(5.9)

asi la log-verosimilitud
n n
log(L) = Z yi (Bo + Bir xi1 + ... + Bp xip) — Z log (1 + efotPimint. 45y Ii”) . (5.10)
i=1 i=1
Maximizando una expresién o la otra encontramos la ecuacion de verosimilitud

0L(B, y, x)

=0 5.11
3 (5.11)
cuya solucién[21] requiere
n n n 1

yi—p(l[x;) =0<¢= > yi= — . . (5.12)

;( ) ; ;1+exp(_(50+61x1+...+6pxp))
yi —p(1|x:))x; =0 <= > y;ix; = — - 5.13
7,21( ) ; ;1+exp(—(Bo—i—ﬂlzcl—i—...—i—,é’pxp)) ( )
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y permite obtener la estimaciéon buscada B = (Bo, Bl, o Bp)T. Las probabilidades de
pertenencia a cada clase predichas por el modelo para la nueva instancia x; = (zj1, ..., mjp)T

pueden escribirse entonces como

1
. - A | 5.14
p(1]x;) 1+eXp(_(50+ﬂ1mj1+...+5p37jp)) | |
p(0]x;) =1 —p(1]x;) exp (— (bo+ Braji + -+ Bp@jp)) (5.15)

1+ exp ( —(Bo+Bizji+ ...+ Bp xjp))
No obstante la asociacién de una clase a cada instancia suele hacerse en base a un umbral u«

de modo que, para x;, el modelo toma la hipétesis

sip(l]x;) > wu,

~ 2,
=B (x:) = 5.16
Yi pul) {cl, sip(l]x5) <wu. (5.16)

Una eleccion sencilla puede ser tomar v = 0.5. No obstante, la mejor forma de proceder
suele ser recurrir a las curvas ROC (Receiver Operating Characteristic)[3, 21], que son
una representacion grafica, para cada valor posible del umbral, de la Sensibilidad frente a

1—Especificidad®. Se presentan entonces dos formas de determinar el umbral

{valor que maximiza la suma (Especificidad + Sensibilidad) , (5.17)
u= )

valor que minimiza la suma ((1 — Especificidad)? + (1 — Sensibilidad)?) .

Como en regresion, este modelo puede usarse para llevar a cabo una adaptacién activa,
definiendo una hipétesis que se adapte al primer concept. Una vez sucede el cambio de concept
y se detecta el drift, aparece la necesidad de modificar la hipdtesis y procederemos a realizar
una reconstruccién del modelo (por re-entrenamiento).

Para realizar una adaptacion pasiva podemos aplicar de nuevo técnicas de Descenso de
Gradiente Estocdstico actualizando en cada etapa t los parametros 3. En este caso la funcién

de pérdida empleada es
Ly, p(1|x¢)) = = yelog (p(1|x¢)) = (1 = ye) log (1 — p(1]x¢)) =

1
=—y; log (1 + e—(Bot+Brmat..+Bp :Ctp)> N (5.18)
e—(Bot+Br @it +Bp xip)
(1 - yt) IOg 1+ e—(,80+ﬁ1 1+ +Bp Ttp)

Tras calcular el gradiente? de la expresién anterior

OL(y, p(1]x)) OL(y, p(1|x))  OL(y, p(1] X)))T
oJo) ’ 01 T 0By

VL (g p(1]x2)) = (

(xt,yt) (5'19)

= ((p(1]x¢) —ye)» (P(X]%x¢) = ye) Te1, oy (p(1] %) — yt)iﬂtp)T,

3Definimos en cada caso
# asignaciones correctas a la clase 0

Sensibilidad = ,
# asignaciones correctas a la clase 0 + # asignaciones a la clase 1 en vez de 0

# asignaciones correctas a la clase 1
# asignaciones correctas a la clase 1 + # asignaciones a la clase 0 en vez de 1’

Especificidad =
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y una vez establecida la tasa de aprendizaje n (= 0.5) el valor inicial 8, se va actualizando

B, = Bi_1 —nVL(y, p(1]x¢)), cont>0. (5.20)

Podemos ver la implementacién en forma de algoritmo en el Apéndice A.

Asi mismo, y a modo de cumplimentar lo desarrollado respecto a algoritmos incrementales,
podemos incluir dos nuevos|2], el Perceptrén y el algoritmo Winnow.
El primer algoritmo considera un vector de pesos w; (los pardametros del modelo) inicializado
con wg. En cada etapa t, al recibir x; el algoritmo predice la clase correspondiente usando el
respectivo w;. Una vez recibido el valor real, si resulta en una clasificacion errénea, g # yi,
se actualizan los pesos anadiendo al valor actual una cantidad 7 y:x:, con n > 0.
El algoritmo Winnow es similar al perceptrén, pero en vez de considerar una actualizacién
de los pesos aditiva, en este caso es multiplicativa. Hace uso de un vector de pesos w; cuyas
componentes suman la unidad (3" ; |wf| = 1), definido inicialmente como un vector de pesos
uniforme. En cada etapa t, si la prediccién g; no coincide con el valor real 1;, cada componente
i de wy se actualiza multiplicAndola por un factor exp(ny ;) y dividiendo el resultado por

una constante de normalizacién para asegurar que sumen 1.

5.2. Abrupt Concept Drift

Aplicamos estos desarrollos al conjunto de datos con concept drift abrupto.

5.2.1. Adaptacién Activa

Con motivo de aplicar todo lo desarrollado con anterioridad, trataremos las primeras 7000
instancias como conjunto histérico con las que entrenar un modelo de regresiéon logistica.
Consideraremos entonces que todas las instancias de etapas posteriores t van llegando de una
en una, se realiza la prediccién correspondiente j; y el valor real y; es conocido antes de que
llegue la siguiente. En caso de deteccién explicita de concept drift, adaptamos nuestro modelo
en concordancia, mediante un re-entrenamiento.

Nuestro modelo de regresion logistica inicial muestra un resumen de su ajuste al conjunto de

entrenamiento en la Tabla 5.1.

| Estimacién | Std. Error | z value | Pr(> |2|)

Bo 3.7303 0.3259 1145 | <2-10716
B1 | -98.8275 6.2831 -15.73 | <2-10716
Ba | 83.9254 5.3579 15.66 | <2-10716

Tabla 5.1: Resumen del modelo de regresion logistica.

Los resultados muestran que todos los coeficientes son significativos y distintos de 0.

Ademds, podemos computar las predicciones sobre nuestro conjunto de entrenamiento usado
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y comparar con los valores reales, como muestra la Tabla 5.2. La gran mayoria de instancias

quedan clasificadas correctamente con este modelo tan sencillo.

Clases Reales

| 0 1
. 0| 3433 57
Clases Predichas 1 67 3443

Tabla 5.2: Clases predichas frente a clases reales en el conjunto de entrenamiento.

Es maés, podemos calcular algunas métricas que nos dan informacién adicional sobre la calidad

del modelo como son la Sensibilidad y la Especificidad?

3433

ibilidad = —— = 0. 14 21

Sensibilida 3133 1 67 0.980857143, (5.21)
3443

E ificidad = ————— = 0.983714286 . 5.22

SPECIAat = 3443y 57 (5:22)

Obtenemos valores muy proximos a la unidad, lo que da cuenta del buen ajuste realizado. Es
necesario mencionar que seria mas apropiado calcular estas métricas para evaluar la bondad
del ajuste sobre un conjunto de datos de prueba diferente del usado en el entrenamiento.
Una vez comprobada la validez del modelo podemos ir computando las predicciones vy,
mediante una funcién de pérdida 0-1 (2.2), analizar el cambio de concept. Puesto que el drift
ocurre en la instancia 10000, mostramos los resultados en su cercania en la Figura 5.2. Notar

como una vez cambia el concept el modelo empleado comete muchas malas clasificaciones.

1.00

Funcién de pérdida 0-1 L(y;, ¥,)
2
g

0.00

9900 0100 10200

0 R L
Instancias (i)
Concept Drift

Figura 5.2: Funcién de pérdida 0-1.

Como ya se hizo en el caso de regresién, computamos el error para diferentes fading factors
(3.11), representado en la Figura 5.3a y vemos cémo el incremento del error una vez cambia
el concept es ciertamente notable.

Necesitamos que nuestro modelo sea capaz de adaptarse al nuevo concept. Para ello haremos
uso de los métodos de deteccién explicita, concretamente DDM y EDDM (muy usados en

clasificacién y no los hemos empleado antes). El primero de ellos monitoriza la tasa de error

4Usadas para definir el umbral u que se usard en la asignacién de clases.
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(0 el error precuencial con o = 1). Por otro lado, EDDM utiliza la distancia entre dos errores
consecutivos, la cual puede verse en la Figura 5.3b y una vez cambia el concept, notamos

como disminuye sensiblemente.
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Figura 5.3: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

Los resultados de la detecciéon pueden consultarse en la Tabla 5.3.

Punto de deteccién (DDM) | Punto de deteccién (EDDM)
10009 (10003) ‘ 10005 (10001)

Tabla 5.3: Instantes de deteccién segun los diferentes métodos. Entre paréntesis aparece la
instancia que marcé el nivel de alerta/warning.

La deteccién es en todo caso posterior a la instancia 10000 donde ocurre el drift y los
algoritmos permiten disponer de una ventana para re-construir el modelo. Concretamente
consideramos aquellas instancias desde que se indicé la senial de warning hasta que se alerta
de concept drift. Sin embargo, dado que en ambos casos la deteccién es muy rapida (el
modelo se adapta muy bien al primer concept y al cambiar enseguida se percibe el error),
no hay suficientes datos almacenados en la ventana para re-entrenar el modelo. Un modo de
proceder consiste entonces en re-entrenar el modelo con esa ventana, pero seguir almacenando
instancias (hasta un nimero predefinido por ejemplo) y volver a entrenar el modelo con
todos los datos disponibles. También se puede usar ADWIN, con algtin computo del error
precuencial anterior y usar esa ventana. No obstante, como ya se us6 ADWIN en el caso de
regresion, procederemos de la primera forma.

Usando la ventana proporcionada por DDM creamos primera versién del nuevo modelo y lo
usaremos para predecir sobre las siguientes 50 instancias; entonces volveremos a entrenar el
modelo con todas las instancias almacenadas. Procederemos asi hasta analizar 500 instancias.
El error precuencial con a = 0.990 computado a lo largo de todo el proceso se muestra en la

Figura 5.4, indicando una correcta adaptacién.
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Figura 5.4: (a) Comparacién entre errores precuenciales usando o = 0.990, con y sin
re-entrenamiento. (b) Errores (o = 0.990) tras el re-entrenamiento al detectar concet drift.

5.2.2. Adaptacion Pasiva

Por similitud con el caso regresién, usaremos una adaptacién del modelo de regresion
logistica mediante técnicas de Descenso de Gradiente Estocastico, estimando 3, con las
primeras 1000 instancias. Conforme nuestro modelo va computando las predicciones y
actualizandose, calculamos el error de las mismas de forma precuencial, tomando una
funcién de pérdida 0-1 para dar cuenta de las instancias mal clasificadas. Para facilitar la
interpretacion de los resultados mostramos tinicamente la cercania del primer concept drift
en la Figura 5.5. Puede apreciarse como las malas clasificaciones aumentan de forma muy

considerable una vez cambia el concept, con pocas clases predichas correctamente.

o o
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3 @
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Instancias (i)

Concept Drift

Figura 5.5: Funcién de pérdida 0-1.

La capacidad de adaptacién del algoritmo queda patente al visualizar tanto el error
precuencial, mostrado la Figura 5.6a, como la distancia entre errores de prediccién
consecutivos (Figura 5.6b). Notar cémo en comparacién con el enfoque activo (Figura 5.3) el
error no tiende a estabilizarse sino que decrece sin necesidad de implementar un mecanismo
que detecte explicitamente el concept drift. Lo mismo ocurre con la distancia entre errores,

que vuelve a aumentar tras un ntmero de etapas.
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20000

A pesar de no ser necesario, resulta interesante comprobar la deteccion explicita del drift,

usando de nuevo tanto DDM como EDDM y mostramos los resultados en la Tabla 5.4.

Punto de deteccién (DDM) ‘ Punto de deteccién (EDDM)
10023 (10010) | 10039 (10016)

Tabla 5.4: Instantes de deteccién segun los diferentes métodos. Entre paréntesis aparece la
instancia que marcé el nivel de alerta/warning.

El punto exacto (segin la creacién de los datos) donde tienen lugar el concept drift es
la instancia 10000, por lo que podemos concluir que los algoritmos implementados captan
adecuadamente el cambio de concept. No obstante, la adaptacion al nuevo concept es mas

lenta que en el caso abrupto, como puede verse al comparar la Figura 5.6a con la Figura 5.4.

5.3. Gradual Concept Drift

Una vez comprobada la aplicabilidad de todo lo desarrollado en el caso de concept drift

abrupto, evaluamos su utilidad en la deteccién y adaptacién con un drift mas gradual.

5.3.1. Adaptacion Activa

Usando de nuevo un conjunto de 7000 instancias para entrenar el primer modelo podemos
ver el efecto del concept drift sobre las predicciones mediante el uso de una funcion de pérdida
0-1, como muestra la Figura 5.7.

Asi mismo, el error precuencial se muestra en la Figura 5.8a junto con la distancia entre
errores consecutivos en la Figura 5.8b. Notar cémo el modelo empeora mucho las predicciones
una vez queda establecido un tnico concept. Esto es asi puesto que mientras coexistan los
concepts algunas de las instancias pertenecientes al anterior tendran su clase objetivo predicha
correctamente. Es mas, si ambas lineas verticales coincidiesen, los resultados serian los mismos

que en el caso abrupto, donde no hay mezcla de concepts.
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Figura 5.8: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

Aplicamos los algoritmos de deteccién explicita DDM y EDDM igual que en el caso

anterior, mostrando los puntos de deteccion en la Tabla 5.5.

Punto de detecciéon (DDM) ‘ Punto de detecciéon (EDDM)
0368 (9231) | 9289 (9204)

Tabla 5.5: Instantes de deteccién segun los diferentes métodos. Entre paréntesis aparece la
instancia que marcé el nivel de alerta/warning.

En todo caso, la deteccién es posterior a la instancia 8500 donde ocurre el drift. Notar ademaés,
los mejores resultados de EDDM en la deteccion gradual, pues este era el principal objetivo
buscado al proponerlo. Resulta entonces estar de acuerdo con todo lo desarrollado antes.

Estos algoritmos de deteccién permiten disponer de una ventana para re-construir el modelo.
Hacemos uso de los resultados proporcionados por EDDM para definir una ventana (de mayor
tamano que en el caso abrupto) con la que re-entrenar el modelo y el error precuencial con
a = 0.990 se muestra en la Figura 5.9. Igual que sucedi6 en el caso de regresién, la coexistencia
de concepts nos impide obtener un modelo predictivo apropiado (el error cometido en ambos
casos es practicamente el mismo). Podrian mostrarse los resultados del ajuste del modelo,

pero resulta mucho mas visual tomar la representacién grafica del error.
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re-entrenamiento. (b) Errores (o = 0.990) tras el re-entrenamiento al detectar concet drift.

En vista de estos resultados desalentadores, procedemos con una adaptacion pasiva.

5.3.2. Adaptacién Pasiva

Actuamos ahora de forma incremental, actualizando los pardmetros 3 en cada etapa. Con
ello, el efecto del concept drift v la posterior adaptacién del modelo puede apreciarse con la

funcién de pérdida 0-1, como muestra la Figura 5.10.
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Figura 5.10: Funcién de pérdida 0-1.

Asi mismo, computamos el error precuencial en la Figura 5.11a junto con la distancia
entre dos malas clasificaciones sucesivas, mostrada en la Figura 5.11b. Podemos apreciar
ciertas diferencias con respecto a la Figura 5.6, dado que en este caso se mezclan instancias
pertenecientes al anterior concept con instancias del nuevo. Asi, tanto el aumento del error
como la disminucién de la distancia son mucho més suaves y menos marcados que en el
caso anterior. A su vez, la capacidad de adaptacion del algoritmo permite recuperar un buen

rendimiento transcurridas ciertas etapas.
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Figura 5.11: (a) Errores precuenciales con diferentes fading factors. (b) Distancia entre errores.

En ningiin momento ha sido necesaria la deteccion explicita de concept drift para
garantizar la adaptabilidad del algoritmo. No obstante resulta interesante considerarlo y por
ello volvemos a aplicar los anteriores algoritmos de deteccién, obteniendo asi los resultados

de la Tabla 5.6.

Punto de deteccién (DDM) | Punto de deteccién (EDDM)
9478 (9250) | 9454 (9250)

Tabla 5.6: Instantes de deteccién segun los diferentes métodos. Entre paréntesis aparece la
instancia que marcé el nivel de alerta/warning.

Segin la forma en que se generaron los datos, el punto exacto en que ocurre el drift es la
instancia 8500, por lo que podemos concluir que los algoritmos implementados, una vez mas,

son capaces de capturar adecuadamente el cambio de concept.

Como ya sucedié con los andlisis planteados en problemas de regresiéon, el problema de
concept drift gradual queda mejor resuelto siguiendo metodologias de adaptacién pasiva.
Sin embargo, el caso abrupto se puede tratar de ambas formas, aunque un enfoque pasivo
puede conllevar cierto retraso hasta la correcta adaptacion al nuevo concept. En el caso activo

dependemos de la correcta deteccion del drift.
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Capitulo 6

Conclusiones y Trabajo a Futuro

En este trabajo se ha definido el problema del aprendizaje en escenarios afectados por
concept drift. Es decir, buscamos algoritmos capaces de trabajar en escenarios de aprendizaje
online, donde la distribucién subyacente de los datos no se asume estacionaria. Este problema
es comun en muchos campos, desde la medicina hasta la industria y para dar cuenta de
la validez de los métodos desarrollados se han analizado casos de regresién y clasificacion,
tratando conjuntos de datos con drifts abruptos y graduales. En ambas situaciones, la
adaptacién del modelo predictivo empleado se ha realizado siguiendo un enfoque tanto activo

como pasivo, lo que nos ha permitido corroborar ciertas afirmaciones previas:

— En casos de concept drift abrupto, se obtienen mejores resultados mediante algoritmos
capaces de realizar una adaptacion activa. Esto asi puesto que el nuevo concept queda
establecido tras muy pocas instancias y por tanto los mecanismos de deteccién explicita
son capaces de detectar el cambio de forma efectiva y con ello reconstruir el modelo con
una nueva hipétesis adecuada al concept presente tras un nimero (que esperamos sea
lo suficientemente) reducido de etapas.

No obstante sigue siendo totalmente vélido tomar un enfoque pasivo, aunque pueda

tardar un ntimero mayor de etapas en lograr la adaptacién.

— En situaciones con concept drift gradual, se suceden etapas donde se mezclan concepts
hasta que finalmente acaba por establecerse la presencia de uno solo. Esto dificulta
la deteccién explicita de la etapa donde se inicia el drift y también complica la
reconstruccién del modelo pues el conjunto de datos empleado para ello contiene
informacién del primer concept y por tanto irrelevante una vez se establezca el nuevo
concept. La mejor forma de proceder consiste entonces en tomar un enfoque pasivo,

adaptando el modelo de forma gradual mientras sucede el drift.

También resulta de gran importancia hacer notar la falta literatura sobre concept drift en
lo referente a regresién, lo que dificulté los desarrollos inicialmente pero finalmente fuimos

capaces de tratarlo adecuadamente.
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Asi mismo, podemos establecer varias posibles directivas a seguir en una continuacion

futura del trabajo expuesto en este documento:

— Estudio y desarrollo de nuevos algoritmos y técnicas para la adaptacién al concept
drift. Resulta esencial conocer los ultimos adelantos acontecidos en un entorno de
investigacién siempre cambiante y en continua evolucién (como nuestros datos). Esto
es especialmente evidente en el caso de regresion, apenas tratado y con mucho futuro,

sobre todo en entornos industriales (e.g. medidas numéricas de diferentes sensores).

— Implementacién en R. Es notable la falta de librerias en R que permitan hacer un
tratamiento del concept drift y, dada la familiaridad con este lenguaje de programacion
(muy usado a lo largo del Méster), hemos optado por llevar a cabo la implementacién
de varios de estos métodos, concretamente aquellos descritos en el trabajo. A futuro
podemos considerar ampliar el repertorio e incluso crear nuestra propia libreria/paquete

de funciones de acceso publico.

— Tratamiento de conjuntos de datos reales. Hemos analizado casos sintéticos, donde la
ocurrencia del drift se conocia de antemano y la definicién de concept en cada momento
era relativamente simple. Los resultados han sido totalmente satisfactorios, pero nuestra
atencion ha estado siempre centrada en una implementacién y aplicacion industrial del
tratamiento de concept drift. Es 16gico por tanto que el siguiente paso consista en tratar
casos reales, donde el estudio de los datos resulta mucho mas complicado, necesitando
casi siempre de un tratamiento previo de los mismos y una eleccién cuidadosa del modelo

predictivo a emplear.

— Caracterizacidon més profunda del concept drift. Aunque a lo largo del trabajo nos hemos
centrado en la deteccién y adaptacién en escenarios con (posible) concept drift, existen
articulos[9] que tratan de desarrollar y/o sentar las bases para un estudio del propio

drift. Podemos entonces profundizar en la definicién de algunas de sus caracteristicas:

e “Cuando” ocurre el concept drift, es decir, en qué momento se produce el cambio
de concept y cuantas etapas ocurren hasta el establecimiento de un dnico concept
(si es que ocurre). Retrasos en la deteccién o falsas alarmas pueden complicar o

incluso impedir la adaptacién del algoritmo al nuevo concept.

e “Como” es el concept drift, refiriéndose a la severidad del mismo. Formalmente se
expresa como A = 0 (pi(x, ¥), pr+1(X, ¥)), con ¢ una funcién (no negativa) que
permite medir la discrepancia entre ambas distribuciones y t indica la etapa en
que ocurre el drift. Asi, cuanto mayor el valor de A, més severo es el concept drift

y més se diferencian los concepts.
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Anexos A

Algoritmos Tratados

Algoritmos para la deteccién explicita de concept drift:

Algoritmo 1 Algoritmo para el Test de Page-Hinkley

Entrada: Pardmetros § y A, errores (precuenciales) de prediccién en cada etapa e(t)
Inicializacién: sum =0, my =0, My =1
for t desde t = 1 hasta detectar concept drift do
sum = sum + e(t)
sum
mpr =mp+e(t)— — —0
if mp < My then
Mr =mr
end if
if mp — Mp > X then
Devuelve: “concept drift a partir de la etapa t”
end if
end for

Algoritmo 2 Algoritmo para el Drift Detection Method

Entrada: Valor 0 o 1 en cada etapa, e(t), indicando si la prediccién resulta en una correcta
clasificaciéon o no, nimero minimo de errores previos mine.or, niveles a 'y 3
Inicializacién: pyp = Smm = 0.5, pr =0
for t desde t = 1 hasta detectar concept drift do
pr=(e®) +(t—1p)/t,  si=+/p (—pft
if >, e(t) > mingyror then
if (pr 4+ s¢) > (Pmin + @ Smin) then
Alerta: “posible concept drift a partir de la etapa t”
Se almacena este ejemplo para reconstruir el modelo en caso de drift
end if
if (pt + St) > (pml'n +3- Smin) then
Devuelve: “ha ocurrido concept drift en la etapa t”
Se reconstruye el modelo con los datos almacenados
else if (p; + st) < (Pmin + Smin) then
Pmin = Dt Smin = St
end if
end if
end for
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Algoritmo 3 Algoritmo para el Early Drift Detection Method

Entrada: Numero de etapas entre los errores d(e), nimero minimo de errores previos
MiNgrror, Niveles a y B
Inicializacién: pysx = Smax = 1
for e (que indica el nimero de errores) desde e = 1 hasta detectar concept drift do
pe=Y.de)fe,  s.=/3,(de) — pofe
if e > ming.,or then
if ((pe+2-5¢)/(Pmax + 2 Smax)) < « then
Alerta: “posible concept drift a partir del error e”
Se almacena este ejemplo para reconstruir el modelo en caso de drift
end if
if ((pe +2- 36)/(pméx +2- Sméx)) < ﬁ then
Devuelve: “ha ocurrido concept drift en la etapa que marca el error €”
Se reconstruye el modelo con los datos almacenados
else if (p; + st) > (Pmax + Smax) then
Pmiéx = Dt Sméx = St
end if
end if
end for

Algoritmo 4 Algoritmo para A Daptive WINdowing

Entrada: Ventana inicial W de tamano n conteniendo errores (precuenciales) de prediccién
en cada etapa {e(1),...,e(n)}, pardmetro §
for t desde t = n + 1 hasta detectar concept drift do

W =W U{e(t)}

for toda particién de W en Wy y Wy (ng + nqy =n) do

~ . ~ . no + ni
fiwy = D212 e(i)/no , Hwy = Z?:no—&—l e(i)/n1, €cut = \/2nonl -log (%n)

while |fiw, — fiw,| > €cut do
Indica: “posible concept drift”
W =Wy
end while
end for
Devuelve: ventana adaptada W.
end for
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Algoritmos incrementales para aprendizaje online en problemas de regresion:

Algoritmo 5 Algoritmo incremental (Widrow-Hoff/SGD con Regresién Lineal)

Fija la tasa de aprendizaje 7
Inicializa 8 = 3, = (8, 5¢, ...,ﬁg)T
for toda etapa t > 0 do
Toma instancia x;
Calcula la prediccién g = 85" + B @1 + ... + B L ayy
Recibe el el valor real y,
Actualiza los pardmetros 3, = 3,_; — 277( (Gt —vt), (O — ye) Teay ooy (Gt — Yt) :):tp)T
end for
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Algoritmos incrementales para aprendizaje online en problemas de clasificacion:

Algoritmo 6 Algoritmo incremental (SGD con Regresién Logistica)

Fija la tasa de aprendizaje 7

Inicializa 8 = 3, = (8, 5¢, ...,ﬂg)T

for toda etapa t > 0 do
Toma instancia x;
Calcula la probabilidad p(1|x;) = o(B5 " + B @y + ... + Bt ayy)
Recibe el el valor real y,

Actualiza 8, = 8,1 — n( (p(1|x¢) — we) , (P(LIxe) = ye) o1, ooy (P(1]%e) = 01) J»’tp)T
end for

Algoritmo 7 Algoritmo incremental (perceptrén)

Fija la tasa de aprendizaje n
Inicializa w = wy
for toda etapa t > 0 do
Toma instancia x;
Calcula la prediccién g, = signo(w - x;) = {_1 S? wex =0
1 siw-x; >0
Recibe el el valor real y;
if Z?t ?é Yt then
wr =t-1+nyx;
else
Wi = Wi1
end if
end for

Algoritmo 8 Algoritmo incremental (Winnow)

Fija la tasa de aprendizaje n
Inicializa w = wo = (w{,...,w2)T = (1/n,...,1/n)T
for toda etapa ¢t > 0 do

Toma instancia x;

Calcula la prediccion g, = signo(w - x;) = {_1 S? wox <0

1 siw-x; >0

Recibe el el valor real y;
if @t 75 Yt then

fori=1 hasttziln do

ot — Wi exp(ny )

b Yk wy exp(nye o)
end for

else

Wt = W1
end if
end for
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Anexos B

Regresion Logistica:
Demostraciones

En este apéndice demostramos la obtencion de las expresiones mostradas en el Capitulo 5.

Dem: a(—a) =1-— U(CL)

o(—a) = 1 _ 1 exp(—a) _ exp(—a) _
1+exp(a) 1+4exp(a)exp(—a) 1+ exp(—a)
1
= 1_71+exp(—a) =1—-o0(a).

Dem: a = Logit(o(a))

Dem: a = log(p(1]x)/p(0]x))

Usando el Teorema de Bayes, tenemos

p(x|1)p(1) = p(1]x)(p(x]0) p(0) + p(x 1) p(1)) ,
p(x10)p(0) = p(0]x)(p(x]0) p(0) + p(x|1) p(1)),

lo que permite expresar a como

o [PV PN o (P(L%) p(x[0)p(0) +p(x[1) (1)) _
= <p<xro>p<o>> 1g< %) p(x]0) p | )
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Dem: VL (i, p(1]x0) = ((p(1]x:) =), (p(1]%0) = 9) 2, oy (p(1|%0) = ) 1)
donde L(y;, p(1]x;)) toma la forma

L(yt, p(1]x¢)) = —y¢ log (p(l | Xt)) — (1 —y)log (1 —p(1] Xt)) . (B.6)

Definimos # = (1, 241, ...,24p)] de modo que podemos (diferenciarlo de x; y) expresar

mas comodamente

1 1

P ) = (C o+ hant ot hymy)  1ren— . f) 7
y por tanto
dp(l|x:)) 7 exp(—zf - B) o N s
ap (1+ exp(—iT - B))” Zep(Lx) (1= p(1]x2)) (B.8)
d(1 —
(1 5;1 | Xt)) _ _dp(;AXt) =—Zp(1 ’Xt)(l —p(1 |Xt)) _ (B.9)
Asi mismo
dlog (p(1|x)) 1 dp(l]x)
a3 = oix) (1-p(1]x)), (B.10)
dlog (1-p(l]x)) 1 d(l-pllx))
B T 1-p(1]x) a3 =T p(l]x). (B.11)
Finalmente

VL(yt, p(1]x¢)) = dL(yt’d’gl [x2)) _
d log (p(1|x¢)) dlog (1—p(1]x))
e gg o w) 48 = (B.12)

==y (L—p(1]x0)) + (1 —ye) Tep(L] %) = Zo (p(L|x¢) — ) =

= (P 1%) = 90), (P(LIx0) = 9) o1, o (P(L]3%0) = ) 7)
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Anexos C

Cdédigo Empleado

A continuacion se incluye una recopilacién de los diferentes cédigos en R utilizados en la

implementacion de los diferentes métodos de deteccion explicita de Concept Drift.

C.1. Page-Hinkley Test

### Page—-Hinkley Test ###

# Devuelve el instante (indice) en que se detecta Concept Drift
# errors como un vector
Page_Hinkley <- function(errors, delta = 0, lambda = 0){
m <- dif <- warning <- c()
M <=0
for(i in 1:length(errors)){
m[i] <- sum(errors[1:i] - mean(errors[1:i]) - delta)
if(mfi] < M) M <- m[i]
dif[i] <- m[i] - M

if (dif[i] > lambda){
cat("Se supera lambda en la iteracion ", i)
cat ( u\nu)

warning <- c(warning, i)

¥

return(list(dif = dif, warning = warning))
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C.2. Drift Detection Method (DDM)

### Driftt Detection Method ###

# Modeliza el error de clastficacion sequn una distribucion binomial
# min errors indica el numero minimo de errores previos detectados
DDM <- function(error, window_length=1, min_errors=30, alpha=2, beta=3){
# Valores iniciales altos para que sean facilmente reemplazables
p_min <- s_min <- 1
p <- s <- warning <- CD <- c()
for(i in head(seq(l, length(error), window_length), -1)){
p_i <- sum(error[1:(i + window_length - 1)])/(i + window_length - 1)

s_i <- sqrt(p_i*(1-p_i)/(i + window_length - 1))

# numero minimo de errores detectados para empezar
if (sum(error[1: (i + window_length - 1)]) >= min_errors){
if((p_i + s_i) >= (p_min + alpha*s_min)){
cat("Warning en la iteracion ", i + window_length - 1)
cat("\n")
warning <- c(warning, i + window_length - 1)
if((p_i + s_i) >= (p_min + beta*s_min)){
cat("Concept Drift en la iteracion ", i + window_length - 1)
cat("\n")
CD <- c(CD, i + window_length - 1)

}
else if((p_i + s_i) < (p_min + s_min)){
p_min <- p_i

s_min <- s_i

}

p <- c(p, p_i)

s <- c(s, s_1i)
}

return(list(p = p, s = s, warning = warning, CD = CD))
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C.3. Early Drift Detection Method (EDDM)

### Early Drift Detection Method ###

# Mejora la deteccion de Gradual Concept Drift
EDDM <- function(error, min_errors = 30, alpha = 0.95, beta = 0.90){
# Valores inciales bajos para que sean facilmente reemplazables
p_max <- s_max <- 0.5
p <- s <- dist <- warning <- CD <- c()
pos_error <- which(error == 1)
for(i in 1:(length(pos_error)-1)){
dist[i] <- pos_error[i+1] - pos_error[i]
pli] <- mean(dist)
s[i] <- sd(dist)

if (i >= min_errors){
if(((pli] + 2*s[i])/(p_max + 2*s_max)) < alpha){

cat("Warning en la iteracion ", pos_error[i+1])

cat("\n")

warning <- c(warning, pos_error[i+1])

if (((pli] + 2#s[i])/(p_max + 2*s_max)) < beta){
cat("Concept Drift en la iteracion ", pos_error[i+1])
cat("\n")

CD <- c(CD, pos_error[i+1])

}
}
if((pli] + 2*s[i]) > (p_max + 2*s_max)){
p_max <- pl[i]
s_max <- s[i]
}
}

}

return(list(p = p, s = s, warning = warning, CD = CD))
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C.4. ADaptive WINdowing

### ADaptive WINdowing ###

#
#
#
#
#

Funcion previa para evaluar que se cumpla la condicion de
distribuciones lo suficientemente distintas
Devuelwve booleanos:

0 distribuciones tguales

1 distribuciones distintas

subwindows <- function(window, cut, delta=0.2, type=2, min_size=1){

if (length(window) == min_size) return(0)
if (max(window) != min(window))
W <- (window - min(window))/(max(window) - min(window))

else W <- window

W_0 <= W[1l:cut]

W_1 <- W[(cut+1):length(W)]

mean_0 <- mean(W_0)

mean_1 <- mean(W_1)

m <- (length(W_0)*length(W_1))/(length(W_0)+length(W_1))

Delta <- delta/length(W)

epsl <- sqrt((1/(2+#m))*log(4/Delta))

eps2 <- sqrt((2/m)*var(W)*log(2/Delta)) + (2/(3*m))*log(2/Delta)

if (type == 1) return(abs(mean_O - mean_1) > epsl)

else if(type == 2) return(abs(mean_O - mean_1) > eps2)

# En caso de mo devolver nada

stop("Parametros mal especificados")
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# newdata como un vector
ADWIN <- function(window, newdata, delta=0.2, type=1, dif=20,

min_size=1, entry_size=1){

ventanas <- c(length(window))
for(i in head(seq(l,length(newdata),entry_size),-1)){
# Se incluyen los nuevos valores en la ventana
window <- c(window, newdatal[i: (itentry_size-1)])
cut <- min_size
while(cut <= (length(window)-min_size)){
cut_check <- cut
while (subwindows(window, cut_check, delta=delta, type=type,
min_size=min_size) & (cut_check >= min_size)){
window <- window[-1]
# Mantenemos siempre la ventana W_1
cut_check <- cut_check - 1
#cut <- min_size - 1
X
# Para volver a evaluar todas las divisiones en subventanas
# Se repite el check en uno de los wvalores
cut <- cut + 1
}
ventanas <- c(ventanas, length(window))

print(c(i,length(window)))

# Para indicar concept drift si la diferencia supera un valor
#if((ventanas[t] - ventanas[i+1]) > dif){

# cat("Posible Concept Drift en la iteracion ", 1)

# cat("\n")

#}

#print (mean (window))

¥

return(ventanas)
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# Version que elimina todas las componentes de W_0
# Nos quedamos con W_1
ADWIN_all <- function(window, newdata, delta=0.2, type=1, dif=20,

min_size=1, entry_size=1){

ventanas <- c(length(window))
for(i in head(seq(l,length(newdata),entry_size),-1)){
# Se incluyen los nuevos valores en la ventana
window <- c(window, newdatal[i:(i+entry_size-1)])
cut <- min_size
while(cut <= (length(window)-min_size)){
if (subwindows (window, cut,delta=delta,type=type,min_size=min_size)){
# Nos quedamos solamente con W_1
window <- window[(cut+1):length(window)]
cut <- min_size - 1
X
# Para volver a evaluar todas las divisiones en subventanas
# Se repite el check en uno de los wvalores
cut <- cut + 1
}
ventanas <- c(ventanas, length(window))

print(c(i,length(window)))

# Para indicar concept drift si la difrencia supera un valor
#i1f((ventanas[i] - wventanas[i+1]) > dif){
# cat("Posible Concept Drift en la iteracion ", 1)
# cat("\n")
#}
#print (mean (window))
b

return(ventanas)
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