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Summary

This project consists of three chapters: conditional expectations, martingales and applications
of martingales in financial mathematics. We are going to summarize here the most important
ideas. The project is mostly based on the book: A Probability Path by Sidney I. Resnick [1].

Martingales were first used as betting strategies, in the 18th-century. In 1934, Paul Lévy
(1886-1971) introduced the concept of martingales in probability theory, which was later impro-
ved by Jean Ville (1910-1989). In the 1940s and 1950s these results were neglected with the
arrival of modernization in classical probability. Finally, in the 1980s and 1990s martingale’s
theory became a very useful tool to study financial markets.

The first chapter is going to be used as an introduction to conditional expectation. We will
define the main tool of this project: the conditional expected value with respect to a o-algebra,
and its most useful properties, which will remind us of the expected value ones: linearity, mono-
ticity, monotone and dominated convergence, product rule, etc. This chapter is instrumental for
the next one: martingales.

In the second chapter, we will first start by defining martingales, which are a sequence of
random variables (X,,)n>0 such that, for a time n, the conditional expected value of the next
value in the sequence, X, 1, is the present value X,,. The main goal of this chapter is to study
the almost sure convergence of martingales. For that, we will first study stopping times, to later
study convergence of martingales and supermartingales and extend it to submartingales by using
Krickerberg’s decomposition, which consists on writing a submartingale as a sum of a martingale
and a supermartingale. Finally, we will define regular martingales (convergent in L1) and give
characterization theorems.

The third chapter is about modeling financial mathematics. We will study the existence of
martingale measures in different scenarios and later state and prove the fundamental theorem
of asset pricing, which states that the absence of arbitrage is equivalent to the existence of a
probability P equivalent to a probability P* and under which the price process S is a martingale.
We will start by introducing the simple market model, where an investor has d + 1 assets with
a certain price and risk each, which change over time. This leads us to the concept of arbitrage
trading strategies, that represent riskless stategies which produce positive expected profit. Finally
we will study complete markets and option pricing, mainly focusing on european call and put
options.
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Capitulo 1

Esperanza condicional

Este primer capitulo servira de preludio para las martingalas. Veremos la herramienta funda-
mental de estas, la esperanza condicional con respecto a una o-algebra. Usaremos el teorema de
Radon-Nikodym para dar la definicion formal de esperanza condicional y comentaremos algunas
de sus propiedades.

1.1. Introduccion a la esperanza condicional

Definicién 1.1. Dado un espacio medible (€2, A), se dice que una medida p es A-finita si existe
una particion (A4y,),>1 € A de conjuntos medibles tal que p(Ay,) < oo, n > 1.

Definiciéon 1.2. Sean p y v dos medidas A-finitas en (2, A). Se dice que v es absolutamente
continua con respecto a u si para todo A € A tal que p(A) = 0, se tiene que v(A) = 0. Se denota
v .

Notacion.

1. Por comodidad, en lugar de escribir variable aleatoria, escribiremos v.a. Y en lugar de
variables aleatorias independientes idénticamente distribuidas, v.a.i.i.d.

2. Cuando tengamos una propiedad de forma casi segura, escribiremos c.s.

1.2. Definicién de esperanza condicional

En esta seccién introduciremos el concepto de esperanza condicional con respecto a una o-
algebra. A partir de ahora, entenderemos que todas v.a. X, Y, ... estan definidas en un espacio
de probabilidad (2, A, P) y son reales e integrables. Mediante B, B, Bs, ... denotamos sub-o-
algebras de A.

Denotamos asimismo mediante

o(X)={X"YB): B € B}, B tribu boreliana en R,
la minima o-algebra respecto a la cual X es una v.a.

Teorema 1.1. Sean (2, A, P) y X una v.a. Sea B C A una sub-o-algebra. Entonces existe una
variable aleatoria F(X | B) tal que

1. E(X | B) es B-medible e integrable.

2. Para todo G € B tenemos que

/GXdP = /GE(X|B)dP.
1



2 Capitulo 1. Esperanza condicional

Si existe otra funcion Z que satisface 1 y 2, entonces Z = E(X | B) c.s. A esta funcion
E(X | B) la llamaremos esperanza condicional de X respecto a B.

Demostracion. Sea v la funcién de conjunto tal que
v(G) :/XdP, G e B.
G
Sea X = mdx(0, X), X~ = —min(0, X). Tenemos que
(@) = / X*dp _/ XdP = v (G) -1 (G), GeB.
G G

Como v <« P, v~ < P, basta aplicar el teorema de Radon-Nikodym. [ |

Entenderemos E(X | B) como la media de X condicionada a la informacion que contiene la
sub-o-algebra, B.

Ejemplo 1.1. Sea B una o-algebra engendrada por una particion (A4,),>1 € A y X una v.a.
integrable. Entonces

o E(X14,)
E(X|B)=) BE(X|Au)la, E(Y|A)=q P(4n)
n=1 0 si P(Ay) =0

si P(A,) >0

Demostremos la primera igualdad. Sea A € B, entonces A = ), ; A; para algin J C
{1,2,...}. Luego

AiE(X]An)]lAndP:iZ/AE(X | An)ﬂAndP:iZE(X]An)P(AiﬂAn)

n=1:eJ n=1:eJ
fA,_ XdP
B ZE(X | Ai)P(4A;) = Z WP(AO
ieJ eJ
:Z/ XdP:/ XdP:/XdP.
ieg Y Ai Uie s Ai A

Ejemplo 1.2. Este ejemplo resulta del anterior y es para entender el significado de esperanza
condicional respecto a una o-algebra desde la intuicion.

Suponer que {2 es el espacio muestral de lanzar dos monedas. Denotamos por A = {CX,CC}
el suceso de que el primer lanzamiento sea cara. Sea B = {0, A, A°,Q}. Entendemos B como
informacién obtenida tras el primer lanzamiento. Si sale cara estaremos en el suceso A, si sale
cruz, en A°. Suponer que N es el nimero de caras tras los dos lanzamientos. Si estamos en A,
tenemos que E(N | A) = 1.5, si estamos en A¢, E(N | A¢) = 0.5.

Nuestro objetivo es encontrar el mejor estimador de N tras una informacién, en nuestro caso,
lo que salga en el primer lanzamiento. Definimos la variable aleatoria

15 siwe A
E(N|B)(w) = :

05 siwé¢ A
Definimos esta funciéon porque es un mejor estimador que E(N) = 1 ya que E((N—E(N | B))?) <
E((N —1)?). Esta E(N | B) es la funcién que ahora conocemos como esperanza condicional con
respecto a una o-algebra.
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1.3. Propiedades de la esperanza condicional

En esta seccién veremos las propiedades de la esperanza condicional, cabe destacar que mu-
chas de ellas son similares a las de la esperanza.Todos los limites, igualdades, desigualdades, etc.
se entenderan de forma casi segura a partir de ahora.

Teorema 1.2. 1. Linealidad. Sean X, Y v.a. y o, € R, entonces E((aX + YY) | B) =
aE(X | B) +BE(Y | B).

2. Monotonicidad. Si X > 0, entonces E(X | B) > 0. En particular, si X < Y, entonces
E(X |B) < E(Y|B).

3. Si X es v.a. y X es B-medible, entonces E(X | B) = X.
4. Si B ={0,Q} E(X | B) = E(X).
5. Si X es v.a., entonces |E(X | B)| < E(|X||B).
Demostracion. Veamos algunas de las demostraciones de las propiedades anteriores.

2. Sea G :={w: E(X | B)(w) < 0} € B. Tenemos que G
0>/E(X|B)dP:/XdP>O.
G G

Luego P(E(X | B) < 0) =0.
5. Usaremos linealidad
|E(X | B)| = ‘E(X+ |B) — B(X~ | B)’ < B(X*|B)+E(X™ | B)
=EXt+X |B)=E(|X]|]|B).

Teorema 1.3. Sean By C By C B y X v.a. Entonces:

1. Smoothing
E(E(X | B2) | B1) = E(E(X | B1) | B2) = E(X | B1).

2. Independencia. Sea X v.a. Si 0(X) y B son independientes, entonces E(X | B) = E(X).

Demostracion.

1. Veamos primero que E(E(X | Bg) | B1) = E(X | By). Sea G € By. Entonces E(X | By)
es Bi-medible y

/GE(E(X]BQ)\Bl)dP:/GE(XBg)dP:/GXdP:/G}E(X|Bl)dP.

Como E(X | Bi) es Bi-medible, también es Bo-medible. La otra igualdad es clara usando
1.2-3.

2. E(X) es B-medible. Sea G € B. Tenemos que

/ E(X)dP = E(X)P(G)
G

/ XdP = E(X1g) = E(X)P(G)
G

por independencia.
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|
Nota. Un caso particular y que es muy utilizado se da si By = {0, Q}. Asi,
E(E(X | By)) = E(E(X | B2) | {0,9}) = E(X).
Definicién 1.3. Diremos que una v.a. X converge en L,, y lo denotaremos como X € L, si

E(|X|P) < oc.
Diremos ademas que una sucesion de v.a. (X, )n>0 converge en L, a una v.a. X, y se denotara

L
como X,, — X, si lim E(]|X,, — X|) =0.
n—oo

Definicién 1.4. Sea X una v.a. y p € N. Definimos [ X|, = (E|X|P)"r.
Teorema 1.4.

1. Desigualdad de Jensen. Sea g : R — R convexa, ¢g(X) integrable. Entonces

9(E(X | B)) < E(9(X) | B).

2. Sea X p-integrable y suponer p > 1. Entonces

[EX B[, <IXI,, (1.1)
y la esperanza condicional es L,-continua: Si X, L—p> X, entonces
E(X, | B) 2 E(Xo | B). (1.2)

Demostracion.

1. Podemos escribir g como g(z) = sup (apz+by,), = € R para un par de sucesiones (ay,), (by) €
n

R. Para todo k € N tenemos que

sup (anX + by) > apX + by,
n

luego por monotonicidad

E(sup (anX +bp)) = E(ax X + bi),

es decir, E(sup (ap X + b,)) es una cota superior de {E(axX + by) : k € N}, de lo que se
n
sigue que E (sup (ap, X + b,) | B) > sup E(apX + by, | B). Entonces aplicando linealidad
n n

E(g(X)|B)=FE (Sgbp (anX+by) | B) > sup E(anX+by | B) = sup (anE(X | B)+b,) = g(E(X | B))

2. Notar que (1.1) se da si y solo si
E(|EX |A)) < E(IX]").

y por tanto, el resultado se sigue de la desigualdad de Jensen, escogiendo g(x) = |z|’. Para
ver que la esperanza es L,-continua (1.2), aplicando linealidad y (1.1)

|E(X0 [ A) ~ E(Xoe | A)], = [ B(X ~ Xo) | A, 11X~ Xl 0.
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Teorema 1.5. Sea (X,,)n>1 una sucesion de v.a. integrables y B C A. Entonces
1. Teorema de convergencia mondtona condicional. Si X v.a., 0 < X,, T X, entonces

E(X, |B) 1 E(X|B)

2. Lema de Fatou condicional. Si X, >Y, n>1 con Y integrable, entonces

Si X, <Y, n>1conY integrable, entonces

E (fm X, | B) > Ifm E(X,, | B).

3. Teorema de la convergencia dominada condicional. Si|X,| <Y, n > 1 con Y integrable,
entonces X,, — X implica F(X,, | B) — E(X | B).

Demostracion.

1. Por monoticidad, { E(X,, | B)} es monotona creciente y si Z = limy, 100 T E(X, | B).

Entonces Z es B-medible y para todo G € B, aplicando el teorema clasico de convergencia
monotona

/ZdP:/ lim T E(X,|B)= hm/E X, |B)= lim XdP
G G n—r+oo n—+o00

2. Sea n € N. Definimos Z,, = ’gf Xk, que es integrable y Z, 1 lim X,. Aplicando 1.2-2,
Zn n

tenemos

3. Usamos 1 y tenemos:

E(X | B) = E(lin X, | B) < lim B(X, | B)

E(X | B) = E (fm X, | B) > ? B(X, | B).

Teorema 1.6 (Regla del producto). Sean X, Y variables aleatorias tal que XY es integrable.
Si X es B-medible, entonces
E(XY |B)=XE(Y | B).

Demostracion. Suponer X = 15, J € B. Entonces para todo G € B,
/ E(1;Y | B)dP :/ 1;YdP = YdP = E(Y | B)dP = / 1,E(Y | B)dP
G GnJ GnJ G

Luego E(1;Y | B) = 1;E(Y | B). Como lo anterior se cumple para X = 1;, también se
cumple, por linealidad, para

k
X = Zci]le c; >0, G; € B.
i=1
Suponer que X, Y son no negativas. Existe una sucesion de v.a. no negativas (X, )n>0 tal que
X, T X. Aplicamos que X es B-medible y el teorema de la convergencia mondtona y tenemos

que
E(XY | B)=E(Y1lim1 X, |B) =1lim 1 E(X,Y | B) = XE(Y | B).

Si X, Y no son no-negativas, podemos escribir X = X+ - X, Y =Y*T -Y . |






Capitulo 2

Martingalas

Definicion 2.1. A una sucesion (B,,),>0 de sub-o-algebras la llamamos filtracion cuando
By C By C By C ... CB.
Podemos entender una filtracién en el sentido de que la informacién se acumula con el tiempo.

Definicién 2.2. Supongamos que tenemos {X,,,n > 0} variables aleatorias reales y {B,,,n > 0}
una filtracion. Entonces diremos que {(X,,B,), n > 0} es una martingala y la denotaremos
como (Xp, By )n>0 si

1. X,, es B,,-medible para todo n > 0.
2. E|X,| < o0, n>0.

3. Para todon > 0.
E(Xp+1 | Brn) = X,

Se llamaré submartingala o supermartingala si cambiamos el signo igual por > 6 <, res-
pectivamente.

Nota.
1. La propiedad 3 es equivalente a E(X, 1 | Bn) = Xpn, k> 1.
2. Si (X, Bp)n>0 es martingala, también lo es (X,,, BY),,>0, donde BY = o(X, ..., X;,), n > 0.
3. Definimos Ag = Xo v A, = X, — X,—1, n > 1. Notar que 3 se escribe como E(Ap,41 |
B,) =0, n>0. Notar o(Ao, ..., An) = 0(Xo, ..., Xpn).
Ejemplo 2.1.

1. Juego de apuestas. Estamos ante el juego de la ruleta del casino. En nuestro caso jugaremos
a apostar rojo/negro. En la primera tirada apostaremos 1 unidad, si fallamos duplicamos
la apuesta; si acertamos volvemos a apostar 1 unidad. Asi sucesivamente por un nimero
limitado de tiradas. Recordemos que la ruleta consta de 37 niimeros: 18 rojos, 18 negros y
el 0, verde.

Sea (Zy,)n>1 la sucesion de v.a. independientes con distribucion P(Z; = 1) = 18/37, P(Z; =
—1) = 19/37, notar que E(Z;) < 0. Sea la v.a.

an = an(Z1, ..y Zn) = 2"z~ —z,=—1},

que se corresponde con la apuesta que haremos en la tirada n + 1. Definimos la sucesién
de v.a. (Sp)n>0 que se corresponde con las ganancias:

Sp—1+an—1Z, sin>1
Sy = ]
0 sin=20
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Para la tirada n + 1 tenemos la informacién de las n tiradas anteriores. Tomamos B,, =
o(Z1, ..., Zy). Usando linealidad tenemos que
E(Sp+1 | Brn) = E(Sn + anZpy1 | Bn) = Sn + anE(Zny1 | Bn) < Sy.
Asi, (Sy, Brn)n>0 €s una supermartingala,
E(Sy) < E(Sp-1) < ... < E(Sp).
En definitiva, estamos jugando a un juego perdedor.

. Proceso de ramificacion de Galton-Watson. Sea (X-(n))mzl una sucesion de v.a.ii.d. que

1
toman valores en N donde
PX=k)=pg, k=0,1,2,..

y media p. Vemos Xi(n) como el ntmero de descendientes que tiene el individuo ¢ en la
generacién n — 1. Por ejemplo:

Definimos ahora la sucesion (Zy,),>0 dada por
a) ZO = 1,
b) Zns1 =XV 4+ XY,

Sea BY = o(Zy,...,Z,), n > 0. Entonces usando linealidad y que para todo i > 1,
E(Xi(nﬂ) | Z,) = p, tenemos que

E(Zni1 | BY) = E(Zpyi1 | 0(Zo, ..., Z0))
= E(Zns1 | Zoy ooy Zn) = E(Znia | Zn)

Z’VL
= B(X{" 4 L+ x0TV 2,) =Y B(X"Y | Z,) = pZa.
=1

Z
Y se sigue de lo anterior que (—Z, BY),>0 es una martingala y su esperanza es 1.
" >
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3. Sea (X,)n>0 una sucesion de v.a.i.i.d., entonces (S, BY),>0 con S, = Xg + ... + X, es
una martingala si F(X,,) = 0, n > 0. Se tiene una submartingala o una supermartingala
si B(Xy,) >0, n>006 E(X,) <0, n> 0, respectivamente.

Por linealidad:

E(Sni1 | BY) = E(Xo+..4 X1 | BY) = Xo+.. 4 X+ E(Xnq1 | BY) = Xo+..4X,, = S,

En el caso de submartingala o supermartingala basta con cambiar la peniltima igualdad
por > o <, respectivamente.

2.1. Tiempos de parada

Definicion 2.3. Una aplicacion T : Q — N = N U oo se llama tiempo de parada si
{T=n}eB,, n=1,2,..

Podemos entender la funciéon T como la regla que nos indica cuando parar y B, es la infor-
macién acumulada para el tiempo n. Definimos

Boo = 0(Bp,n € N),

luego B, es la menor o-algebra conteniendo todos B, n € N.

Daremos un ejemplo para entender de forma intuitiva este concepto:

Ejemplo 2.2. De nuevo podemos poner como ejemplo las ganancias en un juego al que dejaremos
de jugar cuando en una de las tiradas consigamos més de a unidades. Sea (X),>1 la sucesion
de v.a.i.i.d. de las ganancias. Sea

o0
inf{n >1| X, >a} en U {X,>a}
T = no:ol
00 en (N {X,<a}

n=1
Tomando la filtracion B,, = o(X7q, ..., X;,) tenemos que 7" es un tiempo de parada ya que
{IT'=n}={X1<a,...Xp-1<a,X, >a} €B,, neN.

Definicién 2.4. Si T es un tiempo de parada, definimos la o-dlgebra de eventos anteriores a T
como
Br={B € By : paratodon € N{T =n}NB e B,}.

Nota. By son los eventos que tienen la propiedad de que al anadir informacién cuando ocurre
T, coloca la interseccién en la o-algebra adecuada.

Nota. Sean T y S tiempos de parada
1. SiT =5, entonces By = Bg.
2. Si A € By, entonces AN{T = oo} € B
3. 515 < T, entonces Bg C Brp.

Definicion 2.5. Sea (X, By,)n>0 un proceso estocéstico y T un tiempo de parada. Definimos
la v.a. parada en T como

Xr =Y Xnlir_n.
neN
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2.2. Supermartingalas positivas

En esta seccion trabajaremos con supermartingalas (X, By, )n>0 tal que X,, > 0,X,, € B,, y
E(Xp41 | Bn) < X,

Proposicion 2.1. Sean (X, By)n>0 ¥ (Yn, Bn)n>0 dos supermartingalas positivas y 7' un tiempo
de parada tal que en {T" < oo}, tenemos X7 > Y, Definimos

X,, sin<T
Ly = ] .
Y, sin>T
Entonces (Z,, By )n>0 €s una supermartingala positiva.
Demostracion. Lo primero notar que Z, € B,. Si n < T entonces
E(Znt1 | By) = E(Xn411lgnp1<ry + Yot1 L7y | Ba)

< E(Xni1lpnpicry + Xonv1linpi=ry + Yot11>ry | Bn)
< Xn]l{n<T} + Ynﬂ{nZT} =Zy.

Definiciéon 2.6. Dado {X,,}. Sean a,b € R, a < b definimos

To =0

T) =inf{n >0: X, <a}
Ty =inf{n > T, : X,, > b}
T3 =inf{n > Ty : X, <a}

Definimos el nimero de pasos crecientes a través de la franja [a,b] como
Nyp(w) = sup{p : Thp(w) < co}.

Luego,

{w: h;m X, (w) existe} = m{Na,b(W) < oo}
a<d

Es decir, lim,, ;o X, existe si N, < oo. Nos interesa saber cudndo N, < 00, asi que veamos
la desigualdad de Dubins.

Proposicion 2.2 (Desigualdad de Dubins). Sea (X, B,),>0 una supermartingala positiva.
Suponer 0 < a < b. Entonces

a\* (X
1. PWNgp > k| Bg) < (b) min <, 1> , k=1,2,...
a

2. Na,b < 00.
» . . 1) _ 2  Xn
Demostracion. Definimos las supermartingalas Y, =1, Y~ = —.
a
Notar que en {17 < oo},
v =1>v.
Luego
1, sin <
Z(l) — X
" ZRosin>T)
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es una supermartingala.
Definimos

(1) :
Zflz): fn , sin<T;
a

, sin>1Th

b
que es supermartingala ya que ZS) y — lo son, y en Tb
a

g0 _ X b
" a ~a
De igual manera,
72, sin<Ty
Zv(v,g) = b\ X .
(E) <n, o sinz>Ts
es una supermartingala. Continuando asi sucesivamente vemos que
(
1, n <71y
Xy /a, Ti <n<Th
b/a, T, <n< T3
Xn
7, = 27> T3<n<T}
' b k—1
(g) 2, Togp—1 <n <Ty
b k
(E) ) T2k <n
también es una supermartingala.
Notar que
1, T >0
Zo=1 X, = min{l, —}
) Tl =

Ademas

Por (2.1), (2.2) y (2.3)
b

mln{l, 7} > E( <a> ]]-[TLZT%]) = (a) P(TL > Tgk ‘ Bo)

Es decir,
a K X()
a

Cuando n — oo,

k
PNgp >k | By) = P(Thy, < 00 | By) < (Z) min{1, 20},
a

De aqui concluimos que

k
X
PNap =00 | Bp) < lim (a> min{1, =2} =0,
’ k—oo \ b a

luego Ngp < 00 c.s.

11

(2.1)

(2.2)

(2.3)
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Teorema 2.1 (Teorema de convergencia). Si {(X,,By),n € N} es una supermartingala positiva,
entonces

lim X, =: X existe casi seguro
n—oo

E(Xoo | Bn) < Xn, n €N
luego {(Xn,Br),n € N} es una supermartingala positiva.

Demostracion. La convergencia se sigue de la proposiciéon anterior. Y aplicando el lema de Fatou
condicional tenemos que para todo n € N fijo:

E(Xx | Bn) = (hm Xntm | Bn) <lim E(Xyim | Bn) < Xp.

Teorema 2.2. Sea p > 1y X € L, no negativa. Entonces (E(X | B;))n>1 es una martingala
positiva que converge c.s. y en L, a la v.a. E(X | Bo) =: Xoo. Reciprocamente, si (X, Bp)n>1
es una martingala positiva en L, que converge en L, a X, entonces X, = F(X | By), n > 1.

Demostracion. El Teorema 2.1 asegura la existencia de un limite casi seguro de E(X | B,)
denotado X, que es una v.a. B,,-medible. Distingamos dos casos:

-Si X <acs., a< oo. Entonces E(X | B,,) < ay se tiene de acuerdo con el teorema de la
convergencia dominada condicional que si A € B, y n > m,

n—oo

/E(X\B [ XdP s | XodP
A

Por tanto:

/ XdP = / XoodP, para todo A € | By,
A A .

Sea A = {A € By : [, XdP = [, XocdP}. Entonces A es una A-clase que contiene a la
n-clase |J,,, Bm, por lo que A = B, segiin el teorema 7-A de Dynkin (Anezo). Se sigue que:
E(X|Bx) = Xo-

Ademas, la convergencia en L, de E(X | B,) a E(X | By) se sigue por convergencia
dominada.

- Sea X > 0 cualquiera. Veamos que E(X | B,) converge a E(X | Bs) en L,. Por la
desigualdad de Jensen:

|B(Z | B)|, = (E(|E(Z | B)")P < (BE(XP | B)Y =| 2],
Por facilitar la lectura escribamos min{a, b} = a A b. Con la descomposicion
X=XNa+ (X —a)}, a>0,
podemos escribir, tras aplicar desigualdad triangular,
|B(X | Bn) — E(X | Boo)||, S[|E(X Aa|Bn) = BE(X Aa| Bo)||, +2[[(X —a)+]],-

Hacemos tender n — oo y aplicando lo precedente y luego a 1 oo se sigue el resultado.
Reciprocamente, si (X,)n>1 es una martingala positiva en L, que converge en L, a X,

entonces para A € B,,:
/ X,dP = / Xy pdP 2225 / XoodP,
A

lo que prueba que X,, = E(X | By) [ |
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Lema 2.1. Si T es un tiempo de parada y X integrable, entonces

E(X |Br) =) E(X | Bn)lir—n).
neN
Demostracion. Ellado derecho de la igualdad es Br-medible y para todo A € By, como AN{T =
n} € By,

/ZE(X\Bn)ﬂ{T_n}dP:Z/E(X\Bn)n{T_n}dP:Z/ X:/X:/E(X\BT).
A e A e AN{T=n} A A

neN
[ ]

Teorema 2.3. Suponer (X, B,),>0 es una supermartingala positiva y que X, — X c.s. Sean
T, S dos tiempos de parada con T' < S. Entonces

Xr > E(Xs | Br)
Nota. En el caso de T'= 0, tenemos S > 0y X > E(Xg | By), E(Xo) > E(Xg).

Demostracion. Sea la supermartingala (Xgan)n>1. Por el teorema de convergencia (2.1) tenemos
que Xgnp converge c.s. a Xg, que es L1,y E(Xg | Byn) < Xsan, n > 1.
Por el lema anterior,

E(Xs | Br) = Z E(Xs | Bn)Lir=n},
neN
luego
E(Xs|Br) =Y E(Xs|Bw)lir_ny < > Xsanl{r_ny = Xsar = Xr.
neN neN
|

Si (Xp, Bn)n>0 es una martingala positiva, sabemos que es casi seguro convergente. Para que
{(Xn,By),n € N} sea una martingala positiva necesitamos que

L X, 5 Xoo v 2. BE(Xoo | By) = Xon.

Es cierto que X,, =2 X, y que para todo m > n, E(X,, | B,) = X,,, pero con esto no es
suficiente para decir que E(Xo | B,,) = X,,. Necesitamos méas condiciones. Veamos un ejemplo
en el que no se cumple 2.

Consideramos el ejemplo de ramificacion de Galton-Watson (2.1-2). Tenemos el proceso
{Z,,n > 0} (recordemos que Z, representa el nimero de descendientes en la generacion n — 1)
con Zy = 1, E(Z1) = p, que es la media de descendientes de cada individuo. Vimos que
(Zn/p", BY),>0 es una martingala no negativa, luego el limite c.s. existe: Z,/u" <25 Z. Sin
embargo si u < 1, tenemos que el proceso de ramificacion va a acabar (extincion), luego Z =0y
no se cumple que F(Z | B,) = Z,,/u"™. Esto nos lleva a un nuevo concepto: martingalas cerradas.

Definicion 2.7 (Martingala cerrada). Una martingala (X,,, B, ),>0 se dice cerrada si existe una
v.a. Xoo Boo-medible e integrable tal que para todo n € N,

X, = E(Xx | Bn).
Asi, {(Xn, Bn),n € N} es una martingala. Xo, se llama cierre.

Nota. El cierre de una martingala, si existe, es tnico. Sin embargo el cierre de una sub(super)
martingala no es necesariamente tinico. En efecto, si X, Y son v.a. B,,-medibles e integrables
tal que E(X | B,) = E(Y | By), n > 1. Entonces E(X | Bs) = E(Y | Boo), igual que en la
demostracion del Teorema 2.2, luego X =Y c.s.
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2.3. Convergencia de martingalas y submartingalas.

En esta seccién veremos la descomposiciéon de Krickeberg, que se usa para extender propie-
dades de la convergencia de supermartingalas a martingalas y submartingalas.

La descomposicion de Krickeberg consiste en escribir una submartingala como la diferencia
entre una martingala y una supermartingala positivas.

Proposicion 2.3. Sea (X, B,)n>0 una martingala (submartingala) y suponer que ¢ es una
funcion convexa (y no decreciente) tal que ¢(X,,) es integrable para todo n > 0. Entonces
(¢(Xn), Bn)n>0 €s una submartingala.

Demostracion. Sean < my ¢ convexa. Entonces por la definicién de martingala y la desigualdad
de Jensen:

El caso de submartingala es analogo. |

Teorema 2.4 (Descomposicion de Krickeberg). Sea (X, By, )n>0 una submartingala tal que

sup E(X,}) < o0,
n

entonces existe una martingala positiva {(M,,B,),n > 0} y una supermartingala positiva
{(Yn,Br),n > 0} tal que
X, =M, -Y,.

Demostracion. Si X, es una martingala, por la Proposicion 2.3 X, también es una submartin-
gala. Ademas, si p > n, por smoothing

E(X;;rl ‘ Bn) = E(E(X;+1 | Bp) | 371) > E(X;r | Bn)?

luego {E(X;,r | Bn),p > n} es mondtona no decreciente en p. La monotonicidad implica que el

siguiente limite existe:
lim 1 E(X;r | Bp) =: My,
pP—o0

Veamos que {(M,, B,),n > 0} es una martingala positiva.
1. M, € B, y M, > 0.

2. Como sup E(X,) < 0o, tenemos que E(M,) < oo.
p=>0

3. Por ultimo, aplicando el T.C.M. condicional y smoothing tenemos que
E(Mn-i-l ’ (Bn) = E( lim T E(X;r ’ (Bn-i-l) ‘ Bn) = lim T E(E(X; ‘ Bn-i—l) | Bn)
P—00 p—0

— 11 + —
_plggo T E(X, | Bp) = Mp.

Definimos Y,, = M,, — X,,. Veamos que {Y,,} es una supermartingala positiva.
1. Y, € B,.

2. Y, > 0yaque My, =limy o T E(X, | Bn) > E(X,} | By) = X,;} > X

3. Como E(M,+t1 | Bn) =M,y E(Xnt1 | Bn) > Xy,

E(Yn—l—l ‘ Bn) = E(Mn+1 - Xn+1 ’ Bn) < Mn - Xn = Yn-
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Este teorema nos conduce al teorema de convergencia de submartingalas de Doob.

Teorema 2.5 (Convergencia de submartingalas). Sea (X, By, ),>0 una (sub)martingala satisfa-

ciendo sup E(X;F) < oo, entonces existe una v.a. integrable X, tal que X,, =2 X .
neN

Demostracion. Por la descomposicion de Krickeberg tenemos que X,, = M,, — Y,,, donde M,, e
Y,, son son una martingala positiva y una supermartingala positiva respectivamente. Aplicando
el teorema de convergencia (2.1) tenemos que

My =25 Mo, Yn =25 Yoo

E(Ms | Bn) < My, E(Yo|By) < Y.

Luego
B(Mwx) < B(M,), E(Ys) < E(Yy)

y M,, Y, son integrables. Luego M, Y, < co c.s.

Asi, si denotamos X, = My — Yoo, que existe casi seguro por lo anterior, tenemos que
C.S.
Xn = Xoo- |

2.4. Regularidad de martingalas y submartingalas

Definicion 2.8. Una martingala (X,,, By,)n>0 es regular si converge en Ly, es decir, si existe una
v.a. X tal que lim E(|X,, — X|) =0.
n—oo

Definicién 2.9. Una martingala (X, By)n>0 esta acotada en Ly si sup E(|X,[P) < co.
n

Antes de caracterizar las martingalas regulares veremos un lema que nos ayuda a estudiar la
convergencia en L.

Definicion 2.10. Una sucesion de v.a. (X,,),>0 se dice uniformemente integrable si
Jm SB}’E( | Xnl Lyx,|>a)) = 0.

Lema 2.2. Sea X € L; una v.a. definida en (€2, B, P). Entonces la familia de v.a. (E(X | B))sca
es uniformemente integrable.

Demostracion. Veamos que

sup/ |E(X | B)‘dPiO, cuando a T oo.
BCB J{|E(X|B)|>a}

Se tiene:

/ |E(X | B)|dP g/ E(|X| yB)dP:/ |X|dP
{BE(X|B)|>a} {E(X]||B)>a} {|B(X|B)|>a}

:/ |X|dP+/ 1 X|dP
(B(X|B)[>abn{ x| >0} {B(X[B)|>a}n{ x| <b)

< bP(E(|X]| | B) Za)+/ 1X|dP, b> 0.
1X|>b)

Como P(E(|X||B) > a) < LE|X| (desigualdad de Markov) (Anezo), tenemos que

/ |E(X | B)|dP < éE|X| +/ | X|dP.
{| B(X|B)|>a} a {x1>b}

Tomamos b = y/a y hacemos a T co. [ |
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Teorema 2.6. Sea (X, By,),>0 una martingala. Entonces son equivalentes:
1. (X,) es regular.

2. sup E(|X,|) < 0o y existe una v.a. Xo tal que X,, <% X que verifica
n
Xn=FE(Xx | By), paratodon e N.

3. (X,) es una martingala cerrada.
4. (X,) es uniformemente integrable.

Demostracion.
1 = 2.85i (X,) converge en Ly, lim,_, E(|X,]|) existe, luego {E(X,,|)} esta acotada en
Ly, es decir, sup,, F(|X,|) < co. De acuerdo con el teorema de convergencia de submartingalas

. ’ , Ly ..
2.5, existe una v.a. Xy = lim,, X,, c.s. Ademas X,, — X . Puesto que la esperanza condicional
mantiene la convergencia en L, tenemos que si p — 0o

X, = E(X, | Bp) &5 E(Xoo | Bn).

Luego X,, = E(X« | By,) para todo n € N.

2 — 3. Basta con tomar la v.a. X, como cierre.

3 = 4. Usamos el lema anterior 2.2.

4 = 1. Tenemos integrabilidad uniforme, luego (X,,) esta acotada en L; y, por el teorema
de convergencia de martingalas 2.5, converge casi seguro a una v.a. X. Asi, por tener convergencia

casi segura e integrabilidad uniforme, (X)) converge en L,,.
|

Veamos una caracterizacion de regularidad.

Corolario 2.1. Una martingala (X,,) es regular si y solo si
1. X7 € Ly, para todo tiempo de parada T'.
2. E(Xr | Bs) = Xg, para todo tiempo de parada S < T.

Demostracion.

<= ) 1y 2 implican que la martingala es cerrada (tomando T'=00 y S < n).

= ) Puesto que la martingala es cerrada, se tiene que F(Xo | Br) = Xp, T tiempo de
parada. Ello implica que X7 € L;. Por otra parte, aplicando smoothing:

E(X7 | Bs) = E(E(Xs | Br) | Bs) = E(Xoo | Bs) = Xs.
|

Teorema 2.7. Sea p > 1. Toda martingala X,, acotada en L, es regular. Ademas converge en
L, a su limite c.s. X.

Demostracion. Veamos que es uniformemente integrable para poder aplicar el Teorema 2.6.
ap—l/ 1 Xn| < E(|1X0lP), a>0, p>1
{IXn|>a}

implica que

cP
sup/ | Xn| < ——, donde C' = sup|| X, ||, < o0
{Xn|>a) ar n

n
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y por tanto X, es uniformemente integrable.
Por el Teorema 2.6, podemos escribir F(X | Br) = Xy, Xoo = lim, X, c.s.
| Xn|? — | Xoo|? c.s. Por el lema de Fatou, | X|? € Ly. Gracias a la desigualdad de Jensen

B(|Xool’ | Bn) 2 |E(XE, | Bo)|" =X
Aplicando el Lema 2.2, (|X,|”) es uniformemente integrable. Por ello y por ser Ly, tenemos
que X, i> Xeo- |
Teorema 2.8. Sea (X,,, By)n>0 una submartingala. Entonces son equivalentes:
1. (X;F) es regular.

2. sup E(X;7) < 0o y existe una v.a. X, tal que X,, =2 X, que verifica
n
X, < E(Xy | Brn), paratodon € N.

3. (X,) es una submartingala cerrada.
4. (X,I) es uniformemente integrable.

Demostracion.

1 = 2. La condicion implica que sup,, E(X;) < oo y por tanto existe lim, X,, = X € L.
Asimismo: lim, X;F = X1 € L.

Consideramos la descomposicion de Krickeberg X,, = M,, —Y),. Recordemos que M,, = lim,, 1
E(X,S | B,). Por tanto M,, = E(X, | By).

Por otra parte: sean X, Yoo v Mo son los limites de X,, Y, v M,, respectivamente.
E(M,) = sup,>,, E(X,5), luego

E(M, — X;) = E(M,) - E(X;") 0.
Aplicando el lema de Fatou, F(My, — X%) = 0, entonces My, = X1 . Asi
Yoo = Moo — Xoo = XE — Xoo = X2
Ademés E(Ys | Bn) <Y,. Por tanto:
Xn =M, Y, <E(XL|B,) —E(XL|Bn) =FXs|Bn).

2 = 3. Basta con tomar X,, como cierre.
3=4.Si X,, > (X | Bn), entonces X,* < E(X% | B,), n>1. Asi, E(sup,, X,") < oo.
4 = 1. Igual que en el Teorema 2.6 |

Corolario 2.2. Una submartingala (X,,) es regular si y solo si
1. Xp € L4, para todo tiempo de parada T
2. E(Xr | Bs) = Xg, para todo tiempo de parada S < T.

Demostracion.

<) Trivial.

— ) Sean S, T tiempos de parada con S < T. Sea X,, = M,,—Y,, n > 1 la descomposicion
de Krickeberg. Entonces M, es regular (en la demostracion del Teorema 2.8 escribimos M,, =
E(X% | By), n>1). Por tanto:

E|Xr7| < E|Mrp|+ E|Y7| < .
E(X7|Bs)=EMr | Bs)— E(Yr|Bg) > Mg —Ysg = Xg.
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Capitulo 3

Aplicaciones en matematica financiera

3.1. Modelo simple de mercado

Veamos a continuacion qué ingredientes requiere el modelo de mercado. Tenemos un espacio
de probabilidad (€2, B, P) donde 2 es finito y B el conjunto de partes de Q, B = P(£2). Asumimos
que P({w}) > 0, para todo w € Q. Esto se corresponde con la idea de que los inversores coinciden
en los posibles estados w pero no en la probabilidad que tienen.

Hay un tiempo finito 0,1, ..., N, donde N es el tiempo terminal para la actividad econémica;
y una familia de o-algebras By C By C ...By = B. By = {0, Q2}. Entendemos una o-algebra B,
como la informacién que tenemos para el tiempo n.

Los inversores comercian en d + 1 activos (d > 1) y el precio del activo i en el tiempo n

es Sﬁl) para n = 0,1,..., N. Los activos 1,...,d tienen un riesgo ya que cambian su precio. El
activo 0 lo consideramos como una cuenta de ahorros o como un bono cuyo precio aumenta

determiniticamente, donde el valor no varia a lo largo del tiempo. Lo llamaremos activo libre de

riesgo. Asumimos como normalizacion Séo) = 1. Por ejemplo un modelo de mercado de {57(10), 0<

n < N}, si tenemos un interés r constante, es S = (14 r)™. Asumimos que {SS), 0<n<N}
es no negativo y tal que 0 < SS) € B, parai =0, ...,d. Asumir SS)) >0, n=0,..,N. Escribimos
{Sn = (S, 80, ...,8%), 0 <n < N}

s M n

para el valor del proceso de precios de mercado en R4*1,
Como la principal motivacion es obtener beneficios, nos interesa saber la comparaciéon de
nuestras inversiones con el activo libre de riesgo. Podemos aplicar el factor de descuento (3, =

1/57(10) y obtener el proceso de precios con factor de descuento
{8, =5,/5S9, 0<n N},

que puede ser visto como el precio original del proceso en unidades del precio actual del activo
libre de riesgo.
El cambio de precios de un periodo a otro viene dado por

dy=S5p,d,=5,—S,-1,n=1,..,.N
y el cambio en el proceso de precios con factor de descuento es

dy=Sy,d,=85,-—8,-1,n=1,...N
Definicién 3.1. Se llama estrategia de compraventa a un proceso

{#, = (&, 6, ...0{), 0<n < N},

que es previsible, esto es que qS,(f) es B, _1-medible para cada i =0,...,d, n=1,...,N.

19
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Por ser {2 finito, tenemos que cada v.a. | qﬁq(f) |,0<n <N, 0<i<desta acotada. Podemos
entender ¢,, como el niimero de acciones de cada activo en la cartera del inversor entre los tiempos
n — 1 y n con informacion disponible hasta el tiempo n — 1. En el tiempo n, cuando los nuevos
precios S, son anunciados, el inversor cambia la cartera de acciones por el vector ¢,, ;1. Cuando
esos precios S, se anuncian, el valor de la cartera es

d
Vo) = (¢, Sn) = ¢ Sn =D _ oS

Asimismo, el valor de la cartera con el factor de descuento es

Vn((:b) - ﬁnvn((z)) = (¢n7§n)

Resumiendo, empezamos con el valor Vy(¢) = (¢, So). Como ahora Sy es conocido podemos
reequilibrar la cartera con ¢;. El valor actual (¢, Sp) permanece hasta que los precios S7 se
anuncian. Cundo se anuncian, el valor de la cartera sera Vi(¢) = (¢, S1). Asi sucesivamente.

Definicion 3.2. Una estrategia de compraventa ¢ se dice que es autofinanciadora si

(@1, Sn) = (Pp41,50), 0<n <N -1

Esta igualdad indica que los cambios en la cartera del inversor se hacen sin introducir capital
ni retirar de los fondos que hay en la cartera.

Lema 3.1. Si ¢ es una estrategia de compraventa, son equivalentes:
1. ¢ es autofinanciadora,
2. Paral<n<N

j=1

3. Parai<n <N

n

V(@) P)+ > (0).d,

7=1
Demostracion. ¢ es autofinanciadora si y solo si para todo j =0,...,N —1
(@j+1,dj+1) = (@11, Sj+1) — (6, S5) = Vjr1(p) — Vj(¢),
si y solo si

Va(@) = Vo(d) + Y (Vi(9) = Vi-1(8)) = Vo(9) + > (¢, d;
j=1 j=1

Anélogamente, multiplicando por el factor de descuento 5, > 0: ¢ es autofinanciadora si y solo
si

<¢n7§n) == (¢n+1,§n), n = O, ,N — 1.

si y solo si -
(¢n+17 n+1) Vg1 =V (¢)), n=0,.,N—1
si y solo si
Vald) =Vo(@) + D (Vi(#) = V—1(#) = Vo(d) + > _(¢;.d;)
Jj=1 j=1

Observemos finalmente que V(@) = Vo(¢), ya que By = 1. [ ]
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Nota. 1. El Lema 3.1-2 muestra que para estrategias autofinanciadoras, los cambios de valor
de la cartera se deben tinicamente a los cambios de precios.

2. Puesto que 3? =0, g =1,..., N, podemos escribir el Lema 3.1-3 como:

n d )
V() = Vo(¢) + Y. > oW, (3.1)

j=1i=1
probando que el valor de la cartera, teniendo en cuenta el factor de descuento, solo depende

de Vo(¢p) y de {(;S?, i=1,...,d, j=1,...,n}, siempre que ¢ sea autofinanciadora.

Lema 3.2. Sea {(¢.,...,¢%), 1 < n < N} un proceso previsible y V5 una v.a. no negativa y
Bo-medible (una constante). Entonces existe un tinico proceso previsible {¢2, 0 < n < N} tal
que ¢={¢,, = (¢, 0L, ....,¢2), 0 < n < N} es una estrategia autofinanciadora con valor inicial
V5.

Demostracion. Supongamos que (¢, < n < N) es una estrategia autofinanciadora con valor
inicial V4. Entonces es valida (3.1) con Vj(¢) reemplazado por Vj. Por otra parte

d
Vale) = (6, 50) = 62+ 3 605, n=0,...,N.
=1

Igualando esta expresion con (3.1) y despejando ¢” se tiene para n = 1,..., N que

d d

n d N d Pp— nol i)t el
o =Vo+ 33T S 005) = 1o+ 3 (36T, - 3 6B, ),
=1

j=1 i=1 i=1 j=1 i=1

que es B, _1-medible.
Esto prueba:

1. Que ¢?, estd determinada si la estrategia es autofinanciadora.

2. Como elegir ¢¥ a partir de Vo y de {(¢L,...,¢%), 1 < n < N} para que la estrategia sea
autofinanciadora.

3.2. Estrategias admisibles y arbitraje

Notar que con las definiciones anteriores nada requiere que ¢ > 0. Si gbq(f) < 0 para algtin
1=0,1,...,d, entonces estamos en corto |¢>$«f)\ acciones del activo. Esto se puede entender como

retirar \¢$Z)\ acciones para producir capital invirtiendo en otros activos.

Definiciéon 3.3. Una estrategia ¢ se llama admisible si es autofinanciadora y ademas V,(¢) >
0, n=0,...,N.

Una estrategia admisible se llama estrategia de arbitraje si Vo(¢p) = 0y Vn(¢)(wp) > 0 para
algin wy € Q (asi, E(Vy(wp)) > 0).

Nota. Estas estrategias de arbitraje, si existen, permiten al inversor un margen para pagar
préstamos de acciones. Se pide que el inversor no esté nunca endeudado. Los mercados que
contienen estrategias de arbitraje no son compatibles con el equilibrio econémico.

Definicién 3.4. Un mercado se dice viable si no contiene estrategias de arbitraje.



22 Capitulo 3. Aplicaciones en matemaética financiera

Ahora veremos la relacién entre lo visto en la secciéon anterior y las martingalas.
Dadas dos probabilidades P*, P, escribiremos P = P* si P < P* y P* <« P, lo que implica
que P y P* tienen los mismos conjuntos nulos.

Teorema 3.1. Un mercado es viable si y solo si existe P* = P tal que (gn, Bp)o<n<N €S una

P*-martingala, esto es, (?S), B )o<n<n €s una P*-martingala para cada i=0,...,d.
Una tal P*-martingala se llama “equivalent martingale measure” o “risk neutral measure”.

Demostracion.
<= ) Supongamos que (S,,Bn)o<n<ny es una P*-martingala para alguna probabilidad
P* = P. Entonces
E*(dj+1|B;)=0,7=0,..,N -1

y en virtud del Lema 3.1-3, (V,,(¢), 0 <n < N) es una P*-martingala. Por tanto
E*(V,.(¢)) = E*(Vo(9)), 0 <n < N,para todo ¢ autofinanciadora.

Si ¢ es una estrategia de arbitraje se sigue de lo anterior que V n(¢) = Vy(¢p) = 0 P*-css.
y por tanto P-c.s. Puesto que P({w}) > 0, para todo w € €, ello implica que Vx(¢) = 0, en
continuacién con que ¢ sea estrategia de arbitraje.

Para la afirmacién reciproca, necesitamos el siguiente lema.

Lema 3.3. Suponer que existe una estrategia autofinanciadora ¢ tal que Vp(¢p) =0, Vy(¢p) >0
y E(Vn(¢)) > 0. Entonces existe una estrategia de arbitraje y el mercado no es viable.

Demostracion. Si Vy,(¢p) > 0, n = 0,..., N, entonces ¢ es admisible y por tanto una estrategia
de arbitraje. En caso contrario, existe

no = sup{k : P(Vk(¢p) <0} con 1 <ny < N —1.

Es decir:
(a) P(Vno(¢)) <0y (b) Va(¢) 20, nop <n < N.

Denotamos mediante ¢y = (1,0, ...,0) € R¥! y construimos ¥ = (¥,,, 0 < n < N) mediante:

0, sik <ng

VTLO (¢)

o, = |
Livig (@) <0y (P — —gg—®0), stk >no
no

Por construccion, ¥ es un proceso previsible. Por otra parte:
(i) ¥ es autofinanciadora: (¥, Si) = (¥iy1,Sk), k=0,...., N — 1.
Si k4 1 < ng, la conclusién es obvia. Si k > ng, entonces:

Va
(k, Sk) = Ly, (4)<0} ((¢k,5k) SO<¢( O,Sk)>

v
= Ly, (¢)<0} ((¢k+1»sk) So(d)( o,Sk)> = (Uhy1, k)

Finalmente, si k = ng:

Vo (@
(no+1,Sne) = Liv,,, (¢)<0} <(¢n0+17 Sno) — SOO( (eo, Sk))
no

= ]'{Vno(¢)<0}(vn0 (¢) - Vn0(¢)) =0= (‘I’noa Sno)
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(ii) ¥ es admisible. Por construccion Vi (¥) =0, k < ng. Si k > ng:

Vo,
Vie(¥) = Ly, (4)<0} (Vk(fb) - So(d)(eo, Sk)) >0

debido a (b). [ |

Continuacion demostracion Teorema 3.1.
= ) Supongamos que el mercado es viable. Definimos los conjuntos de v.a.:

'={X:Q—-R: X>0, EX >0}, V={Vn(¢): Wo(¢) =0, ¢ autofinanciadora}.

Por el Lema 3.3, TNV = (.
Consideramos T' y 'V como subconjuntos del espacio euclideo R*(= {f: f:R — Q}).
Es facil ver que V es un espacio vectorial. Definimos

K={Xel: ) X(w) =1}

we

Observamos que X es cerrado en R?, compacto y convexo. Ademas VN X = (.
Utilizando el teorema del hiperplano separador: Existe una funcion lineal X : R® — R tal
que
() AM(X)>0, XeX, (1i) AM(X)=0, X eV

Representemos A como el vector A = (A(X), w € Q) y reescribimos (i) y (i) como

ZA )>0, X eX
we

(i") Z AMw)Vn(¢)(w) =0, para todo ¢ autofinanciadora con Vy(¢p) = 0.
weN

Veamos que w > 0, para todo w € Q. En efecto, si (wp) = 0 para algin wy € €2, entonces,
puesto que X = 1,1 € X se tendria

S AW)X (@) = M) =0,

wel
lo que contradice ().
Definimos
A
Prw) = @)
PIRICH
w'eN
Puesto que P*(w) > 0 para todo w € €, entonces P* = P. Sea ¢ autofinanciadora con

Vo(¢) = 0. En virtud de (i7'), E*(Vy(¢)) = 0, luego E*(V y(¢)) = 0. De donde, por el Lema

3.1-3:
N

(¢, d;)) = (3.2)

J=1

Fijemos 1 < i < d y supongamos que ( S), < n < N) es un proceso previsible arbitrario.
Utilizando el Lema 3.2 con Vy = 0, existe un proceso previsible (¢2, 0 < n < N) tal que

¢ ={b,=(9°,0,..,0,89 0,..,0),<n< N}
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es una estrategia autofinanciadora con valor inicial Vo = 0. Y por (3.2) se tiene:

N N
* 7* 5 * i)=(%)
0= | X654 | =B | ¢4,
j=1 j=1
Esto garantiza que (?ﬁf), Bn)o<n<n €s una P*-martingala. [ |

Nota. Las “equivalent martingale measures” dan a los inversores una interpretacién matematica
del riesgo financiero de un activo, que ha de ser tomado en cuenta para estimar el precio del
mismo.

Definicion 3.5. Un proceso adaptado (D, B,)n>0 se dice que es un proceso de diferencias de
martingala si:

1. DnELl, n > 0.
2. E(Dpy1|Bn)=0,n=0,1,...
Nota.

1. Notar que si (Dy,, By, )n>0 €s un proceso de diferencias de martingala entonces (X, By)n > 0
con X, =37 ( D; es una martingala. Reciprocamente, si (X, B,)n > 0 es una martin-
gala, entonces el proceso (D, By)n>0 con Dy = Xog — EXy, Dy, = X5, — Xp—1, n > 1 es
un proceso de diferencias de martingala.

2. Si (Xpn, Bn)n>o con X,, = Z?:o Djy EDJQ- < 00, j >0, entonces (D;);>0 son ortogonales,
esto es, E(D;D;) =0, i # j. En efecto, si j > i, se tiene:

E(D;D;) = E(E(D;D; | B;)) = E(D;E(Dj | B;)) = 0.

En consecuencia: E(X72) = Y% E(D3).

Proposicién 3.1. Sea (D;,),>0 un proceso de diferencias de martingala y (Uy,)n>0 con Uy cons-
tante un proceso previsible y acotado. Entonces (U,Dy)n>0 es un proceso de diferencias de
martingala y en consecuencia X, = Z?:o U;D; es un martingala. A esta martingala se le llama
martingala transformada.

Demostracion.

E(Un+1Dn+l | Bn) = Un+1E(Dn+l | Bn) = 07 n = 07 17

Veamos un par de ejemplos en los que usamos las martingalas transformadas.

Ejemplo 3.1 (Modelo de juego). Entendamos D,, como la ganancia en la partida n en un juego
equitativo. U, es la apuesta en la partida n basada en la informacién hasta el instante n — 1,
Bp—1 = o(Do, ..., Dp—1). Entonces X,, = Z?:o U;D; representa la ganancia acumulada en el
tiempo n.

Un ejemplo es

P(D,=1)=P(D, =—-1)=1/2
Un =bn-1(D1,.... Dne1) =2""yp,— _p, =1

Xn = Xp—1+UpDy = Xyt + Dp2" 'ip,= —p, = 1)-
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Ejemplo 3.2 (Finanzas). Sean D,, el cambio de precios de una acciéon en el periodon — 1, ny
U,, el namero de acciones del inversor compradas en el tiempo n — 1 basado en la informacion
hasta el tiempo n — 1. X, = Z?:O U;D;j, el valor de la cartera del inversor en el tiempo n.

Proposicion 3.2. Sea (X, B,),>0 un proceso adaptado e integrable. Pongamos Dy = Xo —
E(Xo), Dp = X;, — X1, n > 1. Entonces (X,,)n>0 es una martingala si y solo si para todo
proceso acotado y previsible (Uy)n>0 se tiene:

N
E(} U.Dy) =0, N >0.

n=0

Demostracion.

— ) Es una consecuencia inmediata de la proposicion anterior.

<= ) Para cada j > 0, sea A € B; y definamos U, = 0sin # j+ 1y Ujy1 = 1a,.
Claramente (Up)n>0 es acotado y previsible. Por tanto

N
0=E()_UnDyn) = E(Uj11Dj11) = E(Dj11a,), N >j+1.
n=0

lo que implica que E(Dj41 | Bj) = 0y por tanto (Dy)n>0 es un proceso de diferencias de
martingala y en consecuencia X, = > =0 Dj+E (Xo) es una martingala. |

Corolario 3.1. Supongamos que el mercado es viable y que P* es una “equivalent martingale
measure” para {(S,,B,), 0 < n < N}. Entonces el proceso (V (@), Bn)o<n<n €s una P*-
martingala para cada estrategia autofinanciadora ¢.

Demostracion. En virtud del Lema 3.1, si ¢ es autofinanciadora, entonces
n
V() = Vo() + ) _(¢;.d;).
j=1

Como (dy)o<n<n s una sucesion de diferencias de P*-martingalas (por el Teorema 3.1) se
tiene que (V,(@))o<n<n €s una P*-martingala transformada. [ |

3.3. Mercados completos y opciones

En esta seccidon veremos la definiciéon de mercados completos y las opciones de compra y
venta europeas.

Definicion 3.6. Una opcidn europea es una v.a. X no negativa By = B-medible.

Entendemos una opcion europea X como un derecho que se hace efectivo en el tiempo N. Un
inversor puede elegir comprar o vender estas opciones. El vendedor tiene que pagar al comprador
de la opcion, X (w) unidades (usualmente dolares) en el tiempo N. En esta seccion veremos que
un inversor que vende una opcién se puede proteger vendiendo la opcién en el precio adecuado.
Veamos dos ejemplos de opciones: una de compra y otra de venta.

Ejemplo 3.3 (Opcion de compra a precio K (“european call”)). Esta opcion es del tipo X =
(S](\}) — K)™. El poseedor (comprador a tiempo 0) tiene el derecho de comprar la accién en el

tiempo N al precio K, que puede ser vendido obteniendo un beneficio de (S](\}) — K)™T dolares.

Ejemplo 3.4 (Opcion de venta a precio K (“european put”’)). Esta opcion es del tipo X =
(K — S](&))Jr. El poseedor (comprador a tiempo 0) tiene el derecho de vender la accion en el

tiempo N al precio K obteniendo un beneficio de (K — S](\],L))Jr dolares.
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Definicién 3.7. Diremos que una opcién europea X es alcanzable si existe una estrategia ¢ tal

que X = Vy (o).
Un mercado se dice completo si toda opcion europea es alcanzable.

Sea X una opcion europea alcanzable usando una estrategia ¢ admisible tal que X = V(o).
Llamamos Vj(¢) al precio inicial de la opcion.

Si un inversor vende una opcion X en el tiempo 0 y gana Vp(¢) dolares, el inversor puede
invertir esos Vp(¢) dolares usando la estrategia ¢ para que en el tiempo N tenga Vy(¢p) = X
dolares. Asi, aunque el inversor tenga que pagar al comprador X doélares en el tiempo N, el
inversor esta cubierto. Veamos si podemos determinar Vp(¢) sin conocer el valor de ¢. Suponer
que P* es una “equivalent martingale measure”. Sabemos que {(V,(¢),B,), 0 <n < N es una
P*-martingale, luego

E* V(@) = E*(Vo(e)) = Vo(¢) = Vo(¢) v E*(X/SV) = Vo(e).

Asi, el precio a pagar es E*(X/ S](\(,))). Notar que es necesario conocer ¢, pero si conocer la
opcion europea, el activo libre de riesgo y la “equivalent martingale measure”. Por la propiedad
de martingala:

E*(VN(®) | Bn) =Va(¢), 0<n <N.

esto es,

V(@) = SOE*(Viy() /S | Bn) = SOE*(X/SY) | By)

Esto se puede interpretar como que si un inversor vende la opcién en el tiempo n, el precio
apropiado de venta es V,,(¢) dolares y este precio puede ser determinado como ST(ALO)E*(X / S](\(,)) |
B,), por lo que para el precio en el tiempo n no es necesario conocer ¢, sino solo P*, X y el
activo libre de riesgo.

Por tltimo enunciamos el teorema

Teorema 3.2. Suponer que el mercado es viable. Entonces es completo si y solo si existe una
Unica “equivalent martingale measure”.

Demostracion.
= ) Sea X una opcion europea y ¢ admisible con X = Viy(¢). Por el Lema 3.1, se tiene
que

o N
=Vn(o) )+ (b4
7j=1

Suponer que P; y P» son dos “equivalent martingale measures”. Por el corolario 77, se tiene
que

E;(Vn(®)) = E;(Vo(d)) = Vo(), i = 1,2 puesto que By = {0, Q}.

Concluimos pues que:

X X
FEL | = Es 0 | para todo X > 0, X : By-medible.
N N

Poniendo X = 145%, A € By = B, se tiene que Pj(A) = P»(A) para todo A € B.
<= ) Suponer por reduccion al absurdo que el mercado no es completo. Definimos

H= {Uo—i-ZZ(?(Z n» U € By, <Z5 ¢ previsibles}.

n=1 i=1
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En virtud del Lema 3.2, existe (¢2, << N), previsible tal que ¢ = {(¢7(10), ey ,({1)), 0<n<
N} es autofinanciadora. Puesto que ESL, 1 <n <N, se tiene

N d o N -
U+ 33 o0d) = Ug + Y (. dn)
n=1

n=1 i=1

y por el Lema 3.1 podemos escribir:
H={Vn(®): Vo(¢) = Uy, ¢: autofinanciadora}.

Puesto que el mercado no es completo, existe una opcion europea X > 0 tal que Vy(¢p) # X
para todo ¢ admisible. En tal caso X/ S?\, ¢ 3. De lo contrario existiria una ¢ autofinanciadora
tal que X/S% = Vi (#)/S%, que nos lleva a una contradiccion.

Como el mercado es viable, existe P* “equivalent martingale measure”. Consideramos el
espacio Lo (P*) con producto interior < X,Y >= E*(XY"). Entonces H es un subespacio vectorial
cerrado, por ser € finito, de Ly(P*) con H # Lo(P*) segiin acabamos de ver. Por tanto, existe
Y £0,Y € H* (complemento ortogonal de ().

Pongamos ||Y|| = supweg‘%}(w)’ < 00 y definamos la probabilidad

P ({w}) = (1 + M) P*({w}), we Q.

Notemos que:

1.
E*Y)=0(1eceHy <1,Y>=0siysolosi E*Y-1)=E*(Y) =0)
. (@) [Y(w)|
Y w 1
1 0, Q (de hech - Q).
+ 219 >0, w € Q (de hecho: 3] < 5 we)
3.
2, Pl = 2!191\ 2 B ({eh = 97

weN

Concluimos pues que P** es una probabilidad con P** = P* = P.

Veamos que el proceso (S, < n < N) es una P**-martingala, en contradiccién con la unicidad
de P*.

Para ello haremos uso de la Proposiciéon 3.2 mostrando que:

Sea {(gbg)’..., ¢£Ld)), 0 <n < N} un proceso previsible arbitrario. Gracias al Lema 3.2, pode-

mos adicionar la componente previsible (qﬁglo), 0 <n < N) haciendo que ¢ = ((b(o 1), - ¢$fl>)
sea autofinanciadora con valor inicial V; = 0. Por tanto:

n

Va(®) =) (¢;,d;)) y V() € H.

7j=1
Puesto que Y € K, se tiene:
0=<Vn(9),Y>=E"(Vn(9)Y).

Usando la propiedad de martingala y la ortogonalidad, se tiene:
1

2[9]]
Como el proceso previsible es arbitrario, ello prueba que (S,, 0 < n < N) es una P**-

martingala. ]

E*(Vn(o) = E*(VN(®)) + E*(VNn(9)Y)=0+0=0.
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Anexo

Teorema (Teorema de la Convergencia Monotona). Sean (X,,),>1,X,Y v.a. tales que X,, <
Xn+1,n > 1,lim, 1 X,, = X cs. y F(Xg) > —oo para algin k& > 1, entonces

lim 1 E(X,) = E(X).
n—oo
Teorema (Teorema de la Convergencia Dominada). Sean (X,,)n>1, X, Y v.a. tales que X,, <25 X
y|Xn| <Y, n>1, donde Y es integrable, entonces
lim E(X,)= E(X).

n—oo

Teorema (Teorema de Radon-Nikodym). Sea (2, B, P) un espacio de probabilidad. Sean v, P
dos medidas tal que ¥ < P. Entonces existe una tnica (casi seguramente) funcion f : Q@ — R
medible tal que

v(E) = / fdP, paratodo FE € B.
E
dv

A esta funcién f se le llama funcion de densidad y escribiremos f = P

Definiciéon. Sean dos espacios medibles (E, &), (F,F). Si una funcion P(z,B) = Pi(B), = €
E, B € 7, donde P; es una probabilidad en (F,J), entonces a la funciéon P(x,-) se le llama
nicleo estocdstico.

Teorema (Teorema de desintegracion de probabilidades). Sea @ una probabilidad en (R?, B2).
Denotamos Pj(A) = Q(A x R), A € B. Entonces existe un ntcleo estocastico P(x,-) de R en R
tal que

QA x B) = /AP(:U,B)dPl(x), A, BeB. (3.3)

Sean Pl(xz,-), P?(x,-) dos ntcleos estocasticos satisfaciendo (3.3), entonces
A={z eR|PYz,B) = P*(x,B), BB}
cumple P;(A4) = 1.
Definicion. Sea ) # B C P(). Se dice que B es una w-clase si
ANBeB, si A,Be)

Se dice que B es una A-clase si:

1. Qe B.

2. AB:=ANBecBsi A,B€Bcon BCA.

3. 3 1T Ay, € B, si (Ap)n>1 C B es una coleccion creciente de conjuntos.

Teorema (7-A de Dynkin.). Sea D una 7-clase y A una A-clase con D C A. Entonces o(D) C A.

Teorema (Desigualdad de Markov). Si X es una variable aleatoria no negativa tal que existe
E(X), se tiene

P(X >¢e) < , paratodoe >0
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