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Summary

This project consists of three chapters: conditional expectations, martingales and applications
of martingales in financial mathematics. We are going to summarize here the most important
ideas. The project is mostly based on the book: A Probability Path by Sidney I. Resnick [1].

Martingales were first used as betting strategies, in the 18th-century. In 1934, Paul Lévy
(1886-1971) introduced the concept of martingales in probability theory, which was later impro-
ved by Jean Ville (1910-1989). In the 1940s and 1950s these results were neglected with the
arrival of modernization in classical probability. Finally, in the 1980s and 1990s martingale’s
theory became a very useful tool to study financial markets.

The first chapter is going to be used as an introduction to conditional expectation. We will
define the main tool of this project: the conditional expected value with respect to a σ-algebra,
and its most useful properties, which will remind us of the expected value ones: linearity, mono-
ticity, monotone and dominated convergence, product rule, etc. This chapter is instrumental for
the next one: martingales.

In the second chapter, we will first start by defining martingales, which are a sequence of
random variables (Xn)n≥0 such that, for a time n, the conditional expected value of the next
value in the sequence, Xn+1, is the present value Xn. The main goal of this chapter is to study
the almost sure convergence of martingales. For that, we will first study stopping times, to later
study convergence of martingales and supermartingales and extend it to submartingales by using
Krickerberg’s decomposition, which consists on writing a submartingale as a sum of a martingale
and a supermartingale. Finally, we will define regular martingales (convergent in L1) and give
characterization theorems.

The third chapter is about modeling financial mathematics. We will study the existence of
martingale measures in different scenarios and later state and prove the fundamental theorem
of asset pricing, which states that the absence of arbitrage is equivalent to the existence of a
probability P equivalent to a probability P ∗ and under which the price process S is a martingale.
We will start by introducing the simple market model, where an investor has d + 1 assets with
a certain price and risk each, which change over time. This leads us to the concept of arbitrage
trading strategies, that represent riskless stategies which produce positive expected profit. Finally
we will study complete markets and option pricing, mainly focusing on european call and put
options.
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Capítulo 1

Esperanza condicional

Este primer capítulo servirá de preludio para las martingalas. Veremos la herramienta funda-
mental de estas, la esperanza condicional con respecto a una σ-álgebra. Usaremos el teorema de
Radon-Nikodym para dar la definición formal de esperanza condicional y comentaremos algunas
de sus propiedades.

1.1. Introduccion a la esperanza condicional

Definición 1.1. Dado un espacio medible (Ω,A), se dice que una medida µ es A-finita si existe
una partición (An)n≥1 ⊆ A de conjuntos medibles tal que µ(An) < ∞, n ≥ 1.

Definición 1.2. Sean µ y ν dos medidas A-finitas en (Ω,A). Se dice que ν es absolutamente
continua con respecto a µ si para todo A ∈ A tal que µ(A) = 0, se tiene que ν(A) = 0. Se denota
ν ≪ µ.

Notación.

1. Por comodidad, en lugar de escribir variable aleatoria, escribiremos v.a. Y en lugar de
variables aleatorias independientes idénticamente distribuidas, v.a.i.i.d.

2. Cuando tengamos una propiedad de forma casi segura, escribiremos c.s.

1.2. Definición de esperanza condicional

En esta sección introduciremos el concepto de esperanza condicional con respecto a una σ-
álgebra. A partir de ahora, entenderemos que todas v.a. X, Y, ... están definidas en un espacio
de probabilidad (Ω,A, P ) y son reales e integrables. Mediante B,B1,B2, ... denotamos sub-σ-
álgebras de A.

Denotamos asimismo mediante

σ(X) = {X−1(B) : B ∈ B}, B tribu boreliana en R,

la mínima σ-álgebra respecto a la cual X es una v.a.

Teorema 1.1. Sean (Ω,A, P ) y X una v.a. Sea B ⊆ A una sub-σ-álgebra. Entonces existe una
variable aleatoria E(X | B) tal que

1. E(X | B) es B-medible e integrable.

2. Para todo G ∈ B tenemos que∫
G
XdP =

∫
G
E(X | B)dP.

1



2 Capítulo 1. Esperanza condicional

Si existe otra función Z que satisface 1 y 2, entonces Z = E(X | B) c.s. A esta función
E(X | B) la llamaremos esperanza condicional de X respecto a B.

Demostración. Sea ν la función de conjunto tal que

ν(G) =

∫
G
XdP, G ∈ B.

Sea X+ = máx(0, X), X− = −mı́n(0, X). Tenemos que

ν(G) =

∫
G
X+dP −

∫
G
X−dP = ν+(G)− ν−(G), G ∈ B.

Como ν+ ≪ P , ν− ≪ P , basta aplicar el teorema de Radon-Nikodym. ■

Entenderemos E(X | B) como la media de X condicionada a la información que contiene la
sub-σ-álgebra, B.

Ejemplo 1.1. Sea B una σ-álgebra engendrada por una partición (An)n≥1 ⊆ A y X una v.a.
integrable. Entonces

E(X | B) =
∞∑
n=1

E(X | An)1An , E(Y | An) =


E(X1An)

P (An)
si P (An) > 0

0 si P (An) = 0

Demostremos la primera igualdad. Sea A ∈ B, entonces A =
∑

i∈J Ai para algún J ⊂
{1, 2, ...}. Luego∫

A

∞∑
n=1

E(X | An)1AndP =

∞∑
n=1

∑
i∈J

∫
Ai

E(X | An)1AndP =

∞∑
n=1

∑
i∈J

E(X | An)P (Ai ∩An)

=
∑
i∈J

E(X | Ai)P (Ai) =
∑
i∈J

∫
Ai

XdP

P (Ai)
P (Ai)

=
∑
i∈J

∫
Ai

XdP =

∫
∪i∈JAi

XdP =

∫
A
XdP.

Ejemplo 1.2. Este ejemplo resulta del anterior y es para entender el significado de esperanza
condicional respecto a una σ-álgebra desde la intuición.

Suponer que Ω es el espacio muestral de lanzar dos monedas. Denotamos por A = {CX,CC}
el suceso de que el primer lanzamiento sea cara. Sea B = {∅, A,Ac,Ω}. Entendemos B como
información obtenida tras el primer lanzamiento. Si sale cara estaremos en el suceso A, si sale
cruz, en Ac. Suponer que N es el número de caras tras los dos lanzamientos. Si estamos en A,
tenemos que E(N | A) = 1.5, si estamos en Ac, E(N | Ac) = 0.5.

Nuestro objetivo es encontrar el mejor estimador de N tras una información, en nuestro caso,
lo que salga en el primer lanzamiento. Definimos la variable aleatoria

E(N | B)(ω) =

{
1.5 si ω ∈ A

0.5 si ω /∈ A

Definimos esta función porque es un mejor estimador que E(N) = 1 ya que E((N−E(N | B))2) ≤
E((N − 1)2). Esta E(N | B) es la función que ahora conocemos como esperanza condicional con
respecto a una σ-álgebra.
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1.3. Propiedades de la esperanza condicional

En esta sección veremos las propiedades de la esperanza condicional, cabe destacar que mu-
chas de ellas son similares a las de la esperanza.Todos los límites, igualdades, desigualdades, etc.
se entenderán de forma casi segura a partir de ahora.

Teorema 1.2. 1. Linealidad. Sean X, Y v.a. y α, β ∈ R, entonces E((αX + βY ) | B) =
αE(X | B) + βE(Y | B).

2. Monotonicidad. Si X ≥ 0, entonces E(X | B) ≥ 0. En particular, si X ≤ Y , entonces
E(X | B) ≤ E(Y | B).

3. Si X es v.a. y X es B-medible, entonces E(X | B) = X.

4. Si B = {∅,Ω} E(X | B) = E(X).

5. Si X es v.a., entonces
∣∣E(X | B)

∣∣ ≤ E( |X| | B).

Demostración. Veamos algunas de las demostraciones de las propiedades anteriores.

2. Sea G := {ω : E(X | B)(ω) < 0} ∈ B. Tenemos que G

0 ≥
∫
G
E(X | B)dP =

∫
G
XdP ≥ 0.

Luego P (E(X | B) < 0) = 0.

5. Usaremos linealidad∣∣E(X | B)
∣∣ = ∣∣∣E(X+ | B)− E(X− | B)

∣∣∣ ≤ E(X+ | B) + E(X− | B)

= E(X+ +X− | B) = E( |X| | B).

■

Teorema 1.3. Sean B1 ⊂ B2 ⊂ B y X v.a. Entonces:

1. Smoothing
E(E(X | B2) | B1) = E(E(X | B1) | B2) = E(X | B1).

2. Independencia. Sea X v.a. Si σ(X) y B son independientes, entonces E(X | B) = E(X).

Demostración.

1. Veamos primero que E(E(X | B2) | B1) = E(X | B1). Sea G ∈ B1. Entonces E(X | B1)
es B1-medible y∫

G
E(E(X | B2) | B1)dP =

∫
G
E(X | B2)dP =

∫
G
XdP =

∫
G
E(X | B1)dP.

Como E(X | B1) es B1-medible, también es B2-medible. La otra igualdad es clara usando
1.2-3.

2. E(X) es B-medible. Sea G ∈ B. Tenemos que∫
G
E(X)dP = E(X)P (G)

y ∫
G
XdP = E(X1G) = E(X)P (G)

por independencia.
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■

Nota. Un caso particular y que es muy utilizado se da si B1 = {∅,Ω}. Así,

E(E(X | B2)) = E(E(X | B2) | {∅,Ω}) = E(X).

Definición 1.3. Diremos que una v.a. X converge en Lp, y lo denotaremos como X ∈ Lp, si
E( |X|p) < ∞.

Diremos además que una sucesión de v.a. (Xn)n≥0 converge en Lp a una v.a. X, y se denotará

como Xn
Lp−→ X, si ĺım

n→∞
E( |Xn −X|p) = 0.

Definición 1.4. Sea X una v.a. y p ∈ N. Definimos ∥X∥p = (E|X|p)1/p.

Teorema 1.4.

1. Desigualdad de Jensen. Sea g : R → R convexa, g(X) integrable. Entonces

g(E(X | B)) ≤ E(g(X) | B).

2. Sea X p-integrable y suponer p ≥ 1. Entonces∥∥E(X | B)
∥∥
p
≤∥X∥p , (1.1)

y la esperanza condicional es Lp-continua: Si Xn
Lp−→ X∞, entonces

E(Xn | B)
Lp−→ E(X∞ | B). (1.2)

Demostración.

1. Podemos escribir g como g(x) = sup
n

(anx+bn), x ∈ R para un par de sucesiones (an), (bn) ∈
R. Para todo k ∈ N tenemos que

sup
n

(anX + bn) ≥ akX + bk,

luego por monotonicidad

E(sup
n

(anX + bn)) ≥ E(akX + bk),

es decir, E(sup
n

(anX + bn)) es una cota superior de {E(akX + bk) : k ∈ N}, de lo que se

sigue que E (sup
n

(anX + bn) | B) ≥ sup
n

E(anX + bn | B). Entonces aplicando linealidad

E(g(X) | B) = E (sup
n

(anX+bn) | B) ≥ sup
n

E(anX+bn | B) = sup
n

(anE(X | B)+bn) = g(E(X | B))

2. Notar que (1.1) se da si y solo si

E(
∣∣E(X | A)

∣∣p) ≤ E( |X|p).

y por tanto, el resultado se sigue de la desigualdad de Jensen, escogiendo g(x) = |x|p. Para
ver que la esperanza es Lp-contínua (1.2), aplicando linealidad y (1.1)∥∥E(Xn | A)− E(X∞ | A)

∥∥
p
=
∥∥E((Xn −X∞) | A)

∥∥
p
≤∥Xn −X∞∥p → 0.

■
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Teorema 1.5. Sea (Xn)n≥1 una sucesión de v.a. integrables y B ⊆ A. Entonces

1. Teorema de convergencia monótona condicional. Si X v.a., 0 ≤ Xn ↑ X, entonces

E(Xn | B) ↑ E(X | B)

2. Lema de Fatou condicional. Si Xn ≥ Y, n ≥ 1 con Y integrable, entonces

E(ĺım
n

Xn | B) ≤ ĺım
n

E(Xn | B).

Si Xn ≤ Y, n ≥ 1 con Y integrable, entonces

E (ĺım
n

Xn | B) ≥ ĺım
n

E(Xn | B).

3. Teorema de la convergencia dominada condicional. Si |Xn| ≤ Y, n ≥ 1 con Y integrable,
entonces Xn → X implica E(Xn | B) → E(X | B).

Demostración.

1. Por monoticidad, {E(Xn | B)} es monótona creciente y si Z := ĺımn→+∞ ↑ E(Xn | B).

Entonces Z es B-medible y para todo G ∈ B, aplicando el teorema clásico de convergencia
monótona∫

G
ZdP =

∫
G

ĺım
n→+∞

↑ E(Xn | B) = ĺım
n→+∞

∫
G
E(Xn | B) = ĺım

n→+∞

∫
G
XndP.

2. Sea n ∈ N. Definimos Zn := ı́nf
k≥n

Xk, que es integrable y Zn ↑ ĺım
n

Xn. Aplicando 1.2-2,

tenemos
E(ĺım

n
Xn | B) = ĺım

n
↑ E(Zn | B) ≤ ĺım

n
E(Xn | B)

3. Usamos 1 y tenemos:

E(X | B) = E(ĺım
n

Xn | B) ≤ ĺım
n

E(Xn | B)

E(X | B) = E (ĺım
n

Xn | B) ≥ ĺım
n

E(Xn | B).

■

Teorema 1.6 (Regla del producto). Sean X, Y variables aleatorias tal que XY es integrable.
Si X es B-medible, entonces

E(XY | B) = XE(Y | B).

Demostración. Suponer X = 1J , J ∈ B. Entonces para todo G ∈ B,∫
G
E(1JY | B)dP =

∫
G
1JY dP =

∫
G∩J

Y dP =

∫
G∩J

E(Y | B)dP =

∫
G
1JE(Y | B)dP.

Luego E(1JY | B) = 1JE(Y | B). Como lo anterior se cumple para X = 1J , también se
cumple, por linealidad, para

X =
k∑

i=1

ci1Gi , ci ≥ 0, Gi ∈ B.

Suponer que X, Y son no negativas. Existe una sucesión de v.a. no negativas (Xn)n≥0 tal que
Xn ↑ X. Aplicamos que X es B-medible y el teorema de la convergencia monótona y tenemos
que

E(XY | B) = E(Y ĺım
n

↑ Xn | B) = ĺım
n

↑ E(XnY | B) = XE(Y | B).

Si X, Y no son no-negativas, podemos escribir X = X+ −X−, Y = Y + − Y −. ■





Capítulo 2

Martingalas

Definición 2.1. A una sucesión (Bn)n≥0 de sub-σ-álgebras la llamamos filtración cuando

B0 ⊂ B1 ⊂ B2 ⊂ ... ⊂ B.

Podemos entender una filtración en el sentido de que la información se acumula con el tiempo.

Definición 2.2. Supongamos que tenemos {Xn, n ≥ 0} variables aleatorias reales y {Bn, n ≥ 0}
una filtración. Entonces diremos que {(Xn,Bn), n ≥ 0} es una martingala y la denotaremos
como (Xn,Bn)n≥0 si

1. Xn es Bn-medible para todo n ≥ 0.

2. E|Xn| < ∞, n ≥ 0.

3. Para todo n ≥ 0.
E(Xn+1 | Bn) = Xn.

Se llamará submartingala o supermartingala si cambiamos el signo igual por ≥ ó ≤, res-
pectivamente.

Nota.

1. La propiedad 3 es equivalente a E(Xn+k | Bn) = Xn, k ≥ 1.

2. Si (Xn,Bn)n≥0 es martingala, también lo es (Xn,B
0
n)n≥0, donde B0

n = σ(X0, ..., Xn), n ≥ 0.

3. Definimos A0 = X0 y An = Xn − Xn−1, n ≥ 1. Notar que 3 se escribe como E(An+1 |
Bn) = 0, n ≥ 0. Notar σ(A0, ..., An) = σ(X0, ..., Xn).

Ejemplo 2.1.

1. Juego de apuestas. Estamos ante el juego de la ruleta del casino. En nuestro caso jugaremos
a apostar rojo/negro. En la primera tirada apostaremos 1 unidad, si fallamos duplicamos
la apuesta; si acertamos volvemos a apostar 1 unidad. Así sucesivamente por un número
limitado de tiradas. Recordemos que la ruleta consta de 37 números: 18 rojos, 18 negros y
el 0, verde.

Sea (Zn)n≥1 la sucesión de v.a. independientes con distribución P (Zi = 1) = 18/37, P (Zi =
−1) = 19/37, notar que E(Zi) ≤ 0. Sea la v.a.

an = an(Z1, ..., Zn) = 2n1{Z1=...=Zn=−1},

que se corresponde con la apuesta que haremos en la tirada n + 1. Definimos la sucesión
de v.a. (Sn)n≥0 que se corresponde con las ganancias:

Sn =

{
Sn−1 + an−1Zn si n ≥ 1

0 si n = 0

7
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Para la tirada n + 1 tenemos la información de las n tiradas anteriores. Tomamos Bn =
σ(Z1, ..., Zn). Usando linealidad tenemos que

E(Sn+1 | Bn) = E(Sn + anZn+1 | Bn) = Sn + anE(Zn+1 | Bn) ≤ Sn.

Así, (Sn,Bn)n≥0 es una supermartingala,

E(Sn) ≤ E(Sn−1) ≤ ... ≤ E(S0).

En definitiva, estamos jugando a un juego perdedor.

2. Proceso de ramificación de Galton-Watson. Sea (X
(n)
i )i,n≥1 una sucesión de v.a.i.i.d. que

toman valores en N donde

P (X = k) = pk, k = 0, 1, 2, ...

y media µ. Vemos X
(n)
i como el número de descendientes que tiene el individuo i en la

generación n− 1. Por ejemplo:

1

1

1

1

1 2

2

2

3 4 5

3 4

2

X
(1)
1 = 2

X
(2)
1 = 2

X
(3)
1 = 2

X
(4)
1 = 2

X
(5)
1 = 0 X

(5)
2 = 0

X
(4)
2 = 0

X
(3)
2 = 3

X
(4)
3 = 0 X

(4)
4 = 0

X
(4)
5 = 2

X
(5)
3 = 0 X

(5)
4 = 0

X
(2)
2 = 0

Definimos ahora la sucesión (Zn)n≥0 dada por

a) Z0 = 1,

b) Zn+1 = X
(n+1)
1 + ...+X

(n+1)
Zn

.

Sea B0
n = σ(Z0, ..., Zn), n ≥ 0. Entonces usando linealidad y que para todo i ≥ 1,

E(X
(n+1)
i | Zn) = µ, tenemos que

E(Zn+1 | B0
n) = E(Zn+1 | σ(Z0, ..., Zn))

= E(Zn+1 | Z0, ..., Zn) = E(Zn+1 | Zn)

= E(X
(n+1)
1 + ...+X

(n+1)
Zn

| Zn) =

Zn∑
i=1

E(X
(n+1)
i | Zn) = µZn.

Y se sigue de lo anterior que (
Zn

µn
, B0

n)n≥0 es una martingala y su esperanza es 1.



Martingalas en tiempo discreto y aplicaciones - Marcos Gracia Arrondo 9

3. Sea (Xn)n≥0 una sucesión de v.a.i.i.d., entonces (Sn,B
0
n)n≥0 con Sn = X0 + ... + Xn es

una martingala si E(Xn) = 0, n ≥ 0. Se tiene una submartingala o una supermartingala
si E(Xn) ≥ 0, n ≥ 0 ó E(Xn) ≤ 0, n ≥ 0, respectivamente.

Por linealidad:

E(Sn+1 | B0
n) = E(X0+...+Xn+1 | B0

n) = X0+...+Xn+E(Xn+1 | B0
n) = X0+...+Xn = Sn.

En el caso de submartingala o supermartingala basta con cambiar la penúltima igualdad
por ≥ o ≤, respectivamente.

2.1. Tiempos de parada

Definición 2.3. Una aplicación T : Ω → N = N ∪∞ se llama tiempo de parada si

{T = n} ∈ Bn, n = 1, 2, ...

Podemos entender la función T como la regla que nos indica cuando parar y Bn es la infor-
mación acumulada para el tiempo n. Definimos

B∞ = σ(Bn, n ∈ N),

luego B∞ es la menor σ-álgebra conteniendo todos Bn, n ∈ N.

Daremos un ejemplo para entender de forma intuitiva este concepto:

Ejemplo 2.2. De nuevo podemos poner como ejemplo las ganancias en un juego al que dejaremos
de jugar cuando en una de las tiradas consigamos más de a unidades. Sea (Xn)n≥1 la sucesión
de v.a.i.i.d. de las ganancias. Sea

T =


ı́nf{n ≥ 1 | Xn > a} en

∞⋃
n=1

{Xn > a}

∞ en
∞⋂
n=1

{Xn ≤ a}

Tomando la filtración Bn = σ(X1, ..., Xn) tenemos que T es un tiempo de parada ya que

{T = n} = {X1 ≤ a, ...,Xn−1 ≤ a,Xn > a} ∈ Bn, n ∈ N.

Definición 2.4. Si T es un tiempo de parada, definimos la σ-álgebra de eventos anteriores a T
como

BT = {B ∈ B∞ : para todo n ∈ N, {T = n} ∩B ∈ Bn}.

Nota. BT son los eventos que tienen la propiedad de que al añadir información cuando ocurre
T , coloca la intersección en la σ-álgebra adecuada.

Nota. Sean T y S tiempos de parada

1. Si T ≡ S, entonces BT = BS .

2. Si A ∈ BT , entonces A ∩ {T = ∞} ∈ B∞.

3. Si S ≤ T , entonces BS ⊆ BT .

Definición 2.5. Sea (Xn,Bn)n≥0 un proceso estocástico y T un tiempo de parada. Definimos
la v.a. parada en T como

XT =
∑
n∈N

Xn1{T=n}.
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2.2. Supermartingalas positivas

En esta sección trabajaremos con supermartingalas (Xn,Bn)n≥0 tal que Xn ≥ 0, Xn ∈ Bn y
E(Xn+1 | Bn) ≤ Xn.

Proposición 2.1. Sean (Xn,Bn)n≥0 y (Yn,Bn)n≥0 dos supermartingalas positivas y T un tiempo
de parada tal que en {T < ∞}, tenemos XT ≥ YT , Definimos

Zn =

{
Xn, si n < T

Yn, si n ≥ T
.

Entonces (Zn,Bn)n≥0 es una supermartingala positiva.

Demostración. Lo primero notar que Zn ∈ Bn. Si n < T entonces

E(Zn+1 | Bn) = E(Xn+11{n+1<T} + Yn+11{n+1≥T} | Bn)

≤ E(Xn+11{n+1<T} +Xn+11{n+1=T} + Yn+11{n≥T} | Bn)

≤ Xn1{n<T} + Yn1{n≥T} = Zn.

■

Definición 2.6. Dado {Xn}. Sean a, b ∈ R, a < b definimos

T0 = 0

T1 = ı́nf{n ≥ 0 : Xn ≤ a}
T2 = ı́nf{n ≥ T1 : Xn ≥ b}
T3 = ı́nf{n ≥ T2 : Xn ≤ a}

...

Definimos el número de pasos crecientes a través de la franja [a, b] como

Na,b(ω) = sup{p : T2p(ω) < ∞}.

Luego,
{ω : ĺım

n→∞
Xn(ω) existe} =

⋂
a<b

{Na,b(ω) < ∞}

Es decir, ĺımn→∞Xn existe si Na,b < ∞. Nos interesa saber cuándo Na,b < ∞, así que veamos
la desigualdad de Dubins.

Proposición 2.2 (Desigualdad de Dubins). Sea (Xn,Bn)n≥0 una supermartingala positiva.
Suponer 0 < a < b. Entonces

1. P (Na,b ≥ k | B0) ≤
(
a

b

)k

mı́n

(
X0

a
, 1

)
, k = 1, 2, ....

2. Na,b < ∞.

Demostración. Definimos las supermartingalas Y
(1)
n ≡ 1, Y

(2)
n =

Xn

a
.

Notar que en {T1 < ∞},
Y

(1)
T1

≡ 1 ≥ Y
(2)
T1

.

Luego

Z(1)
n =

1, si n < T1

Xn

a
, si n ≥ T1
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es una supermartingala.
Definimos

Z(2)
n =

Z
(1)
n , si n < T2

b

a
, si n ≥ T2

que es supermartingala ya que Z
(1)
n y

b

a
lo son, y en T2

Z(1)
n =

XT2

a
≥ b

a
.

De igual manera,

Z(3)
n =

Z
(2)
n , si n < T3(
b
a

)
Xn
a , si n ≥ T3

es una supermartingala. Continuando así sucesivamente vemos que

Zn =



1, n < T1

Xn/a, T1 ≤ n < T2

b/a, T2 ≤ n < T3

b
a
Xn
a , T3 ≤ n < T4

...
...(

b
a

)k−1
Xn
a , T2k−1 ≤ n < T2k(

b
a

)k
, T2k ≤ n

también es una supermartingala.
Notar que

Z0 =

1, T1 > 0
X0

a
, T1 = 0

= mı́n{1, X0

a
} (2.1)

y por definición de supermartingalas

Y0 ≥ E(Yn | B0). (2.2)

Además

Yn ≥
(
b

a

)k

1[n≥T2k]. (2.3)

Por (2.1), (2.2) y (2.3)

mı́n{1, X0

a
} ≥ E(

(
b

a

)k

1[n≥T2k]) =

(
b

a

)k

P (n ≥ T2k | B0).

Es decir,

P (T2k ≤ n | B0) ≤
(
a

b

)k

mı́n{1, X0

a
}.

Cuando n → ∞,

P (Na,b ≥ k | B0) = P (T2k ≤ ∞ | B0) ≤
(
a

b

)k

mı́n{1, X0

a
}.

De aquí concluimos que

P (Na,b = ∞ | B0) ≤ ĺım
k→∞

(
a

b

)k

mı́n{1, X0

a
} = 0,

luego Na,b < ∞ c.s. ■
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Teorema 2.1 (Teorema de convergencia). Si {(Xn,Bn), n ∈ N} es una supermartingala positiva,
entonces

ĺım
n→∞

Xn =: X∞ existe casi seguro

y
E(X∞ | Bn) ≤ Xn, n ∈ N

luego {(Xn,Bn), n ∈ N} es una supermartingala positiva.

Demostración. La convergencia se sigue de la proposición anterior. Y aplicando el lema de Fatou
condicional tenemos que para todo n ∈ N fijo:

E(X∞ | Bn) = E(ĺım
m

Xn+m | Bn) ≤ ĺım
m

E(Xn+m | Bn) ≤ Xn.

■

Teorema 2.2. Sea p ≥ 1 y X ∈ Lp no negativa. Entonces (E(X | Bn))n≥1 es una martingala
positiva que converge c.s. y en Lp a la v.a. E(X | B∞) =: X∞. Recíprocamente, si (Xn,Bn)n≥1

es una martingala positiva en Lp que converge en Lp a X∞, entonces Xn = E(X∞ | Bn), n ≥ 1.

Demostración. El Teorema 2.1 asegura la existencia de un límite casi seguro de E(X | Bn),
denotado X∞, que es una v.a. B∞-medible. Distingamos dos casos:

- Si X ≤ a c.s., a < ∞. Entonces E(X | Bn) ≤ a y se tiene de acuerdo con el teorema de la
convergencia dominada condicional que si A ∈ Bm y n ≥ m,∫

A
E(X | Bn) =

∫
A
XdP −−−→

n→∞

∫
A
X∞dP.

Por tanto: ∫
A
XdP =

∫
A
X∞dP, para todo A ∈

⋃
m

Bm.

Sea A = {A ∈ B∞ :
∫
AXdP =

∫
AX∞dP}. Entonces A es una λ-clase que contiene a la

π-clase
⋃

mBm, por lo que A = B∞, según el teorema π-λ de Dynkin (Anexo). Se sigue que:
E(X | B∞) = X∞.

Además, la convergencia en Lp de E(X | Bn) a E(X | B∞) se sigue por convergencia
dominada.

- Sea X ≥ 0 cualquiera. Veamos que E(X | Bn) converge a E(X | B∞) en Lp. Por la
desigualdad de Jensen:∥∥E(Z | B)

∥∥
p
= (E(

∣∣E(Z | B)
∣∣p))1/p ≤ (E(E( |X|p | B))1/p =∥Z∥p .

Por facilitar la lectura escribamos mı́n{a, b} = a ∧ b. Con la descomposición

X = X ∧ a+ (X − a)+, a > 0,

podemos escribir, tras aplicar desigualdad triangular,∥∥E(X | Bn)− E(X | B∞)
∥∥
p
≤
∥∥E(X ∧ a | Bn)− E(X ∧ a | B∞)

∥∥
p
+ 2
∥∥(X − a)+

∥∥
p
.

Hacemos tender n → ∞ y aplicando lo precedente y luego a ↑ ∞ se sigue el resultado.
Recíprocamente, si (Xn)n≥1 es una martingala positiva en Lp que converge en Lp a X∞,

entonces para A ∈ Bn: ∫
A
XndP =

∫
A
Xn+pdP

p→∞−−−→
∫
A
X∞dP,

lo que prueba que Xn = E(X∞ | Bn). ■
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Lema 2.1. Si T es un tiempo de parada y X integrable, entonces

E(X | BT ) =
∑
n∈N

E(X | Bn)1{T=n}.

Demostración. El lado derecho de la igualdad es BT -medible y para todo A ∈ BT , como A∩{T =
n} ∈ Bn∫
A

∑
n∈N

E(X | Bn)1{T=n}dP =
∑
n∈N

∫
A
E(X | Bn)1{T=n}dP =

∑
n∈N

∫
A∩{T=n}

X =

∫
A
X =

∫
A
E(X | BT ).

■

Teorema 2.3. Suponer (Xn,Bn)n≥0 es una supermartingala positiva y que Xn → X∞ c.s. Sean
T, S dos tiempos de parada con T ≤ S. Entonces

XT ≥ E(XS | BT )

Nota. En el caso de T = 0, tenemos S ≥ 0 y X0 ≥ E(XS | B0), E(X0) ≥ E(XS).

Demostración. Sea la supermartingala (XS∧n)n≥1. Por el teorema de convergencia (2.1) tenemos
que XS∧n converge c.s. a XS , que es L1, y E(XS | Bn) ≤ XS∧n, n ≥ 1.

Por el lema anterior,

E(XS | BT ) =
∑
n∈N

E(XS | Bn)1{T=n},

luego
E(XS | BT ) =

∑
n∈N

E(XS | Bn)1{T=n} ≤
∑
n∈N

XS∧n1{T=n} = XS∧T = XT .

■

Si (Xn,Bn)n≥0 es una martingala positiva, sabemos que es casi seguro convergente. Para que
{(Xn,Bn), n ∈ N} sea una martingala positiva necesitamos que

1. Xn
L1−→ X∞ y 2. E(X∞ | Bn) = Xn.

Es cierto que Xn
c.s.−−→ X∞ y que para todo m ≥ n, E(Xm | Bn) = Xn, pero con esto no es

suficiente para decir que E(X∞ | Bn) = Xn. Necesitamos más condiciones. Veamos un ejemplo
en el que no se cumple 2.

Consideramos el ejemplo de ramificación de Galton-Watson (2.1-2). Tenemos el proceso
{Zn, n ≥ 0} (recordemos que Zn representa el número de descendientes en la generación n− 1)
con Z0 = 1, E(Z1) = µ, que es la media de descendientes de cada individuo. Vimos que
(Zn/µ

n, B0
n)n≥0 es una martingala no negativa, luego el límite c.s. existe: Zn/µ

n c.s.−−→ Z. Sin
embargo si µ ≤ 1, tenemos que el proceso de ramificación va a acabar (extinción), luego Z ≡ 0 y
no se cumple que E(Z | Bn) = Zn/µ

n. Esto nos lleva a un nuevo concepto: martingalas cerradas.

Definición 2.7 (Martingala cerrada). Una martingala (Xn,Bn)n≥0 se dice cerrada si existe una
v.a. X∞ B∞-medible e integrable tal que para todo n ∈ N,

Xn = E(X∞ | Bn).

Así, {(Xn,Bn), n ∈ N} es una martingala. X∞ se llama cierre.

Nota. El cierre de una martingala, si existe, es único. Sin embargo el cierre de una sub(super)
martingala no es necesariamente único. En efecto, si X, Y son v.a. B∞-medibles e integrables
tal que E(X | Bn) = E(Y | Bn), n ≥ 1. Entonces E(X | B∞) = E(Y | B∞), igual que en la
demostración del Teorema 2.2, luego X = Y c.s.



14 Capítulo 2. Martingalas

2.3. Convergencia de martingalas y submartingalas.

En esta sección veremos la descomposición de Krickeberg, que se usa para extender propie-
dades de la convergencia de supermartingalas a martingalas y submartingalas.

La descomposición de Krickeberg consiste en escribir una submartingala como la diferencia
entre una martingala y una supermartingala positivas.

Proposición 2.3. Sea (Xn,Bn)n≥0 una martingala (submartingala) y suponer que ϕ es una
función convexa (y no decreciente) tal que ϕ(Xn) es integrable para todo n ≥ 0. Entonces
(ϕ(Xn), Bn)n≥0 es una submartingala.

Demostración. Sea n < m y ϕ convexa. Entonces por la definición de martingala y la desigualdad
de Jensen:

ϕ(Xn) = ϕ(E(Xm | Bn) ≤ E(ϕ(Xm) | Bn).

El caso de submartingala es análogo. ■

Teorema 2.4 (Descomposición de Krickeberg). Sea (Xn,Bn)n≥0 una submartingala tal que

sup
n

E(X+
n ) < ∞,

entonces existe una martingala positiva {(Mn,Bn), n ≥ 0} y una supermartingala positiva
{(Yn,Bn), n ≥ 0} tal que

Xn = Mn − Yn.

Demostración. Si Xn es una martingala, por la Proposición 2.3 X+
n también es una submartin-

gala. Además, si p ≥ n, por smoothing

E(X+
p+1 | Bn) = E(E(X+

p+1 | Bp) | Bn) ≥ E(X+
p | Bn),

luego {E(X+
p | Bn), p ≥ n} es monótona no decreciente en p. La monotonicidad implica que el

siguiente límite existe:
ĺım
p→∞

↑ E(X+
p | Bn) =: Mn.

Veamos que {(Mn,Bn), n ≥ 0} es una martingala positiva.

1. Mn ∈ Bn, y Mn ≥ 0.

2. Como sup
p≥0

E(X+
p ) < ∞, tenemos que E(Mn) < ∞.

3. Por último, aplicando el T.C.M. condicional y smoothing tenemos que

E(Mn+1 | Bn) = E( ĺım
p→∞

↑ E(X+
p | Bn+1) | Bn) = ĺım

p→∞
↑ E(E(X+

p | Bn+1) | Bn)

= ĺım
p→∞

↑ E(X+
p | Bn) = Mn.

Definimos Yn = Mn −Xn. Veamos que {Yn} es una supermartingala positiva.

1. Yn ∈ Bn.

2. Yn ≥ 0 ya que Mn = ĺımp→∞ ↑ E(X+
p | Bn) ≥ E(X+

n | Bn) = X+
n ≥ Xn.

3. Como E(Mn+1 | Bn) = Mn y E(Xn+1 | Bn) ≥ Xn,

E(Yn+1 | Bn) = E(Mn+1 −Xn+1 | Bn) ≤ Mn −Xn = Yn.

■
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Este teorema nos conduce al teorema de convergencia de submartingalas de Doob.

Teorema 2.5 (Convergencia de submartingalas). Sea (Xn,Bn)n≥0 una (sub)martingala satisfa-
ciendo sup

n∈N
E(X+

n ) < ∞, entonces existe una v.a. integrable X∞ tal que Xn
c.s.−−→ X∞.

Demostración. Por la descomposición de Krickeberg tenemos que Xn = Mn − Yn, donde Mn e
Yn son son una martingala positiva y una supermartingala positiva respectivamente. Aplicando
el teorema de convergencia (2.1) tenemos que

Mn
c.s.−−→ M∞, Yn

c.s.−−→ Y∞

E(M∞ | Bn) ≤ Mn, E(Y∞ | Bn) ≤ Yn.

Luego
E(M∞) ≤ E(Mn), E(Y∞) ≤ E(Yn)

y Mn, Yn son integrables. Luego Mn, Yn < ∞ c.s.
Así, si denotamos X∞ := M∞ − Y∞, que existe casi seguro por lo anterior, tenemos que

Xn
c.s.−−→ X∞. ■

2.4. Regularidad de martingalas y submartingalas

Definición 2.8. Una martingala (Xn,Bn)n≥0 es regular si converge en L1, es decir, si existe una
v.a. X tal que ĺım

n→∞
E( |Xn −X|) = 0.

Definición 2.9. Una martingala (Xn,Bn)n≥0 está acotada en Lp si sup
n

E( |Xn|p) < ∞.

Antes de caracterizar las martingalas regulares veremos un lema que nos ayuda a estudiar la
convergencia en L1.

Definición 2.10. Una sucesión de v.a. (Xn)n≥0 se dice uniformemente integrable si

ĺım
a→∞

sup
n

E( |Xn|1{|Xn|>a}) = 0.

Lema 2.2. Sea X ∈ L1 una v.a. definida en (Ω,B, P ). Entonces la familia de v.a. (E(X | B))B⊆A

es uniformemente integrable.

Demostración. Veamos que

sup
B⊆B

∫
{|E(X|B)|≥a}

∣∣E(X | B)
∣∣ dP ↓ 0, cuando a ↑ ∞.

Se tiene:∫
{|E(X|B)|≥a}

∣∣E(X | B)
∣∣ dP ≤

∫
{E(|X||B)≥a}

E( |X| | B)dP =

∫
{|E(X|B)|≥a}

|X| dP

=

∫
{|E(X|B)|≥a}∩{|X|≥b}

|X| dP +

∫
{|E(X|B)|≥a}∩{|X|<b}

|X| dP

≤ bP (E( |X| | B) ≥ a) +

∫
{|X|>b}

|X| dP, b > 0.

Como P (E( |X| | B) ≥ a) ≤ 1
aE|X| (desigualdad de Markov) (Anexo), tenemos que∫

{|E(X|B)|≥a}

∣∣E(X | B)
∣∣ dP ≤ b

a
E|X|+

∫
{|X|>b}

|X| dP.

Tomamos b =
√
a y hacemos a ↑ ∞. ■
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Teorema 2.6. Sea (Xn,Bn)n≥0 una martingala. Entonces son equivalentes:

1. (Xn) es regular.

2. sup
n

E( |Xn|) < ∞ y existe una v.a. X∞ tal que Xn
c.s.−−→ X∞ que verifica

Xn = E(X∞ | Bn), para todo n ∈ N.

3. (Xn) es una martingala cerrada.

4. (Xn) es uniformemente integrable.

Demostración.
1 =⇒ 2. Si (Xn) converge en L1, ĺımn→∞E( |Xn|) existe, luego {E(|Xn|)} está acotada en

L1, es decir, supn E( |Xn|) < ∞. De acuerdo con el teorema de convergencia de submartingalas
2.5, existe una v.a. X∞ = ĺımnXn c.s. Además Xn

L1−→ X∞. Puesto que la esperanza condicional
mantiene la convergencia en L1, tenemos que si p → ∞

Xn = E(Xp | Bn)
L1−→ E(X∞ | Bn).

Luego Xn = E(X∞ | Bn) para todo n ∈ N.
2 =⇒ 3. Basta con tomar la v.a. X∞ como cierre.
3 =⇒ 4. Usamos el lema anterior 2.2.
4 =⇒ 1. Tenemos integrabilidad uniforme, luego (Xn) está acotada en L1 y, por el teorema

de convergencia de martingalas 2.5, converge casi seguro a una v.a. X. Así, por tener convergencia
casi segura e integrabilidad uniforme, (Xn) converge en Lp.

■

Veamos una caracterización de regularidad.

Corolario 2.1. Una martingala (Xn) es regular si y solo si

1. XT ∈ L1, para todo tiempo de parada T .

2. E(XT | BS) = XS , para todo tiempo de parada S ≤ T .

Demostración.
⇐= ) 1 y 2 implican que la martingala es cerrada (tomando T ≡ ∞ y S ≤ n).
=⇒ ) Puesto que la martingala es cerrada, se tiene que E(X∞ | BT ) = XT , T tiempo de

parada. Ello implica que XT ∈ L1. Por otra parte, aplicando smoothing:

E(XT | BS) = E(E(X∞ | BT ) | BS) = E(X∞ | BS) = XS .

■

Teorema 2.7. Sea p > 1. Toda martingala Xn acotada en Lp es regular. Además converge en
Lp a su límite c.s. X∞.

Demostración. Veamos que es uniformemente integrable para poder aplicar el Teorema 2.6.

ap−1

∫
{|Xn|>a}

|Xn| ≤ E( |Xn|p), a > 0, p > 1

implica que

sup
n

∫
{|Xn|>a}

|Xn| ≤
Cp

ap−1
, donde C = sup

n
∥Xn∥p < ∞
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y por tanto Xn es uniformemente integrable.
Por el Teorema 2.6, podemos escribir E(X∞ | Bn) = Xn, X∞ = ĺımnXn c.s.
|Xn|p →|X∞|p c.s. Por el lema de Fatou, |X∞|p ∈ L1. Gracias a la desigualdad de Jensen

E( |X∞|p | Bn) ≥
∣∣E(Xp

∞ | Bn)
∣∣p = |Xn|p .

Aplicando el Lema 2.2, ( |Xn|p) es uniformemente integrable. Por ello y por ser L1, tenemos

que Xn
Lp−→ X∞. ■

Teorema 2.8. Sea (Xn,Bn)n≥0 una submartingala. Entonces son equivalentes:

1. (X+
n ) es regular.

2. sup
n

E(X+
n ) < ∞ y existe una v.a. X∞ tal que Xn

c.s.−−→ X∞ que verifica

Xn ≤ E(X∞ | Bn), para todo n ∈ N.

3. (Xn) es una submartingala cerrada.

4. (X+
n ) es uniformemente integrable.

Demostración.
1 =⇒ 2. La condición implica que supnE(X+

n ) < ∞ y por tanto existe ĺımnXn = X∞ ∈ L1.
Asimismo: ĺımnX

+
n = X+

∞ ∈ L1.
Consideramos la descomposición de Krickeberg Xn = Mn−Yn. Recordemos que Mn = ĺımp ↑

E(X+
p | Bn). Por tanto Mn = E(X+

∞ | Bn).
Por otra parte: sean X∞, Y∞ y M∞ son los límites de Xn, Yn y Mn, respectivamente.

E(Mn) = supp≥nE(X+
p ), luego

E(Mn −X+
n ) = E(Mn)− E(X+

n ) ↓ 0.

Aplicando el lema de Fatou, E(M∞ −X+
∞) = 0, entonces M∞ = X+

∞. Así

Y∞ = M∞ −X∞ = X+
∞ −X∞ = X−

∞.

Además E(Y∞ | Bn) ≤ Yn. Por tanto:

Xn = Mn − Yn ≤ E(X+
∞ | Bn)− E(X−

∞ | Bn) = E(X∞ | Bn).

2 =⇒ 3. Basta con tomar X∞ como cierre.
3 =⇒ 4. Si Xn ≥ E(X∞ | Bn), entonces X+

n ≤ E(X+
∞ | Bn), n ≥ 1. Así, E(supnX

+
n ) < ∞.

4 =⇒ 1. Igual que en el Teorema 2.6 ■

Corolario 2.2. Una submartingala (Xn) es regular si y solo si

1. XT ∈ L1, para todo tiempo de parada T .

2. E(XT | BS) = XS , para todo tiempo de parada S ≤ T .

Demostración.
⇐= ) Trivial.
=⇒ ) Sean S, T tiempos de parada con S ≤ T . Sea Xn = Mn−Yn, n ≥ 1 la descomposición

de Krickeberg. Entonces Mn es regular (en la demostración del Teorema 2.8 escribimos Mn =
E(X+

∞ | Bn), n ≥ 1). Por tanto:

E|XT | ≤ E|MT |+ E|YT | < ∞.

E(XT | BS) = E(MT | BS)− E(YT | BS) ≥ MS − YS = XS .

■
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Capítulo 3

Aplicaciones en matemática financiera

3.1. Modelo simple de mercado

Veamos a continuación qué ingredientes requiere el modelo de mercado. Tenemos un espacio
de probabilidad (Ω,B, P ) donde Ω es finito y B el conjunto de partes de Ω, B = P(Ω). Asumimos
que P ({ω}) > 0, para todo ω ∈ Ω. Esto se corresponde con la idea de que los inversores coinciden
en los posibles estados ω pero no en la probabilidad que tienen.

Hay un tiempo finito 0, 1, ..., N , donde N es el tiempo terminal para la actividad económica;
y una familia de σ-álgebras B0 ⊂ B1 ⊂ ...BN = B. B0 = {∅,Ω}. Entendemos una σ-álgebra Bn

como la información que tenemos para el tiempo n.
Los inversores comercian en d + 1 activos (d ≥ 1) y el precio del activo i en el tiempo n

es S
(i)
n para n = 0, 1, ..., N . Los activos 1, ..., d tienen un riesgo ya que cambian su precio. El

activo 0 lo consideramos como una cuenta de ahorros o como un bono cuyo precio aumenta
determiníticamente, donde el valor no varía a lo largo del tiempo. Lo llamaremos activo libre de
riesgo. Asumimos como normalización S

(0)
0 = 1. Por ejemplo un modelo de mercado de {S(0)

n , 0 ≤
n ≤ N}, si tenemos un interés r constante, es S

(0)
n = (1 + r)n. Asumimos que {S(i)

n , 0 ≤ n ≤ N}
es no negativo y tal que 0 ≤ S

(i)
n ∈ Bn para i = 0, ..., d. Asumir S(0)

n > 0, n = 0, ..., N . Escribimos

{Sn = (S(0)
n , S(1)

n , ..., S(i)
n ), 0 ≤ n ≤ N}

para el valor del proceso de precios de mercado en Rd+1.
Como la principal motivación es obtener beneficios, nos interesa saber la comparación de

nuestras inversiones con el activo libre de riesgo. Podemos aplicar el factor de descuento βn =

1/S
(0)
n y obtener el proceso de precios con factor de descuento

{Sn = Sn/S
(0)
n , 0 ≤ n N},

que puede ser visto como el precio original del proceso en unidades del precio actual del activo
libre de riesgo.

El cambio de precios de un periodo a otro viene dado por

d0 = S0, dn = Sn − Sn−1, n = 1, ..., N

y el cambio en el proceso de precios con factor de descuento es

d0 = S0, dn = Sn − Sn−1, n = 1, ..., N

Definición 3.1. Se llama estrategia de compraventa a un proceso

{ϕn = (ϕ(0)
n , ϕ(1)

n , ..., ϕ(d)
n ), 0 ≤ n ≤ N},

que es previsible, esto es que ϕ
(i)
n es Bn−1-medible para cada i = 0, ..., d, n = 1, ..., N .

19
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Por ser Ω finito, tenemos que cada v.a. | ϕ(i)
n |, 0 ≤ n ≤ N, 0 ≤ i ≤ d está acotada. Podemos

entender ϕn como el número de acciones de cada activo en la cartera del inversor entre los tiempos
n− 1 y n con información disponible hasta el tiempo n− 1. En el tiempo n, cuando los nuevos
precios Sn son anunciados, el inversor cambia la cartera de acciones por el vector ϕn+1. Cuando
esos precios Sn se anuncian, el valor de la cartera es

Vn(ϕ) = (ϕn,Sn) = ϕT
nSn =

d∑
i=0

ϕ(i)
n S(i)

n .

Asímismo, el valor de la cartera con el factor de descuento es

V n(ϕ) = βnVn(ϕ) = (ϕn,Sn).

Resumiendo, empezamos con el valor V0(ϕ) = (ϕ0,S0). Como ahora S0 es conocido podemos
reequilibrar la cartera con ϕ1. El valor actual (ϕ1,S0) permanece hasta que los precios S1 se
anuncian. Cundo se anuncian, el valor de la cartera será V1(ϕ) = (ϕ1,S1). Así sucesivamente.

Definición 3.2. Una estrategia de compraventa ϕ se dice que es autofinanciadora si

(ϕn,Sn) = (ϕn+1,Sn), 0 ≤ n ≤ N − 1.

Esta igualdad indica que los cambios en la cartera del inversor se hacen sin introducir capital
ni retirar de los fondos que hay en la cartera.

Lema 3.1. Si ϕ es una estrategia de compraventa, son equivalentes:

1. ϕ es autofinanciadora,

2. Para 1 ≤ n ≤ N

Vn(ϕ) = V0(ϕ) +

n∑
j=1

(ϕj ,dj).

3. Para i ≤ n ≤ N

V n(ϕ) = V0(ϕ) +
n∑

j=1

(ϕj ,dj).

Demostración. ϕ es autofinanciadora si y solo si para todo j = 0, ..., N − 1

(ϕj+1,dj+1) = (ϕj+1,Sj+1)− (ϕj ,Sj) = Vj+1(ϕ)− Vj(ϕ),

si y solo si

Vn(ϕ) = V0(ϕ) +
n∑

j=1

(Vj(ϕ)− Vj−1(ϕ)) = V0(ϕ) +
n∑

j=1

(ϕj ,dj).

Análogamente, multiplicando por el factor de descuento βn > 0: ϕ es autofinanciadora si y solo
si

(ϕn,Sn) = (ϕn+1,Sn), n = 0, ..., N − 1.

si y solo si
(ϕn+1,dn+1) = V n+1 − V n(ϕ), n = 0, ..., N − 1

si y solo si

V n(ϕ) = V 0(ϕ) +
n∑

j=1

(V j(ϕ)− V j−1(ϕ)) = V 0(ϕ) +
n∑

j=1

(ϕj ,dj).

Observemos finalmente que V 0(ϕ) = V0(ϕ), ya que β0 = 1. ■
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Nota. 1. El Lema 3.1-2 muestra que para estrategias autofinanciadoras, los cambios de valor
de la cartera se deben únicamente a los cambios de precios.

2. Puesto que d
0
j = 0, j = 1, ..., N , podemos escribir el Lema 3.1-3 como:

V n(ϕ) = V0(ϕ) +

n∑
j=1

d∑
i=1

ϕ
(i)
j d

i
j , (3.1)

probando que el valor de la cartera, teniendo en cuenta el factor de descuento, solo depende
de V0(ϕ) y de {ϕ(i)

j , i = 1, ..., d, j = 1, ..., n}, siempre que ϕ sea autofinanciadora.

Lema 3.2. Sea {(ϕ1
n, ..., ϕ

d
n), 1 ≤ n ≤ N} un proceso previsible y V0 una v.a. no negativa y

B0-medible (una constante). Entonces existe un único proceso previsible {ϕ0
n, 0 ≤ n ≤ N} tal

que ϕ={ϕn = (ϕ0
n, ϕ

1
n, ..., ϕ

d
n), 0 ≤ n ≤ N} es una estrategia autofinanciadora con valor inicial

V0.

Demostración. Supongamos que (ϕn,≤ n ≤ N) es una estrategia autofinanciadora con valor
inicial V0. Entonces es válida (3.1) con V0(ϕ) reemplazado por V0. Por otra parte

V n(ϕ) = (ϕn,Sn) = ϕ0
n +

d∑
i=1

ϕ(i)
n S

(i)
n , n = 0, ..., N.

Igualando esta expresión con (3.1) y despejando ϕ0
n se tiene para n = 1, ..., N que

ϕ0
n = V0 +

n∑
j=1

(
d∑

i=1

ϕ
(i)
j d

i
j −

d∑
i=1

ϕ(i)
n S

i
n) = V0 +

n−1∑
j=1

(
d∑

i=1

ϕ
(i)
j d

i
j −

d∑
i=1

ϕ(i)
n S

i
n−1),

que es Bn−1-medible.
Esto prueba:

1. Que ϕ0
n, está determinada si la estrategia es autofinanciadora.

2. Como elegir ϕ0
n a partir de V0 y de {(ϕ1

n, ..., ϕ
d
n), 1 ≤ n ≤ N} para que la estrategia sea

autofinanciadora.

■

3.2. Estrategias admisibles y arbitraje

Notar que con las definiciones anteriores nada requiere que ϕ > 0. Si ϕ(i)
n < 0 para algún

i = 0, 1, ..., d, entonces estamos en corto |ϕ(i)
n | acciones del activo. Esto se puede entender como

retirar |ϕ(i)
n | acciones para producir capital invirtiendo en otros activos.

Definición 3.3. Una estrategia ϕ se llama admisible si es autofinanciadora y además Vn(ϕ) ≥
0, n = 0, ..., N .

Una estrategia admisible se llama estrategia de arbitraje si V0(ϕ) = 0 y VN (ϕ)(ω0) > 0 para
algún ω0 ∈ Ω (así, E(VN (ω0)) > 0).

Nota. Estas estrategias de arbitraje, si existen, permiten al inversor un margen para pagar
préstamos de acciones. Se pide que el inversor no esté nunca endeudado. Los mercados que
contienen estrategias de arbitraje no son compatibles con el equilibrio económico.

Definición 3.4. Un mercado se dice viable si no contiene estrategias de arbitraje.
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Ahora veremos la relación entre lo visto en la sección anterior y las martingalas.
Dadas dos probabilidades P ∗, P , escribiremos P ≡ P ∗ si P ≪ P ∗ y P ∗ ≪ P , lo que implica

que P y P ∗ tienen los mismos conjuntos nulos.

Teorema 3.1. Un mercado es viable si y solo si existe P ∗ ≡ P tal que (Sn,Bn)0≤n≤N es una
P ∗-martingala, esto es, (S(i)

n ,Bn)0≤n≤N es una P ∗-martingala para cada i=0,...,d.
Una tal P ∗-martingala se llama “equivalent martingale measure” o “risk neutral measure”.

Demostración.
⇐= ) Supongamos que (Sn,Bn)0≤n≤N es una P ∗-martingala para alguna probabilidad

P ∗ ≡ P . Entonces
E∗(dj+1 | Bj) = 0, j = 0, ..., N − 1

y en virtud del Lema 3.1-3, (V n(ϕ), 0 ≤ n ≤ N) es una P ∗-martingala. Por tanto

E∗(V n(ϕ)) = E∗(V 0(ϕ)), 0 ≤ n ≤ N, para todo ϕ autofinanciadora.

Si ϕ es una estrategia de arbitraje se sigue de lo anterior que V N (ϕ) = VN (ϕ) = 0 P ∗-c.s.
y por tanto P -c.s. Puesto que P ({ω}) > 0, para todo ω ∈ Ω, ello implica que VN (ϕ) ≡ 0, en
continuación con que ϕ sea estrategia de arbitraje.

Para la afirmación recíproca, necesitamos el siguiente lema.

Lema 3.3. Suponer que existe una estrategia autofinanciadora ϕ tal que V0(ϕ) = 0, VN (ϕ) ≥ 0
y E(VN (ϕ)) > 0. Entonces existe una estrategia de arbitraje y el mercado no es viable.

Demostración. Si Vn(ϕ) ≥ 0, n = 0, ..., N , entonces ϕ es admisible y por tanto una estrategia
de arbitraje. En caso contrario, existe

n0 = sup{k : P (Vk(ϕ) < 0} con 1 ≤ n0 ≤ N − 1.

Es decir:
(a) P (Vn0(ϕ)) < 0 y (b) Vn(ϕ) ≥ 0, n0 < n ≤ N.

Denotamos mediante e0 = (1, 0, ..., 0) ∈ Rd+1 y construimos Ψ = (Ψn, 0 ≤ n ≤ N) mediante:

Ψk =


0, si k ≤ n0

1{Vn0 (ϕ)<0}(ϕk −
Vn0(ϕ)

S0
n0

e0), si k > n0

Por construcción, Ψ es un proceso previsible. Por otra parte:
(i) Ψ es autofinanciadora: (Ψk,Sk) = (Ψk+1,Sk), k = 0, ..., N − 1.
Si k + 1 ≤ n0, la conclusión es obvia. Si k > n0, entonces:

(Ψk,Sk) = 1{Vn0 (ϕ)<0}

(
(ϕk,Sk)−

Vn0(ϕ

S0
n0

(e0,Sk)

)

= 1{Vn0 (ϕ)<0}

(
(ϕk+1,Sk)−

Vn0(ϕ

S0
n0

(e0,Sk)

)
= (Ψk+1,Sk).

Finalmente, si k = n0:

(Ψn0+1,Sn0) = 1{Vn0 (ϕ)<0}

(
(ϕn0+1,Sn0)−

Vn0(ϕ

S0
n0

(e0,Sk)

)
= 1{Vn0 (ϕ)<0}(Vn0(ϕ)− Vn0(ϕ)) = 0 = (Ψn0 ,Sn0).
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(ii) Ψ es admisible. Por construcción Vk(Ψ) = 0, k ≤ n0. Si k > n0:

Vk(Ψ) = 1{Vn0 (ϕ)<0}

(
Vk(ϕ)−

Vn0(ϕ

S0
n0

(e0,Sk)

)
≥ 0

debido a (b). ■

Continuación demostración Teorema 3.1.
=⇒ ) Supongamos que el mercado es viable. Definimos los conjuntos de v.a.:

Γ = {X : Ω → R : X ≥ 0, EX > 0}, V = {VN (ϕ) : V0(ϕ) = 0, ϕ autofinanciadora}.

Por el Lema 3.3, Γ ∩ V = ∅.
Consideramos Γ y V como subconjuntos del espacio euclídeo RΩ(= {f : f : R → Ω}).
Es fácil ver que V es un espacio vectorial. Definimos

K = {X ∈ Γ :
∑
ω∈Ω

X(ω) = 1}

Observamos que K es cerrado en RΩ, compacto y convexo. Además V ∩K = ∅.
Utilizando el teorema del hiperplano separador: Existe una función lineal λ : RΩ → R tal

que
(i) λ(X) > 0, X ∈ K, (ii) λ(X) = 0, X ∈ V

Representemos λ como el vector λ = (λ(X), ω ∈ Ω) y reescribimos (i) y (ii) como

(i′)
∑
ω∈Ω

λ(ω)X(ω) > 0, X ∈ K

(i′′)
∑
ω∈Ω

λ(ω)VN (ϕ)(ω) = 0, para todo ϕ autofinanciadora con V0(ϕ) = 0.

Veamos que ω > 0, para todo ω ∈ Ω. En efecto, si (ω0) = 0 para algún ω0 ∈ Ω, entonces,
puesto que X = 1{ω0} ∈ K se tendría∑

ω∈Ω
λ(ω)X(ω) = λ(ω0) = 0,

lo que contradice (i′).
Definimos

P ∗(ω) =
λ(ω)∑

ω′∈Ω
λ(ω′)

.

Puesto que P ∗(ω) > 0 para todo ω ∈ Ω, entonces P ∗ ≡ P . Sea ϕ autofinanciadora con
V0(ϕ) = 0. En virtud de (ii′), E∗(VN (ϕ)) = 0, luego E∗(V N (ϕ)) = 0. De donde, por el Lema
3.1-3:

E∗(

N∑
j=1

(ϕj ,dj)) = 0 (3.2)

Fijemos 1 ≤ i ≤ d y supongamos que (ϕ
(i)
n ,≤ n ≤ N) es un proceso previsible arbitrario.

Utilizando el Lema 3.2 con V0 = 0, existe un proceso previsible (ϕ0
n, 0 ≤ n ≤ N) tal que

ϕ̃
∗
= {ϕ̃n = (Φ0

n, 0, ..., 0,Φ
(i)
n , 0, ..., 0),≤ n ≤ N}
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es una estrategia autofinanciadora con valor inicial V0 = 0. Y por (3.2) se tiene:

0 = E∗

 N∑
j=1

(ϕ̃
∗
j ,dj)

 = E∗

 N∑
j=1

ϕ
(i)
j d

(i)
j

 .

Esto garantiza que (S
(i)
n ,Bn)0≤n≤N es una P ∗-martingala. ■

Nota. Las “equivalent martingale measures” dan a los inversores una interpretación matemática
del riesgo financiero de un activo, que ha de ser tomado en cuenta para estimar el precio del
mismo.

Definición 3.5. Un proceso adaptado (Dn,Bn)n≥0 se dice que es un proceso de diferencias de
martingala si:

1. Dn ∈ L1, n ≥ 0.

2. E(Dn+1 | Bn) = 0, n = 0, 1, ...

Nota.

1. Notar que si (Dn,Bn)n≥0 es un proceso de diferencias de martingala entonces (Xn,Bn)n ≥ 0
con Xn =

∑n
j=0Dj es una martingala. Recíprocamente, si (Xn,Bn)n ≥ 0 es una martin-

gala, entonces el proceso (Dn,Bn)n≥0 con D0 = X0 − EX0, Dn = Xn −Xn−1, n ≥ 1 es
un proceso de diferencias de martingala.

2. Si (Xn,Bn)n≥0 con Xn =
∑n

j=0Dj y ED2
j < ∞, j ≥ 0, entonces (Dj)j≥0 son ortogonales,

esto es, E(DiDj) = 0, i ̸= j. En efecto, si j > i, se tiene:

E(DiDj) = E(E(DiDj | Bi)) = E(DiE(Dj | Bi)) = 0.

En consecuencia: E(X2
n) =

∑n
j=0E(D2

j ).

Proposición 3.1. Sea (Dn)n≥0 un proceso de diferencias de martingala y (Un)n≥0 con U0 cons-
tante un proceso previsible y acotado. Entonces (UnDn)n≥0 es un proceso de diferencias de
martingala y en consecuencia Xn =

∑n
j=0 UjDj es un martingala. A esta martingala se le llama

martingala transformada.

Demostración.

E(Un+1Dn+1 | Bn) = Un+1E(Dn+1 | Bn) = 0, n = 0, 1, ...

■

Veamos un par de ejemplos en los que usamos las martingalas transformadas.

Ejemplo 3.1 (Modelo de juego). Entendamos Dn como la ganancia en la partida n en un juego
equitativo. Un es la apuesta en la partida n basada en la información hasta el instante n − 1,
Bn−1 = σ(D0, ..., Dn−1). Entonces Xn =

∑n
j=0 UjDj representa la ganancia acumulada en el

tiempo n.
Un ejemplo es

P (Dn = 1) = P (Dn = −1) = 1/2

Un = bn−1(D1, ..., Dn−1) = 2n−1
1{D1=...=Dn−1=−1}

Xn = Xn−1 + UnDn = Xn−1 +Dn2
n−1

1{D1=...=Dn−1=−1}.
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Ejemplo 3.2 (Finanzas). Sean Dn el cambio de precios de una acción en el periodo n− 1, n y
Un el número de acciones del inversor compradas en el tiempo n − 1 basado en la información
hasta el tiempo n− 1. Xn =

∑n
j=0 UjDj , el valor de la cartera del inversor en el tiempo n.

Proposición 3.2. Sea (Xn,Bn)n≥0 un proceso adaptado e integrable. Pongamos D0 = X0 −
E(X0), Dn = Xn − Xn−1, n ≥ 1. Entonces (Xn)n≥0 es una martingala si y solo si para todo
proceso acotado y previsible (Un)n≥0 se tiene:

E(
N∑

n=0

UnDn) = 0, N ≥ 0.

Demostración.
=⇒ ) Es una consecuencia inmediata de la proposición anterior.
⇐= ) Para cada j ≥ 0, sea A ∈ Bj y definamos Un = 0 si n ̸= j + 1 y Uj+1 = 1Aj .

Claramente (Un)n≥0 es acotado y previsible. Por tanto

0 = E(

N∑
n=0

UnDn) = E(Uj+1Dj+1) = E(Dj+11Aj ), N ≥ j + 1.

lo que implica que E(Dj+1 | Bj) = 0 y por tanto (Dn)n≥0 es un proceso de diferencias de
martingala y en consecuencia Xn =

∑
j=0Dj + E(X0) es una martingala. ■

Corolario 3.1. Supongamos que el mercado es viable y que P ∗ es una “equivalent martingale
measure” para {(Sn,Bn), 0 ≤ n ≤ N}. Entonces el proceso (V n(ϕ),Bn)0≤n≤N es una P ∗-
martingala para cada estrategia autofinanciadora ϕ.

Demostración. En virtud del Lema 3.1, si ϕ es autofinanciadora, entonces

V n(ϕ) = V0(ϕ) +
n∑

j=1

(ϕj ,dj).

Como (dn)0≤n≤N es una sucesión de diferencias de P ∗-martingalas (por el Teorema 3.1) se
tiene que (V n(ϕ))0≤n≤N es una P ∗-martingala transformada. ■

3.3. Mercados completos y opciones

En esta sección veremos la definición de mercados completos y las opciones de compra y
venta europeas.

Definición 3.6. Una opción europea es una v.a. X no negativa BN ≡ B-medible.

Entendemos una opción europea X como un derecho que se hace efectivo en el tiempo N . Un
inversor puede elegir comprar o vender estas opciones. El vendedor tiene que pagar al comprador
de la opción, X(ω) unidades (usualmente dólares) en el tiempo N . En esta sección veremos que
un inversor que vende una opción se puede proteger vendiendo la opción en el precio adecuado.
Veamos dos ejemplos de opciones: una de compra y otra de venta.

Ejemplo 3.3 (Opción de compra a precio K (“european call ”)). Esta opción es del tipo X =

(S
(1)
N − K)+. El poseedor (comprador a tiempo 0) tiene el derecho de comprar la acción en el

tiempo N al precio K, que puede ser vendido obteniendo un beneficio de (S
(1)
N −K)+ dólares.

Ejemplo 3.4 (Opción de venta a precio K (“european put”)). Esta opción es del tipo X =

(K − S
(1)
N )+. El poseedor (comprador a tiempo 0) tiene el derecho de vender la acción en el

tiempo N al precio K obteniendo un beneficio de (K − S
(1)
N )+ dólares.
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Definición 3.7. Diremos que una opción europea X es alcanzable si existe una estrategia ϕ tal
que X = VN (ϕ).

Un mercado se dice completo si toda opción europea es alcanzable.

Sea X una opción europea alcanzable usando una estrategia ϕ admisible tal que X = VN (ϕ).
Llamamos V0(ϕ) al precio inicial de la opción.

Si un inversor vende una opción X en el tiempo 0 y gana V0(ϕ) dólares, el inversor puede
invertir esos V0(ϕ) dólares usando la estrategia ϕ para que en el tiempo N tenga VN (ϕ) = X
dólares. Así, aunque el inversor tenga que pagar al comprador X dólares en el tiempo N , el
inversor está cubierto. Veamos si podemos determinar V0(ϕ) sin conocer el valor de ϕ. Suponer
que P ∗ es una “equivalent martingale measure”. Sabemos que {(V n(ϕ),Bn), 0 ≤ n ≤ N es una
P ∗-martingale, luego

E∗(V N (ϕ)) = E∗(V 0(ϕ)) = V 0(ϕ) = V0(ϕ) y E∗(X/S
(0)
N ) = V0(ϕ).

Así, el precio a pagar es E∗(X/S
(0)
N ). Notar que es necesario conocer ϕ, pero sí conocer la

opción europea, el activo libre de riesgo y la “equivalent martingale measure”. Por la propiedad
de martingala:

E∗(V N (ϕ) | Bn) = V n(ϕ), 0 ≤ n ≤ N.

esto es,
Vn(ϕ) = S(0)

n E∗(VN (ϕ)/S
(0)
N | Bn) = S(0)

n E∗(X/S
(0)
N | Bn)

Esto se puede interpretar como que si un inversor vende la opción en el tiempo n, el precio
apropiado de venta es Vn(ϕ) dólares y este precio puede ser determinado como S

(0)
n E∗(X/S

(0)
N |

Bn), por lo que para el precio en el tiempo n no es necesario conocer ϕ, sino solo P ∗, X y el
activo libre de riesgo.

Por último enunciamos el teorema

Teorema 3.2. Suponer que el mercado es viable. Entonces es completo si y solo si existe una
única “equivalent martingale measure”.

Demostración.
=⇒ ) Sea X una opción europea y ϕ admisible con X = VN (ϕ). Por el Lema 3.1, se tiene

que

X

S0
N

= V N (ϕ) = V0(ϕ) +

N∑
j=1

(ϕj ,dj).

Suponer que P1 y P2 son dos “equivalent martingale measures”. Por el corolario ??, se tiene
que

Ei(V N (ϕ)) = Ei(V0(ϕ)) = V0(ϕ), i = 1, 2 puesto que B0 = {∅,Ω}.

Concluimos pues que:

E1

(
X

S0
N

)
= E2

(
X

S0
N

)
, para todo X ≥ 0, X : BN -medible.

Poniendo X = 1AS
0
N , A ∈ BN = B, se tiene que P1(A) = P2(A) para todo A ∈ B.

⇐= ) Suponer por reducción al absurdo que el mercado no es completo. Definimos

H = {U0 +
N∑

n=1

d∑
i=1

ϕ(i)
n d

(i)
n , U0 ∈ B0, ϕ(i)

n , ..., ϕ(d)
n previsibles}.
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En virtud del Lema 3.2, existe (ϕ0
n,≤≤ N), previsible tal que ϕ = {(ϕ(0)

n , ..., ϕ
(d)
n ), 0 ≤ n ≤

N} es autofinanciadora. Puesto que d
0
n, 1 ≤ n ≤ N , se tiene

U0 +
N∑

n=1

d∑
i=1

ϕ(i)
n d

(i)
n = U0 +

N∑
n=1

(ϕn,dn)

y por el Lema 3.1 podemos escribir:

H = {V N (ϕ) : V0(ϕ) = U0, ϕ : autofinanciadora}.

Puesto que el mercado no es completo, existe una opción europea X ≥ 0 tal que VN (ϕ) ̸= X
para todo ϕ admisible. En tal caso X/S0

N /∈ H. De lo contrario existiría una ϕ autofinanciadora
tal que X/S0

N = VN (ϕ)/S0
N , que nos lleva a una contradicción.

Como el mercado es viable, existe P ∗ “equivalent martingale measure”. Consideramos el
espacio L2(P

∗) con producto interior < X,Y >= E∗(XY ). Entonces H es un subespacio vectorial
cerrado, por ser Ω finito, de L2(P

∗) con H ̸= L2(P
∗) según acabamos de ver. Por tanto, existe

Y ̸= 0, Y ∈ H⊥ (complemento ortogonal de H).
Pongamos ∥Y∥ = supω∈Ω

∣∣Y(ω)∣∣ < ∞ y definamos la probabilidad

P ∗∗({ω}) =
(
1 +

Y(ω)

2∥Y∥

)
P ∗({ω}), ω ∈ Ω.

Notemos que:

1.
E∗(Y) = 0 (1 ∈ H y < 1,Y >= 0 si y solo si E∗(Y · 1) = E∗(Y) = 0)

2.

1 +
Y(ω)

2∥Y∥
> 0, ω ∈ Ω (de hecho:

∣∣Y(ω)∣∣
2∥Y∥

≤ 1

2
, ω ∈ Ω).

3. ∑
ω∈Ω

P ∗∗({ω}) = 1 +
1

2∥Y∥
∑
ω∈Ω

Y(ω)P ∗({ω}) = 1 +
1

2∥Y∥
E∗Y = 1.

Concluimos pues que P ∗∗ es una probabilidad con P ∗∗ ≡ P ∗ ≡ P .
Veamos que el proceso (Sn,≤ n ≤ N) es una P ∗∗-martingala, en contradicción con la unicidad

de P ∗.
Para ello haremos uso de la Proposición 3.2 mostrando que:
Sea {(ϕ(1)

n
,..., ϕ

(d)
n ), 0 ≤ n ≤ N} un proceso previsible arbitrario. Gracias al Lema 3.2, pode-

mos adicionar la componente previsible (ϕ
(0)
n , 0 ≤ n ≤ N) haciendo que ϕ = (ϕ

(0)
n , ϕ

(1)
n , ..., ϕ

(d)
n )

sea autofinanciadora con valor inicial V0 = 0. Por tanto:

V n(ϕ) =

n∑
j=1

(ϕj ,dj) y V N (ϕ) ∈ H.

Puesto que Y ∈ H⊥, se tiene:

0 =< V N (ϕ),Y >= E∗(V N (ϕ)Y).

Usando la propiedad de martingala y la ortogonalidad, se tiene:

E∗∗(V N (ϕ) = E∗(V N (ϕ)) +
1

2∥Y∥
E∗(V N (ϕ)Y) = 0 + 0 = 0.

Como el proceso previsible es arbitrario, ello prueba que (Sn, 0 ≤ n ≤ N) es una P ∗∗-
martingala. ■
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Anexo

Teorema (Teorema de la Convergencia Monótona). Sean (Xn)n≥1, X, Y v.a. tales que Xn ≤
Xn+1, n ≥ 1, ĺımn ↑ Xn = X c.s. y E(Xk) > −∞ para algún k ≥ 1, entonces

ĺım
n→∞

↑ E(Xn) = E(X).

Teorema (Teorema de la Convergencia Dominada). Sean (Xn)n≥1, X, Y v.a. tales que Xn
c.s.−−→ X

y |Xn| ≤ Y , n ≥ 1, donde Y es integrable, entonces

ĺım
n→∞

E(Xn) = E(X).

Teorema (Teorema de Radon-Nikodym). Sea (Ω,B, P ) un espacio de probabilidad. Sean ν, P
dos medidas tal que ν ≪ P . Entonces existe una única (casi seguramente) función f : Ω → R
medible tal que

ν(E) =

∫
E
fdP, para todo E ∈ B.

A esta función f se le llama función de densidad y escribiremos f = dν
dP

.

Definición. Sean dos espacios medibles (E,E), (F,F). Si una función P (x,B) = P1(B), x ∈
E, B ∈ F, donde P1 es una probabilidad en (F,F), entonces a la función P (x, ·) se le llama
núcleo estocástico.

Teorema (Teorema de desintegración de probabilidades). Sea Q una probabilidad en (R2,B2).
Denotamos P1(A) = Q(A× R), A ∈ B. Entonces existe un núcleo estocástico P (x, ·) de R en R
tal que

Q(A×B) =

∫
A
P (x,B)dP1(x), A, B ∈ B. (3.3)

Sean P 1(x, ·), P 2(x, ·) dos núcleos estocásticos satisfaciendo (3.3), entonces

A = {x ∈ R | P 1(x,B) = P 2(x,B), B ∈ B}

cumple P1(A) = 1.

Definición. Sea ∅ ≠ B ⊆ P(Ω). Se dice que B es una π-clase si

A ∩B ∈ B, si A,B ∈ Ω

Se dice que B es una λ-clase si:

1. Ω ∈ B.

2. A\B := A ∩B ∈ B si A,B ∈ B con B ⊆ A.

3. ∞
n=1

↑ An ∈ B, si (An)n≥1 ⊂ B es una colección creciente de conjuntos.

Teorema (π-λ de Dynkin.). Sea D una π-clase y A una λ-clase con D ⊆ A. Entonces σ(D) ⊆ A.

Teorema (Desigualdad de Markov). Si X es una variable aleatoria no negativa tal que existe
E(X), se tiene

P (X ≥ ε) ≤ E(X)

ε
, para todo ε > 0
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