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Resumen

La topoloǵıa algebraica introduce nociones de álgebra para simplificar problemas de topoloǵıa
tales como saber si dos espacios topológicos pueden ser o no ser homeomorfos. En palabras
de Lescheftz [7], la teoŕıa de homoloǵıa es la herramienta de mayor utilidad jamás creada en
topoloǵıa. Combina invariantes topológicos como el número de componentes conexas o el primer
grupo fundamental abelianizado. Como el t́ıtulo indica, la homoloǵıa simplicial y sus aplica-
ciones tanto teóricas como aplicadas, van a ser las protagonistas en los siguientes caṕıtulos.

En el primero, introduciremos el complejo simplicial, |K|, una estructura formada por
śımplices, capaz de discretizar un subespacio topológico triangulable del espacio eucĺıdeo. Su
realización topológica, llamada poliedro, |K|, es homeomorfa al original. Cabe destacar la ex-
istencia de las aplicaciones simpliciales entre complejos simpliciales. Relacionan śımplices de
manera lineal y un resultado conocido como Teorema de aproximacion simplicial permite, valga
la redundancia, aproximar aplicaciones continuas entre dos complejos f : |K| → |L|, por medio
de una aplicación simplicial cuyo dominio es un complejo más “fragmentado”, s : |Km| → |L|.
Esta propiedad resultará clave para demostrar la invarianza bajo homotoṕıa de los grupos de
homoloǵıa.

En el segundo caṕıtulo se introduce la homoloǵıa simplicial. Asociaremos una colección de
grupos abelianos a un complejo simplicial K. El grupo de q-cadenas, Cq(K), es el grupo libre
cuyo conjunto generador es el conjunto de śımplices orientados de dimensión q. Definiremos las
aplicaciones borde, ∂q : Cq(K) → Cq−1(K), que permiten construir una estructura algebraica de
complejo de cadenas, C(K). Usando el Teorema 2.1, asociaremos a cada complejo de cadenas
sus grupos de homoloǵıa. Se mostrará el cálculo de la homoloǵıa para algunos complejos sim-
pliciales y de este modo nos familiarizaremos con las partes libres y de torsión.
En las siguientes secciones, el objetivo será demostrar la invarianza bajo homotoṕıa para poder
afirmar que los grupos de homoloǵıa son invariantes topológicos. Haremos uso de diagramas
conmutativos y herramientas de álgebra homológica que relacionaremos con nuestro particular
contexto.

Estos caṕıtulos siguen como fuente principal [1], salvo en la Sección 2.4 que se usa [10] dado
que evita introducir el concepto de subdivisión estelar. El resto de materiales se han mencionado
para suplementar con visiones alternativas de la teoŕıa o para ofrecer recursos complementarios
al lector. Debemos destacar que en ambos caṕıtulos hay ciertos resultados más cercanos al área
de análisis que hemos decidido referenciar sus demostraciones en [1] por falta de espacio, pero
que sin embargo son resultados clave en homoloǵıa simplicial.

El último caṕıtulo está dedicado a la homoloǵıa persistente. Dada una nube de datos, es de-
cir, un conjunto de puntos n-dimensionales, construiremos una filtración. Esta es una sucesión
creciente de complejos simpliciales que se construyen siguiendo una regla de distancia eucĺıdea.
Aqúı presentaremos dos: el complejo de Čech y el de Rips. Dada una filtración, consideraremos
su complejo de persistencia, integrado por los complejos de cadenas asociados a cada parámetro
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iv Resumen

y relacionados por aplicaciones identidad. Por último, calcularemos la homoloǵıa persistente del
complejo de persistencia y mostraremos los resultados en lo que se conoce como código de barras.
La justificación rigurosa de los grupos de homoloǵıa persistente se basa en la construcción de
un módulo graduado que garantiza la existencia de bases compatibles en los distintos grupos de
homoloǵıa de la filtración con el mismo orden. Esto se consigue flexibilizando la definición de
grupo de cadenas a R-módulos, donde R es un DIP.

Para concluir quiero mencionar que el uso de los colores en este trabajo no tiene una función
decorativa, sino que pretende guiar al lector en las demostraciones y facilitar su comprensión.



Contents

Resumen iii

1 Simplicial Complexes 1
1.1 Simplices and simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Maps between simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Simplicial Homology 7
2.1 Associating groups to a simplicial complex . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Computing homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Tools from homological algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Invariance of homology groups under barycentric subdivision . . . . . . . . . . . 14
2.5 Invariance of homology groups under homotopy type . . . . . . . . . . . . . . . . 16

3 Topological Data Analysis 21
3.1 From a point cloud to a simplicial complex . . . . . . . . . . . . . . . . . . . . . 21
3.2 Persistent homology and barcodes . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 27

v





Chapter 1

Simplicial Complexes

The foundations of Simplicial Homology

Our first step is to replace complex topological spaces with simpler constructions called sim-
plicial complexes. This procedure can be viewed as a discretization of infinite euclidean spaces
since we will no longer work with the infinite set of points. Instead we will identify a finite set
of points and work with “construction blocks” formed by subsets of it: simplices.

1.1 Simplices and simplicial complexes

Definition (Points in general position).
Let En denote the euclidean space Rn with the usual topology and let v0, v1, . . . , vk ∈ En, the
hyperplane spanned by k points consists of all linear combinations λ0v0+λ1v1+ · · ·+λkvk where
all λi ∈ E and

∑k
i=0 λi = 1.

The points are in general position if any subset of them spans a strictly smaller hyperplane, or
equivalently, v1 − v0, v2 − v0, . . . , vk − v0 are linearly independent.

Definition (k-simplex).
Given k + 1 points v0, v1, . . . , vk ∈ En in general position, we call the smallest convex set con-
taining them a simplex of dimension k, or a k-simplex and we denote it by (v0, v1, . . . , vk). The
points v0, v1, . . . , vk are called the vertices of the simplex.
Recall that x lies in the smallest convex set containing v0, v1, . . . , vk if and only if x = λ0v0 +
λ1v1 + · · ·+ λkvk where all λi ≥ 0 and

∑k
i=0 λi = 1.

With this geometrically-intuitive definition we can visualize low-dimensional simplices:

k Interpretation of a k-simplex

0 Point
1 Segment
2 Triangle
3 Tetrahedron

Definition (Face of a simplex).
If A and B are simplices and if the vertices of B form a subset of the vertices of A, then we say
that B is a face of A and denote it by B < A.

1



2 Chapter 1. Simplicial Complexes

Definition (Simplicial complex, subcomplexes and dimension).
A finite collection of simplices K in some euclidean space En is called a simplicial complex if
whenever a simplex lies in the collection then so does each of its faces, and whenever two sim-
plexes of the collection intersect they do so in a common face. It is natural to define a subcomplex
of K as the subcollection of simplices which itself forms a simplicial complex, as well as defining
the dimension of a simplicial complex to be the maximum of the dimensions of its simplices.

This definition illustrates a set of simplices where intersections can be thought of as glueing
k-simplices with k-simplices. Below we find some drawn examples of sets of simplices which
intersect in both ways.

a

b

c

d

e f

a

b

c

d
e

f

g

h

Figure 1.1: The first case is not a simplicial complex, but so the second is. Indeed it contains 8,
0-simplices; 12, 1-simplices; 5, 2-simplices and 1, 3-simplex.

Definition (Closure of a simplex).
The closure of a k-simplex σ, Cl(σ), is the complex consisting of σ and all its faces.

K

v CK

Figure 1.2: Starting from the simplicial complex
K, we add the simplices colored in blue and the
3-simplex to obtain the cone CK.

The terminology is accurate as Cl(σ) is
the smallest simplicial complex containing
σ. Intuitively, one can think of the closure
of a 3-simplex as the result of joining every
vertex of the closure 2-simplex, with a new
vertex (in general position with the other
three) acting as the apex of a tetrahedron.
Then adding the lateral faces, new edges
and the new vertex. A similar construc-
tion can be considered if we replace the
closure of a 2-simplex by any simplicial
complex to act as the base the cone.

Definition (Cone on a simplicial complex).
Let K be a simplicial complex in En and think of its inclusion in En+1 as points whose last
coordinate is 0. We shall now construct a new simplicial complex in En+1 called the cone on K
and denoted by CK.
Let v = (0, . . . , 0, 1) ∈ En+1. If A is a k-simplex of K, with vertices v0, v1, . . . , vk, the points
v0, v1, . . . , vk, v are in general position so we get a (k+1)-simplex in En+1. We call it the join of
A to v. Our cone CK consists of the initial simplexes of K, the join of each of these simplices
to v, and the 0-simplex v itself. We leave it to the reader to verify that the resulting set of
simplices is a simplicial complex.
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So far we have defined simplicial complexes in En, but little have we stated about the desired
topological properties. The definition below gives a topological meaning to these objects.

Definition (Polyhedron).
The union of simplexes which make up a simplicial complex is itself a subset of the euclidean
space and can therefore be made into a topological space by giving it the subspace topology.
This topological space is called the polyhedron of K and it is denoted by |K|.

The concept of polyhedron is key if we want to relate simplicial complexes to the topological
spaces they are built from by, somehow, “triangulating” the latter.

Definition (Triangulation of a topological space).
A triangulation of a topological space X consists of a simplicial complex K and a homeomor-
phism h : |K| → X.

For example, let K be a triangulation of the torus. It is a simplicial complex made up of 9,
0-simplices; 27, 1-simplices and 18, 2-simplices.

v1

v1

v2

v2

v3

v3

v7 v8 v9 v7

v4 v5 v6 v4

v1

v1

Figure 1.3: A triangulation of the torus, K, with its embedding in E3. Image credit to [2].

Despite having forgotten all the geometric properties from simplices such as size, we will be
quite interested in subdivision processes of simplices. Thereby we shall introduce an algorithm
to obtain similar simplicial complexes with more simplices but smaller in diameter.

Definition (Barycentre and barycentric coordinates).
If A is a simplex with vertices v0, v1, . . . , vk then each point x ∈ A has a unique expression of
the form x = λ0v0 + λ1v1 + · · ·+ λkvk. We call {λi | i = 0, 1, . . . , k} the barycentric coordinates

of x and the barycentre of the simplex A is the point Â =
1

k + 1
(v0 + v1 + · · ·+ vk).

Thus, the barycentre of a 0-simplex is the vertex itself, the middle point in the case of a
1-simplex and so on.



4 Chapter 1. Simplicial Complexes

Definition (Barycentric subdivision).
Given a simplicial complex in En, K, we want to create a new simplicial complex K1 such that
|K1| = |K| but whose simplexes have a smaller diametre.
The vertices of K1 are precisely the barycentres of the simplexes of K, the vertices of K are
included since they are the barycentre of their own 0-simplex.
A collection of k+1 such barycentres σ̇0, . . . , σ̇k of σ0, . . . , σk simplices of K, are the vertices of a
k-simplex in K1 if στ(0) < στ(1) < · · · < στ(k) for some permutation τ of the integers 0, 1, . . . , k.
Lastly we should check that the vertices defining simplices are in general position. It stems
directly from the algorithm since σ̇τ(i) lies off the hyperplane spanned by σ̇τ(0), . . . , σ̇τ(i−1).
We define the m-th barycentric subdivision Km of K inductively as the barycentric subdivision
of the (m− 1)-th barycentric subdivision, i.e. Km = (Km−1)1.

Figure 1.4: Performing the first barycentric subdivision on a simplicial complex made up of 4,
0-simplices; 5, 1-simplices and 1, 2-simplex.

As a consequence from the definition, we are replacing every q-simplex σ with a cone Cσ̃
with apex σ̇, where σ̃ is the simplicial complex containing the barycentric subdivisions of every
(q−1)-simplex in Cl(σ). No two vertices of K form a 1-simplex in any of its subdivisions. In the
next section, we will be required to replace a simplicial complex by another one with the same
polyhedra but suficiently small simplices. In that context, the barycentric subdivision procedure
will be a meaningful tool.

1.2 Maps between simplicial complexes

Given two topological spaces and their triangulations r : |K| → X and s : |L| → Y . Any map
f : X → Y induces a map s−1fr : |K| → |L|. However, we would be interested in maps that
maintain properties from one simplicial complex into the other, the same way group homomor-
phisms do with the respective group operations.

Definition (Interior of a simplex and carrier of a point).
Let A be a simplex in En with vertices v0, v1, . . . , vk. We define the interior of A to consist of
those points x ∈ A such that x = λ0v0 + λ1v1 + · · ·+ λkvk where all λi > 0 and

∑k
i=0 λi = 1.

In addition, it is clear that any point of x ∈ |K| lies in the interior of exactly one simplex of K
which we will call the carrier of x. The latter is the smallest simplex of K containing x.

Definition (Simplicial map).
Let K and L be simplicial complexes. A map s : |K| → |L| is called simplicial if s takes simplices
of K linearly onto simplices of L.
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The condition of linearity implies that if A is a simplex of K with vertices v0, v1, . . . , vk and
x = λ0v0+λ1v1+· · ·+λkvk then s(x) = λ0s(v0)+λ1s(v1)+· · ·+λks(vk). Hence, a simplicial map
is completely determined by the image of the vertices. Besides, simplicial maps are continuous.
Note that s(A) may have a lower dimension than A since we do not require s to be injective.
From the point of view of category theory1, we have just created a category Csim whose objects
are simplicial complexes and its morphisms are simplicial maps between them.

We are interested as well in finding simplicial maps which bear some resemblance with a
given map between two polyhedra.

Definition (Simplicial approximation of a map).
Let f : |K| → |L| be a continuous map. A simplicial map s : |K| → |L| is said to be a simplicial
approximation of f if s(x) lies in the carrier of f(x) for each x ∈ |K|.

Remark

The definition above does not state that s(x) and f(x) have the same carrier. Actually, it
says that the carrier of s(x) is a face of the carrier of f(x). We will denote this situation
by s(x) ≤ f(x).

Simplicial approximations do not always exist (see [1], page 129). However, we can prove
the following:

Theorem 1.1 (Simplicial approximation theorem). Let f : |K| → |L| be a continuous map be-
tween polyhedra. For m large enough, there exists a simplicial approximation s : |Km| → |L| to
f : |Km| → |L|.

The proof of this theorem requires previous definitions and lemmas which take us longer
than what we can afford in this work, but they can be found in [1]. The lemma proved below
will be required in a future theorem of Chapter 2.

Lemma 1.2. If s : |Km| → |L| is a simplicial approximation of f : |K| → |L| and t : |L| → |M |
is a simplicial map, then t ◦ s is a simplicial approximation of t ◦ f . In particular, simplicial
maps preserve the ≤ relation introduced in the remark.

Proof. Assume σ = (v0, . . . , vk) is the carrier of x. Since s is a simplicial approximation of f we
get s(x) = λ0s(v0) + · · ·+ λks(vk) ≤ f(x) = µ0s(v0) + · · ·+ µks(vk) + µk+1wk+1 + · · ·+ µmwm.
Applying t, t(s(x)) = λ0t(s(v0)) + · · ·+ λkt(s(vk)) and t(f(x)) = µ0t(s(v0)) + · · ·+ µkt(s(vk)) +
µk+1t(wk+1) + · · · + µmt(wm). Hence t(s(x)) ≤ t(f(x)), ∀x ∈ |Km| and t ◦ s is a simplicial
approximation of t ◦ f .

We are ready to introduce simplicial homology in the next chapter.

1In [4] they follow a categorical approach of simplicial homology, treating triangulations and homology groups
as functors.





Chapter 2

Simplicial Homology

A bridge between algebra and topology

The task of telling when two given topological spaces are homeomorphic is a deeply discussed
topic in topology. One tool used in algebraic topology is the fundamental group: being home-
omorphic implies having isomorphic fundamental groups. However, the reciprocal is not true.
For example, S3 and S4 have the same fundamental groups, but they are not homeomorphic. In
an attempt to overcome this difficulty, we introduce a new invariant based on the triangulation
of a topological space: homology groups.

2.1 Associating groups to a simplicial complex

Let K be a finite simplicial complex. We are aiming to construct a group structure whose gen-
erators are precisely the q-simplices of K. Given a q-simplex, q > 0, there are (q + 1)! different
orderings of its vertices. We choose to identify them up to even permutations, leaving us two
canonical orderings: (v0, v1, . . . , vq) and (v1, v0, . . . , vq). These orderings are called orientations
and a simplex with an explicit orientation is an oriented simplex. The two orientations of a
simplex are said to be opposite to each other and it is expressed via their corresponding oriented
simplices (v0, v1, . . . , vq) = −(v1, v0, . . . , vq). For 0-simplices there is only one orientation. We
have gathered enough algebraic foundations to define groups on our complex.

Definition (Cq(K), q-th chain group of K).
Let K be a simplicial complex. We define the q-th chain group of K, Cq(K) as the free abelian
group generated by the oriented q-simplices of K, subject to the relations σ + (−σ) = 0 where
σ is an oriented q-simplex. Elements of this group are referred to as q-dimensional chains.
Note that Cq(K) is a free abelian group with rank equal the number of simplicial complexes in
K. Besides, bear in mind that −λσ = λ(−σ) holds for all λ ∈ Z and σ an oriented q-simplex.

In algebra the functorial approach plays the starring role: once we have some groups we
must find homomorphisms between them. One strategy to define a homomorphism between
chain groups is specifying the value on each generator simplex, check that the relations are
preserved and extend linearly.
Given the oriented q-simplex (v0, v1, . . . , vq), there is an induced orientation on its (q− 1)-faces.
The orientation of the (q− 1)-face (v0, v1, . . . , v̂i, . . . , vq), whose vertices are all but vi, is defined
by (−1)i(v0, v1, . . . , vi−1, vi+1, . . . , vq). The motivation behind this choice lies in the following
definition.

7



8 Chapter 2. Simplicial Homology

Definition (∂q, boundary homomorphism).
The boundary of an oriented q-simplex is defined to be the (q−1)-chain determined by the sum of
it (q−1)-dimensional faces, each taken with the orientation induced from that on the whole sim-
plex. Explicitly, ∂q : Cq(K) → Cq−1(K) via ∂q(v0, v1, . . . , vq) =

∑q
i=0(−1)i(v0, v1, . . . , v̂i, . . . , vq).

Extending by linearity, ∂q (
∑

i λiσi) =
∑

i λi∂q(σi).
In order for it to be a group homomorphism, we should check that the relation σ + (−σ) = 0 is
preserved, i.e., ∂q(−σ) = −∂q(σ). Indeed,

∂q(−σ) = ∂q(v1, v0, . . . , vq) =

q∑
i=0

(−1)i(v1, v0, . . . , v̂i, . . . , vq) =

= −
q∑
i=0

(−1)i(v0, v1, . . . , v̂i, . . . , vq) = −∂q(σ)

In the special case when q = 0, we define the boundary of a single vertex to be 0 and set
C−1(K) = 0.

Definition (Zq(K), group of q-cycles of K and Bq(K), group of bounding q-cycles of K).
Let us call the kernel of ∂q the group of q-cycles of K and denote it by Zq(K) and also call the
image of ∂q+1 the group of bounding q-cycles of K and denote it by Bq(K).

In this case, the names of both groups are anticipating the next result: every bounding
q-cycle is also a q-cycle.

Theorem 2.1. Given any simplicial complex K, Bq(K) is a subgroup of Zq(K), or equivalently
∂q ◦ ∂q+1 = 0, ∀q.

Proof. Let (v0, v1, . . . , vq+1) be a q + 1-simplex of K. Now,

[∂q ◦ ∂q+1](v0, v1, . . . , vq) =

= ∂q

(
q+1∑
i=0

(−1)i(v0, v1, . . . , v̂i, . . . , vq+1)

)
=

q+1∑
i=0

(−1)i∂q(v0, v1, . . . , v̂i, . . . , vq+1) =

=

q+1∑
i=0

(−1)i

 i∑
j=0

(−1)j(v0, v1, . . . , v̂j , . . . , v̂i, . . . , vq+1) +

q+1∑
j=i+1

(−1)j−1(v0, v1, . . . , v̂i, . . . , v̂j , . . . , vq+1)

 =

(a)
=

q+1∑
i=0

(−1)i0 = 0

In (a) all the terms in pairs since each oriented (q− 1)-simplex appears twice, once positive and
once negative.

Since chain groups are abelian, subgroups generate quotient groups. The above theorem
allows us to build the core elements of simplicial homology.

Definition (Hq(K), q-th homology group of K).
Given a simplicial complex K, we define its q-th homology group as

Hq(K) =
Zq(K)

Bq(K)
=

ker ∂q
Im ∂q+1
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The element of Hq(K) determined by a q-cycle z is called the homology class of z and denoted
by [z]. Recall that any two elements x, y ∈ Hq(K) satisfy x = y+w, where w ∈ Bq(K) and they
are called homologous cycles. Homology groups are by construction finitely generated abelian
groups hence each of them is isomorphic to Zpa11 ⊕ · · · ⊕ Zpakk ⊕ Zn for some primes p1, . . . , pk
and a1, . . . , ak, k, n ∈ Z. The rank of the finitely generated free abelian group Zn is called the
q-th Betti number of K, denoted by βq = n.

At first sight, these groups could be deeemed too abstract. Indeed, that is the case for higher
values of q, but for the case q = 0 it behaves as a counter of connected components:
Given any simplicial complex K, by the definition of ∂0 as the zero map, Z0(K) = ker ∂0 =
C0(K). Notice that the latter is defined to be the free abelian group generated by the vertices
of K. In the case of bounding 0-cycles, B0(K), one can observe that two vertices, say u, v con-
nected by an edge a = (u, v) generate the bounding q-cycle ∂1(a) = v − u. Hence, homologous
points are the ones connected by paths. In other words, when quotienting by B0(K) we are
identifying points which can be reached using 1−simplexes. We have proved this result.

Proposition 2.2. If K is a simplicial complex, then H0(K) is a free abelian group whose rank is
the number of connected components of |K|.

2.2 Computing homology

Once we have introduced the theoretical construction of homology groups is time to compute
them for a specific simplicial complex. For this first example we choose a triangulation of the
real projective plane, we denote by P (see Figure 2.1).

1

3

2

5

0

4

0

1 2

Figure 2.1: A triangulation of the real pro-
jective plane, P , made up of 6, 0-simples;
15, 1-simplices and 10, 2-simplices.

We will not undertake a deep analysis1 to show
that indeed Figure 2.1 is homeomorphic to the real
projective plane. Nevertheless P bears some re-
semblance with the latter, recalling the descrip-
tion of the projective plane as the unit circle with
diametrically opposed points identified. |P | is a
connected space hence H0(P ) ≃ Z. In addition,
Cq(P ) = 0, ∀q > 2 implying thatHq(P ) = 0, ∀q >
2. The two remaining homology groups must be
computed through calculations.
Take a 2-cycle, i.e. c2 ∈ Z2(P ). If c2 has n(0, 1, 3)
as a summand, the only way to cancel out the term
n(3, 0) in n∂2(0, 1, 3) = n(0, 1) + n(1, 3) + n(3, 0)
is to include the summand n(0, 3, 2) in c2. Ap-
plying this argument several times leaves us with
c2 = n(0, 1, 3) + n(0, 3, 2) + n(1, 4, 3) + n(3, 4, 5) +
n(2, 3, 5) + n(1, 2, 4) + n(2, 0, 4) + n(0, 5, 4) +
n(0, 1, 5) + n(1, 2, 5). All 2-simplices of P with
coefficient n and oriented with clock-wise direc-
tion. Therefore, computing its boundary we obtain
∂2(c2) = 2n(0, 1)+2n(1, 2)+2n(2, 0), different from
0 unless n = 0. Thus Z2(P ) = 0 and H2(P ) = 0.

1The issue is discussed with all details in [6]
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Let us now compute H1(P ). We claim that every 1-cycle is homologous to a multiple of c1 =
(0, 1) + (1, 2) + (2, 0). Assume c =

∑
(i,j)∈J αij(i, j) ∈ Z1(P ), where J = {(i, j) | 0 ≤ i < j ≤ 5}.

We will start adding to c multiples of 2-chain boundaries (remaining in the homology class of c)
aiming to cancel out all the 1-chains with vertices 3, 4 or 5.

d = c + α03 ∂2(0, 1, 3)

+ (α03 + α13) ∂2(1, 4, 3)

+ (α03 + α13 − α34) ∂2(3, 4, 5)

+ (α03 + α13 − α34 − α35) ∂2(2, 3, 5)

Hence d is homologous to c, since with each bound-
ary summand we remove the edges (0, 3), (1, 3),
(3, 4), (3, 5) respectively. Despite five edges being
incident with the vertex 3 we have only removed
explicitly four edges, all of them but (2, 3). This
one has coefficient −α03 −α13 −α23 +α35 +α45 in
d, which equals 0 since it is the coefficient of (3) in
∂1(c) = 0.

e = d + (α03 + α13 + α14) ∂2(1, 2, 4)

+ (α03 + α13 + α14 + α24) ∂2(2, 0, 4)

+ (−α03 − α13 + α34 − α45) ∂2(0, 5, 4)

+ (α03 + α13 − α34 − α25 − α35) ∂2(1, 2, 5)

+ (α03 + α13 − α34 − α15 − α25 − α35) ∂2(0, 1, 5)

= k0(0, 1) + k1(1, 2)− k2(0, 2), ki ∈ Z

Following the pattern described
before we end up with e. Ob-
serve that e is also a 1-cycle, hence
k0 = k1 = k2.
We leave it to the reader to ver-
ify [c1] ̸= [0]. When studying
H2(P ) we found out that 2c1 ∈
B1(P ). For that reason, H1(P ) ≃
Z2.

Unlike in the previous example, where we computed homology2 for a specific simplicial
complex, we are now going to compute the homology groups of the closure of a (n+1)-simplex,
∆n+1, in a more general way.

Previously, when we defined the cone of a simplex, we stated that ∆3 is merely the cone
of ∆2. This property can be generalised: any ∆n+1 is the cone of some ∆n. Therefore, it is
possible to study the homology groups of ∆n+1 via their conic structure. First, let us introduce
a preliminary result.

Lemma 2.3. Let K be a cone, i.e. K ≃ CL for some complex L whose dimension is one less
than that of K, and let v be the apex of K. For q > 0, define dq : Cq(K) → Cq+1(K) mapping
a generator q-simplex σ = (v0, . . . , vq) as follows (extend by linearity):

dq(σ) =

{
(v, v0, . . . , vq) if σ ̸= 0 lies in L.
0 otherwise.

Notice that dq(σ) = 0 for q > dim(L). Then:
1) dq is a well-defined group homomorphism.
2) ∂q+1(dq(σ)) = σ − dq−1(∂q(σ)).

Proof. The value of d does not depend on the ordering of the vertices, but on the orientation
of the simplex. Besides, it satisfies dq(σ) + dq(−σ) = 0, hence it is a well-defined group homo-
morphism. Finally, let us prove 2):
If σ lies in L,

∂q+1(dq(σ)) = ∂q+1(v, vo, . . . , vq) = (v0, . . . , vq)+

q∑
i=0

(−1)i+1(v, v0, . . . , v̂i, . . . , vq) = σ−dq−1(∂q(σ))

If σ does not lie in L, assume v0 = v,

2In [15] an algorithm for computing homology groups is presented.
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σ − dq−1(∂q(σ)) = (v, v1, . . . , vq)− dq−1[(v1, . . . , vq)]− dq−1

(
q∑
i=1

(−1)i(v1, . . . , v̂i, . . . , vq)

)
=

= σ − σ − 0 = 0 = ∂q+1(dq(σ))

Proposition 2.4. Let K be a cone, then H0(K) ≃ Z and Hq(K) = 0 for q > 0.

Proof. A cone is a connected space, so H0(K) ≃ Z. Now, applying Lemma 2.3, take z ∈ Zq(K),
z = z − 0 = z − dq−1(∂q(z)) = ∂q+1(dq(z)), hence Zq(K) = Bq(K) for q > 0.

Corollary 2.5. H0(∆
n+1) ≃ Z and Hq(∆

n+1) = 0, for q > 0 and n ≥ 0.

So far we have seen how to associate a simplicial complex to a topological space (by taking
a triangulation) and defined homology groups that depend on that specific simplicial complex.
However a topological space might be triangulated in different ways. For that reason we cannot
yet associate homology groups to topological spaces. During the next sections we are going to
develop the theory to prove that the homology groups obtained by two different triangulations
of the same space must coincide.

2.3 Tools from homological algebra

The path we are due to follow requires a robust algebraic setup. In this section we consider the
previously defined topological concepts and investigate their properties as algebraic construc-
tions. Indeed, chain groups and boundary maps will be linked together to form a chain complex
and simplicial maps will give rise to chain maps. Thus, we will develop results to be applied to
the corresponding simplicial objects. This will be done at the end of the section (and throughout
the next one) being able to mix two elements that had been previously discussed seperately:
simplicial maps and homology groups.

Definition (Chain complex and its homology).
A chain complex in the category Grp is a (possibly infinite) sequence of groups and group
homomorphisms,

C ≡ . . . Cq+1 Cq Cq−1 . . .
∂q+2 ∂q+1 ∂q ∂q−1

where ∂q ◦ ∂q+1 = 0, ∀q, i.e. Im(∂q+1) ⊆ ker(∂q). The quotient Hq(C) =
ker ∂q
Im ∂q+1

is known as

the q-th homology group of C.

Definition (Chain map).
A chain map ϕ : C → D is a collection of maps ϕq : Cq → Dq, ∀q such that the following diagram
commutes

. . . Cq+1 Cq Cq−1 . . .

. . . Dq+1 Dq Dq−1 . . .

∂Cq+2

⟲

∂Cq+1

ϕq+1

∂Cq

ϕq ⟲⟲

∂Cq−1

ϕq−1 ⟲
∂Dq+2 ∂Dq+1 ∂Dq ∂Dq−1
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In other words, ∂Dq ◦ ϕq = ϕq−1 ◦ ∂Cq , ∀q.

Since chain maps are defined on chain complexes, it would be useful to induce maps on
their corresponding homology groups. The next result proves that, indeed, chain maps meet the
desired property.

Proposition 2.6. If ϕ : C → D is a chain map, then ϕ induces a group homomorphism in the
q-th homology groups

ϕq∗ : Hq(C) → Hq(D), such that ϕq∗(x+ Im ∂Cq+1) = ϕq(x) + Im ∂Dq+1

Proof. It suffices to shows that the map is well-defined, which translates into checking these
inclusions:

∂Dq
(
ϕq
(
ker ∂Cq

))
= ϕq−1

(
∂Cq
(
ker ∂Cq

))
= 0, hence ϕq(ker ∂

C
q ) ⊂ ker ∂Dq

ϕq
(
Im ∂Cq+1

)
= ϕq

(
∂Cq+1 (Cq+1)

)
= ∂Dq+1 (ϕq+1 (Cq+1)) ⊂ Im ∂Dq+1

In addition, we must prove that the image of a class does not depend on its representative:
Let y ∈ x+ Im ∂Cq+1, then y = x+ c for some c ∈ Im ∂Cq+1.

ϕq∗(y + Im ∂Cq+1) = ϕq(y) + Im ∂Dq+1 = ϕq(x) + ϕq(c) + Im ∂Dq+1 = ϕq(x) + Im ∂Dq+1

Lemma 2.7. If ψ : D → E is another chain map, then ψ ◦ ϕ : C → E is a chain map and
(ψ ◦ ϕ)q∗ = ψq∗ ◦ ϕq∗ : Hq(C) → Hq(E).

Cq+1 Cq

Dq+1 Dq

Eq+1 Eq

∂Cq+1

ϕq+1 ϕq⟲
∂Dq+1

ψq+1 ψq⟲

∂Eq+1

Proof. Showing that ψ ◦ ϕ is a chain map requires verifying the commu-
tativity of the paths. We use the commutativity of the two squares:

(ψ ◦ ϕ)q ◦ ∂Cq+1 = ψq ◦ ϕq ◦ ∂Cq+1 = ψq ◦ ∂Dq+1 ◦ ϕq+1 =

= ∂Eq+1 ◦ ψq+1 ◦ ϕq+1 = ∂Eq+1 ◦ (ψ ◦ ϕ)q+1

In addition,
(ψ ◦ ϕ)q∗(x+ Im ∂Cq+1) = (ψ ◦ ϕ)q(x) + Im ∂Eq+1 = ψq(ϕq(x)) + Im ∂Eq+1

(ψq∗ ◦ϕq∗)(x+ Im ∂Cq+1) = ψq∗(ϕq(x)+ Im ∂Dq+1) = ψq(ϕq(x))+ Im ∂Eq+1

Definition (Chain homotopy).
Let ϕ, ψ : C → D be chain maps. A chain homotopy d : C → D between ϕ and ψ is a collection
of homomorphisms dq : Cq → Dq+1 such that ϕq − ψq = ∂Dq+1 ◦ dq + dq−1 ◦ ∂Cq , ∀q. If such a
homotopy exists, we say that ϕ and ψ are homotopic chain maps.

. . . Cq+1 Cq Cq−1 . . .

. . . Dq+1 Dq Dq−1 . . .

∂Cq+2

dq
+
1

∂Cq+1

ϕq+1 ψq+1

dq

∂Cq

ϕq ψq
dq

−1

∂Cq−1

ϕq−1 ψq−1
dq

−2

∂Dq+2 ∂Dq+1 ∂Dq ∂Dq−1

The chain homotopy relation was designed explicitly to produce this result.
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Proposition 2.8. If ϕ is chain homotopic to ψ, then ϕq∗ = ψq∗, ∀q

Proof. Let z ∈ ker ∂Cq , we want to show that

ϕq∗(z + Im ∂Cq+1) = ψq∗(z + Im ∂Cq+1) ⇐⇒ ϕq(z)− ψq(z) ∈ Im ∂Dq+1

Indeed,

ϕq(z)− ψq(z) = ∂Dq+1(dq(z)) + dq−1(∂
C
q (z)) = ∂Dq+1(dq(z)) ∈ Im ∂Dq+1

Definition (Chain equivalent complexes).
Two chain complexes C and D are said to be equivalent if there are chain maps ϕ : C → D and
µ : D → C such that µ ◦ ϕ and ϕ ◦ µ are chain homotopic to IdC : C → C and IdD : D → D
respectively.

Proposition 2.9. Chain equivalent complexes C and D have isomorphic homology groups in
corresponding dimensions.

Proof. If ϕ and µ are the chain maps required by the definition, using Lemma 2.7 we obtain{
IdHq(C) = (µ ◦ ϕ)q∗ = µq∗ ◦ ϕq∗.
IdHq(D) = (ϕ ◦ µ)q∗ = ϕq∗ ◦ µq∗.

As a direct consequence ϕq∗ : Hq(C) → Hq(D) is an isomorphism for every q.

Remark

In our simplicial setting, we will denote chain complexes induced by chain groups of a
simplicial complex K and chain maps between them as follows:

C(K) ≡ . . . Cq+1(K) Cq(K) Cq−1(K) . . .
∂q+2 ∂q+1 ∂q ∂q−1

ϕ : C(K) → C(L)

Now, as the introduction of this section suggested, we aim to use Proposition 2.6 in the
scenario where chain complexes are given by chain groups of simplicial complexes related by a
simplicial map s : |K| → |L|.

Theorem 2.10. Any simplicial map s : |K| → |L| induces a chain map s : C(K) → C(L) and
homomorphisms in the homology groups sq∗ : Hq(K) → Hq(L), ∀q.

Proof. We shall begin by defining a chain map from C(K) to C(L) using s.
Let sq : Cq(K) → Cq(L) be a homomorphism which acts on a generator q-simplex σ = (v0, . . . , vq)
as follows (extend by linearity):

sq(σ) =

{
(s(v0), . . . , s(vq)) if all the vertices s(v0), . . . , s(vq) are distinct.
0 otherwise.

We are reduced to proving that this chain map commutes with the boundary operators.
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Cq(K) Cq−1(K)

Cq(L) Cq−1(L)

∂q

sq sq−1

∂q

The case when all the vertices s(v0), . . . , s(vq) are distinct is clear,
hence we will show the remaining one. Suppose s(vj) = s(vk),
where j < k. Thus, ∂q(sq(σ)) = 0. All terms in the sum

sq−1(∂q(σ)) =

q∑
i=0

(−1)isq−1(v0, . . . , v̂i, . . . , vq)

vanish except (−1)jsq−1(v0, . . . , v̂j , . . . , vq) and (−1)ksq−1(v0, . . . , v̂k, . . . , vq) (only if vj and vk
are the only vertices identified by s, otherwise all terms cancel out). Observe that:

sq−1(v0, . . . , v̂j , . . . , vq) = (s(v0), . . . , ŝ(vj), . . . , s(vq)) =

= (−1)k−j−1(s(v0), . . . , ŝ(vk), . . . , s(vq)) = (−1)k−j−1sq−1(v0, . . . , v̂k, . . . , vq)

Proving our claim and Proposition 2.6 allows us to construct maps sq∗ : Hq(K) → Hq(L), ∀q.

2.4 Invariance of homology groups under barycentric subdivision

Our next step is proving that a simplicial complex K and its barycentric subdivision K1 have
isomorphic homology groups for each order.

This new notation will be convenient along this section. If σ = (v0, . . . , vq) is a q-simplex
and v is a vertex in general position with the vertices of σ, we denote by vσ the (q+1)-simplex
(v, v0, . . . , vq). Besides we can extend this notation linearly to q-chains. Given c =

∑
i λiσi a

q-chain, vc denotes the (q + 1)-chain
∑

i λi(vσi). Recalling Lemma 2.3, one realises that we
proved the following relation back then.

Lemma 2.11. Let c be a q-chain on a simplicial complex K and v a vertex for which vc belongs
to Cq+1(K), then ∂q+1(vc) = c− v∂q(c).

Definition (Subdivision chain maps).
Let K be a simplicial complex. We define the chain map χ : C(K) → C(K1) known as the first
subdivision chain map using an inductive procedure:

(i) Every 0-simplex of K is also a 0-simplex of K1, hence C0(K) is a subgroup of C0(K
1) and

we can take χ0 : C0(K) → C0(K
1) to be the inclusion map.

(ii) Now, we define the image by χq on a generator q-simplex σ, χq(σ) = σ̇χq−1(∂q(σ)) where
σ̇ denotes the barycenter of σ. We extend by linearity to obtain χq : Cq(K) → Cq(K

1).

For m > 1, the m-th subdivision map χm : C(K) → C(Km) is the composition of χm−1, the
(m−1)-th subdivision chain map, with χ : C(Km−1) → C(Km), the first subdivision chain map
of the (m− 1)-th barycentric subdivision Km−1.

We encourage the reader to consult [10] if they need examples of how the chain maps defined
in this section act on explicit simplicial complexes. One subtle detail we have not mentioned is
that σ̇χq−1(∂q(σ)) is well-defined. Indeed, the barycenter of a q-simplex σ is in general position
with any (q − 1) points which are linear combinations involving at most (q − 1) vertices of σ.
In contrast, we have defined chain maps without proving the commutativity with boundary
maps! First we will prove that χ : C(K) → C(K1) is a chain map by checking commutativity
for generator simplices.
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C1(K) C0(K)

C1(K
1) C0(K

1)

∂K1

χ1 χ0

∂K
1

1

For the case q = 1, equalities follow, in order, from the definition
of χ1, Lemma 2.11, χ0 being the inclusion map and ∂K

1

0 ◦ ∂K1

1 = 0.

∂K
1

1 (χ1(σ)) = ∂K
1

1 [σ̇χ0(∂
K
1 (σ))] = χ0(∂

K
1 (σ))− σ̇∂K

1

0 [χ0(∂
K
1 (σ))] =

= χ0(∂
K
1 (σ))− σ̇∂K

1

0 [∂K
1

1 (σ)] = χ0(∂
K
1 (σ))

Cq(K) Cq−1(K) Cq−2(K)

Cq(K
1) Cq−1(K

1) Cq−2(K
1)

∂Kq

χq

∂Kq−1

χq−1 ⟲ χq−2

∂K
1

q ∂K
1

q−1

By induction ∂K
1

q−1χq−1 = χq−2∂
K
q−1. Therefore:

∂K
1

q (χq(σ)) = ∂K
1

q [σ̇χq−1(∂
K
q (σ))] =

= χq−1(∂
K
q (σ))− σ̇∂K

1

q−1[χq−1(∂
K
q (σ))] =

= χq−1(∂
K
q (σ))− σ̇χq−2[∂

K
q−1(∂

K
q (σ))] =

= χq−1(∂
K
q (σ))

As a result, the first subdivision chain map χ is a chain map and Lemma 2.7 guarantees that
χm is also a chain map for every m.

Definition (Standard simplicial map).
Let K be a simplicial complex. We define a standard simplicial map to be a simplicial map
θ : K1 → K satisfying that θ(σ̇) is a vertex of σ. Observe that there might be more than
one standard simplicial map between K1 and K. We define as well a standard simplicial map
θ : Km → K as the composition of m standard simplicial maps θi : K

i → Ki−1 for i = 1, . . . ,m.

Proposition 2.12. The induced chain map θ : C(K1) → C(K) is a left inverse for the first
subdivision chain map χ : C(K) → C(K1). In other words, θq ◦ χq = IdCq(K) for every q > 0.

Proof. Clearly θ0 ◦ χ0 = IdC0(K). Observe that if τ is a q-simplex in K1 then θq(τ) = ησ where
η ∈ {0,+1,−1} and σ is a q-simplex of K which produces τ in its barycentric subdivision.
Inductively, assume that θq−1 ◦ χq−1 = IdCq−1(K) and let σ be a generator q-simplex in K1.
Since θq(χq(σ)) = θq[σ̇χq−1(∂q(σ))] = mσ and both θ and χ are chain maps:

m∂Kq (σ) = ∂Kq (mσ) = ∂Kq [θq(χq(σ))] = θq−1[∂
K1

q (χq(σ))] = θq−1[χq−1(∂
K
q (σ))] = ∂Kq (σ)

Thus, m = 1 and θq ◦ χq = IdCq(K).

By definition of χm : C(K) → C(Km) and θ : Km → K, we also have that the induced chain
map θ : C(Km) → C(K) is a left inverse for the m-th subdivision chain map χm : C(K) →
C(Km).

Definition (Barycentric carrier of a simplex).
Let K be a simplicial complex with first barycentric subdivision K1. Given a simplex σ in K1,
there exists at least one simplex in K such that σ lies in its barycentric subdivision. We will re-
fer to the one with the biggest dimension as the barycentric carrier of σ and denote it by BC(σ).

Theorem 2.13. Barycentric subdivision does not change the homology groups of a complex.

Proof. Our proof begins with the observation that showing a chain equivalence between C(K)
and C(K1) implies proving the statement above (see Proposition 2.9). According to Proposition
2.12, θq ◦ χq = IdCq(K), so applying Lemma 2.7, θq∗ ◦ χq∗ = (θ ◦ χ)q∗ = (IdC(K))q∗ = IdHq(K).
Let us now build a chain homotopy between χ ◦ θ and IdC(K1).
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C0(K
1) 0

C1(K
1) C0(K

1) 0

d0

0

χ
0
θ 0 Id

0
0 0

∂1 0

We begin by defining d0 : C0(K
1) → C1(K

1). Let
w be a vertex in K1 such that θ0(w) = v where v
is a vertex of some simplex σ in K whose barycen-
ter is w. Take d0(w) = (v, w) ∈ BC(w) and extend
by linearity to C0(K

1). Thus Id(w) − χ0(θ0(w)) =
w − v = ∂1(v, w), i.e. IdC0(K1) − χ0 ◦ θ0 = ∂1 ◦
d0, satisfying the chain homotopy condition at q =
0.

Now, suppose that we have defined homomorphisms di : Ci(K
1) → Ci+1(K

1) for 0 ≤ i ≤ q − 1,
satisfying:
(1) di−1 ◦ ∂i + ∂i+1 ◦ di = IdCi(K1) − χi ◦ θi.
(2) di(σ) is always a chain in BC(σ). Cq(K

1) Cq−1(K
1) Cq−2(K

1)

Cq+1(K
1) Cq(K

1) Cq−1(K
1)

dq

∂q

χ
q
θ q Id

d q
−1

∂q−1

χ
q
−
1
θ q

−
1

Id
dq

−2

∂q+1 ∂q

Let us show that for σ a q-simplex in K1, the
q-chain z = σ − χq(θq(σ)) − dq−1(∂q(σ)) ∈
Zq(K

1).
Indeed,

∂q[ σ − χq(θq(σ))− dq−1(∂q[σ]) ] =

∂q[σ]− ∂q[ χq(θq(σ)) ]− ∂q[ dq−1(∂q[σ]) ]
(a)
=

∂q[σ]− ∂q[ χq(θq(σ)) ]− [ ∂q[σ]− χq−1(θq−1(∂q[σ]))− dq−2(∂q−1(∂q[σ])) ]
(b)
=

− ∂q[ χq(θq(σ)) ] + χq−1(θq−1(∂q[σ]))
(c)
= 0

Where we have used the induction hypothesis (1), ∂q−1 ◦ ∂q = 0 and χq and θq commutativity
with boundary operators in (a), (b) and (c) respectively.
Applying our induction hyphotesis (2), we conclude that σ − χq(θq(σ)) − dq−1(∂q(σ)) lies in
BC(σ) as σ − χq(θq(σ)) already belongs by definition. However, barycentric subdivisions are
cones implying that σ − χq(θq(σ)) − dq−1(∂q(σ)) = ∂q+1(c) ∈ Bq(K

1) for some c ∈ Cq+1(K
1).

We define dq : Cq(K
1) → Cq+1(K

1) such that dq(σ) = c and extend linearly. By construction of
dq we have that, dq−1 ◦ ∂q + ∂q+1 ◦ dq = IdCq(K1) − χq ◦ θq is satisfied. Moreover, ∂q+1(c) lying
in BC(σ) implies that also dq(σ) = c lies in BC(σ).
Thus there is a chain homotopy C(K) and C(K1) are chain equivalent.

2.5 Invariance of homology groups under homotopy type

Our initial motivation was to prove that all triangulations of a topological space have isomorphic
homology groups. Nevertheless, the machinery available at this point can go even further than
that: two topological spaces having the same homotopy type3 will have the same homologic
structure. The invariance under homeomorphism will be just a corollary of the invariance under
homotopy type.

Eventually, we are ready to induce homomorphisms between homology groups of simplicial
complexes related by any map between their polyhedra. The proof requires prior lemmas in-
volving a concept of “closeness” between simplicial maps.

Definition (Close simplicial maps and carrier of a simplex).
Let s, t : |K| → |L| be simplicial maps. We say that they are close simplicial maps if for every

3Definitions and properties related to homotopy equivalence can be found in Section 5.4 of [1]
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simplex A ∈ K there exists a simplex B ∈ L such that both s(A) and t(A) are faces of B.
Furthermore, we can consider the smallest simplex of L having s(A) and t(A) as faces. We will
refer to the latter as the carrier4 of A.

Lemma 2.14. If s, t : |Km| → |L| both simplicially approximate f : |Km| → |L|, then they are
close simplicial maps.

Proof. Take a q-simplex A = (v0, . . . , vq) of K. Since simplicial approximations must map ver-
tices ofK to their images by f , s(A) = (s(v0), . . . , s(vk)) = (f(v0), . . . , f(vk)) = (t(v0), . . . , t(vk))
= t(A) is the carrier of A.

Lemma 2.15. If s, t : |K| → |L| are close simplicial maps, then sq∗ = tq∗ : Hq(K) → Hq(L), ∀q.

Proof. The proof consists on the construction of a chain homotopy between s and t (seen as
chain maps). We will build this collection of homomorphisms in an inductive step.

d0(σ) =

{
(s(σ), t(σ)) if s(σ) ̸= t(σ).
0 if s(σ) = t(σ).

Recall that simplicial maps induce chain maps
as seen in Theorem 2.10. Let us start with d0.
Take σ ∈ C0(K) to be a vertex of K and define
d0(σ) ∈ C1(L) as follows:

C0(K) 0 . . .

C1(L) C0(L) 0 . . .

d0

0

t0 s0
0

0

0 0

0

∂L1
0 0

Notice that ∂L1 ◦ d0 = t0 − s0 : C0(K) → C0(L),
satisfying the chain homotopy condition5 at q = 0.
Besides, d0(σ) is a chain lying in the carrier of σ.
Indeed, s and t being close implies that s(σ) and
t(σ) are vertices of the carrier of σ.

Now, suppose that we have defined homomorphisms di : Ci(K) → Ci+1(L) for 0 ≤ i ≤ q − 1,
satisfying:

(1) di−1 ◦ ∂Ki + ∂Li+1 ◦ di = ti − si : Ci(K) → Ci(L)
(2) di(σ) is always a chain in the carrier of σ.

Cq(K) Cq−1(K) Cq−2(K)

Cq+1(L) Cq(L) Cq−1(L)

dq

∂Kq

tq sq dq
−1

∂Kq−1

tq−1 sq−1
dq−

2

∂Lq+1 ∂Lq

Let us show that tq(σ)−sq(σ)−dq−1(∂
K
q (σ)) ∈ Zq(L)

which will imply that it is also in Bq(L).
Indeed,

∂Lq [ tq(σ)− sq(σ)− dq−1(∂
K
q (σ)) ] =

∂Lq [ tq(σ)− sq(σ) ]− ∂Lq [ dq−1(∂
K
q (σ)) ]

(a)
=

∂Lq [ tq(σ)− sq(σ) ]− [ tq−1(∂
K
q (σ))− sq−1(∂

K
q (σ))− dq−2(∂

K
q−1(∂

K
q (σ))) ]

(b)
=

∂Lq [tq(σ)]− ∂Lq [sq(σ)]− tq−1(∂
K
q (σ)) + sq−1(∂

K
q (σ))

(c)
= 0

Where we have used the induction hypothesis (1), ∂Kq−1 ◦ ∂Kq = 0 and s and t commutativity
with boundary operators in (a), (b) and (c) respectively.
Applying our induction hyphotesis (2), we conclude that tq(σ)− sq(σ)− dq−1(∂

K
q (σ)) lies in the

carrier of σ. However, the latter is a cone hence, by Proposition 2.4, tq(σ)−sq(σ)−dq−1(∂
K
q (σ)) =

∂Lq+1(c) ∈ Bq(L) for some c ∈ Cq+1(L). We define dq : Cq(K) → Cq+1(L) such that dq(σ) = c.

By construction of dq, dq−1 ◦ ∂Kq + ∂Lq+1 ◦ dq = tq − sq : Cq(K) → Cq(L) is satisfied. Moreover,

∂Lq+1(c) lying in the carrier of σ implies that also dq(σ) = c lies in the carrier of σ.

4Do not confuse with the carrier of a point in a simplicial complex which was defined in the first chapter.
5Observe in the diagram that ∂K

0 and d−1 are the null homomorphism, so the term ∂K
0 ◦ d−1 cancels in the

sum
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Thus there is a chain homotopy d : C(K) → C(L) between s and t. Theorem 2.8 completes the
proof.

Theorem 2.16. Any continuous map f : |K| → |L| induces a homomorphism fq∗ : Hq(K) →
Hq(L), ∀q.

Proof. So far, we just have one result which enables us to induce homomorphisms between
homology groups: Theorem 2.10. Therefore, we have no choice but to use the only tool acting
as a bridge between maps and simplicial maps, the simplicial approximation theorem (1.1).
Let s : |Km| → |L| be a simplicial approximation of f and χ : C(K) → C(Km) the subdivision
chain map.

We define fq∗ to be Hq(K) Hq(K
m) Hq(L)

χq∗ sq∗
, i.e. fq∗ = sq∗ ◦ χq∗ : Hq(K) → Hq(L), ∀q

Unfortunately, we have made a choice in that definition: the simplicial approximation s. We
must show that different simplicial approximations give the same fq∗.

Hq(K) Hq(L)

Hq(K
m)

Hq(K
n)

fq∗

χq∗
sq∗

χ̃q∗ θq∗

tq∗

Suppose we have two simplicial approximations s : |Km| → |L|
and t : |Kn| → |L|, with n ≥ m. Let χ : C(K) → C(Km) and
χ̃ : C(Km) → C(Kn) be subdivision chain maps and θ : |Kn| → |Km|
a standard simplicial map. We claim that sq∗◦χq∗ = tq∗◦χ̃q∗◦χq∗, ∀q.
It is easy to check that s ◦ θ : |Kn| → |L| simplicially approxi-
mates f (concisely summarising: θ(x) ≤ x so using Lemma 1.2,
s(θ(x)) ≤ s(x) ≤ f(x) ), but so does t. Thus, by Lemma 2.14, they
are close simplicial maps and applying Proposition 2.7 and Lemma
2.15

sq∗ ◦ θq∗ = (s ◦ θ)q∗ = tq∗, ∀q

Besides, χ̃q∗ and θq∗ are mutually inverse for all q which leads us to the result.

sq∗ ◦ χq∗ = sq∗ ◦ θq∗ ◦ χ̃q∗ ◦ χq∗ = tq∗ ◦ χ̃q∗ ◦ χq∗, ∀q.

These homology maps induced from continuous maps between polyhedra show the same
functorial behaviour as showed in Lemma 2.7 for homology maps induced from chain maps.

Corollary 2.17. If f is the identity map of |K| then each fq∗ : Hq(K) → Hq(K) is the iden-

tity homomorphism, and if we have two maps |K| |L| |M |f g
, then (g ◦ f)q∗ = gq∗ ◦

fq∗ : Hq(K) → Hq(M) for all q.

Proof. The first part follows from construction since both maps χq∗ and sq∗ will be the identity
on Hq(K), ∀q.

Hq(K) Hq(L)

Hq(M)

Hq(K
m) Hq(L

n)

fq∗

χq∗ χ̃q∗

gq∗

sq∗

θq∗

tq∗

For the next claim, set t : |Ln| → |M | to be a simplicial
approximation of g : |Ln| → |M | and s : |Km| → |Ln|
another one for f : |Km| → |Ln|. Consider the subdi-
vision chain maps that go from the original chain com-
plexes to the ones generated by the barycentric subdivi-
sions acting as domains of s and t, χ : C(K) → C(Km)
and χ̃ : C(L) → C(Ln). Also let θ : |Ln| → |L| be the
standard simplicial map. We claim that

(g ◦ f)q∗ = gq∗ ◦ fq∗ for all q.

Let us construct (g ◦ f)q∗ using the definition in Theorem 2.16. First we need a simplicial ap-
proximation of g ◦ f . Notice that, using Lemma 1.2, t(s(x)) ≤ t(f(x)) ≤ g(f(x)). Thus t ◦ s is
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a simplicial approximation of g ◦ f and (g ◦ f)q∗ = (t ◦ s)q∗ ◦ χq∗ = tq∗ ◦ sq∗ ◦ χq∗.
Proceeding in the same way as in the proof of the previous theorem; θ ◦ s : |Km| → |L| simpli-
cially approximates f as θ(s(x)) ≤ θ(f(x)) ≤ f(x).

As a consequence:
gq∗ ◦ fq∗ = tq∗ ◦ χ̃q∗ ◦ (θ ◦ s)q∗ ◦ χq∗ = tq∗ ◦ χ̃q∗ ◦ θq∗ ◦ sq∗ ◦ χq∗ = tq∗ ◦ sq∗ ◦ χq∗ = (g ◦ f)q∗

For the last theorem we need the following lemma, which we will not prove here, but some
guiding steps can be found in [1].

Lemma 2.18. Given two homotopic maps f, g : |K| → |L|, we can find a barycentric subdivision
Km and a sequence of simplicial maps s1, . . . sn : |Km| → |L| such that s1 and sn are simplicial
approximations of f and g respectively and each pair si, si+1 are close simplicial maps.

Theorem 2.19. Given two homotopic maps f, g : |K| → |L|, their induced homology maps coin-
cide. In other words, fq∗ = gq∗ : Hq(K) → Hq(L), ∀q.

Proof. Consider the subdivision chain map χ : C(K) → C(Km), by Lemmas 2.15 and 2.18

fq∗ = s1q∗ ◦ χq∗ = · · · = snq∗ ◦ χq∗ = gq∗

Corollary 2.20 (Invariance of homology groups under homotopy). If two polyhedra |K| and |L|
have the same homotopy type, then Hq(K) ≃ Hq(L), ∀q.

Proof. |K| and |L| have the same homotopy type so there exist f : |K| → |L| and g : |L| → |K|
such that f ◦ g ≃ Id|L| and g ◦ f ≃ Id|K|. Using Corollary 2.17 and Theorem 2.19,

IdHq(L) = (f ◦ g)q∗ = fq∗ ◦ gq∗ and IdHq(K) = (g ◦ f)q∗ = gq∗ ◦ fq∗.

Therefore, fq∗ is an isomorphim for all q.

We can affirm that any two triangulations of the same topological space |K| and |K̃| coincide
in their homology groups. In fact, there is an homeomorphism between them, let us say f : |K| →
|K̃|. In particular f is a homotopy equivalence with homotopy inverse f−1. Now the homology
groups of a topological space can be discussed without specifying which triangulation is being
used to calculate them.

Let us begin with Sn. Recall that by Corollary 2.5, H0(∆
n+1) ≃ Z and Hq(∆

n+1) = 0, for
q > 0 and n ≥ 0. We will denote by Σn the subcomplex of ∆n+1 formed by the simplices lying
in its boundary. In other words, Σn contains every simplex in ∆n+1 but the (n + 1)-simplex.
Clearly, Σn is a triangulation of Sn for n ≥ 0.

(i) For the case Σ0 ≃ S0, we only have two non-connected points. Therefore, H0(Σ
0) ≃ Z⊕Z

and Hq(Σ
0) = 0.

(ii) Now, H0(Σ
n) ≃ H0(∆

n+1) ≃ Z and Hq(Σ
n) ≃ Hq(∆

n+1) ≃ 0 for 1 < q ≤ n− 1 and n > 0
since they have the same simplices up to dimension n and the computation of the q-th
homology group does not involve simplices of dimension greater than q+1. Lastly, Σn has
no (n+ 1)-simplices, Hn(Σ

n) ≃ Zn(Σ
n) ≃ Zn(∆

n+1) = Bn(∆
n+1), due to Hn(∆

n+1) = 0.
Bn(∆

n+1) = ∂n+1Cn+1(∆
n+1) is generated by the boundary of the only n + 1 simplex in

∆n+1. Hence Hn(Σ
n) ≃ Z. Besides, Hq(Σ

n) = 0 for q > n.
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Sumarising:{
H0(S

0) ≃ Z⊕ Z
Hq(S

0) = 0 q > 0
and if n > 0

{
Hq(S

n) ≃ Z q ∈ {0, n}
Hq(S

n) = 0 0 < q < n or q > n

Theorem 2.21. If m ̸= n, then Sn and Sm are not of the same homotopy type.

Proof. Hm(S
m) and Hm(S

n) are isomorphic only when m = n.

The relevance of homology groups as topological invariant does not limit to Theorem 2.21.
Chapter 9 in [1] is devoted to further theoretical applications of homology groups such as proving
the hairy ball theorem or the Euler-Poincaré formula.

Before concluding this chapter and crossing over to the more interdisciplinary applications
of simplicial homology we should mention the accepted interpretation of non-trivial homology
groups as “holes”. It all stems from the first homology group of a surface. Bounding 1-cycles
are just, if you excuse the repetition, closed curves which bound part of the surface. In contrast,
non-bounding 1-cycles (which are not the boundary of any 2-chain) correspond to closed curves
which do not bound any region. An easy example of this is the torus, whose first homology group
is isomorphic to Z ⊕ Z: the coordinate curves of its usual parametrization are non-bounding
curves which detect the two holes in a torus (the whole inside of it and the one in the center),
see Figure 2.2.
The same reasoning is extended to higher dimensions so we end up referring to non-bounding
q-cycles as q-dimensional holes.

Figure 2.2: A torus with two closed curves representing non-bounding 1-cycles.



Chapter 3

Topological Data Analysis

A brief introduction into persistent homology

During the past two chapters we have been speaking about the theoretical aspects of simplicial
homology: definitions, how to compute it for a simplicial complex or results we can prove with
it. In this chapter, our focus changes to building simplicial complexes, which we will refer to
as filtrations, out of clouds of points in En. Afterwards an homological analysis of these filtra-
tions will provide insight into the shape features of the original data. The natural question that
quickly arises is: how should we construct such simplicial complexes? Given 13 points we could
associate them with the closure of a 13-simplex or maybe just connect them with 1-simplices.
Our approach is creating simplices out of points which are “close” enough.

3.1 From a point cloud to a simplicial complex

The two methods we will introduce interpret the distance condition in different ways while bear-
ing complementary benefits.

Definition (Cϵ, Čech complex).
Given X = {xα} a finite set of points in En and ϵ > 0, the Čech complex Cϵ is built as follows.
Form closed1 balls of radius ϵ

2 around each point and if k balls have a non-empty intersection,
its corresponding vertices will form a (k−1)-simplex in Cϵ. Note that this construction is indeed
a simplicial complex.

During this process, we might have lost information from the original data to the simplicial
complex. Does this topological construction bear any resemblance with the original setting?

Theorem 3.1 (Čech theorem). The Čech complex of a point cloud is homotopic equivalent to the
union of closed ϵ

2 -balls centered on each set point. Hence, their homology groups are isomorphic.2

So in fact, this simplicial complex is a topologically faithful simplicial model for the topology
of a point cloud fattened by balls. On the other hand, it requires a vast number of operations
for its computation, making it extremely unefficient for large sets of points. The next filtration
relaxes the computational cost while weakening the topological relation.

1Some authors, like Afra in [12], define them as open balls, however it does not affect our theory.
2This theorem is also known as the Nerve theorem or Leray´s theorem whose proof can be found in [13].

21
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Definition (Rϵ, Rips complex).
Given X = {xα} a finite set of points in En and ϵ > 0, the Rips complex Rϵ is built as follows.
Form closed balls of radius ϵ

2 around each point and if k balls have pairwise non-empty inter-
section, its corresponding vertices will form a (k − 1)-simplex in Rϵ.

Figure 3.1: Illustration of Cϵ and Rϵ for a data
cloud and some ϵ > 0. Image credit to [11].

We could actually approach this filtration
process by obtaining a graph where two ver-
tices are joint by an edge if their correspond-
ing balls overlap. This way, k-simplices in Rϵ

are associated with (k+1)-cliques. It stems di-
rectly from the definition the relation Cϵ ⊂ Rϵ.
As promised, the Rips filtration no longer re-
tains any topological similarity with the data
cloud. For example, in Figure 3.1, Cϵ is ho-
motopic to S1 ∨ S1 ∨ S1 while Rϵ has the ho-
motopy type of S1 ∨ S2 (X ∨ Y denotes the
wedge sum of X and Y ). Using Rips com-
plexes implies sacrificing accuracy for com-
putability. Nevertheless, we can stablish an
inclusion relation between Rips and Čech com-
plexes which will allow us to dispense with the
latter.

Proposition 3.2. Let X be a set of points contained in Ed and fix ϵ > 0, we have the following
chain of inclusions.

Rϵ ⊆ Cϵ′ ⊆ Rϵ′ where ϵ
′ ≥ ϵ

√
2d

d+ 1

Or in general, Rϵ ⊆ Cϵ√2 ⊆ Rϵ
√
2.

Figure 3.2: A sequence of Rips complexes for a
data cloud obtained from a plannar annulus for
increasing values of ϵ. Image credit to [11].

The proof can be found in [14]. As a con-
sequence, studying Rips complexes is enough.
If one simplex appears in both Rϵ and Rϵ′ so
it does in Cϵ′ for some ϵ′ ≥ ϵ

√
2.

At this point one could wonder which ϵ cap-
tures best the topology of the data cloud.
Small values generate a low dimensional com-
plex meanwhile for ϵ sufficiently large the re-
sulting complex is the closure of a single high
dimensional simplex. For example, in Figure
3.2, the data cloud has been sampled from
a planar annulus. In contrast, it seems like
no choice of ϵ covers that situation. By the
time small holes are removed from the in-
terior of the annulus, the inner hole is cov-
ered.
Accordingly, a new tool must be introduced to
extract some significant features of the cloud
data out of a sequence of filtrations of it: per-
sistent homology.
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3.2 Persistent homology and barcodes

Despite being both computable and insightful, the homology of a complex associated to a point
cloud at a specific ϵ is insufficient. It is a mistake to ask which value of ϵ is optimal. We are
required to discern between what holes are real, hence present in a large interval of ϵ values,
and what holes are mere noise, appearing in brief intervals. In this section we will introduce
persistent homology as an algebraic mechanism to discern which non-bounding cycles endure
over long intervals of ϵ.

Definition (Filtered complex and persistence complex).
A filtered complex is an increasing sequence of simplicial complexes and a persistence complex
is a collection of chain complexes C = {Ci}Ni=1 with chain maps f i : Ci → Ci+1, denoted by
{Ci, f i}.

Definition (q-th homology of a persistence complex).
Given a persistence complex {Ci, f i}, we call the collection of {Hq(C

i)} together with the
induced homology maps f iq∗ : Hq(C

i) → Hq(C
i+1), the q-th homology of C and denote it by

Hq(C) = {Hq(C
i), f iq∗}.

We shall relate these definitions to our context. Let (ϵi)
N
i=1 be an increasing sequence of

parameters and denote by R = (Ri)Ni=1 the sequence of Rips complexes associated to a fixed
point cloud for the sequence of parameters. R is indeed a filtered complex. Each Ri is associated
to a chain complex: C(Ri). Besides, we can define the inclusion maps x : Cq(Ri) → Cq(Ri+1)
(not indexed for notational simplicity) since every q-chain of Ri is also a q-chain of Ri+1. It
is trivial verifying that they are chain maps. Thus, all the chain complexes obtained from the
Rips filtration along with the inclusion chain maps, determine the persistence complex {Ri, x}.
Finally, the collection of q-th homology groups Hq(Ri) along with the induced homology maps
x∗ : Hq(Ri) → Hq(Ri+1) are the q-th homology of {Ri, x}, denoted by Hq(R) = {Hq(Ri), x∗}.

. . . . . . . . . . . .

. . . Cq+1(Ri−1) Cq(Ri−1) Cq−1(Ri−1) . . . Hq(Ri−1)

. . . Cq+1(Ri) Cq(Ri) Cq−1(Ri) . . . Hq(Ri)

. . . Cq+1(Ri+1) Cq(Ri+1) Cq−1(Ri+1) . . . Hq(Ri+1)

. . . . . . . . . . . .

x x x x∗

∂q+2 ∂q+1

x

∂q

x

∂q−1

x x∗

∂q+2 ∂q+1

x

∂q

x

∂q−1

x x∗

∂q+2 ∂q+1

x

∂q

x

∂q−1

x x∗

Definition ((i, j)-persistent q-th homology group of a persistence complex).
For i < j, the (i, j)-persistent q-th homology group of a persistence complex C = {Ci}Ni=1 is

H i→j
q (C) =

Ziq(C)

Bj
q(C) ∩ Ziq(C)
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It is well-defined since both groups in the denominator are subgroups of Cjq , so their intersection
is a group contained in Ziq(C), hence a subgroup.

Alternatively we could define them as the image of the induced homomorphism by x,
x∗ : Hq(C

i) → Hq(C
j) defined by x∗([z]) = x∗(z + Bi

q(C)) = x(z) + Bj
q(C) = z + Bj

q(C) = [z].

Hence Imx∗ ≃ H i→j
q (C).

The idea is simple, we want to “project” the q-th homology classes of the i-th chain complex
of C (in our setting, Cq(Ri) from the persistence complex R) onto the q-th homology class of
the j-th chain complex of C, as a means of tracking the lifetime of homology classes along the
filtration.
There is one last obstacle preventing us from using persistent homology groups: intuitively, the
computation of persistence requires compatible bases for H i

q(C) and H
i→j
q (C). In general this is

not satisfied, but for specific cases specified later, it is possible. A new algebraic construction is
required.

Definition (Graded ring and graded module).
A graded ring is a ring (R,+, ·) equipped with a decomposition as direct sum of abelian groups,
i.e. R ≃

⊕
iRi, i ∈ Z where multiplication is given by bilinear correspondences Ri⊗Rj → Ri+j .

Elements lying in a single Ri are called homogeneous and have degree i. One easy example of
a graded ring is the polynomial ring R[t] graded non-negatively with the standard grading ;
Ri = Rti, i ≥ 0. Elements 2t and t2 are homogeneous, but not their sum.
A graded module M over a ring R is a R-module equipped with a direct sum decomposition
M ≃

⊕
iMi, i ∈ Z where the action of R is given by bilinear pairings Ri ⊗Mj →Mi+j .

A graded ring (R-module) is non-negatively graded if Ri = 0 (Mi = 0) for all i < 0.

Theorem 3.3 (Structure Theorem for PID’s). If R is a PID, then every finitely generated R-module
is isomorphic to a direct sum of a finitely generated free R-module and cyclic R-modules.

Rβ ⊕
(

m⊕
i=1

R

ri ·R

)
where β ∈ Z and ri ∈ R such that ri|ri+1. Similarly, every graded R-module over a graded PID
R decomposes uniquely as a direct sum.(

n⊕
i=1

Σαi ·R
)
⊕

(
m⊕
j=1

Σγj · R

rj ·R

)
where rj are homogeneous such that rj|rj+1 αi, γj ∈ Z and Σα denotes an α-shift upward in
grading.

This theorem allows us to think of finitely generated modules and graded modules as struc-
tures that look like vector spaces with some extra dimensions that are “finite” in size. We
defined homology groups as abelian groups which are Z-modules. Observe that there would be
no contradiction in defining homology groups as finitely generated R-modules. Moreover, if R
were a PID, Theorem 3.3 would give us the same type of decomposition we knew for finitely
generated abelian groups.

Definition (Persistence module).
A persistence module M is a family of R-modules M i together with homomorphisms φi : M i →
M i+1. We denote it by {M i, φi}.
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Hq(C
i) can be regarded as R-modules, henceforth Hq(C) = {Hq(C

i), f iq∗} are persistence
modules for all q.

Suppose that we have a persistence module M = {M i, φi}i=1 over a ring R. We equip the
polynomial ring R[t] with the standard grading and define a graded module over R[t] by

α(M) =
∞⊕
i=1

M i

where the action of t is given by t(m1,m2,m3, . . . ) = (0, φ1(m1), φ2(m2), φ3(m3), . . . ) , in other
words, t shifts elements of the module up in the graduation.
Choosing a field F to be the coefficients of homology groups, we can construct the above con-
struction for the persistence modules Hq(C, F ) for every q. Besides, F [x] is a PID allowing us
to use Theorem 3.3,

Hq(C, F ) ≃
(

n⊕
i=1

xti · F [x]
)
⊕

(
m⊕
j=1

xrj · F [x]

xsj · F [x]

)

From this classification we can extract all the data from the persistent homology. The free
portions reveal that there are n homology generators each of them coming into existence at
the parameter ti and persisting for all the parameter values. The torsion part describes those
m homology generators appearing at parameter value rj and disappearing at rj + sj . This
information can be encapsuled in time intervals. A non-vanishing generator is associated with
the interval [ϵti ,∞) meanwhile torsion elements are associated with [ϵrj , ϵrj+sj ]. A graphical
representation of these intervals from every persistence module in a given persistence complex
is known as a barcode.

Figure 3.3: An example of a bar-
code for every Hq(R), where R is
the same filtration of Figure 3.2.
The horizontal axis corresponds
to the parameters and the vertical
one represents an arbitrary order-
ing of homology generators. The
point cloud likely represents a
connected object with one or two
significant one-dimensional holes.
Image credit to [11].

How are we supposed to interpret a barcode? We would like to filter out noise from the
relevant features of a data set. Therefore, long bars represent significant holes while short ones
are described as “topological noise”.

What is the relation between persistence modules with their associated barcode, and persis-
tent homology groups? After all, we developed this graded F [x]-module structure to convey the
meaning of persistent homology groups.

Theorem 3.4 (Fundamental Theorem of Persistent Homology [15], [17]). The rank of the persis-
tent homology group H i→j

q (C, F ) is equal to the number of intervals in the barcode of Hq(C, F )
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spanning the parameter interval [ϵi, ϵj ].

The existence of this theorem resides in F being a field, otherwise we could have not used
the classification of graded modules over a PID (read more about this topic in [15]). As a re-
sult of the theorem, barcodes completely determined up to permutations of the bars. According
to [15], the algorithms used to find the intervals of a filtration avoid computing the F [x]-module.

Remark

One question that might haunt readers is which line should be continued in a barcode
when two different generators merge in the same homology class for the next parameter.
The answer is simple, that scenario can be avoided. Theorem 3.4 and the decomposition
of Hq(C, F ) ensures that compatible bases can be chosen so that out of all the homologous
cycles for the next parameter, only one homology class is not mapped to zero by x∗.

A main characteristic of persistent homology is its stability. It is stable with respect to small
perturbations in the input data [17]. That is to say that given a “slightly” modified point cloud,
persistent homology will output the same result.

Persistent homology is a relatively new field with undergoing research. Experts are applying
topological data analysis in a wide variety of real-world issues ranging from jaw treatments [18]
to money laundering investigation and many more [17].
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