000125226 001__ 125226
000125226 005__ 20240705134139.0
000125226 0247_ $$2doi$$a10.1016/j.mito.2023.02.002
000125226 0248_ $$2sideral$$a132960
000125226 037__ $$aART-2023-132960
000125226 041__ $$aeng
000125226 100__ $$0(orcid)0000-0002-6600-1618$$aMoreno-Loshuertos, Raquel$$uUniversidad de Zaragoza
000125226 245__ $$aHow hot can mitochondria be? Incubation at temperatures above 43 °C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria
000125226 260__ $$c2023
000125226 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125226 5203_ $$aMitochondrial function generates an important fraction of the heat that contributes to cellular and organismal temperature maintenance, but the actual values of this parameter reached in the organelles is a matter of debate. The studies addressing this issue have reported divergent results: from detecting in the organelles the same temperature as the cell average or the incubation temperature, to increasing differences of up to 10 degrees above the incubation value. Theoretical calculations based on physical laws exclude the possibility of relevant temperature gradients between mitochondria and their surroundings. These facts have given rise to a conundrum or paradox about hot mitochondria.

We have examined by Blue-Native electrophoresis, both in intact cells and in isolated organelles, the stability of respiratory complexes and supercomplexes at different temperatures to obtain information about their tolerance to heat stress. We observe that, upon incubation at values above 43 °C and after relatively short periods, respiratory complexes, and especially complex I and its supercomplexes, are unstable even when the respiratory activity is inhibited. These results support the conclusion that high temperatures (>43 °C) cause damage to mitochondrial structure and function and question the proposal that these organelles can physiologically work at close to 50 °C.
000125226 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E35-17R$$9info:eu-repo/grantAgreement/ES/DGA/LMP220_21$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-095795-B-I00
000125226 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000125226 592__ $$a1.209$$b2023
000125226 593__ $$aCell Biology$$c2023$$dQ2
000125226 593__ $$aMolecular Medicine$$c2023$$dQ2
000125226 593__ $$aMolecular Biology$$c2023$$dQ2
000125226 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125226 700__ $$aMarco-Brualla, Joaquín$$uUniversidad de Zaragoza
000125226 700__ $$0(orcid)0000-0002-3587-6622$$aMeade, Patricia$$uUniversidad de Zaragoza
000125226 700__ $$aSoler-Agesta, Ruth$$uUniversidad de Zaragoza
000125226 700__ $$0(orcid)0000-0002-4931-6730$$aEnriquez, José A.
000125226 700__ $$0(orcid)0000-0001-8971-7355$$aFernández-Silva, Patricio$$uUniversidad de Zaragoza
000125226 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000125226 773__ $$g69 (2023), 83-94$$pMitochondrion$$tMITOCHONDRION$$x1567-7249
000125226 8564_ $$s4831206$$uhttps://zaguan.unizar.es/record/125226/files/texto_completo.pdf$$yVersión publicada
000125226 8564_ $$s2516592$$uhttps://zaguan.unizar.es/record/125226/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125226 909CO $$ooai:zaguan.unizar.es:125226$$particulos$$pdriver
000125226 951__ $$a2024-07-05-12:46:16
000125226 980__ $$aARTICLE