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Abstract

The imminent impact of immersive technologies in society urges for active research in real-time and interactive physics
imulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the laws of physics. In this paper
e present a method for computing the dynamic response of (possibly non-linear and dissipative) deformable objects induced
y real-time user interactions in mixed reality using deep learning. The graph-based architecture of the method ensures the
hermodynamic consistency of the predictions, whereas the visualization pipeline allows a natural and realistic user experience.

Two examples of virtual solids interacting with virtual or physical solids in mixed reality scenarios are provided to prove
he performance of the method.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Computer science advances in the last decades led us to experience in a relatively short lapse of time three
ajor technological innovations: the personal computer, the Internet, and mobile devices. Currently, we are at the

eginning of a fourth paradigm of computing innovations involving immersive technologies such as Virtual Reality
VR), Augmented Reality (AR) or Mixed Reality (MR). All this is possible due to huge advances in machine
earning techniques and hardware improvements applied to computer graphics and computer vision.
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It is clear that this new paradigm seeks to revolutionize technology in the next years and will have a great impact
in society such as smart cities [1,2], new teaching methods [3] or economic paradigms [4]. Technology companies
have already created numerous digital platforms, such as the Metaverse [5,6] or the Omniverse [7,8], in order to
develop their own immersive technologies.

In most of the cases, virtual worlds are required to resemble our real world as much as possible, so many
disciplines come into play (traditionally, computer graphics and computer vision). However, virtual worlds need
to be dynamic rather than static so the user can responsively interact with a changing virtual world. From that
perspective, physics simulation plays a major role and it is required to be real-time. On the one hand, current
real-time physic engines rely on severe simplifications of the governing dynamical equations and are limited to
very simple material models and constitutive phenomena. On the other hand, classical engineering methods for
solid and fluid simulations, such as the finite element or finite differences methods, have the consistency of decades
of theoretical research in terms of the convergence to a consistent physical solution but are too expensive to achieve
real-time framerates. However, these last methods can be used to generate a rich and consistent database to train a
fast AI accelerated by the recent advances in machine learning procedures.

In this work, we aim to merge the physical consistency of classical simulation methods with the speed of real-
time physics engines using a deep learning approach. Although the formulation is general for a wide variety of
dynamical systems, in this work we focus on nonlinear solid mechanics. The results are consistent with the laws
of thermodynamics by construction and are able to achieve real-time performance in general load cases which
were not previously seen by the network. In Section 2, we explore some of the related work involving real-time
reality simulators and physics-informed deep learning. In Section 3 we introduce the thermodynamically-informed
graph neural networks together with the vision and visualization system used to record the demo videos. Section 4
shows the application of the proposed algorithm in two different solids together with error plots, and future work,
limitations and conclusions are provided in Section 5.

2. Related work

Real-time physics engines such as PhysX [9,10] or Havok [11] have mostly been developed in the videogame
industry. Even if those engines allow to program custom dynamical models, they usually rely on simplified mass–
spring models or rigid body dynamics to achieve high framerates in modern videogames. Multiple research lines
remain open trying to leverage the physical consistency of the results with low computational requirements.

2.1. Model order reduction-based simulators

Several authors solved the mentioned problems by creating a reduced order model of the system. These methods
consist of a two-stage procedure: an offline phase where the solution space is precomputed in a compressed
representation, lying on a reduced-order manifold, and an online phase where the solution can be evaluated in
real-time. The difference between each method lies on the specific projection technique used to compute the reduced
manifold.

Classical linear methods such as Principal Component Analysis [12,13] or reduced basis [14,15] are fast and
simple to implement but fail to capture more complex nonlinear phenomena. This inconvenience can be solved
using nonlinear methods such as kernel-Principal Component Analysis [16], Locally Linear Embedding [17,18] or
Proper Generalized Decomposition [19,20]. Those techniques have similar disadvantages: as the solution is already
precomputed, they are unable to handle different mesh discretizations and fail to generalize to unseen configurations.

2.2. Deep learning based simulators

The use of deep learning in real-time simulations has been widely explored in recent manuscripts, using neural
networks as powerful function approximators with fast evaluation performance. The spirit is similar to the reduced
order modeling: in the offline phase a neural network is trained with a set of examples and in the online phase the
network can be fast evaluated in unseen scenarios.

For instance, several works avoid the real-time restrictions by decreasing the dimensionality of the problem
by using autoencoders [21,22] in a similar fashion to the reduced order modeling methods. Other approaches
are based on standard multilayer perceptrons, used as a collocation method for residue minimization [23,24]
2
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or specific formulations for contact mechanics [25,26]. Those approaches require the prior knowledge of the
governing equations. In the field of physics-informed machine learning, many methods have recently proposed
to use neural networks such as solvers of partial differential equations (PDE) residues in the context of general
physics [27,28] or fluid mechanics [29–31], identification and simulation of the dynamics of complex systems [32]
or structure-preserving algorithms [33–35] with promising results. However, none of the mentioned methods have
been implemented nor tested in an augmented or virtual reality setup, to the best of our knowledge.

This work presents a method to simulate real-time dynamics of one or more virtual systems interacting with
physical objects in a mixed reality application. We require no governing equation, as it is learned from data
using a thermodynamics-based formulation for non-equilibrium dynamical systems together with geometric deep
learning. Furthermore, the trained graph neural network achieves real-time performance which enables a smooth
user experience in the interaction of several virtual objects.

3. Methodology

3.1. Problem statement

The present work focuses on the deformation of virtual solid objects. Thus, we use the dynamical equilibrium
equation of non-linear solid mechanics which balances the external and internal body forces with the acceleration
of the solid. This is,

∇ P + B = ρ ü in Ω0, (1)

where B represents the volumetric force applied to the body and P the first Piola–Kirchhoff stress tensor.
Ω0 = Ω (t = 0) represents the undeformed configuration of the virtual solid. The solution is subjected to appropriate
boundary conditions

u(X) = u on Γu,

P N = t on Γt ,

ith Γu and Γt representing the essential (Dirichlet) and natural (Neumann) portions of the boundary Γ = ∂Ω
f the solid. X is the undeformed position, N is the unit vector normal to Γ = ∂Ω0 and ū, t̄ are the applied
isplacement and traction respectively. To complete the problem, some relationship between kinematic variables
displacements, strain) and dynamic variables (stresses) must be assumed. The constitutive equation is here chosen
o be hyperelastic, with a strain energy function per unit volume Ψ defined such that

S =
∂Ψ

∂ E
(2)

where S is the second Piola–Kirchhoff and E is the Green–Lagrange strain tensor. Viscoelastic effects are also
considered using variable shear relaxation modulus via Prony series. The objective of the method is to solve Eq. (1)
in a real-time interactive interface with a physics-based neural network trained with high fidelity solutions.

3.2. Thermodynamics-informed graph neural networks

We use a novel deep learning method [36] which aims to learn the dynamical evolution of a physical system using
a graph-based approach. Its objective is to learn not the outcome of a given simulation under different conditions
such as forces or boundary conditions, but to be able to learn the physics taking place, such that the learned simulator
is not sensitive to changes in the mesh, for instance.

The graph neural network architecture is thus constructed on top of a graph structure G = (V, E, g), where
V = {1, . . . , n} is a set of |V | = n vertices, E ⊆ V × V is a set of |E | = e edges and g ∈ RFg is the global feature
ector. Each vertex and edge in the graph is associated with a node in the finite element model from which data are
btained. The global feature vector defines the properties shared by all the nodes in the graph, such as constitutive
roperties.

To ensure translational invariance of the learned model, the position variables of the system qi , are assigned to the
dge feature vector ei j ∈ RFe so the edge features represent relative distances (qi j = qi − q j ) between nodes. The

Fv
est of the state variables are assigned to the node feature vector vi ∈ R , while the external forces are included in

3
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Fig. 1. Thermodynamics-informed graph neural network architecture. The system is described as a set of state variables zi , global simulations
parameters g and external boundary conditions f i . A graph G is constructed from the information of the physical system, defining vertex
features vi , edge features ei j and global features g. The graph features are processed with a message-passing graph neural network. The
step prediction is performed using the GENERIC integration scheme in Eq. (3), which is repeated iteratively to get the complete rollout of
the simulation.

a vector f i ∈ RF f . We employ an encode-process-decode scheme [37], built upon multilayer perceptrons (MLPs)
shared between all the nodes and edges of the graph.

We use this architecture to learn the GENERIC structure of the evolution in time of the variables governing
the virtual system [38,39]. It consists on splitting the system into a conservative and dissipative contribution. The
conservative dynamics are defined using an energy potential E and a symplectic Poisson matrix L, which recover
the Hamiltonian formalism, whereas the dissipative dynamics are described by the entropy potential S and the
dissipative or friction matrix M, which accounts for the non-reversible dynamics. The time evolution of the state
variables of the system z is described by the following equation

d z
dt

= L∇E + M∇S. (3)

y enforcing the so called degeneracy conditions L∇S = M∇E = 0 together with the algebraic properties of the
L (skew-symmetric) and M (symmetric and positive semidefinite) matrices we ensure the energy conservation and
he entropy inequality. Thus, we guarantee the thermodynamical consistency of the predictions. The neural network
earns the parametrization of the Poisson and friction operators in lower triangular matrices, l and m respectively,
nd the energy and entropy potentials, E and S. The GENERIC operators are then assembled as L = l − l⊤ and

M = mm⊤, which enforces the skew-symmetry and positive semi-definiteness of the operators. A scheme of the
algorithm is presented in Fig. 1.

We assume our virtual solids to be viscous-hyperelastic, so that the state variables for the proper description of
heir evolution in terms of the GENERIC formalism are the position q, velocity v and the stress tensor σ ,

S = {z = (q, v, σ ) ∈ R3
× R3

× R6
}. (4)

The edge feature vector contains the relative deformed position between nodes, to give a distance-based attentional
flavor to the graph processing blocks and translational invariance. The velocity and stress tensor components are
part of the node feature vector, concatenated to a two-dimensional one-hot vector n which represent the encastre
and solid nodes respectively. The external load vector f i is included in the node processor MLP as an external
interaction. No global feature vector is needed in this case, resulting in the following feature vectors:

ei j = (qi − q j , ∥qi j∥2), vi = (v, σ , n). (5)

Thus, the dimensions of the feature vectors are Fe = 4, Fv = 11, F f = 3 and Fg = 0.

3.3. Vision system

For an augmented or mixed reality application, we need to include virtual objects in a real scene. For that, it is
necessary to have a sensor able to get information about the physical environment and a screen device to plot the
resulting image. In the present work, we use a ZED Mini stereo vision system from Stereolabs, which is able to
retrieve both a depth and RGB image of the captured snapshot. We plot the resulting real-time video stream in a
computer screen, but could be extended to a VR headset or AR glasses.
4
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Fig. 2. Model-view-projection transformation between the model and the clip coordinates. The dynamics and interactions are computed in
the model space as 3D coordinates, whereas the visualization pipeline requires a 2D clipping coordinates in a fixed range between −1 and
1.

As the laws of motion are independent with respect to any frame of reference (objectivity), we use the model
space to compute the dynamical state variables of the system. However, the visualization pipeline requires the
coordinates to be in a normalized range of C = [−1, 1]× [−1, 1] called the clip space. The transformation between
he 3D model space and the 2D clip space is achieved by the definition of the Model-View-Projection matrix (see
ig. 2). From now, the point coordinates are supposed to be in homogeneous coordinates.

• Model: The dynamics are computed in a local frame of reference called the model space M. The position,
orientation and scale of the model can be defined as a set of transformation matrices T m , Rm and sm

respectively with respect to the world space W , considered to be the usual Euclidean space R3.

xworld = Mm xmodel = T m Rm sm xmodel. (6)

• View: In a similar fashion, the viewing camera also has a model matrix defining its position in the world
space, which is commonly designed as the extrinsic parameters Pv of the camera pose. This information can
be obtained using a monocular pose estimator or triangulating with a stereo vision system. Thus, the camera or
view space V can be determined by a set of transformations from the world space using the camera extrinsic
parameters given by a rotation Rv and translation T v matrices.

xview = Mv xworld = Pv
−1xworld = (T v Rv)−1xworld. (7)

• Projection: The last transformation is in charge of projecting the 3D coordinates into the 2D clip space C.
First, in order to get a realistic visualization, we use a perspective projection M p based on the camera viewing
frustum

M p =

⎛⎜⎜⎝
cot α

2 0 0 0
0 cot α

2 0 0
0 0 −

zfar+znear
zfar−znear

−
2zfarznear
zfar−znear

0 0 −1 0

⎞⎟⎟⎠ , (8)

where α is the field of view of the camera and znear and zfar are the minimum and maximum distance of the
clipping plane. This creates a normalized 3D viewing box of the camera, which is then projected in the 2D
clip space by the vertex shader. Thus, the final coordinates can be computed using the following equation:

xclip = M p xview = M p Mv Mm xmodel. (9)

By defining the Model-View-Projection matrix as M p Mv Mm we can compute the clip coordinates directly from
he model coordinates computed by the thermodynamics-informed neural network.
5
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3.4. Visualization system

The visualization of the resulting image is performed using OpenGL and the GLU library. This pipeline requires
the definition of two spatial functions, run sequentially on the GPU, called the vertex and fragment shaders. The
vertex shader defines the vertex position of the entities to display whereas the fragment (or texture) shader define
the RGBA colors for each rasterized pixel.

Each vertex position is computed using Eq. (9) from the deformed configuration coordinates and the polygons
are drawn based on the connectivity matrix of each solid. The color of each vertex is computed directly from the
neural network prediction using a fixed colormap. Additionally, a basic lighting model was added to the fragment
shader to increase the realism of the virtual objects using the Phong shading. This model computes each RGB pixel
intensity as

I = ka ia + kd (l · n)id + ks(r · v)β i s, (10)

where ka , kd and ks are the ambient, diffuse and specular reflection constants, β is the shininess constant of the
material and ia , id and i s are the RGB color intensities of the ambient, diffuse and specular components. The
illumination varies depending on the geometry of the scene and camera position, where n is the surface normal
vector, l and r are the directions of the light source and its perfect reflection, v is the viewing direction and “·” is
the dot product.

We have also implemented a depth or z-buffer in the fragment shader which compares on each pixel the depth of
virtual and real objects on the scene and renders only the closest to the camera. This accounts for every occlusion
that the vision system may encounter. The depth of the scene seen by the camera is computed directly using the
stereo vision system.

3.5. Collision and contact

We use a high-fidelity hand tracker from MediaPipe [40] which provides an accurate localization of the finger
tips. By using the inverse transformation of Eq. (9), we can compute the 3D coordinates of the finger tips in the
model space and compute the distance to each node of the virtual object. When this distance is less than a small
threshold, collision is detected and a prescribed force is applied to the model. A similar procedure is applied to the
collision of several virtual objects.

The code is implemented in Python using the PyOpenGL wrapper for the visualization and Pytorch Geomet-
ric [41] for the deep learning training and evaluation. The videos are generated using a standard desktop computer
with a single Nvidia RTX2070 GPU and provided as supplementary material. The code for the implementation of
the thermodynamics-informed neural networks and the video sequences are publicly available at https://github.com
/quercushernandez.

4. Results

4.1. Bending beams

The first system is composed of two interacting viscoelastic beams. Both identical beams are assembled with a
small gap between each other, allowing for a contact interaction, as depicted in Fig. 3.

The dimensions of the beams are H = 10, W = 10 and L = 40. The finite element mesh from which data are
obtained consists of Ne = 500 hexahedral linear brick elements and N = 756 nodes. The constitutive parameters
of the hyperelastic strain energy potential are C10 = 1.5 · 105, C01 = 5 · 103, D1 = 10−7 and ḡ1 = 0.3, ḡ2 = 0.49,
τ1 = 0.2, τ2 = 0.5 respectively for the two-term Prony series. A distributed load of F = 105 is applied in 52
different positions with a perpendicular direction to the solid surface. Each simulation is composed of NT = 20
time increments of ∆t = 5 · 10−2 s. Both beams are assembled in 90◦ with a gap of g = 10.

The graph neural network vertex and edge MLPs have two layers of Fh = 100 neurons each, with 10 message
passing sequential blocks. The training was performed for Nepoch = 1800 epochs and learning rate lr = 10−4.

Fig. 4 shows a real-time video sequence generated using the presented algorithm. The interaction of both the
real objects (finger tips) and the virtual objects are simulated smoothly at more than 30 frames per second. It is

important to highlight that during a video sequence the trained neural network is able to generalize to previously
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Fig. 3. Interacting beams geometry scheme. Both beams are angled with a gap between both, enabling their interaction.

Fig. 4. Frames extracted from the interacting beams sequence. Color encodes the x-x stress field component associated with the displacement
imposed by contact with a real object.

unseen configurations. The quantitative errors by the neural network in the real-time rollout predictions are shown
in Fig. 7a, which remain below 1% in position and velocity and 10% in the stress tensor field.

The computational cost of the high fidelity FEM simulations used for the training of the neural network is 15
s per simulation, up to 795 s for the whole dataset, and 243 Mb in memory storage. Conversely, the training time
of the neural network is 4.5 h and the mean evaluation time is 9 ms with a memory storage of 12.3 Mb. Thus, the
use of a deep learning approach allows a drastic reduction of the online computation time with the inconvenient of
larger offline training time. It is also worth noting that the network parameters are more than 10 times lighter in
terms of memory storage.

4.2. Stanford bunny

The second example is a bunny mesh from the Stanford 3D scanning repository, which is a more complex
geometry as the one shown in the previous example. It is a standard reference model in computer graphics research.

The model is represented in Fig. 5.

7
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Fig. 5. Bunny mesh geometry with a concentrated application force and bottom encastre.

The finite element mesh from which data are obtained consisted of Ne = 4941 tetrahedral linear elements and
N = 1352 nodes. The constitutive parameters of the hyperelastic strain energy potential are C10 = 2.6 · 10−1

nd D1 = 4.9 · 10−2. Similarly as the previous case, a concentrated load of F = 1 is applied in 100 different
ositions with a perpendicular direction to the solid surface. The body was fixed to the ground plane by disabling
isplacements and rotations at the lower model nodes. Each simulation is composed of NT = 20 time increments
f ∆t = 5 · 10−2 s.

The graph neural network vertex and edge MLPs have two layers of Fh = 100 neurons each, with 10 message
assing sequential blocks. The training was performed for Nepoch = 1800 epochs and learning rate lr = 10−4.

Fig. 6 shows a real-time video sequence generated using the bunny model, also with a minimum framerate of
0 frames per second. In this case the stress field errors reported in Fig. 7b are higher due to the stress peaks at
he single-node force application, which causes that the elasticity phenomena remain very local in space.

In this case, the computational cost of the high fidelity FEM simulations is 27 s per simulation, up to 2700 s
or the whole dataset and 833 Mb in memory storage. The dataset and edge count is much larger in this example,
hich increases the training time of the neural network to 20 h and the evaluation time to 11 ms with the same
emory storage as the previous example. Thus, the data compression is even bigger in this case. To address the

igh training time and errors due to stress peaks, several future improvements are discussed in the next section.

. Conclusions

We presented a real-time augmented reality simulator, which enables a user to interact with virtual deformable
olids. The predictions are computed using the GENERIC structure of the system learnt with a message passing
raph neural network. The enforcement of such physics constraints guarantees the fulfillment of the first and second
aws of thermodynamics. The resulting algorithm has a wide variety of applications not only in the entertainment
ndustry, but also in engineering design or manufacturing, where the visualization of augmented data superimposed
n a real or virtual object might redefine the next generation of industry 4.0 and digital twins.

Our method has several limitations which might be addressed as future work. The scalability to bigger meshes
s a challenging task, as graph neural networks can suffer from over-squashing or bottlenecks [42,43]. The use
f graph reduction techniques via graph autoencoders [44] or U-nets [45] configurations can significantly reduce
he computational requirements in larger meshes. This would also reduce the stress peaks discontinuities due to
oncentrated forces. The message passing algorithm itself is not able to handle domains where the boundary
onditions are very far away from the prescribed forces. This can be mitigated by implementing a global attention
ector so that certain dynamical information is reached to all the nodes of the domain instantly.

The visualization and data acquisition are possible due to the graphics acceleration. Even if the current work was
mplemented in a desktop computer as a proof of concept, only a small fraction of all the computational resources

ere used, so it can be extended to AR/VR headsets or to modern mobile devices. For the same reason, higher

8
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Fig. 6. Frames extracted from the bunny sequence. Color encode the x displacement field component imposed by contact with a real object.

Fig. 7. Box plots for the relative L2 error for all the rollout snapshots of the bunny dataset in both train and test cases. The state variables
epresented are position (q), velocity (v), and stress tensor (σ ).

ramerates might be achieved by fine-tuning and optimizing the proposed network structure or porting the code to
higher-performance language such as C++. Occlusions in real-time augmented reality software still remain as an

pen problem in the computer vision community [46,47]. The stereo depth estimation is an approximation which
ight cause image artifacts in singular camera poses. For instance, some works handle the problem by using deep

earning [48] but it is out of the scope of this manuscript.
This work is just a small step forward towards the new immersive technologies which can potentially deeply

hange our society. It is a multidisciplinary problem where computer vision, computer graphics, machine learning
nd computational mechanics must meet to define new algorithms for a new digital revolution.
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