000125275 001__ 125275
000125275 005__ 20231006143322.0
000125275 0247_ $$2doi$$a10.3390/app13042569
000125275 0248_ $$2sideral$$a132972
000125275 037__ $$aART-2023-132972
000125275 041__ $$aeng
000125275 100__ $$0(orcid)0000-0002-5621-1937$$aSanchez-Cano, A.$$uUniversidad de Zaragoza
000125275 245__ $$aMethod to calculate melanopic light reaching the retina depending on the optical density of an aging crystalline lens
000125275 260__ $$c2023
000125275 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125275 5203_ $$aLighting studies that take into account the age of the inhabitants of an area and are related to circadian light are difficult to find. This study aims to simplify a method to approximately compute the circadian light reaching the retina based on photopic illuminance reaching the corneal plane and considering the optical density of an aging crystalline lens. As an example of this proposed method, calculations were performed with both the D65 and A standard illuminants, showing how the spectral power distribution is modified by the optical density of the crystalline lens, mainly at short wavelengths. Due to these selective wavelength absorptions of the aged lens, a significant variation in the level of daylight equivalent melanopic illuminance (EDI) is present in the retina. With levels of 200 lux at the corneal plane, these variations ranged from 204 EDI lux to 178 EDI lux for the D65 standard illuminant, and from 99 EDI lux to 101 EDI lux for the A standard illuminant for observers aged 10 and 90, respectively. In this work, we aimed to simplify the greatest possible level of calculation of melanopic light, while describing simple protocols that are easy to translate into practice. Our results will allow researchers to carry out optimized lighting designs from both the photometric and circadian perspectives considering the optical density of an aging lens.
000125275 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP39_21$$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PID2019-107058RB-I00
000125275 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125275 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125275 700__ $$0(orcid)0000-0003-2710-1875$$aOrduna-Hospital, E.$$uUniversidad de Zaragoza
000125275 700__ $$0(orcid)0000-0003-1234-9712$$aFernández-Espinosa, G.
000125275 700__ $$0(orcid)0000-0003-2968-228X$$aAporta, J.$$uUniversidad de Zaragoza
000125275 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000125275 773__ $$g13, 4 (2023), 2569 [12 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000125275 8564_ $$s1323321$$uhttps://zaguan.unizar.es/record/125275/files/texto_completo.pdf$$yVersión publicada
000125275 8564_ $$s2895089$$uhttps://zaguan.unizar.es/record/125275/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125275 909CO $$ooai:zaguan.unizar.es:125275$$particulos$$pdriver
000125275 951__ $$a2023-10-06-14:13:51
000125275 980__ $$aARTICLE