Bayesian variable selection in generalized extreme value regression: modeling annual maximum temperature

Castillo Mateo, Jorge (Universidad de Zaragoza) ; Asín, Jesús (Universidad de Zaragoza) ; Cebrián, Ana C. (Universidad de Zaragoza) ; Mateo Lázaro, Jesús (Universidad de Zaragoza) ; Abaurrea, Jesús (Universidad de Zaragoza)
Bayesian variable selection in generalized extreme value regression: modeling annual maximum temperature
Resumen: In many applications, interest focuses on assessing relationships between covariates and the extremes of the distribution of a continuous response. For example, in climate studies, a usual approach to assess climate change has been based on the analysis of annual maximum data. Using the generalized extreme value (GEV) distribution, we can model trends in the annual maximum temperature using the high number of available atmospheric covariates. However, there is typically uncertainty in which of the many candidate covariates should be included. Bayesian methods for variable selection are very useful to identify important covariates. However, such methods are currently very limited for moderately high dimensional variable selection in GEV regression. We propose a Bayesian method for variable selection based on a stochastic search variable selection (SSVS) algorithm proposed for posterior computation. The method is applied to the selection of atmospheric covariates in annual maximum temperature series in three Spanish stations.
Idioma: Inglés
DOI: 10.3390/math11030759
Año: 2023
Publicado en: Mathematics 11, 3 (2023), 759 [19 pp]
ISSN: 2227-7390

Factor impacto JCR: 2.3 (2023)
Categ. JCR: MATHEMATICS rank: 21 / 489 = 0.043 (2023) - Q1 - T1
Factor impacto CITESCORE: 4.0 - Mathematics (all) (Q1) - Engineering (miscellaneous) (Q2) - Computer Science (miscellaneous) (Q2)

Factor impacto SCIMAGO: 0.475 - Computer Science (miscellaneous) (Q2) - Mathematics (miscellaneous) (Q2) - Engineering (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E46-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-116873GB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130702B-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)
Área (Departamento): Área Geodinámica Externa (Dpto. Ciencias de la Tierra)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-09:57:45)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-03-23, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)