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Abstract: Machine Learning (ML) techniques can be used to convert Big Data into valuable informa-
tion for agri-environmental applications, such as predictive pest modeling. Lobesia botrana (Denis
& Schiffermüller) 1775 (Lepidoptera: Tortricidae) is one of the main pests of grapevine, causing
high productivity losses in some vineyards worldwide. This work focuses on the optimization of
the Touzeau model, a classical correlation model between temperature and L. botrana development
using data-driven models. Data collected from field observations were combined with 30 GB of
registered weather data updated every 30 min to train the ML models and make predictions on this
pest’s flights, as well as to assess the accuracy of both Touzeau and ML models. The results obtained
highlight a much higher F1 score of the ML models in comparison with the Touzeau model. The
best-performing model was an artificial neural network of four layers, which considered several
variables together and not only the temperature, taking advantage of the ability of ML models to find
relationships in nonlinear systems. Despite the room for improvement of artificial intelligence-based
models, the process and results presented herein highlight the benefits of ML applied to agricultural
pest management strategies.

Keywords: Lobesia botrana; pest monitoring; predictive models; IoT; weather data; data-driven
models; machine learning; integrated pest management

1. Introduction

Agriculture faces the challenge of increasing its productivity while reducing its envi-
ronmental impact [1,2]. Nonetheless, agricultural systems are affected by different prob-
lems, such as environmental conditions, soil characteristics, water availability, and pest
infestation. The latter has traditionally been managed through the knowledge and experi-
ence of the farmers themselves [3,4].

Today, agriculture is undergoing a major transformation in the collection and use of
large amounts of data to make smarter decisions [5]. The applicability of new trends such
as the Internet of Things (IoT) and Information and Communication Technologies (ICT) to
agricultural activities enables farmers to adopt an approach based on the analysis of data
from their farms to improve decision-making efficiency and mitigate pest risks [3,6]. Recent
developments regarding open access to data, coupled with the unprecedented growth in
the volume of data, referred to as Big Data (BD), have led to a shift in focus toward methods
aimed at effectively managing such data for use in agri-environmental research [7]. In this
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sense, both traditional statistical techniques and Machine Learning (ML) techniques can be
used to convert collected BD into timely and valuable information [8].

The grapevine moth, Lobesia botrana (Denis & Schiffermüller) 1975 (Lepidoptera: Tor-
tricidae) is one of the main pests of grapevines [9–12], responsible for high productivity
losses in some vineyards worldwide. Figure 1 shows how this pest can be identified in the
field at different stages of development. L. botrana presents a facultative diapause [13–16],
which results in a variable number of flights and generations per year, depending on the
temperature and photoperiod [15,17]. L. botrana is multivoltine; in Mediterranean latitudes,
it has three generations [15].
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Figure 1. Different stages of development of Lobesia botrana: (a,b) Eggs; (c–e) larvae; (f) pupae;
(g) adults. Photo credit: Julio Prieto-Díaz.

L. botrana causes different types of damage (Figure 2). On the one hand, direct damage
caused by the pest occurs during the first generation, destroying a certain number of
inflorescences, which generally does not affect crop yield [18]. In the second and third gen-
erations, the larvae directly attack the berries, causing more significant harvest losses [19].
Moreover, regarding indirect damage, in the second generation, the attack on berries favors
the presence of Botrytis cinerea Pers.: Fr (Botryotinia fuckeliana (de Bary) Whetz.) [10,13,16].
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In terms of crop protection, it has been experimentally demonstrated that integrated
pest management (IPM) [20] is more effective than classical methods based solely on
biological or chemical control alone [21]. IPM is defined as a long-term control strategy
that combines biological, cultural, and chemical methods to reduce pathogenic populations
to tolerable levels so that pests do not reach an economic threshold of damage [22]. In
this line, as occurs with other pests, L. botrana control strategies are based on monitoring
populations and applying control measures (such as the sex pheromone-based mating
disruption technique, mentioned later in this section, or phytosanitary treatments, when
necessary) to avoid reaching the aforementioned level of economic damage [23].

It is worth pointing out that this type of monitoring-based population tracking has
sensitive aspects, such as the significant amount of time needed to carry it out, as well as a
high level of technical expertise [4]. In addition to this, an insufficiently high monitoring
frequency may represent a significant loss of information between field inspections [24].
In this sense, the potential of predictive models of future pest behavior makes modeling
a powerful resource to complement monitoring, as well as being particularly useful for
decision support systems (DSS), which help farmers to make decisions on crop protection
measures [25,26]. According to Nansen et al. [27], a large part of the production systems
are expected to face an increase in pest pressure, and therefore in potential phytosanitary
applications. Because of this, the assessment of the sustainability of viticulture under future
conditions, both from an environmental and economic point of view, can be considered of
utmost importance for winegrowing operations [28]. Consequently, the importance of the
use of DSS lies in their viability to increase the sustainability of agricultural production,
which can lead to a reduction of the effects of agrochemicals on the environment and their
economic cost at the farm level [29,30].

Considering that agricultural crops are managed biological systems, the utilization of
applied mathematics developed for biological systems can be of great use in pest control
through modeling and simulation, as Plant et al. [31] explained at the time. Nowadays,
the role that modeling can play in plant health continues to arouse interest among en-
tomologists and environmental scientists [32]. Bearing in mind that the objective of an
optimal application of phytosanitary products is not only to control a pest but to predict
and mitigate its appearance [2], predictive models are considered essential for efficient crop
protection methods [33–35], because of their usefulness in deciding if and when treatments
are necessary.

Since insects are ectothermic organisms, it has been shown that there is a direct
relationship between their life cycle and abiotic factors, such as climatic factors (viz. tem-
perature, relative humidity, wind direction, rainfall, photoperiod, and insolation) [24]. In
the case of L. botrana, temperature is the variable with the greatest influence on its develop-
ment [9,12–15,17,32,36–41]. Hence, the Touzeau predictive model for the development of
L. botrana [42], developed in the Toulouse region (France), is based on the calculation of
thermal integrals through temperature accumulation above a set threshold value. Flight
monitoring of this pest, which is carried out via pheromone trapping of adults, provides
potentially useful data to verify Touzeau’s predictions [38].

In recent years, the sex-pheromone-based mating disruption technique has been
successfully implemented for L. botrana control [43,44], with a significant reduction in
the use of chemical insecticides and higher protection of non-target insects [45,46]. This
method is based on the use of pheromones emitted by insects, which they use as chemical
messengers. The best known and most widely used are the sex pheromones emitted,
in this case, by the females of Lepidoptera to attract males and facilitate mating. Thus,
the strategy is to saturate the air with the female’s sex pheromone by arranging diffusers,
disrupting communication between the female and the male [47]. As a consequence, mating
is hindered or delayed, leading to a drastic and gradual reduction in the oviposition of fertile
eggs in later generations, causing a noticeable decline in the pest population [46,48]. This
technique began to be implemented in 2012 in the province of Zaragoza (Aragón, Spain),
the study area on which this work focuses. At the present time, in Aragon, L. botrana is
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controlled almost exclusively using mating disruption (although, if necessary, phytosanitary
treatments are carried out on an ad hoc basis).

The research presented herein focuses on the analysis of a correlation model between
weather conditions and L. botrana development, analogous to the aforementioned Touzeau
predictive model. This analysis is centered on three protected designations of origin (PDO),
viz. Cariñena, Campo de Borja, and Calatayud, located in the province of Zaragoza. Given
that the fit of the Touzeau model is not sufficiently accurate in this area, its improvement
would entail two main advantages: (i) A contribution to the preventive control of L. botrana
in case the established sex pheromone-based mating disruption system becomes ineffective
(at present, the mating disruption method is still effective, but in other pests, it has been
observed that males learn to differentiate between the pheromone of the diffusers and that of
the females, which is much more complex); and (ii) the possibility to tackle the adaptation
of this pest to the modification of meteorological conditions in the area due to climate
change, which has already begun to be observed by several authors [9,15,16,40,49,50]. From
both points of view, the optimization of the model would be very useful to schedule an
efficient treatment calendar. It is therefore proposed to improve the current predictive
model through the use of Artificial Intelligence (AI)-based systems, particularly using ML
models based on neural networks, whose highly hierarchical structure and great learning
capacity allow for particularly good classifications and predictions [1].

2. Results

A total of 10,000 models were trained. For all of them, the projection of the data for
the last two weeks was considered input data. During training, these models are able to
capture knowledge and are expected to find non-linear relationships with more than one
variable. The variables identified as most relevant by each model were extracted from their
descriptions. The best-performing trained model was an Artificial Neural Network (ANN)
of four layers whose composition is shown in Table 1.

Table 1. Description of the best-performing artificial neural network (ANN).

Layer Neurons Activation Function

0 96 linear
1 336 selu
2 64 linear
3 144 selu

Regarding the aforementioned variables, the best-performing model considered the
following variables as most relevant:

• The Touzeau index.
• The Chilling index.
• The rainfall (in this case, calculated using daily data or accumulating the half-hourly

samples, considering the starting date of dormancy as the start date to accumulation).
• The longitude.

The results of the F1 metric for the classic Touzeau models and the ML models were
obtained after comparing the day of the year (DOY) when the flight peaks were observed in
the field with the DOY predicted by the models. Table 2 shows the comparison of observed
flight peak DOY with the DOY predicted by the Touzeau and ML models for the 2008−2011
seasons. These results highlighted, firstly, that the Touzeau model did not provide a good
fit in the study area, yielding a 0.03 F1 score, which is very low. On the other hand, the ML
models resulted in much higher F1 scores, of up to 0.63.
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Table 2. Comparison of observed (Obs.) flight peak days of the year (DOY) with the DOY predicted
by the Touzeau (Tou.) and machine learning (ML) models for the 2008−2011 seasons.

Season Generation Observation/
Prediction

Site Code

50
02

4A
00

30
00

13

50
07

3A
03

50
00

94

50
00

4A
03

40
01

75

50
07

3A
00

70
00

43

50
07

3A
01

00
00

09

50
07

3A
02

70
00

14

50
07

3A
03

40
01

28

50
07

3A
04

10
00

21

50
07

3A
04

80
00

16

50
07

3A
05

80
00

42

50
07

3A
08

40
00

31

50
07

3A
08

90
00

11

50
07

3A
09

50
00

73

50
07

3A
10

00
00

51

50
09

8A
03

00
00

27

50
20

1A
00

20
01

24

50
20

1A
02

20
00

12

50
26

8A
00

10
00

50

2008

1st
Obs. 126 126 153 153 126 153
Tou. 111 111 111 111 111 111 111
ML 126 149 93 149 153 126 153

2nd
Obs. 184 184 157 159 157 157 157 159 157 157 160 159 157 159 157
Tou. 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172
ML 186 157 157 157 157 157 159 157 157 159 157 159 156

3rd
Obs. 221 221 224 216 224 224 224 221 224 224 224 214 216 224
Tou. 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
ML 220 223 215 223 223 223 221 223 223 214 223 216 223

2009

1st
Obs. 134 125 131 128 131 131 131 125 131 131 131 128 128 131
Tou. 127 127 127 127 127 127 127 127 127 127 127 127 127 127
ML 130 128 130 130 130 124 130 130 130 128 128

2nd
Obs. 175 173 152 158 152 152 152 159 152 152 152 152 152 159 152
Tou. 166 166 166 166 166 166 166 166 166 166 166 166 166 166 166
ML 151 157 151 151 151 159 151 151 151 152 151

3rd
Obs. 223 212 217 215 215 217 217 215 217 215 220 215 218 223 224
Tou. 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201
ML 217 215 215 217 217 214 217 215 220 215 223

2010

1st
Obs. 139 139 152 122 157 157 124 131 124 152 127 124 156 127 124
Tou. 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116
ML 123 123 152 122 120 120 123 120 123 123 152 123 123 156 123 123

2nd
Obs. 181 181 158 163 158 158 183 157 158 183 158 163 183 163 160 158
Tou. 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173
ML 159 175 157 162 157 157 175 156 157 175 157 162 175 162 159 157

3rd
Obs. 224 221 218 224 218 224 224 213 214 214 214 224 224 224 224
Tou. 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207
ML 223 223 218 223 217 223 223 212 214 214 214 223 223 223 223

2011

1st
Obs. 123 123 131 128 129 131 128 128 128 128 128 128 128 128 129 121 128 128
Tou. 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103
ML 123 123 126 126 130 126 126 126 126 126 126 126 126 126 121 126 126

2nd
Obs. 164 164 157 184 157 158 158 158 182 157 182 157 157 182
Tou. 162 162 162 162 162 162 162 162 162 162 162 162 162 162
ML 152 157 157 157 176 150 175 150 150 150 176

3rd
Obs. 216 216 224 220 223 214 220 220 220 224 220 220 223 213 223 223 213
Tou. 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202
ML 216 216 216 222 210 220 220 220 223 220 220 213 222 222 213

Information for each of the site codes is available in Tables S4 and S5.

3. Discussion
3.1. On the Model Performance

The F1 score reaches its best value at 1, while 0 is the worst score [51]. It should be
clarified that there is no specific threshold value for considering an F1 score as ‘good’, so the
model that produces the highest F1 score is generally considered the best. In this work, the
Touzeau model obtained a 0.03 F1 score, which is very low compared with that obtained by
the ANNs (of up to 0.63), so ML models can be regarded as more accurate.
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This F1 score value of 0.63 may be assessed in a similar way as Sepúlveda et al. [52]
did in their research: They concluded that the F1 score of 0.6 that they obtained could
be interpreted as a low false negative rate and a similar false positive rate, with good
compensation between errors, confirming a good F1 score metric.

Another interpretation would be based on the approach proposed by Nieto et al. [53],
who used F1 to compare the results of two classification models developed for monitoring
phenology. The best model under the F1 metric was 0.52 times better than the worst one.
Although the scenario is not the same as the one for our study (given that their models
were similarly developed and here we are comparing a classical model with an elaborated
ANN), the same reasoning would suggest that the obtained ML model was 20 times better
than the Touzeau model.

3.2. Advantages of ML Models and Most Relevant Weather Variables Identified by the
Best-Performing ANN

As noted above, the Touzeau model takes into account the daily temperature record
as the only parameter, i.e., it does not take into account the rainfall, relative humidity,
or any other parameter collected by weather stations. In this sense, the Touzeau model
considers all conditions optimal for the development of L. botrana. However, according to
Stellwaag [54], the highest population levels of this pest, and therefore the most serious
economic damage, are systematically recorded in areas with conditions considered optimal
for this insect (an average annual temperature of around 20 ◦C and a relative humidity
of around 70%). From this perspective, it can be explained that at times of unsuitable
climatic conditions (low humidity, extreme temperatures), the species suffers a slowdown
in its physiological processes and even adult mortality. The ML models, on the other hand,
consider all the parameters recorded by the weather stations (Table S1). In addition, they
can consider the 48 daily inputs corresponding to the data recorded every 30 min. In this
way, ML models calculate the contribution of each of the 48 parts of the day to determine
the daily contribution to cumulative indices and values. Furthermore, BD technologies
allow for improving the quality of information used to train AI models, balancing skewed
datasets (e.g., in our case, the number of samples with flights is lower than the number
not having), thus reducing the risk of overfitting [55]. In addition, once built, the way the
ML models are trained allows them to be easily updated with new data to adapt them to
potential new scenarios.

Following on from the ability of ML models to consider all the weather parameters
discussed above, the best-performing ANN considered temperature (Touzeau and Chilling
indexes), rainfall, and longitude as the most relevant variables. As mentioned above, many
authors have addressed the influence of temperature on the development of L. botrana.
Others found that both temperature and rainfall were the variables that most influenced
this pest distribution [12]. In this same line, Coms, a et al. [50] found that warmer and
drier seasons were more favorable. Zhan et al. [56] also explained that high temperature
and low humidity provide optimal conditions for L. botrana, while rain together with
low-temperature conditions seems to reduce the mating frequency and, subsequently,
egg production.

In addition, previous works considered the relationship between low temperatures,
on which the chilling index is based [57], and L. botrana. Andreadis et al. [14] studied the
cold hardiness of this pest. Other research works pointed out that very low temperature,
experienced by larval instars, tends to avert pupal diapause, with a very prolonged devel-
opment of larvae with low temperatures [17]. Zhan et al. [56], on their side, highlighted
that low temperatures had a great influence on the occurrence of this pest.

Regarding longitude, some authors analyzed the correlation between this parameter
and other Lepidoptera. Khaghaninia et al. [58] performed their study with Cydia pomonella
(Linnaeus) 1758 (Lepidoptera: Tortricidae), belonging to the same order and family as
L. botrana, and their results showed a low correlation. On the other hand, Zhou et al. [59]
found a strong relationship between this variable and another insect of this same order, viz.
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Parocneria orienta (Chao) 1978 (Lepidoptera: Erebidae); in particular, these authors noted
that the hazard centroid shifted significantly with respect to longitude.

3.3. Applicability of the Developed ML Models

The developed ML model can help winegrowers of the three PDOs make better
decisions on crop protection measures against L. botrana, relying on more accurate model
predictions to carry out treatments only if and when they are needed. In this regard,
once the model predicts a risk in terms of a pest infestation, and in terms of the field
implementation of measures based on that prediction, the cost of taking or not taking
measures should be assessed in relation to the risk raised.

Although, at present, L. botrana population density remains below an economic thresh-
old of damage in those areas where the mating disruption method using sex pheromones
has been implemented (which, as noted above, is still effective), the optimization of the
predictions could allow winegrowers to improve the preventive control of L. botrana in case
the mating disruption method becomes ineffective. Furthermore, it should help farmers to
deal with the adaptation of this pest to the modification of meteorological conditions in the
area due to climate change.

3.4. Room for Improvement of the AI-Based Models and Future Work

Based on results from previous work [60,61], an ANN was selected for training,
but other more complex models could be trained to see if they would be able to obtain
better results.

Although many models in grapevine entomology refer to a single species, the future
of modeling in pest management should move towards global frameworks, covering more
aspects of the problem (e.g., economics, crop yields, etc.), where the insect pest becomes
part of the whole. For example, it may be necessary to choose the right timing for insecticide
spraying against two different pests that overlap in the same season, and if both pests are
predicted by a model, it would be easier to choose the best active substance, which would
make the decision more environmentally friendly and cheaper [62].

Despite the outlined room for improvement of AI-based models, the process and
results presented in this work highlight the benefits of ML applied to plant health strategies
and its potential contribution to increasing the sustainability of agricultural activity, through
a lower environmental impact as well as a lower economic cost of production (e.g., as a
result of determining the right time to initiate insecticide application to control a pest or,
preferably, using IPM tactics such as sexual confusion).

As part of the GRAPEVINE project (hiGh peRformAnce comPuting sErvices for
preVentIon and coNtrol of pEsts in fruit crops), in which the present study is framed, further
research is planned primarily along two lines of work: One will be validating how the
ML models perform with data collected after the implementation of the mating disruption
method, i.e., from 2012 to 2022, after the mating disruption method implementation. The
second main issue to tackle in the future is related to testing the performance of the models
in other geographical areas beyond the study area considered in this work.

4. Materials and Methods

This section introduces the field sites and the study period. How the L. botrana flight
monitoring was performed is also presented, as well as the weather data used. The section
is completed with a description of Touzeau and data-driven models.

4.1. Monitoring Field Sites and Study Period

The vineyards used as control fields are located in three PDOs (Cariñena, Campo de
Borja, and Calatayud) in the province of Zaragoza (Aragón, Northeastern Spain). The study
area, shown in Figure 3, is characterized by a continental climate, with the typical wind of
the region—called ‘cierzo’—as the most outstanding characteristic, being a cold and dry
north-western wind, with a Mediterranean summer influence. The monitoring sites are
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commercially cultivated vineyards belonging to wineries and cooperatives of the PDOs.
The activity of these producers in terms of plant health is coordinated through the RedFAra
network [63]. This network has a database repository with historical records of in situ
monitoring and pest incidence. Thus, L. botrana flight data from the monitoring sites were
available for the study period.
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Geographical Institute of Aragón (https://idearagon.aragon.es/portal/, accessed 21 December 2022).

In the study area, the sex-pheromone-based mating disruption technique began to
be implemented for L. botrana in 2012. Therefore, the study period selected for this work
extends from 2004 to 2011 to avoid confusing and biased information on pest behavior.
A total of 172 monitoring sites were used for this work during the entire study period
(2004−2011).

Figure 4 (left) shows the location of the monitoring sites. Data from the cadaster of
the Spanish registry [65] and the Aragon Open Data portal [66] provided the geographical
description of the monitoring points, also allowing, through their location, to link each point
to the nearest weather station as well as to information related to their geopositioning [60].
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4.2. Lobesia botrana Flight Monitoring

Data from L. botrana flight activity at the monitoring sites used in the study belong to
the repository of the RedFAra database [63]. Delta traps were placed one meter above the
ground, one per hectare, with a gummed bottom along with a synthetic sex pheromone
(E/Z-7,9-dodecadienil acetate) to monitor the flight activity of L. botrana males during
the study period (Figure 5). Traps were placed during the whole vegetative period of the
crop, and captures were checked every week. Pheromones were renewed every 6 weeks,
according to the effective duration indicated by the supplier (OpenNatur SL, Lleida, Spain).
Data on the captures over time provided information on the time of occurrence and duration
of each generation at the monitoring sites.
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pheromone; (e) adults captured.

The L. botrana life cycle begins when the first emerging adults from pupae that re-
mained in diapause during the winter are detected. When sustained captures are encoun-
tered in pheromone delta traps, the first flight is considered to have taken place. This
flight is estimated to end when the number of captures trends to zero. Further capture
records should follow the same behavior, although the timing of these records will vary
with the increase in average temperatures as spring and summer advance [67]. Data from
these captures indicate the maximum flight moments of each generation, called ‘flight
peaks’. The information provided by flight monitoring was analyzed together with the
meteorological data records collected by weather stations.

4.3. Weather Data

The Agroclimatic Information System for Irrigation (SiAR) network, operated by the
Spanish Ministry of Agriculture, has weather stations throughout Spain, with 49 of these
stations located in Aragon [68]. Weather data stored in the SiAR database were used in this
work to analyze the modeling of L. botrana. These data correspond to the SiAR stations
listed in Table S2, whose locations are shown in Figure 4 (right). Modeling was performed
by managing, between raw and processed data, 30 GB of data updated every 30 min.

The weather data from the stations were combined with data from field observations
about flight monitoring. This was performed, on the one hand, to train the ML models—
and then to make the predictions—and, on the other hand, to assess the accuracy of both
the Touzeau and the ML models. The selection of the most representative weather station
for a given vineyard was based on the following rules:

• First, valid stations were selected for each year: A station was considered valid when,
for the year in question, it provided data for at least 90% of the days of the year and
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the number of days that had less than 90% of the total samples per day (i.e., 48 when
the sampling frequency was 30 min) was less than 90%.

• Once the set of stations was defined for a year, the field observations from a vineyard
in that year were combined with the climate data from the nearest station.

The weather stations provided data during the study period on the temperature,
relative humidity, precipitation, wind speed and direction, and radiation, with daily and
semi-hourly (every 30 min) records (Table S1).

When a data gap was detected (e.g., station Z22 did not provide data from 18:30 to
20:30 on 25th September 2021), the missing data were replaced. This was achieved using
data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA5 [69], accessed via the Open-Meteo Historical API [70]. ERA5 is the fifth-generation
ECMWF atmospheric reanalysis of the global climate and is produced by the Copernicus
Climate Change Service (C3S) at ECMWF. It provides hourly data readings on a 30 km grid,
which had to be transformed to fit the semi-hourly (every 30 min) SiAR records. For that,
all variables were copied into two records, 00 min and 30 min, except for the accumulated
precipitation, with which a single register was divided by 2.

Regarding the recorded temperatures, and to analyze the correlation between these
and the development of L. botrana, the daily maximum (TM) and minimum (Tm) were
adjusted to effective temperatures [71]. This was due to the fact that, when working with
cumulative indexes, negative temperatures could alter the real value of these indexes.
Therefore, to avoid this potential disruption, any temperature below 0 ◦C was adjusted to
the effective temperature of 0 ◦C.

4.4. Touzeau Model

Classical models of L. botrana, such as the Touzeau model, are based on temperature
accumulation (in ◦C), which is considered to be the most influential environmental factor
on the seasonal behavior of this pest. Degree-day accumulation methods using thermal
integrals are the most commonly used methods to analyze the relationship between insect
development and temperature [72]. These methods are based on the amount of heat energy
accumulated daily above a minimum temperature threshold called the base temperature
(TB). The Touzeau model uses the Touzeau index to calculate the accumulated thermal
integral for L. botrana, based on the daily maximum (TM) and minimum (Tm) temperatures,
and sets TB = 10 ◦C [42]. In the present work, in addition to TB, a temperature limit of 30 ◦C
(above which the temperature accumulation stops) was taken into account, in agreement
with Gabel et al. [73], Del Tío et al. [74], and Gallardo et al. [75]. Therefore, all temperatures
with values above 30 ◦C used to calculate the Touzeau index were adjusted to 30 ◦C.

The Touzeau model index function is mathematically expressed by:

Tou = ∑n
DOY=1

(
TM + Tm

2
− TB

)
, (1)

where DOY refers to the day of the year or day of the Julian calendar. Thus, the temperature
accumulation for the Touzeau index starts on January 1st (DOY = 1).

Table S3 shows the different developmental stages of L. botrana for the three genera-
tions, together with the cumulative daily temperatures needed to reach them, expressed
according to the Touzeau model index (Tou). Each of the stages has its calorific requirements.
The thermal integral accumulated from a starting point using the Tou is used to predict
when a stage will be reached. The monitoring methods followed in this paper focus on
flights of adult generations. As shown in Table S3, the accumulated Tou for L. botrana
generations were 125 for 1st G, 500 for 2nd G, and 950 for 3rd G. In this way, to assess
the accuracy of the Touzeau model, the DOY when the maximum population of each
generation takes place in the field was identified according to flight peaks. Then, this DOY
was compared with the DOY when the accumulated Tou reached the values indicated by
the model for each generation.
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4.5. Data-Driven Models Used in This Study

Data-driven models are capable of extracting valuable insights from huge amounts
of data without the need to define a law or equation to explain a given phenomenon [76].
To do so, they apply BD, analytics technologies and AI algorithms for the automation of
data capturing and processing. They can combine heterogeneous multi-sourced data for
discovering, understanding, and evaluating new models, which represent relationships
that are too complex to be found by mathematical ones [77]. In our context, these com-
putational technologies make it possible to use climatic variables, such as the maximum
temperature, minimum temperature, humidity, rainfall, or wind speed, which are known
factors influencing pests, but whose influence is not yet well understood [55].

Fenu et al. [55] and Domingues et al. [77] performed a review of the AI, ML, and Deep
Learning (DL) algorithms used by different authors for creating pest models. The most
popular models are those that use only climate data [55]. Several algorithms with different
computational complexity have been used, from Logistic Regression to Convolutional
Neuronal Networks (CNN), passing through Support Vector Machines (SVM), Support
Vector Regression (SVR), Multi-Linear Regression (MLR), Random Forest (RF), and ANN.

Usually, the predicted variable is a binary variable representing the presence or ab-
sence of the pest. The performance of the models is measured using accuracy, precision,
recall, or F1 metrics. However, due to the great heterogeneity of experimental conditions
(i.e., approaches, datasets, parameters, and performance metrics), it is difficult—if not
unreliable—to make a systematic comparison of the performance of approaches presented
in different papers [55].

For our study, and based on the results presented in previous work [60], we created a
model using an ANN. The aim of the model obtained was to predict the probability that a
given date, within a 2-week horizon, is the day of flight peak for each of the generations of
L. botrana in a given season.

To train (and use) the models, the following transformations were performed on the
SiAR and RedFAra datasets:

• For each monitoring site and season pair, the day of the flight peak for each generation
was labeled. This was the variable to be predicted.

• Growing degree days [78], Touzeau [42], and Chilling [57] indexes were calculated based
on both the proportional accumulation of half-hourly samples and daily observations.

• The aforementioned indexes were calculated considering different accumulation start
dates, viz. January 1st, February 1st, or the starting date of dormancy, calculated as
the first day of Autumn when the temperature remains under 10 ◦C. This date was
considered to try to increase the accuracy of grapevine phenology predictions [79].

• Registered radiation values.
• Wind direction and speed were transformed into daily indexes, calculated using the

following rules: wind direction was classified into one of eight categories (N, NE,
E, SE, S, SW, W, or NW), and the average speed per day was calculated for each of
those categories.

• The raw weather data were also provided to build the models.
• The weather data for the 14 days before a given date were projected horizontally so

that the model could make predictions over a 2-week horizon.

The models were trained using Scikit-learn [80], Keras [81], and Optuna [82] on
Python [83]. As noted above, based on results from previous work [60], an ANN was
chosen for training. The selection of the data for testing and validation was performed
considering data from different monitoring sites over different years during the study
period. The ANN training process used the hyperparameters shown in Table 3.

4.6. Model Performance Assessment

The F1 score performance metric was used to assess the accuracy of both the Touzeau
and ML models. Although it is slightly more difficult to calculate for the Touzeau model
results than other metrics such as R2, it has been used by several authors to compare
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the results of classification models [53,84,85]. F1 is a widely-used metric for assessing
the performance of binary classification problems and for comparing the results obtained
by different models. It is a good metric when the performance in terms of true positive
results is evaluated. However, F1 does not depend on true negatives and is sensitive to the
distribution of the labels [86]. In addition, it does enable the user to consider the cost of
failing in the classification.

Table 3. Hyperparameters used for training the ML model.

Hyperparameter Value

Number of layers 3−10
Number of neurons in intermediate layers 0, 32, 512

Number of neurons in last 2 layers 16, 464
Activation functions “selu”,”linear”,”tanh”,”softmax”

Exist activation function sigmoid
Learning rates 10.0 × 10−3, 10.0 × 10−2, 10.0 × 10−1

Optimizers ‘sgd’,’adam’,’rmsprop’
Callback Val_loss, patient = 17.0, min_delta = 0.17
Epochs 1000

The F1 metric was computed based on the differences between the predicted and
observed values; more specifically, the DOY when the flight peaks were observed in the
field was compared with the DOY predicted by the models. This yields four possibilities:
True positives, true negatives, false positives, and false negatives, which were used to
obtain the F1 metric, which is the harmonic mean of the precision and recall. The F1 was
therefore calculated with the following formulas:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 = 2 × Precision × Recall
Precision + Recall

, (4)

The sites selected to validate both models from all available monitoring sites are
presented in Tables S4 and S5. These sites used for the validations were randomly selected,
seeking to obtain a representative sample free of bias in the choice. Validation was carried
out by comparing predicted and observed values. The data corresponding to the study
period from the monitoring sites listed in Table S4 was used for validation of the Touzeau
model. In the same way, the monitoring sites appearing in Table S5 were used for validation
of the best-performing ANN model of 4 layers of neurons.

5. Conclusions

The Touzeau model for L. botrana, based only on the temperature, showed a poor pre-
diction performance in the area of study (three PDOs in Aragón, Northeastern Spain), with
an F1 score of 0.03. In comparison, artificial neural network-type ML models, trained using
data from 172 monitoring sites in the study area and considering several meteorological pa-
rameters (viz. temperature, relative humidity, wind speed, wind direction, solar radiation,
and accumulated precipitation), reached an F1 score of 0.63. The best-performing model, a
four-layer ANN, considered the following variables as most relevant: The Touzeau index,
the Chilling index, rainfall (calculated using daily data or accumulating the half-hourly
samples considering the starting date of dormancy as the start date to accumulation), and
the longitude. The improvement of classical predictive models by using the reported ML
models can complement pest-monitoring methods in integrated pest management, making
decision-support systems more accurate.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12030633/s1, Table S1: Parameters recorded daily every
30 min by the weather stations used in the modeling; Table S2: List of SiAR weather stations used for
modeling; Table S3: Stages of development and sum of cumulative temperatures required according
to the Touzeau model; Table S4: Monitoring sites used for validation of the Touzeau model; Table S5:
Monitoring sites used for validation of the ML models.
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