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a b s t r a c t

Cancer cells metabolize glucose through metabolic pathways that differ from those used by healthy and 
differentiated cells. In particular, tumours have been shown to consume more glucose than their healthy 
counterparts and to use anaerobic metabolic pathways, even under aerobic conditions. Nevertheless, sci-
entists have still not been able to explain why cancer cells evolved to present an altered metabolism and 
what evolutionary advantage this might provide them. Experimental and computational models have been 
increasingly used in recent years to understand some of these biological questions. Multicellular tumour 
spheroids are effective experimental models as they replicate the initial stages of avascular solid tumour 
growth. Furthermore, these experiments generate data which can be used to calibrate and validate com-
putational studies that aim to simulate tumour growth. Hybrid models are of particular relevance in this 
field of research because they model cells as individual agents while also incorporating continuum re-
presentations of the substances present in the surrounding microenvironment that may participate in in-
tracellular metabolic networks as concentration or density distributions. Henceforth, in this review, we 
explore the potential of computational modelling to reveal the role of metabolic reprogramming in tumour 
growth.

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).
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1. Introduction

Cell metabolism can be defined as the series of biochemical re-
actions that enable cells to produce the energy required for their 
survival and maintenance. Under some circumstances, metabolism 
may be altered to fit the cells' energy requirements, for instance, in 
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proliferating cells, which have high energy demands [1,2]. Tumour 
cells are characterized by their ability to resist cell death and sustain 
abnormally high proliferation rates [3,4]. Henceforth, metabolism 
plays a crucial role in cancer progression since it supports the 
aberrant proliferation and survival dynamics of tumours. Studies 
have shown that cancer cells can reprogram their metabolism and 
favour metabolic pathways that enable cell division at faster rates 
but are less efficient, such as aerobic glycolysis [5,6,7]. In fact, altered 
metabolism has been recognized as one of the hallmarks of cancer, 
and it serves as the foundation for [18 F]-fluorodeoxyglucose-posi-
tron emission tomography (FDG-PET), a well-established scanning 
technique employed to identify and diagnose tumours [8,9]. Speci-
fically, FDG-PET quantifies how much FDG, a glucose analogue, is 
consumed by cells under the assumption that most cancer cells 
consume more glucose [10].

Even though metabolic reprogramming has been studied more in 
recent years, there are still many unanswered questions regarding 
why tumour cells evolved to metabolize glucose through en-
ergetically inefficient pathways [11]. Hence, there is a need for 
models that can provide new insights into cancer metabolism and 
how it affects tumour progression. New experimental techniques 
such as multicellular 3D tumour spheroids (MCTS) provide a realistic 
representation of the avascular growth states of tumour growth [12]. 
In addition, mathematical and computational models have emerged 
as tools to test biological hypotheses, understand the mechanisms 
that drive cancer progression and accelerate the discovery of new 
therapies [13]. Biological systems can be modelled through distinct 
mathematical approaches, including continuum, discrete and hybrid 
frameworks [15,16]. When considering tumour growth, the spatial 
resolution at which tumours are reproduced differs between these 
implementations, with models ranging from microscopic, individual 
cell-based to more macroscopic, cell population-based representa-
tions [17]. Continuum approaches, such as ordinary differential 
equations (ODEs) and partial differential equations (PDEs), usually 
consider tumours at a large scale [18,19]. In other words, tumours 
are generally represented as a single cell population whose size 
changes over time or as a group of different cell populations to ac-
count for heterogeneous subregions in the tumour [20]. Nonetheless, 
the behaviour of individual cells is not taken into account, and thus 
continuum approaches lack the ability to model heterogeneous be-
haviour at the cell level [18]. Conversely, a higher level of detail can 
be achieved through discrete modelling techniques, also known as 
agent-based models (ABMs), which simulate tumours as a group of 
individual cells acting as agents that follow a set of rules and interact 
with each other and the environment [21,22]. In turn, these ap-
proaches enable the modelling of heterogeneous behaviour, al-
though there is an increased computational cost.

Hybrid modelling is a technique that can be used to couple de-
tailed discrete descriptions of cellular systems at the cell level with 
continuum models of the surrounding microenvironment [16]. 
Specifically, hybrid modelling is commonly used to study tumour 
growth as the result of the response of individual cells to the con-
centration of substances such as nutrients, metabolic waste and 
therapeutic agents that diffuse and are consumed/produced in the 
system [17,23]. The mathematical biology community has developed 
several frameworks that combine discrete representations of cells 
with PDE-based descriptions of the microenvironment, such as 
BioDynaMo [24], Chaste [25], CompuCell3D [26], Hybrid Automata 
Library (HAL) [27], iDynoMiCs [28], Morpheus [29] and PhysiCell 
[30]. Most of these software options are optimized to take advantage 
of the increasingly available computational power. Besides, they are 
accessible and extensible, meaning that new users can build on 
previous model iterations and focus on creating new extensions to 
solve specific questions [13,31].

Moreover, hybrid models can be extended to incorporate sub-
cellular models of intracellular pathways and study cell metabolism 

[16,32] and how it is influenced by the local concentrations of 
oxygen and glucose [33,34]. In fact, some of the aforementioned 
hybrid modelling frameworks enable the integration of intracellular 
metabolic models written in the Systems Biology Markup Language 
(SBML) [35]. In addition, additional cell rules can be defined to ac-
count for stochastic and cancer-specific effects, including the in-
creased glucose consumption rates in aerobic glycolysis [36]. 
Therefore, in this review, we aim to present how hybrid computa-
tional models that integrate tumour growth dynamics and in-
tracellular metabolic pathways have been employed over the years 
to investigate metabolic reprogramming in tumour spheroids.

2. Glucose metabolism in cancer cells

Glucose is a nutrient used by both healthy and tumour cells to 
produce energy in the form of adenosine triphosphate (ATP) [9,37]. 
Generally, glucose can be catabolized via two main metabolic 
pathways: glycolysis and oxidative phosphorylation. The former is a 
less efficient but faster process that can be performed under anae-
robic conditions, producing lactate and 2 ATP molecules per glucose 
molecule. The latter is a more complex, oxygen-dependent pathway 
that can generate large amounts of energy (approximately 32 ATP 
molecules for each glucose molecule), producing water and carbon 
dioxide molecules as a result. In healthy tissues, differentiated cells 
tend to generate energy through oxidative phosphorylation and re-
sort to glycolysis only under anaerobic conditions. Yet, in the 1920 s, 
studies performed by Warburg [6] showed that tumour cells rely on 
glycolysis, even when oxygen was available, originating a theory 
commonly known as the "Warburg effect" or "aerobic glycolysis". 
Currently, it is well accepted that tumour cells reprogram their 
metabolism and consume glucose at high rates, as glycolysis requires 
more glucose molecules to produce large amounts of energy [5,38]. 
Nevertheless, it is still unclear why cancer cells perform aerobic 
glycolysis instead of the more effective process of oxidative phos-
phorylation.

The findings proposed by Warburg suggesting that cancer cells 
undergo aerobic glycolysis were firstly attributed to defects in their 
mitochondria that might impair the process of oxidative phosphor-
ylation [6,39]. Later studies have shown that cancer cells are still 
able to oxidize glucose, though [40]. Furthermore, aerobic glycolysis 
and oxidative phosphorylation were proven to simultaneously occur 
at high rates in some tumour types [9,41], unlike what is normally 
observed in normal cells, which prioritize one of these metabolic 
pathways [42]. This phenomenon is illustrated in Fig. 1. Conse-
quently, based on these results, scientists started to postulate that 
there might be an evolutionary advantage to this metabolic adap-
tation.

Glucose is commonly associated with energy production, which 
makes the Warburg effect seem paradoxical in the sense that gly-
colysis results in significantly fewer ATP molecules than aerobic 
respiration [11]. Nonetheless, previous studies have shown that 
aerobic glycolysis enables ATP generation at faster rates than oxi-
dative phosphorylation [41,43]. Also, cancer cells can increase their 
glucose uptake through the upregulation of glucose transporter 1 
(GLUT1) expression. Henceforth, the energetical inefficiency of gly-
colysis does not compromise cell growth and survival when nu-
trients and oxygen are abundant, since it is balanced by the ability to 
produce ATP rapidly [37]. In turn, this reveals that, under physiolo-
gical conditions, the Warburg effect does not interfere with energy 
production. Furthermore, other studies have shown that aerobic 
glycolysis benefits proliferating cells as it enables biomass creation, 
which is essential to duplicate the cells' internal contents [44], it 
plays a role in maintaining the redox balance [45], and it promotes 
invasion and metastasis [46,47].

In addition to the Warburg effect, cancer metabolism is a com-
plex phenomenon and there are other mechanisms still being 
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discovered. For instance, it has been shown that cancer cells can 
modulate the metabolism of fibroblasts, which undergo aerobic 
glycolysis and produce lactate [48]. Subsequently, the surrounding 
cancer cells reuptake the metabolites produced by fibroblasts and 
further catabolize them in the aerobic respiration cycle, which al-
lows them to generate high energy amounts. This process is com-
monly termed as the "reverse Warburg effect" and it can also occur 
between distinct tumour cell populations, one of which presents a 
glycolytic phenotype while the other catabolizes lactate. Moreover, 
cancer cells metabolize more glutamine than healthy cells to use as a 
carbon source for macromolecule biosynthesis [49,50]. Conse-
quently, “glutamine addiction” is also recognized as one of the re-
programmed metabolic pathways in tumour cells [51].

3. Multicellular tumour spheroids

MCTS are spherical aggregates of malignant cells commonly 
employed as experimental approximations of the early stages of 
growth during which tumours are still not vascularized [52]. Com-
pared to more traditional cell culturing techniques, e.g., cultures 
grown in 2D or in suspension, MCTS provide a more realistic histo-
logical and functional depiction of solid tumours and their sur-
rounding microenvironment as observed in in vivo [12]. MCTS have 
been used extensively in research since the 1970 s when Sutherland 
et al. [53] first described this experimental model. Specifically, sci-
entists have relied on this model to assess the effect of nutrients on 
cancer progression and test the effectiveness of new anti-cancer 
therapies [54,55]. Therefore, understanding how glucose modulates 
the evolution of MCTS is also crucial.

At initial stages of growth, MCTS have small 
diameters.Consequently, cells rely on diffusion to obtain oxygen and 
glucose from the microenvironment. However, once a critical dia-
meter of 400–500 µm is reached, diffusion alone is insufficient for 
nutrients to reach the spheroid core. In addition, metabolic waste 
that originates from cell metabolism starts accumulating in the 
spheroid centre [54,56]. Consequently, large avascular MCTS present 
a layered distribution of cells similar to that observed in in vivo solid 
tumours [52,57] with three concentric regions. At the spheroid core, 
cells become necrotic since they do not receive enough nutrients to 

survive. Besides, it is possible to distinguish two cell populations in 
the spheroid rim: proliferating cells in the periphery, where there 
are more nutrients and oxygen, and quiescent cells in the internal 
region close to the necrotic core. The internal structure of a tumour 
spheroid and the internal distribution of nutrients and metabolic 
substances is shown in Fig. 2. Certainly, cell metabolism is also af-
fected by the distribution of the chemical substances that dictate cell 
survival and death.

Several experimental studies have tried to characterize the in-
ternal distribution of chemical substances in tumour spheroids 
[58,59,60]. Additionally, several of these models relied on mathe-
matical models to predict the distribution of substances such as 
glucose, oxygen and lactate, as well as their consumption and se-
cretion rates. However, computational models can be used in more 
advanced studies to provide more information and test hypotheses 
about the role of glucose in tumour growth, as explained in the 
section to follow.

4. Computational models

4.1. Classical models of solid tumour growth

For several decades, scientists have relied on mathematical and 
computational models to understand and reproduce tumour growth 
and several frameworks have been developed to describe the spatial 
dynamics of tumours and their microenvironment at different 
complexity levels [16,17,18,20,61,62]. Some of the simplest models 
developed were based on continuum approaches that aimed to re-
plicate the evolution of the number of cells or the size of a tumour 
spheroid over time, using ODEs and PDEs [63]. ODEs can be em-
ployed to model macroscopic tumour growth curves under the as-
sumption that tumours are composed of a single, spatially 
homogeneous cell population [64]. Several growth laws have been 
used to this aim, as illustrated in Fig. 3 A. For example, tumour 
growth can be modelled through an exponential law that describes 
growth as being proportional to tumour size, represented by its 
volume, V , as written in Eq. (1).

= = =dV
dt

V V t V, where ( 0) o (1) 

Fig. 1. Cell metabolism differences in healthy and cancer cells. Healthy cells are 
known to metabolize glucose through glycolysis when they are in anaerobic condi-
tions, i.e., when oxygen is not available. Conversely, healthy cells undergo aerobic 
respiration when they are in the presence of oxygen. On the other hand, although 
cancer cells also perform glycolysis in anaerobic conditions, their metabolism shifts in 
the presence of oxygen. When oxygen is available, some cancer cells perform glyco-
lysis, which is not as energetically efficient but enables energy production at faster 
rates. Different tumour types have been shown to differ in their preference to shift 
towards glycolysis. Thus, some tumours may have a glycolytic cell population, 
whereas other tumour types may also present cells that still perform aerobic phos-
phorylation.

Fig. 2. Internal organization of a tumour spheroid. When tumour spheroids reach a 
critical size, nutrient diffusion becomes limited and the cells that are in the tumour 
core start to respond to nutrient shortage by becoming quiescent (represented in 
blue) or dying (represented in black). Consequently, spheroids present a well-defined 
internal structure formed by three concentric areas: proliferating, quiescent and ne-
crotic cells. The distribution of nutrients and metabolic waste in tumour spheroids is 
also characteristic in these structures. Specifically, they are characterized by nutrient 
shortage as well as an accumulation of metabolic waste at their core.
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Here, is a growth constant that can be fitted to match a given 
cell population using experimental data and V0 is the initial tumour 
volume. Exponential growth is an adequate model to reproduce the 
initial stages of growth in a tumour spheroid, when a single cell 
originates two daughter cells [65]. Nonetheless, it fails to capture the 
subsequent stages where growth becomes arrested due to the lim-
ited amount of nutrients and the increased concentrations of me-
tabolic waste that induce cell arrest and death [56,59].

The inhibitory effect caused by the limited diffusion can be 
modelled by modifying the exponential growth law and considering 
logistic or Gompertzian growth instead [65,64,66]. In the 1960 s, 
Laird [67] showed that the growth curves of several tumour types 
could be described by the Gompertzian equation, a generalization of 
the logistic growth law that reproduces an initial fast growth phase, 
followed by an exponential decrease in the tumour’s growth rate 
that results in tumour size saturation. This model can be defined by 
defined by Eq. (2):

= = =dV
dt

e V V t Vwhere ( 0)t
o (2) 

where defines the rate at which growth decays [66,68]. It has been 
shown to fit experimental data better than exponential and logistic 
models [69]. Nevertheless, growth laws modelled as ODEs are not 
able to capture the complex tumour internal spatial organization 
and structure [18,70]. Consequently, more sophisticated models 

were adapted to capture the internal spatial organization of tumours 
and describe growth as a result of insufficient nutrient diffusion that 
leads to cell death and quiescence [71,72].

PDEs have been used to simulate the effect of the spatial dis-
tribution of diffusing factors that promote or inhibit cell growth and 
how they modulate the growth rate of tumour cells locally. In the 
1970 s, Greenspan [71] developed a model of tumour growth that 
took into account how a single diffusing factor, here assumed to be 
glucose, influences tumour size. Assuming radial symmetry and that 

=V t R t( ) ( )4
3

3 where R defines the tumour radius, the Greenspan 
model can be defined by Eq. (3):

=dR
dt R

f c r dr
1

( )
R

2 0
2

(3) 

where c is the local concentration of glucose and f c( ) is a func-
tion that describes how the cells’ doubling rate changes in function 
of glucose concentration. Given that glucose is a growth-promoting 
factor, f c( ) should consider that the local concentration of glucose 
should increase the cells’ doubling rate, until a maximum value is 
reached, where an increase in glucose concentration no longer has 
an effect on the doubling rate [32]. The spatial distribution of glucose 
can be modelled as a reaction-diffusion equation and it is assumed 
that glucose concentration decreases from the tumour surface to its 
core. Furthermore, the glucose consumption rate can be adjusted to 
consider different phenotypes, such as proliferating, quiescent and 

Fig. 3. Continuum and discrete models of tumour growth. (A) Representation of simulated growth curves of avascular models obtained with classical continuum models based on 
ODEs, namely the exponential (blue) and Gompertzian (green/orange). Although these models provide similar results at early stages of growth, only the Gompertzian model is 
able to reproduce the saturation in tumour size that is commonly attributed to limited nutrient diffusion once a tumour reaches a critical size. (B) Examples of discrete, or agent- 
based, models, which, unlike continuum approaches, model tumours as a group of individual agents that follow a set of rules that characterize biological phenomena such as 
proliferation and death. These models can generally be categorized into two main categories, i.e., on-lattice and off-lattice models, based on whether the cells are bound to occupy 
fixed positions defined by a lattice or if they are able to freely move through the domain. Proliferative cells are shown in cells while yellow cells represent the necrotic core. In the 
CPM subfigure, different shades of the same colour represent distinct cells since a single cell may occupy more than one voxel.
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necrotic [71,72]. In addition, the Greenspan model can be extended 
to consider other substances and reproduce differential behaviours 
accordingly [64].

The aforementioned continuum-based models have proven to 
provide realistic descriptions of tumour growth kinetics at the 
avascular stages. Nevertheless, these mathematical approaches fail 
to undisclosed how tumour growth arises from single-cell beha-
viour. On the other hand, discrete models describe cells at the in-
dividual level and are thus more suited to reproduce the 
heterogeneous behaviour of biological systems [21] and the inter-
actions between cells and the microenvironment [73,74,75]. These 
models simulate cells as individual agents that follow a set of rules 
that define their cellular behaviour (e.g., death, proliferation, mi-
gration) and how they interact with other cells and the surrounding 
microenvironment [76]. ABMs can be grouped into on-lattice and 
off-lattice models. Fig. 3B shows an illustration of some of the most 
commonly used on-lattice and off-lattice models to simulate tumour 
growth. On-lattice approaches divide the domain into a grid of cells 
or voxels, and cells are bound to occupy these specific positions, 
which makes them computationally efficient [64]. For example, 
Cellular Automata (CA) models consider that each cell is represented 
by a single voxel, whereas Cellular Potts Models (CPM) assume that a 
single cell can be defined by more than one voxel. Thereofore, CPMs 
take into account an approximate morphology of the cells and their 
mechanical interactions with the surrounding neighbours [74]. Off- 
lattice approaches do not consider that the domain is divided into a 
grid, enabling cells to move freely through the microenvironment 
based on the forces exerted on them [21]. Centre-based models 
(CBMs) are an example of the off-lattice approach, and they consider 
that cells are characterized by their central position and a simplified 
geometry, such as a sphere. More sophisticated implementations 
that describe cell shape and allow for cell deformation (e.g., vertex- 
based and discrete element models) have also been developed, yet 
they can be considered to be computationally expensive to simulate 
large tumours [16,77]. All of the aforementioned approaches have 
been used to simulate tumour growth, as reviewed in more detail in 
[64,76,74].

ABMs are commonly coupled with continuum approaches that 
simulate the chemical substances of the cellular microenvironment 
(e.g., oxygen, glucose, growth factors, lactate and metabolic waste) 
[16,78]. Accordingly, these frameworks are frequently referred to as 
hybrid models since they integrate both discrete and continuum 
representations of biological systems. Generally, the spatial dis-
tribution of the chemical species present in the microenvironment is 
modelled as a set of reaction-diffusion equations written as PDEs 
where discrete agents act as sources and sinks [32]. Besides, models 
can be formulated so that the rules that define the ABM are updated 
based on oxygen and nutrient availability, which is essential to re-
produce systems that consider glucose metabolism and how it reg-
ulates solid tumour growth.

4.2. Modelling intracellular metabolic networks

Metabolism, like other biological behaviours, can be modelled at 
different scales. One of the simplest and most commonly employed 
approaches to incorporate glucose metabolism in hybrid models of 
tumour growth is to account for the main metabolic processes in the 
models’ continuum component [79,80]. As previously stated, glucose 
metabolism relies on two main pathways: glycolysis and oxidative 
phosphorylation. Glycolysis is characterized by being less en-
ergetically efficient than oxidative phosphorylation, since it requires 
glucose consumption at faster rates and produces fewer ATP mole-
cules. Robertson-Tessi et al. [81] developed a hybrid model that takes 
into account oxygen, glucose, ATP and lactate and their effect on 
tumour cells. Several previous studies have been designed where cell 
death was deterministically induced when a critically low 

concentration of glucose was reached to simulate necrosis. In addi-
tion, glucose consumption rates may increase in low-oxygen regions 
to simulate the metabolic switch between aerobic and anaerobic 
pathways, while also accounting for the Warburg effect [80].

In the last decades, though multiple mathematical descriptions 
of intracellular networks at the subcellular scale have been devel-
oped, applying distinct mathematical formalisms to simulate sig-
nalling and metabolic pathways [82]. Metabolic reaction network 
models aim to create mechanistic representations of the metabolites 
that take part in a given pathway and how they interact [15]. These 
representations can differ on their assumptions regarding not only 
whether a system is continuous or discrete in time and space but 
also if it is deterministic or stochastic. Furthermore, network models 
can be generally classified into two main groups: stoichiometric and 
kinetic models [83]. The former take into account the stoichiometry 
of the metabolic reactions and their time-independent character-
istics, while the latter introduces additional information on meta-
bolite kinetics [84]. In addition, new techniques have been 
developed to combine kinetic and stoichiometric modelling and 
provide new frameworks that combine the comprehensiveness of 
constraint-based approaches with the detailed mechanisms of ki-
netic models [85,86,87].

On the one hand, stoichiometric approaches define metabolic 
networks as stochiometric matrices based on the number of meta-
bolites, which are characterized as reactants and products, and re-
actions in a pathway [15]. Specifically, the stoichiometric matrices, 
commonly designed as S, are composed of the metabolites’ stoi-
chiometric coefficients and the rows represent the metabolites while 
the columns define the reactions. Overall, these models define the 
mass balance over the metabolic network and they are particularly 
convenient because they can take into account genome-scale me-
tabolic data, without requiring information on the kinetic para-
meters of the modelled pathways, which can be difficult to measure 
experimentally [88,89]. Using constraint-based approaches, for ex-
ample, Flux Balance Analysis (FBA), it is possible to find the meta-
bolic pathways that optimize cellular growth and energy production 
[15]. To achieve this, it is assumed that the system has reached a 
steady-state. Besides, additional constraints, such as the bounds of 
the flux rates, may be imposed.

On the other hand, kinetic models aim to capture detailed and 
realistic representations of metabolic system dynamics. Henceforth, 
metabolite concentrations are modelled over time and they are 
usually represented by a set of ODEs that take into account specific 
metabolic reactions and detailed kinetic parameters [90]. The gen-
eral expression for the evolution of a metabolite concentration (c) 
over time (t) is given by Eq. (4):

=
=

dc
dt

k r
i

n

i i
1 (4) 

where n is the number of reactions in which the metabolite takes 
part, k represents the stoichiometric coefficients and r is the rate of 
the reaction. The equation rates can be measured experimentally 
and mathematically represented by different laws based on the 
complexity of the interactions between the agents in a given reac-
tion. For example, mass action and Michaelis-Menten kinetics are 
some of the most used mathematical laws when modelling cell 
metabolism [91]. Nonetheless, experimentally measuring the in-
tracellular concentration of metabolites and the corresponding re-
action rates can be an arduous task, making kinetic models more 
difficult to calibrate than stoichiometric approaches.

Recently, researchers have developed several biochemical net-
work models to analyse the Warburg effect and other aspects of 
metabolic reprogramming [92,93,94,95,96,97]. Nonetheless, only a 
few models have explicitly taken into account the effect of glucose 
availability and its metabolism at a larger scale 

I.G. Gonçalves and J.M. García-Aznar Computational and Structural Biotechnology Journal 21 (2023) 1262–1271

1266



[98,99,33,100,36,101,14]. Specifically, there is still a need for models 
that combine different aspects of cellular behaviour, such as motility, 
mechanics and cell-cell interactions, into a fully integrated and 
multiscale model. In the section to follow, we explore some research 
works that aim to bridge this gap and their implementation.

4.3. Multiscale models

One of the most relevant advances that has emerged in recent 
years due to the increase in computational power is the ability to 
couple models that describe different spatial and temporal scales 
[102,103,104]. Frameworks that integrate phenomena that occur 
over distinct scales are usually called multiscale models. The idea 
that cells require some kind of nutrient to survive and proliferate has 
been incorporated into several models [23,105,106,107,108] yet only 
a few have integrated explicit models of glucose metabolism [13]. 
Multiscale hybrid models are particularly relevant in this research 
field as they are able to integrate intracellular models of glucose 
metabolism, enabling scientists to understand how changes at the 
metabolic level affect cell behaviour. A summary of hybrid models 
that consider glucose metabolism explicitly can be found in Table 1. 
Fig. 4 shows some illustrative results of on-lattice and off-lattice 
hybrid models.

Several of these models were formulated with on-lattice im-
plementations. Starting with models developed with CPMs, Jiang 
et al. [98] proposed a model that was calibrated with experimental 
results obtained for EMT6/Ro tumour spheroids, a mammary carci-
noma cell line. The authors explicitly modelled the Warburg effect 
using PDEs and defined that necrosis was induced when the glucose 
and oxygen concentrations went below a given threshold and lactate 
levels surpassed a maximum value. Furthermore, at the subcellular 
scale, the model considered a Boolean regulatory network of the cell 
cycle, which was modulated by growth and inhibitory factors. Using 
the CompuCell3D [26] modelling framework, Roy et al. [36] also 
implemented a CPM but incorporated a much more complex in-
tracellular model of cell metabolism, written as a set of ODEs that 
captured all the reactions in both glycolysis and the aerobic re-
spiration cycle.

Cellular automata models have also been used in this field of 
research. For example, Cleri [101] extended a previous agent-based 
model of cancer growth originally built to account for the effect of 
cytotoxic agents [109] to investigate the impact of metabolism on 
spheroid growth. In his work, the author introduced and im-
plemented a simplified model of glucose metabolism and tested the 
effect of different nutrient sources, such as constant and sinusoidal 
glucose supply mechanisms. The model results were qualitatively 
compared with data from the literature and were found to be re-
levant. In addition, Piotrowska & Angus [99] calibrated a lattice-gas 
cellular automaton model with experimental data available from the 
literature [110]. Glucose metabolism was modelled through a set of 
ODEs as done previously by Venkatasubramanian et al. [111]. Fur-
thermore, Jagiella et al. [33] implemented an intracellular model of 
glucose metabolism based on ODEs considering the aerobic and 
anaerobic pathways effect and investigated which metabolic con-
ditions increased the similarity between the computational and 
experimental datasets.

Regarding the off-lattice approach, one previous work has em-
ployed a CBM to study MCTS and the role of glucose metabolism on 
their growth dynamics. Specifically, Shan et al. [100] used the iDy-
noMiCS [28] framework to model cell behaviour and integrated a 
complex intracellular network based on FBA and explicitly re-
produced the Warburg effect, the reverse Warburg effect and glu-
tamine addiction. In their work, the authors tested how growth 
dynamics changed according to the metabolic reprogramming 
strategy that was adopted by the cells.Ta
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5. Conclusions and future perspectives

In the last decades, computational modelling of solid tumour 
growth has evolved to consider biological phenomena that occur 
over different time and spatial scales. Moreover, cell metabolism has 
been increasingly recognized as one of the main hallmarks of tu-
mour growth and progression, and it has been accordingly in-
tegrated into computational frameworks to be better understood. 
Overall, these models have been able to simulate experimental data 
and reveal which type of metabolic response best fits the available 
results. Furthermore, with the constant increase in data availability, 
models are evolving to become patient-specific [112,113]. However, 
many of the models developed until now are focused on a single 
scale and there is still a need for fully coupled models that integrate 
biochemical networks with cellular and extracellular behaviour.

We highlight that, although we focus our review on the avascular 
stages of MCTS growth, models that take into account neovascular-
ization have also been developed [114,79,115,116,117]. Some of these 
models also investigate invasion since tumour cells are able to me-
tastasize by entering the circulatory system through vascularization 
[118,119,81]. Nonetheless, these implementations were developed 
with on-lattice frameworks, which do not capture cell mechanics as 
well as centre-based and off-lattice models. Biomechanical models 
of tumour growth may be of particular interest to investigate the 
interplay between glucose consumption and the mechanical prop-
erties of the extracellular matrix (ECM) [120,121,122,123,75]. The 
ECM is the non-cellular component of tissues that provides support 
and structure to the cells. Previous studies have shown that the ECM 
stiffness influences multiple cellular processes, such as, prolifera-
tion, migration and death [124], and it also modulates tumour 
growth [125]. Furthermore, recent studies have highlighted that 
changes in the mechanical properties of the ECM modulate cancer 
metabolism, specifically glucose metabolism [120]. For instance, it 
has been shown that cells detached from the ECM change their 
metabolism and decrease their glucose uptake and that migrating 
cells regulate their glucose uptake in response to the ECM’s me-
chanical properties [122,126]. With this in mind, it is highly relevant 
to develop models that allow for the study of cell motility and cell 
mechanics at the individual level, and how cell-cell and cell-matrix 
interactions can also play a role in modulating these dynamics.

Moreover, cell-based multiscale models offer an advantage over 
population-based models since they are able to capture hetero-
geneity at the individual cell level. This is of particular interest when 
scaling from tumour spheroid to tumour organoid models. Tumour 
organoids are 3D self-organized structures grown from patient-de-
rived cancer stem cells [127,128]. These models enable a higher level 
of personalization since tumours of the same type, e.g., lung, brain, 
pancreas…, can differ between patients. Henceforth, when devel-
oping patient-specific models, it is crucial to be able to calibrate 
these models with this level of detail. Besides, the internal structure 
of organoids can be more complex than that of tumour spheroids, 
thus making it necessary to introduce stochasticity and hetero-
geneity at the cell level.

Lastly, multiscale models can be further expanded to consider 
phenomena at the tissue-level. The number of cells in a tissue makes 
it unfeasible to create a tissue of a model at the individual cell level. 
Hence, tissue-scale modelling can be achieved by coupling in-
tracellular and cellular models with continuum representations that 
capture the tissue’s mechanics [129]. This strategy is traditionally 
based on treating the tissue as a continuous material, thus elim-
inating the heterogeneity that can arise when a tumour is present. 
Nonetheless, more recent approaches have solved this issue by se-
lecting a region of interest for which a cell-based model is used to 
evaluate tumour growth dynamics. Subsequently, this detailed de-
scription can be integrated into a continuum approach 
[130],reducing the computational power required to study the effect 
of tumour growth at this level.Certainly, it would be invaluable to 
use these approaches to recognize how metabolic reprogramming 
may influence the evolution of a tumour at the tissue level.
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Fig. 4. Examples of multiscale hybrid model results. (A) Illustration of a hybrid model where cells (outlined in grey) are represented by an on-lattice Cellular Potts model and the 
microenvironment consist of PDE-based descriptions of glucose, oxygen, lactate and glutamine. Single tumour cells consume glucose, glutamine and oxygen and produce lactate 
based on an intracellular metabolic network represented in the figure which considers both aerobic and anaerobic metabolism. (B) Model results for an off-lattice centre-based 
model that simulates tumour cells as spherical particles represented by their central point and radius. Reaction-diffusion equations are considered to study the spatial distribution 
of glucose and oxygen, represented as the colour gradients shown in the figure. Moreover, cell metabolism is introduced through a flux-balance analysis model that simulates the 
Warburg effect, the reverse Warburg effect and glutamine addiction. SubFigs. A and B were taken from [36] and [100], respectively.
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