000125316 001__ 125316
000125316 005__ 20241125101153.0
000125316 0247_ $$2doi$$a10.3390/gels9010032
000125316 0248_ $$2sideral$$a132925
000125316 037__ $$aART-2023-132925
000125316 041__ $$aeng
000125316 100__ $$aCarvajal-Barriga, Enrique Javier
000125316 245__ $$aOpportunities for ivory nut residue valorization as a source of nanocellulose colloidal suspensions
000125316 260__ $$c2023
000125316 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125316 5203_ $$aIvory nut seeds have been traditionally exploited in Central and South America for obtaining vegetable ivory. The residues from this industry are susceptible to valorization as a source of fatty acids (by organic extraction) and mannans (by alkaline dissolution and regeneration). Nonetheless, cellulose may also be recovered at the end of this fractionation process by acid hydrolysis and functionalization, with associated advantages over other lignocellulosic sources due to the absence of lignin in the endospermic tissue. In this work, various experimental parameters (sulfuric acid concentration, temperature, and hydrolysis time) were investigated to optimize the processing conditions for preparing stable nanocellulose suspensions after ultrasonication. The most stable nanocellulose gel (1 wt% solid content) was obtained after 4-h hydrolysis at 60 °C with 8 M H2SO4 and was characterized by using complementary tech-niques, including dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), nano-fibril sulfation measurements, vibrational and solid-state nuclear magnetic resonance (CP/MAS 13C-NMR) spectroscopies, and thermal analysis. This nanocellulose hydrogel is susceptible to further utilization in various applications and fields, e.g., in agricul-ture for controlling the release of agrochemicals, in pharmaceutics for developing new dosage forms, and in the treatment of wastewater from the textile and paper industries.
000125316 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125316 590__ $$a5.0$$b2023
000125316 592__ $$a0.674$$b2023
000125316 591__ $$aPOLYMER SCIENCE$$b14 / 95 = 0.147$$c2023$$dQ1$$eT1
000125316 593__ $$aPolymers and Plastics$$c2023$$dQ1
000125316 593__ $$aOrganic Chemistry$$c2023$$dQ2
000125316 593__ $$aBioengineering$$c2023$$dQ2
000125316 593__ $$aBiomaterials$$c2023$$dQ2
000125316 594__ $$a4.7$$b2023
000125316 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125316 700__ $$aPutaux, Jean-Luc
000125316 700__ $$0(orcid)0000-0003-2713-2786$$aMartín Ramos, Pablo
000125316 700__ $$aSimbaña, Jennifer
000125316 700__ $$aPortero-Barahona, Patricia
000125316 700__ $$aMartín-Gil, Jesús
000125316 773__ $$g9, 1 (2023), 32 [15]$$pGels$$tGels$$x2310-2861
000125316 8564_ $$s3107263$$uhttps://zaguan.unizar.es/record/125316/files/texto_completo.pdf$$yVersión publicada
000125316 8564_ $$s2712260$$uhttps://zaguan.unizar.es/record/125316/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125316 909CO $$ooai:zaguan.unizar.es:125316$$particulos$$pdriver
000125316 951__ $$a2024-11-22-12:07:58
000125316 980__ $$aARTICLE