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Abstract

In this article, we present musicaiz, an object-oriented library for analyzing,
generating and evaluating symbolic music. The submodules of the package
allow the user to create symbolic music data from scratch, build algorithms
to analyze symbolic music, encode MIDI data as tokens to train deep learning
sequence models, modify existing music data and evaluate music generation
systems. The evaluation submodule builds on previous work to objectively
measure music generation systems and to be able to reproduce the results
of music generation models. The library is publicly available online. We
encourage the community to contribute and provide feedback.

Keywords: music information retrieval, music generation, machine
learning, deep learning

1. Motivation and significance

The field of Music Information Retrieval (MIR) research has grown signif-
icantly in the last few decades. In recent years, with the growth of Artificial
Intelligence, several models have been proposed in the subfields of MIR that
are becoming real-world applications, such as music production. The au-
tomation and scalability of new models has become a necessity for music
companies such as Sony, Spotify, Apple Music, Pandora or Dolby.

One of the fastest growing subfields of MIR in recent years is music gen-
eration. The reason for this growing interest is the emergence of new deep
learning models that allow researchers to build better performance models
versus previous rule-based approaches [1], [2].
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Figure 1: Musicaiz utilities and submodules.

This has increased the interest in building open source tools and software
to help researchers in the preprocessing stages when working, on the one
hand, with symbolic music data like jSymbolic [3], music21 [4], Humdrum [5],
mido or pretty midi [6] and, on the other hand, with audio samples such
as librosa [7]. Other libraries have been proposed to deal with symbolic
music data for music generation purposes such as muspy [8] or libraries to
help construct encodings for training sequence models such as miditok [9].

Each of these softwares works on a particular step of the music generation
or analysis flow. The goal of musicaiz is to bring together music theory,
music processing, models for music generation and evaluation techniques to
provide all the steps necessary to build a music generation system that can be
reproducible and scalable. The library is publicly available1. We also provide
the documentation and examples2. The software is tested with pytest3.

In Table 1 we compare the features offered by these packages in compar-
ison with the musicaiz library.

Musicaiz library (Fig.1) is build on pretty midi [6] and its design prin-
ciples are aligned with the music theory principles.

2. Software description

2.1. Software architecture

Musicaiz is written in Python 3. The software is divided into several
submodules to suit the user’s needs. There are submodules that allow to rep-
resent the symbolic format in an OOP approach by following music theory
principles such as rhythm, harmony and structure. From these submodules
we build a features submodule that allows to extract information from the
raw symbolic music data. These features form the basis of the eval sub-
module that allows us to evaluate music generation systems to help make
them reproducible, which is a current need in the music generation subfield

1https://github.com/carlosholivan/musicaiz
2https://carlosholivan.github.io/musicaiz/index.html
3https://github.com/pytest-dev/pytest
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Package Lang. Purpose Music
Theory

Tokenizers Models Eval.

jSymbolic java analysis 3 7 7 3

music21 python general 3 7 7 7

mido python processing 7 7 7 7

pretty midi python processing 7 7 7 7

Humdrum awk analysis 3 7 7 3

Miditok python tokenize 7 3 7 7

Muspy python generation 7 7 7 3

Musicaiz python generation,
visual.,
analysis

3 3 3 3

Table 1: Frameworks for MIDI and symbolic music generation, analysis and representation.

[1]. Since deep learning models often require a significant preprocessing step,
especially sequence models such as the Transformer [10], we also provide a
tokenizer module that allows tokenizing symbolic music data with the Multi-
track Music Machine encoding [11]. This submodule can be easily extended
to different encodings due to its OOP design. In the datasets submodule,
we provide classes that allow processing symbolic music datasets used in the
field of music generation. Furthermore, symbolic music can be represented
as a pianoroll and there are no programs that allow to plot these represen-
tations with a grid of subdivisions as digital audio workstations (DAWs) do.
We provide a plotting submodule that helps to plot symbolic musical pi-
anorolls and save them as HTML files with plotly. This can not only help
to visualize the symbolic musical data, but also could be used as a debugging
tool. Finally, the exports submodule converts musicaiz objects to a JSON
format so that music information can be sent via REST APIs. This allows
building music generation applications with musicaiz on the backend that
could be used not only for research purposes, but also in industry.

2.2. Software Functionalities

The goal of musicaiz is to provide researchers, practitioners and users
with a framework for music generation. We can group the submodules of the
software into a high-level abstraction that caters to the software’s function-
alities (see Fig. 1). These groups are: music theory, processing, generation,
evaluation, visualization and export. Although the software is intended to
serve as a music generation framework, it could serve more purposes with
the configuration of the current submodules.
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2.2.1. Loaders

The module loaders contains the main class of the library which is called
Musa. It allows to import a MIDI file and initialize all its corresponding
attributes. The default tempo or bpm value is set to 120 and the resolution
or Ticks per Quarter Note (TPQN) is set to 96, however, if a MIDI file is
provided, the tempo value will be the MIDI tempo attribute if set in the
MIDI metamessages.

2.2.2. Music Theory

The main submodules that allow computing and processing symbolic in-
formation following the principles of music theory are: rhythm, structure and
harmony.

Rhythm. In this module the user can operate with different time signatures
and apply different quantizations to data imported from a MIDI file. The
classes and methods contained in the musicaiz.rhythm module allow us to
group notes into measures, calculate the duration of notes, etc. This module
contains two submodules: time and quantization.

Structure. The structure is another basic submodule of the library. It con-
tains elements referring to musical form or structure such as piece, instrument
or notes. The main elements of this module are are: Instrument, Bar and
Note:

• structure.notes contains classes that are based on Pearce and Wig-
gins’ work [12]. It allows the construction of note objects for analysis
or symbolic music generation. Notes can contain pitch, time and per-
formance attributes.

• structure.bars has a class Bar that helps to define the measures. The
purpose of this submodule is to use this class to build music processors
and provide more ways to organize symbolic musical data that are
aligned with the score representation.

• structure.instruments helps to define and group notes and measures
within their corresponding instrument.

Harmony. We have built the main structure blocks on the time axis of the
music, but the music also works on a vertical or pitch axis. We include a
harmony submodule to be able to analyze or generate harmonic data. The
main elements of this submodule are: Intervals, Chords and Tonalities

and Scales:
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• harmony.intervals contain definitions of common intervals as defined
in music theory [13].

• harmony.chords contains the chord definitions. Chords are defined by
the root note, its quality, its type or complexity (triads or sevenths)
and the list of intervals from the root note containing the chord.

• harmony.keys. We define the keys from zero to seventh alterations,
sharps and flats. Each tonality and mode (major and minor) has its
corresponding scales in major, minor and Greek modes.

2.2.3. Processing

Token representations allow training deep learning sequence models. In
recent years, several works include token representations to train such models
in the music generation task. We provide the submodules tokenizers and
datasets to build token representations and process commonly used open-
source music generation datasets.

Tokenizers. In musicaiz, we implemented the tokenization defined in the
Multitrack Music Machine model (MMM) [11] which uses the GPT-2 model
[14] to generate multi-track music. We can export the tokens in .txt for-
mat to be able to use the tokens with other software. We also provide the
get vocabulary method to save the vocabulary of a given tokenization also
as a .txt file.

Datasets. For simplifying the processing of common datasets, we include this
submodule that uses the tokenizers submodule to process the following
datasets: MAESTRO [15], Lakh MIDI Dataset [16] and JSB Chorales [17].

2.2.4. Generation

For the specific task of symbolic music generation, musicaiz contains two
submodules: algorithms and models.

Algorithms. This submodule contains the implementation of a harmonic trans-
position algorithm. Given the degrees per measure and the scale of a given
symbolic music data, it transposes the music to the target degrees and scale.
This can serve as a data augmentation technique for training large deep
learning models.

Models. This submodule contains another submodule transformer composers

which contains the implementation of a GPT-based model with its corre-
sponding training and dataloaders modules in Pytorch [18]. The model can
be trained to generate symbolic music. With the submodules mentioned
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above, we can easily evaluate the results and calculate the preprocessing
steps required by the model. The submodule models can be easily extended
to provide more state-of-the-art model implementations for music generation
such as the Music Transformer [19].

2.2.5. Evaluation

From the music theory classes and functions, we built a submodule features
to extract features from the symbolic music data that we use in the submod-
ule eval.

Features. The submodule features contains implementations of some pitch,
rhythm and harmonic features. The goal of this module is to extract features
from symbolic music data that can be used to analyze, measure or also build
encodings to condition deep learning sequence models. The main elements
of this module are: Rhythm, Harmony and Pitch and Self-Similarity:

• features.rhythm. We implemented part of the work of Roig et al.
[20] to provide a time signature numerator estimation.

• features.harmony. Contains a basic algorithm to detect the global
key of a MIDI file.

• features.pitch. It contains basic pitch characteristics from which the
submodule eval is subsequently built, allowing the evaluation of the
musical generation models.

• features.self similarity. Allows to build self-similarity matrices
[21] in the symbolic domain.

Eval. We can evaluate music generation from a subjective perspective [22]
or an objective method. This submodule corresponds to the implementation
of Yang and Lerch’s evaluation method [23] for the objective evaluation of
music generation. With it, we can cross-validate 2 or more data sets (trained
and generated). To do so, we first calculate the Euclidean distances of the
data sets from each other (inter-set) and from ecah other (intra-set), and
construct the histograms of the calculated distances. We extract the proba-
bility density functions (PDF) from the histograms so that we can calculate
the overlap area (OA) and the Kullback Leibler divergence (KLD). We can
do this with each feature that we can calculate with the features submodule
which are: Pitch count (PC), Pitch class histogram (PCH), Pitch class tran-
sition matrix (PCTM), Pitch range (PR) and Average pitch interval (PI).
The implemented rhythm-based features are: Note count (NC) or Note Den-
sity, Average inter-onset-interval (IOI), Note length histogram (NLH), Note
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length transition matrix (NLTM). An example of the PDFs extracted from
2 different datasets and features are shown in Fig. 2.

Figure 2: An example of objective evaluation of the intra-set PDFs of the JSB Fakes and
the JSB Chorales datasets. From left to right, up and down we show: a) Pitch Counts
(PC) b) Pitch class Histogram (PCH) c) Pitch Class Transition Matrix (PCTM) d) Pitch
Range (PR) e) Average Pitch Interval (PI) f) Note Counts (NC) g) Inter Onset Interval
(IOI) h) Note Length Histogram (NLH) i) Note Length Transition Matrix (NLTM) PDFs.

2.2.6. Visualization

We can use the musaiz library also to plot symbolic music data as pi-
anorolls. We provide two classes that allow us to generate and save the plots
in .png (with matplotlib) and .html (with plotly) format. We set the x-
axis (or time axis) with the bars and subdivisions that the user can set. This
is useful to visualize the data as it is done in DAWs. We show an example
of a pianoroll with the grid of subdivisions on the x-axis in Fig. 3.

2.2.7. Exports

The latest functionality of the musicaiz software is the export function.
The software provides a JSON representation of its objects that allows send-
ing the music information via REST APIs, which makes the software useful
for industrial applications as well.

Figure 3: Pianoroll with subdivision’s grid.
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3. Illustrative examples� �
1 from musicaiz . loaders import Musa

2 from musicaiz . plotters import Pianoroll

3 from musicaiz import eval

4

5 # -------------Importing files ----------------

6 # Read MIDI file

7 file = "mozart.mid"

8 midi = Musa ( file , structure="bars" , quantize=False )
9

10 # -------------Evaluation ---------------------

11 # Extract features from MIDIs datasets and cross -validate

12 midis_path_1 = "midis_path_1/"

13 midis_path_1 = "midis_path_2/"

14 measures_1 = eval . get_all_dataset_measures ( midis_path_1 )
15 measures_2 = eval . get_all_dataset_measures ( midis_path_2 )
16 # Get the intra -set distances of dataset 1

17 intra_set_dists_1 = eval . euclidean_distance ( measures_1 )
18 # Get the intra -set distances

19 inter_set_dists = eval . euclidean_distance ( measures_1 , measures_2 )
20

21 # -------------Plotting files ----------------

22 # Plot the pianoroll of the 1st instrument

23 plot = Pianoroll ( )
24 plot . plot_instrument (
25 total_bars=8,
26 track=midi . instrument [ 0 ] . notes ,
27 subdivision="quarter" ,
28 print_measure_data=False ,
29 show_bar_labels=True ,
30 )� �

Listing 1: Musicaiz loading, evaluation and visualization examples

4. Impact

Software is one of the foundations of AI research and is becoming essen-
tial to the scientific process. In MIR, researchers and engineers spend a lot
of time building the processing or evaluation tools they use in their work,
and sometimes these tools are often not published. By providing a general
framework that not only follows best practices for scientific computing, but
is also made following the principles of music, it is easier to build new mod-
els and reproduce the results, increasing the quality of scientific research.
Therefore, musicaiz is built on top of well-established quality packages such
as prettymidi and mido for handling symbolic musical information.

MusicAIz is tested with pytest and it is part of AIBeatz’s4 code base, a
company that makes music beats with AI.

4https://app.aibeatz.com/, last access July 2022
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5. Conclusions

We have presented a new open source object-oriented library for symbolic
music data that provides all the steps to generate and evaluate music with
AI. We hope that this library will be a useful tool for the community and
will help to build music generation systems with (or without) AI approaches.
Since it has been released as free and open source software, musicaiz can
be easily updated to add other symbolic music formats such as MusicXML
or adding more features for evaluating music generation such as structure
pattern detection with self-similarity matrices [21] [24]. Apart from that,
further extensions can be made by adding new token representations that
may be needed by future deep learning models or implementing new or other
algorithms for feature extraction, either by us as original authors or by any
other researcher or developer interested in it.
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Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version 0.0.2
C2 Permanent link to code/repository

used for this code version
https://github.com/

carlosholivan/musicaiz

C3 Permanent link to Reproducible
Capsule

https://codeocean.com/

capsule/3873536/tree

C4 Legal Code License GNU Affero General Public License
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
python

C7 Compilation requirements, operat-
ing environments & dependencies

https://github.com/

carlosholivan/musicaiz/blob/

master/requirements.txt

C8 If available Link to developer docu-
mentation/manual

http://carlosholivan.github.

io/musicaiz

C9 Support email for questions carloshero@unizar.es

Table 2: Code metadata (mandatory)
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