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Resumen

Esta tesis doctoral se enmarca dentro de la teoria de la Positividad Total. Las matrices totalmente pos-
itivas han aparecido en aplicaciones de campos tan diversos como Teorfa de Aproximacion, Biologia,
Economia, Combinatoria, Estadistica, Ecuaciones Diferenciales, Mecénica, Disefio Geométrico Asis-
tido por Ordenador o Algebra Lineal Numérica (vease [58]], [33], [2], [37], [27], [93], [23]). En esta
tesis nos centraremos en dos de los campos que estdn relacionados con las matrices totalmente positivas.
Por un lado, esta tesis se inscribe dentro del campo del Disefio Geométrico Asistido por Orde-
nador (CAGD) y, en particular, del estudio de la representacién de curvas por medio de poligonos de
control. La importancia de las matrices totalmente positivas en CAGD proviene del hecho de que los
sistemas normalizados totalmente positivos, cuyas matrices de colocacidn son estocdsticas y totalmente
positivas, proporcionan representaciones que preservan la forma [9} 92]. La base de los polinomios de
Bernstein es la base polindmica més utilizada en CAGD (vedse [28]], [31]). La matriz de colocacién
de la base de Bernstein es estocdstica y totalmente positiva. De hecho, la base de Bernstein es la B-
base normalizada de su espacio generado y tiene las 6ptimas propiedades de preservacion de forma [9]].
Las curvas definidas paramétricamente mediante esta base, llamadas curvas de Bézier, son de gran in-
terés en CAGD, ya que proporcionan la representacién de curvas polindmicas con ptimas propiedades
de preservacién de forma. El algoritmo de de Casteljau es un algoritmo de corte de esquinas con la
propiedad de evaluar la curva Bézier a partir de su poligono de control. Otra importante propiedad de
este algoritmo es la propiedad de subdivisiéon. Uno de los objetivos de esta tesis es encontrar nuevos sis-
temas de funciones, no necesariamente polindmicos, que generen curvas con propiedades geométricas
y con algoritmos similares a la curvas de Bézier, y que expandan el rango de aplicaciones de las curvas
Bézier pudiendo asi alcanzar formas mas complejas. Los principales resultados que obtenemos son:

e Dado un sistema inicial, un conjunto de pesos y una funcién positiva ¢, definimos un nuevo sis-
tema de funciones llamado sistema @-transformado ponderado (weighted @-transformed system).

e Mostramos que los sistemas @-transformados ponderados incluyen importantes bases ttiles en
CAGD vy en Estadisitica, como la base de Poisson, la base de Bernstein de grado negativo o las
bases racionales.

e Probamos que los sistemas ¢-transformados ponderados heredan del sistema inicial las propiedades
de preservacion de forma.

e Las curvas definidas mediante bases de Bernstein y B-spline racionales se han convertido en
una herramienta estdndar en CAGD, dado que permiten la representacién exacta de numerosas
secciones conicas, de esferas y de cilindros. En esta tesis, obtenemos como un caso de sis-
tema ¢-transformado ponderado una clase general de bases racionales totalmente positivas que

xiii
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pertenecen a espacios racionales que mezclan polinomios algebraicos, trigonométricos e hiper-
bolicos. Ademds, presentamos algoritmos de evaluacion y subdivisién para las curvas paramétri-
cas generadas por estas bases.

e Obtenemos como un caso de las bases racionales anteriormente propuestas una clase particu-
lar de bases racionales totalmente positivas que satisfacen relaciones de recurrencia y generan
nuevos espacios racionales anidados. Para estas bases, presentamos algoritmos de evaluacion y
subdivision.

e Aplicando técnicas de Inteligencia Artificial, presentamos una red neuronal de una capa oculta
basada en la clase general de bases racionales propuesta. Con esta red neuronal abordamos el
problema de encontrar las curvas racionales que mejor se ajustan a un conjunto dado de puntos.
En este proceso de aproximacion, la base racional es un hiperpardmetro y se puede cambiar susti-
tuyendo los factores lineales por funciones polindmicas, trigonométricas o hiperbdlicas, pudiendo
asi alcanzar formas més complejas y ampliando de esta manera el rango potencial de aplicaciones
de esta red neuronal.

Por otro lado, nuestra investigacién también se centra en el campo del Algebra Lineal Numérica,
concretamente en el disefio y andlisis de algoritmos adaptados a la estructura de las matrices totalmente
positivas que permitan resolver con alta precision relativa problemas algebraicos asociados a estas ma-
trices. Hoy en dia, muchos de los problemas que surgen en Fisica, Ingenierfa, Quimica, Biomedicina
o CAGD, entre otros, requieren de métodos numéricos con los que resolver sistemas de ecuaciones
lineales o con los que hallar los valores propios o valores singulares de las matrices asociadas al mod-
elo matemadtico. Estos métodos numéricos son objeto de una intensa investigacion debido a que en las
aplicaciones actuales aparecen continuamente nuevas clases de matrices estructuradas (entre las que se
encuentran las matrices totalmente positivas) con las que surge la necesidad de desarrollar algoritmos
especificos més eficientes y/o precisos que los existentes.

La obtencién de la factorizacidn bidiagonal de las matrices totalmente positivas en términos de los
multiplicadores de la eliminaciéon de Neville (vedse [34]) ha sido un punto muy importante a la hora
de obtener algoritmos precisos con los que realizar cdlculos algebraicos con un error mucho menor que
el de los algoritmos convencionales y con el mismo coste computacional ([23], [62]]). Hasta ahora,
esto se ha logrado con algunas subclases relevantes de matrices totalmente positivas con aplicaciones
en CAGD (cf. [83, [85, [17, [15 [71]]), Finanzas (cf. [18|]) o Combinatoria (cf. [16]). En esta tesis
presentamos los resultados que garantizan las buenas propiedades computacionales de los sistemas -
transformados ponderados. También, mostramos ejemplos de matrices wronskianas para las que se
pueden realizar diferentes calculos algebraicos con alta precision relativa. Las matrices wronskianas
surgen frecuentemente en diferentes aplicaciones. Por ejemplo, en los problemas de interpolacion de
Hermite, y en particular en los problemas de interpolacién de Taylor. Sin embargo, hasta ahora, no hay
ejemplos de cdlculos precisos para matrices que involucren derivadas de las funciones de las bases. Los
principales resultados que obtenemos son:

e A partir de la factorizacion bidiagonal de las matrices de colocacién de un sistemas inicial, dis-
eflamos un algoritmo preciso para construir la factorizacién bidiagonal de la matriz de colocacion
del correpondiente sistema ¢-transformado ponderado. Este algoritmo lo utilizamos para realizar
con precision diferentes calculos algebraicos. Debido a las buenas propiedades geométricas de
las curvas generadas por los sistemas @-transformados ponderados, este algoritmo puede ser util
en problemas de interpolacién y aproximacion.



XV

e Presentamos algoritmos precisos con los que calcular la factoriazacién bidiagonal de las matriz
wronskiana de la base de los monomios y la factorizacion bidiagonal de la matriz wronskiana de la
base de los polinomios exponenciales. También se muestra que estos algoritmos se pueden utilizar
para realizar con precision algunos cdlculos algebraicos asociados a estas matrices wronskianas,
como el célculo de sus inversas, sus valores propios o sus valores singulares y las soluciones de
algunos sistemas lineales.

e Obtenemos un método preciso para construir la factorizacidon bidiagonal de las matrices de colo-
cacién y wronskianas de los polinomios de Jacobi, y lo utilizamos para calcular con alta pre-
cision relativa sus valores propios, valores singulares, matrices inversas y la solucién de algunos
sistemas lineales asociados a estas matrices. Consideramos también los casos particulares de las
matrices de colocacién y wronskianas de los polinomios de Legendre, polinomios de Gegenbauer,
polinomios de Chebyshev de primer y segundo tipo, y los polinomios racionales de Jacobi.

e Disefiamos un método para obtener la factorizacion bidiagonal de la matriz wronskiana de los
polinomios de Bessel y la factorizacion bidiagonal de la matriz wronskiana de los polinomios de
Laguerre. Utilizamos este método para calcular con alta precision relativa sus valores singulares,
sus matrices inversas, asi como la solucién de algunos sistemas lineales.

e Proporcionamos un algoritmo con el que obtener la factorizacion bidiagonal de las matrices wron-
skianas de la base de los polinomios de Bernstein y la factorizacién bidiagonal de otras bases
relacionadas, como la base de Bernstein de grado negativo o la base binomial negativa. También
mostramos que este algoritmo puede usarse para realizar con alta precisién relativa algunos cél-
culos algebraicos con estas matrices wronskianas, como el célculo de sus inversas, sus valores
propios o sus valores singulares y las soluciones de algunos sistemas lineales relacionados.

e Disefiamos algoritmos con los que obtener la factorizacion bidiagonal de la matriz wronskiana de
la base geométrica y la factorizacion bidiagonal de la matriz wronskiana de la base de Poisson.
Estos algoritmos los utilizamos para calcular con precision diferentes cdlculos algebraicos.

e La complejidad de todos los algoritmos propuestos para resolver los problemas algebraicos men-
cionados es comparable a la de los algoritmos LAPACK tradicionales, los cuales, como ilus-
traremos, no ofrecen tal precision.

Esta memoria es una tesis doctoral por compendio de publicaciones y estd estructurada en cinco
partes. La primera parte estd compuesta por un lado, por la Introduccién, y por otro lado, por los resul-
tados auxiliares y las herramientas que vamos a emplear en el desarrollo del trabajo. En la segunda parte,
presentamos los articulos [73]], [[74]], [391, [75]] y [76] que pertenecen al compendio de publicaciones de
esta tesis. En la tercera parte, justificamos la unidad temaética de las publicaciones mencionadas. Tam-
bién incluimos sus principales resultados. En la cuarta parte, presentamos los dltimos resultados que
hemos obtenido y que no estdn incluidos en los articulos que pertenecen al compendio de publicaciones
de esta tesis. Finalmente, en la quinta parte, se describen las conclusiones y el posible trabajo futuro
que puede continuar desarrollindose como resultado de la investigacion de esta tesis. El cédigo de los
algoritmos y de los experimentos numéricos se puede encontrar y descargar en la siguiente direccion
web: https://github.com/BeatrizRubiol


https://github.com/BeatrizRubio
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Abstract

This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have ap-
peared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combi-
natorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear
Numerical Algebra (see [38], [33], [2l], (371, (271, (93], [23]]). In this thesis, we will focus on two of the
fields that are related to totally positive matrices.

On the one hand, this thesis falls within the field of Computer-Aided Geometric Design (CAGD)
and, in particular, the study of the representation of curves by means of control polygons. The impor-
tance of totally positive matrices comes from the fact that the normalized totally positive systems, whose
collocation matrices are totally positive, provide shape preserving representations [9}92]]. The Bernstein
basis of polynomials is the most used polynomial basis in CAGD (see [28]], [31]). The collocation ma-
trix of the Bernstein basis is stochastic and totally positive. In fact, the Bernstein basis is the normalized
B-basis of its generated space and has the optimal shape preserving properties [9]. The curves de-
fined parametrically by means of this basis, called Bézier curves, are of great interest in CAGD since
they provide the representation of polynomial curves with optimal shape preserving properties. The de
Casteljau algorithm is a corner cutting algorithm with the property of evaluating the Bézier curve from
its control polygon. Another important property of this algorithm is the subdivision property. One of the
objectives of this thesis is to find new systems of functions, not necessarily polynomials, that generate
curves with geometric properties and with algorithms similar to the Bézier curves and that expand the
range of applications of the Bézier curves, thus being able to reach more complex shapes. The main
results we obtain are:

e Given an initial system, a set of weights and, a positive function ¢, we define a new system of
functions called weighted @-transformed system.

e We show that weighted ¢@-transformed systems include important bases useful in CAGD and
Statistics, such as Poisson basis, Bernstein basis of negative degree or rational bases.

e We prove that weighted ¢-transformed system inherits from the initial system its shape preserving
properties.

e Curves defined by Bernstein bases and rational B-splines have become a standard tool in CAGD
since they allow the exact representation of numerous conic, sphere, and cylinder sections. In
this thesis, we obtain as an example of a weighted @-transformed system a general class of to-
tally positive rational bases that belong to rational spaces that mix algebraic, trigonometric and
hyperbolic polynomials. In addition, we present evaluation and subdivision algorithms for the
parametric curves generated by these bases.
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e We obtain as an example of the general class of rational bases previously proposed a particular
class of totally positive rational bases that satisfy recurrence relations and generate new nested
rational spaces. For these bases, we present evaluation and subdivision algorithms.

e Applying Artificial Intelligence techniques, we present a one-hidden-layer neural network based
on the proposed general class of rational bases. With this neural network, we tackle the problem of
finding the rational curves that best fit a given set of data points. In this process of approximation,
the rational basis is a hyperparameter and can be changed by substituting the linear factors for
polynomial, trigonometric or hyperbolic functions, thus being able to reach more difficult shapes
and expanding in this way the potential range of applications of this neural network.

On the other hand, our research also focuses on the field of Numerical Linear Algebra, specifically
on the design and analysis of algorithms adapted to the structure of totally positive matrices that allow
us to solve with high relative accuracy algebraic problems associated with these matrices. Nowadays,
many of the problems that arise in Physics, Engineering, Chemistry, Biomedicine or CAGD, among
others, require numerical methods with which to solve systems of linear equations or with which to
find the eigenvalues or singular values of the associated matrices to the mathematical model. These
numerical methods are the object of intense research because in current applications new classes of
structured matrices are continually appearing (among we can find totally positive matrices) with which
the need arises to develop more efficient and/or accurate specific algorithms than the existing ones.

Obtaining the bidiagonal factorization of the totally positive matrices in terms of the multipliers
of the Neville elimination (see [34]) has been a very important point in obtaining accurate algorithms
with which to perform algebraic calculations with these matrices with a much smaller error than that of
conventional algorithms and with the same computational cost ([23], [62]). Up to now, this has been
achieved with some relevant subclasses of TP matrices with applications to CAGD (cf. [83} 85} 17, [15]
71])), to Finance (cf. [18]) or to Combinatorics (cf. [16]). In this thesis, we present the results that
guarantee the good computational properties of the weighted @-transformed systems. Also, we show
examples of Wronskian matrices for which different algebraic computations can be performed with high
relative accuracy. Wronskian matrices frequently arise in different applications, for instance, in Hermite
interpolation problems, and in particular in Taylor interpolation problems. However, so far, there are no
examples of accurate computations for matrices involving derivatives of the basis functions. The main
results we obtain are:

e From the bidiagonal factorization of the collocation matrix of an initial system we design an
accurate algorithm to construct the bidiagonal factorization of the collocation matrix of the corre-
sponding weighted @-transformed system. We use this algorithm to perform accurately different
algebraic computations. Due to the good geometric properties of the curves generated by the
weighted @-transformed systems, this algorithm can be useful in interpolation and approximation
problems.

e We present accurate algorithms with which to calculate the bidiagonal factorization of the Wron-
skian matrix of the monomial basis of polynomials and the bidiagonal factorization of the Wron-
skian matrix of the basis of exponential polynomials. It is also shown that these algorithms can
be used to perform accurately some algebraic computations associated with these Wronskian ma-
trices, such as the computation of their inverses, their eigenvalues or their singular values, and the
solutions of some linear systems.
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e We obtain an accurate method to construct the bidiagonal factorization of the collocation and
Wronskian matrices of the Jacobi polynomials, and we use it to compute with high relative accu-
racy their eigenvalues, singular values, inverse matrices and, the solution of some linear systems
associated with these matrices. We also consider the particular cases of collocation and Wron-
skian matrices of Legendre polynomials, Gegenbauer polynomials, Chebyshev polynomials of
the first and second type, and Jacobi rational polynomials.

e We design a method to obtain the bidiagonal factorization of the Wronskian matrix of the Bessel
polynomials and the bidiagonal factorization of the Wronskian matrix of the Laguerre polyno-
mials. We use this method to compute with high relative accuracy their singular values, inverse
matrices, as well as the solution of some linear systems.

e We provide an algorithm to obtain the bidiagonal factorization of the Wronskian matrices of
Bernstein polynomials and the bidiagonal factorization of other related bases, such as the negative
degree Bernstein basis or the negative binomial basis. We also show that this algorithm can be
used to perform with high relative accuracy some algebraic computations with these Wronskian
matrices, such as the computation of their inverses, their eigenvalues or their singular values, and
the solutions of some related linear systems.

e We design accurate algorithms with which to obtain the bidiagonal factorization of the Wronskian
matrix of the geometric basis and the bidiagonal factorization of the Wronskian matrix of the
Poisson basis. We use these algorithms to compute accurately different algebraic computations.

e The complexity of all the proposed algorithms for solving the mentioned algebraic problems is
comparable to that of the traditional LAPACK algorithms, which, as we will ilustrate, deliver no
such accuracy.

This work is a doctoral thesis by compendium of publications and is structured in five parts. The
first part is composed on the one hand, by the Introduction, and on the other hand, by the Background
with the auxiliary results and the tools that we are going to use in the development of the work. In the
second part, we present the articles [[73]], [74], [39], [75] and [76] which belong to the compendium of
publications of this thesis. In the third part, we justify the thematic unit of the mentioned publications.
We also include their main results. In the fourth part, we present the latest results that we have obtained
and that are not included in the articles that belong to the compendium of publications of this thesis.
Finally, in the fifth part, the conclusions and the possible future work that might continue to be developed
as a result of the research of this thesis are described. The code of the algorithms and of the numerical
experiments can be found and downloaded at the following website: https://github.com/BeatrizRubio.


https://github.com/BeatrizRubio
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INTRODUCTION AND BACKGROUND






Introduccion

Esta tesis doctoral se enmarca dentro de la teoria de la Positividad Total. La teorfa de la Positividad
Total es una materia interdisciplicar que tiene sus origenes en la década de 1930 a partir del trabajo
de F.R. Gantmacher y M.G. Kreinn en relacién con vibraciones de sistemas mecédnicos. Independien-
temente, [.J. Schoenberg también desarroll6 esta teoria con respecto a la propiedad de disminucién de
la variacién de las matrices. En la década de 1960, S. Karlin publicé varios articulos sobre positivi-
dad total, los cuales se refieren principalmente a los niicleos totalmente positivos pero también tratan la
version discreta de las matrices totalmente positivas (vedse el articulo [2] de T. Ando donde se presenta
una lista muy completa de resultados sobre las matrices totalmente positivas hasta 1986). En los tltimos
afios, varios investigadores de la Universidad de Zaragoza (J. Carnicer, J. Delgado, M. Gasca, E. Mainar,
J.M Pefia) también han profundizado en el estudio de las matrices totalmente positivas en varias disci-
plinas. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como,
Teorfa de Aproximacion, Biologia, Economia, Combinatoria, Estadistica, Ecuaciones Diferenciales,
Mecanica, Disefio Geométrico Asistido por Ordenador o Algebra Lineal Numérica (ver [58]], [33]], [2],
370, 271, 193], [23]). En esta tesis nos centraremos en dos de los campos que estdn relacionados con
las matrices totalmente positivas. Por un lado, en Disefio Geométrico Asistido por Ordenador donde la
importancia de las matrices totalmente positivas proviene del hecho de que los sistemas normalizados
totalmente positivos, cuyas matrices de colocacién son totalmente positivas, proporcionan representa-
ciones que preservan la forma [9,[92]]. Por otro lado, en Algebra Lineal Numérica, concretamente en la
bisqueda de métodos numéricos adaptados a la estructura de las matrices totalmente positivas con los
que podamos realizar cdlculos algebraicos con alta precision relativa.

El Disenio Geométrico Asistido por Ordenador (CAGD) es una disciplina que se ocupa de los méto-
dos matemdticos y computacionales para la descripcion de objetos geométricos que surgen en dreas que
van desde sistemas de Disefio Asistido por Ordenador (CAD) y sistemas de Fabricacion Asistida por
Ordenador (CAM) hasta Robética y Visualizacion Cientifica. La representaciéon matematica de curvas
y superficies en términos de férmulas simples no siempre es la mas apropiada para su tratamiento con
el ordenador. A veces se requiere que los parametros que intervienen en la definicién de estas tengan
un significado geométrico. Es frecuente que dichos pardmetros correspondan a puntos del espacio que
pueden interpretarse en términos de propiedades geométricas de las curvas y superficies representadas.
En el caso de las curvas, es frecuente utilizar representaciones paramétricas de la forma

Y(t):=Y Pui(t), tel
i=0

donde (uy, ...,uy,) es un sistema de funciones linealmente independientes definidas en un intervalo / =
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[a,b] y los puntos Py,...,P, se denominan puntos de control. El poligono Fy--- P, cuyos vértices son
los puntos de control recibe el nombre de poligono de control. Un primer requisito que facilita el
tratamiento de las curvas consiste en exigir que las funciones del sistema sean no negativas u;(¢) > 0,
para todo ¢ € I. Decimos que un sistema (uo, . . .,u,) estd normalizado si verifica Y i yu;(t) = 1, lo que
implica que las constantes pertenecen al espacio % generado por uy,...,u,. El sistema es totalmente
positivo (TP) si sus matrices de colocacién en la sucesién ordenada de nodos fy < --- < t, de [

up,...,U
M (") = 1))
to,...,tn

son matrices totalmente positivas, es decir, todos sus menores son no negativos. Si el sistema es total-
mente positivo y normalizado (NTP), entonces la curva 7y hereda ciertas propiedades geométricas de su
poligono de control y, en consecuencia, imita su forma (véase [9} 92]]). Debido a lo cual decimos que
las bases NTP proporcionan representaciones que preservan la forma.

La propiedad de la envolvente convexa establece que una curva y(z) = Y1, Pu;(t) siempre se en-
cuentra en la envolvente convexa de su poligono de control /- - - P,. Es bien conocido que la propiedad
de envolvente convexa se cumple si y solo si el sistema (uo,...,u,) estd normalizado y formado por
funciones no negativas. De modo que las bases NTP tienen la propiedad de envolvente convexa. Las
bases NTP tienen otra propiedad geométrica interesante que es muy conveniente para los objetivos del
disefio y se denomina propiedad de interpolacién en los extremos: los puntos inicial y final de la curva
y los puntos inicial y final (respectivamente) del poligono de control coinciden. Las propiedades de
pereservacion de forma de las bases NTP provienen de la propiedad de disminucién de la variacién de
sus matrices de colocacion. Debido a la propiedad de disminucién de la variacién de las matrices TP,
la monotonicidad o convexidad del poligono de control son heredadas por la curva, y la longitud, la
variacion angular y el nimero de inflexiones de la curva estdn respectivamente delimitadas por las del
poligono de control (véase [10], [44]).

La B-base normalizada de un espacio dado es una base NTP tal que la matriz del cambio de base de
cualquier base NTP con respecto a la B-base normalizada es TP y estocastica. Esta propiedad implica
que el poligono de control de una curva con respecto a la B-base normalizada se puede obtener mediante
un algoritmo de corte de esquinas a partir del poligono de control de la curva con respecto a cualquier
otra base NTP. De este modo, el poligono de control con respecto a la B-base normalizada tiene una
forma mds préxima a la curva que el poligono de control con respecto a cualquier otra base NTP.
Ademéds, la longitud del poligono de control con respecto a la B-base normalizada se encuentra entre
la longitud de la curva y la longitud de su poligono de control con respecto a cualquier otra base NTP.
Se cumplen propiedades similares para otras propiedades geométricas como la variacion angular o el
nimero de inflexiones (véase [92], [[LO], [9]). Segin el razonamiento anterior, una B-base normalizada
tiene las propiedades Optimas de preservacion de forma entre todas las bases NTP del espacio.

Todos los espacios de funciones de dimensién finita que admiten una base NTP tienen una tnica
B-base normalizada con 6ptimas propiedades de preservacion de forma (véase [9] y Capitulo 4 de [92]).
Las B-bases normalizadas juegan un papel relevante en el disefio interactivo de curvas. Uno de los
objetivos de esta tesis es encontrar un procedimiento general para obtener nuevos sistemas de funciones
con propiedades de preservacion de forma o con 6ptimas propiedades de preservacion de forma.

El espacio de los polinomios de grado menor o igual que n definidos en el intervalo [a, b] tiene bases
NTP. La base de Bernstein definida por

s () (-4)" (150 =0




es la B-base normalizada de este espacio. Las curvas definidas paramétricamente mediante la base
de Bernstein, llamadas curvas de Bézier, son de gran interés en CAGD, ya que proporcionan la repre-
sentacién de curvas polindmicas con 6ptimas propiedades de preservacion de forma. La teoria matematica
sobre las curvas de Bézier surgi6 en la década de 1960. Las curvas de Bézier fueron desarrolladas in-
dependientemente por P. de Casteljau en Citréen y por P. Bézier en Renault. Alrededor de 1970, A.R.
Forrest descubrid la conexion entre las curvas de Bézier y la base de los polinomios de Bernstein.

La base de los polinomios de Bernstein puede obtenerse mediante férmulas de recurrencia que
permiten deducir el algoritmo de de Casteljau para la evaluacion de curvas. El algoritmo de de Casteljau
es un algoritmo de corte de esquinas con la propiedad de evaluar la curva de Bézier en un pardmetro #g
( en su dominio de pardmetros) a partir de su poligono de control Fy---P,, y se puede formular de la
siguiente forma:

Input: Py, P,..., P51
for j:=0ton

PJ’-’ =P;

end j

for i:=n-1 to 0 step -1
for j:=0toi

Pii= (1—10)P{" + 1P
end j

end i

Output: P

La curva Bézier evaluada en 1y es el punto P(()) obtenido al final del algoritmo, es decir, y(ty) = P(g) .
De esta forma el algoritmo de de Casteljau evalda la curva Bézier en ¢y y puede utilizarse para calcular
los diferentes puntos de la curva (véase Figura(l.1).

Figure 1.1: Algoritmo de de Casteljau para la evaluacién en #y = 1/2 de una curva Bézier ctbica.

Otra propiedad del algoritmo de de Casteljau se puede descifrar a partir de la Figura[I.I} la propiedad
de subdivisién. Cuando utilizamos el algoritmo de de Casteljau para calcular el punto y(fy) = P(()) , con
to en (0,1), los puntos P2, Py~",..., P forman el poligono de control de la curva y(t) (¢ en[0,]) con
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respecto a la base de Bernstein en [0,7] (subdivision izquierda) y los puntos P(? ,Pll, ..., P! forman el
poligono de control de la curva y(¢) (z € [to, 1]) con respecto a la base de Bernstein en [fy, 1] (subdi-
vision derecha). Esta propiedad da lugar a una forma alternativa eficiente de dibujar la curva Bézier. En
lugar de calcular los puntos mediante el algoritmo de de Casteljau usando el mismo poligono de control
Py, Py,--- ,P,, podemos calcular el punto de la curva correspondiente a #g y utilizar los dos poligonos de
control correspondientes al subintervalo izquierdo y derecho. Estos poligonos de control juntos aprox-
iman mejor a la curva Bézier que el poligono de control inicial. Podemos repetir el proceso y obtener
poligonos de control que convergen a la curva Bézier (véase [13], [38]).

A pesar de su gran sencillez, el algoritmo de de Casteljau es uno de los algoritmos de corte de es-
quinas més importantes en CAGD. En [70]]) se demostré que las B-bases normalizadas son las dnicas
bases que dan lugar a un algoritmo de tipo de Casteljau con la propiedad de subdivisién. Uno de los ob-
jetivos de esta tesis es obtener algoritmos de corte de esquinas con las buenas propiedades del algoritmo
de de Casteljau para la evaluacién y subdivision de las curvas definidas por las B-bases normalizadas
que se proponen.

Dado un sistema de funciones (uy, ...,u,) definido en I y valores positivos dy, . . .,d, tal que
Yi_odiur(t) # 0, para todo ¢ € 1, el sistema (ry, . .., r,) definido por

4 L diui(t)
rilt) = Yiodiu(t)’

satisface Y7, ri(t) = 1, Vt € I, y genera un nuevo espacio de funciones. Las curvas definidas por la
base racional de Bernstein y las B-spline racionales (NURBS) se han convertido en una herramienta
estdndar en CAGD, ya que permiten la representacion exacta de secciones cénicas, esferas y cilindros.
Es bien conocido que las bases obtenidas racionalizando las bases de Bernstein son también las B-bases
normalizadas de los espacios generados por funciones racionales. Estos espacios estdn formados por
funciones polinémicas racionales donde el denominador es un polinomio dado.

El primer tema contemplado en esta tesis trata sobre positividad total, CAGD y resolucién de
problemas algebraicos con alta precision relativa. En esta tesis, introducimos el concepto de sistema
¢-transformado ponderado, que incluye una amplia clase de representaciones ttiles en Estadistica y
CAGD. Dado un sistema de funciones, un conjunto de pesos y una funcién positiva ¢, decimos que
(up,...,up) es un sistema @-transformado ponderado (weighted @Q-transformed system) a partir de
(g, ..., un) si

i=0,...n, (1.1)

ui(t) ;== dio(t)u(t), te€l, i=0,....n. (1.2)

Por un lado, probamos que este sistema hereda del sistema inicial las propiedades de ser TP, asi como
la propiedad de ser B-base. Las bases (ro,...,r,) dadas en (I.I)) obtenidas al racionalizar un sistema
de funciones, no necesariamente polinémicas, pueden considerarse como casos particulares de sistemas
¢-transformados ponderados con @(t) = Y., drux(t), t € I. De estos resultados se puede deducir que si
el sistema inicial (uo, ...,u,) es TP, entonces la base racional (r,...,r,) es NTP. Ademds, si el sistema
inicial (uo,...,u,) es una B-base, entonces la base racional (ro,...,r,) es la B-base normalizada de
su espacio generado. Por ejemplo, se prueba que la base racional B-spline (NURBS) es la B-base
normalizada de su espacio generado y, por lo tanto, presenta propiedades dptimas de preservacion de
forma.

En la actualidad, el disefio de curvas mediante funciones trigonométricas e hiperbdlicas es cada
vez mds frecuente. Estas curvas son cada vez mds importantes, ya que permiten la representacion de
conicas, cilindros, superficies de revolucién y catenarias, entre otros. En [95]], se han analizado curvas
racionales obtenidas a partir de la B-base normalizada de los espacios (1,cost,sint, ... ,cosmt,sinmt) y
(1,cosht,sinht, ..., coshmt,sinhmt). La aplicabilidad de las citadas bases se ha ilustrado obteniendo los



poligonos de control de curvas y superficies racionales trigonométricas e hiperbdlicas. La interpolacién
con bases racionales trigonométricas con buenas propiedades de preservaciéon de forma es muy im-
portante para la visualizacion de datos cientificos y se ha aplicado en otros campos como, por ejemplo,
Ingenieria, Biologia, Quimica, Medicina o Ciencias Sociales (véase [4] y sus referencias bibliograficas).

Como se ha mencionado, las bases racionales pueden ser generadas por los sistemas @-transformados
ponderados. En [70] se analizaron generalizaciones de la base de Bernstein, obtenidas al sustituir los
factores lineales por funciones polinémicas, trigonométricas o hiperbdlicas. En dicho trabajo también
se proporcionan las condiciones que caracterizan a estos sistemas como B-base de su espacio generado.
Ademds, se propone un algoritmo de corte de esquinas que satisface propiedades importantes como la
propiedad de evaluacidn, la propiedad de subdivisién y la convergencia a la curva de los poligonos de
control obtenidos. En esta tesis, racionalizamos estos sistemas y, teniendo en cuenta los resultados de
[70l], construimos un algoritmo de corte de esquinas asociado a esta clase general de bases racionales
que satisfacen las dos propiedades mencionadas del algoritmo de Casteljau: propiedades de evaluacién
y subdivisién. La propiedad de subdivision izquierda (respectivamente, derecha) significa que dado
fy € [a,b], el algoritmo transforma el poligono de control de la curva paramétrica y(z) con respecto a
la clase general de la base racional en [a,b] en el poligono de control con respecto a la clase general
de la base racional en [a,fy] (respectivamente, [fo,b]). Los resultados obtenidos se pueden consultar
en el Capitulo 4| o con mds detalle en el articulo [73]], que se presenta en la pagina También, se
puede encontrar y descargar una aplicacion de Matlab en la que se ha implementado el algoritmo eval-
uacion y subdivisién descrito en la siguiente direccién web: https://github.com/CAGD2020/General.
Este aplicacién puede ser muy ttil cuando se quiere comparar las curvas generadas por las distintas
bases racionales anteriormente propuestas.

En [49], [54] y [97] se analizaron espacios anidados de funciones polindmicas racionales obtenidos
al multiplicar sucesivamente el denominador por factores lineales. En particular, en [97]] los autores
consideran la base racional de Bernstein usando una eleccién particular de los pesos por la que sat-
isfacen relaciones de recurrencia. Debido a las propiedades de estos pesos, el denominador corre-
spondiente de la base racional de Bernstein tiene la forma L;(¢)-...- L,(t), donde los factores lineales
Li(t) = ai(1 —t)+bit, i =1,...,n, estan definidos por los coeficientes reales a; y b;, (a;,b;) # (0,0).
La permutacion de todos los factores lineales define n! diferentes algoritmos de tipo de Casteljau para
la evaluacién de las correspondientes curvas racionales de Bézier. En dicho trabajo también se plantea
la necesidad de investigar nuevos espacios anidados generados por bases de funciones que satisfacen
relaciones de recurrencia y que nos permiten la definicién de algoritmos de evaluacion con las buenas
propiedades del algoritmo de de Casteljau. En esta tesis, teniendo en cuenta las generalizaciones de la
base de Bernstein obtenidas en [70], mostramos que los resultados de [97] pueden extenderse a nuevos
espacios anidados de funciones racionales no polinémicas derivando férmulas de recurrencia para los
pesos y para las funciones de la base de estos espacios. Estas relaciones de recurrencia proporcionan
algoritmos de evaluacién y subdivision para curvas racionales paramétricas dadas en términos de estas
bases racionales. Las curvas generadas por estas bases racionales heredan propiedades geométricas y
algoritmos de las curvas de Bézier racionales tradicionales, por lo que pueden considerarse herramien-
tas de modelado en sistemas CAD y CAM. Los resultados obtenidos se pueden consultar en el Capitulo
M o con mds detalle en el articulo [73], que se presenta en la pagina[43] También se puede encontrar
y descargar una aplicacién de Matlab en la que se ha implementado el algoritmo evaluacién y subdi-
vision descrito en la siguiente direccion web https://github.com/CAGD2020/Particular. Este aplicacién
puede ser muy util cuando se quiere comparar las curvas generadas por las distintas bases racionales
anteriormente propuestas.

Por otro lado, en esta tesis también demostramos que los sistemas ¢-transformados ponderados
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(g, ...,u,) dados en (I.2)) heredan del sistema inicial su comportamiento al realizar operaciones al-
gebraicas con sus matrices de colocacién. Un algoritmo se puede calcular con alta precisién relativa
(HRA) si solamente usa productos, cocientes, sumas de niimeros con el mismo signo, restas de nimeros
con signo opuesto o restas de datos iniciales (cf. [23]). Obtener un algoritmo que pueda realizarse con
HRA es un objetivo muy deseable, ya que implica que los errores relativos cometidos en los cdlculos son
del mismo orden que la precisién del procesador empleado e independientes del condicionamiento del
problema. Obtener algoritmos que puedan realizarse con HRA es una labor muy complicada. Sin em-
bargo, en los dltimos afios, se han conseguido algunos avances en el campo del Algebra lineal numérica
para ciertas matrices TP. Las factorizaciones bidiagonales han jugado un papel crucial para obtener algo-
ritmos con HRA para matrices TP. La parametrizacién de las matrices TP con las que se deducen los al-
goritmos HRA es proporcionada por sus factorizaciones bidiagonales, que a su vez estdn estrechamente
relacionadas con un procedimiento de eliminacién conocido como eliminacién de Neville. La elimi-
nacion de Neville es un procedimiento que hace ceros en una columna de una matriz afiadiendo a cada
fila un multiplo apropiado de la fila anterior y que fue ya utilizado en algunos de los primeros articu-
los sobre matrices TP. Sin embargo, en trabajos posteriores como [34] y [37], se desarroll6 un mejor
conocimiento de las propiedades de la eliminacién de Neville, lo que permitié mejorar muchos de los
resultados previos sobre matrices TP. Algunos de estos tltimos resultados muestran que la factorizacién
bidiagonal de una matriz TP y STP no singular puede ser carazacterizada en términos de los multipli-
cadores y los pivotes diagonales de la eliminacion de Neville (este resultado se deduce de los teoremas
41y4.2deyp. 116 de [37]).

En [62] se demostré que, dada la factorizacién bidiagonal en términos de los multiplicadores y los
pivotes diagonales de la eliminacién de Neville con HRA de una matriz A TP no singular, podemos
ultilizar los algoritmos presentados en [62, 63]] para calcular con HRA sus valores propios y singulares,
la matriz A~!, o las soluciones de sistemas de ecuaciones lineales Ax = b tales que las componentes
del vector b tienen signos alternos. Hasta ahora, esto se ha logrado con algunas subclases relevantes
de matrices TP que presentan aplicaciones en CAGD (cf. [83|[85) [17, [15) [71]), Finanzas (cf. [18]]) o
Combinatoria (cf. [16]). En esta tesis extendemos el andlisis de algunos de los trabajos citados a un
contexto mucho més general y demostramos que las citadas operaciones algebraicas con las matrices de
colocacion de los sistemas @-transformados ponderados pueden realizarse con HRA, si la factorizacién
en producto de bidiagonales de la correspondiente matriz de colocacién del sistema inicial puede obten-
erse con HRA y la evaluacién de la funcién ¢ no requiere restas de valores con el mismo signo, distintos
a los pardmetros iniciales. Los ejemplos numéricos ilustrardn que la solucion de los citados sistemas
lineales y el cdlculo de valores propios y valores singulares de las matrices de colocacién consideradas
se pueden resolver con precisioén incluso cuando las condiciones anteriores no se cumplen. En par-
ticular, los resultados obtenidos se pueden aplicar para realizar interpolacién con alta precision. Los
resultados obtenidos se pueden consultar en el Capitulo [ o con mds detalle en el articulo [74], que
se presenta en la pagina[59] Ademds, el c6digo Matlab con factorizaciones bidiagonales de distintos
sistemas @-transformados ponderados se puede encontrar y descargar en la siguiente direccion web
https://github.com/NLA2020.

El segundo tema considerado en esta tesis trata sobre positividad total, ajuste de curvas (curve fit-
ting) y redes neuronales artificiales (neural networks). El problema de obtener una curva que se ajuste a
un conjunto dado de puntos es uno de los desafios mas importantes de CAGD, y se ha vuelto prevalente
en varios dominios aplicados e industriales, como los sistemas CAD y CAM, Gréficos y Animacién por
Ordenador, Disefio Robético, Medicina, entre otros muchos. Algunos trabajos abordaron este problema
utilizando las curvas de Bézier ([84], [72]], [68]) y, aunque obtuvieron buenos resultados, este enfoque
polinémico es algo limitado, ya que no puede describir adecuadamente algunas formas (como las c6ni-
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cas). Una extension interesante al respecto la dan las bases racionales. Otro objetivo de esta tesis es
abordar esta problemdtica con la clase general de bases racionales propuestas.

Es bien conocido que los pesos de las bases racionales pueden usarse como pardmetros con los que
dar forma a las curvas racionales generadas por estas bases. Sin embargo, el efecto de cambiar un peso
de la base racional es diferente al de mover un punto de control de la curva. En consecuencia, el control
interactivo de la forma de las curvas racionales mediante el ajuste de pesos no es una tarea sencilla,
lo que hace que no sea fécil disefiar algoritmos con los que obtener los pesos apropiados (véase [28]],
Capitulo 13). Algunos trabajos recientes han demostrado que la aplicacién de técnicas de Inteligencia
Artificial (IA) puede lograr resultados notables con respecto a este problema. Para afrontar esta cuestion,
en [56], se aplic6 un algoritmo bioinspirado mediante el uso de curvas racionales de Bézier. Ademas, en
[89] y [98]], se aplicaron algoritmos evolutivos a curvas racionales B-spline. Con el fin de abordar este
problema utilizando la clase general de bases racionales popuestas, hemos colaborado con un grupo de
investigacion del Departamento de Matemética Aplicada de la Universidad de Sevilla cuya investigacion
se centra en Redes Neuronales y Topologia.

El algoritmo AdamMax es un algoritmo reciente cuya finalidad es cambiar de manera iterada los
distintos parametros del modelo definido en biisqueda de minimos locales mediante un proceso estocas-
tico de optimizacion (véase [S9]). Como novedad, en esta tesis, definimos una red neuronal de una capa
oculta con la que abordamos el problema de encontrar la curva que mejor ajuste a un conjunto de puntos
dado, utilizando la clase general de bases racionales con 6ptimas propiedades de preservacion de forma
propuestas en esta tesis. La red neuronal es entrenada a través de un proceso de aprendizaje estocdstico
reciente, el algoritmo AdaMax, y tiene la finalidad de encontrar los pesos y los puntos de control ade-
cuados de la curva de ajuste. En este proceso de aproximacion, la base racional es un hiperpardmetro
y se puede cambiar sustituyendo los factores lineales por funciones polindmicas, trigonométricas o
hiperbdlicas, pudiendo asi alcanzar formas m4s dificiles y ampliando de esta manera el rango potencial
de aplicaciones de esta red neuronal. Aplicamos la red neuronal a diferentes conjuntos de puntos y
mostramos que las curvas de ajuste generadas con este método alcanzan una aproximacion satisfactoria.
Los resultados obtenidos se pueden consultar en el Capitulod o con mds detalle en el articulo [39], que
se presenta en la pigina Ademds, el cddigo de la experimentacion se puede encontrar y descargar
en la siguiente direccion web https://github.com/Mathematics2020.

El tercer y tltimo tema examinado en esta tesis trata sobre positividad total y resolucién con HRA de
problemas algebraicos con matrices wronskianas. Dada una base (u, . . .,u,) de un espacio de funciones
n-veces continuamente diferenciables, definidas en un intervalo real y x € I, la matriz wronskiana en x

estd definida por

W (ug, ..., u,)(x) = (Mgl:ll)(x))i,jzl,“.,nJrl-
En [51]] se muestran aplicaciones de las matrices wronskianas del sistema (vy,...,v,) de funciones
definidas por v;(t) = e k= 1,...,s,i=0,...,mg_. En particular, se muestra cémo las matrices
wronskianas de esta secuencia de funciones aparecen de forma natural en campos como la teoria espec-
tral de las matrices, la controlabilidad y la teorfa de la estabilidad de Lyapunov.

Como se ha mencionado anteriormente, un objetivo importante en matematicas computacionales es
encontrar algoritmos con HRA con los que realizar cdlculos matriciales. Ademdas hemos visto que entre
las subclases de las matrices TP para las que se ha obtenido la factorizacién bidiagonal con HRA (cf.
(150, [17], [82], [86]) hay muchos ejemplos de matrices de colocacion (u;—1(t;))i<i j<n+1 de sistemas
(ug, - - . ,up) de funciones definidas en un subconjunto real I (1} <, < --- <t,41 enl). Sin embargo, hasta
ahora, no hay ejemplos de calculos precisos con matrices que involucren derivadas de las funciones de la
base. Un objetivo adicional de esta tesis es obtener algoritmos con los que realizar cdlculos algebraicos
precisos con matrices wronskianas que tienen aplicaciones en CAGD y que también pueden surgir en
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problemas de interpolacidon de Hermite, en particular en problemas de interpolacién de Taylor.

En esta tesis también demostramos que la matriz wronskiana de la base de los monomios
(1,x,...,x") es TP en x > 0 y mostramos que su factorizacién bidiagonal se puede realizar con HRA.
Adicionalmente, probamos que la matriz wronskiana de la base de (e%*,e**, ..., ¢**) polinomios ex-
ponenciales es STP si 0 < Ag < A; < ... < A, para todos los x € R y proporcionamos su factorizacién
bidiagonal. EI cdlculo con HRA de esta factorizacion deberia requerir la evaluacién con HRA de las
funciones exponenciales involucradas. Aunque esto no se puede garantizar, los experimentos numéricos
muestran una precision similar a la obtenida para la base de los monomios. También se prueba que los
algoritmos mencionados pueden usarse para realizar con precision cdlculos algebraicos con las matri-
ces wronskianas de la base de los monomios y la base de los polinomios exponenciales. Los ejemplos
numéricos muestran que se pueden realizar con alta precision el cdlculo de sus inversas, sus valores
propios o singulares y las soluciones de sistemas lineales Wx = b tales que las componentes del vector
b tienen signo alterno. Los resultados obtenidos se pueden ver en el Capitulo [S|o con mds detalle en el
articulo [[75], que se presenta en la pdgina Ademds, el codigo con la experimentacion numérica se
puede encontrar y descargar en la siguiente direccidon web: https://github.com/Calcolo2020.

Los polinomios de Jacobi J,(la’B ) (x) forman una clase de polinomios ortogonales cldsicos que incluye

muchas familias importantes de polinomios ortogonales, como los polinomios de Legendre y Cheby-
shev. De hecho, los polinomios de Jacobi son ortogonales con respecto al peso (1 —x)%(1 —i—x)ﬁ en el
intervalo [—1, 1] y presentan multiples aplicaciones. Por ejemplo, en la Teoria de Aproximacion, en la
Cuadratura Gaussiana para calcular numéricamente integrales, en Ecuaciones Diferenciales o en Fisica
Aplicada (cf. [Sl], [64]). En esta tesis, probamos la positividad total estricta de las matrices de colo-
cacion de los polinomios de Jacobi en (1,0), asi como la positividad total de sus matrices wronskianas.
También obtenemos un método preciso para construir la factorizacion bidiagonal de dichas matrices
y lo usamos con los algoritmos presentados en [63] para calcular con HRA sus inversas, sus valores
propios, sus valores singulares y las soluciones de algunos sistemas lineales. Ademads, consideramos
los casos particulares de las matrices de colocacién y wronskianas de los polinomios de Legendre, los
polinomios de Gegenbauer, los polinomios de Chebyschev de primer y segundo tipo y los polinomios
racionales de Jacobi. Asimismo, mostramos resultados numéricos que confirman la alta precisién en
dichos cdlculos algebraicos. Los resultados obtenidos se pueden consultar en el Capitulo [5]o con mds
detalle en el articulo [76]], que se presenta en la pagina[IT7} Ademds, el c6digo con la experimentacion
numérica se puede encontrar y descargar en la siguiente direccion web: https://github.com/JSC2021.

Después de una parametrizacién adecuada de las matrices, se ha logrado el objetivo de encontrar
algoritmos con HRA con los que se pueden realizar cdlculos algebraicos con las matrices de colocacién
de los polinomios de Bessel (véase aplicaciones en [47]] y en sus referencias bibliogréaficas) y las matri-
ces de colocacién de los polinomios de Laguerre generalizados. En ambos casos, se demuestrd que las
matrices de colocacion son TP y se obtuvo su factorizacién bidiagonal con HRA (véase [21]], [20]]). En
esta tesis, demostramos que la matriz wronskiana de los polinomios de Bessel es TP para todox >0y
también probamos que su factorizacién bidiagonal se puede calcular con HRA. Aunque confirmamos
que la matriz wronskiana de los polinomios de Laguerre generalizados no es TP, obtenemos una fac-
torizacién bidiagonal de esta matriz wronskiana y la usamos para definir algoritmos con los que que
podemos resolver con HRA diferentes problemas algebraicos. Mostramos también ejemplos numéricos
que ilustran la gran precisién de los métodos mencionados en los cdlculos algebraicos que se pueden
realizar con las matrices wronskianas de los polinomios de Bessel y los polinomios de Laguerre gener-
alizados, como el cdlculo de sus inversas, sus valores singulares y las soluciones de algunos sistemas
lineales. Los resultados obtenidos se han incluido en el Capitulo [6]

En [82] se demostré que se pueden realizar con HRA diferentes cdlculos algebraicos con las matri-
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ces de colocacion de la base de Bernstein. En esta tesis, vamos a tratar sus matrices wronskianas. En
primer lugar, definimos una clase general de bases que incluyen la base de Bernstein y otras bases rela-
cionadas, como la base de Bernstein de grado negativo (ver [41]) o la base binomial negativa. Ademads,
caracterizamos cuando las matrices wronskianas de estas bases generales son TP. Una primera dificultad
encontrada para obtener algoritmos precisos con los que realizar cdlculos algebraicos con las matrices
wronskianas de la base de Bernstein, la base de Bernstein de grado negativo o la base binomial negativa
proviene del hecho de que estas matrices nunca son TP. Sin embargo, a pesar de que no son TP, hemos
obtenido una factorizacién bidiagonal de estas matrices wronskianas y la hemos utilizado para derivar
algoritmos para calcular con HRA sus valores propios y singulares, sus inversas y la solucién de algunos
sistemas lineales. Ademads, mostramos resultados numéricos que confirman la alta precision en dichos
célculos algebraicos. Los resultados obtenidos se pueden consultar en el Capitulo

La distribucién geométrica tiene aplicaciones en modelos poblacionales y econométricos, y la dis-
tribucién de Poisson es popular por modelar el nimero de veces que ocurre un evento en un intervalo
de tiempo o espacio. Asociadas a estas distribuciones, se pueden definir las bases correspondientes. La
base de Poisson también juega un papel util en CAGD (véase [42]] y [90]). En esta tesis, mostramos que
las matrices wronskianas de la base geométrica y las matrices wronskianas de la base de Poisson no son
TP. Sin embargo, las relacionamos con otras matrices TP, de modo que sus factorizaciones bidiagonales
asociadas se pueden utilizar para proporcionar algoritmos precisos con los que calcular sus valores pro-
pios o valores singulares, sus inversas o la solucidn de algunos sistemas lineales. Asimismo, mostramos
experimentos numéricos que confirman los resultados tedricos obtenidos. Los citados resultados y los
experimentos numéricos realizados se puedn consultar en el Capitulo[8]

La complejidad de todos los algoritmos propuestos para resolver los problemas algebraicos men-
cionados es comparable a la de los algoritmos LAPACK tradicionales, los cuales, como ilustraremos,
no ofrecen tal precision.

Esta memoria se estructura en cinco partes de la siguiente forma. La primera parte estd compuesta
por esta Introduccion y por el Capitulo [3] En el Capitulo 3] presentamos notaciones matriciales y con-
ceptos bdsicos relacionados con la teoria de la positividad total, CAGD y HRA. También se incluyen
los resultados auxiliares y las herramientas que vamos a emplear en el desarrollo del trabajo. En la
segunda parte, presentamos en las paginas 591 y los articulos [73]], [74], [391, [75]] y
[76]] que pertenecen al compendio de las publicaciones de esta tesis. En la tercera parte, justificamos
la unidad temdtica de las publicaciones y presentamos los principales resultados obtenidos en estos
articulos. Mas especificamente, en el Capitulo {4 definimos los sistemas ¢-transformados pondera-
dos e incluimos los resultados que garantizan sus buenas propiedades geométricas y computacionales.
En particular, mostramos la factorizacién bidiagonal de las matrices de colocacién de los sistemas ¢-
transformados ponderados. Ademads, presentamos algoritmos de evaluacion y subdivisién para una
clase general de bases racionales, las cuales pueden considerarse como un caso particular de los sis-
temas @-transformados ponderados, y proporcionamos su factorizacién bidiagonal con HRA. Al final
de este capitulo presentamos un método de aprendizaje para encontrar la curva que mejor se ajuste a
un conjunto de puntos dado, utilizando técnicas de Inteligencia Artificial con la clase general de bases
racionales propuesta. En el Capitulo[5] proporcionamos algoritmos con los que calcular la factorizacién
bidiagonal de las matrices wronskianas de la base de los monomios y la factorizacién bidiagonal de la
base de los polinomios exponenciales. También, mostramos que estos algoritmos pueden usarse para re-
alizar con precision algunos cédlculos algebraicos con estas matrices wronskianas. Ademds, obtenemos
un método preciso para construir la factorizacion bidiagonal de las matrices de colocacion y wronskianas
de los polinomios de Jacobi y de sus polinomios relacionados. Usamos este método para calcular con
HRA sus valores propios y valores singulares, inversas y la solucién de algunos sistemas lineales. En la
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cuarta parte, presentamos los tltimos resultados obtenidos, los cuales no estdn incluidos en los articu-
los que pertenecen a el compendio de publicaciones. En particular, en el Capitulo [6] proporcionamos
un método para obtener la factorizacién bidiagonal de las matrices wronskianas de los polinomios de
Bessel y la factorizacion bidiagonal de los polinomios de Laguerre. Este método se puede utilizar para
calcular con HRA algunos cdlculos algebraicos con estas matrices wronskianas. En el Capitulo[7] pro-
porcionamos una factorizacién bidiagonal de las matrices wronskianas de la base de los polinomios
de Bernstein y factorizaciones bidiagonales de otras bases relacionadas, como la base de Bernstein de
grado negativo o la base binomial negativa. También mostramos que estas factorizaciones pueden usarse
para realizar con HRA algunos célculos algebraicos con estas matrices wronskianas. En en el Capitulo
[8] proporcionamos una factorizacion bidiagonal de las matrices wronskianas de la base geométrica y de
la base de Poisson. Ademads, mostramos que con estas factorizaciones podemos realizar con HRA difer-
entes cdlculos algebraicos con estas matrices wronskianas. Finalmente, en la quinta parte, se describen
las conclusiones y el posible trabajo futuro que puede continuar desarrollindose como resultado de la
investigacion de esta tesis.



Introduction

This doctoral thesis is framed within the theory of Total Positivity. The theory of Total Positivity is an in-
terdisciplinary area that has its origins in the 1930s from the work of F.R. Gantmacher and M.G. Kreinn
in connection with vibrations of mechanical systems. Independently, I.J. Schoenberg also developed
this theory in regard to the variation diminishing property of matrices. In the 1960s, S. Karlin pub-
lished several papers on total positivity, which mostly concerns totally positive kernels but also treats
the discrete version of totally positive matrices (see the paper [2] by T. Ando, which presents a very
complete list of results on total positivity matrices until 1986). In recent years, several researchers from
the University of Zaragoza (J. Carnicer, J. Delgado, M. Gasca, E. Mainar, J.M Pefia) have also delved
into the study of totally positive matrices in several disciplines. Totally positive matrices present impor-
tant applications in many fields, such as Approximation Theory, Biology, Economics, Combinatorics,
Statistics, Differential Equations, Mechanics, Computer-Aided Geometric Design or Numerical Linear
Algebra (see [38], [330, [2], (370, [271], [93]], [23]). In this thesis, we will focus on two fields related to
totally positive matrices. On the one hand, on applications in Computer-Aided Geometric Design where
the importance of totally positive matrices comes from the fact that the normalized totally positive sys-
tems, whose collocation matrices are totally positive, provide shape preserving representations [9, 92].
On the other hand, on applications related to the search of numerical methods adapted to the structure
of the totally positive matrices in order to perform with high relative accuracy algebraic computations
with these matrices.

Computer-Aided Geometric Design (CAGD) is a discipline that deals with mathematical and com-
putational methods for the description of geometric objects that arise in areas ranging from Computer-
Aided Design (CAD) systems and Computer-Aided Manufacturing (CAM) systems to Robotics and
Scientific Visualization. The mathematical representation of curves and surfaces in terms of simple
formulas is not always the most appropriate for their treatment with the computer. Sometimes it is re-
quired that the parameters involved in the definition have a geometric meaning. It is common that these
parameters correspond to points in the space that can be interpreted in terms of geometric properties of
the curves and surfaces represented. In the case of curves, it is usual to use parametric representations
of the form

Y(t) =) Pu(t), 1€l
i=0

where (ug,...,u,) is a system of linearly independent functions defined on I = [a,b] and the points
Py, ..., P, are called control points. The polygon Fy - - - P, whose vertices are the control points is called
control polygon.

A first requirement for the treatment of curves is that the functions of the system are nonnega-

15



16 Chapter 2. Introduction

tive u;(t) > 0, for all + € I. We say that a system of functions (u,...,u,) is normalized if it satisfies
Y oui(t) = 1. This implies that the constants belong to the space % generated by u, ..., u,. The sys-
tem is fotally positive (TP) if its collocation matrices in the ordered sequence of nodes #y < --- <, in
1

uo,...,uU
M (") = )0,
10,5y

are totally positive matrices, that is, all of their minors are nonnegative. If the system is totally positive
and normalized (NTP), the curve 7 inherits certain geometric properties from its control polygon and,
consequently, mimics its shape (see [9I],[92]). Thus, NTP bases provide shape preserving representa-
tions.

The convex hull property states that a curve y(t) = Y7, Pu;(t) always lies in the convex hull of its
control polygon Fy- - - P,. It is well known that the convex hull property holds if and only if the system
(ug, ... ,u,) is normalized and formed by nonnegative functions. Therefore, NTP bases have the convex
hull property. NTP bases have another interesting geometric property that is very convenient for the
design purposes, which is called endpoint interpolation property: the initial and final endpoints of the
curve and the initial and final endpoints (respectively) of the control polygon concur. Shape preserving
properties of NTP bases come from the variation diminishing property of their collocation matrices.
Due to the variation diminishing property of TP matrices, the monotonicity or convexity of the control
polygon are inherited by the curve, and the length, angular variation and number of inflections of the
curve are respectively bounded by those of the control polygon (see [[10], [44] ).

The normalized B-basis of a given space is an NTP basis such that the matrix of change of basis of
any NTP basis with respect to the normalized B-basis is TP and stochastic. This property implies that
the control polygon of a curve with respect to the normalized B-basis can be obtained by a corner cutting
algorithm from its control polygon with respect to any other NTP basis. Thus, the control polygon with
respect to the normalized B-basis is closer in shape to the curve than the control polygon with respect
to any other NTP basis. Furthermore, the length of the control polygon with respect to the normalized
B-basis lies between the length of the curve and the length of its control polygon with respect to any
other NTP basis. Similar properties hold for other geometric properties such as angular variation or
number of inflections (see [92], [10], [9]). By the previous reasoning, a normalized B-basis has the
optimal shape preserving properties among all NTP bases of the space.

All finite dimensional spaces of functions generated by a NTP basis have a unique normalized B-
basis with optimal shape preserving properties (see [9]] and Chapter 4 of [92]). The normalized B-bases
play a relevant role in the interactive design of curves. One of the objectives of this thesis is to find a
general procedure for generating new systems of functions with shape preserving properties or optimal
shape preserving properties.

The space of polynomials of degree less than or equal to n defined on the interval [a,b] has NTP
bases. The Bernstein basis defined by

. n\t—a\risb—t\i
Bi(t)'<i>(b—a) <b—a>’ i=0,...,n,

is the normalized B-basis of this space. Curves parametrically defined by the Bernstein basis, called
Bézier curves, are of great interest in CAGD since they provide the representation of polynomial curves
with optimal shape preserving properties. The mathematical theory regarding Bézier curves arose in
the 1960s. Bézier curves were independently developed by P. de Casteljau at Citroen and by P. Bézier
at Renault. Around 1970, A.R. Forrest discovered the connection between the Bézier curves and the
Bernstein polynomial basis.
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The Bernstein polynomial basis can be obtained by means of recurrence relations that allow us to
deduce the de Casteljau algorithm for the evaluation of curves. The de Casteljau algorithm is a corner
cutting algorithm with the property of evaluating the Bézier curve in a parameter fy (in its parameter
domain) from its control polygon Fy - - - P,, and can be formulated as follows:

Input: Py,P,...,. P, 1
for j:=0ton

P} :=P;
end j
for i:=n-1 to 0 step -1
for j:=0toi
Pii=(1—1o)Pi*" +1oPi]
end j
end i

Output: P

The Bézier curve evaluated in g is the point P(? obtained at the end of the algorithm; that is y(7p) =
P(()). Thus, the de Castelaju algorithm evaluates the Bézier curve in ¢y and this algorithm can be used to
compute many points of the curve and then draw the curve (see Figure [2.T)).

Figure 2.1: De Casteljau’s algorithm for the evaluation in #y = 1/2 of a cubic Bézier curve.

Another property of the de Casteljau algorithm can be guessed from Figure 2.1} the subdivision
property. When we use the de Casteljau algorithm to compute the point ¥(zy) = P, for o on (0,1),
the points P, Py "',..., P form the control polygon of the curve y(t) (t € [0,]) with respect to the
Bernstein basis on [0, 7] (left subdivision) and the points P(?, Pl1 ,..., P} form the control polygon of the
curve Y(t) (t € [to,1]) with respect to the Bernstein basis on [fg, 1] (right subdivision). This property
gives rise to an efficient alternative way to draw the Bézier curve. Instead of computing many points
by the de Casteljau algorithm using the same control polygon Fy, Py, - - -, P,, we can compute the point
of the curve corresponding to #y and keep the two control polygons corresponding to the left and right
subintervals. These control polygons together are a better approximation to the Bézier curve than the
primitive control polygon. We can repeat the process and get a sequence of control polygons that
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converge to the Bézier curve (see [13]], [38]).

Despite its simplicity, the de Casteljau algorithm is one of the fundamental corner cutting algorithms
in CAGD. In [70] it was proved that the normalized B-bases are the only bases that give rise to a
Casteljau-type algorithm with the subdivision property. One of the objectives of this thesis is to obtain
corner cutting algorithms with the good properties of the de Casteljau algorithm for the evaluation and
subdivision of curves defined by the normalized B-bases that are proposed.

Given a system (uy, . ..,u,) of functions defined on I and positive values dy, . .., d, such that
Y i odiui(t) # 0, for all 7 € I, the system (ro, .. .,r,) defined by

L diui(t)
rilt) = Yicodiu(t)’

satisfies Y7 o ri(f) = 1, V¢ € I, and generates a new space of rational functions. Curves defined by
rational Bernstein and rational B-spline bases (NURBS) have become a standard tool in CAGD since
they allow the exact representation of conic sections, spheres and cylinders. It is well known that the
bases obtained by rationalizing Bernstein bases are also the normalized B-bases of the generated spaces
of rational functions. These spaces are made up of rational polynomial functions where the denominator
is a given polynomial.

The first topic surveyed in this thesis deals with total positivity, CAGD and solving algebraic prob-
lems with high relative accuracy. In this thesis, we introduce the concept of weighted ¢@-transformed
system, which includes a very large class of useful representations in Statistics and CAGD. Given a sys-

=0,...,n, 2.1)

tem (uo, . . ., u, ) of functions, a set of weights dy, . . . , d, and a positive function ¢, we say that (uy, . . . , i)
is a weighted @-transformed system from (uy, . .., u,) if
ui(t) ==dio(t)u;(t), tel, i=0,...,n. (2.2)

On the one hand, it is proved that this system inherits from the initial system the properties of
being TP, as well as the property of being B-basis. The bases (rp,...,r,) given in (2.I) obtained by
rationalizing a system of functions, not necessarily polynomials, can be considered as particular cases of
weighted @-transformed systems with (1) = Y7 diu(t), t € I. From these results, it can be deduced
that if the initial system (up, ...,u,) is TP then the rational basis (ry,...,r,) is NTP. Furthermore, if the
initial system (uo, ..., u,) is a B-basis then the rational basis (rg,...,r,) is the normalized B-basis of its
generated space. For example, it is shown that the rational B-spline basis (NURBS) is the normalized
B-basis of its generated space and, therefore, has the optimal shape preserving properties.

Trigonometric and hyperbolic curves are getting considerable importance since they provide the op-
portunity to construct conics, cylinders, surfaces of revolution and catenaries, among others. In [93]],
through the normalized B-basis of the spaces (1,cost,sint,...,cosmt,sinmt) and
(1,cosht,sinht, ... coshmt,sinhmt), rational bases are generated. The applicability of the mentioned
bases has been illustrated by obtaining the control polygon of the rational trigonometric and hyperbolic
curves, and multivariate surfaces. Shape preserving rational trigonometric and hyperbolic interpolation
is very important in Scientific Data Visualization and has been applied to other fields such as Engineer-
ing, Biology, Chemistry, Medical and Social Sciences (see [4] and the references therein).

As mentioned before, rational bases can be generated by weighted @-transformed systems. In [[70]
generalizations of the Bernstein basis, obtained by substituting the linear factors for polynomial, trigono-
metric or hyperbolic functions, were analyzed. In that work, the conditions characterizing these systems
as a B-basis of its generated space are also provided. Furthermore, a corner cutting algorithm satisfying
important properties such as evaluation property, subdivision property and convergence to the curve of
the resulting control polygons is proposed. In this thesis, we rationalize these systems and, supported by



19

the results of [70]], we construct a corner cutting algorithm associated to these general class of rational
bases satisfying the two mentioned properties of the de Casteljau algorithm: evaluation and subdivision
properties. Left (respectively, right) subdivision property means that given ty € [a,b], the algorithm
transforms the control polygon of the parametric curve y(r) with respect to the general class of ratio-
nal basis on [a,b] into the control polygon with respect to the general class of rational basis on [a, ]
(respectively, [tp,b]). The obtained results can be seen in Chapter [4] or, in more detail, in the article
[73l], which is presented on page Additionally, a Matlab Application with the implementation of the
obtained evaluation and subdivision algorithms can be found and downloaded at the following website:
https://github.com/CAGD2020/General. This application can be very useful when we want to compare
the curves generated by the different rational bases previously proposed.

In [49], [54] and [97]] nested spaces of rational polynomial functions obtained by successively mul-
tiplying the denominator by linear factors are analyzed. In particular, in [97] the authors consider the
rational Bernstein basis using a particular choice of the weights satisfying recurrence relations. Due to
the properties of these weights, the denominator of the corresponding rational Bernstein basis has the
form Li(t)-...-L,(t), where the linear factors L;(t) = a;(1 —t) +bjt, i = 1,...,n, are defined by the
real coefficients a; and b;, (a;,b;) # (0,0). The permutation of all the linear factors defines n! differ-
ent de Casteljau-type algorithms for the evaluation of the corresponding rational Bézier curves. In that
work, it is also suggested the need to investigate new spaces generated by bases of functions, satisfying
recurrence relations and allowing us the definition of evaluation algorithms with the good properties
of the de Casteljau algorithm. In this thesis, taking into account the generalizations of the Bernstein
basis presented in [[/0], we show that the results from [97] can be extended to new nested spaces of
non-polynomial rational functions deriving recurrence formulas for the weights and basis functions of
these spaces. These recurrence relations provide evaluation and subdivision algorithms for parametric
rational curves given in terms of the considered rational bases. Curves generated by these rational bases
inherit geometric properties and algorithms of the traditional rational Bézier curves and so, they can be
considered as modeling tools in CAD/CAM systems. The obtained results can be seen in Chapter 4]
or, in more detail, in the article [73]], which is presented on page 43| Additionally, a Matlab Applica-
tion with the implementation of the obtained evaluation and subdivision algorithms can be found and
downloaded at the following website: https://github.com/CAGD2020/Particular. This application can
be very useful when we want to compare the curves generated by the different rational bases previously
proposed.

On the other hand, we show that weighted @-transformed systems (uy, . ..,u,) given in (2.2) inherit
from the initial system their behavior when performing algebraic computations with its collocation
matrices. An algorithm can be computed with high relative accuracy (HRA) when it only uses products,
quotients, sums of numbers of the same sign, subtractions of numbers of opposite sign or subtraction of
initial data (cf. [23]]). Performing an algorithm with HRA is a very desirable goal. HRA implies that the
relative errors of the computations are of the order of the machine precision, independently of the size
of the condition number. This goal is difficult to assure, although in recent years there have been some
advances, in particular in the field of Numerical Linear Algebra. Bidiagonal factorizations have played a
crucial role to derive algorithms with HRA for TP matrices. The parametrization of TP matrices leading
to HRA algorithms is provided by their bidiagonal factorizations, which are in turn closely related to an
elimination procedure known as Neville elimination. Neville elimination is a procedure to make zeros in
a column of a matrix by adding to each row an appropriate multiple of the previous one and it had been
already used in some of the first papers on TP matrices. However, in later papers such as [34] and [37]],
a better knowledge of the properties of Neville elimination was developed allowing to improve many
previous results on those matrices. Some of these latest results show that the bidiagonal factorization
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of a nonsingular TP and STP matrix can be characterized in terms of the multipliers and the diagonal
pivots of the Neville elimination (it follows from theorems 4.1 and 4.2 of and p. 116 of [37]).

In [62] it was shown that given the bidiagonal factorization in terms of the multipliers and the
diagonal pivots of the Neville elimination of a nonsingular TP matrix A with HRA, we can perform the
algorithms presented in [62, |63] to compute with HRA its eigenvalues and singular values, the matrix
A~! and even the solution of Ax = b for vectors b with alternating signs. Up to now, this has been
achieved with some relevant subclasses of TP matrices with applications to CAGD (cf. [83} 185} 17, [15]
71])), to Finance (cf. [[18]]) or to Combinatorics (cf. [16]). In this thesis, we extend the analysis of some
of those works to a more general framework and assure that the algebraic computations mentioned above
can be performed with HRA for the collocation matrices of weighted ¢-transformed systems, assuming
that the bidiagonal factorization of the corresponding collocation matrix of the initial system can be
obtained with HRA and that the evaluation of ¢ does not require subtractions up to initial data. The
numerical examples will illustrate that the solution of mentioned linear systems and the computation of
eigenvalues and singular values with the considered collocation matrices can be solved accurately even
when the above conditions do not hold. In particular, the results can be applied to perform interpolation
with high precision. The obtained results can be seen in Chapter ] or, in more detail, in the article
[74]], which is presented on page [59] Additionally, the code for the experimentation can be found and
downloaded at the following website: https://github.com/NLA2020.

The second topic considered in this thesis deals with total positivity, curve fitting and neural net-
works. The problem of obtaining a curve that fits a given set of points is one of the most important
challenges of CAGD, and it has become prevalent in various applied and industrial domains, such as
CAD/CAM systems, Computer Graphics and Animation, Robotic Design, Medical, among many others.
Some works addressed this problem using Bézier curves ([[84]], [72],[68]]) and, although they obtained
good results, this polynomial approach is somewhat limited since it cannot adequately describe some
shapes (such as conics). An interesting extension in this regard is given by the rational bases. Another
objective of this thesis is to approach this problem with the proposed general class of rational bases.

It is well known that the weights of the rational bases can be used as parameters with which to shape
the rational curves generated by these bases. However, the effect of changing a weight in a rational
basis is different from that of moving a control point of the curve. Thus, the interactive control of
the shape of the rational curves by adjusting weights is not an easy task, which makes it difficult to
design algorithms with which to obtain the appropriate weights (see [27], Chapter 13). Some recent
works have shown that the application of Artificial Intelligence (AI) techniques can achieve remarkable
results regarding this problem. To address this question, in [56]], a bioinspired algorithm was applied
using rational Bézier curves. Furthermore, in [89] and [98]], evolutionary algorithms were applied to
rational B-spline curves. To tackle this issue by using the general class of rational bases proposed in this
thesis, we have collaborated with a research group from the Department of Applied Mathematics of the
University of Seville whose research focuses on Neural Networks and Topology.

The AdamMax algorithm is a recent algorithm whose purpose is to iteratively change the different
parameters of the defined model in search of local minima using a stochastic optimization process (see
[S9]). As a novelty, in this thesis, we define a neural network of a hidden layer with which we approach
the problem of finding the curve that best fits a given set of points, using the general class of rational
bases with optimal shape preservation properties proposed in this thesis. The neural network is trained
through a recent stochastic learning process, the AdaMax algorithm, and is intended to find the suitable
weights and control points of the fitting curve. In this approximation process, the rational basis is a
hyperparameter and can be changed by substituting the linear factors for polynomial, trigonometric or
hyperbolic functions, thus being able to reach more difficult shapes and thus expanding the potential
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range of applications of this neural network. We apply the neural network to different sets of data points
and show that the fitting curves generated with this method reach a satisfactory approximation. The
obtained results can be seen in Chapter 4 or, in more detail, in the article [39], which is presented on
page Additionally, the code for the experimentation can be found and downloaded at the following
website: https://github.com/Mathematics2020.

The third and last topic surveyed in this thesis deals with total positivity and resolution with HRA
of algebraic problems with Wronskian matrices. For a given basis (u,...,u,) of a space of n-times
continuously differentiable functions, defined on a real interval I and x € I, the Wronskian matrix at x is
defined by

W (0, ., ) (%) = () ()i jot, 1

In [51]] applications of the Wronskian matrices of the system (v, ..., v,) of functions defined by v;(t) =
fleM k=1,...,s,i=0,...,my_y, are shown. In particular, it is shown how the Wronskian matrices of
this sequence of functions appear naturally in fields such as the Spectral Matrix Theory, Controllability
and Lyapunov’s Stability Theory.

As mentioned before, an important goal in computational mathematics is to find algorithms with
HRA to perform matrix computations. Furthermore, we have seen that among the subclasses of the TP
matrices for which the bidiagonal factorization has been obtained with HRA (cf. [15]], [[17], [82], [86l)
there are many examples of collocation matrices (uj—1(t;))1<i j<n+1 Of systems (uo, ..., u,) of functions
defined on a real subset I (| <, < --- < t,+| in I). However, so far, there are no examples of accurate
computations with matrices involving derivatives of the basis functions. An additional objective of this
thesis is to obtain algorithms to perform accurately algebraic computations with Wronskian matrices
that have applications in CAGD and that can also arise in Hermite interpolation problems, in particular
in Taylor interpolation problems.

In this thesis, we also prove that the Wronskian matrix of the monomial basis (1,x,...,x") of poly-
nomials is TP at x > 0 and show that its bidiagonal factorization can be performed with HRA. Addition-
ally, we prove that the Wronskian matrix of the basis (eaﬂx, Mo el"x) of exponential polynomials is
STPif 0 <Ay < A < ... < A, for all x € R and we provide its bidiagonal factorization as well. The
computation with HRA of this factorization should require the evaluation with HRA of the involved
exponential function. Although this cannot be guaranteed, numerical experiments show an accuracy
similar to the obtained for the basis of monomials. It is also proved that the aforementioned algorithms
can be used to perform accurate algebraic computations with these Wronskian matrices. The numerical
experiments show that the computations of their inverses, their eigenvalues or singular values, and the
solutions of linear systems Wx = b, for vectors b with alternating signs, can be performed with high
accuracy. The obtained results can be seen in Chapter [5| or, in more detail, in the article [75], which is
presented on page[99] Also, the code with the numerical experimentation can be found and downloaded
at the following website: https://github.com/Calcolo2021.

Jacobi polynomials J,(,a’ﬁ )(x) form a class of classical orthogonal polynomials that includes many
important families of orthogonal polynomials, such as Legendre and Chebyshev polynomials. In fact,
Jacobi polynomials are orthogonal with respect to the weight (1 —x)*(1+x)P on the interval [—1, 1] and
have multiple applications. For instance, in Approximation Theory, in Gaussian Quadrature to numeri-
cally compute integrals, in Differential Equations or in Applied Physics (cf. [5], [64]). In this thesis, we
prove the strict total positivity of the collocation matrices of Jacobi polynomials on (1,0) as well as the
total positivity of their Wronskian matrices. We also obtain an accurate method to construct the bidiag-
onal factorization of these matrices and we use it with the algorithms presented in [63] to compute with
HRA their inverses, their eigenvalues, their singular values and the solutions of some linear systems.
Moreover, we consider the collocation and Wronskian matrices of Legendre polynomials, Gegenbauer
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polynomials, Chebyshev polynomials of the first and second kind, and rational Jacobi polynomials. In
addition, we show numerical experiments that confirm the high accuracy in algebraic computations.
The obtained results can be seen in Chapter [5] or, in more detail, in the article [76], which is presented
on page Also, the code with the numerical experimentation can be found and downloaded at the
following website: https://github.com/JSC2021.

After a suitable parametrization of the matrices, the goal of finding algorithms with HRA for matrix
calculations has been achieved for the collocation matrices of Bessel polynomials (see applications in
[47] and references in there) and for the collocation matrices of generalized Laguerre polynomials. In
both cases, the collocation matrices are TP and a bidiagonal factorization with HRA was obtained for
them (see [21], [20]). In this thesis, we prove that the Wronskian matrix of Bessel polynomials is
TP for all x > 0 and also show that its bidiagonal factorization can be computed with HRA. Although
we confirm that the Wronskian matrix of generalized Laguerre polynomials is not TP, we obtain a
bidiagonal factorization of this Wronskian matrix and use it to derive algorithms to compute with HRA
many algebraic oroblems. We show as well numerical examples that illustrate the great accuracy of the
mentioned methods in the algebraic calculations that can be performed with the Wronskian matrices of
the considered bases, such as the calculation of their inverses, their singular values and the solutions of
some linear systems. The obtained results can be seen in Chapter|[6]

In [82]] it was shown that many algebraic computations with the collocation matrices of the Bernstein
basis can be performed with HRA. In this thesis, we are going to treat its Wronskian matrices. Firstly,
we define a general class of bases that include the Bernstein basis and other related bases, such as the
Bernstein basis of negative degree (see [41]) or the negative binomial basis. Moreover, we characterize
when the Wronskian matrices of these general bases are TP. The first difficulty found to obtain accurate
algorithms with which to perform algebraic computations with the Wronskian matrices of the Bernstein
basis, the Bernstein basis of negative degree, or the negative binomial basis comes from the fact that
these matrices are never TP. However, in spite that they are not TP, we have obtained a bidiagonal
factorization of these Wronskian matrices and we have used it to derive algorithms to compute with
HRA their eigenvalues or singular values, their inverses and the solution of some linear systems. The
obtained results can be seen in Chapter|[7]

The geometric distribution has applications in population and econometric models and the Poisson
distribution is popular for modeling the number of times an event occurs in an interval of time or space.
Associated to these distributions, the corresponding bases can be defined. The Poisson basis also plays
a useful role in CAGD (see [42] and [90]]). In this thesis, we show that the Wronskian matrix of the
geometric basis and the Wronskian matrix of the Poisson basis are not TP. However, we relate them
with other TP matrices so that their associated bidiagonal factorizations can be used to provide accurate
algorithms with which to compute their eigenvalues or singular values, inverses and the solutions of
some linear systems. In addition, we show numerical experiments that confirm this accuracy. The
obtained results can be seen in Chapter (]

The complexity of all the proposed algorithms for solving the mentioned algebraic problems is
comparable to that of the traditional LAPACK algorithms, which, as we will ilustrated, deliver no such
accuracy.

This work is structured in five parts in the following way. The first part is composed by this In-
troduction and Chapter[3] In Chapter [3] we present matrix notations and basic concepts related to the
theory of total positivity, CAGD and HRA. The auxiliary results and the tools that we are going to use
in the development of the work are also included. In the second part, we present on pages |3] 591 [77] 09
and [I17]the articles [73]], [74], [39], [75] and [76] which belong to the compendium of publications of
this thesis. The third part is composed by Chapter ] and Chapter[5] The purpose of these chapters is to


https://github.com/BeatrizRubio/Article_JSC_2021

23

justify the thematic unit of the publications and present the main obtained results in these articles. More
specifically, in Chapter 4] we define the weighted @-transformed systems and include the results that
guarantee their good geometric and computational properties. In particular, we show the bidiagonal fac-
torization of the collocation matrices of the weighted ¢-transformed systems. Furthermore, we present
evaluation and subdivision algorithms for a general class of rational bases, which can be considered
as a particular case of weighted ¢-transformed systems, and we provide their bidiagonal factorization
with HRA. At the end of this chapter, we present a learning method to find the curve that best fits a
given set of points by using Artificial Intelligence techniques with the proposed general class of rational
bases. In Chapter[5] we provide algorithms for computing the bidiagonal factorization of the Wronskian
matrices of the monomial basis of polynomials and the bidiagonal factorization of the basis of exponen-
tial polynomials. We also show that these algorithms can be used to perform accurately some algebraic
computations with these Wronskian matrices. Moreoever, we obtain an accurate method to construct the
bidiagonal factorization of collocation and Wronskian matrices of Jacobi polynomials and their related
polynomials. We use this method to compute with HRA their eigenvalues and singular values, inverses
and the solution of some linear systems. In the the fourth part, we present the latest obtained results,
which are not included in the articles which belong to the compendium of publications. In particular, in
Chapter [0 we provide a method to obtain the bidiagonal factorization of the Wronskian matrices of the
Bessel polynomials and the bidiagonal factorization of the Laguerre polynomials. This method can be
used to compute with HRA some algebraic computations with these Wronskians matrices. In Chapter
we provide a bidiagonal factorization of the Wronskian matrices of Bernstein basis of polynomials
and bidiagonal factorizations of other related bases, such us the Bernstein basis of negative degree or the
negative binomial basis. We also show that these factorizations can be used to perform with HRA some
algebraic computations with these Wronskian matrices. At last, in Chapter[8] we provide a bidiagonal
factorization of the Wronskian matrices of geometric basis and a bidiagonal factorization of Poisson
basis. Besides, we show that these factorizations can be used to perform accurately some algebraic
computations with these Wronskian matrices. Finally, in the fifth part, the conclusions and the possible
future work that might continue to be developed as a result of the research of this thesis are described.
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Background

ABOUT THIS CHAPTER

This chapter has an introductory nature and its goal is to include some basic concepts and notations. We
introduce the concept of high relative accuracy and totally positive and strictly totally positive matrices,
which will be key tools for our work. We recall the Neville elimination process that will be used for fac-
torizing totally positive (strictily totally positive) matrices as product of simpler totally positive (strictily
totally positive) matrices. We also explain the corner cutting algorithms, which are profoundly associ-
ated with stochastic and totally positive matrices. Finally, we present normalized totally positive bases
and their shape preserving properties for the parametric representation of curves. We also introduce
B-bases, which have optimal shape preserving properties.

3.1 Error analysis and high relative accuracy

In the study of numerical methods we have to take into account a very important task: the error analysis.
In order to carry out the error analysis of an algorithm, we have to set some assumptions about the
accuracy of the basic artihmetic operations. These assumptions are mainly emboided in the following
model:

AxOy) = (xoy)(1+8), |6]<u, ©e{+ —x/}, 3.1

where fI(x ®y) means the result of the operation ®. The quantity u is called unit roundoff and is the is
the maximum possible relative error consequence of the rounding.

In general, if we consider that our computed solution is the exact solution of a perturbed problem,
the backward error measures the distance between the perturbed problem and the initial problem. In
contrast, the forward error measures the distance between the computed and the exact solution.

Let us recall that the condition number of a non singular matrix A is

Ke(A) = [|All ]|[A™"

o (32)

where usually, k € {1,2,00} and ||-|| is the corrresponding matrix norm. Moreover, as ki(A) > [|A||x]|A~"][x >
1 thus, a matrix is said well-conditioned when x;(A) — 1 and ill-conditioned when x;(A) >> 1.

The conditioning of the problem measures the effect on the solution of data perturbations.The back-
ward and forward errors are related through the conditioning of the problem by this relation:

forward error < condition number x backward error, 3.3)
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which allows us to obtain a forward error bound through the backward error.

However, in some problems it is possible to find a parametrization of the data and an algorithm
leading to small forward error bounds in spite of a bad conditioning with its initial parametrization. The
desired goal is to guarantee high relative accuracy (HRA). We say that we have performed an algorithm
with HRA if the following formula holds:

relative forward error < Ku, (3.4)

for some constant K, where u is the unit roundoff. It is not always possible to guarantee HRA for a given
problem. An example of a simple problem for which a HRA algorithm cannot be found is provided by
the sum of three real numbers x + y -+ z (see [23]). As we shall recall in this chapter, for some structured
classses of matrices, HRA algorithms can be found.

A sufficient condition to assure the HRA of an algorithm is the non inaccurate cancellation (NIC)
condition and it is satisfied if it only uses additions of numbers of the same sign, multiplications, divi-
sions and substractions (additions of numbers of different sign) of the initial data (cf. [23]]). Performing
an algorithm with HRA is a very desirable goal. HRA implies that the relative errors of the computations
are of the order of the machine precision, independently of the size of the condition number. This goal
is difficult to assure although in recent years there have been some advances, in particular in the field of
Numerical Linear Algebra. Up to now, computations with HRA are guaranteed only for a few classes of
TP matrices. Previously, a reparametrization of the matrices is needed. Bidiagonal factorizations have
played a crucial role to derive algorithms with HRA for TP matrices.

3.2 Totally positive matrices, Neville elimination and computations with
high relative accuracy

Let us first recall some basic concepts.

Definition 3.1. A matrix A = (a; j)1<i j<n 1S Stochastic if

n
Za,;jzl, izl,...,n.
Jj=1

Definition 3.2. A matrix is fotally positive (TP) if all its minors are nonnegative and it is strictly totally
positive (STP) if all its minors are positive (see [2]]).

It is very easy to check that the bidiagonal matrices

ai
a1 ap

nn—1 Ann

with nonnegative entries are TP. Also, in p.212 of [2]], it was proved that the Vandermonde matrix for
the nodes {x;};<,

1 x x% x|
1 x x3 X5

VDM(xy,...,x,) =
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is STP when the nodes satisfy 0 < x; < x2 < ... < x,. Moreover, under these conditions,

detVDM (xi,...,x,) = H(xj —x;) >0.
i<j

TP matrices are, in particular, sign-regular matrices (matrices whose minors have the same sign).
Corollary 5.4 of [2] characterizes the class of sign-regular matrices by the following variation diminish-

ing property.

Proposition 3.1. Let o = (o, ..., &,) € R™"! and A € ROTD*+1)  Then A is sign-regular if and
only if
V(Aa) <V(a),

where V() is the number of strict changes of sign of the components of o.

The following result corresponds to Theorem 3.2 of [2] and proves that the product of TP matrices
is also TP. In the sequel we are going to use this property.

Proposition 3.2. Ler A € RTDx0m+) gug B ¢ RUntDX(0+1) - 1f A and B are TP matrices then the
matrix C := AB is TP. Moreover, if A and B are STP matrices then the matrix C := AB is STP.

From Theorem 3.1 of [2], the following property of TP and STP matrices can be proved.

Proposition 3.3. Let A € R“DX"Dpe 4 STP matrix and B € R"D*(0+1) g bidiagonal TP matrix.
Then the matrix C := AB is STP.

Neville elimination is a particularly important procedure when studying TP matrices. This process
can be used to factorize an stochastic and TP matrix and express it as the product of bidiagonal stochastic
and TP matrices. As we are going to see in this chapter, this kind of factorization is important in the
field of Computer Aided Geometric Design (CAGD), in particular regarding corner cutting algorithms.
Moreover, using this factorization, many algebraic problems with STP matrices can be solved with high
relative accuracy (HRA).

Let us now recall some basic matrix notations and results on Neville elimination. Our notation
follows the notation used in [34}36]].

Givenn € Nand k € {1,...,n}, let Oy , be the set of increasing sequences of k positive integers less
than or equal to n. If o, 3 € Ok, we denote by Ala|B] the k x k submatrix of A containing rows of
places o and columns of places f3. Besides, Aa] := Ala|a].

Neville elimination (see [34} 36, 137]]) is an alternative procedure to Gaussian elimination to make
zeros in a column of a matrix by adding to a given row an appropriate multiple of the previous one.
For a given nonsingular matrix A = (; j)1<i j<n, this elimination procedure consists of at most n — 1
successive major steps, resulting in a sequence of matrices as follows:

AD A 5 A® A

For 1 < k < n— 1, the matrix A**1 is obtained from A®) by

al), it 1<i<k,
’ *®)
k+1 Nooay : . k
al(’j )= algvj)ia@kkat(f)l,j’ if k+1<ij<n and ag_)l,k#O,

a) if k+1<i<n and q =0,
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so that A%*1) has zeros below its main diagonal in the k first columns. Finally, U is an upper triangular
matrix. In this process, the element

piji=al), 1<j<i<n,

is called the (i, j) pivot of the Neville elimination of A. In particular, the pivots p;; are called diagonal
pivots.

Neville elimination can be performed without row exchanges if all the pivots are non-zero and, in
this case, Lemma 2.6 of [34] gives us the following formula for the explicit computation of the pivots
in the procedure:

pil = a1, 1<i<n,

detAli—j+1,...,ill,.... ] Do
P p— l<j<i<n.
Pij detAli—j+1,...,i—1]1,...,j—1] f=r=t

(3.5)

Consequently, it is also deduced that the (i, j) multiplier of the Neville elimination of A can be obtained
by
(J)
a:’’ L. .
- (;7)] — l?w -, if al@l’j#o, l<icic 16
miji=9§a” ; Pl , l=j<isn (3.6)

0, it ¢’ =0,

Neville elimination has been used to characterize TP and STP matrices (see [34,136,|37]). The following
characterization can be derived from Theorem 4.1 of [34] and p. 116 of [37]] (see also Theorem 2.1 of

(L5D).

Theorem 3.1. A given matrix M is TP (STP) if and only if the Neville elimination of M and M7 can
be performed without row exchanges, all the multipliers of the Neville elimination of M and M” are
positive and all the diagonal pivots of the Neville elimination of M are nonnegative (positive).

According to [37], joint with the arguments of p.116 of [37]], an TP (STP) matrix A € RO x(n+1)
can be factorized in the form

A:Fnanl"'FIDGI"'anlGny (37)

where D = diag (p1.1,p22;---,Pnt1a+1) is the diagonal matrix with nonnegative (positive) diagonal
entries and F; and G; are the nonnegative bidiagonal matrices given by

1

Mpinsi—i 1
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1
0 1
GiT — 0 1 9
iy 1
Bt np1—i 1
foralli e {1,---,n}. If, in addition, the entries m;, m;; satisfy

m,-.,-:O = mhj:0, Vh>i

and

ﬁ’lijzo = ﬁ’l,‘kzo, Vk>j,
then the bidiagonal decomposition is unique. The entries m; ; and m; ; are the multipliers of the
Neville elimination of A and AT, respectively and the diagonal entries p; ; are the diagonal pivots of the
Neville elimination of A. In [62] the following matrix notation BD(A) was introduced to represent the
bidiagonal decomposition of a nonsingular TP (STP) matrix

mj j, if i>],
pi, if i<
Assuming that the multipliers and diagonal pivots of the Neville elimination of a matrix A and its

transpose (or, equivalently, the parameters of the bidiagonal decomposition (3.7))) are known with HRA,
Koev presents in [62] algorithms for the computation with HRA of:

o the solution of linear systems of equations Ax = b where b has alternating signs,
e the inverse of the matrix A,
o the eigenvalues of the matrix A,

o the singular values of the matrix A.

In the work of Koev (see [63]) we can get a library which contains an implementation of the three
mentioned algorithms to use them with Matlab and Octave. The name of the corresponding functions
are TNSolve, TNInverseExpand, TNEigenvalues and TNSingularValues, respectively, and their
computational cost is O(n?) elementary operations for TNSolve and O(n®) for the other functions.
These functions require as input argument the bidiagonal decomposition of the matrix A. TNSolve
also requires, as a second argument, the vector of independent coefficients b of the linear system Ax = b
to be solved.

Let us consider an interesting example to illustrate how to compute the multipliers and pivots of the
Neville elimination of a matrix and its bidiagonal decomposition using the results obtained in [34]].

Example 3.1. A matrix

1 1 —1—1
?le a4 le 1 x - x’]1 o
. - ] b %) . xn* -
xo—d xy—d, 2
A— 2—d) 2—d; ‘ ‘ (3.8)
i S —i-1
xnfdl xn*dl 1 Xn x;ll
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is called a Cauchy-Vandermonde matrix for the nodes {x;},,, and the poles {d;}, < j< Observe that
for [ = 0 the matrix A is a classical Vandermonde matrix and for / = n the matrix A is a classical Cauchy
matrix. Let us also observe that the Cauchy-Vandermonde matrix A is the coefficient matrix of the linear
system associated with the following interpolation problem in the basis

1 1 1
B ={v; i<np = Lx,x%,... Xy
{Vz(x)lgzgn} {X—dl’x—dz’ ’X—d]’ g Xy X X
Given the interpolation nodes x;, i = 1,...,n, and the interpolation data b;, i = 1,...,n, we find the
function
n
fx) =Y cv(x)
k=1
(a rational function with prescribed poles) such that f(x;) = b; fori=1,...,n.

In [88]] it was proved that the Cauchy-Vandermonde matrices are STP when the nodes {x;}, <i<p and the
poles {dj}1<j<l<n satisfy O <xj < <...<xand 0 < —d) < —db < ... < —d|.
For the paticular case n = 4 and [ = 2, the Cauchy-Vandermonde matrix (3:8)) is

1 1

X1 Td] X1 sz l xl
—d 5 1 x
A= nTdl HTd 3.9)
x3—dj x3—dp 1 X3
1 1 1 x

x4—dy X4—dp

Let us suppose that the nodes sastisfy 0 < x; < xp < x3 < x4, the poles satisfy 0 < —d; < —d» and,
consequently, the matrix A is STP. Therefore, the Cauchy-Vandermonde matrix (3.9) can be factorized,
by (3.7), as follows

A= FBFKRFIDG GyGs.

Using the results of [34]], we are going to obtain the three lower triangular bidiagonal matrices: Fy, F3, F3.
For the computation of
1 0 0

0

m 1 0 O

FIZ 21 0 )
1

0 m3p 1
0 0 myj

we have to obtain the multipliers my 1,m3, and my 3 of the Neville elimination of A. Using (3.3)) and

BB). we get

1
1 -
2! P11 aglf 1 )Cz—d17
o oxi—d
Map = @ _ detA[2]1] _ (X3 —xz)(xz—dl)(xl —dg)
T prp detA[L2[12]  (x3—di)(xs —da)(xa—x1)’
detA[1|1]
detA[2,374‘1,2,3]
Mys = % . detA[2,3\1,2] . (X4—XZ)(X4—X3)()C3 —dl)()C3 —dz)

P pas detA[1,2,311,2,3]  (xa—di)(xa—d2)(x3 —x1)(x3 —x2)
detA[1,2[1,2]
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Observe that we can guarantee that the multipliers are positive since 0 < —d;. For the computation of

1 0 0 0
0O 1 0 0
B=1 my; 10
0 0 %) 1

we have to obtain the multipliers m3 ; and my » of the Neville elimination of A. Using (3.5) and (3.6)),
we get

1
1
m31:@:§: x3—dy _ X —di
7 Xz—dl
m42:&: detAB“] _ (x4_x3>(x3—d1)(x2—d2)
7 P32 w (x4 —dy) (x4 —do)(x3 —xz)'
detA[2]1]

Observe that we can guarantee that the multipliers are positive since 0 < —d; < —dp and 0 < x] < xp <
X3 < X4.
Finally, for the computation of

=

- o O O

1

m _Pbay %1 x4—di _X3—d1
41 = = 12— e

X3 —d

Observe that we can guarantee that the multipliers are positive since 0 < —d; < —dp and 0 < x] < xp <
x3 < X4.
By considering the matrix

1 1 1 1
x1—d xp—d x3—d x4—d
111 211 311 411

AT — xi—dy x—dy  x3—dy xy—dy
1 1 1 1

X1 X2 X3 X4

we can obtain the upper triangular bidiagonal matrices: G, Gg , G3T .
For the computation of

1 0 0 0

r_ | Ay 10 0
Gi=1 o iza 10|

0 0 rus 1
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we have to compute the multipliers 7, 1, 713 > and 4 3 of the Neville elimination of AT, Using (3.3)
and (3.6) we get

1
I’?lg] _ ﬁZ,l _ xl—dz _ xl—dl
7 ﬁl,l 1 X]—dz’
x1—d
detAT[2,3|1,2]
e, P32 detATRIT] (o —di)(n —d)
7 s detAT[1,2]1,2] d—dy)
detAT[1]1]
detA”[2,3,4(1,2,3]
. P43 detAT[2,3|1,2]
my3=—= T =x3—d,.
P33 detA"[1,2,3]1,2,3]
detAT[1,2[1,2]
For the computation of
1 0 O
0 1 0 0
T _
“2=1o w3y 10 ]’
0 0 7y 1

we have to compute the multipliers 7713 | and 74, of the Neville elimination of AT. Using (3.3) and

(3.6), we get

m3,1 = — = 1 = X1 _d27

x1—d>

detAT[3,4|1,2]
. Pap  detAT[3|1]

= =" —x—d.
T s, T detAT23(1,2) 2@
detAT[2|1]
For the computation of
1 0 0 O
01 0 O
T _
“S=loo 1 ol
0 0 my; 1

we have to compute the multiplier 74 of the Neville elimination of A”. Using (3:3)) and (3.6), we get

=

4,1 X1
= — =X].

ps1 1

My =

Finally, we are going to obtain the diagonal matrix D, whose diagonal entries are the diagonal pivots of
the Neville elimination of A,

pii O 0 0
_ 0 ppp O 0
b= 0 0 p3z O ’
0 0 0 paa
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1 B (dy —da)(x2 —x1) B (x3 —x1)(x3 —x2)
xy—di’ pP22= (o —dy)(x1 —da) (02 —d>)’ P33 = (x3—di)(x3—dn)’

P11 =

_ detA[1,2,3,4(1,2,3,4] (x4 —x1)(x4 —x2) (x4 —x3)
P = a1,2,3][1,2,3] (a—d)(u—do)

Finally, let us observe that we can guarantee that all the multipliers of the Neville elimination of A"
are positive since 0 < —d;| < —dy and 0 < x| < xp < x3 < x4. Furthermore, all multipliers of the Neville
elimination of A and A7 and pivots of the Neville elimination of A can be computed with HRA.

3.3 Normalized totally positive bases and corner cutting algorithms

Given a basis (up, .. .,u,) of functions defined on [a,b] and Ry, ..., P, € R, we can define a parametric
curve as

y(t) := i:’)PiMi(t)’ t € la,b)].

The polygon P, - - - B, formed by the ordered sequence of points P, € R¥, i =0,...,n, is called the control
polygon of v and the points P, i = 0,...n, are named control points of 'y with respect to (uo, . ..,uy) (see

Figure [3.1)).
Fa

P1 P3

Figure 3.1: Control points of a parametric 7.

Many algorithms for the computation of curves consist on successive alterations of their control
polygons. What these algorithms have in common is that the new obtained polygons are made up of
successive replacements of two adjacent control points by convex combinations between them. These
algorithms are called corner cutting algorithms due to their geometric interpretation. A relevant example
is the de Casteljau-type algorithms for the evaluation and subdivision of Bézier curves. Let us now recall
some basic aspects of corner cutting algorithms.

An elementary corner cutting is a transformation which maps any polygon Fy--- P, into another
polygon Qg - - - Q,, defined by one of the following ways
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Q; = P, j#i
O = (1—-A)P+AP,;, forsomeie€O,....n—1, 0#A<I,
(3.10)
or
Qi = B, Jj#i
Qi = (1-A)P+AP_;, forsomeie€l,....n, 0#A<I.
3.11)
P2 P2

P

Qo Q:0Ps P,OQy Q0P

Figure 3.2: Corner cutting algorithms (3.10) and (3.11).

The matrix representation of the elemental geometric transformations (3.10) is

Qo Py
=U ’
Qn Pn

where U is the nonsingular, stochastic, upper triangular and TP matrix of the form

1 0
1 0

U= 1-4 A

1 0

The matrix representation of the elemental geometric transformations (3.11) is
Qo R

On Py
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where L is the nonsingular, stochastic, lower triangular and TP matrix of the form

1
0 1

A corner cutting algorithm is any composition of elementary corner cuttings (3.10) and (3.T1).
Therefore a corner cutting algorithm is described by means of a matrix which is nonsingular, TP and
stochastic, as a product of the previous ones (see Proposition [3.3)).

Conversely, a nonsingular stochastic TP matrix A can be factorized as A = LU, where L (respectively,
U) is a nonsingular stochastic lower (respectively, upper) triangular TP matrix (see Theorem 3.5 of [2]]).
Furthermore, an (m+ 1) x (m+ 1) nonsingular lower triangular stochastic matrix L admits a (unique)
factorization in terms of bidiagonal stochastic matrices as

L=Ly, - LLy,

where

L= 0 1 0<I<m-—1,

)

bl

11

m—1
(see Theorem 4.5 of [37]). Analogously, a nonsingular, upper triangular, stochastic matrix U can be
factorized in terms of bidiagonal stochastic matrices as

U=Upu-1--UUp,

where

U = 1 0 , 0<I<m-—1.

1

These factorizations appear naturally from Neville elimination (see [34]) and have an interpretation
in terms of corner cutting algorithms.

Now, let us introduce some basic concepts related to the systems used for the parametric represen-
tation of curves.
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Definition 3.3. Let (uo,...,u,) be a system of functions defined on the subset I/ C R. The collocation

matrix of the system (uy, ...,u,) at any sequence of points t; <t < ... <1yt is
up,...,Up
M = (uj—1(t - .
< tlv"'7tl’l+1 > ( / l(l))lgl,j§n+l

Taking into account the properties of the collocation matrices of a given system, we can give the
following definitions.

Definition 3.4. A system of functions (uy, .. .,u,) defined on the subset / C R is TP if all its collocation
matrices are TP. A TP system of functions on / is normalized (NTP) if it is a partition of the unity, that
is,

n
Yu)y=1, rel
i=0

Clearly, (ug,...,u,) is an NTP system of functions if and only if all its collocation matrices are
stochastic and TP.

NTP bases are commonly used in CAGD due to their shape preserving properties (see [9], [92]).

The convex hull property is an important property for curve design. The convex hull of a polygon
Py--- P, is the set defined by

e%/(Po"'Pn)Z: {ZA,PA QL,'ZO, i:0,...,n, leZI}.
i=0 i=0

We say that a system (uo, . .., u,) has the convex hull property if any parametric curve

(1) = 2%0), (€ lab),

lies in the convex hull of Py---P,. In order to illustrate this property, we have implemented a Geoge-
bra application that can be found in this url https://ggbm.at/AFMCyeKB. Clearly, the convex hull
property holds if and only if the system is a partition of the unity.

In order to be able to guide the curve and put together several pieces of curves, it is desirable for the
designer to have precise control over what happens at the ends of the curve. This leads to the endpoint
interpolation property. A system (uo,...,u,) has the endpoint interpolation property if any parametric
curve

Y(t) = inui<r>, € la,b],

satisfies y(a) = Py and y(b) = P,, that is, the first control point always coincides with the start point of
the curve and the last control point always coincides with the final point of the curve. This property is
also illustrated in the Geogebra application mentioned before.

In interactive design we also want that the shape of a parametrically defined curve mimics the shape
of its control polygon because then we can predict or manipulate the shape of the curve by choosing
suitable control points. Due to the variation diminishing property of TP matrices, curves defined by
NTP bases imitate the shape of their control polygons. In [44] it was proved that the length, number
of inflections and angular variation of a parametric curve are bounded above by those of the control
polygon with respect to NTP bases (see also [10])).

In fact, given a system of functions, if all curves generated from it satisfy simultaneously the convex
hull, the endpoint interpolation and the variation diminishing properties then the system is NTP (see

Figure [3.3).


https://ggbm.at/AFMCyeKB
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Py =~v(a) P3= ’Y(b)

Figure 3.3: Convex hull, endpoint interpolation and variation diminishing properties.

As we are going to see in the following result, the product of TP bases and nonsingular TP matrices
provides other TP bases.

Proposition 3.4. Let (u,...,u,) be a TP basis of a space % of functions defined on the subset / C R
and let A € RO"+D*(+1) be a nonsingular and TP matrix. The system of functions (vo,...,vy) defined
on / by

(vOy---yVn) i= (Ug, ..., up)A
is a TP basis of % . Moreover, if (u, ... ,u,) is NTP and A is stochastic and TP, then (v, ...,v,) is NTP.
Proof. Taking into account that A is a nonsingular matrix and (uy, ..., u,) is a basis, we deduce that the
functions of (vo,...,v,) are linearly independent and thus (vy,...,v,) is a new basis of the space % .

Let us now consider any sequence of points #; < --- < f,11 on I. The corresponding collocation matrix
of (vo,...,v,) satisfies

(vj—l(ti))i,jzl,“.,nJrl = (uj—l(ti))i,jzl,‘..,nJrlA‘

Since (ug, ..., uy) is a TP system, then the collocation matrix (uj1(%)); ;_; .y is TP. Let us observe
that the product of TP matrices is, by Propositon [3.2] a TP matrix. Therefore, the collocation matrix
(vj-1(t)); ;=1 .._ny1 18 TP and thus (vo,...,v,) is a TP system. If, in adition, (uo, ..., un) is a partition of
the unity,

n
Yu@)=1, rel,
i=0

and A is a stochastic matrix we can write

(vo(t)y..svn(t))ensr = (uo(t), ..., un(t))Aeni1 = (uo(t),. .., un(t))ens1 =1, tel,

where e, 1 = (1,...,1)T € R*"!. So we deduce that,

n
Y vi)=1, tel,
i=0

that is, (vo,...,Vvy) is a partition of the unity and therefore is an NTP system. O
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One interesting goal in CAGD is to find the set of all TP bases of a space from a particular basis
which generates every TP basis by means of nonsingular and TP matrices. The concept of B-basis arises
in this context.

Definition 3.5. Let (uo,...,u,) be a TP basis of a space 7. Then (uo,...,u,) is a B-basis if for any
other TP basis (vo,...,v,) of % the matrix K of change of basis such that

(vOy---yVn) = (Ug, ..., un)K

is TP. A B-basis (u, ..., uy) is a normalized B-basis of a space 7 if the system (uy, ..., u,) is a partition
of the unity.

Among all NTP bases of a space, by Corollary 4.4 of [10], we can find a unique normalized B-basis.
Furthermore, as we are going to see in the following result, corresponding to Proposition 3.12 of [10],
the normalized B-bases can be characterized by their behavior at the ends of the definition interval.

Proposition 3.5. Let (uo, ...,u,) be a totally positive basis of a space % of functions defined on I C R.
Then (ug, ... ,uy,) is a B-basis if and only if the following condition hold for all i # j

it
inf |t €I, u~(l)7é0}:0.
{ uj(t) !
The following result guarantees the existence of B-bases and normalized B-bases when the consid-
ered spaces have TP or NTP, respectively, bases (see Remark 3.8 and Theorem 4.2 (i) of [10]).

Proposition 3.6. If a vector space of functions has a TP (respectively, NTP) basis, then it has a B-basis
(repectively normalized B-basis).

Now, we establish the uniqueness of normalized B-bases, which was proved in Corollary 3.9 (iii)
and Theorem 4.2(i), both of [10].

Proposition 3.7. Let (u, .. .,u,) be a B-basis (respectively, normalized B-basis) of a space of functions
of %. A basis of % is a B-basis (respectively normalized B-basis) if and only if it is of the form
(doug, . .. ,dyuy) with d; > 0 (respectively, d; =1) foralli =0,...,n.

It is well known that the Bernstein basis of degree n on a compact interval is the normalized B-basis
of the corresponding space of polynomials. Moreover, the B-spline basis associated to a knot vector is
the normalized B-basis of their corresponding space of spline functions.
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0
0 1

Figure 3.4: Bernstein basis polynomials of degree 4 on [0, 1].

Let (vo,...,v,) be an NTP basis of a space % and (uy,...,u,) the corresponding normalized B-
basis. Since (u, ..., u,) is the normalized B-basis, the matrix K of the change of basis such that

(voy---yVn) = (Ug, ..., un)K

is nonsingular, stochastic and TP. Let us suppose that ¥ is a parametric curve defined in terms of

(vo,--.,vy). This curve can be written in matrix form as
¥(e) =Y Pwi(t) = (vo(t),....va() | 2 |, t€lab],
i=0 P
n
where Py - - - P, is the control polygon of y with respect to the NTP basis (v, .. .,v,). This curve can also
be written in terms of the normalized B-basis (uo, .. .,u,), that is,
0 Qo
V(1) =Y Qiui(t) = (uo(t), ... un(t)) : , t€la,bl,
i=0
On
where Qg - - - O is the control polygon of y with respect to the normalized B-basis. Clearly, we have
Py P
v@) = o(0),--ma@)) | 1 | = (uo(0), - un(0))K |
P, I
Qo
= (uo(t),...,un(t))
On
where the polygon Qy - - - O, obviously satisfies
Qo Ry
. x|

On B,
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Taking into account that K is a nonsingular, stochastic and TP matrix, we can deduce that the polygon
Qo -+ O, can be obtained from a corner cutting algorithm starting with Fy--- P,. This fact guarantees
that the control polygon of y with respect to the normalized B-basis is closer to the parametric curve
than the control polygon of y with respect to the NTP basis (v, ...,v,) (see Figure (3.3)). Actually, the
normalized B-basis has the optimal shape preserving properties among all NTP bases of %/ in the sense
that any parametric curve is going to imitate better the shape of its control polygon with respect to the
normalized B-basis than the shape of its control polygon with respect to any other NTP basis.

In order to illustrate these facts, we have implemented a Geogebra application representing the
control points of a polynomial parametric curve with respect to a four dimensional NTP polynomial
basis of degree 3 on [0, 1] (control polygon Py - - P3) and the control points with respect to the Bernstein
basis of degree 3 on [0, 1] (control polygon Qp---Q3), it can be found in this url https://ggbm.at/
ACWPzxKg. In the application the points can be moved and it can be easily observed that Q- - - O3 can be
obtained from a corner cutting starting with Fy - - - P3 and that for any choice of control points the curve
mimics the shape of its control polygon with respect to the normalized B-basis.

Figure 3.5: Corner cutting to obtain the control polygon Qg --- Q3 of y with respect to the normalized
B-basis.
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such as shape preservation or optimal shape preservation. A general class of important
rational bases can be obtained as a particular example of weighted ¢-transformed systems.
For these bases, evaluation and subdivision algorithms are presented. Some relevant
Keywords: applications are pointed out.

Normalized totally positive basis © 2020 Elsevier B.V. All rights reserved.
Normalized B-basis

Rational basis

de Casteljau algorithms

Subdivision algorithms

1. Introduction

Given an initial system of functions and a positive function ¢, weighted @-transformed systems provide a very general
procedure for generating new systems of functions useful for curve design. These systems include bases formed by Poisson
functions (see Morin and Goldman, 2000), by Bernstein basis functions of negative degree (see Goldman, 1999) and im-
portant rational bases (see Sir and Jiittler, 2015; Han et al., 2016) as well as systems belonging to spaces mixing algebraic,
trigonometric and hyperbolic polynomials, which are useful in many applications, for instance in Isogeometric Analysis (cf.
Manni et al.,, 2011). We prove in this paper that weighted ¢-transformed systems inherit from the initial system its nice
geometric properties and we provide algorithms for a general class of rational bases.

In CAGD shape preservation is a necessary requirement for the representation of information through graphs and images.
As explained in Section 2, shape preserving representations in computer-aided design are associated with normalized totally
positive (NTP) bases, because these bases guarantee that the curve imitates the geometric properties of its control polygon.
Among all NTP bases of a space, there exists a unique normalized B-basis, which is the basis with optimal shape preserving
properties (cf. Pefia, 1997; Carnicer and Pefia, 1994). The Bernstein bases and the B-spline bases are the normalized B-bases
of their corresponding generated spaces. We shall prove in Section 2 that the shape preserving properties associated to TP
bases and B-bases are inherited by the representations associated to their weighted ¢-transformed systems. In fact, the total
positivity and the property of being a B-basis are preserved. Bases formed by Poisson functions, Bernstein basis functions of
negative degree and rational bases can be considered as particular examples of weighted ¢-transformed systems. Therefore,
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using the results of Section 2, one can deduce that bases formed by Bernstein basis functions of negative degree are TP, that
bases formed by Poisson functions are B-bases and that rational systems obtained from B-bases are the normalized B-bases
of the generated spaces of rational functions and have optimal shape preserving properties. In particular, it can be deduced
that the Rational Bernstein basis and NURBS bases are NTP and the normalized B-bases of the corresponding spaces of
rational functions.

In Mainar and Pefia (1999), for a given space of functions that admits shape preserving representations a corner cutting
algorithm, called a B-algorithm, is proposed. B-algorithms are evaluation algorithms satisfying important properties such as
a subdivision property and convergence to the curve of the resulting control polygons. Supported by the results in Mainar
and Pefia (1999), in Section 3 evaluation and subdivision algorithms for a general class of rational bases are deduced.

In Sir and Jiittler (2015) nested spaces of rational polynomial functions of a given degree n and with a common denom-
inator are considered. The corresponding rational Bézier curves admit up to n! different de Casteljau-type algorithms. In
Section 4 we show that the results from Sir and Jiittler (2015) can be extended to spaces of non polynomial rational func-
tions deriving recurrence formulas for the weights and basis functions of these spaces. Curves generated by these weighted
@-transformed bases inherit geometric properties and algorithms of the traditional rational Bézier curves and so they can
be considered as modeling tools in CAD/CAM systems.

2. Weighted ¢-transformed systems and total positivity

Given a system (ug, ..., uy) of linearly independent functions defined on an interval ] CR and Pg,..., P, € R" we can
define a parametric curve as

y(©) =) Pu(t), tel.
i=0

The polygon Pg--- P, formed by the ordered sequence of points P; € R", i =0,...,n, is called the control polygon of y and
the points P;, i =0, ...,n, are named control points of y with respect to (uo, ..., Uup).

A matrix is totally positive (TP) if all its minors are nonnegative and strictly totally positive (STP) if all the minors are
positive (see Ando, 1987). A system of functions (ug, ..., u,) defined on the subset I C R is TP if all its collocation matrices

(uj-1 (ti))i,jzl

are TP. A TP system of functions on I is normalized (NTP) if Y1 ,u;(t) =1, for all t € I. NTP bases are commonly used in
computer-aided design due to their shape preserving properties (see Carnicer and Pefia, 1993; Pefia, 1997).

Among all NTP bases of a space, we can find a unique normalized B-basis, which is the optimal shape preserving basis
(cf. Carnicer and Pefia, 1994). For instance, the Bernstein bases and the B-spline bases are the normalized B-bases of their
corresponding spaces. The following characterization of a B-basis is a consequence of Corollary 3.10 and Proposition 3.11 of
Carnicer and Pefia (1994).

witht] < - <tpyqinl,

yeeesy

Theorem 1. Let (uo, ..., Uy) be a TP basis of a space U. Then (uo, ..., Uy) is a B-basis if and only if for any other TP basis (vo, ..., Vy)
of U the change of basis matrix K with (vo, ..., vy) = (Ug, ..., Uy)K is TP.

Let (ug,...,up) be a system of functions defined on I and do, ..., d, positive real values. From Lemma A.1 of Goldman
(1985) it can be proved that the system (dguo, ..., dyuy,) is TP if and only if (ug, ..., uy) is TP.

Now let us also consider a positive function ¢ : I — R. We say that (i, ..., Uy,) is a weighted @-transformed system from
(uo, ..., up) if

u;i(t) :=dip)u;(t), tel, i=0,...,n. (1)

The following result shows that a weighted ¢-transformed system also inherits from the initial system the properties of
being TP and being a B-basis.

Theorem 2. Let (uo, ..., Uy) be a system of functions defined on I and let (iig, ..., i) be the weighted ¢-transformed system given
by (1).

i) If (uo, ..., up) is TP, then (Uy, ..., Uy,) is TP.

ii) If (uq, ..., up) is a B-basis, then (i, ..., Uy) is a B-basis.
Proof. i) Let us suppose that (ug, ..., uy) is TP on I. Given t < --- < tp41 in I, the corresponding collocation matrix satisfies

(Uj—1(ti)1<i, j<nt1 = diag (do, ..., dn) (W j—1(t)1<i j<nt1diag (@(t1), ..., @(tns1)) .
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and is TP since it is the product of TP matrices (cf. Theorem 3.1 of Ando, 1987). So, (g, ..., Uy) is TP.

ii) Let us now assume that (ug, ..., uy) is a B-basis of I/. Let (Vo,...,V,) be any TP basis of the space U generated by
(o, ..., Up) and K € RO+Dx@+D) the change of basis matrix such that
Vo, ..., V) = (o, ..., Up)K. (2)
Let us now see that the system (vg,..., v;) defined by
1 -
vi(t) ;== —vi(t), tel, i=0,...,n, 3
i(t) dip® i(t) (3)

is a TP basis of U{. Clearly,
(vo(t), ..., va(®)) = (Vo(b),..., Va(®))D1(t), tel, (4)
1
where D1 (t) := mD_l and D :=diag(do, ...,dy). By (2) and (4),

(Vo(t), ..., va(t)) = (Uo(t), ..., Un(t)KD1(t), tel.

On the other hand, observe that
(ﬁo(t)a9aﬂ(t))=(u0(’:)ﬂ’un(t))Dz(t)7 t€I7 (5)
where D;(t) := De(t). Taking into account that Dz(t)f(Dl (t)=DKD™! for all t € I, we have

(Vo,...,vp) = (Ug, ..., un)K, K:=DKD7', (6)

and we can conclude that (vog, ..., vp) is a basis of U{. Observe that, by (3), the collocation matrix (v_1(t;))1<i, j<n+1 Satisfies

(vj—1(t))1<i, j<nt+1 = diag ( ) (Vj—1(t))1<i.j<n41D !

@t o(ta1)
and it is TP since it is the product of TP matrices. This proves that (vq, ..., v;) is a TP basis of /. By Theorem 1, the matrix
K such that

(vo,...,vp) = (ug,...,upK (7)

is TP. Finally, by (6), K = D~'KD and it is a TP matrix because K is the product of TP matrices. Then the result follows
from (2) and Theorem 1. O

Let us now consider a first interesting example. Recall that the Poisson basis functions

k
by (t) := k—'e_t, te[0,00), keN,

are the limit as n tends to infinity of the Bernstein basis of degree n over the interval [0, n], that is,

: n n AW n—k
bi(®) = lim B} (t/n). Bk(t)=(k>t a-0"* tejo, 1],

and they also play a useful role in CAGD (cf. Morin and Goldman, 2000). For a given n € N, the system (bo, ..., by) of
Poisson basis functions can be considered as a weighted ¢-transformed system from the monomial basis (1,¢t,...,t") with
p@t)=e"tand d; =1/i!, i=0,...,n. Then, using Theorem 2 and the well known fact that the monomial basis is TP and a
B-basis on [0, 00) (see Section 6 of Carnicer and Pefia, 1993 and Carnicer and Pefia, 1994), we deduce from Theorem 2 that
(bg, ...,by) is TP on [0, co) and also a B-basis.

Poisson curves are analytic functions represented by infinite series, F(t) = > ;.o Pkbk(t), 0 <t < R, such that this series
converges for 0 <t < R. The Poisson basis functions are positive on (0, 00) and form a partition of the unity. Therefore
Poisson curves are affinely invariant and lie in the convex hull of their control points (see Morin and Goldman, 2000).

Bernstein bases of negative degree are also interesting cases to which we can apply Theorem 2. For n € N, the Bernstein
basis functions of degree —n are defined by

Bﬂﬁrz(?ﬁﬁm—nﬂ*,

(ﬂ)szGﬂ—U“+ﬂ—k+U:04%C+k—5’kzalm. (8)

k k! k
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From (8), one can easily check that the Bernstein basis functions of negative degree are non-negative over the interval
(—o00, 0]. Furthermore, they are linearly independent and form a partition of unity (cf. Goldman, 1999).

Let us observe that (B;”,Br;’il,...,Ba ™ can be considered as a weighted @-transformed system from the basis
(1, —D/t,...,(t —1)/D™) with @) = (=)™ — )™ and d; = (”‘;t”,;"‘), k=0,...,m. Taking into account that

the monomial basis is TP on the interval [0, co) and the fact that (t — 1)/t, t € (—o0, 0), takes increasing positive values, we
can deduce that (1, (t — 1)/t,..., ((t — 1)/t)™) is TP on (—o0, 0). Consequently, using Theorem 2 (i), we conclude that the
system of Bernstein basis functions of negative degree (B;,",B,",,..., Ba”) is also TP on its natural domain. As a special
case of Theorem 2, Appendix A of Goldman (1999) proves the Descartes’ Law of Signs for the Bernstein bases of negative
degree which implies the variation diminishing property of the generated curves and agrees with the total positivity of the
basis mentioned above. Standard recurrence relations and two term formulas for differentiation and degree elevation are
also deduced in Goldman (1999).

Since any finite sequence of Bernstein basis functions of negative degree and any finite sequence of Poisson basis func-
tions are TP, the same property can be derived for the infinite sequence of Bernstein basis functions of negative degree
and the infinite sequence of Poisson basis functions on their natural domain. In this last case, since any finite sequence
of Poisson basis functions is also a B-basis, a similar property can be expected for the infinite sequence of Poisson basis
functions.

Recall that given a system (ug, ..., uy) of functions defined on I and positive values wy, ..., w, such that ZZZO Wl (t)

#0, for all t € I, the system (rg, ..., ) defined by

() = e i =0.....n
1 D — N 9 - 9 AR ] 9
> k—o WUk (t)
satisfies Z?:o ri(t) =1, Vt € I, and generates a new space of rational functions. If (ug, ..., u,) is TP then ZZ:O wyiug(t) >0,
Vtel, and (rg,...,T;) can be considered as a particular weighted ¢-transformed system with
® ! tel (9)
o) = ———, el
> ko Wk (t)
Now observe that, by Theorem 2, (rg, ..., ;) is NTP. Furthermore, if (uo, ..., uy) is a B-basis, we can also use Theorem 2 to
deduce that (rg, ..., r,) is the normalized B-basis of the generated space. Although this fact has been mentioned in Mainar

and Pefia (1999), to the best of our knowledge, no proof of this result has been provided in the literature. Rational Bernstein
basis are NTP basis (see Delgado and Pefia, 2013). From Theorem 2 the optimal shape preserving properties of these rational
polynomial systems can be also guaranteed. Similarly, using Theorem 2, one can also deduce that NURBS bases are NTP and
are the normalized B-bases of the corresponding spaces of rational spline functions.

3. A general class of rational bases

Suppose that I CR and f, g:I — R are nonnegative continuous functions. Define the system

ug, ..., up, up(t):= (Z)fk(t)g”k(t), tel, k=0,...,n. (10)

Spaces generated by the system (10) and the associated de Casteljau-type evaluation algorithms are discussed in Disibuyuk
and Goldman (2015) and Gonsor and Neamtu (1994).

The following result corresponds to Proposition 19 of Mainar and Pefia (1999) and provides the conditions characterizing
the system defined in (10) as a B-basis of its generated space.

Proposition 3. The system given in (10) is a B-basis if and only if the function f /g defined on Io := {t € I | g(t) # 0} is increasing and
satisfies

t t
inf{&uelo}:O, sup{m|telo}=+oo. (11)
&) g
For any positive weights wf, i=0,...,n, let us denote by (g, ..., o) the rational bases such that
n
pr() = w! ul(®), i=0,....n, "O)=) wluf®. (12)

@™ (D) i=0

This system spans the space of rational functions with denominator " (t),
R":=span{p]'(t) |1 =0,...,n} ={ut)/o"(t) | u(t) e U"} (13)

where U" is the space generated by the basis (10). Using Proposition 3 and Theorem 2 we deduce the following result.
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Corollary 4. The system of functions given in (12) is the normalized B-basis of the space R" in (13) if and only if the function f/g
defined on Iy := {t € I | g(t) # 0} is increasing and satisfies (11).

Consequently, if the functions f and g satisfy conditions (11), the rational systems (12) are shape preserving.
Given I =[a,b] and f, g: 1 — R satisfying conditions (11), let us consider the system (ug, ...,uy) defined in (10) and
its generated space /. For any tg € (a, b], such that f(to) > 0, define I’ := [a, to] and the system (iif, ..., u};) given by

un(t) = (?)?i(t)gn_i(t), tel, i=0,...,n, (14)
where
~ f@® ;o o~ f(to)g(t) — g(to) f(t) /
ty:=——, tel, t) := , tel.
JO=TFgy ' 80 f(to) -

In Mainar and Pefia (1999) it is shown that the system (14) is a B-basis of the space /|, formed by the restrictions to I’ of
the functions of Z/. On the other hand, the matrix L such that

(ug@®), ..., up®) :== (Ug®), ..., MH@O) L, tel, (15)

is nonsingular, lower triangular and TP.
Now let us consider positive weights w?, i=0,...,n. By (15) we can write

Wh(e), ..., ul©®) (wWh, ..., wh) = @@,.... 1)) L(w),...,wh)", tel. (16)
Taking into account (16), it can be deduced that the weights Vv? i=0,...,n, obtained by

W WD =L (Wi, W) (17)
satisfy

n n
") =Y wiuf @)=Y Wi, tel. (18)
i=0 i=0

Then, by Theorem 2, we can deduce that the system (5, ..., o) defined by

pr(t) :==w! ul(t), tel, i=0,...,n, (19)

"(£)

is the normalized B-basis of the space R"|; formed by the restrictions to I’ of the functions of the rational space R" in

(13). Clearly, by defining the diagonal matrices D := diag{wy{, ..., wy} and D:= diag{wg, ..., Wy}, we have
(g (t) 1 () = ;(un(t) up(t))D = ! (g () iy (t))LD
po ,...,pn _wn(t) 0 s ey Up _wn(t) 0 seeey Uy
1 - ~~ ~
= 50 @), ..., u%¢)DD'LD = (PR(t), ..., pr(®)DLD, tel.
w

Therefore, L := D~1LD is the change of basis matrix such that

PR, ... pR(E)) == (PR(O),.... PRI, tel.

In Mainar and Pefia (1999) a de Casteljau-like algorithm (called a B-algorithm) providing exact evaluation and subdivision

for parametric curves y(t) ==Y 1, Piul(t), t € I is proposed. Now, exploiting the results in Mainar and Pefia (1999) and

using the factorization of the matrix L in terms of bidiagonal matrices, we can obtain a bidiagonal factorization of the

change of basis matrix T and derive this kind of algorithm for the evaluation and subdivision of the rational curve p(t) :=
?:o Pi,ol?1 (t), t € I. The computed points po, P}, ..., Py satisfy

n
p(t) =Y Pipf1). tel,
i=0

and, in particular, P} = p(to).
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Algorithm 1: Evaluation and left subdivision algorithm.

for j:=0ton
0.__ 0 0._p.
dj =wi, Pj :=P;
for i:=0to n—1
for j:=0toi
i+1._ pi
Pj = P].
for j:=i+1ton
dj! —g<ro>d, 1+ fto)d;

P —g(to)dm P 1+f(to)d,+1 j

Observe that if (Wgug, ..., wpup) is normalized then w"(t) =1 and the algorithm reduces to the Algorithm 5.1 in Mainar
and Pefia (1999) for the evaluation of non rational curves defined in terms of a normalized B-basis.

Similarly, we can consider tg € [a, b) and I” = [tg, b]. If g(tg) > O, then the system (g, ...

Ui (t) :=< )f(t)A" ity, tel”, i=0,...,n,

where

’f(t) — g(tO)f(t) - f(tO)g(t) . te I”,
g(to)

A t
g() = & tel”,

g(to)

is a B-basis of U/|;». Let U be the nonsingular, upper triangular, TP matrix such that (ug(t), ...

for all t € I”. Using the previous reasoning, we can deduce that
" (t) = Z wiu(t) = Z Wi (t)
where the weights w?, i=0,...,n, satisfy

W WD = U (wh, . W)

Therefore, by Theorem 2, the system (/5 ..., o5) defined by

prt) :==w! ul), tel”, i=0,...,n,

"(£)

up(t)) ==

,Up) given by

@, ....

(21)

) U

(22)

(23)

(24)

is the normalized B-basis of the space R"|;». Supported by the results in Mainar and Pefla (1999), we can deduce the
following algorithm for the evaluation and right subdivision of the rational curve p(t) =i Pipl'(t), t € I.

Algorithm 2: Evaluation and Right subdivision algorithm.

for j:=0ton
0._ 0 0._p.
d]. =wh, P]. = P;j
fori:=0ton-1
for j:=0ton—i—1
4= g(to)d + f(to)d’
d. .
Pi= g(to)dlil Pl + f(to) iy Pl
J
for j:=n—iton
i+1._ pi
Pj = P].

In order to illustrate the results of this section, let us first consider an interesting basis of rational polynomial functions.
The Lupas g-analogues of the Bernstein functions of degree n (cf. Han et al.,, 2016) are the rational Bernstein functions

p i (t)
Wq(t)

i () = WA= 0" w0 =) i@ =[] —t+¢"D)

i=0 j=1

pi' () =

(25)
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0
0 to 1

Fig. 1. Weighted Lupas g-analogues of the Bernstein functions of degree 3 of R"|;y and R"|;» withd;=1,i=0,1,2,3,g=3 and tp =1/3.

Fig. 2. de Casteljau-like algorithm to subdivide the rational curves of Lupas g-analogues of the Bernstein functions at top = 1/4 of degree 3 with q = 3. Top:
Weights d; =[1, 1, 1, 1]. Left bottom: Weigths d; =[5, 1, 1, 1]. Right bottom: Weights d; =[1,1, 1, 5].

where w! :=[1]q'~"/2 and the g-binomial coefficient [;], for integers 0 <k <n, is defined by

n n [nn—1]---[n—k+1] [n]!
=1, = = , > 0’
0 k [k]! [k1'[n — k]!
with
Kk —11---[11, k>1 1-q%/0 - 1
k]! = (kllk —11---[1], k=1, (] = 1-q/A—-q), q#1,
1, k=0. k, qg=1.
Now, by considering positive weights do, ...,d,, we can define the weighted Lupas g-analogue of Bernstein functions of
degree n as
1
Nt o) o . ) -
ri(t;q) = dlwn—(t)a"sl(t)’ i=0,...,n, (26)

where "(t) := Y ¢ _o dtn k(t).

Using Proposition 3 and Theorem 2 we can deduce that the basis (26) is the normalized B-basis of its generated space
R™ of rational polynomials defined on [0, 1]. Given tg € (0, 1), using (19) and (24) we can obtain the bases of the normalized
B-basis of R"|; and R"|;~. Fig. 1 shows these bases for n = 3.

In Fig. 2 we illustrate an example of the de Casteljau-like algorithm to subdivide the rational parametric curves y (t) :=
Z?:o Pir,'.‘ (t;q) at a given parameter tg € (0, 1). We can also observe the effect of the weights, do, ..., d,, in the shape of
corresponding curves.

Trigonometric and hyperbolic curves are attracting a lot of interest, since they provide the opportunity to construct
catenaries, conics, cylinders and surfaces of revolution. In Rt (2015), by means of the normalized B-basis of the spaces
(1, cost, sint, ..., cosmt, sinmt) and (1, cosht, sinht, ..., coshmt, sinhmt), rational bases are generated. The applicability of
the proposed construction is illustrated by the exact control point based representation of rational trigonometric or hyper-
bolic curves and multivariate surfaces.
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P

0
Pl

0
P-l
1+t

Fig. 3. de Casteljau-like algorithm to subdivide the rational trigonometric curves at to = 1/5, f(t) := sin(3%), g(t) := sin(%) and wh =
[15,5,5,5,15,5,15].

Fig. 4. de Casteljau-like algorithm to subdivide the rational hyperbolic curves at to = 1/5 with f(¢t) := sinh (%) and g(t) := sinh (13). Left: Weights

wi =[5,1,1,1,1], Rigth: Weights w} =[1,1,1,1,5].

1-t

In Fig. 3 we illustrate an example of the de Casteljau-like algorithm to subdivide the rational trigonometric curves
Yy =Y 1, Pipj(t) at a given parameter to € (—A, A), 0 < A < /2 by considering

f(t) :=sin (%) , g(t):=sin (%) , tel=[-A,A]l

Finally, in Fig. 4 we illustrate an example of the de Casteljau-like algorithm to subdivide the rational hyperbolic curves
y() = Z?:o Pipj(t) at a given parameter tg € (—A, A), 0 < A, by considering

A+t A—t
f(t) = sinh <T+> g(t) :=sinh (T) tel=[-A,Al (27)
We can also observe the effect of the weights, wg, ..., wp, in the shape of corresponding curves.
4. A particular class of rational bases satisfying recurrence relations

Suppose that [ =[a,b] and f,g:I — R are nonnegative continuous functions. Following the approach of Sir and Jiittler
(2015), let us now consider an infinite sequence of linear factors

Li(t) :=aig(®) +bif(t), i€Zy, (28)
defined by positive coefficients a; and b;, (a;, b;) # (0, 0). For any positive integer n, let us also define
" (t) ;=L (t) - Ln (D). (29)

It can be checked that the function @w" has a unique representation in terms of the basis (10),
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n n . . .
w"(t)zgw?u?(t), ul(t) := <i>f'(t)g” t), i=0,...,n,

where

w?:% > TT«]]w |- (30)

i KUL={1,...,n} keK lelL

[K|=(n—i),|L|=i
Clearly, the positivity of the coefficients a; and b; guarantees the positivity of @}, i=0,...,n, and @"(t), Vt € I.
Consider the rational basis (o, ..., oy) defined in (12) and let R" be the generated space of rational functions. In this
section we shall see that, for this particular choice of the weights w, the rational bases (o.....0;) and (0g., ..., 05)

defined in (19) and (24) satisfy recurrence relations defining de Casteljau-type evaluation and degree elevation algorithms.
First, let us prove that the weights Vv? of (17) can be obtained recursively.

Proposition 5. For a given n € N, the weights ﬁ/? given in (17) satisfy

~ n—i.._ (PO .
Wi =ap,—— W/ 1-|—L,1(to)—w'l7_11, i=0,...,n, (31)
n n

with W := 1 and Ly (t) = a,g(t) + by f (©).

Proof. Observe that, by (29), o"(t) = ™1 (t)L,(t). Then, taking into account (18), we deduce that

" (t) = (Z Wi 1(t>> Ln(t). (32)

We can easily derive that

Ln(t) =ang(t) + La(to) f (t), (33)
therefore
n n—1 n—1
YW =an Yy W OZO) + La(to) Y Wi E O F . (34)
i= i=0 i=0
n—1 . n—1 .
: _ , 1
Taking into account that ( : ) =" and ( o ) - , We can write
() n (i+1) n
n—1 n—i i
Zw"u”(t) = ) —— W) + Lalto) Z L, o
i=0
L
=ap ) —— W) + Lalto) Z Lin-1ign o).
i=0
Finally, by comparing the coefficients with respect the basis (uf, ..., 1), the result follows. O

Similarly, taking into account (29), (22) and the equality Ly, (t) = L, (to)g(t) + bnT(t) we can obtain a recurrence formula
satisfied by the weights W! given in (23).

Proposition 6. For a given n € N, the weights W? given in (23) satisfy the recurrence formula
- i_n .
—Ln(tg)— 1 b—wiTl, i=0,...,n, (35)
n

with WQ := 1 and Ly (t) = ang(t) + bn f (0).



10 E. Mainar et al. / Computer Aided Geometric Design 81 (2020) 101900
The following recurrence relation proves the nested nature of the spaces R"| .

Proposition 7. The system (0, ..., P ) defined in (19) satisfies

n+1—i wh i+1 Wl
PO =t — = N,,‘H PO + Lnato) ——~ T prH o). (36)
H—]

Proof. The following equalities can easily be checked from (14), (19) and (29)

~ ~ ~ ~n+1
T = PO, B O =771 = 0 (0.
Tl n+1(t) w; i+1 Lpt1 () w;

Then we can write

B(t) n+1—i W oMt
pt1——— =4a , 37
Mo T VNV?H R0 (37)
and
~ ~ 1
Fo) i+1 WP O
L t t . 38
n+1(0)Ln+ O = Ln41( 0) 1 ~n:]1 70 (38)

Taking into account that L1 (t) = ap18(t) + Lngq (to)?(t) and the addition of (37) and (38), we can deduce that

DS et o PR WL AL
M T w;?“ o 0n+1~7:11 FAG

and the result follows. O

Using similar reasoning and taking into account that L, 1(t) = Lyyq(to)E(t) + bn+1f(t), we can prove the following
recurrence relations satisfied by the bases (24) of R"|;» and consequently the nested nature of these spaces.

Proposition 8. The system (py, ..., pi) defined in (24) satisfies

n+1—i wl i+1 w!
IO = Lui ()=~ wn-'H PINE) + g1 —— i1 Pl . (39)
z+]

The following result proves recurrence relations satisfied by the functions of the system (,58 e, ,?5,’11) given in (19).

Proposition 9. The system (,0 s pn) given in (19) satisfies
O (. FO o
PO =an ] (>+Ln(o)L 0P ), i=0,....n. (40)

Proof. Taking into account (32) and (33), we have

_ n—1
ZVV uy (t)—an2~" TN OZO + La(to) Y WiTTTN O F ()
i=0 i=0
—anZ” - ’<t>g<t>+Ln<ro>Z SEoFo. (41)

i=1
Let us observe that the terms containing u!~ 1(t)fg’(t) or Ut~ 1(t) f(t) are both multiples of uf'(t),
—1 1
(") (i)
n
(7) (7)

N Og@©) = e, Tlofo= ut (o).
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Then, by comparing the terms in both sides in the expansion (41) with respect to the basis Uf(t), ..., u(t), we can write
- o _ gow o Pl )7(t>Vv? T (5
for) T LT Y La®ah (o)

and the result follows. O

Observe that the weights wi of (30) and the functions of the system (,03 ey ,0,2’) can be obtained recursively by consid-
ering in (31), (36) and (40) to = b. Moreover, for the particular choice f(t) =t, g(t) =1 —t and tp =1 we obtain formula
(5) in Proposition 2, formula (11) in Proposition 4 and formula (8) in Proposition 3 of Sir and Jiittler (2015).

Consider the parametric curve

n
P(t):=Y_ Pipf(t). telatol. (42)
i=0
where (pg, ..., pp) is the system defined in (19) and Py, ..., P, are control points. Define the following algorithm.

Algorithm 3: de Casteljau-type algorithm for evaluation.

fori:=0ton
PY:= P

for j:=1ton
fori:=0ton—j

j 1
Pl :=a; 0P/ (t)—{—Lj(to)Lf((?)P] NG)

Proposition 10. The points defined in Algorithm 3 satisfy

‘ j .
Pl(©):= ) PikPy(t), tela,to). (43)
k=0

In particular we have Pg ) =Y.

Proof. Let us prove (43) by induction on j. For j =0, if i =0, by convention pg(t) =1, and we can deduce that

0

Y " Popg(t) = Po- 1= Pg=PR(t).
k=0

Now suppose that Pij 71(t) satisfy (43). Then, by Algorithm 3, we can deduce that

g() fo

Pl(t) = a; Lj(t pl!
O =07 P o+ (o) - P ©
j—1 j—1
g( ) ~j—1 f( ) ~j—1

Y0 D Pk (O | +Ljlto) © Y Pikify  (©

k=0 k=0

j
g() ~j—1 f( ) ~j-1
= P; a; t Li(t t)].
; 1+k( Lok OFLCEERLO
Then the result follows from (40). O
Observe that permutation of all the linear factors L1, ..., L, defines n! different de Casteljau-type algorithms for evalua-

tion of these parametric rational curves (see Figs. 6 and 8).
Following a similar line of reasoning, the following recurrence for the functions of (ﬁg@;‘) given in (24) can also

be proved. These recurrence relations provide evaluation algorithms for parametric rational curves given in terms of these
bases.
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=N

Fig. 5. Algorithm of evaluation and subdivision for curves of the Lupas g-analogues of the Bernstein functions for ¢ =3 and to =1/2.
Fig. 6. Six different de Casteljau-type algorithms for the Lupas g-analogues of the Bernstein functions of the restrictions to [0, 1/2] for ¢ = 3.

oy

Fig. 7. Algorithm for evaluation and subdivision for hyperbolic curves with f(t) := smh % g() = smh Tt to =1/2 and the weights w] given from

(30) with a=[5,3,1] and b =[1, 4, 5].

Aan

Proposition 11. The system (0}, ..., pr) given in (24) satisfies

HO P [iG
Lol OThiE

oo, i=0,....n (44)

ﬁ{l(t) =1Ly

Fig. 5 illustrates the algorithms for evaluation and subdivision for curves of the Lupas g-analogues of the Bernstein
functions defined in (25). Fig. 6 shows the six different de Casteljau-type algorithms for the Lupas g-analogues of the
Bernstein functions of the restrictions to I’ defined in (14) obtained from Algorithm 3 of de Casteljau-type.

Fig. 7 illustrates the algorithm for evaluation and subdivision for hyperbolic curves. Fig. 8 shows the six different de
Casteljau-type algorithms for hyperbolic functions of the restrictions to I’.



E. Mainar et al. / Computer Aided Geometric Design 81 (2020) 101900 13

Fig. 8. Six different de Casteljau-type algorithms for hyperbolic functions of the restrictions to [—1, 1/2] with f(t) :=sinh (%), g(t) :=sinh (%) Li(t) =
5g(t) + f(t), La(t) =3g(t) +4f(t) and L3(t) = g(t) +5f(0).
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1 | INTRODUCTION

In this article, we present a very general procedure for generating, from an initial system and a positive function ¢, new
systems of functions useful for many applications. These systems, which we call weighted ¢-transformed systems, arise
with relevant probability distributions. They also include important rational bases!? as well as systems belonging to spaces
mixing algebraic, trigonometric, and hyperbolic polynomials, which are useful in many applications of Approximation
Theory and Computer Aided Geometric Design (CAGD). The weighted ¢-transformed systems inherit from the initial
system its accuracy when computing with its collocation matrices.

The accurate computation with structured classes of matrices is an important issue in Numerical Linear Algebra and it
is receiving increasing attention in the recent years (cf. References 3-5). For this purpose, a parametrization adapted to the
structure of the considered matrices is needed. Let us recall that an algorithm can be performed with high relative accuracy
(HRA) if it does not include subtractions (except of the initial data), that is, if it only includes products, divisions, sums of
numbers of the same sign, and subtractions of the initial data (cf. Reference 6). Performing an algorithm with HRA is a
very desirable goal because it implies that the relative errors of the computations are of the order of the machine precision,
independently of the size of the condition number of the considered problem. Let us recall that a totally positive (TP)
matrix has all its minors nonnegative. TP matrices arise in many applications (cf. Reference 7). It is known that, for some
subclasses of TP matrices, many algebraic computations can be performed with HRA. For instance, the computation of
their eigenvalues, singular values, or the solutions of linear systems Ax = b such that the components of b have alternating
signs (see Reference 8 and the references therein). The key tool for this purpose is provided by the algorithms of References
6 and 9 jointly with the use of a bidiagonal factorization of a nonsingular TP matrix, which can be obtained with HRA for
some of those matrices. Up to now, this has been achieved with some relevant subclasses of TP matrices with applications

Numer Linear Algebra Appl. 2020;27:€2295. wileyonlinelibrary.com/journal/nla © 2020 John Wiley & Sons, Ltd. 1of16
https://doi.org/10.1002/nla.2295
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to CAGD (cf. References 4,10-12), to Finance (cf. Reference 13), or to Combinatorics (cf. Reference 5). In the case of
CAGD, the importance of TP matrices comes from the fact that the normalized systems whose collocation matrices are
TP provide shape-preserving representations.!*!> In Reference 12, we presented many important bases used in CAGD
whose collocation matrices admit many computations with HRA.

In Section 3, we extend the analysis of Reference 12 to the more general framework of this article and assure that
the algebraic computations mentioned above can be performed with HRA for the collocation matrices of weighted
@-transformed systems, assuming that the bidiagonal factorization of the corresponding collocation matrix of the ini-
tial system can be obtained with HRA and that the evaluation of ¢ does not requires subtractions up to initial data. Our
numerical examples will illustrate that the solution of linear systems and the computation of eigenvalues and singular
values can be solved accurately even when the above conditions do not hold. In particular, our results can be applied to
perform interpolation with high precision.

The layout of the article is as follows. Section 2 includes matrix notations and basic concepts. We recall the Neville
elimination procedure, which allows us to introduce the bidiagonal factorization of a strictly TP matrix. Section 3 intro-
duces the weighted @-transformed systems and includes the results guaranteeing their nice computational properties. The
bidiagonal factorization of the collocation matrices of the weighted ¢-transformed systems is obtained. Section 4 includes
many examples of weighted g-transformed systems related to probabilistic distributions. Section 5 shows a class of ratio-
nal spaces that can be generated by weighted ¢-transformed systems. Curves generated by these weighted ¢-transformed
systems inherit geometric properties and algorithms of the traditional rational Bézier curves and so they can be con-
sidered as modeling tools in CAD/CAM systems. Finally, Section 6 includes numerical examples showing the accurate
computation of eigenvalues and singular values and accurate solutions of linear systems associated with the collocation
matrices of weighted ¢-transformed systems.

2 | BASICNOTATIONS AND AUXILIARY RESULTS

A matrix is totally positive (TP) if all its minors are nonnegative and strictly totally positive (STP) if they are positive.’

Let us now recall some basic matrix notations and results on Neville elimination. Our notation follows the notation
used in References 16 and 17. Given n € N and k € {1, ...,n}, let Q,, be the set of increasing sequences of k positive
integers less than or equal to n. If a, § € Qy,, we denote by A[a|f] the k X k submatrix of A containing rows of places
a and columns of places f. Neville elimination'®'7 is a procedure to make zeros in a column of a matrix by adding to a
given row an appropriate multiple of the previous one. For a given nonsingular matrix A = (a;j)1<ij<n, this elimination
procedure consists of at most n — 1 successive major steps, resulting in the sequence of matrices:

AD =2 A S5 A 5.5 AW .

Forl<k<n-1,A%D = (agﬂ))lsi j<n is obtained from AW = (a;’;))lg j<n by defining

aﬁ:l) =0, i=k+1,...,n,
’ )
ety . _ () _ %k (k) o (k) ..
a;  i=a; a‘,f’lkai—lJ if Gy #0, k+1<i,j<n,

so thatAka) has zeros below its main diagonal in the k first columns. Finally, U is an upper triangular matrix. The element
Dij := agi), is called the (i, j) pivot of the Neville elimination of A for 1 < j < i < n. The pivots p; ; are called diagonal pivots.
The Neville elimination can be performed without row exchanges if all the pivots are nonzero and, in this case, lemma 2.6

of Reference 16 implies that p;; = a;;, for 1 <i < n, and

det Ali—j+1,...,il1,...,j]

= , 1<j<i<n. 1
Py Gt Ali—j+ L, i 1L .. -1] J W
Furthermore, the (i, j) multiplier of the Neville elimination of A is
agf Pij
mpj 1= —— = , 1S]<l§l’l (2)
a¥ Di-1;

-1,
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Neville elimination has been used to characterize TP and STP matrices.!®!” From theorem 4.1 of Reference 16 and
p. 116 of Reference 17 (see also theorem 2.1 of Reference 18), a given matrix A is STP if and only if the Neville elimination
of A and AT can be performed without row exchanges, all the multipliers of the Neville elimination of A and AT are
positive, and all the diagonal pivots of the Neville elimination of A are positive.

Bidiagonal factorizations have played a crucial role to derive for TP matrices algorithms with HRA (cf. Reference 6).
According to the arguments of p. 116 of Reference 17, an STP matrix A € R"D*"+D can be factorized in the form

A =FyF,_1...FiDG; ... Gy_1Gy, 3)
where F; and G; are the lower and upper triangular bidiagonal matrices
1 1

1
M1y 1

1
T — N 4
i Miz11 1 ’ @)

My t1,n+1-i 1 Mpyt1,n+1-i 1

and D = diag (plyl, ey pn+1,n+1). The entries m;; and #;; are the multipliers of the Neville elimination of A and AT,
respectively, and the diagonal entries p;; are the diagonal pivots of the Neville elimination of A.

3 | WEIGHTED ¢-TRANSFORMED SYSTEMS

Let us first introduce a key concept of this article. Let (u,...,u,) be a system of functions defined on I = [a, b],
@ : [a,b] - R a positive function, and dy, ... , d, positive real values. The corresponding weighted ¢-transformed system
from (uo, ..., u,) is the system (i, ... , ii,) of functions defined by

i;(t) :=diptu(t), tela,b], i=0,...,n. (5)

Let us suppose that (uo, ..., uy) is a system of functions defined onI = [a,b] anda < t; < - - - < t,41 < b is a sequence
of nodes such that the corresponding collocation matrix

A= (uf—l(ti)>1siJ$n+1 (6)
is STP. Let
A =FnFn_1' . 'FlDGl ~~~Gn—1Gn (7)

be the bidiagonal factorization (3) such that F; and G; are the lower and upper triangular bidiagonal matrices of the form
(4) and D is a diagonal matrix.

The following result proves that the collocation matrix of the corresponding weighted ¢-transformed system
(ftg, ... ,0y)atnodesa <t; < --- <ty <b

A= (aj_l(ti)>1§iJ§n+1 = (dj—l(p(ti)uj—l([i))1gijgn+1 ®)

is also STP and obtains its bidiagonal factorization (3) from the factorization (7) of the collocation matrix A given in
Equation (6).

Theorem 1. The collocation matrix (8) is STP and it can be factorized as

A=ann_1"'F1DG1 ...Gn_lGn, (9)

where F; and G; are the lower and upper bidiagonal matrices of the form
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1 1
~ 1 - 1
F= , 6T = . 10
! Fiv1n 1 t Fiz11 1 ( )
Fnt1n+1—i 1 ?n+1,n+1—i 1
and D = diag (q11, ..., qn+1,n41)- The entries ryj, iy, and q;; are given by
() . di-1 ..
rij=——myj, Fj=—-—my, 1<j<iin+l,
Yo Y diy Y
qii =disi@t)pi;, 1<i<n+1, (11)

where m;j, My, and p;; are the entries of the matrices of the bidiagonal factorization (7) of the collocation matrix A defined
in Equation (6).

Proof. Observe that
A = diag (@(t1), ..., p(tns1)) A diag (dy, ..., dy).

Hence, taking into account the positivity of ¢ and the coefficients d, ..., d,, we deduce that diag (¢(;), ..., @(tn+1)) and
diag (do, ... ,dy) are nonsingular and TP matrices. Since A is STP and, by theorem 3.1 of Reference 7, the product of STP
matrices by a nonsingular TP matrix is a STP matrix, we conclude that A is STP. In order to compute the pivots and
the multipliers of the Neville elimination of A, we need to obtain its minors with j initial consecutive columns and j
consecutive rows starting with row i —j + 1.

Let1 <j<i<n+1. Foranyl <k <}j, each entry of the kth row of the matrix A[i —j+1,...,il1,...,j] has as com-
mon factor ¢(f;_j+«) and each entry of the kth column of the matrix Ali — j+1,...,i]1,...,j] has as common factor di_;.
Therefore we can write

Ali—j+1,...,ill,....Jl=D1A[i—j+1,....i[1, ... .jID,,
where D; := diag ((p(ti_jH), ,(p(ti)) and D, := diag (do, ,dj_l). Using properties of determinants, we can write
~ J
det Ali—j+1,....i[1,....j1 = [] (decro(tijsn)) det Ali—j+1,...,i[1,....jl.
k=1

Let us denote by p;; the pivot obtained in the Neville elimination procedure of A. Taking into account the previous formula
and Equation (1), we deduce that

o det Ali—j+1,...,0[1,....]]
Cdet Ali—j+1,...,i—11,...,j—1]

Dij = dji_19(8)Pijs (12)

where p,; ; is the pivot obtained in the Neville elimination procedure of the matrix A. Observe that, for the particular case
i = j, we have

qii = diip(t)piis 1<i<n+1.
Finally, from formulas (12) and (2),

_ Dij _ dji_19(t)pij _ o)
Dicy  diae(i-)picyy @)

Fij mj, 1<j<i<n+l

Analogously, for any 1 < k < j, each entry of the kth row of AT has as common factor dy_; and each entry of the kth
column of the matrix AT has as common factor ¢(t). Then
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ATli—j+1,...,i1,...,j1=D1AT[i—j+1,....i|1,...,j1Ds,

where D; 1= diag (di_j, e, dl-_l) and D, := diag ((p(tl), e (p(tj)). Using properties of determinants, we can write

J
det AT[i—j+1,....i[1,....j1 = [ diko(t) det ATli—j+1,....i[1,....j].
k=1

Taking into account the previous formula, (1), and (2) we deduce that

det AT[i—j+1,....i1,....j]
det AT[i—j+1,...,i—11,...,j—1]

= di10(t))pij.
Finally, taking into account Equation (2), we conclude

o _diig o
riJ=dl__2ml'J’ 1<j<i<n+1.
i

We say that a system of functions (uo, ... , u,) defined on I = [a, b] is TP (respectively, STP) if all its collocation matrices
(6) in I are TP (respectively, STP). As a consequence of the previous result, we have that weighted ¢-transformed systems
inherit the property of being STP, as stated in the following result.

Corollary 1. Let (uy, ..., uy) be a STP system of functions defined on I = [a, b]. Then any weighted @-transformed system
(@i, ..., ity) given by Equation (5) is STP.

Remark 1. Observe that, if the evaluation of ¢ can be performed by arithmetic operations and it does not require sub-
tractions (except for the initial data), the entries of the bidiagonal factorization of Theorem 1 can be obtained from the
bidiagonal factorization of Equation (7) without performing subtractions. Therefore, if the bidiagonal factorization of
Equation (7) can be performed with HRA, then the bidiagonal factorization of Theorem 1 can be also performed with
HRA. It is known that the bidiagonal factorization (3) of the collocation matrices associated with some important bases
used in CAGD can be performed with HRA.!? In consequence, the bidiagonal factorization of the collocation matri-
ces of their corresponding weighted ¢-transformed systems can also be performed with HRA and we can apply the
algorithms presented in References 6 and 9 to perform many algebraic computations with HRA. For instance, the com-
putation of their eigenvalues, singular values, or the solutions of some linear systems is associated with these collocation
matrices.

4 | WEIGHTED ¢-TRANSFORMED PROBABILITY DISTRIBUTIONS

A probability distribution is a mathematical function that provides the probabilities of occurrence of different possible
results in an experiment. In this section, we are going to see some interesting bases that can be defined from probability
distributions and can be considered as weighted @-transformed systems from other bases whose collocation matrices are
STP and can be factorized as in Equation (9).

The binomial distribution is frequently used to model the number of successes in a sample of size n. If the probability
of successis t € [0,1], n € N is the number of trials, and k € N is the number of successes, then the probability of getting
exactly k successes in n trials is given by

P(k successesin n trials) = <Z> tk(l - t)"‘k, k=0,1,...,n.
The binomial functions coincide with the Bernstein polynomials of degree n,

B = () fa-o"* el k=0l...n
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The collocation matrix of the Bernstein basis (B, ..., B) for any sequence of parameters 0 < f; < ... < tp41 < 1is STP
and its corresponding bidiagonal factorization (3) and (4) is given by

(1 - ti)n_j+1(1 - [i—j) Hj]'(_zll (ti - ti—k)

(1 =t 7+ J]'<=2 (tio1 = tig)

m;; = 1Sj<i§l’l+1,
—i t;

my="1"12 T gcjci<n+l,
i—1 (l—tj)

i-1

[Te-w. 1<i<n+1 (13)

( n )(1—1«‘i)"_i+1
T2 -t

Pu=\i_1

(see Reference 19 or theorem 3 of Reference 12). The bidiagonal factorization of the collocation matrix of the
Bernstein basis can be performed with HRA. In Reference 10, accurate computations to solve algebraic problems
associated with collocation matrices of Bernstein bases are shown. Urn models extend the binomial distribution. In
Reference 20, it is shown the connection between these models and CAGD and Approximation Theory, in particular
with splines.

The negative binomial distribution is an appropriate model to treat those processes in which a certain trial is repeated
until a certain number of favorable results are achieved for the first time. If the probability of failure is ¢ € [0, 1], r is the
number of failures, and k is the number of successes, then the probability of r failures up to obtain k successes (at least 1
success) is given by

P(r failures up to k successes) = (k + : h 1) (1 -k

Let us observe that, if n = k+r— 1, the negative binomial basis (by,...,b,) defined by b,(t) := ('r’) (1 =
r=0,...,n, can be considered as a weighted ¢-transformed system from the Bernstein basis with ¢(f) =1 —t and
di=1fori=0,...,n. Then, using Corollary 1, we deduce that the negative binomial basis is STP on (0, 1) and, using
Theorem 1 and the bidiagonal factorization (3), (4), (13) of the collocation matrix of the Bernstein basis at 0 < f; <
-+ < tyy1 <1, the corresponding bidiagonal factorization of the collocation matrix of the negative binomial basis is
given by

_ -ty [T, (6 — tik)

i — :
(A = i)+ [, (i — i)

, 1<j<i<n+1,

;ﬁu_n_—i""z f
Y i-1 (1-1)

1<j<i<n+l1,

1 pyn-iv2
qi,i=<."l)%n(n—n{), 1<i<n+l. (14)
L= k=1(1 - tk) k=1

Let us remark that the evaluation of ¢(f) = 1 — t does not include subtractions (except for the initial data). Hence, the
bidiagonal factorization (3), (4), (14) of the collocation matrix of the negative binomial basis can be also performed with
HRA. Section 6 will show accurate results obtained when computing their eigenvalues, singular values, or the solutions
of some linear systems associated with these collocation matrices, using the bidiagonal factorization (3), (4), (14), and the
algorithms presented in References 6 and 9.

The geometric distribution has applications in population and econometric models. If the probability of success is
t € [0,1] and k is the number of failures, then the probability of k failures up to obtain a success is given by

P(k failures until a success) := (1 — t)*t.

For a given n € N, the geometric basis functions b(t) := (1 —t)*¢, k=0, ...,n can be considered as a weighted
@-transformed system from the basis (1,1 —¢,...,(1 — ©)") with ¢(t) =tand d; =1 for i = 0, ..., n. The monomial basis
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(1,¢,...,£")is STP on (0, o) and the bidiagonal factorization (3), (4) of its collocation matrix at 0 < fp < --- < t,41 < 11is
given by

j—1
B IL_ i —ti)

A

mi; j—’ m;; =, 1<j<ign+1,
oo (tic1 — tick)
i-1
Dii = H(fi —t), 1<i<n+1 (15)
k=1

(see References 10,21 or theorem 3 of Reference 12).
Using (15) and Theorem 1, it can be deduced that the bidiagonal decomposition of the collocation matrix of the
geometric basis (by, ..., by) is given by

j—1
t; TL_,(tick —t) ) o
riJ=—lk1—, Fj=1-t, 1<j<i<n+l,

fia Hjl;zz(ti—k —ti1)
i-1
gi=t]J@-m, 1<i<n+1, (16)
k=1

Since the evaluation of ¢(f) = t does not include subtractions, the bidiagonal factorization (3), (4), (16) of the collocation
matrix of the geometric basis for any sequence of parameters 0 < f,4; <, <--- <t; <1 can be also performed with
HRA. Section 6 will show accurate results obtained when computing their eigenvalues, singular values, or the solutions
of some linear systems associated with these collocation matrices using the bidiagonal factorization (3), (4), (16), and the
algorithms presented in References 6 and 9.

The Poisson distribution is popular for modeling the number of times an event occurs in an interval of time
or space. An event can occur k=0,1,2,... times in an interval. If the average number of events in an inter-
val, also called the rate parameter, is designated by ¢, then the probability of observing k events in an interval is
given by

k

P(k events in interval) = %e

—t

k
The Poisson basis functions bi(t) := %e“ , k € N, are the limit as n tends to infinity of the Bernstein basis of degree n over
the interval [0, n], that is,

n

bi(t) = imBy (t/m). B = (|

)ia -k relol,

and they also play a useful role in CAGD.?? For a given n € N, the Poisson basis (b, ... , b,) can be considered as a weighted
@-transformed system from the monomial basis (1, ¢, ..., t") with ¢(t) = e and d; = 1/i!,i = 0, ..., n. Then, using Corol-
lary 1, we deduce that the Poisson basis is STP on (0, o0) and, taking into account (15) and Theorem 1, we deduce that
the bidiagonal factorization (3), (4) of the collocation matrix of the Poisson basis at positive values t; < - -+ < t,41 is
given by

-1
; [T, t—tie)

_ N 1 ..
ViJ=eti—1 ij—7 rij=._tj7 1<j<ifn+1,
oo (-1 — tick) i-1
e I
ATy ti—t), 1<i<n+1 17
qi, (i—l)! g(l k) ( )

Let us observe that the computation with HRA of the bidiagonal decomposition (3), (4), (17) should require the
evaluation with HRA of the involved exponential function. Although this cannot be guaranteed, Section 6 will show
that accurate algebraic computations with the collocation matrices associated with these nonpolynomial bases can be
performed.
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5 | RATIONAL WEIGHTED ¢-TRANSFORMED SYSTEMS

Given a system (uo, ... , U,) of functions defined on I and positive values dy, ..., d,, such that ZZ=0 dru(t) #0,forallt €1,
the system (ry, ..., 7,,) defined by

ri(t) 1= M, i=0,..,n,
Do dici()

satisfies Z?=o ri(t) = 1, Vt € I, and generates a new space of rational functions. If (uo, ..., u,) is TP then ZZ:O diug(t) > 0,
Vt € I, and (ry, ... , 1) can be considered as a particular weighted @-transformed system with

1

- tel (18)
> o dicthi (D)

() =

Given f; < -+ < ty41 in I such that the corresponding collocation matrix of (uo, ..., u,) is STP, by Theorem 1, we
deduce that the corresponding collocation matrix of (o, ..., r,) is also STP and, by considering (18) in Theorem 1, we
can obtain its bidiagonal factorization (3), (4) from the corresponding bidiagonal factorization of the collocation matrix
of (uy, ..., u,). It is important to notice that, by Remark 1, this bidiagonal factorization can be frequently used to perform
algebraic calculations and interpolation with HRA. The particular cases of rational Bernstein bases and rational Said-Ball
bases were considered in Reference 18.

Now we shall consider nested spaces generated by a general class of rational weighted @-transformed systems
admitting degree elevation and de Casteljau-type evaluation algorithms.

Let us suppose that I = [a,b] and f,g : I — R are nonnegative continuous functions such that f(¢) # 0, g(¢) # 0, Vt €
(a, b). Let us define the system

Wl ul),  uhe) = (’i‘)f"(t)g"—i(t), telabl, i=0,...n (19)

Following the approach of Reference 1, for the particular case of rational Bernstein functions, let us consider linear
factors L;(t) = a;g(t) + b;f(t) defined by positive values a; and b;, i € Z,, and

@) :=Li(0) - ... - Ln(D). (20)

It can be easily checked that w"(t) = Z?:o wiu?(t) where

Wi = 1 RIESIED 1)

<> KuL=(1....n) keK leL
L |K|=(n—i).|L|=i

The positivity of a; and b; guarantees that o > 0 and »"(f) > 0, Vt € (a, b). Let us now denote by (pg, ..., py) the
weighted 1/w"-transformed system corresponding to the weights wy, ..., wy given in Equation (21)

n e 1 n .
pi(t).—wiwn(t)ui(t), i=0,...,n. (22)

This system spans the space of rational functions with common denominator «"(¢),

R" :=span{pl®)|i = 0,...,n} = {u(®)/o"®)|ut) € U™},

where U™ is the space of functions generated by the basis (19).
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Let us observe that proposition 2 of Reference 1 establishes the following recurrence relation satisfied by the
weights (21)
" (n—1i)

_ i .
w = anTw;‘ 1y bnﬁw;‘_ll, 0<i<n. (23)

On the other hand, by replacing in propositions 3 and 4 of Reference 1 the functions t and 1 — ¢ by f(¢) and g(¢),
respectively, one can easily deduce the following relations satisfied by the functions of weighted 1/w"-transformed
systems

g() ! f® .
"tH=a Pt + by 1, i=0,...,n,
p; (1) (t)l ® (t)‘l()
nel—i W i1 W .
P?(t)=an+1n—+lwnirlpn+1(t)+bn+1 1w nirl ln:ll() i=0,...,n
i +1

These relations guarantee the nested nature of the generated spaces, that is, R" ¢ R"*!, and allow the definition of
degree elevation and de Casteljau-type algorithms for the evaluation of parametric curves

r(®) = Y Pip(n). t€labl.
i=0

Theorem 2 of Reference 12 proves that, given nonnegative functions f,g : I — R such that f(t) # 0, g(t) # 0, Vt € (a, b)
and f/g is a strictly increasing function, then

A= << N )ff—l(ti)g"‘f“(ti)) , a<t]<..<ltly <b, (24)
Jj-1 1<ij<n+1

is STP.
Moreover, in theorem 3 of Reference 12, the following bidiagonal decomposition (3) of the collocation matrices (24)
was deduced

A=F,F,_1---F1DG; - Gy_1Gy, (25)

where F; and G;, 1 <i<n, are the lower and upper triangular bidiagonal matrices of the form (4) and D =
diag (pl,l, ,pn+1,n+1). The entries m;;, iv;; and p; ; are given by

n—j+1(¢. . t)g(t;— i 15}
mij = g (gltiy) H y ((108Ctr) — J (08 () , 1<j<ig<n+1,

g2 (i) [T _, (F(ti)gltizk) — f(timi)g(ti-1)
o= it 2 f®
YT gy

1<j<i<n+1,

pu=(," )Ll(’)]'[(f(t»g(tk) ~fg), 1<i<n+l. (26)
=1 T &) i

Using Corollary 1, we deduce that the corresponding weighted 1/w"-transformed systems (22) are STP on (a, b) and
then are of interest in CAGD and have shape preserving properties. According to Theorem 1, the collocation matrix A of
the weighted 1/w"-transformed systems (22) corresponding toa < t; < - -+ < t,41 < b is STP and can be factorized as

A=F,F,1---FiDG, - Gp_1Ghy, (27)

where F; and G;, 1 <i<n, are the lower and upper triangular bidiagonal matrices of the form (10) and D =
diag (ql,l, ,qn+1,n+1). The off-diagonal entries r;j, 7;; of F; and G;, respectively, and the diagonal entries g;; of D are
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@"(ti_1) LWL o
rij=——-—m, Fhj=——my, 1<j<iin+l,
LJ a)n(ti) LJ L W?_z 1J J
Wn
i-1 ,
ii = ———Dii 1S1Sn+1’ 28
qi.i wn(ti)pl,l (28)

where " and w! are defined in (20) and (21), respectively, and m;;, i, p;; are the entries given in Equation (26).

Let us observe that by Remark 1, if the evaluation of f and g does not require subtractions (except for the initial data)
and the computation of (26) can be performed with HRA, then weighted 1/w"-transformed systems guarantee excellent
computational properties since many algebraic computations associated with A can be performed with HRA.

Let us now consider some interesting examples that can be obtained by considering f(t) = ¢, g(t) =1—t,t € [0,1]. In
this case the functions u!" defined in Equation (19) coincide with the Bernstein polynomials

W) = B(t) = (”) f(1 -0, i=0,...n (29)
i
For the choice a; = a,b; = b,1 < i < n,wehave w! = a"~'b",0 < i < n.In this case, »"(t) = (a(1 — t) + bt)" and the cor-

responding weighted 1/w"-transformed systems are Bernstein polynomials composed with a rational reparametrization
of degree 1 that maps the boundaries of the interval [0, 1] onto itself.! In fact

bt
"t)=B' | —— i=0,...,n.
P ‘<a(1—t)+bt>’ PE Tt

Using the bidiagonal factorization given in Equations (26) and (28), we can obtain the coefficients of the bidiagonal
factorization (27) of the collocation matrices of this basis.

@ =ty by = ) THC 6 -t
YT T a@ = 6) + by (1 — ti_y)ni+2 S (o — k)

i f
py=t=iF20 0 g cicicn+,
i—-1 al-g

i-1

» . 1-— tA)"—l'+1 (t' _ tk) .
- n1+1b11( n ( ! II : 1<i<n+1.
D=4 i- 1) @l-t)+byyr L1 (A —n) T PR

Let us recall that given a real number g > 0 and any nonnegative integer k, the g-integer [k] is defined as

1-¢5/Q -q), 1,
k] = {( /A-9, q#
k, qg=1,

and the g-factorial [k]! as

o kllk-1]...[1], k>1,
o 1, k=0.

For integers 0 < k < n, the g-binomial coefficient [nk] is defined by

k> 0.

(o) =[] = ] - e

The Lupas g-analogues of the Bernstein functions of degree n (cf. Reference 2) are the rational Bernstein functions

ani(t
prD) = '“(), i=0,..,n
wy (1)
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with

n

ani® = || @A = 0, ) = Y i =[Ja -t +¢.
i=0

J=1

Clearly, this basis is a weighted 1/@"-transformed system (22) where the weights w}* = [’l’] q"=Y/2 can be obtained from

(21) for the particular choice a; = 1and b; = g1, i = 1, ..., n.! The bidiagonal factorization (28) of its collocation matrices
coincides with the obtained in Reference 8.

Now, by considering positive weights dp, ... , d,, we can define the weighted Lupas g-analogue of Bernstein functions
of degree n as

g eeey

ri(tq) = dian,i(t)
e Yo dkani()’

Using the bidiagonal factorization given in Equations (26) and (28), we can obtain the coefficients of the bidiagonal
factorization (27) of the collocation matrices of weighted Lupas g-analogue of Bernstein functions as follows:

g dingtio) (1= I - 1) TI (=t

lij = — : ,
ZZ:O dycan i (t) (1 =ty 7+2 Jk=2 (tio1 — tiok)

. di_ i 2 1-— n—i+2 ) t: ) .

hy= ot a q—? L, 1<j<isn+1,

"Ud, i-1 1-g-t 1—1
Lo gyl 2L
qii =di1 [ h ] q(z—l)(z—z)/z (i f) (& tk)’ l<i<n+l.
=1 Sieco ditnic(t) o (1= 1)

Finally, let us observe that there are other interesting choices of functions f(t) and g(¢) satisfying conditions
of theorem 2 of Reference 12. We can consider f{¢) := t> and g(t) := 1 — 2, t € [0, 1]. In this case, the basis (19) is the basis
with optimal shape preserving properties of the space (1, 2, ... , ") of even polynomials of degree less than or equal to 2n
on [0, 1].

Another particular case can be given by considering the functions

f(t) = sin® (¢/2) = “CTOS(D g(t) = cos? (¢/2) = HCTOS“) tel=0,xl.

In Reference 15, it was proved that the system (19) is the basis with optimal shape preserving properties of the space of
even trigonometric polynomials given by (1, cos(t), cos(2?), ... , cos(nt)).
Now, let us consider 0 < A < z/2 and

A—t

f(t):=sin<A+ ). ter=(-a.al

‘). g :=sin(
For n = 2m, the system (19) is a basis that coincides, up to a positive scaling, with the basis with optimal shape preserving
properties of the space (1, cos(¢), sin(?), ... , cos(mt), sin(mt)) of trigonometric polynomials of degree less than or equal to
m on I (see section 3 of Reference 23).

Finally, for any A > 0, we can also consider

f(t)=sinh(AT+t>, g(t):zsinh(%), tel=[-AA]

For n = 2m, the system (19) is a basis with shape-preserving properties of the space (1,¢’,e™", ...

polynomials of degree less than or equal to m on I.

Taking into account that curves generated by the corresponding weighted 1/w"-transformed systems also inherit
algorithms of the traditional rational Bézier curves, they can be considered as modeling tools in CAD/CAM systems.
Trigonometric and hyperbolic curves are getting considerable importance since they provide the opportunity to construct

,e™_ e~y of hyperbolic
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conics, cylinders and surfaces of revolution, catenary, and so on. Shape-preserving rational trigonometric interpolation is
very important in scientific data visualization and has been applied in other fields such as engineering, biology, chemistry,
medical, and social sciences (see Reference 24 and the references therein).

In the next section, we are going to illustrate accurate computations with collocation matrices of the considered
weighted ¢-transformed systems.

6 | NUMERICAL EXPERIMENTS

In Reference 6, assuming that the multipliers and diagonal pivots of the Neville elimination of a nonsingular n x n TP
matrix A and its transpose are known with HRA, Koev presents algorithms for computing with HRA its eigenvalues,
singular values, and the solution of linear systems of equations Ax = ¢ where the entries of the vector c have alternating
signs. In Reference 9, Koev implemented these algorithms with the Matlab or Octave functions TNSolve, TNEigen-
values, and TNSingularvalues. The computational cost of the function TNSolve is @(n?) elementary operations
and it requires as input arguments the bidiagonal factorization (3) of the matrix A and the vector c of the linear system
Ax = ¢. The computational cost of TNEigenvalues and TNSingularvalues is O(n®). These functions also require
as input argument the bidiagonal factorization (3) of the matrix A.2!

We have implemented the Matlab or Octave function TNBDA, which takes as input arguments the bidiagonal factor-
ization (3) of the collocation matrix at ti, ..., t,11 of a system, positive values dy, ..., dy,, and @(ty), ..., p(t,+1) for a given
positive function ¢. Using Equation (11), TNBDA computes the bidiagonal factorization (3) of the collocation matrix
at i, ..., ty41 of the corresponding weighted @-transformed system. We have used this bidiagonal decomposition with
TNSolve, TNEigenValues, and TNSingularValues in order to obtain solutions for the above-mentioned algebraic
problems.

Now we include some numerical experiments considering collocation matrices of weighted @-transformed systems.
Due to the ill conditioning of these matrices, traditional methods do not achieve accurate solutions when solving the
mentioned algebraic problems. The numerical results show this fact and the high accuracy of the algorithms that we have
presented, even when the bidiagonal factorization of A is not computed with HRA.

6.1 | Linear systems

Linear systems arise when solving interpolation problems. Hence, in this section, we shall illustrate the accuracy of the
computed solutions of Ax = ¢ when using the function TNSolve with the bidiagonal factorization of A given by TNBDA.
We have obtained the solution of the systems using Mathematica with a precision of 100 digits and considered this solution
exact. Then we have computed with Matlab two approximations, the first one using TNBDA and TNSolve and the second
one using the Matlab command \.

First, we have considered collocation matrices of (n+ 1)-dimensional negative binomial bases, geometric
bases, and Poisson bases at equidistant parameters in (0,1). Table 1 illustrates the condition number of these
matrices.

Relative errors solving A, x = ¢, with ¢, = ((—=1)"'¢;)1<i<nt1, Where ¢; is a random integer value are shown in Table 2.
The computed results confirm the accuracy of the proposed method that, clearly, keeps the accuracy when the dimension
of the problem increases. By contrast, when n increases the condition number of the considered matrices considerably
increases and that explains the bad results obtained with the Matlab command \.

TABLE 1 Condition number of collocation matrices of negative

n+1 K(Ay) x(Ap) x(Ap) . . . . ) )
binomial bases (left), geometric bases (middle), and Poisson bases (right)

10 1.0 x 10* 8.5 107 6.0 X 10°

20 1.8 x 108 6.7 X 10'° 3.6 X 1013

25 2.5x10% 2.0 x 10% 8.0 x 10%

50 1.4 x 102 5.4 x10% 1.4 x 103
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TABLE 2 Relative errors when solving A, x = ¢, with collocation matrices of negative binomial bases (left), geometric bases

(middle), and Poisson bases (right)

n+l A,\c, TNBDA A\ cp TNBDA A\ ¢, TNBDA
10 3.44798 x 10713 4.87933 x 10716 1.39105 x 10~1 1.75715 x 10716 1.47267 x 10710 1.13940 x 10715
20 3.65455 x 10710 7.82315 x 1071¢ 0.00173326 5.94029 x 1071° 0.000338972 5.15797 x 10716
25 4.08151 x 1078 8.70322 x 1071¢ 0.951529 8.85806 x 10710 0.999085 3.73189 x 10716
50 1.00833 5.31708 x 10~1¢ 1.000000 7.22416 x 10716 1.000000 2.51721 x 10~1°
T.A BLE 3 Condition number of. collocatio2n matrices og we-:ighted @-transformed systems n+l x(A,) x(A,)
with f(t) = ¢, g(¢t) = 1 — t (left) and with f(t) = t*, g(t) = 1 — ¢* (right)
10 1.7 x 10° 1.4 x 103
20 1.2 x 101! 4.7 x 10°
25 1.1 x 104 2.8 x 108
50 6.2 X 10%8 1.9 x 10"
TABLE 4 Condition number of collocation matrices of weighted
. o . sree n+l x4, x(A,) x(Ay,)
@-transformed systems with f(¢) = sin® (t/2), g(t) = cos?* (t/2) (left), with
f(®) = sin ((1 + £)/2), g(t) = sin (1 — £)/2) (middle) , and with 10 1.1x10* 3.1x10° 9.9 x 10
f(t) = sinh ((1 + t)/Z), g(t) = Sll’lh((l - [)/2) (rlght) 20 1.3 % 109 4.2 % 1011 4.5 % 1010
25 5.0 x 10! 4.9 x 10 3.1x 1013
50 8.6 X 10%* 1.2 x 10%° 5.9 x 10?7
TABLE 5 Relati Lvi
; clative errors soving n+1 Ap\ Cn TNBDA A, \ ¢, TNBDA
A, x = c, with f(t) = t, g(t) = 1 — t (left)
and with f(t) = 2, g(t) = 1 — £ (right) 10 3.3579x 10713 1.1191x 10715 24173 x 1071 9.1615 x 10716
20 1.2413 x 10~ 6.2974 x 1071¢ 5.6324 x 10711 2.4457 x 1071
25 4.1424 x 1077 2.0843 x 101> 3.0923 x 107° 2.0016 x 10715
50 1.0000 7.5480 x 101> 0.9998 6.4231 x 101>

For different values of n, we have also considered collocation matrices at equidistant parameters in the interior of the
interval domain of rational weighted 1/@"-transformed systems (22), obtained by considering factors L;(t) = a;g(t) + b;f(t)
with a; = 2 and b; = 5, i € N. Tables 3 and 4 illustrate the condition number of all considered matrices.

We have considered ¢, = ((—1)"1¢;)1<i<n+1, Where ¢; is a nonnegative random real number. Table 5 shows the relative
errors when f(t) = t, g(t) = 1 — t and the relative errors when f(t) = 2, g(t) = 1 — t2, t € [0, 1]. Let us observe that, if () = ¢
and g(t) =1 —t, then

Fg) — f(tgt) = t; — 1.
On the other hand, if f(t) = > and g(t) = 1 — {3, then
F&)gty) — f(t)g(t) = (&t — )& + ).

In both cases, the parameters (28) of the bidiagonal factorization (27) can be obtained with HRA and then A, x = ¢, can
also be solved with HRA. The numerical experiments confirm this fact.

Finally, Table 6 shows the relative errors in the solution of A,x = ¢, with other functions f and g. In these cases, the
computation with HRA of the parameters (28) of the bidiagonal factorization (27) should require the evaluation with HRA
of the involved trigonometric or hyperbolic functions. Although this cannot be guaranteed, the numerical experiments
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TABLE 6 Relative errors solving A,x = ¢, with f(t) = sin® (t/2), g(t) = cos? (t/2) (left), with f(t) = sin (1 + £)/2), g(t) = sin (1 — £)/2)
(middle) , and with f(t) = sin h (1 + £)/2), g(t) = sinh (1 — t)/2) (right)

n+1 AR \ Cp TNBDA AR \ Cp TNBDA AR \ Cn TNBDA
10 1.54259 x 10714 3.21312 x 10716 2.6135x 10713 1.8511 x 1071 5.1019 x 10~ 1.9355 x 1071
20 2.33365 x 10712 5.28031 x 1071¢ 3.3808 x 10~ 1.4878 x 1071 2.8313 x 107° 2.1849 x 101>
25 3.55721 x 10~1 3.10246 x 1071 1.8684 x 10~ 2.3294 x 101> 2.0441 x 1077 2.9733 x 1071°
50 0.00306142 3.25552 x 101 1.0000 2.1001 x 10714 1.0000 8.1439 x 101>
. TABLE 7 Relative errors when
n+1 Eig TNBDA Svd TNBDA ) .
computing the lowest eigenvalue
10 3.09244 x 10713 0. 1.13631 x 10713 7.82315x 10716 (left) and the lowest singular value
20 1.98025 x 1079 7.45447 x 10716 6.52333 x 10710 9.63835 x 10716 (right) of collocation matrices of
binomial negatives basis functions
25 4.32252 % 1077 1.36414 x 10715 2.53703 x 1078 2.01433 x 10716,
50 6784.57 1.17511 x 10715 416.354 6.06316 x 10716
. TABLE 8 Relative errors
n+1 Eig TNBDA Svd TNBDA .
when computing the lowest
10 3.31746 x 10711 3.50531 x 1071° 9.946626 x 1071 2.99503 x 10716 eigenvalue (left) and the lowest
20 0.00583381 6.47223 x 10716 0.00181714 1.70411 x 10716 singular value (right) of collocation
matrices of geometric bases
25 86.706 4.24794 x 10716 89.422 7.48982 x 10716,
50 3.97376 x 10% 1.37939 x 10713 1.37387 x 10% 6.33473 x 10716
. TABLE 9 Relative errors when
n+1 Eig TNBDA Svd TNBDA ) .
computing the lowest eigenvalue
10 1.67788 x 10710 2.01781 x 10715 1.24564 x 10710 5.0222 x 10716 (left) and the lowest singular value
20 0.000067064 4.78068 x 10716 0.00187398 4.00738 x 10716 (right) of collocation matrices of
Poisson bases
25 34.131 6.17955 x 1071¢ 14.667 8.09263 x 10716,
50 2.1166 x 10'8 2.80909 x 10715 4.022298 x 1016 8.40959 x 10~1°

show again that accurate algebraic computations with the collocation matrices associated with these nonpolynomial basis
functions can be performed.

6.2 | Eigenvalues and singular values

We have also used the bidiagonal decomposition provided by TNBDA for computing, with the Matlab functions TNEigen-
Values and TNSingularValues, the eigenvalues and the singular values, respectively, of the collocation matrices of
weighted ¢-transformed systems considered in the previous subsection. We have also computed their approximations
with the Matlab functions eig and svd, respectively. In order to determine the accuracy of the approximations, we
have calculated the eigenvalues and singular values of the matrices by using Mathematica with a precision of 100 digits
and computed the relative errors corresponding to the approximations, considering the eigenvalues and singular values
provided by Mathematica as exact.

The approximations of the eigenvalues and singular values obtained by means of TNBDA are very accurate for all
considered n, whereas the approximations of the eigenvalues and singular values obtained with the Matlab commands
eigand svd are not very accurate when n increases. Since these collocation matrices are all STP, let us recall that, by
theorem 6.2 of Reference 7, all their eigenvalues are positive and distinct. Tables 7 to 14 show the relative errors of the
approximations to the lowest eigenvalue and the lowest singular value obtained with both methods.
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TABLE 10 Relative errors
when computing the lowest
eigenvalue (left) and the lowest
singular value (right) of collocation
matrices of weighted ¢-transformed
bases (22) with f(t) = t, g(t) =1 —t¢

TABLE 11 Relative errors
when computing the lowest
eigenvalue (left) and the lowest
singular value (right) of collocation
matrices of weighted ¢-transformed
bases (22) with f(t) = 2, g(t) = 1 — 1

TABLE 12 Relative errors
when computing the lowest
eigenvalue (left) and the lowest
singular value (right) of collocation
matrices of weighted @-transformed
bases (22) with f(f) = sin® (£/2),

g(0) = cos? (£/2)

TABLE 13 Relative errors
when computing the lowest
eigenvalue (left) and the lowest
singular value (right) of weighted
@-transformed bases (22) with
f =sin (1 +0)/2),

gt = sin (1 - 1)/2).

TABLE 14 Relative errors
when computing the lowest
eigenvalue (left) and the lowest
singular value (right) of collocation
matrices of weighted ¢-transformed
bases (22) with

f©) =sinh(1+0/2),

g(t) =sinh (1 -1)/2)
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25
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n+1
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20
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n+1
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25
50

Eig

1.80908 x 10713
3.9324 x 1078
0.0000625168
2.042 % 10°

Eig

1.10761 x 10714
3.21721 x 10711
6.63705 x 10710
0.156406

Eig

9.86257 x 10714
3.46514 x 10~°
2.34348 x 107°
30.0203

Eig

1.44963 x 10712
3.60789 x 1077
0.000101621
1.29153 x 107

Eig

4.60233 x 10713
9.05243 x 1078
0.0000577108
71,585.3

TNBDA

2.18488 x 10716
1.51895 x 1071°
1.06001 x 10715
6.71094 x 1071

TNBDA
1.69399 x 10713
1.5083 x 1071°
1.11226 x 10715
4.19403 x 1071

TNBDA

4.26029 x 10716
1.92921 x 10715
1.25379 x 10715
6.69068 x 10715

TNBDA
5.72976 x 10716
4.1266 x 1071
1.57645 x 10715
3.9368 x 1071°

TNBDA

2.70486 x 10716
2.80275 x 1071
1.05533 x 10715
7.90656 X 1071°

Svd

3.59637 x 10712
7.02917 x 1077
0.000970628
6.97145 x 10*°

Svd

2.53164 x 1071°
2.47006 x 1071
5.01779 x 1071°
0.328617

Svd

2.50339 x 10713
9.69498 x 10~°
1.25441 x 107°
7.3221 x 10°

Svd

3.64477 x 10712
7.45664 x 1077
0.00653125
6.15482 x 101!

Svd

8.45483 x 10713
1.04254 x 1077
0.000107575
9.1323 x 10°
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Abstract: This paper proposes a method for learning the process of curve fitting through a general
class of totally positive rational bases. The approximation is achieved by finding suitable weights
and control points to fit the given set of data points using a neural network and a training algorithm,
called AdaMax algorithm, which is a first-order gradient-based stochastic optimization. The neural
network presented in this paper is novel and based on a recent generalization of rational curves which
inherit geometric properties and algorithms of the traditional rational Bézier curves. The neural
network has been applied to different kinds of datasets and it has been compared with the traditional
least-squares method to test its performance. The obtained results show that our method can generate
a satisfactory approximation.

Keywords: normalized totally positive bases; normalized B-bases; rational bases; curve fitting;
neural network

1. Introduction

The problem of obtaining a curve that fits a given set of data points is one of the fundamental
challenges of Computer Aided Geometric Design (CAGD), and it has become prevalent in several
applied and industrial domains, such as Computer-Aided Design and Manufacturing (CAD/CAM)
systems, Computer Graphics and Animation, Robotics Design, Medicine and many others. To face this
issue, several families of bases of functions have been considered. There is a large body of literature on
this topic and there are numerous methods to solve this issue, such as several least-squares techniques
and different progressive iterative approximation methods (see [1-3] and the references therein).

Given a system (1, ..., uy,) of linearly independent functions defined on an interval I C R and
Dy, ..., P, € Rk, we can define a parametric curve as y(t) = Y ; Piu;(t), t € I. The polygon Py - - - Py,
formed by the ordered sequence of points P; € R¥,i = 0,...,n, is called the control polygon of v and
the points P;, i = 0, ...,n, are named the control points of v with respect to (up, ..., u,). A matrix is
totally positive (TP) if all its minors are nonnegative (see [4]). A system of functions (uy, . .., u,) defined
on [ is TP if all its collocation matrices (uf(ti))i,jzo...,n with tyg < --- <ty in I are TP. A TP system of
functions on I is normalized (NTP) if ' ,u;(t) = 1, for all t € I. A basis provides shape-preserving
representations if the shape of the curve imitates the shape of its control polygon. Normalized totally
positive bases provide shape-preserving representations. The normalized B-basis of a given space is an

Mathematics 2020, 8, 2197; d0i:10.3390/ math8122197 www.mdpi.com/journal/mathematics
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NTP basis such that the matrix of change of basis of any NTP basis with respect to the normalized
B-basis is TP and stochastic. This property implies that the control polygon of a curve with respect to
the normalized B-basis can be obtained by a corner cutting algorithm from its control polygon with
respect to any other NTP basis. Thus, the control polygon with respect to the normalized B-basis is
closer in shape to the curve than the control polygon with respect to any other NTP basis. Furthermore,
the length of the control polygon with respect to the normalized B-basis lies between the length of the
curve and the length of its control polygon with respect to any other NTP basis. Similar properties
hold for other geometric properties such as angular variation or number of inflections (see [5-7]). So,
the Normalized B-basis has the optimal shape-preserving properties among all NTP bases of the
space. The Bernstein bases and the B-spline bases are the normalized B-bases of their corresponding
generated spaces.

It is well known that the bases obtained by rationalizing Bernstein bases are also the normalized
B-bases of the generated spaces of rational functions. These spaces are made up of rational polynomial
functions where the denominator is a given polynomial. Rational Bernstein bases add adjustable
weights to provide closer approximations to arbitrary shapes and have become a standard tool in
CAGD since they allow the exact representation of conic sections, spheres and cylinders. In [8],
the generalization of rational Bernstein bases obtained when replacing the linear polynomial factors by
trigonometric or hyperbolic functions or their mixtures with polynomials were analyzed. The generated
rational curves inherit geometric properties and algorithms of the traditional rational Bézier curves
and so, they can be considered as modeling tools in CAD/CAM systems.

As mentioned before, the weights of rational bases can be used as shape parameters. However,
it is well known that the effect of changing a weight in a rational basis is different from that of moving a
control point of the curve (see Figure 1). Thus, the interactive shape control of rational curves through
adjusting weights is not a straightforward task and it is not easy to design algorithms to obtain the
appropriate weights (see [9], Chapter 13).

/ (4

% L8

N

Figure 1. Initial curve (line) and curve obtained (dotted line) after changing the weights and/or control
points. Left: changing the fourth weight; center: changing the fourth control point; and right: changing
the fourth weight and the fourth control point.

Some recent papers have shown that the application of Artificial Intelligence (AI) techniques can
achieve remarkable results regarding the problem of obtaining rational curves that fit a given set of
data points. To face this issue, in [10], a bio-inspired algorithm was applied through the use of rational
Bézier curves. Besides, in [11,12], evolutionary algorithms were applied to rational B-spline curves.
As a novelty, in this paper, we define a one-hidden-layer neural network using the general class of
rational bases with optimal shape-preserving properties proposed in [8]. In that work, the authors
presented evaluation and subdivision algorithms. However, this is the first time that the problem
of obtaining a rational fitting curve using these general class of totally positive rational bases is
modeled by a neural network and its weights and control points optimized using a training algorithm.
In this paper, we extend [8] for their application in curve fitting training the neural network with a
recent stochastic learning process, the AdaMax algorithm [13], to find suitable weights and control
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points. In this approximation process, the rational basis is a hyperparameter and can be changed by
substituting the linear factors by polynomial, trigonometric or hyperbolic functions, thus expanding
the potential range of applications to include more difficult shapes.

The layout of the paper is as follows. In Section 2, we recall several concepts regarding CAGD
and we present a general class of rational bases which are normalized B-bases. Then, in Section 3,
we present a one-hidden-layer neural network based on the rational bases presented in the previous
section to approximate a given set of data points. This neural network is trained with an optimization
algorithm to update the weights and control points used to construct a curve that approximates the
given set of data points, while decreasing a loss function. In Section 4, several experiments are provided
illustrating the use of the neural network with different normalized B-bases to test its performance
giving an approximation of different kinds of sets of data points. Moreover, the proposed method has
been compared with the traditional least-squares method. Finally, conclusions and future work are
presented in Section 5.

2. Shape-Preserving and Rational Bases

Let us suppose that I C Rand f, g : I — R are nonnegative continuous functions. Then, forn € N,
we can define the system (u}, ..., u};) where:

ul' () = (’;) Fr()g" K (t)such thatt € I, k=0,...,n. (1)
For any positive weights w!, i = 0,...,n, let us define w"(t) = YI_jw!ul’(t) and denote by

(0g, - - -, Py the rational basis described by

p?(t):wz C()n(t)u(t)/ Z’:0/"'/71/ (2)

where (ug, ..., u}) is defined in (1). Clearly, this system spans a space of rational functions with
denominator w” (t),

R" =span{p(t) | i =0,...,n} = {u(t)/w"(t) | u(t) € U"}, )

where U" is the space generated by (ug, ..., u}).
The following result corresponds to Corollary 4 of [8] and provides the conditions characterizing
that the system given in (2) has optimal shape-preserving properties.

Proposition 1. The system of functions given in (2) is the normalized B-basis of the space R" defined in (3) if
and only if the function f /g defined on Iy = {t € I | g(t) # 0} is increasing and satisfies

inf{%“elo}zo, sup{%|t€lo}:+oo. 4)

Let us see several choices of functions f and g satisfying the conditions of Proposition 1. Let us

consider the functions ; bt
Ja— a —
f(t) = A g(t) = 5 , t€]ab] (5)

—a

It is well known that the corresponding rational basis (2), which is the rational Bernstein basis,
is the normalized B-basis of its generated space (3).
We can also consider the functions

f(ty=1% gt)y=1—+t> te[o1]. (6)
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The corresponding rational basis (2) spans the space
n
R" = span{u(t)/w"(t) | u(t) € U", " (t) = ) wlul(t)},
i=0

where the system (i, . .., u,) given in (1) spans the space (1,2,...,t*") of even polynomials defined
on [0, 1] of degree less than or equal to 2n.

Trigonometric and hyperbolic bases are attracting a lot of interest, for instance in Isogeometric
Analysis (cf. [14]). Let 0 < A < 71/2. Define

f(t) =sin((A+1t)/2) and g(t) =sin ((A —t)/2) fort € I = [—A, Al )

Let us notice that the functions f and g satisfy f(t) > 0and g(¢t) > Oforallt € (—A, A). Moreover,
it can be checked that

, sin (55 / sin
(ﬁg) N (SH‘EA;D _;sirlz((fz—)f) >0, Vte (—AA). ®)

Therefore, for any 0 < A < 71/2, the function f/g is a strictly increasing function on (—A, A) and
f and g satisfy the conditions of Proposition 1. The corresponding rational basis (2) spans the space

R" = span{u(t)/w"(t) | u(t) e U", " (t) = éw?u?(t)},

where, for a given n = 2m, the system (i, ..., u,) given in (1) is a basis that coincides, up to a positive
scaling, with the normalized B-basis of the space (1,cost,sint,...,cos mt,sinmt) of trigonometric
polynomials of degree less than or equal to m on I (see Section 3 of [15]).

Finally, let A > 0. Define

f(t) =sinh ((A+1t)/2)) and g(t) = sinh ((A —t)/2) fort € = [—A, A]. 9)

Clearly, f(t) > 0and g(t) > O forall t € (—A, A). Moreover, it can be checked that
(f(t)), _ sinh (%)
sinh (%)

8(t)
Therefore, for any A > 0, f/g is a strictly increasing function on (—A, A) and f and g satisfy the
conditions of Proposition 1. The corresponding rational basis (2) spans the space

!/

1 sinhA

= - SMB 0, Vie (—AA). (10)
2 ginh? (—A; t)

R" = span{u(t)/w"(t) | u(t) e U", " (t) = éwf’u?(t)},

where, for n = 2m, the system (uy, ..., u,) given in (1) spans the space (1,¢!,ef,...,e", e~ ") of
hyperbolic polynomials of degree less than or equal to m on I.

In Figure 2, we illustrate two examples of the rational basis (2) of degree 3. Let us observe the
effect on the shape of the functions of the basis as weights change.
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Figure 2. (Left): Rational basis (2) using f(t) = t, g(t) = 1—1¢,t € [0,1]. Weights w = [1,2,3,2]
(black line) and weights w = [1,2,3,8] (blue dotted line). (Right): Rational basis (2) using f(t) =
sin((A+1)/2),g(t) = sin((A—1)/2),t € I = [-A,A],0 < A < /2. Weights w = [1,2,3,2]
(black line) and weights w = [1, 8,3, 2] (blue dotted line).

Section 4 will show examples of approximations of given sets of data points using all the above
mentioned normalized B-bases. Moreover, the neural network presented in the following section will
be used to compute the optimal weights and control points of their corresponding fitting curves.

3. Curve Fitting with Neural Networks

It is well known that curve fitting is the process of constructing a curve, or mathematical function,
that has the best fit of a given set of data points. A related topic is Regression Analysis in Machine
Learning. In the literature (see [16] (Chapter 11)), a regression problem is the problem of predicting
a real value for each input data. Let us consider an input space X C R and target values Y C R,
and a distribution over X x Y, denoted by D. Then, a regression problem consists of a set of labeled
samples S = {(x;, ;) }ic (0,..,¢y € X x Y drawn according to D where y; are the target real values we
want to predict. There exists a huge variety of regression algorithms, i.e., algorithms solving regression
problems, such as Linear Regression, Decision Trees, Support Vector Regression, and Neural Networks,
among others. The quality of the prediction of an algorithm or model depends on the difference
between the target (i.e., the true value) and the predicted one, and it is measured using a loss function.
Then, given a set H (also called “hypothesis”) of function mappings X to Y, the aim of the regression
algorithm is to use S to find & € H such that the expected loss is small.

Specifically, the problem that we want to solve can be stated as follows. Suppose that f and g
are functions defined on [, b] satisfying the conditions of Proposition 1. Consider a set of parameters
a <ty < --- <ty <band asequence of data points sg,...,s; € R¥, where each parameter ¢; is
associated with a data point s;. For some n < ¢, we want to obtain a rational curve

(0 = 3OS0

‘ oK bl 11
Ly g Y a

to approximate the set of data points s = (si)fzo. Therefore, the goal is to obtain the weights wyg, - - -, wy;

and the control points Py, - - - , P, of the rational curve (11) that best fits the set of data points. In order
to compute them, we have used a stochastic optimization process to train a neural network that models
the rational curve c(t).

The problem to be solved can be interpreted then as a regression problem where the set of labeled
samples is composed of the input data, X, that is the set of parametersa < ) < --- < t; < b and the
target set of data points Y = s = (s;){_,,.

Then, the expression in (11) can be represented as a hierarchical computational graph with just
one hidden layer that we will denote as Ay, p : R — RF where the computations are organized as in
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Figure 3. The obtained curve N, p(t) is the rational curve c(t) that approximates the given set of data
points and we denote as the fitting curve.

teR

n n
wy wi

no WM o w (DA on i (g ()
0= Trow (MFg— 0 Fi = Tl (F @z 1T Thew! (7070

Py P; Py

Nop(t) = Lo o} (H)P;

Figure 3. From top to bottom. The input layer has the parameter ¢t € R as input. The hidden layer is of

width n + 1 and its parameters are the weights. Then, the output layer computes the approximation of

the target curve and its parameters are the control points.

The key idea is to iteratively change the input weights w = (w!')_; and control points P = (P;)!_,
of the active curve Ny, p(t), and so it deforms towards the target shape represented by the set of data
points s = (si)fzo (see Figure 4).

3 N L y
\ ~ Y 5

Figure 4. Evolution of the fitting curve NV, p(t). Set of data points from the target curve (dotted)
and the fitting curve (line). From top to bottom and left to right: Increment d = 0, d = 250, d = 500,
d = 1000, d = 1500, d = 2000 and d = 3000.

Then, we apply an adaptive learning rate optimization algorithm to train the neural network to
find the weights and control points, which can be, for example, the Adaptive Moment Estimation
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(Adam) algorithm or its variant Adaptive Moment Estimation Maximum (AdaMax) algorithm based
on infinity norm. These methods are used for stochastic optimization, to solve the supervised learning
problem and to find the parameters where a minima is located. In this paper, we have mainly used
the AdaMax variant (see Algorithm 1) because of its stability and simplicity [13]. However, the Adam
method can be useful depending on the shape of the set of data points to be approximated and the
choice of the loss function. The stochastic objective function, also called the loss function, measures
the goodness of the fitting curve. Let us notice that there exist different loss functions such as the
mean absolute error, the cross-entropy loss, the mean squared error, among others (the different loss
functions implemented in Tensorflow can be consulted in the tensorflow documentation), that can be
chosen depending on the problem. In our case, we have considered the mean absolute error as the loss
function because of the choice of the training algorithm, given by the following expression:

Yo lsi— Nup(t)]

E(w,P) = 1 : (12)

The Adam and the AdaMax algorithms are stochastic gradient-based optimization algorithms
and, as previously mentioned, they update the weights and the control points iteratively. The step
size is a real number that measures how much the weights and the control points are updated upon
each iteration. Besides, the Adam algorithm uses the first and the second moment estimate to update
the weights and the control points which are updated following exponential decay rates (81 and 7).
Finally, as AdaMax is a variation of Adam using infinity norm, the second moment estimate has a
simple recursive formula which will be denoted in Algorithm 1 as exponentially weighted infinity
norm. See [13] for a detailed description of the both Adam and AdaMax algorithms.

Algorithm 1: The AdaMax algorithm [13] adapted to our context.
Result: A set of weights w and control points P.
Require: The number of iterations k or an upper bound e € R for E(w, P);
Require: The stepsize «;
Require: The exponential decay rates B1, B> € [0,1);
Require: The stochastic objective function E(w, P);
Require: A small constant € for numerical stability;
Initialize: Time step d := 0;

Initialize: The set of weights and control points in time step d = 0, w(®) and P(*) randomly

sampled;

Initialize: First moment vector 7(0) =0

Initialize: Exponentially weighted infinity norm §(0) := 0;

while d < kor E(w, P) > e do

d := d 4 1 (Increment the time step);

A @)= By @D L (1 By)- Vw(d,1>,P(d,1>E(w(d’1),P(d’l)) (Update the biased first
moment estimation);

6@ .= max (B, - 8¢V, Vw(d_l)’P(d_l)E(w(d_l),P(d_l))) (Update the exponentially
weighted infinity norm);

_ (d-1) .
w@) = d-1) _ 1_“5‘11 . 5&77])% (Update the weights);

@ . p@d-1) _ _a o4V
p@ .= p R

(Update the control points);

end

The number of units (i.e. weights and control points) is a hyperparameter and is determined
based on the complexity of the shape to be approximated. Besides, the step size, «, can be changed
depending on the state of the convergence of the training procedure, for example, when the loss values
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(i.e., the evaluation of the loss function) gets stuck or the update of the parameters is too big. Then,
it is useful to increase or reduce, respectively, the step size according to the values of the loss function.

4. Experiments Results

In order to show the performance of the neural network Ay, p, we have taken different sets of data
points s = (sl-)f:O. They have been chosen to reflect the variety of situations where the proposed neural
network can be applied. The first set of data points belongs to a closed conic curve, the second one
belongs to a transcendental curve, the third one is a curve with a twisted shape and, finally, the fourth
one is a noisy set of data points from a baroque image.

In all cases, we have taken different functions f and g satisfying the conditions of Proposition 1
and allowing that the corresponding rational bases (2) have the optimal shape-preserving properties.

Remark 1. One of the requirements for a rational basis to be the normalized B-basis of its generated space is the
positivity of the weights. This makes it necessary to apply the absolute value to the weights in the weight update
step of Algorithm 1. However, in the experiments shown, we opted to avoid this choice because we have observed
that, although in the intermediate steps the weights could be negative, at the end of the training, the weights
were positive and the convergence was faster. Nevertheless, we can add the restriction depending on the needs.

Let us notice that we have used an uniform distribution of the parameters t;,i =0, ..., ¢, in all the
examples. This choice of parameters does not have to be the optimal but we have preferred it because
of its simplicity. Besides, a normalization of the data points, s = (si)fzo, between 0 and 1, was applied
in order to facilitate the training procedure following the formula:

s; —min S
maxS —min S’

A

8 forie {0,..., ¢} (13)

The AdaMax algorithm was applied to solve the minimization problem with the
mean absolute error loss function (12) with the following choice of hyperparameters:
« =0.0001, 81 =0.9,82 =0.999, and e = 10~7. Then, the number of iterations of the algorithm
depends on the desired accuracy of the fitting curve to the set of data points. In this case, we
have used between 3000 to 5000 iterations of the algorithm but, with more iterations and a better
tuning of the parameters, the results provided here may be improved. Finally, in order to reach a better
approximation, the first and the last control point of the fitting curve were fixed to be the same as the
first and the last point of the set of data points, thus the obtained fitting curve is always exactly at those
points. We can see in Table 1, a summary of the loss values from different fitting curves. Let us observe
that the value 7 is the degree of the fitting curve and it depends on the complexity of the shape to be
approximated. Moreover, let us notice that the proposed neural network is able to obtain a suitable
accuracy with low degrees and, as a generalization of other methods, we can choose, depending on the
shape of the set of data points, the basis that best fits. Note that, in CAGD, it is important to properly
address the problem of curve fitting, finding a balance between accuracy and degree of the curve
since high-degree curves are computationally expensive to evaluate. The AdaMax algorithm has been
selected because it is computationally efficient with little memory requirements, suited for problems
with large data or parameters. In Table 2, the time of execution of the Algorithm 1 using different
numbers of units (i.e., weights and control points) and numbers of iterations is provided.
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Table 1. Loss values of the mean absolute error (12) for different fitting curves of degree n with
f(t) =t g(t) =1—t,t € [0,1] (Basis 1), f(t) = t> and g(t) = 1 — 3, t € [0,1], (Basis 2), f(t) =
sin((A+1t)/2) and g(t) = sin((A—1)/2), A < /2, A < /2, t € [—A,A], (Basis 3) and finally
f(t) = sinh ((A+1)/2) and g(t) = sinh ((A —1)/2), A < /2, t € [-A,A], (Basis 4). They were all
trained with 4000 iterations, « = 0.0001, 31 = 0.9, B> = 0.999, ¢ = 10~7. The process was repeated
5 times, with the loss values provided being the best values reached.

n Basis 1 Basis 2 Basis 3 Basis 4
Circle
3 33946 x 1072 37129 x 1072 7.0468 x 1072  3.6438 x 102

21757 x 1073 15338 x 1072 3.1678 x 1073 2.5582 x 103
5 17333 x 107%  9.2269 x 1073  2.8083 x 10~% 2.2488 x 1073
Cycloid

8 1.0849 x 1073 3.6855 x 107% 3.6017 x 10~% 3.1674 x 10~*
9 46163 x107* 3.6855 x 107% 3.6017 x 10~* 2.4914 x 104
10 3.3944 x 107%  3.6855 x 10~% 3.6017 x 10~% 2.4914 x 10~*

e~

Archimedean spiral

11 15982 x 1073  1.0474 x 1072 22349 x 1072 7.8109 x 10~*
12 15982 x 1073  7.8916 x 1073 5.7801 x 1073  7.8109 x 10~*
13 1.4106 x 1073 5.2853 x 1073 5.7801 x 103 7.8109 x 10~*

Table 2. Time of execution of the proposed algorithm measured in seconds for different numbers of
units and iterations. The values provided are the mean of 5 repetitions with a set of data points of
size 100.

Number of Iterations
25 50 100 3000

5 0.1259 14284  2.8381 5.7259 189.5386
10 0.0989  2.0781 41325 10.2672  268.8726
15 0.1244 27142 53781 10.9886  347.6139
50 0.6479 82589  13.3576 27.4398  850.6713
100 1.1624 14.3999 32.6576 65.3298 1521.3971

n+1

The implementation (the code of the experimentation can be found in
https://github.com/Cimagroup/Curve-approximation-NN) was developed using TensorFlow 2.0 [17]
allowing developers to easily use it to build and deploy Machine Learning powered applications.
All experiments were ran on a Quad-Core Intel Core i7 CPU, 2.8 GHz with 16 GB RAM. Let us see a
detailed description of the experiments.

4.1. Circle Curve

Circles and conic sections play a relevant role in curve design and have been approximated
in several works (see [18,19]). Let us show different approximations to the circle given by the

{xc(t) = cos(t), (14)

parametric equations

ye(t) = sin(t),

t € [0,27]. First, let us see an approximation obtained performing the neural network Ny, p using
polynomial functions.
We have taken the following sequence of points s = (si)?zo on the circle (14):

si = (xc(2mtt;), yc(2mt;)), i=0,...,99,
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being the parameters t; =i/99,i =0,...,99.
For n = 5, we have approximated the set s by the fitting curve (NVy,p, (t), Nu,p, () considering

the functions f(t) = t and g(t) = 1 — t at the vector nodes t = (t;)?2, with t; as above. After training

the neural network Ny, p, performing the Algorithm 1 for 3000 iterations, we have obtained the
following weights:

wg = 1.253390550613403320, w? = (0.6930422186851501465, wg = 0.7461462020874023438,
wg = 0.7428795099258422852, wZ = (.7499830722808837891, wg = 1.511020541191101074,

and the following control points:

Py = (1,0), P, = (0.9514569678202488, 2.265164366524486),
P, = (—2.041393043066488, 1.823594836649781), P3 = (—2.573274681480492, —1.594942712567735),
Py = (0.9104298578262079, —2.558222347419337), P5 = (1,0).

We can see in Figure 5 the obtained fitting curve of degree 5 and its corresponding control polygon.

-25k

Figure 5. Fitting curve of degree 5 obtained using the functions f(t) = tand g(t) =1—t,t € [0,1],
and its corresponding control polygon.

In order to analyze the performance of the obtained approximation to the circle, we depict some
geometric approximations of the approximation error. In Figure 6, we plot the radial and curvature
errors given, respectively, by

e(t)=rt) =1, e =k(t) —1,

3
where r(t) = /A5, (6 N2, () anc k(1) = (N, (DA, (6) = N, (02,5, (0)/ (/N 0+ OV ()
We can observe that the radial error vanishes at t = —A, A because the approximation is exact for
the initial and the last points of the curve.
Let us see another approximation example of the unit circle performing the neural network N, p
using trigonometric functions. We have the following set of data points s = (si)?zo on circle (14):

$; = (xc((t,»/A + 1)7T),yc((tl'/A + 1)7’[), i=0,...,99,

being the parameters t; = —A+2Ai/99,i = 0,...,99, with 0 < A < 7m/2. Forn =5,
we have approximated the set s by the fitting curve (Nyp, (t), Nup,(t)) using the functions
f(t) = sin((A+1)/2) and g(t) = sin ((A —t)/2) at the vector nodes t = (t;)72, with t; as above.

i=
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After training the neural network A p, performing Algorithm 1 for 3000 iterations, and with
« =0.001,5; =0.9,8, =0.999, and ¢ = 107, we have obtained the following weights:

w) = 2.193439722061157227, w? = 0.6315788030624389648, w5 = 0.4818322956562042236,
w] = 0.4559116661548614502, w] = 0.6407876610755920410, wl = 2.386862277984619141,

and the following control points:

Py = (1,0), P, = (1.094536581177390, 2.759880482316126),
P, = (—3.104044853918599, 2.85189370210171), P; = (—3.702726956127786, —2.817369554402328),
Py = (1.085284693582619, —3.000573791799708), Ps = (1,0).

=10

2 0.05
Radial error Curvature error
—f(t)=t, g(H)=1-1 —f(t)=t, g(t)=1-t

0

-0.05

-0.1

-6 -0.15

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6. (Left): The x-axis represents the parameters f in [0, 1] and the y-axis represents the radial
error value of the fitting curve obtained using the functions f(f) = tand g(t) = 1—+¢,t € [0,1].
(Right): The x-axis represents the parameters f in [0, 1] and the y-axis represents the curvature error
value of fitting curve obtained using the functions f(t) = tand g(t) =1—+t,t € [0,1].

We can see in Figure 7 the fitting curve of degree 5 obtained and its control polygon.

Figure 7. Fitting curve of degree 5 using f () = sin ((A+1)/2) and g(t) = sin ((A —1)/2),t € [-A, A],
and its control polygon.

Figure 8 shows its corresponding radial and curvature errors. We can observe that the radial error
vanishes at t = —A, A because the approximation is exact for the initial and the last points of the curve.



Mathematics 2020, 8, 2197 12 of 19

5 | Radial error 02 I Curvature error
4 | —T(ty=sin((A+1/2), glh=sin((A-1y2) ; |—f(t)=sin((A+1)/2), gli)=sin((A-1)/2)|
0.15
3
5 0.1
L 0.05
0
0
-1
-2 -0.056
2 =1 0 1 2 2 =1 0 1 2

Figure 8. (Left): The x-axis represents the parameters f in [—A, A] and the y-axis represents the radial
error value of the fitting curve obtained using the trigonometric basis. (Right): The x-axis represents
the parameters ¢ in [—A, A] and the y-axis represents the curvature error value of the fitting curves
obtained using the trigonometric basis.

Finally, for different values of n, Figure 9 shows the history of the loss function given in (12)
through the training process on 3000 iterations of the neural network Ny, p using the polynomial
functions and the trigonometric functions. We can observe, in both cases, that the convergence to the
circle of the fitting curves is faster as n increases.

0.40 Convergence n=4 04 Convergence ! e
035 fity=t, git)=1-t n=5 fit)=sin((4+1)/2), glt)=sin((A-1)/2)
030 — n=6 s
025 — n=7
020 0z
015
010 01
0.05
0.00 0a
o 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000

Figure 9. For different values of 7, the history of the loss function, i.e., the mean absolute error values,
through the training process on 3000 iterations while the fitting curves converges. (Left): Loss values
of the fitting curve using f(¢) = t, g(t) =1 — ¢, t € [0,1]. (Right): Loss values of the fitting curve using
f(t) =sin((A+1)/2), g(t) =sin ((A—t)/2),t € [-A, A]. The x-axis represents the iteration of the
training algorithm and the y-axis represents the mean absolute error value.

4.2. Cycloid Curve

Cycloids are commonly used in manufacturing applications (e.g. gear tooth geometry).
The cycloid is a transcendental curve and thus, it cannot be expressed by polynomials exactly. Creating
a complex curve in a CAD/CAM system is not always straightforward. In [20], it is shown the need to
new methods for approximating this curve. Let us show different approximations to the cycloid by
several fitting curves obtained by training the neural network Ny, p using polynomial, trigonometric
and hyperbolic functions f and g that satisfy the conditions of Proposition 1.
The cycloid is given by the parametric equations
{xcc(t) =t —sint, 15)

Yec(t) =1 — cost,
t € [0,277]. We have taken the following sequence of points s = (s;);2, on the cycloid (15):

s; = (xec(27t;),yee (2tt;)), i=0,...,99,

being the parameters t; =i/99,i =0,...,99.
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For n = 10, we have approximated the set s by two fitting curves at the vector nodes t = (ti)?zc
with t; as above. One of the fitting curves is obtained using the functions f(t) = tand g(t) =1 —¢,
and the other fitting curve is obtained using the functions f(t) = > and g(t) = 1 — t2.

We can see in Figure 10, the fitting curves and their corresponding fitting error. The fitting error is
given by the Euclidean norm between the approximated curve—in this case, the cycloid curve—and the
obtained fitting curve. Observe that the cycloid curve is better approximated by the fitting curve
obtained using the functions f(t) = t?> and g(t) = 1 — ? than by the fitting curve obtained using the
functions f(t) =tand g(t) =1 —t.

5 x10°
=2, g)=1-2 —f(t)=t, gt)=1-t ]
- Gycloid 4 [ 1=t%, ot=1-]

Figure 10. (Left): Set of data points on the cycloid (dotted), fitting curve obtained using the functions
f(t) =t,g(t) =1—t,t€[0,1] (blue) and fitting curve obtained using the functions f(t) = t2,¢(t) =
1—1#2,t € [0,1] (green). (Right): Fitting error comparison.The x-axis represents the parameters ¢ in

N

[0,1] and the y-axis represents the fitting error value of the fitting curves obtained using the functions
f(t) =t,g(t) =1—t,t € [0,1] (green) and the functions f(t) = 2, g(t) = 1 — t2,t € [0,1] (blue).

Let us see two more approximations of the cycloid. We have taken the following sequence of
points s = (si)?zo on the cycloid (15):

si = (xcc((ti/A+1)70),yec((ti/A+1)7T), i=0,...,99,

being the parameters t; = —A +2Ai/99,i =0,...,99, with0 < A < 7r/2.

For n = 10, we have approximated the set s by two fitting curves at the vector nodes t = (;)?2,
with t; as above. One of the fitting curves is obtained by training the neural network N, p using the
trigonometric functions f(t) = sin ((A + t)/2) and g(t) = sin ((A — t)/2) and the other one using the
hyperbolic functions f(t) = sinh ((A +t)/2) and g(¢) = sinh ((A —t)/2).

We can see in Figure 11, the fitting curves and their corresponding fitting error. Let us observe
that the cycloid is better approximated by the fitting curve obtained using the hyperbolic functions
than the fitting curve obtained using the trigonometric functions.

0.014
" i—f(t):sin((A+I)lZ), gh=sin((A-t)2) j Fitting error |
|- ~f=sinh((A+1/2), Q(T)=5inh((A-t)/2)l 0.012 —f(t)=sin((A+1/2), g(H)=sin((A-1y2) |
| - cyeloid f(t)=sinh((A+1)/2), glty=sinh((A-t)/2)
2 e — | 0.01
o e
P N 0.008
/7 \,
1/ N\ ]
\‘ 0.006
0 ‘ 0.004 A M/\/\
0.002 /\
A ]
| . 'O W\
0 1 2 3 4 5 6 2 -1 0 1 2

Figure 11. (Left): Set of data points on the cycloid (dotted), fitting curve obtained using the
trigonometric functions f(t) = sin((A+1t)/2) and g(t) = sin((A—1t)/2) and fitting curve
obtained using the hyperbolic functions f(t) = sinh ((A+1t)/2) and g(t) = sinh((A—1)/2).
(Right): Fitting error comparison. The x-axis represents the parameters t in [—A, A] and the y-axis
represents the curvature error value of the fitting curve obtained using the trigonometric and
hyperbolic bases.
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4.3. Archimedean Spiral Curve

Finally, let us show different approximations of the Archimedean spiral given by the
parametric equations

{Xsa(f) = tcos(t), (16)

Ysa(t) = tsin(t),

t € [0,4rn]. First, let us see an approximation obtained training the neural network N, p using
polynomial functions. We have taken the following sequence of points s = (sl-)?io on the Archimedean
spiral (16):

s; = (xsa(471t;),ysa(4mt;)), i=0,...,99,

being the parameters t; =i/99,i =0,...,99.

For n = 11, we have approximated the set s by the fitting curve using the functions f(t) =t and
g(t) =1 — t at the vector nodes t = (t;)?? with t; as above. Figure 12 shows the fitting curve of degree
11 and its corresponding fitting error.

0'02E

‘ L 1=t g=1-t Fitting error
g N [ - Spiral
5 b
0.015
5 )
0.01
5t ~. S =
0.005
-10
‘ ‘ SO 0 . N . "
-10 5 0 5 10 0 0.2 0.4 0.6 0.8 1

Figure 12. (Left): Set of data points on the Archimedean spiral (dotted) and the fitting curve of degree
11 obtained using the functions f(t) = tand ¢(t) =1 — ¢, t € [0,1]. (Right): The x-axis represents the
parameters ¢ in [0, 1] and the y-axis represents the fitting error value of the fitting curve obtained using
the functions f(t) =tand g(t) =1—t.

Let us see other examples in which the Archimedean spiral is approximated by the neural
network using hyperbolic functions. We have taken the following sequence of points s = (si)?zo on
the Archimedean spiral (16):

si = (xsa((ti + 8)271/ D), ysa((t; + A)27T/A), i=0,...,99,

being the parameters t; = —A +2Ai/99,i =0,...,99. For n = 11, we have approximated the set s by
the fitting curve using the functions f(t) = sinh ((A + t)/2) and g(t) = sinh ((A — t)/2) at the vector
nodes t = (;)??, with t; as above.

Figure 13 shows the fitting curve of degree 11 and its corresponding fitting error.

We can see in Figure 14, the convergence of the two above fitting curves. Let us observe that
the fitting curve corresponding to the hyperbolic rational basis has a faster convergence. Therefore,
once again, it seems that the choice of the functions f and g, hence the choice of the rational basis,
is relevant to the approximation.
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- 0.07 =
f(t)=sinh((A+1)/2), Fitting error
g(t)=sinh((A-t)/2) —f(t)=sinh((A+1)/2),g(f)=sinh((A-t)/2) ﬂ
5 . Spi 0.06
piral
0.05
4 ) 0.04
0.03
k. 0.02
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-10
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Figure 13. (Left): Set of data points on the Archimedean spiral (dotted) and the fitting curve of
degree 11 with the functions f(#) = sinh ((A +t)/2) and g(t) = sinh ((A — t)/2). (Right): The x-axis
represents the parameters ¢ in [—A, A] and the y-axis represents the fitting error value of the fitting
curve obtained using the hyperbolic basis.

04071 | Convergence

—1(t=t, g(9=1-t

0 550 1000 1500 2000 2500 3000

Figure 14. The history of the loss values, i.e., the mean absolute error values, through 3000 iterations
of the training algorithm while the fitting curves converge is pictured. The blue line corresponds to
the fitting curve of degree 11 obtained using f(t) = t and g(t) = 1—t¢, ¢t € [0,1], and the orange
line corresponds to the fitting curve of degree 11 obtained using f(t) = sinh ((A 4 t)/2) and g(t) =
sinh ((A — t)/2). The x-axis represents the iteration of the training algorithm and the y-axis represents
the mean absolute error value. The values are the mean of 50 repetitions.

4.4. Comparison of Least-Squares Fitting and the Neural Network N, p

In this section, the proposed neural network is compared with the least-squares method and the
regularized least-squares method. It is well known that least-squares fitting is a common procedure to
find the best fitting curve to a given set of data points by minimizing the sum of the squares of the
data points from the curve ([9,21,22]). The least-squares method is sensitive to small perturbations in
data and, in those cases, regularization methods can be applied such as the regularized least-squares
method (see [23]). Therefore, two experiments have been developed. The set of data points used in the
first experiment is a non-noisy parametrization of known curves, so the least-squares method has been
applied. In the second experiment, we used an image to obtain a noisy set of data points and applied
the regularized least-squares method.

The problem that we want to solve is stated as follows. Suppose that f and g are functions defined
on [a, b] satisfying the conditions of Proposition 1. Consider a set of parametersa <ty < --- <t; <b
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and a sequence of data points sy, . ..,s, € R¥, where each parameter #; is associated with a data point
s;. For some n < ¢, we want to compute a rational curve

W () (g i)
)= L A e

P, t€[ab], (17)

minimizing the sum of the squares of the deviations from the set of data points s = (si)fzo, that is,
Y4 o(si — c(t;))2 In order to compute the control points P = (P;), of the fitting curve, we have to
solve, in the least-squares sense, the overdeterminated linear system AP = s, where the matrix A is

A= ( Wl (DS (4)8" (1) )
Yo} (DI (4)8" () ) o<i<mpo<j<e.

In this fourth experiment, let us see two examples comparing the fitting curves obtained applying
this traditional method and the fitting curves obtained by training the neural network N, p. We have
seen previously an approximation of the circle (14) obtained with the neural network Ny, p for n =5
using the polynomial functions f = tand ¢ =1 —¢, t € [0, 1]. Besides, we have seen an approximation
of the Archimedean spiral (16) obtained with the neural network Ay, p for n = 11 using the polynomial
functions f = tand g =1 —t, t € [0, 1]. Using the same parameters and sets of data points, we solved
the corresponding overdeterminated linear systems AP = s to obtain the control points of the curve
that best fits the given data points in the least-squares sense. For this purpose, following the steps
shown in Section 6.4 of [1], we have obtained the solutions of AP = s, firstly, by using the Matlab
command SVD and, secondly, by using the Matlab command mldivide .

Since the weights are unknown and are necessary for solving the linear system AP = s in the
least-squares sense, these have been randomly chosen within a positive range. Let us observe that
one of the advantages of the neural network Ny, p with respect to the least-squares method is that the
neural network ANy, p not only finds suitable control points, but it also finds suitable weights to fit the
given set of data points.

In Table 3, the execution time of the least-squares method using a different number of weights and
control points is provided. We can see that, although for low-degree fitting curves, the least-squares
method is faster than the method proposed in this paper, for the fitting curves of degree greater than
n = 18, the proposed method is faster than the least-squares method.

We can see in Figures 15 and 16 that the fitting curves obtained by training the neural network are
more accurate than the fitting curves obtained by applying the traditional least-squares method.

In the last experiment, we have taken 31 points from a baroque image as a set of data points
(see Figure 17). We have approximated them by two fitting curves of degree 8 with hyperbolic functions
f(t) =sin ((A+t)/2) at the vector nodes t = (#;)¥, such thatt; = —A +2A(i —1)/30,0 < A < 71/2.
The first fitting curve was obtained by training the neural network N, p during 1000, reaching a
final mean absolute error on the set of data points of 9 x 10~3. Besides, this example shows the
robustness of the proposed method to noisy data points. The second fitting curve was obtained with
random vector weights and the regularized least-squares method by using an adaptation of the Matlab
library available in [24]. This last fitting curve reached a mean absolute error of 1.95 x 10~2. Visually,
in Figure 17, it is appreciated that the fitting curve obtained by training the neural network A, p
achieves better curvature than the regularized least-squares method (which is more evident at the
beginning and at the end of the curve). Finally, we would like to highlight that we have observed in all
the executed experiments a good performance of the neural network for small values of 7, in spite of
the complexity of the set of data points.
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Table 3. For different number of weights and control points, the time of execution of the least-squares
method using the Matlab commands mldivide and SVD, and the time of execution of the Algorithm 1
for 3000 iterations are provided. The values have been measured in seconds with a set of data points of

size 100 and they are the mean of 5 repetitions.

41 Least-Squares Method  Algorithm 1
n
mldivide SVD 3000 Iterations
5 63.3014 65.6015 189.5386
10 167.0402 237.0386 268.8726
15 309.5811 457.8987 347.6139
20 478.1141 774.3472 429.2819
30 961.2860 978.6830 568.5647
50 25524064  4097.9278 850.6713
1 s = - 0.08 Radial error
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Figure 15. (Left): Set of data points on circle (dotted), fitting curve of degree 5 obtained with the
neural network, fitting curve of degree 5 obtained with the least-squares method by using the Matlab
commmand mldivide (LS1), fitting curve of degree 5 obtained with the least-squares method by using
the Matlab command SVD (LS2). (Right): The x-axis represents the parameters f in [0,1] and the y-axis
represents the radial error value of the fitting curves obtained with the different methods.
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Figure 16. (Left): Set of points on the Archimedean spiral curve, fitting curve of degree 11 obtained
with the neural network, fitting curve of degree 11 obtained with the least-squares method by using the
Matlab command mldivide (LS1) and fitting curve of degree 11 obtained with the least-squares method
using the Matlab command SVD (LS2). (Right): The x-axis represents the parameters ¢ in [0, 1] and the
y-axis represents the fitting error value of the fitting curves obtained with the different methods.
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Figure 17. Noisy set of data points obtained from the baroque image (points in blue), fitting curve
obtained by training the proposed neural network (points in green) and fitting curve obtained using
the regularized least-squares method (pink). Baroque motif image source: Freepik.com.

5. Conlusions and Future Work

In this work, we have tackled the problem of finding a rational curve to fit a given set of data points.
To solve this issue, we have proposed a one-hidden-layer neural network based on a general class
of totally positive rational bases belonging to spaces mixing algebraic, trigonometric and hyperbolic
polynomials, thus expanding the potential range of applications to include more difficult shapes.
In order to obtain the weights and control points of the rational curve to fit the data points, the neural
network is trained with an optimization algorithm to update the weights and control points while
decreasing a loss function. The fitting curves of the numerical experiments show that for certain curves,
the use of particular rational bases provides better results.

In future work, we wish to extend the neural network to obtain a suitable parametrization of
the data points. The choice of the parameters can help to improve the approximation. Additionally,
we plan to apply our method to curves, surfaces and high-dimensional data, and analyze, as in [25]
for Bezier curves, its application to industrial software, CAD/CAM systems (such as Blender (https:
//www.blender.org/), Maya (https:/ /www.autodesk.es/products/maya/overview) or Solid Edge
(https:/ /solidedge.siemens.com/en/)), and other real-world problems. Finally, we plan to explore the
applicability of our approach to the resolution of linear differential equations (cf. [26,27]).
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Abstract

In this paper we provide algorithms for computing the bidiagonal decomposition of
the Wronskian matrices of the monomial basis of polynomials and of the basis of
exponential polynomials. It is also shown that these algorithms can be used to per-
form accurately some algebraic computations with these Wronskian matrices, such
as the calculation of their inverses, their eigenvalues or their singular values and the
solutions of some linear systems. Numerical experiments illustrate the results.

Keywords Accurate computations - Wronskian matrices - Bidiagonal
decompositions

1 Introduction

The accuracy of the calculations is a desirable goal in Computational Mathematics.
Let us recall that an algorithm can be performed with high relative accuracy (HRA) if
it does not include subtractions of numbers having the same sign (except of the initial
data if they are exact), that is, if it only includes products, divisions, additions of num-
bers of the same sign and subtractions of the initial data having the same sign provided
that they are not affected by errors (cf. [5]). For some structured classes of matrices
such algorithms have been found through an adequate parameterization of the matrix.
In particular, this has been achieved for some subclasses of totally positive (TP) matri-
ces. In [12] it was shown that, given the bidiagonal factorization of a nonsingular TP
matrix A with HRA, we can compute with HRA its eigenvalues and singular values,
the matrix A~! and even the solution of Ax = b for vectors b with alternating signs.
Among the subclasses of TP matrices for which the bidiagonal factorization has been
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1 Page 2 of 15 E. Mainar et al.

obtained with HRA (cf. [3, 4, 13, 14]), there are many examples of collocation matri-
ces (uj_1(#)1<ij<ns1 OF systems (uy, ..., u,) of functions defined on a real subset /
(t; <ty < - <t,.,in ). However, up to now, there are no examples of accurate com-
putations for matrices involving derivatives of the basis functions. This paper presents
some examples of Wronskian matrices for which many algebraic computations can be
performed accurately. These Wronskian matrices come from applications in computer
aided geometric design (CAGD) and they can also arise in Hermite interpolation prob-
lems, in particular in Taylor interpolation problems.

The paper is organized as follows. In Sect. 2, we provide basic concepts and tools.
In particular we recall the Neville elimination procedure and the bidiagonal factori-
zation of a nonsingular TP matrix. This factorization provides the adequate param-
eterization to derive the accurate algorithms with these matrices. Section 3 shows
that the bidiagonal factorization of the Wronskian matrices of the monomial basis
of polynomials can be performed with HRA. In Sect. 4 we first prove that Wron-
skian matrices of the basis of exponential polynomials on positive real numbers are
strictly totally positive. We also provide the bidiagonal factorization of these matri-
ces. The computation with HRA of this factorization should require the evaluation
with HRA of the involved exponential functions. Although this cannot be guaran-
teed, numerical experiments show an accuracy similar to the obtained for the mono-
mial basis. Finally, Sect. 5 includes numerical experiments showing the accuracy of
the presented methods for the computation of all eigenvalues, all singular values, the
inverses and the solution of linear systems.

2 Notations and auxiliary results

As usual, given an n-times continuously differentiable function f and x in its param-
eter domain, f’(x) denotes the first derivative of f at x and, for any i < n, fO(x)
denotes the ith derivative of f at x. Let us recall that for a given basis (u, ..., u,) of
a space of n-times continuously differentiable functions, defined on a real interval /
and x € I, the Wronskian matrix at x is defined by

Wtg, ... u)(X) 1= @ 00)m e

A matrix is totally positive: TP (respectively, strictly totally positive: STP) if all
its minors are nonnegative (respectively, positive). Two recent books on these matri-
ces are [6, 16], where many applications of these matrices are presented, as well as
in [1].

Neville elimination is an alternative procedure to Gaussian elimination and
has been used to characterize TP and STP matrices. Given a nonsingular matrix
A =(a;;)1<; j<nt1» Neville elimination computes a matrix sequence

A(l) ':A —)A(z) —> oo _)A(n+l) = U,

such that, for 1 <k <n, A®D = (a§§+1))1 <ij<nt1 has zeros below its main diagonal
in the first k columns and is computed from A® = (ag;.))l <ij<nt1 DY:

@ Springer



Accurate computations with Wronskian matrices Page3of 15 1

a’), if1<i<k,
(k)
(+1) . _ ky _ ik (k) : ;s (k)
a; =y A aﬁf)lkai—lJ’ ifk+1<ij<n+1and a1y #+0,
a’), if k+1<i<n+landa’  =0.

The element p; ; := ag;, 1 <j<i<n+1,iscalled the (i, j) pivot and, in particular,
p;.;1s a diagonal pivot of the Neville elimination of A. If all the pivots are nonzero then

Neville elimination can be carried out without row exchanges. In this case, by Lemma
2.6 of [7],

pi,lzai,l’ 1Sl§n+1,

detAli—j+1,...,i|1,...,] o
L il Gy, O
detAli—j+1,...,i—1|1,...,j— 1]

Pij

where given increasing sequences of integers a and f, A[a|f] denotes the submatrix
of A containing rows of places @ and columns of places f. Moreover,

0] e ()
a’’fa’ .=p;[pi_1; if @’ . #0, o
m.. = ij/! i1y =1y i—1y , 1< <l<l’l+1,
_t a0 SISm0
is called the (i, j) multiplier of the Neville elimination of A.
By Theorem 4.2 and the arguments of p. 116 of [9], a nonsingular TP matrix

A = (a;)1<; j<n+1 @dmits a factorization of the form
A=FnFn—l FlDGl "'Gn—lGn’ (3)

where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by

1
01
0 1
Fi= m. 1 ’
i+1,1
Mmoo 1
mn+1,n+1—i 1
. 4)
01
0 1
GT= ~ s
! Mip11 1
M0 1
mn+1,n+l—i 1
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1 Page 4 of 15 E. Mainar et al.

and D = diag(pl’l, P22s -+ s Pusln +1) has positive diagonal entries. If, in addition,

the entries m,;, m;; satisfy

mii=0:’mhi=0 Vh>i
and
771ij=0;‘~171ik=0 Vk>j,

then the decomposition (3) is unique. The diagonal entries p;; of D are the diagonal
pivots of the Neville elimination of A and the elements m; ; and /7, ; are the multipli-
ers of the Neville elimination of A and A7, respectively. We shall denote the bidiago-
nal decomposition (3) of a TP matrix A by BD(A) (see [11]). Given BD(A), using the
results in [7-9], a bidiagonal decomposition of A~! can be computed as

A_l == Gléz e GnD_IFn "'FzFl, (5)

where F; and G,, i = 1, ..., n, are the lower and upper triangular bidiagonal matri-

ces of the form of F; and G;, respectively, but replacing the off-diagonal entries

Mgy 1o s Mgy b and iy g s gy g} DY {=miy o =myy ;) and
{=my 5. s =1, ;} respectively. From Theorem 4.1 of [7] and p. 116 of [9], a
given matrix A = (a; ), ; j<p41 18 STP if and only if the Neville elimination of A and
AT can be performed without row exchanges, all the multipliers of the Neville elimi-
nation of A and A7 are positive and all the diagonal pivots of the Neville elimination
of A are positive.

Let us recall that a real value x is obtained with high relative accuracy (HRA) if the
relative error of the computed value X satisfies

llx — x|
x|

where K is a positive constant independent of the arithmetic precision and u is the
unit round-off. HRA implies that the relative errors of the computations are of the
order of the machine precision. So, performing an algorithm with HRA is a very
desirable goal. An algorithm can be computed with HRA when it only uses prod-
ucts, quotients, sums of numbers of the same sign or subtraction of initial data
(cf. [5, 11]).

In [12] it was shown that if BD(A), the bidiagonal factorization (3) of a nonsin-
gular TP matrix A, is computed with HRA then we can also compute with HRA its
eigenvalues and singular values, the matrix A~ and even the solution of Ax = b for
vectors b with alternating signs.

In the following sections we shall obtain the bidiagonal factorization (3) of Wron-
skian matrices associated with some bases with applications in CAGD, analyzing
whether it can be computed with HRA.

< Ku,
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3 Wronskian matrices of monomial bases

The monomial basis of the space P" of polynomials of degree less than or equal to n
1s (my, ... ,m,) with

mx) :=x', i=0,...,n 6)
Given x, € R, we can define a Taylor basis (n, ..., n,) of P" by

(x xo)‘

i!

n;(x) : , 1=0,...,n. (7)

It can be checked that
(mgy, ...,m,) = (ng,...,n,)W,
where W 1= W(m,, ..., m,)(xy). Equivalently, we can also write

(g, ... n,) = (Mg, ... ,m,)W',

In this section we are going to obtain the bidiagonal factorization (3) of W and W~!

and see that they can be computed with HRA. First let us prove the following auxil-
iary result.

Lemma 1 Giveni,j € N, then

(”( ) = D) + 2 m(')l(x) x € R. 8)

= ke

Proof Let us prove the result by induction on i. For i =1 and j € N, taking into
account that mJ’.(x) (xm;_; (x))’, we have

mj(x) l(x) +xm ), xeR,

and so formula (8) holds. Let us now suppose that (8) holds for i > 1 and j € N.
Then we have

/
1 i+ 1 i— X i
m" ])( ) = <—(l 1)'m; 1])(x)+ —i'mj(.)l(x)>

l']

=20 0+ In 0w, xeR,
1.

and we can deduce that, for j € N,

1 D 0 (z+1)
—(i+1)'f ()—.‘ ()+( 1)‘ x), xeR.

@ Springer



1 Page 6 of 15 E. Mainar et al.

Foragivenx € R, k,n € Nwithk <n, letU; , = (4;,);<; j<,11 be the upper trian-
gular bidiagonal matrix with unit diagonal entries and such that

ui,i+1 :=O’ i=1"--ak_1’ Uii1 =X, l=k,,n (9)

In the following result we obtain an explicit expression of the entries of the prod-
uct matrix Uy , -+ U, ..

Proposition 1 Fora given x € Randn € N, let

Un = Ul,n Un,n’
where Uy, k = 1,...,n, is the upper triangular bidiagonal matrix with unit diago-
nal entries satisfying (9). Then U, = (u; ) <; j<n11 IS an upper triangular matrix and

1 i -

;= mm}'_ll)(x), 1<i,j<n+1. (10)
Proof Clearly, U, is an upper triangular matrix since it is the product of upper trian-
gular bidiagonal matrices. Let us now prove (10) by induction on n. Forn = 1,

1 x
U1=U1,l=<01>

and (10) clearly holds. Let us now suppose that (10) holds for n > 1. Then

Upr1 = U1 Uit = U1 U

WhCI'C U}’l+1 = Uz’n+1 oo Un+1,n+1 SatiSﬁeS U}’l+1 = (ﬁl,])lﬁl,]ﬁn+2 With
Ij‘i,l = I’/qllsi = 51,1-, that iS, 6131 =1 al’ld 51,1- = O for l == 2, el + 2, al’ld
U,l2,...,n+2]2,...,n+2]=U,, - U,,. Then we have that

= oS 0, 286 <02

Now taking into account that

U1 = U1,n+1 n+1 = 1 x U1

1

and using Lemma 1, we deduce that U, ,; = (; ;) <; j<n Satisfies

1 (i-2) i-1)
G2 Ot T @

Upj = U+ XUy ;=

= (i%l),m](-i__ll)(xx 1<i,j<n+2.

@ Springer
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Let us observe that for x > 0 the matrices Ui k=1,...,n, are TP. Then, as a
direct consequence of the previous result and taking into account that, by Theo-
rem 3.1 of [1], the product of TP matrices is TP, we can derive the following
result providing a bidiagonal factorization of the Wronskian matrix of the mono-
mial basis (6).

Corollary 1 Let n € N and (myy, ... ,m,) be the monomial basis given in (6). Then

forany x € R,
0!
1!
W i=W(my,...,m)x) := . U Uy, U, (11)
n!
where Uy, k = 1,...,n, is the upper triangular bidiagonal matrix with unit diago-

nal entries satisfying (9). Moreover, if x > 0 then W(m,, ... ,m,)(x) is TP.

Let us observe that (11) is the bidiagonal factorization (3) of the upper triangu-
lar, nonsingular and TP Wronskian matrix W = W(m,, ...,m,)(x), x > 0, where F;
and G, are the TP, lower and upper triangular bidiagonal matrices in (4). Clearly
BD(W) can be computed with HRA and, consequently, using the bidiagonal fac-
torization (5), W~! can also be computed with HRA as stated in the following
result.

Proposition 2 Let W be the Wronskian matrix at x, of the monomial basis of the
space of polynomials P". Then W=! can be computed with HRA.

Furthermore, Sect. 5 will show accurate results obtained when computing the
eigenvalues, singular values, the inverse and the solutions of some linear systems
associated with the Wronskian matrices of monomial bases, using the bidiagonal
factorization (11) and the algorithms presented in [10, 12].

Finally, in the following example, we illustrate the bidiagonal factorization
(11) of the Wronskian matrix of a basis of monomials.

Example 1 For the particular case n = 3, the bidiagonal factorization of the Wron-
skian matrix of the basis (m,, m;, m,,m;) at x € R1is

1000)1x00)1000)1000
0100)}JO01x0|JjO1x0fJO100
0020001 x|JOO01x|JOO1x|
0006 NN0001N0001TN00O01

W(m()a m] s m29 m3)(x) =

@ Springer



1 Page 8 of 15 E. Mainar et al.

4 Bidiagonal factorization of the Wronskian matrix of a basis
of exponential polynomials

Given A, ..., 4, and x € R, let us consider the basis (i, ...,u,) of exponential
polynomials defined on R by

w(x) :=e*, i=0,...,n. (12)

The following result proves that, if 0 < 4, < 4; < --- < 4,,, the Wronskian matrix of
the basis (12),

Wtg, .., u,)(X) = (X215 s (13)

is STP for any x € R.

Theorem 1 Let 0 < Ay < --- < A, and the basis (12) of exponential polynomials.
For any x € R, the corresponding Wronskian matrix (13) is STP and

n

det W, ..., u )@ = [ e [] s =4 (14)

k=0 0<k<f<n

Proof The matrix D := diag(e**, ..., e**)is nonsingular and TP since e** > 0, for
all k =0, ...,n. It can be easily checked that

W(ug, ..., u,)x) =V, 3 .20

whereV, , =, = (/1’:‘1 is the (n + 1) X (n + 1) Vandermonde matrix cor-

J-1 ) 1<ij<n+1
responding to the values 4;, i =0,...,n. Using that 0 < 4, < --- < 4,, we deduce
that V, . . is STP (see [2]). Taking into account that, by Theorem 3.1 of [1], the
product of a STP matrix by a nonsingular, TP matrix is a STP matrix, we conclude
that W(u, ..., u,)(x) is STP. Since det W(uy, ..., u,)(x) = detV, ;  , detD we can
write

det VI’L,/IO,...,/IH = H (ﬂf - Ak)’ (15)

and deduce (14). O

In the following result we present the bidiagonal decomposition (3) of the Wron-
skian matrices (13) and their inverses.

Theorem 2 Let 0 < Ay < -+ < A, and the corresponding basis (12) of exponential
polynomials. For a given x € R, W := W(u,, ... ,u,)(x) admits a factorization of the
form

W=FF,_ - F,DG, -G, G, (16)
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Accurate computations with Wronskian matrices Page 9 of 15 1

where F; and G;, 1 <i < n, the lower and upper triangular bidiagonal matrices
given by (4) and D = diag(pl,l,pz’z, ,pn+1’n+1). The entries m;;,m;; and p;; are
given by

A ~ (Ao —4; z)xﬁ (il‘—l - Al‘—k) 1 <i < < + 1
m,.=A_q, m;=e"" " s SJ<1i=sn ,
i / Y k=2 (/11'—2 - j'i—k—l)

i-2
pi; = et 1‘[(,11._1 —A), 1<i<n+1.
k=0

Proof By Theorem 1, the matrix W is STP and then the Neville elimination of W and
WT can be performed without row exchanges, leading to a factorization of type (3).
The computation of the minors of W with initial consecutive columns and consecu-
tive rows will allow us to determine the corresponding pivots p; ; and multipliers m, ;.

Let1 <j<i<n+ 1 The kth column of M[i —j+1,...,i|l,...,j] has common
factor A,/ e*-1* and then

Whi—j+1,...,ill,....jl=V] D,

M40, Aj

where D = diag(ﬁg_j ehr ,/I;je’lf—lx> and V, ;. Aoy is the jXj Vandermonde

matrix corresponding to parameters 4, ..., 4,_;. Using properties of determinants
and (15), we can write

j-1
detWli—j+1,....ill,...,j] = H (A, — Ak)HA;c‘feﬂkX. (17)
0<k<t<j—1 k=0
By (1) and (17), the pivot p, ; of the Neville elimination of W satisfies
detW[l—J+1,,l|1,,J] i

.= = ﬂ Af—lx
Pis = QeeWli—j+1,....i=1|1,....j—1]  -1°
j-2 (18)
x [ {41 = 40
k=0

and, for the particular case i = j,

i-2
Pii = JYIE: 1_[(,11._1 —A), 1<i<n+1. (19)
k=0

Finally, using (2) and (18), the multipliers m, ; can be obtained by

Pij .
miz/'zp,j.zﬂj—l’ 1<j<i<n+l. (20)
=1y

Now let us observe that each entry of the kth row of W’ has common factor e*i-+-1¥,
Then we have that
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1 Page 10 of 15 E. Mainar et al.

Wii—j+1,...,il,...,j] = D\Vj oo

where D, :=diag(e*~",...,e%")and V, , s the jxj Vandermonde matrix

corresponding to parameters Aisjs ...,/ll_l Using properties of determinants and
(15), we can write

detWili—j+1,....ill,....j] = Hﬁkx I @ -w. Q1)
k=i—j i—j<k<£<i—1
By (1) and (21), we deduce that
det WTli—j+1,....ill,...,]]

Pij = et WTli—j+ 1, i= 1|1, j— 1]
i—2 (22)
= e [ iy = 4.
k=i—j
Finally, using (2) and (22), we have
- 2 )
m. . = —pi‘j = M- Aio)x k=i il ¢
Woon i-3
pl—]J k_'_j 1(11—2 - Ak) (23)
J
(Aioy —
— (A=A )x L
=e
g (/11 2 l —k— 1)
forl<j<i<n+1 O

Let us observe that the computation with HRA of the bidiagonal decomposition
(16) should require the evaluation with HRA of the involved exponential function.
Although this cannot be guaranteed, Sect. 5 will show accurate results obtained
when computing their eigenvalues, singular values, inverses or the solutions of some
linear systems associated with these Wronskian matrices of non-polynomial bases.

We finish this section illustrating the bidiagonal factorization (16) of the Wron-
skian matrix of a basis of exponential polynomials.

Example 2 For the particular case n = 2, the bidiagonal factorization of the Wron-
skian matrix of the basis (e%*, e#*, e#¥) at x € R is

W(eﬂox’ e/llx,eAZX)

100 1 00\/py, 0O O 1 ehi~tox 0 10 0
={o0o10 A 10 0 pyy, O 0 1 euz—w% 01 eto—ix |,
04, 1/\ 0 41 0 0 ps/lo o 177 N\oo 1

where p; | = €%, py, = eh*(A) = Ay) and py 3 = *2*(4; — A)(4, — 4).
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5 Numerical experiments

When the bidiagonal factorization of a nonsingular totally positive matrix is
obtained with HRA, using the Matlab libraries “TNInverseExpand”, “TNEi-
genvalues”, “TNSingularValues” and “TNSolve”, available in [10], the
computation of its inverse matrix, its eigenvalues and singular values or the solu-
tions of some linear systems can be also performed with HRA.

We have implemented the Matlab functions “TNBDWM” and “TNBDWE” providing
the bidiagonal decomposition (3) of the Wronkian matrix at x of the (n + 1)-dimen-
sional monomial and exponential basis. Now we include some numerical experi-
ments illustrating the high accuracy obtained when using these functions and the
previous libraries. Due to the ill conditioning of these matrices, traditional methods
do not achieve accurate solutions when solving the mentioned algebraic problems.
The numerical experiments show this fact and confirm the accuracy of the obtained
results even though for some cases we cannot guarantee that the bidiagonal factor-
ization (3) can be computed with HRA. The software with the numerical experi-
ments will be provided by the authors upon request.

5.1 Linear systems

Let U be an (n + 1)-dimensional space of n-times continuously differentiable func-
tions defined on a real interval / C R and x, € I. Given real values d,,,d,, ... ,d,, the
corresponding Taylor interpolant in U is the function u € U such that u®(x,) = d,
k=0,...,n. Given a basis u = (ug,...,u,) of U, the Taylor interpolant can be
expressed as u(x) = Y, ¢;u;(x), x € I, where ¢ = (cy, ..., ¢,)" is the solution of the
linear system

We=d, (24)

with W = W(yy, ..., u,)(x,) and d =(d,,...,d,)". Then we have u(x)=u(x)’c
where ¢ = W~'d.

We have solved some linear systems (24) by considering the bases of the previ-
uos sections. We have obtained the solution of these systems using Mathematica
with a precision of 100 digits and considered this solution exact. We have also
computed with Matlab two approximations of this solution, the first one using
“TNSolve” with the bidiagonal factorization proposed in this paper and the sec-
ond one using the Matlab command \.

First, we have considered x, = 50 and the corresponding Wronskian matrices
W, of the monomial basis (1,x, ... ,x"). Table 1 (left) illustrates the 2-norm con-
dition number of these matrices using the Mathematica command Norm[A,2]
Norm[Inverse[A],2]. We have taken a vector d, = (=1)"'d)),;.,.,; Where d; is
a random integer value. As we have mentioned in Sect. 3, the parameters of the
bidiagonal decomposition (11) of W, can be obtained with HRA and so, the solu-
tion of W, ¢, = d, can be performed with HRA. The numerical experiments con-
firm this fact and the greater accuracy of using the bidiagonal decomposition (11)
(see Table 1).
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1 Page 12 of 15 E. Mainar et al.
Table 1 Condition number N+l Ko (W) W \d “INsolve”
of Wronskian matrices of z "t
monomial bases at x, = 50 (left) 10 1.1% 105 38102 % 1014 8.8082 x 10-17
and relative errors when solving ’ ' '

W.c = d with these matrices 15 4.8 % 10% 6.6581 x 1012 17749 x 10716
(middle and right) 20 3.7 x 107 5.0996 x 10~° 1.1459 x 10-16
25 8.2 x 107 2.7182 x 1077 2.8366 x 10716
Table 2 Condition number
+1 w W \d “TNsolve”
of Wronskian matrices " (W) i\ d, so-ve
of exponential bases at 10 96 7 _11 —16
6x10 4.0424 x 10 5.4201 x 10
Xo=1/2and A, = i/(n +2), %
=141 dlefo and 15 2.8 %1012 2.7929 x 1077 9.3188 x 1077
relative errors when solving 20 8.2 x 106 47662 x 1073 3.8596 x 1016
W, ¢, = d, with these matrices 75 2.5 % 102! 1.4272 25409 x 10-13

(middle and right)

Now, for x, = 1/2, we have also considered Wronskian matrices W, of expo-
nential polynomial bases with A, =i/(n+2),i=1,...,n+ 1. Table 2 (left) illus-
trates the 2-norm condition number of these matrices using the Mathematica com-
mand Norm[A,2]-Norm[Inverse[A],2]. We have also takend, = ((—1)"+1dl-)15is,,+1,
where d; is a random integer value. The computation with HRA of the param-
eters of the bidiagonal factorization of W, cannot be guaranteed. However, these
numerical experiments show again the high accuracy in the computations when
using “TNSolve” with the bidiagonal factorization (16) (see Table 2).

5.2 Inverse matrix

In Section 4 of [15] the authors present the algorithm “TNInverseExpand”, which
is an accurate and fast algorithm for computing the inverse of a nonsingular totally
positive matrix A starting from BD(A) and it has been included by P. Koev in his
package TNTool [10].

We have used the Matlab function “TNInverseExpand” with the factorization
proposed in this paper in order to compute the inverse of Wronskian matrices of the
bases considered in the paper. We have also computed their approximations with the
Matlab function “inv”. In order to determine the accuracy of the approximations,
we have calculated the inverse of these Wronskian matrices by using Mathematica
with a precision of 100 digits and computed the relative errors corresponding to the
approximations, considering the inverse matrix provided by Mathematica as exact.

The approximation of the inverse of the Wronskian matrices obtained by means
of “ITNInverseExpand” is very accurate for all considered n, providing much
more accurate results than those obtained by Matlab using the command “inv”.
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Table 3 Relative errors

. 8 n+1 “inv” “TNInverseExpand”

when computing the inverses
of Wror}sklan matrices of 10 5.5583 x 10-14 8.8081 % 10~7
monomial bases at x, = 50

15 2.8550 x 10~ 1 1.7749 x 10~16

20 1.0218 x 10~° 1.1497 x 1016

25 8.3974 x 1077 1.1944 x 10~16
Table 4 Relat.ive errqrs n+l “i v’ “TNInverseExpand”
when computing the inverses
of Wronskla'n matrices 10 4.0206 % 10-11 4.0436 x 1016
of exponential bases at
Xy = 1/2 and /1[ — l/(n + 2)’ 15 2.8247 x 1077 3.5637 X 10_]6
i=1,...,n+1 20 4.8134 x 1073 4.0018 x 10~1¢

25 1.4611 2.6557 x 10~

Tables 3 and 4 show the relative errors of the approximations to the inverse of the
Wronskian matrices obtained with both methods.

5.3 Eigenvalues and singular values

We have also used the bidiagonal decomposition proposed in this paper with the
Matlab functions “TNEigenValues” and “TNSingularValues”, to com-
pute the eigenvalues and the singular values, respectively, of the previous Wron-
skian matrices. We have also computed their approximations with the Matlab
functions “eig” and “svd”, respectively. In order to determine the accuracy of
the approximations, we have calculated the eigenvalues and singular values of
previous Wronskian matrices by using Mathematica with a precision of 100 digits
and computed the relative errors corresponding to the approximations, consider-
ing the eigenvalues and singular values provided by Mathematica as exact.

Let us consider the Wronskian matrices at x = 0.3 of monomial bases. Table 5
(left) illustrates the 2-norm condition number of these matrices using the Math-
ematica command Norm[A,2]:Norm[Inverse[A],2]. Since these Wronskian
matrices are all STP, by Theorem 6.2 of [1], all their eigenvalues are positive
and distinct. Let us observe that the eigenvalues of these Wronskian matrices are
0!,...,n!, so in this case the relative errors are 0 with both methods. On the other
hand, the approximations of the singular values obtained by means of “TNSin-
gularValues” are very accurate for all considered n, whereas the approxima-
tions of the singular values obtained with the Matlab command “svd” are not
very accurate when n increases. Table 5 shows the relative errors of the approxi-
mations to the lowest singular value obtained with both methods.

Let us also consider Wronskian matrices of the exponential polynomial bases
at x=1/2 with A, =i/(n+2),i=1,...,n+ 1. The approximations of the eigen-
values and singular values obtained by means of the proposed factorization are
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1 Page 14 of 15 E. Mainar et al.

Table 5 Condition number
of Wronskian matrices of
monomial bases at x, = 0.3 10
(left) and relative errors when

n+1 (W) svd “INSingularValues”

4.5 % 10° 1.5898 x 10712 3.9691 x 10~!¢

computing the lowest singular 15 LIx10"  72111x107%  2.6461 x 10716
value of these matrices (middle 20 1.5x 107 24313 x 107! 6.6151 x 10716
and right) 25 77x 102 74909% 107! 2.6461 x 10-'6

Table 6 Relative errors when computing the lowest eigenvalue (left) and the lowest singular value (right)

of Wronskian matrices of exponential bases at x, = 1/2and A, =i/(n+2),i=1,....,n+1

n+1 eig “TNEigenValues” svd “TNSingularValues”
10 1.8449 x 10~ 3.1595 x 10716 1.7818 x 10710 1.5487 x 10710

15 1.8701 x 10° 7.9152 x 10716 3.0235x 1076 1.1653 x 10713

20 1.1279 x 1072 1.1208 x 101 7.0058 x 107! 8.6431 x 10716

25 1.4512 x 10° 1.6727 x 10715 1.0646 x 10? 2.4382 x 10715

very accurate for all considered n, whereas the approximations of the eigenval-
ues and singular values obtained with the Matlab commands “eig” and “svd”
are not very accurate when n increases. Table 6 shows the relative errors of the
approximations to the lowest eigenvalue and singular value obtained with both
methods.
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Abstract

In this paper an accurate method to construct the bidiagonal factorization of collocation and
Wronskian matrices of Jacobi polynomials is obtained and used to compute with high relative
accuracy their eigenvalues, singular values and inverses. The particular cases of collocation
and Wronskian matrices of Legendre polynomials, Gegenbauer polynomials, Chebyshev
polynomials of the first and second kind and rational Jacobi polynomials are considered.
Numerical examples are included.

Keywords High relative accuracy - Bidiagonal decompositions - Jacobi polynomials -
Totally positive matrices

1 Introduction

Jacobi polynomials J,fa’ﬂ ) (x) (see Section 3) form a class of classical orthogonal polynomials,
which includes many important families of orthogonal polynomials such as Legendre and
Chebyshev polynomials (see Section 5). In fact, Jacobi polynomials are orthogonal with
respect to the weight (1 — x)*(1 + x)? on the interval [—1, 1] and present many useful
applications. For instance, to approximation theory, to Gaussian quadrature to numerically
compute integrals, to differential equations or to physical applications (cf. [2,13]).

Let us recall that, given a system of functions (ug, . . ., uy), its collocation matrix at points
X] < --- < Xpq1isgivenby (uj_1(x;))1<i, j<n+1. This paper deals with the accurate compu-
tation when using collocation and Wronskian matrices (see Section 3) of Jacobi polynomials
on (1, 00). As shown in this paper, for these matrices many algebraic computations (such as
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the computation of the inverse, of all the eigenvalues and singular values, or the solutions of
some linear systems) can be performed with high relative accuracy (HRA, see Section 2). Up
to now, this has been obtained only for a few classes of structured matrices. Among them we
can mention the collocation matrices of Bernstein polynomials [16], of Laguerre polynomi-
als [3] and of Bessel functions [4] as well as the Wronskian matrices of the monomials and
of exponential polynomials [15]. In fact, this last paper was the unique paper guaranteeing
HRA for some Wronskian matrices.

Crucial facts to derive our results have been to prove the strict total positivity (see Section 2)
of the collocation matrices of Jacobi polynomials on (1, 0o) and the total positivity of their
Wronskian matrices. Then the bidiagonal factorization with HRA has been obtained for these
matrices and the algorithms presented in [12] can be used for the algebraic computations
mentioned above with HRA.

As mentioned before, accurate computations with collocation matrices of other interesting
bases of orthogonal polynomials, such as Laguerre polynomials or Bessel polynomials, have
been already achieved (see [3] and [4]). The analysis of the domain where the corresponding
collocation or Wroskian matrices, or closely related matrices, are totally positive helps to
obtain their bidiagonal factorization and the solution of algebraic problems with HRA for
the parameters in this domain. We shall see that for the collocation or Wronskian matrices
of Jacobi bases, this domain lies outside the interval where the polynomials are orthogonal
and have their zeros.

The paper is organized as follows. Section 2 presents some basic concepts and results
related to the bidiagonal factorization of totally positive matrices and with HRA. In Sec-
tion 3, the strict total positivity and bidiagonal factorization of the collocation matrices of
Jacobi polynomials on (1, 0o) are obtained. In Section 4, the total positivity and bidiagonal
factorization of the corresponding Wronskian matrices are derived. Section 5 particularizes
the results for some well known families of Jacobi polynomials: Legendre polynomials,
Gegenbauer polynomials, Chebyshev polynomials of the first and second kind and ratio-
nal Jacobi polynomials. Section 6 presents numerical examples confirming the theoretical
results for the computation of eigenvalues, singular values, inverses, and the solution of linear
systems with some matrices used in this paper.

2 Notations and Auxiliary Results

As usual, given an n-times continuously differentiable function f and x in its parameter
domain, f’(x) denotes the first derivative of f at x and, for any i < n, f (i)(x) denotes the
i-th derivative of f at x. Let us recall that for a given basis (uo, . .., u,) of a space of n-times
continuously differentiable functions, defined on a real interval I and x € I, the Wronskian
matrix at x is defined by

W (o, . un) (x) 1= @7 ()i jotnp-

A matrix is totally positive: TP (respectively, strictly totally positive: STP) if all its minors
are nonnegative (respectively, positive). Two recent books on these matrices are [6,18], where
many applications of these matrices are presented, as well as in [1].

Neville elimination is an alternative procedure to Gaussian elimination and has been used
to characterize TP and STP matrices. Given a nonsingular matrix A = (a@; j)1<i, j<n+1,
Neville elimination computes a matricial sequence

AD A 5 AD 5 A(”_H), )
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such that, for 1 < k < n, A®+TD = (al.(k;rl))lf,v, j<n+1 has zeros below its main diagonal in

the k first columns and is computed from AR = (ai(k} )i<i,j<n+1 by:

(k)

a; if1 <i <k,
’ (k)
k+1 k aly  (k . . k
al.(’j )= al-(’j) — a?"ifkai(—)l’f’ ifk+1<i,j<n+1 andal.(_)l’k £ 0, ()
a), if k+1<i<n+landa® ,=0.

At the end of the Neville elimination, an upper triangular matrix
U:=AltY 3)
is obtained. In this process, the element

Pi,j ::ai(’]}, I<j<i<n+l, 4)

is called the (i, j) pivot and, in particular, p; ; 1s a diagonal pivot of the Neville elimination
of A. If all the pivots are nonzero then Neville elimination can be carried out without row
exchanges. In this case, by Lemma 2.6 of [7],

pit=ai1, l<i<n+l,

detAli —j+1,...,ill,...,]]
T detAli — j 4+ L. i =1L, 1]
where, given increasing sequences of integers « and 8, A[«|B] denotes the submatrix of A

containing rows of places o and columns of places .
Moreover,

Di.j l<j<i<n+l, (5)

- i} jaly ;= pij/pi-1ge if @y #0,
ij = if /) =0,
0’ lf al-_l’j - 09

l<j<iz<n+1, (6

is called the (i, j) multiplier of the Neville elimination of A.
Neville elimination has been used to characterize TP and STP matrices (see [7-9]). The
following characterization can be derived from Corollary 5.5 of [7].

Theorem 1 Let A be a nonsingular matrix. Then A is TP if and only if the Neville elimination
of Aand UT, where U is the upper triangular matrix in (3), can be performed without row
exchanges and all the pivots of both Neville eliminations are nonnegative.

By Theorem 4.2 and the arguments of p.116 of [9], a nonsingular TP matrix A =
(ai,j)1<i,j<n+1 admits a factorization of the form

A:FnFn—l"'FlDGl"'Gn—lGn’ (7)

where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by
1
(01 \

0 1
miyr,1 1
miy20 1

\ Mpt1.n+1—i 1)
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1
(01 \
0 1
Gl = ~ : 8
! miy11 1 ®
mit22 1

\ M1, n+1—i 1)

and D = diag ( P11, P22, -+ pn+1,n+1) has positive diagonal entries. The diagonal entries

pi,i of D are the diagonal pivots of the Neville elimination of A and the elements m; ; and
m; ; are nonnegative and coincide with the multipliers of the Neville elimination of A and
AT, respectively. If, in addition, the entries m;;, m; ; satisfy

mij:() = mhj:0, Vh >1i
and
%,’jZO = ﬁi,-k:O, Vk>j,

then the decomposition (7) is unique. We shall denote the bidiagonal decomposition (7) of a
TP matrix A as BD(A) (see [11]).

Given BD(A), using the results in [7-9], a bidiagonal decomposition of A~! can be
computed as

Al :5152---5nD_1Fn"'F2ﬁ1’ ©)

where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matri-
ces of the form of F; and G, respectively, but replacing the off-diagonal entries
mizi0, . mupipp1—iy and {miqy11, ..., My pr1—i} by {(=miq1i, ..., —muy1;} and
{—miy1i,..., —mp41,}, respectively.

Let us observe that if A is a nonsingular and TP matrix, then A” is also nonsingular and
TP. Moreover, the bidiagonal decomposition of AT can be computed as

AT =G, G, GIDF| - F_\F/, (10)

where F; and G;,i =1, ..., n, are the lower and upper triangular bidiagonal matrices given
in the bidiagonal factorization BD(A), that is,

BD(AT) = BD(A)T.

Finally, let us recall that a real value x is obtained with high relative accuracy (HRA) if
the relative error of the computed value x satisfies
lx — X
—— < Ku,
[lx]]
where K is a positive constant independent of the arithmetic precision and u is the unit
round-off. HRA implies that the relative errors of the computations are of the order of the
machine precision. An algorithm can be computed with HRA when it only uses products,
quotients, sums of numbers of the same sign, subtractions of numbers of opposite sign or
subtraction of initial data (cf. [5,10]).
In [11] it was shown that if BD(A), the bidiagonal factorization (7) of a nonsingular TP
matrix A, is computed with HRA then we can also compute with HRA its eigenvalues and
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singular values, the matrix A~! and even the solution of Ax = b for vectors b with alternating
signs.

3 Total Positivity and Factorizations of Collocation Matrices of Jacobi
Polynomials

Given «, B € R, the basis of Jacobi polynomials of the space P" of polynomials of degree

less than or equal to n is (Jo(a’ﬁ),...,Jn(a’ﬂ))with
J@P gy L@titD Xl: iNT(@+B+i+k+1) (x—1\F
i T i+ p+i+1) = \k Fa+k+1) 2 ’

i=0,...n. (11)

Let us recall that Jacobi polynomials are orthogonal on the interval [—1, 1] with respect to
the weight (1 — x)*(1 4 x)#.
Let us consider the lower triangular matrix A = (a;j)1<;, j<n+1 given by

i—1 j—1 . . . .
"/ 0, if i<
It can be checked that
P, 1) = Ao, . o) (13)
where (vg, ..., v,) is the basis of P" such that
x—1\ )
vi(x) = > , 1=0,...,n. (14)

The following result provides the multipliers and the diagonal pivots of the Neville elim-
ination of the change of basis matrix A described in (12) and proves that this matrix is
nonsingular and TP.

Theorem 2 Let A = (a;j)1<i,j<n+1 be the lower triangular matrix defined in (12). Then the
multipliers m; j and diagonal pivots p; ; of the Neville elimination of A are given by

a+i—1 a+B+2— ) .
mi|i=—————, mjj:= ——m; j-1, l<j<i=z<n+]l,
i—1 a+p+2i—j—2
l<i<n+1,

i—1

. ::1—[(01+,3+2i—r—1)

- , I<i<n+1 (15)
(i—r)

r=I1

Moreover, for any a, B > —1, A is nonsingular and TP.

Proof Let AK .= (al.(]].())lzi,jznﬂ, k=2,...,n -+ 1, be the matrices obtained after k — 1
steps of the Neville elimination of A. First, let us see by induction on & that

) _ 1 ’ﬁ(a+ﬁ+2i—r—1)
N O L (i —r)
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i—1 j—k
[[e+rn][[@+B+i+r—1), (16)
r=j r=1
for1 < j <i <n+ 1. For k = 2, taking into account that al(zj) =aj— %ai_l,j, we
have ’
) Ot—|—i—1
ai’j—aiﬁj— 1 ai—1,;j
1 i—1
=G ol
r=j
j—2 . . .
) a+p+i+j—2 a+p+i—-1
H(oe+,3—|—l+r—1)( pritj=—2 oth >
i—j i—1
r=1
1 i—1
:<j—nm—j—1n£y“+”
i2 G—Dla+p+2i—2)
H(a—i—ﬁ-l—i—l—r—l)(] ey )
ol i—pHaE—1
i—1
1 a+B+2i—2)"
S "+
(J =26 — P! (i—1 il
j—2
[[@+B+i+r—1)., 1<j<i<n+l
r=1

Therefore formula (16) holds for k = 2. Let us now suppose that (16) holds for some
kD) _ ) Ay @)

k € {2, ..., n}. Taking into account that a; ;= =a;; a@l kai_l’j’ we have
1 " a+p+2i—r—1
(k+1) (k) - . (k)
ST — g — — Da:"’; ..
Qg T i—lg(a+ﬂ+2i—r—3)(a+l Min1,)
Then, by defining
c _at+B+itj—k—1 _oz+,3—|—i—1 _(J=kla+p+2i—k—-1)
' i— i—k (i — )i —k) ’
we can write
k—1 . i—1
1 (x+pB+2i—r—1)
al = — : [J@+n
’ =R —j—=D! (i —r) o
= j
j—k—1
[ @+B+i+r-DnC
r=1

(@+B+2i—r—1)
I

1
U —k=DIG = ! (i—r)

=1

~
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i—1 j—k—1
[[e@+r J] @+B+i+r—0,
r=j r=1

and formula (16) also holds for k + 1.
Now, by (4) and (16), we can easily deduce that the pivots p; ; of the Neville elimination
of A satisfy

j—1 . i—1
1 S @+B+2i—r—1)
o I I Cl<i<i<n+l, .
pls] (l_])!r=1 (l—r) r_j(a+r) _.]<l_n+ ( )

and, for the particular case i = j,
i—1 .
(a+B+2i—1r—1)
Pii = 1_[

: L l<i<n+1. (18)
i—r)

r=1

Let us observe that, by formula (17), the pivots of the Neville elimination of A are nonzero
and so, this elimination can be performed without row exchanges. Besides, since A is lower
triangular with nonzero diagonal entries, A is nonsingular and the obtained matrix U (see
(3)) is diagonal and so, the Neville elimination of U7 does not perform any operation. Then,
by Theorem 1, we can conclude that A is nonsingular and TP for any «, 8 > —1.

Finally, using (6) and (18), the multipliers m; ; can be written as

_(f—l—ﬁKa+i—Dii(a+ﬁ+2ﬁ—r—DU—r—1)

mi ;=

i— i (x+B+4+2i—r—=3)i—r)
and we can deduce that
oa+i—1 )
mi,1:ﬁ5 1<l§n+1,
l_
2
mij = atpr2i—j mij—1, l<j<i<n+l (19)

a+p+2i—j—2
O

Corollary 1 Let A = (a;j)1<i,j<n+1 be the lower triangular matrix defined by (12). Then,
forany a, B > —1, the matrix A admits a factorization of the form

A=F,Fy---FD, (20)
where F;, i = 1,...,n, is the lower triangular, bidiagonal matrix given by (8) and D =
diag (pl,l, D22, -, pn+1,n+1). The entries m; j and p; ; can be obtained from (15).

Let us observe that the factorization (20) corresponds to B D(A), the bidiagonal factorization
(7) of A. Furthermore, for any o, 8 > —1, BD(A) can be computed with HRA, since it does
not require subtractions (except of the initial data).

Remark 1 1t is well known that the monomial basis (1, ¢, ..., ") of P" is STP on (0, 00).
Moreover, given a sequence of positive parameters 0 < fp < --- < t,, the bidiagonal
factorization (7) of the corresponding STP collocation matrix can be described by

i1
&G —tic) .
mij = mij=tj, l=j<i=ntl,

[T, tie1 — tize)
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i—1
pii=[]t-n., 1<i<n+1 1)
k=1

(see [10] or Theorem 3 of [14]). Consequently, the basis (vo, ..., v,) defined in (14) is also
STP on (1, co). Furthermore, given 1 < x; < - -+ < Xx,41, by considering #; := (x; — 1)/2,
i =1,...,n+ 1, and using the bidiagonal factorization (21) for the collocation matrix of
the monomial basis at 0 < #; < --- < t,41, it can be easily deduced that the bidiagonal
decomposition (7) of the collocation matrix of (vg, ..., v,) at x; < --- < Xx,41 1s given by:

i1
[T (i — xizk)

[T (xic1 — xi—)

mj j = . omij=xj—1)/2, 1<j<i<n+]l,

1 i—1 .
pii =g [ [0 =%, 1<i<n+l. (22)
k=1

The following result proves that, for any «, B > —1, the collocation matrix of the basis
(11) of Jacobi polynomials at 1 < x; < --- < X471,

My = (1P @) (23)

1<i,j<n+1’

is STP.

Theorem 3 Given a, B > —1, the corresponding basis of Jacobi polynomials defined in (11)
is STP on (1, 00).

Proof Given asequence of parameters 1 < x| < --- < x,41, by formula (13), the collocation
matrix (23) of the Jacobi polynomial basis satisfies

My =MAT, (24)

where M is the collocation matrix at 1 < x; < --- < x,41 of the basis (v, ..., v,) defined
in (14) and A is the lower triangular matrix defined by (12).

Clearly, by Remark 1, M is a STP matrix. On the other hand, by Theorem 2, given
a, B > —1, the lower triangular matrix A defined by (12) is nonsingular and TP. So, AT
is also a nonsingular and TP matrix. As a direct consequence of these facts and taking into
account that, by Theorem 3.1 of [1], the product of a STP matrix and a nonsingular TP matrix
is a STP matrix, we can conclude that the collocation matrix (23) is STP. |

Remark 2 By Section 4 of [10], we can transpose the bidiagonal decomposition (20) of the
lower triangular and TP matrix A to obtain the corresponding bidiagonal decompositon of
AT (see (10)). Clearly, since BD(A) can be computed with HRA, BD(AT) can be also
computed with HRA. Moreover, the collocation matrix of the basis (vo, ..., v,) defined in
(14) atnodes 1 < x1 < ... < x,41 1s STP and its corresponding bidiagonal decomposition
can be obtained with HRA (see (22)). If the bidiagonal decompositions of two nonsingular,
TP matrices can be computed with HRA, using Algorithm 5.1 of [11], we can also obtain with
HRA the bidiagonal decomposition of the nonsingular and TP product matrix. Consequently,
we can derive with HRA the bidiagonal matrices (8) of the bidiagonal factorization (7) of
the collocation matrices of Jacobi polynomials and thus, we can also compute with HRA its
inverse matrix, its eigenvalues and singular values as well as the solutions of some linear
systems.

@ Springer



Journal of Scientific Computing (2021) 87:77 Page9of30 77

In Section 6, Algorithm 2 provides the bidiagonal decomposition of the collocation matrix
(23) of the basis of Jacobi polynomials. Moreover, Section 6 illustrates accurate results
obtained when computing algebraic problems using this algorithm and the algorithms pre-
sented in [11] and [12].

4 Total Positivity and Factorizations of Wronskian Matrices of Jacobi
Polynomials

Given x € R, let W(]éa’ﬁ), e Jn(a’ﬂ))(x) be the Wronskian matrix at x of the basis (11) of
Jacobi polynomials. Using formula (13), it can be checked that

WP, L @) = W, .., v @)AT, (25)

where W (vg, ..., v,)(x) is the Wronskian matrix of the basis (v, ..., v,) given in (14) and
A is the lower triangular matrix defined by (12).

In Corollary 1 of [15] it was proved that the Wronskian matrix at any positive real value
of the monomial basis (1, x, ..., x™) of the space of polynomials P" is TP on (0, 0o). It was
also shown that this Wronskian matrix and its inverse can be computed with HRA. Now we
are going to extend these results to the basis ({g, ..., £;) given by

ti(x) = (ax +b)', xeR, i=0,...,n, (26)
where a, b € R with a > 0. First let us prove the following auxiliary result.

Lemma 1 The basis (Lo, ..., {,) defined in (26) satisfies

ax—l—b (l) ( )

1 g 1
00 = e T 0+

it TG i 1 <i,j<n. 27)
Proof We prove the result by induction on i. Since £ (x) = (ax + b){;_1(x), we have
E’(x)—aéj 1(x)+(ax+b)€] (%), x eR,

and so, formula (27) holds fori = 1 and 1 < j < n. If (27) holds fori > 1, we can write

1

(i+1) a +1 i ax +b it
) = D0 0+ E ),
and deduce that
1 (+1) ax+b i)
T M e R LR e AN

O

Now, fora given x € R, k,n € Nwith k < n, let Uy, = (ul(k;)lii’jfn_i_l be the upper
triangular, bidiagonal matrix with unit diagonal entries, such that

ut) =0, i=1... k-1 ul =ax+b i=k...n (28)

The following result shows that the product matrix Uy , - - - U, , coincides, up to a positive
scaling, with the Wronskian matrix of ({g, ¢1, ..., £,) at x.
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Proposition 1 For a given x € Randn € N, let
U, = Ul,n te Un,n’

where Uy ,, k = 1, ..., n, are the upper triangular, bidiagonal matrices with unit diagonal
entries satisfying (28). Then U, = (u; j)1<i,j<n+1 IS an upper triangular matrix and

1 (1) .
”iﬁj:mej—l x), 1<i,j<n+1 (29)
Proof First, let us observe that U, is the product of upper triangular, bidiagonal matrices and
so, it is an upper triangular matrix. Now, we prove (29) by induction on n. Forn = 1,

lax+b
U1=U1,1=(0 1 )

and (29) clearly holds. Let us observe that

U1 = Uit - Unsin41 = Ul ns1Unga,s

where U, 41 = Uz i1 -+ Upt1nt satisfies Uyyy = (@i j)i<ij<nt2 With it 1 = i1; =
d1.i,thatis, 611 = landd; ; =0fori =2,...,n4+2,and U, 41[2, ..., n+2|2, ..., n+2] =
Ui+ Uy, Let us now suppose that (29) holds for n > 1. Then we have that

Ui ':—1 ), 2<i j<n+2
AR T T
Taking into account that U, | = U} 41U, and using Lemma 1, we deduce that U, 4| =
(Ui, j)1<i, j<n+2 satisfies

- b -
202 WO =Dy

uij =i j +(@x +biir1,j = —= ST YA TTAT

al=2(i —2)! 72
1 - .
DU

O

As adirect consequence of the previous result, we can provide the bidiagonal factorization
(7) of the Wronskian matrix of (¢g, ..., £,).

Proposition2 Letn € Nand (Lo, ..., £,) be the basis given in (26). Then, forany x > —b/a,
the Wronskian matrix W (Lg, ..., £,)(x) is TP and

0!
al 1!
Wy, ..., Ly)(x) = . Utn- - Unn, (30)

n

a n!

where Uy », k =1, ..., n, are the upper triangular, bidiagonal matrices with unit diagonal
entries satisfying (28).

Let us observe that the bidiagonal factorization (7) of W (€, ..., £,)(x) is given by (30).
Clearly, this factorization can be computed with HRA for any x > —b/a and, consequently,
using (9), its inverse matrix can also be computed with HRA as stated in the following result.
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Proposition 3 Let W be the Wronskian matrix at x > —b/a of the basis (Lo, ..., {,) given
in (26). Then W~ can be computed with HRA.

Now, using Proposition 2, we can immediately deduce the following factorization of the

Wronskian matrix at x € R of the basis (vg, ..., v,) in (14),
1
( 550" \
1
—11!
W(vo, ..., v)(x) = 2 Ul,n "'Un,n, (31)
1
\ —n!
2n
where Uy , = (ugc;.)lfi,jfnﬂ, k =1, ...,n,is the upper triangular, bidiagonal matrix with
unit diagonal entries satisfying
wl =0, i=1.. k-1 u =@-1/2 i=k...n (32
Moreover, if x > 1, W(vg, ..., v,)(x) is a nonsingular and TP matrix. Then, taking into

account (25), the fact that A7 is a nonsingular and TP matrix (see Theorem 2) and that the
product of nonsingular TP matrices is a nonsingular and TP matrix (Theorem 3.1 of [1]),
we deduce the following result on the total positivity of the Wronskian matrices of Jacobi
polynomials.

Theorem 4 Letn € N and (Jéa’ﬂ), e J,fa’ﬂ)) be the Jacobi polynomial basis given in (11).

Forany a, B > —1, the Wronskian matrix W(Jéa’ﬂ), e J,E“’ﬁ))(x) at x > 1 is nonsingular
and TP.

Remark 3 Taking into account (10), we can obtain the bidiagonal decomposition (20) of the
matrix AT in (25). Clearly, since BD(A) can be computed with HRA, BD(AT) can be also
computed with HRA. On the other hand, the Wronskian matrix of the basis (v, ..., v,)
defined in (14) is nonsingular and TP at any x > 1. Moreover, its corresponding bidiagonal
decomposition (22) can be obtained with HRA. By Algorithm 5.1 of [11], if the bidiagonal
decompositions of two nonsingular and TP matrices can be computed with HRA, then the
bidiagonal decomposition of the product matrix can be also obtained with HRA. Conse-
quently, the Wronskian matrix of the basis (11) of Jacobi polynomials can be computed with
HRA and thus, we can compute with HRA its inverse matrix, its eigenvalues and singular
values and the solutions of some linear systems.

In Section 6, Algorithm 3 provides the bidiagonal decomposition (7) of the Wronskian
matrix (25) of the basis of Jacobi polynomials. Section 6 shows accurate results obtained
when computing the mentioned algebraic problems using this algorithm and the algorithms
presented in [11] and [12].

5 Collocation and Wronskian Matrices of well known Orthogonal Bases

In this section we are going to see that the results on properties and factorizations of col-
location and Wronskian matrices of Jacobi polynomials obtained in the previous sections
can be used to derive properties of collocation and Wronskian matrices of other well known
orthogonal bases.
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The following auxiliary results can be easily checked and will be useful to derive the bidi-
agonal decomposition of matrices obtained by scaling with a diagonal matrix a nonsingular
and TP matrix.

Lemma2 Let F;and Gi,i =1, ..., n, be the lower and upper, respectively, triangular bidi-
agonal matrices described in (8) and A = diag (dy, d>, ..., dy+1) a nonsingular diagonal
matrix. Then
AF, =F A and GiA=AG;, i=1,...,n, (33)
where
1
01 \
~ 0 1
F, = ,
l rivrn 1
riv22 1
\ Futtnsii 1)
1
01 \
~ 0 1
Gl = ~ : 34
: Fiv1,1 1 G
rit2,2 1
\ Fottati—i 1/
with
di ~ di l<ici<n+l
rii=——mj i, rij=——mjj, <j<i<n .
S diy T Y g g
As a consequence, we have the following result.
Lemma3 LetA = F,F,—1--- F1DG ---G,_1Gy, be the bidiagonal decomposition (7) of a
nonsingular and TP matrix A. Then, given anonsingular matrix A = diag (dy, da, . .., dp+1),
the bidiagonal decomposition (7) of AA and A A are given by
AA = F,Fy_1---FIDGy---G,_1Gy, (35)
AA:FnFn_l---Flﬁél---ﬁn_lﬁn, (36)
where F; and G, i = 1,...,n, are the lower and upper, respectively, triangular matrices
described in (34) and D = AD = DA.
Let us start by considering the basis (Lo, ..., L,) of Legendre polynomials defined by
L) :=J"P0), i=0,...,n, 37)

where (Jéo’o) e J,go’o)) is the basis of Jacobi polynomials given in (11) witha = g = 0.
From Theorem 3, Remark 2, Theorem 4 and Remark 3, we can deduce the following result.
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Theorem 5 The basis (Lo, ..., L,) of Legendre polynomials, defined by (37), is STP on

(1,00). Given x1 < -+ < Xp41, With x1 > 1, the bidiagonal decomposition (7) of the
corresponding collocation matrix can be obtained with HRA. Moreover, for any x > 1, the
Wronskian matrix W (Lo, ..., L,)(x) is nonsingular and TP and its bidiagonal decomposi-

tion (7) can be obtained with HRA.

Given A € R, the basis of Gegenbauer polynomials of P" is (G, ..., G,) with

ro+1/2) 1G+2a) JO=1/22-1/2)
rery ra+ir+1/2)°

G} (x) := (x), i=0,....,n, (38)

where (J(;A_l/z"\_l/z), ey J,f}”_l/z’)”_l/z)) is the basis of Jacobi polynomials given in (11)

with « = B = A — 1/2. By Theorem 3 and Remark 2, Lemma 3 and Remark 3, we can
deduce the following result.

Theorem 6 Forany . > —1/2, the basis (G, ..., G,) of Gegenbauer polynomials, defined
by (38),is STPon (1, 00). Given x| < - -+ < Xu41, withxy > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (G, ..., G,)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.

The basis (Tp, ..., T,,) of Chebyshev polynomials of the first kind is defined by

J.(—1/2,—1/2) (x)

T (x) == -4 , 1=0,...,n, (39)
! Ji(_l/z’_l/z)(l)

where (J(;_l/z’_lm, e J,f_l/z’_l/z)) is the basis of Jacobi polynomials given in (11) with
a = B = —1/2. Using again Theorem 3, Remark 2, Lemma 3 and Remark 3, we can deduce
the following result.

Theorem 7 The basis (Ty, ..., T,) of Chebyshev polynomials of the first kind, defined by
(39), is STP on (1, 00). Given x1 < - -+ < Xp41, with x1 > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (Ty, ..., T,))(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.

The basis (U, ..., U,) of second kind Chebyshev polynomials is defined by

J(—1/2,—1/2) (.X)

Ui(x):= (i + 1) , i=0,...,n, (40)
! Ji(1/2,1/2)(1)

where (Jél/z’l/z), e 1,51/2’1/2)) is the basis of Jacobi polynomials given in (11) with ¢ =
B = 1/2. Using again Theorem 3, Remark 2, Lemma 3 and Remark 3, we can deduce the
following result.

Theorem 8 The basis (Uy, ..., U,) of Chebyshev polynomials of second kind, defined by
(40), is STP on (1, 00). Given x| < - -+ < Xp41, with x1 > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (U, . .., U,)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.
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In [19], induced by Jacobi polynomials, a new orthogonal system of rational functions was

introduced. For given «, B € R, the system (R(()a’ﬁ ), R R,(,Ol"6 )) of rational Jacobi functions
is defined by
@By ._ qap (X1 -
Ri (.X) = Ji (m) , 1 —0,...,”, (41)
where (Jéa’ﬂ ), cees J,fa’ﬂ )) is the basis (11) of Jacobi polynomials. Using again Theorem 3,

Remark 2, Lemma 3 and Remark 3, we can deduce the following result.

Theorem 9 For any o, B > —1, the basis (R(()a’ﬁ), ce R,(l“’ﬁ)) of rational Jacobi functions

given in (41) is STP on (—oo, —1). Given x| < - -+ < Xp41, With x,41 < —1, the bidiagonal
decomposition (7) of the corresponding collocation matrix can be obtained with HRA.

Similar results can be deduced by considering the rational counterparts of the basis of
Legendre, Gegenbauer and the first and second kind Chebyshev polynomials.

Section 6 will show accurate results obtained when computing the eigenvalues, singular
values, or the solutions of some linear systems associated with the collocation and Wron-
skian matrices of all the mentioned orthogonal bases, using their corresponding bidiagonal
decompositions and the algorithms presented in [11] and [12].

6 Numerical Experiments

Given a nonsingular and TP matrix whose bidiagonal factorization (7) can be computed with
HRA, the functions TNEigenvalues, TNSingularValues, TNInverseExpand and
TNSolve, available in the library TNTool of [12], can be used to compute with HRA its
eigenvalues, its singular values, its inverse matrix and the solution of some linear systems,
respectively. The function TNProduct is also avaliable in the mentioned library. If the
bidiagonal decomposition (7) of two nonsingular and TP matrices A and B can be computed
with HRA, TNProduct computes with HRA the bidiagonal decomposition (7) of AB.

Using Theorem 2, we have implemented the Matlab function TNBDA (see Algorithm 1)
providing the bidiagonal decomposition (20) of the lower triangular matrix A given in (12),
for given o, B > —1 and n € N. Using TNBDA and taking into account Remark 1 and
Theorem 3, we have also implemented the Matlab function TNBDJ (see Algorithm 2) for the
computation of the bidiagonal decomposition (7) of the collocation matrix at x = (xi)?ill,
withl < x1 < --- < x,41,of the Jacobi polynomial basis corresponding to given«, 8 > —1.
Furthermore, using TNBDA and taking into account Proposition 2, Theorem 4 and Remark 3,
we have implemented the Matlab function TNBDWJ (see Algorithm 3), which provides the
bidiagonal decomposition (7) of the Wronskian matrix at x > 1 of the Jacobi polynomial
basis corresponding to given «, f > —1.

Moreover, using TNBDJ (TNBDWJ, respectively) and taking into account Lemma 3, we
have also implemented the Matlab functions TNBDG, TNBDT1 and TNBDT2 (TNBDWG,
TNBDWT1, TNBDWT2, respectively) for the computation of the bidiagonal decomposition
(7) of the collocation matrix at xq, . . ., x,+1 (of the Wronskian matrix at x > 1, respectively)
of the bases (38) of Gegenbauer polynomials ata given A > —1/2, the basis (39) of Chebyshev
polynomials of the first kind and the basis (40) of Chebyshev polynomials of the second kind,
respectively.

In order to check the accuracy of the solution of the above mentioned algebraic problems,
obtained using the functions in [12] with the bidiagonal factorization (7), we have considered
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Algorithm 1: Computation of the bidiagonal decomposition (20) of the matrix A in (12)

function BDA = TNBDA(«, B,n+ 1)
BDA=zeros(n+l,n+1)
fori:=2 to n+1

aux = %1—1
BDA(, 1) := aux
for j :=2 to i-1
o 2i—]j
aux = aux - %
BDA(, j) := aux
end j
end i
BDA(1,1)=1
fori:=2 to n+1
aux =1
for k :=1to i-1
aux 1= aux - %’;k—l
BDA(,i) := aux
end k
end i

Algorithm 2: Computation of the bidiagonal decomposition of the collocation matrix of Jacobi polynomials

function BDJ = TNBDJ(«, 8, x,n + 1)
BDA =TNBDA(x, B, n + 1)

BDB = zeros(n+1,n+1)

fori:=2 to n+1

BDB(i,1):=1
aux ;=1
for j :=2 toi-1

Xj = Xj—j41
Xj—] = Xj—j
BDB(i, j) := aux
end j
end i
for i=1ton
aux = (x; — 1) /2
for j :=i+1 to n+1
BDB(i, j) := aux
end j
end i
aux :=1
BDB(1,1) =1
for i :=2 to n+1
aux 1= aux/2
for k :=1 to i-1
aux := aux - (X;j — xj)
BDB(i,i) := aux
end k
end i
BDJ=TNProduct(BDB, (BDA)T)

aux ‘= aux -

collocation matrices M,, at x = (xi)?ill satisfying 1 < x1 < ... < x,41 and Wronskian
matrices Wy, at x = 2 or x = 50, for (n + 1)-dimensional Jacobi, Legendre, Gegenbauer
and Chebyshev of the first and second kind polynomial bases. Additionally, we have also
considered collocation matrices at sequences x = ((x; — 1)/(x; + 1));:11 such that x; <
Xy < --- < xp41 < —1 of their rational counterpart bases. For the considered collocation
matrices, we have obtained the bidiagonal decomposition (7) by using TNBDJ, TNBDG,
TNBDT1 and TNBDT2. For the considered Wronskian matrices, the factorization (7) has
been obtained with the Matlab functions TNBDWJ, TNBDWG, TNBDWT1 and TNBDWT2. The

software with the numerical experiments will be provided by the authors upon request.
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Algorithm 3: Computation of the bidiagonal decomposition of the Wronskian matrix of Jacobi polynomials

function BDWJ = TNBDWJ («, B, x, n + 1)
BDA = TNBDA(«, B,n + 1)
BDWB = zeros(n+ 1,n+ 1)
for i=1 to n+1

for j :=i+1 to n+1

BDWB(, j):=(x—1)/2

end j
end i
BDWB(1,1):=1
fori:=2 to n+1

BDWB(,i):= (i —1)-BDWB(G —1,i — 1)/2
end i
BDWJ = TNProduct(BDWB, (BDA)T)

Table 1 From left to right, condition number of collocation matricesatx; = 1 +i/(n+1),i =1,...,n+1,
of the Jacobi (with « = 1, § = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second
kind polynomial bases

n+l Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
K2(Mn) KZ(Mn) K2(Mn) K2(Mn) KZ(Mn)

10 4.2 x 1013 5.3 x 1013 1.2 x 1014 1.4 x 1014 1.8 x 1014

15 5.1 x 1021 9.2 x 102! 2.1 x 1022 3.2 x 1022 2.1 x 10%2

20 8.2 x 10%° 1.9 x 1030 4.4 x 1030 7.7 x 1030 4.4 x 1030

25 1.5 x 1038 4.4 x 1038 1.0 x 1039 2.0 x 1039 1.0 x 1039

Tables 1, 2, 3 and 4 illustrate the 2-norm condition number of the mentioned collo-
cation and Wronskian matrices that have been obtained with the Mathematica command
Norm[A,2]-Norm[Inverse[A], 2]. Observe that the condition number of the matri-
ces considerably increases with their dimension. Due to this ill conditioning, traditional
methods do not achieve accurate solutions when solving the mentioned algebraic problems.
The following numerical results confirm this fact and illustrate the high accuracy obtained
when using the functions in [12] with the bidiagonal factorizations (7) obtained in this paper.

6.1 Eigenvalues and Singular Values

Let us recall that all considered matrices are STP and so, all their eigenvalues are positive
and distinct (see Theorem 6.2 of [1]). On the other hand, the eigenvalues of the mentioned
Wronskian matrices are integers and so, they can be exactly determined.

We have compared the eigenvalues and singular values obtained when using the
Matlab commands eig and svd, respectively, and those computed using the bidiago-
nal decompositions (7) in this paper and the Matlab functions TNEigenvValues and
TNSingularValues, respectively. In order to determine the accuracy of the approxi-
mations, we have also calculated the eigenvalues and singular values of the matrices by using
Mathematica with a precision of 100 digits and computed the relative errors corresponding
to the approximations, considering the eigenvalues and singular values provided by Mathe-
matica as exact. We have computed the relative error of the approximations a of the exact
eigenvalue and singular value a by means of the formula e = |a — a|/|a].

Tables 5, 6, 7, 8 and 9 show the relative errors of the approximations to the lowest eigen-
value and the lowest singular value obtained with both methods. Observe that the eigenvalues

@ Springer
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Table 3 From left to right, condition number of Wronskian matrices at xg = 2 of the Jacobi (with &« = 1,
B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases

n+l Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
2 (Wn) k2 (Wn) €2 (Wn) k2 (Wn) 2 (Wn)

10 2.1 x 107 5.8 x 108 2.4 x 107 1.6 x 10° 2.4 x 107

15 L4x 101 36x101  19x10 1.2 x 10!° 1.9 x 1010

20 5.9 x 1023 1.4x103  81x105 5.6 x 1023 8.4 x 1023

25 8,8 x 107! 2.0 x 103! 1.4 x 1032 9.2 x 103! 1.4 x 1032

Table 4 From left to right, condition number of Wronskian matrices at xo = 50 of the Jacobi (with @ = 1,
B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases

n+l Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
k2 (Wy) k2 (Wy) k2 (Wy) k2 (Wy) k2 (Wy)

10 5.8 x 10%7 1.0 x 1027 5.6 x 10%7 2.8 x 10%7 5.6 x 107

15 7.1 x 1040 12x10% 7.7 x10% 4.0 x 1040 7.7 x 1040

20 1.5 x 1053 2.6 x 10%2 1.9 x 1053 1.0 x 1033 1.9 x 1053

25 9.4 x 106 1.6 x 1004 1.3 x 1093 7.2 x 109 1.3 x 109

and singular values obtained using the factorization (7) are very accurate for all considered n,
whereas the approximations of the eigenvalues and singular values obtained with the Matlab
commands eig and svd are not very accurate when n increases.

6.2 Inverse Matrix

We have also used the Matlab function TNInverseExpand (see Section 4 of [17]) with
the factorization (7) proposed in this paper in order to compute the inverse of the considered
collocation and Wronskian matrices. We have also computed their approximations with
the Matlab command inv. In order to determine the accuracy of the approximations, we
have calculated the inverse of these matrices by using Mathematica with a precision of 100
digits and computed the relative errors corresponding to the approximations, considering
the inverse matrix provided by Mathematica as exact. We have computed the relative error
of each approximation A~ of the exact inverse matrix A~! by means of the formula e =
1A= — A7 /1A 2,

Tables 10, 11 and 12 show the relative errors of the approximations to the inverse of the
collocation and Wronskian matrices obtained with both methods. For all considered cases,
the approximation of the inverse matrix obtained by means of TNInverseExpand and
the factorization (7) is very accurate, providing much better results than those obtained by
Matlab using the command inv.

6.3 Linear Systems

We shall illustrate the accuracy of the solutions of linear systems computed by using the
bidiagonal factorization (7). We have obtained the solution of the linear systems using Math-

@ Springer
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ematica with a precision of 100 digits and considered this solution exact. Then we have also
computed with Matlab two approximations, the first one using the previous functions and
the second one using the Matlab command \. We have computed the relative error of every
approximation ¢ = (¢, ..., Cy+1) of the solution ¢ of the linear system by means of the
formula e = ||c — ¢ll2/lIc]l2.

Tables 13, 14 and 15 show the relative errors when solving the linear systems M,,¢,, = d,,
and W,c, = d, whered,, = ((=1)'*'d;)1<j<4+1 and d;,i = 1, ..., n + 1, random integer
values. The computed results confirm the accuracy of the proposed method that, clearly, keeps
the accuracy when the dimension of the problem increases. In contrast, when n increases the
condition number of the considered matrices considerably increases and that explains the
bad results obtained with the Matlab command \.
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Part 111

JUSTIFICATION OF THE THEMATIC UNIT AND SUMMARY
OF THE PUBLICATIONS

This doctoral thesis is presented as a compendium of the publications [73], [74], [39], [[75] and [76].
The purpose of this part is to justify the thematic unit of the aforementioned publications. Their main
results are also included.

149



150



Total positivity and Weighted
@-transformed systems: shape preserving
properties and accurate computations

ABOUT THIS CHAPTER

The purpose of this chapter is to justify the thematic unit of the articles [[73]], [[74] and [39], which belong
to the compendium of publications of this thesis (see the articles on pages @3] [59]and [77] respectively).
Their main results are also presented.

[73] E. Mainar, J.M. Pefia, B. Rubio, Evaluation and subdivision algorithms for general classes of
totally positive rational bases, Computer Aided Geometric Design 81 (2020).

[74] E. Mainar, J.M. Pefia, B. Rubio, Accurate bidiagonal decomposition of collocation matrices of
weighted @-transformed systems, Numerical Linear Algebra Appl. 2295 (2020).

[39] R. Gonzalez, E.Mainar, E.Paluzo, B.Rubio, Neural-Network-Based Curve Fitting Using Totally
Positive Rational Bases, Mathematics 8, 2197 (2020).

4.1 Introduction

In this chaper we present a very general procedure for generating, from an initial system and a positive
function ¢, new systems of functions useful for curve design. These systems, which we call weighted ¢-
transformed systems, arise with relevant probability distributions. They also include important rational
bases (see [97], [S4]) as well as systems belonging to spaces that mix algebraic, trigonometric and
hyperbolic polynomials, which are useful in many applications, for instance in Isogeometric Analysis
(cf. [81]). The weighted ¢-transformed systems inherit from the initial system its nice geometric
properties and its accuracy when computing with its collocation matrices.

Let us recall that shape preserving representations in Computer-Aided Geometric Design (CAGD)
are associated with normalized totally positive (NTP) bases, because these bases guarantee that the curve
imitates the geometric properties of its control polygon. Among all NTP bases of a space, there exists
a unique normalized B-basis, which is the basis with optimal shape preserving properties (cf. [92],
[10]). The Bernstein bases and the B-spline bases are the normalized B-bases of their corresponding
spaces. We shall prove in Section {.3] that the shape preserving properties associated to NTP bases
and normalized B-bases are inherited by the representations associated to their weighted ¢-transformed
systems. In fact, the total positivity and the property of being a B-basis are preserved. Therefore, using
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the results of Section [4.3] one can deduce that bases formed by Poisson functions are B-bases and that
rational systems obtained from B-bases are the normalized B-bases of the generated spaces of rational
functions and have optimal shape preserving properties. In particular, it can be deduced that the Rational
Bernstein basis and NURBS bases are NTP and the normalized B-bases of the corresponding spaces of
rational functions.

In [70], for a given space of functions that admits shape preserving representations a corner cut-
ting algorithm, called a B-algorithm, is proposed. B-algorithms are evaluation algorithms satisfying
important properties such as a subdivision property and convergence to the curve of the resulting con-
trol polygons. Supported by the results in [70], in Section 4.4] evaluation and subdivision algorithms
for a general class of rational bases, which can be considered as weighted ¢-transformed systems, are
deduced.

In [97] nested spaces of rational polynomial functions of a given degree n and with a common
denominator are considered. The corresponding rational Bézier curves admit up to n! different de
Casteljau-type algorithms. In Section 4.5 we show that the results from [97] can be extended to spaces
of non polynomial rational functions deriving recurrence formulas for the weights and basis functions
of these spaces. Curves generated by these weighted @-transformed bases inherit geometric properties
and algorithms of the traditional rational Bézier curves and so they can be considered as modeling tools
in CAD/CAM systems.

Let us recall that an algorithm can be performed with high relative accuracy (HRA) if it does not
include subtractions (except of the initial data), that is, if it only includes products, divisions, sums
of numbers of the same sign, subtractions of numbers of opposite sign or subtraction of initial data
(cf. [62]). It is known that, for the collocation matrices A associated to some important bases used in
CAGD, many algebraic computations can be performed with HRA. For instance, the computation of
their eigenvalues, singular values or the solutions of linear systems Ax = b such that the components of
b have alternating signs (see [19] and the references therein). The key tool for this purpose is the use of
a bidiagonal factorization of the collocation matrix, which can be obtained with HRA for those bases.
This task was performed in [[15] for the collocation matrices of rational Bernstein bases. In Section
4.3] we extend the analysis to our more general framework and assure that these computations can be
performed with HRA for the collocation matrices of weighted @-transformed systems, assuming that
the bidiagonal factorization of the corresponding collocation matrix of the initial system can be obtained
with HRA and that the evaluation of ¢ does not requires substractions up to initial data. Our numerical
examples in Section.§]illustrate that the compuatation of the eigenvalues and singular values and the
solution of linear systems can be solved accurately even when the above conditions do not hold. The
complexity of the proposed algorithms for solving the mentioned algebraic problems is comparable to
that of the traditional LAPACK algorithms, which, as we shall ilustrate, deliver no such accuracy.

To solve the problem of finding a rational curve to fit a given set of data points, we have proposed
in Section 4.9]a one-hidden-layer neural network based on the general class of totally positive rational
bases, presented in Section4.4] which belong to spaces that mix algebraic, trigonometric and hyperbolic
polynomials, thus being able to reach more difficult forms shapes and thus expanding the potential range
of applications of this neural network. In order to obtain the weights and control points of the rational
curve to fit the data points, the neural network is trained with an optimization algorithm to update
the weights and control points while decreasing a loss function. The fitting curves of the numerical
experiments show that for certain curves the use of particular rational bases provide better results.

As we have mentioned before, in Section [4.3] algorithms for the computation of the bidiagonal
decomposition of square collocation matrices of a very general class of non-polynomial rational bases
with interest in CAGD and Approximation Theory are provided. In Sectiond.10] following the approach
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of [84]] for a polynomial case and taking into account the obtained results in [72] and [25]], we generalize
the mentioned bidiagonal factorization to the case of rectangular collocation matrices. Using their OR
decompositions, we focus on the problem of least squares fitting in the spaces generated by the general
class of rational bases proposed. By computing the bidiagonal decomposition of the coefficient matrix
of the least squares problem, an algorithm for the computation of its QR decomposition is then applied.
Finally, using the bidiagonal decomposition of the matrix factor R, a triangular system is solved.

The layout of the chapter is as follows. Section [4.2]includes matrix notations and basic concepts,
such us totally positive bases and B-bases. We recall the Neville elimination procedure, which allows
us to introduce the bidiagonal factorization of a strictly totally positive matrix. Section [4.3]introduces
the weighted @-transformed systems and includes the results guaranteeing the above mentioned nice
geometric and computational properties. The bidiagonal factorization of the collocation matrices of
the weighted @-transformed systems is obtained. Section 4.4 shows a general class of rational spaces
that can be generated by weighted ¢@-transformed systems. In particular, evaluation and subdivision
algorithms for these rational bases are deduced. Moreover, Section 4.5|presents results that allow us to
deduce shape preserving properties of particular rational functions that cover the family of bases intro-
duced in [97]. In Section [4.6]the bidiagonal factorization of the collocation matrices of the mentioned
rational bases is provided. Furthermore, Section shows interesting examples and Section in-
cludes numerical examples showing the accurate solution of linear systems associated to the collocation
matrices of rational bases. In Section 4.9] we present a one-hidden-layer neural network based on the
rational bases presented in Section [4.4] to approximate a given set of data points. This neural network
is trained with an optimization algorithm to update the weights and control points used to construct a
curve that approximates the given set of data points, while decreasing a loss function. Several experi-
ments are provided illustrating the use of the neural network with different normalized B-bases to test
its performance giving an approximation of different kinds of sets of data points.Finally, in Section[#.10]
an accurate algorithm for curve fitting using rational bases and the least square method is presented.

4.2 Notations and auxiliary results

Let us recall that a matrix is totally positive (TP) if all its minors are nonnegative and strictly totally
positive (STP) if they are positive (see [2]). A system of functions (uo,...,u,) defined on the subset
I € Ris TP if all its collocation matrices (uj—1(%)); j_y 11> 11 <+ <Int1 in I are TP. A TP system
of functions on I is normalized (NTP) if Y yu;(t) = 1, for all r € I. NTP bases are commonly used in
CAGD due to their shape preserving properties (see [9]], [92]).

Among all NTP bases of a space, we can find a unique normalized B-basis, which is the optimal
shape preserving basis (cf. [10]). For instance, the Bernstein bases and the B-spline bases are the
normalized B-bases of their corresponding spaces. The following characterization of a B-basis is a
consequence of Corollary 3.10 of [10] and Proposition 3.11 of [10].

Theorem 4.1. Let (ug,...,u,) be a TP basis of a space % . Then (uy,...,u,) is a B-basis if for any
other TP basis (vo,...,vn) of % the matrix K of change of basis such that (vo,...,v,) = (ug,...,uy)K
is TP,

Let us now recall some basic matrix notations and results on Neville elimination. Our notation
follows the notation used in [34,37]. Given n € N and k € {1,...,n}, let Ok, be the set of increasing
sequences of k positive integers less than or equal to n. If o, B € Oy ,, we denote by A[c|B] the k x k
submatrix of A containing rows of places o and columns of places 8. Neville elimination (see [34}37]),
is a procedure to make zeros in a column of a matrix by adding to a given row an appropriate multiple of



154 Chapter 4. Total positivity and Weighted ¢-transformed systems

the previous one. For a given nonsingular matrix A = (a; j)1<;, j<x. this elimination procedure consists
of at most n — 1 successive major steps, resulting in the sequence of matrices:

AN — A 5 A@ 5. 5 A .

For 1 <k<n—1,AktD = (Cll(f(;rl))]gih/‘gn is obtained from A%) = (Cll(f(j))lgl‘,jgn by defining

algkjﬂ) = agcj) - (al(f;()/agf)m)agf)hj if al@Lk #0, k+1<i,j<n,

so that A®*1) has zeros below its main diagonal in the k first columns. Finally, U is an upper triangular

matrix. The element p; ; := af;’j), is called the (i, ) pivot of the Neville elimination of A for 1 < j <
i <n. The pivots p;; are called diagonal pivots. The Neville elimination can be performed without row
exchanges if all the pivots are nonzero and, in this case, Lemma 2.6 of [34] implies that p; | = a; 1, for
1<i<n,and

detAli—j+1,...,01,...,]]

= I<j<i<n. 4.1
Pl = detAli— 1, i1, 1] J=t=n “.1)
Furthermore, the (i, j) multiplier of the Neville elimination of A is
migi=ap) oy ;= pij/piry, 1<j<i<n. (4.2)

Neville elimination has been used to characterize TP and STP matrices (see [34, 37]). From Theorem
4.1 of [34] and p. 116 of [37] (see also Theorem 2.1 of [[15]]), a given matrix A is STP if and only if
the Neville elimination of A and A” can be performed without row exchanges, all the multipliers of the
Neville elimination of A and AT are positive and all the diagonal pivots of the Neville elimination of A
are positive.
According to the arguments of p.116 of [37], an STP matrix A € R*+D*("+1) can be factorized in
the form
A:FnF;zfl"'FIDGl"'anlGn, (43)

where F; and G; are the lower and upper triangular bidiagonal matrices

1 1

F= , GI'= N , 44
! mipy 1 r iy 1 44

My nt1—i 1 B nt1—i 1

and D =diag (pi1,...,Pn+1n+1). The entries m;, ;j and 7iy; ; are the multipliers of the Neville elimination
of A and AT, respectively, and the diagonal entries p;; are the diagonal pivots of the Neville elimination
of A.

In [61]], the bidiagonal factorization (@.3) of an (n+ 1) X (n+ 1) nonsingular and TP matrix A is
represented by defining a matrix BD(A) = (BD(A); ) 1<i,j<n+1 such that

mi j, ifi > j,
BD(A); ;= pii, ifi=], 4.5)
I:fv’ljJ, ifi< Jj-
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Finally, let us recall that x € R is obtained with high relative accuracy (HRA) if the relative error of

the computed value ¥ satisfies
[lx — %]

< Ku,
x|

where K is a positive constant independent of the arithmetic precision and u is the unit round-off.
HRA implies that the relative errors of the computations are of the order of the machine precision. An
algorithm can be computed with HRA when it only uses products, quotients, sums of numbers of the
same sign, subtractions of numbers of opposite sign or subtraction of initial data (cf. [23l], [61]).

If the bidiagonal factorization (4.3)) of a nonsingular TP matrix A is computed with HRA then, using
the algorithms in [[62]], we can also compute with HRA its eigenvalues and singular values, the matrix
A~! and even the solution of Ax = b for vectors b with alternating signs.

4.3 Weighted ¢-transformed systems

Let us first introduce a key concept of [74] and [73]] (see the articles on pages . Let (u, ... ,u,) be
a system of functions defined on I = [a,b], ¢ : [a,b] — R a positive function and dy, .. .,d, positive real
values. The corresponding weighted @-transformed system from (uo, .. .,u,) is the system (i, ..., iy,)
of functions defined by

ai(t) :=dio(t)u;(t), t€lab], i=0,...,n. (4.6)

The following result is presented in [73]], proves that a weighted ¢-transformed system inherits the
properties of being TP and being a B-basis.

Theorem 4.2. Let (uy,...,u,) be a system of functions defined on I = [a,b] and let (i, ..., iy,) be the
weighted @-transformed system given by (4.06).

i) If (uo,. .. ,uy) is TP, then (i, ..., iy) is TP.

ii) If (uo,... ,uy) is a B-basis, then (i, .. .,iy) is a B-basis.

Proof. See Theorem 2 of [73] (see the articles on pages [43). 0
Let us suppose that (u,...,u,) is a system of functions defined on I = [g,p] and a < t; < --- <
t,+1 < b is a sequence of nodes such that the corresponding collocation matrix
A= (i1 (t) 1< jent (4.7
is STP. Let
A=FF_---FDG;---G,_1G, (4.8)

be the bidiagonal factorization (4.3) such that F; and G; are the lower and upper bidiagonal matrices of
the form (@.4) and D is a diagonal matrix.

The following result is presented in [[74] and proves that the collocation matrix of the corresponding
weighted @-transformed system (i, ... ,i,) atnodes a <t} < -+ < t,1] <b

A= (i1 (ti))lgi’jgrprl = (dj—19(t;)uj— (ti))lgi,j§n+1 4.9)

is also STP and obtains its bidiagonal factorization (#.3)) from the factorization (4.8) of the collocation
matrix A given in (@.7).
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Theorem 4.3. The collocation matrix @.9) is STP and it can be factorized as
A=FF, ---FIDGy---G,_1G,, (4.10)

where F; ang G; are the lower and upper bidiagonal matrices of the form

1 1

et
Il
—
(o))
4
Il
—_

(4.11)

rigrg 1 Fiy1n 1

Tn+-1n+1—i 1 ?H‘FI.IZ‘FI*II 1

and D = diag (q1.1,-..,qn+1n+1)- The entries ri.j,Tij and q;; are given by

t; d;_
Fij= (p(l) mi . I3 ‘*1'711’3\11'7]‘, 1§j<i§l’l—|—1,

o(ti_1) Y di
gii=di19(t)pii, 1<i<n+1,

where m; j, W j and p;; are the entries of the matrices of the bidiagonal factorization (4.8) of the
collocation matrix A defined in @.7).

Proof. See Thorem 2 of [74] (see the article on page[59). O

Observe that, if the evaluation of ¢ does not include substractions (except for the initial data), the
entries of the bidiagonal factorization of Theorem4.3]can be obtained from the bidiagonal factorization
of @.8) without performing subtractions. Therefore, if the bidiagonal factorization of (#.8)) can be
performed with HRA, then the bidiagonal factorization of Theorem [.3] can be also performed with
HRA. It is known that, for the collocation matrices associated to some important bases used in CAGD,
the bidiagonal factorization can be performed with HRA (see [71]]). In consequence, the bidiagonal
factorization of the collocation matrices of their corresponding weighted ¢-transformed systems can
be performed with HRA and we can apply the algorithms presented in [62] and [63]] to perform many
algebraic computations with HRA. For instance, the computation of their eigenvalues, singular values
or the solutions of some linear systems associated to these collocation matrices.

Given a system (uy, . ..,u,) of functions defined on 7 and positive values dy, . .., d, such that
Yi_odiur(t) # 0, for all ¢ € I, the system (ro, .. .,r,) defined by

L d;u; (t ) .
ri(t) == Y odan) 0,...,n,
satisfies Y ori(t) = 1, Vt € I, and generates a new space of rational functions. If (uo,...,u,) is TP

then Y7 dxux(t) > 0,Vt €1, and (ry,...,r,) can be considered as a particular weighted ¢-transformed
system with

1
i=——— tel 4.12)
o1 Y=o (1)
By Theorem .2 (ro,...,r,) is NTP. Furthermore, if (uo,...,u,) is a B-basis, we can also use Theorem

[4.2]to deduce that (ry, .. .,r,) is the normalized B-basis of the generated space. We would like to observe
that although this fact had been mentioned in [[70], we have not found any proof of it in the literature.
Rational Bernstein basis are NTP basis (see [15]). From Theorem [4.2] the optimal shape preserving
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properties of these rational polynomial systems can be also guaranteed. Similarly, using Theorem [4.2]
one can deduce that NURBS systems are NTP and the normalized B-bases of the corresponding spaces
of rational spline functions.

On the other hand, given #; < --- < t,,41 in I such that the corresponding collocation matrix of
(ug, ..., uy) is STP, by Theorem4.3] we deduce that the corresponding collocation matrix of (ro, ..., r,)
is also STP and, by considering (.12)) in Theorem 4.3] we can obtain its bidiagonal factorization (4.3)
from the corresponding bidiagonal factorization of the collocation matrix of (uy,...,u,). It is important
to notice that this bidiagonal factorization can be frequently used to perform algebraic calculations and
interpolation with HRA.

In Section 4 of [74] (see the article on page[59) we show many examples of weighted ¢-transformed
systems related to probabilistic distributions. Moreover, in Section 3 of [[73] (see the article on pages
M3) and Section 5 of [74] we show a class of rational spaces that can be generated by weighted ¢-
transformed systems. Let us see in the next section the corresponding general class of rational bases.

4.4 A general class of rational bases

This section contains important results obtained in [73] (see the article on page [43).
Let us suppose that / C R and f,g : I — R are nonnegative continuous functions. Then, for n € N,
we can define the system (i), . .., u];) where:

Wi (t) = (Z) 75()g" (1) such thatr €1, k=0,....n. (4.13)

For any positive weights w”,i=0,...,n, letus define @"(r) = Y.! w}u}(¢) and denote by (p§,...,p;)
the rational basis described by

n _.n 1 n .
pi (t)_wi wn(t)ui(t)7 1—07...,1”[7 (414)

n

where (uj,...,u)) is defined in @.13). Clearly, this system spans a space of rational functions with

denominator @"(t),

A" =span{p/(t) |i=0,...,n} ={u(@)/o"(t) |u(t) e %"}, (4.15)

where %" is the space generated by (i, . .., u}).
The following result corresponds to Corollary 4 of [/3] and provides the conditions characterizing

that the system given in (4.14) has optimal shape preserving properties.

Proposition 4.1. The system of functions given in [4.14) is the normalized B-basis of the space X"
defined in if and only if the function f/g defined on Iy = {t € I | g(t) # 0} is increasing and

satisfies
inf{]gcéghelo}zo, sup{gg\telo}:—i—oo. (4.16)

Given I = [a,b] and f,g : I — R satisfying conditions of Proposition let us consider the system
(ug,...,up) defined in (@.13) and its generated space % . For any fy € (a,b], such that f(z9) > 0, let us
define I' := [a, 1] and the system (i), ..., ) given by

wl(t) = (?)ﬁ(t)g’”—"(t), tel', i=0,...,n, 4.17)
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where
f(e) = FAORE I, g0):= f(t0)g(r) —8(t0) £ (2)

f(to)’ f(t) ’

In [70] it is shown that the system (@.17) is a B-basis of the space % |, formed by the restrictions to I’
of the functions of % . On the other hand, the matrix L such that

rel.

W), ul(r)) = @(e),...,a" (1)L, tel, 4.18)

is nonsingular, lower triangular and TP.
Now, let us consider positive weights w?, i =0,...,n. By we can write

(W0, t(0)) Ol W) = () TV L (W), rET. (419)

Taking into account (4.19), it can be deduced that the weights w, i = 0,...,n, obtained by

W, oo =L (wh, . W) (4.20)
satisfy
n n
o"(t) =Y widi () =Y wiai(t), tel. 4.21)
i=0 i=0
Then, by Theorem 4.2] we can deduce that the system (p(,...,p;;) defined by
~ SR .
pr(t) := w?wn(t)ﬁ?(t), tel', i=0,...,n, (4.22)

is the normalized B-basis of the space %" |y formed by the restrictions to I’ of the functions of the
rational space %" in (4.I5). Clearly, by defining the diagonal matrices D := diag{w{},...,w}} and

D := diag{wy,...,w)}, we have
(PB(0)PE(0) = G (0. 0)D = s (). )LD
_ wnl(t) @), ... 7 (1)DD'LD = (PL(t),....p(1)D LD, 1€l

Therefore, L := D~ 'LD is the change of basis matrix such that

(P§(1)s- - (0)) = (B (0), o BLUDE, 1 €T

In [70]] a de Casteljau-like algorithm (called B-algorithm) providing exact evaluation and subdivision
for parametric curves y(t) := Y.! o Pu?(t), t € I is proposed. Now, exploiting the results in [70] and
using the factorization of the matrix L in terms of bidiagonal matrices, we can obtain the bidiagonal
factorization of the change of basis matrix L and derive this kind of algorithm for the evaluation and
subdivision of the rational curve p(¢) := Y\, Pp/'(t), t € I. The computed points Py, P},..., P? satisfy

p(t) = Y BpI(), 1€l
i=0

and, in particular, P! = p(to).
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Algorithm 1: Evaluation and left subdivision algorithm
for j:=0ton

0._ 0._ p.
dj = w;?, Pj =P
for i :=0 to n-1
for j:=0toi
i+1 ._ pi
P =P
for j:=i+1 ton

i = g(to)d:_ | + f(to)d’

P = g(s )d;:Pl +f(ro)d,¢1Pl

Let us observe that if (wju, ..., whu) is normalized then @"(f) = 1 and the algorithm reduces to
the Algorithm 5.1 in [70] for the evaluation of non rational curves defined in terms of a normalized
B-basis.

Similarly, we can deduce the following algorithm for the evaluation and right subdivision of the
rational curve p(1) =Y Ppl(t),t € 1.
Algorithm 2: Evaluation and Right subdivision algorithm
for j:=0ton
0._ 0._ p.
dj = w?, Pj = P;
for i :=0 to n-1
for j:=0 to n-i-1
dit = g(to)di + f(to)d}
P = g(s )d,iIPl+f(to>d,ilP;+]
for j:=n-iton

i+1 . pi
P =P

In Figure .1 we illustrate an example of the de Casteljau-like algorithm to subdivide the rational
trigonometric curves y(¢) := Y.I_, B;p/'(¢) at a given parameter o € (—A,A), 0 < A < 7/2 by considering

£(t) := sin (A;’) o(t) = sin <A2_’> rel=[—A Al

In order to ilustrate these facts, we have implemented a Matlab application for obtaining the Casteljau-
like algorithm to subdivide rational curves at a given parameter #y by considering polynomial, trigono-
metric and hyperbolic functions fand g satisfying the conditions of Proposition 4.1} The application
can be found and downloaded at the following website: https://github.com/CAGD2020/General.


https://github.com/BeatrizRubio/Article_CAGD_2020/main/App_evaluation_subdivision_general
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0 ~
P! Q

20
P

Figure 4.1: de Casteljau-like algorithm to subdivide the rational trigonometric curves at fo = 1/5,
f(t) :=sin (42), g(¢) :=sin (%) and w! = [15,5,5,5,15,5,15].

4.5 A particular class of rational bases satisfying recurrence relations

This section contains important results obtained in [73]] (see the article on page f3)). Let us con-
sider nested spaces generated by a particular class of rational bases admitting degree elevation and
de Casteljau-type evaluation algorithms. Following the approach of [97], let us consider linear factors
Li(t) = a;g(t) + b;f(t) defined by positive values a; and b;, i € Z, and

@"(t):=Li(t)-...-Ly(1). (4.23)

It can be easily checked that @" () = Y w/u!(t) where

W;?:m Y IT«[]e ] (4.24)

KuL={l,..n} k€K I€L
|K|=(n—i),|L|=i

The positivity of a; and b; guarantees that w? > 0 and @" () > 0, V¢ € 1. Let us denote by (p{},...,py)
the particular class of rational bases

Pr(t) =W ——u}(t), i=0,...,n. (4.25)

This basis spans the space of rational functions with denominator @"(¢),

G" = span{pL(1) | i =0,...,n} = {u(t) /@"(t) | u(t) € %"},
where %" is the space generated by the basis (.13).
Proposition gives conditions that guarantee that these particular class of rational bases (p{}, ..., p})
defined in (4.25)) are of interest in CAGD and have optimal shape preserving properties. Let us observe
that Proposition 2 of [97] establishes recurrence relations satisfied by the weights (4.24). Taking into
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account these recurrence relations and replacing in Propositions 3 and 4 of [97] the functions ¢t and 1 —¢
by f(r) and g(t), respectively, one can easily deduce the following relations satisfied by these bases

o) = af g0 n, LA,

n+1—i w' . i+ oWl ,
— ; bt ), i=0,...,n.
n+1 W\:Hrlpz ( )+ i+1 n—+1 A:lj]l p1+1 ( ) l ) N

=0,...,n,

pi(t) = ang

These relations guarantee the nested nature of the generated spaces, i.e. Z"~! C %", and allow the
definition of degree elevation and de Casteljau-type algorithms for the evaluation of curves. In addition,
Section 4 of [97] also explains a nice geometric interpretation for the influence of the initial coefficients
a; and b; to the shape of the generated parametric curves.

In [[73] we also present evaluation and subdivision algorithms for this particular class of ratio-
nal bases. In order to ilustrate these facts, we have implemented a Matlab application for obtain-
ing the Casteljau-like algorithm to subdivide this particular class rational curves at a given parame-
ter fo by considering polynomial, trigonometric and hyperbolic functions fand g satisfying the con-
ditions of Proposition The application can be found and downloaded at the following website:
https://github.com/CAGD2020/Particular.

4.6 Bidiagonal factorization of rational bases with high relative accuracy

This section contains important results obtained in [74] (see the article on page[59).
Theorem 2 of [71]] proves that, given nonnegative f,g: I — R such that f(z) #0, g(¢) #0, V¢ € (a,b)
and f/g is a strictly increasing function, then

A= <(jfl)ff'*l(ti)g"*f“(ti)) ;o a<t; <<ty <b, (4.26)

1<i,j<n+1

is STP. Moreover, in Theorem 3 of [71]], the following bidiagonal decomposition (4.3)) of the collocation
matrices (4.26) was deduced

A:FnF;zfl"'FIDGI"'anlGn, (427)
where F; and G;, 1 <i < n, are the lower and upper triangular bidiagonal matrices of the form {.4) and
D =diag(pi1.1,...,Pn+1,n+1). The entries m; j, 7, j and p;; are given by

iy i—1
N M )g(tiog) Ty (f(t)gltik) = f(tia)g(t))
L,] — _ 3 7 b
g2 (tim1)  TI_, (F)g(tis) — ftin)g(tin))
n—i+?2 (lj) ..
C= 1< < 1
L] i—1 gtj)’ <Jj<isn+l,
n gn 1+1 ﬁ )
pii= ( > —ft)g(t)), 1<i<n+1. (4.28)
1,1 i— 1 Hk | g k:1 l

According to Theorem the collocation matrix A of the rational basis defined in (@.14)) corresponding
toa <t; <---<ty41 < bis STP and can be factorized as

A=FF, ---FiDGy---G,_G,, (4.29)


https://github.com/BeatrizRubio/Article_CAGD_2020/tree/main/App_evaluation_subdivision_particular
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where F; and G;, 1 <i < n, are the lower and upper triangular bidiagonal matrices of the form (@.11)
and D = diag (‘1171 y--sqnt1a+1). The off-diagonal entries rij» Fij of F; and G;, respectively, and the
diagonal entries g;; of D are

" (ti—1) LWy ..
riJ:i{D”([l‘) mi j, r,-’j:—%_zmhj, 1§]<l§l’l—|—1,

Wiy 1<i<n+l (4.30)
ii— i1y Sisn 5 .
q, a),,l(ti)pl,

where ®" and w! are defined in (4.23)) and (.24)), respectively, and m; j, ii; j, p;; are the entries given
in (4.28).

Let us observe that if the evaluation of f and g does not include substractions (except for the initial
data) and the computation of (4.28)) can be performed with HRA, then rational basis (4.14) guarantee
excellent computational properties since many algebraic computations associated to A can be performed
with HRA. Let us notice that we can obtain the same results with the particular case of rational bases
defined in @.23), where the weights satify (4.24). In Section 4.8 we are going to illustrate accurate
computations with their corresponding collocation matrices.

Let us show some examples in the following section. Let us see several choices of functions f
and g satisfying the conditions of Proposition [4.1] and allowing that the corresponding rational basis
(4.14) is the normalized B-basis of its generated space. Let us also see their corresponding bidiagonal
factorizations with HRA.

4.7 Interesting examples of rational bases

Let us first suppose that f is a strictly increasing function on [a,b] such that 0 < f(¢) < 1 for all ¢ € (a,b).
Let us consider the function g(¢) := 1 — f(¢). Clearly, g(z) > 0 on (a,b) and f/g is a strictly increasing
function on (a,b). Observe that the corresponding basis (p(, ..., p; ) defined in (4.14)) spans the space

" = span{u(t) /0" (1) | u(r) € X", 0" (1) = Zo Wi (0)},

where the system (uo, ..., u,) is given in @.13).
Taking into account that

f(t)g(t)) = f(tj)g(t) = (1) = f(z)),

we can deduce that its correponding collocation matrix is STP and its bidiagonal factorization (4.29) is
given by

L 0) (L= f(0) (= fy) Ty (£ — £(0i-4) <i<n
Yo =T [ (f) —se)) @

L wign—i+2 f(t;)

e (N
(o Oy |
pii= a)”(t,-) <i— 1) H;’(;ll 1 _f(tk) ]1;11 (f(tl) f(tk))v 1<i<n+1.
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We can deduce that a sufficient condition to obtain the bidiagonal decomposition (#.3T)) of the collo-
cation matrix of the rational basis (p{,...,p;) defined in (.14) with HRA and the computations of its
inverse, eigenvalues, singular values and the solution of some associated linear systems Ax = b with
HRA holds if we can compute the expressions f(t;) — f(¢;) for all j < i with HRA. Let us now consider
some particular examples. For the particular choice

ft):=¢*, g@t):=1-1* 1re€]0,1],

the corresponding rational basis (pg,...,p;) defined in (4.14) spans the space
n
2" = span{u(r) /" (t) |u(t) € %", " (1) = Y wiu} (1)},
i=0

where the system (u, . .. ,u,) given in (#.13) spans the space (1,£2,...,>") of even polynomials defined
on [0, 1] of degree less than or equal to 2n. Moreover, in this case,

2_ 2
ft) = f(tj)) =17 —t; = (ti+1;)(ti — 1)
and we can obtain the bidiagonal decomposition (4.31)) of the collocation matrix of the rational basis
(Pg,---,py) defined in (4.14) with HRA because in the computation of multipliers and pivots of the
Neville elimination we only perform subtractions with initial data.
Let us now consider another particular case given by the trigonometric functions

Ft) = sin® (t/2) = 1‘0205(’) 1+0208(t)

The corresponding rational basis (pf, ..., p; ) defined in (.14)) spans the space

g(t) :=cos?(t/2) = t €1[0,m].

%" = span{u(t)/ " (t) | u(t) € X", " (t) = zn:w?u?(t)}, (4.32)
i=0

where the system (uo, ..., u,) given in (.13)) is the normalized B-basis of the space
" = (1,cos(t),cos(2t),...,cos(nt))

of even trigonometric polynomials on [0, 7] (see [92]).
In this case, we can obtain the bidiagonal factorization (@.31) of the collocation matrix of the rational
basis (pf), ..., p;) defined in (.14) taking into account that

f(t) = f(1j) = (cos(tj) —cos(t:) /2.

The computation with HRA of the pivots and multipliers of the Neville elimination is not guarantee.
However, in Section 4.8 we are going to show numerical experiments that illustrate the high accuracy
for solving algebraic problems.

Let us now consider a different choice of functions f and g. Let 0 < A < 7/2 and

f(t) :=sin (A;t) , g(t):=sin <A2t> , tel=[-AA] (4.33)

Let us notice that the functions f and g clearly satisfy f(¢) > 0 and g(¢) > 0 for all t € (—A,A).
Moreover, it can be checked that

' sin (& / 1 sin(A
(chég) - (smEAz_’g) :2sz((A_,)>0, Vi € (—A,A).
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Therefore, for any 0 < A < /2, f/g is a strictly increasing function on (—A,A) and thus f and g satisfy
conditions of Proposition The corresponing rational basis (p{,...,p, ) defined in {.14) spans the
space

R" = span{u(t)/@"(t) |u(t) e 7", ®"(t) = i)w?u}"‘(t)},

where, for a given n = 2m, the system (u(,...,u)) given in (@.13)) is a basis that coincides, up to a
positive scaling, with the basis with optimal shape preserving properties of the space

" = (1,cos(t),sin(z),...,cos(mt),sin(mt))

of trigonometric polynomials of degree less than or equal to m on I (see Section 3 of [96]]).
Taking into account that

f(1:)g(1;) = f(tj)g(t:) = sin(A) sin ((1: — ;) /2),

we can deduce that the collocation matrix of the rational basis (pf, ..., p; ) defined in (4.14) is STP and
its bidiagonal factorization (4.29)) is given by

s n—it+l [ A—t; . A—ti; 1 -
- 0"(ti) sin”"/ <T> sm( 2 /> [Ty sin (“5)
l"l " (ti) sint—J/+2 (Afzfi—l ) Hi:z sin (11—1 ;ti—k) ’

1<j<i<n+l, (4.34)

. A+lj
- W?_ln*l’+281n 2 . .
rij=— - AT 1<j<i<n+1,
wi, i—1 ¢p (—;”)

‘ n—i A=t \ oinie— .
wh (o S0 +l (Tt) sin” '(A) i1 it '
9ii =~ 7~ Hsm , 1<i<n+]1.
k=1

o"(t) \i—1 [T sin (%> 2

Although we cannot guarantee the computation of the bidiagonal computation (4.34) with HRA in
Section 4.8 we are going to show numerical experiments that illustrate the high accuracy for solving
algebraic problems.

Finally, we are going to consider hyperbolic functions. Let A > 0 and

f(t)::sinh<A2+t>, g(t):zsinh(Az_t>, rel=[-AA].

Clearly, f(t) > 0 and g(r) > 0 for all 7 € (—A,A). Moreover, it can be checked that
(f(t)>' (sinh ()

o) ) T\ wnh (A=t

g(1) sinh (25%)

Therefore, for any A > 0, f/g is a strictly increasing function on (—A,A) and f and g satisfy conditions
of Proposition The corresponing rational basis (pf), ..., p;) defined in (4.14)) spans the space

/
1 sinhA
=-—— >0, Vi€ (-AA).
> 2 sinh? (4;) (=4.4)

%" = spanf{u(r) /" (t) | u(t) € %", 0" (t) = i)wyu;?(t)},
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where, for a given n = 2m, the system (ug,...,u)) given in (4.13)) is a B-basis of the space
U= (1,ee7", ... M e ™)
of hyperbolic polynomials of degree less than or equal to m on /. Taking into account that

f(t)g(t;) — f(1)¢(t:) = sinh(A) sinh ((1; — 1) /2) .

we can deduce that the collocation matrix of the rational basis defined in (4.14)) is STP and its bidiagonal
factorization (4.29) is given by

. —j+1 (A= \ o: A—tij 1. g
ey s (05 ) sinn (S5 - sinn ()
b " (l‘,') Sinhn—j+2 (A—zti—l ) Hli:z sinh (tiflgti—k) ’

. A+tj
w?fln—i+2smh( 2 )
n P . At
wii, i—=1 gnp (T/>

A—t;

Pt LAY

w sinh" ™'+ ( 5 )smh (A) i-1 f_¢

gii= (" [Tsinh (“25) ) 1<i<n+1.
oo (h) \i—1 H;;:ll sinh (%) k=1 2

Although we cannot guarantee the computation of the bidiagonal factorization given in (4.35) with
HRA the numerical experiments of Section [4.8] will show high accuracy for solving the considered
algebraic problems.

1<j<i<n+1, (435

Fij= I<j<i<n+l,

4.8 Accurate computations with collocation matrices of rational bases

The numerical experiments of this section use the rational bases presented in [[74] and [73]. Specifically,
we use the particular rational bases given in (4.14)). Moreover, these numerical experiments are a part
of the numerical experiments presented in [[74] (see the article on page[S9).

In [62], assuming that the multipliers and diagonal pivots of the Neville elimination of a nonsingular
n x n TP matrix A and its transpose are known with HRA, Koev presents algorithms for computing with
HRA its eigenvalues, singular values and the solution of linear systems of equations Ax = ¢ where the
entries of the vector ¢ have alternating signs. In [63] Koev implemented these algorithms with the Mat-
lab or Octave functions TNSolve, TNEigenvalues and TNSingularvalues. The computational cost
of the function TNSolve is ¢(n?) elementary operations and it requires as input arguments the bidiag-
onal factorization (4.3) of the matrix A and the vector ¢ of the linear system Ax = ¢. The computational
cost of TNEigenvalues and TNSingularvalues is &(n?).

Using the results in this chapter, we have implemented the Matlab function TNBDA for the effi-
cient computation of the corresponding bidiagonal decomposition of the collocation matrices at
t1,...,ty,+1 of the weighted @-transformed systems. In order to use the functions available in the li-
brary TNTool of [63], the implemented Matlab function give the bidiagonal decomposition for the
corresponding matrices by means of the (n+ 1) x (n+ 1) matrix BD(-) defined in (4.5). Observe that
the computational complexity of the computation of the multipliers m; ;, /i1; ; and the pivots p;; of the
proposed bidiagonal decomposition is O(n?).

Now we include some numerical experiments considering collocation matrices of the particular ra-
tional bases given in (4.14). For different values of n we have considered collocation matrices at equidis-
tant parameters in the interior of the interval domain of the particular rational basis (.14), obtained by
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considering a; = 2 and b; = 5, i € N. Tables and illustrate the 2-norm condition number of all
considered matrices, computed with the Mathematica command Norm[A,2]- Norm[Inverse[A],2].
Observe that the condition number of the matrices considerably increases with their dimension. Due
to the ill conditioning of these matrices, traditional methods do not achieve accurate solutions when
solving the mentioned algebraic problems. The numerical results show this fact and the high accuracy
of the algorithms that we have presented, even when the bidiagonal factorization of A is not computed
with HRA.

n+l K(Ap) K(Ap)

10 | 1.7x10° | 1.4x10°
20 | 1.2x 10 | 4.7x10°
25 | 1.1x10"™ | 2.8x 108
50 | 6.2x10%8 | 1.9x 107

Table 4.1:

g(t) =1 —1t (left), with f(t) =2, g(t) = 1 — ¢ (right).

Condition number of collocation matrices of the particular rational bases with f(z) =1,

n+1 K(An) K(Ap) K(Ap)

10 | 1.1x10* | 3.1x10° | 9.9x 10*
20 | 1.3x10° | 42x 10" | 4.5x10'°
25 | 5.0x 10 | 49x 10" | 3.1 x 103
50 | 8.6x10% | 1.2x10% | 5.9 x 10%

Table 4.2: Condition number of collocation matrices of of the particular rational bases with f(r) =
sin® (t/2), g(t) = cos®(t/2) (left), with f(t) = sin((1+1)/2), g(t) = sin((1—1)/2) (middle) with
f(t) =sinh((1+1)/2), g(t) =sinh((1 —1)/2) (right).

Linear systems arise when solving interpolation problems. So, in this section, we shall illustrate
the accuracy of the computed solutions of Ax = ¢ when using the function TNSolve with the bidiagonal
factorization of A given by TNBDA. We have obtained the solution of the systems using Mathematica with
a precision of 100 digits and considered this solution exact. Then we have computed with Matlab two
approximations, the first one using TNBDA and TNSolve and the second one using the Matlab command
\. We have computed the relative error of every approximation é = (&y,...,C,+1) of the solution ¢ of
the linear system by means of the formula e = ||c — ¢||2/||c]|2-

We have considered ¢, = ((—1)""'¢;)1<j<ns1 Where ¢; is a nonnegative random real number. Table
shows the relative errors when f(t) =1, g(t) = 1 —t and the relative errors when f(t) =12, g(t) =
1—12,1€[0,1]. As we have seen in Section in both cases the parameters of the bidiagonal
factorization (4.29) can be obtained with HRA and then A,x = ¢, can also be solved with HRA. The
numerical experiments confirm this fact.

Finally, Table shows the relative errors in the solution of A, x = ¢, with other functions f and g.
As we have seen in Section[4.7] in these cases the computation with HRA of the parameters of the
bidiagonal factorization (#.29) should require the evaluation with HRA of the involved trigonometric or
hyperbolic functions. Although this cannot be guaranteed, the numerical experiments show again that
accurate algebraic computations with the collocation matrices associated to these non-polynomial basis
functions can be performed.

In [74]] we show more numerical experiments with these rational bases. Moreover, we consider
other collocation matrices of weighted ¢-transformed systems such as the collocation matrices of (n+
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n+1 An\ ¢y TNBDA An\ ¢y TNBDA
10 [33x1073 1.1x105 [24%x10°™ 92x10°1°
20 1.2x107°2 63x1071° | 56x10°" 24x10°1
25 4.1x1077 21x107% | 3.1x107° 2.0x10°1
50 1.0 7.5%x 10713 1.0 6.4%x 10713
Table 4.3: Relative errors solving A,x = ¢, with f(t) =t, g(t) = 1 —t (left), with f(¢) =12, g(t) = 1 — 1>
(right).
n+1 An\Cn TNBDA Ap\cn TNBDA An\Cy TNBDA
10 [15x107% 32x10°[26%x10°° 1.8x10°P [51x107% 19x10°15
20 [23x10712 53%x10710 | 34x107° 15%x10715 | 28x1072 22x1071
25 [35x1071 31x1075 ] 1.9x10°% 24x10715 | 20x1077 29x 10713
50 | 3.1x1073 32x1071 1.0 2.1x10714 1.0 8.1x 1071

Table 4.4: Relative errors solving A,x = ¢, with f(t) = sin®(t/2), g(t) = co
sin((141)/2), g(t) = sin((1—1)/2) (middle) with f(z) = sinh((1+1¢)/2

52 (t/2) (left), with £(t) =
), g(t) = sinh((1—1)/2)

(right).

1)-dimensional negative binomial bases, geometric bases and Poisson bases at equidistant parameters
in (0,1). The code of the experimentation can be found and downloaded at the following website:
https://github.com/NLAA2020.

4.9 Curve Fitting with Neural Networks using a general class of rational
bases

This section presents the main results obtain in [39] (see the article on page[77).

The problem of obtaining an approximating curve from a given set of data points appears recurrently
in several applied and industrial domains, such as CAD/CAM systems, computer graphics and anima-
tion, medicine, and many others. Although the Bernstein bases and B-spline bases are usually applied to
tackle this issue, some shapes cannot yet be adequately approximated by using the polynomial scheme.
In this Section we address this limitation by applying the rational bases presented in [73]] wich are de-
fined in (@.14). The generalization of the rational Bernstein bases obtained when replacing the linear
polynomial factors by trigonometric or hyperbolic functions or their mixtures with polynomials have
been analyzed in Section[4.4] The generated rational curves inherit geometric properties and algorithms
of the traditional rational Bézier curves and so, they can be considered as modeling tools in CAD/CAM
systems.

However, the rational curves have an added difficulty. In general, the selection of the weights is
no clear and is difficult to find algorithms for this purpose. Moreover, the effect of changing a weight
is different from that of moving a control point. Thus, we propose a method for learning the process
of curve fitting through the general class of rational bases defined in (.14). In fact, the approximation
is achieved by finding suitable weights and control points to fit the given set of data points using a
neural network and a training algorithm, called AdaMax algorithm, which is a first-order gradient-based
stochastic optimization.

Specifically, the problem that we solve can be stated as follows. Suppose that f and g are functions
defined on [a, ] satisfying the conditions of Proposition Consider a set of parameters a <ty < --- <


https://github.com/BeatrizRubio/Article_NLAA_2020
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t; < b and a sequence of data points s, ...,s; € R¥, where each parameter #; is associated with a data
point s;. For some n < ¢, we want to obtain a rational curve

(g OO0 w36

: —F;,
SXiow (§)fi()g (1)

to approximate the set of data points s = (si)fzo. Therefore, the goal is to obtain the weights wg,-- -, wh
and the control points Fy,- -, P, of the rational curve that best fits the set of data points. In order
to compute them, we have used a stochastic optimization process to train a neural network that models
the rational curve c(z).

The problem to be solved can be interpreted then as a regression problem where the set of labeled
samples is composed of the input data X, that is, the set of parameters a < fy < --- <1, < b and the
target set of data points ¥ = 5 = (s;){_,.

Then, the expression in (4.36) can be represented as a hierarchical computational graph with just
one hidden layer that we will denote as A}, p : R — R* where the computations are organized as in
Figure The obtained curve .4}, p(t) is the rational curve ¢(¢) that approximates the given set of data
points and we denote as the fitting curve.

telR

n _ _wp Q)" () n_ _wl (D" (1) ot = wi G (18" " (1)
Po = Towr A0 Pi =~ Tw (OF g ® " Thow} (00

Py P; Py

Nu,p(t) = il o} (£) P;

Figure 4.2: From top to bottom. The input layer has the parameter ¢+ € R as input. The hidden layer is
of width n+ 1 and its parameters are the weights. Then, the output layer computes the approximation
of the target curve and its parameters are the control points.

The key idea is to iteratively change the input weights w = (w')"_, and control points P = (P;)‘_,, of
the active curve .4;, p(f) and so, it deforms towards the target shape represented by the set of data points
s = (s,-)f:() (see Figure 4 of [39] on page ). Then, we apply an adaptive learning rate optimization
algorithm to train the neural network to find the weights and control points, which can be, for example,
the Adaptive Moment Estimation (Adam) algorithm or its variant Adaptive Moment Estimation Maxi-
mum (AdaMax) algorithm based on infinity norm. These methods are used for stochastic optimization,
to solve the supervised learning problem and to find the parameters where a minima is located.
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We have mainly used the AdaMax variant because of its stability and simplicity [59]. However,
the Adam method can be useful depending on the shape of the set of data points to be approximated
and the choice of the loss function. The stochastic objective function, also called the loss function,
measures the goodness of the fitting curve. Let us notice that there exist different loss functions such
as the mean absolute error, the cross entropy loss, the mean squared error, among others different loss
functions implemented in Tensorflow can be consulted in the tensorflow documentation), that can be
chosen depending on the problem. In our case, we have considered the mean absolute error as the loss
function because of the choice of the training algorithm, given by the following expression: E(w,P) =
Yicolsi = Aup(ti)/(L+1).

The Adam and the AdaMax algorithms are stochastic gradient-based optimization algorithms and,
as previously mentioned, they update the weights and the control points iteratively. The step size is a
real number that measures how much the weights and the control points are updated upon each iteration.
Besides, the Adam algorithm uses the first and the second moment estimate to update the weights and
the control points which are updated following exponential decay rates (81 and ;). Finally, as AdaMax
is a variation of Adam using infinity norm, the second moment estimate has a simple recursive formula
which will be denoted in Algorithm [T] as exponentially weighted infinity norm. See [59] for a detailed
description of the both Adam and AdaMax algorithms.

Algorithm 1: The AdaMax algorithm [59]] adapted to our context.
Result: A set of weights w and control points P.
Require: The number of iterations k or an upper bound e € R for E(w, P);
Require: The stepsize «;
Require: The exponential decay rates 31,3, € [0,1);
Require: The stochastic objective function E (w, P);
Require: A small constant € for numerical stability;
Initialize: Time step d := 0;

Initialize: The set of weights and control points in time step d = 0, w(®) and P(?) randomly

sampled;

Initialize: First moment vector 7(0) =0;

Initialize: Exponentially weighted infinity norm §(©) := 0;

while d < k or E(w,P) > e do

d :=d +1 (Increment the time step);

Y =By L (1-B))- VW-])’P@_.)E(W(”’*I),P(dfl)) (Update the biased first moment
estimation);

8@ :=max (By- 8"V V () panE(w4=1), P=D)Y) (Update the exponentially weighted

infinity norm);

_ (d—1) .
wid) .= yld=1) _ 1—aﬁ;‘ . 5(7;771)% (Update the weights);
B d-1) .
pd) .= pld-1) _ l—aﬁfl : 5(};(_7])%. (Update the control points);
end

The number of units (i.e. weights and control points) is a hyperparameter and is determined based
on the complexity of the shape to be approximated. Besides, the step size, &, can be changed depend-
ing on the state of the convergence of the training procedure, for example, when the loss values (i.e.,
the evaluation of the loss function) gets stuck or the update of the parameters is too big. Then, it is
useful to increase or reduce, respectively, the step size according to the values of the loss function. In
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[39] (see the article on page [3.3) we show a detailed description of the obtained neural network.

Let us see the performance of the of the neural network .4, p with different sets of data points
s = (si)fzo which reflect the variety of situations where the proposed neural network can be applied.
The first set of data points belongs to a closed conic curve, the second one belongs to a transcendental
curve and the third one is a curve with a twisted shape

In all cases, we have used the rational bases given in (4.14) taking different functions f and g
satisfying the conditions of Proposition (4.1]) and allowing that the corresponding rational bases
have the optimal shape preserving properties.

We can see in Table a summary of the loss values from different fitting curves. Let us observe
that the value n is the degree of the fitting curve and it depends on the complexity of the shape to be
approximated. Moreover, let us notice that the proposed neural network is able to obtain a suitable
accuracy with low degrees and, as a generalization of other methods, we can choose, depending on
the shape of the set of data points, the basis that best fits. Note that in CAGD it is important to face
properly the problem of curve fitting finding a balance between accuracy and degree of the curve since
high degree curves are computationally expensive to evaluate. The AdaMax algorithm has been selected
because it is a computationally efficient with little memory requirements algorithm, suited for problems
with large data or parameters. In Table [4.6] the time of execution of the Algorithm [T] using different
number of units (i.e., weights and control points) and number of iterations is provided.

] n \ Basis 1 \ Basis 2 \ Basis 3 Basis 4 ‘
Circle
3 [3.3946-107% | 3.7129-1072 | 7.0468- 102 | 3.6438-1072
4 12.1757-1073 | 1.5338-10°% | 3.1678-10° | 2.5582-103
5 ]1.7333-107% | 9.2269-10"3 | 2.8083-10* | 2.2488-10°
Cycloid
8 | 1.0849-103 | 3.6855-10~* | 3.6017-10* | 3.1674-10~*
9 [ 4.6163-107* | 3.6855-10~% | 3.6017-10"* | 2.4914-10*
10 | 3.3944-10~% | 3.6855-10~* | 3.6017-10~* | 2.4914-10~*
Archimedean spiral
11]1.5982-1073 [ 1.0474-1072 | 2.2349-10"% | 7.8109-10~*
12 1.5982-1073 | 7.8916-1073 | 5.7801-10"3 | 7.8109-10~*
13 | 1.4106-1073 | 5.2853-1073 | 5.7801-10~3 | 7.8109-10~*

Table 4.5: Loss values of the mean absolute error for different fitting curves of degree n with f(r) =1,
g(t)=1—1,1t€[0,1] Basis 1), f(t) =¢>and g(t) = 1 — 12, ¢ € [0, 1], (Basis 2), f(¢) = sin ((A+1)/2)
and g(r) =sin((A—1)/2),A< /2, A< /2,1t € [-A,A], (Basis 3) and finally f(z) = sinh ((A+7)/2)
and g(r) =sinh ((A—1)/2), A< m/2,t € [-A,A], (Basis 4). They were all trained with 4000 iterations,
a = 0.0001,8; = 0.9, B, =0.999, € = 10~7. The process was repeated 5 times, being the loss values
provided the best value reached.

The implementation was developed using TensorFlow 2.0 [[1] allowing developers to easily use it
to build and deploy Machine Learning powered applications. The code of the experimentation can be
found and downloaded at the following website:
https://github.com/Mathematics2020. All experiments were ran on a Quad-Core Intel Core i7 CPU,
2,8GHz with 16GB RAM. In [39] (see the article on page[3.3)) we present a detailed description of these
experiments. Moreover, in [39]] we compare the neural network with the traditional least square method
to test its performance with a noisy set of data points.


https://github.com/BeatrizRubio/Article_Mathematics_2020
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Number of iterations
1 25 50 100 3000
5 | 0.1259 | 1.4284 | 2.8381 | 5.7259 | 189.5386
10 | 0.0989 | 2.0781 4.1325 | 10.2672 | 268.8726
15 | 0.1244 | 2.7142 | 5.3781 | 10.9886 | 347.6139
50 | 0.6479 | 8.2589 | 13.3576 | 27.4398 | 850.6713
100 | 1.1624 | 14.3999 | 32.6576 | 65.3298 | 1521.3971

n+1

Table 4.6: Time of execution of the proposed algorithm measured in seconds for different number of
units and iterations. The values provided are the mean of 5 repetitions with a set of data points of size
100.

4.10 Accurate least squares fitting with a general class of rational bases

In Section 4.3 we have obtained algorithms for the computation of the bidiagonal decomposition (4.29)
of square collocation matrices of the general class of rational bases given in {#.14) (see also the article
(74]] on page [59).

Now, following the approach of [[84] for a polynomial case and taking into account the obtained
results in [72] and [25], we generalize the aforementioned bidiagonal decompositions to the case of
rectangular collocation matrices.

The problem that we would like to solve is stated as follows. Suppose that f and g are functions
defined on [a, b] satisfying the conditions of Proposition Consider a set of parameters a <t < --- <
t1+1 < b and a sequence of data points s1,...,5.+; € R¥, where each parameter ¢; is associated with a
data point s;. For some n < ¢, we want to compute a rational curve

B n+1 W? (,-:l1>fi_1(t)gn_i+1(t) |
‘= z; Yt wy (ifl)fi_l(f)é’"—ﬂ’](f)&

1

t €[a,b], 4.37)

minimizing the sum of the squares of the deviations from the set of data points s = (s,-)fill, that is,
f= Zf;rll (si —c(t))?. In order to compute the control points P = (B;)™"]' of the fitting curve, we have to

solve, in the least square sense, the overdeterminated linear system AP = s, where the matrix A is

A ( v () )g" " 1)) >
S () P 1) ) 1<i<nt 1< <o,
According to Theorem[4.3] A is STP and so has maximal rank n+ 1. Therefore this problem has a
unique solution, which is given by the solution of the linear system

ATAP=ATy.

Solving the previous normal equations is a worse conditioned problem than computing the solution
through the QR decomposition of the coefficient matrix A, which is the usual approach. In [62] an
efficient algorithm for computing the QR decomposition of an STP matrix A is presented. In [23]
the Matlab or Octave library TNQR, containing an implementation of the mentioned last algorithm, is
available. Assuming that the bidiagonal factorization of A is known, TNQR computes the matrix Q and
the bidiagonal factorization of the matrix R with HRA. Now, following the approach of [84], we shall
describe how to solve our least squares problem by means of a bidiagonal decomposition for rectangular
matrices that generalizes the bidiagonal factorization described, for the square case, in the previous
section and the QR decomposition provided by TNQR.
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In order to compute the solution of the least squares problem, we define the (/+ 1) x (n+ 1) matrix
M such that

M;;i:=gqi;, i=1,....n+1,
M;j=ri; j=1,...,n+1; i=j+1,...,1+1,
M;j:="F; i=1,....n j=i+1,...,n+1,

where the r; ;, 7; ; and g;; are obtained as in (4.30). Then, using TNQR, we can obtain the QR decompo-

sition of A such that
R

where Q € RUFD*(+1) ig an orthogonal matrix and R € R"+D*("+1) i5 an upper triangular matrix with
positive diagonal entries. Following Section 1.3.1 in [8]], the solution of the least squares problem is

obtained from
“\_ors Re=ar, r=0( °), 4.38)
d2 d2

where d; € R"™, dy e RI-" and r = f —Ac. The matrices Q and R have an special structure described
in [35]]. In particular, R is nonsingular and TP. In order to obtain the solution of the upper triangular
system Rc = dj, we have used the routine TNSolve of [62], which uses the bidiagonal decomposition
of the upper triangular TP matrix R.

In order to illustrate these facts, we have implemented a Matlab application. In this application
we show the perfomance of this algorithm with different set of data points belonging to known curves
which reflect the variety of situations where the proposed algorithm can be applied. In all cases, we
uses the rational bases given in {.14) taking different functions f and g satisfying the conditions of
Proposition (@.1) and allowing that the corresponding rational bases have the optimal shape pre-
serving properties. The application gives the corresponding fitting curve defined in (4.37)) and requieres
as inpunts the set of data points and weights. It can be found and downloaded at the following website:
https://github.com/AppCurveFittingG. Let us notice that we can obtain the same results with the partic-
ular case of rational bases defined in (4.23), where the weights satify (4.24). For this case, we have also
implemented a Matalb application that can be found and downloaded at the following website:
https://github.com/AppCurveFittingP.

For future work we would like to tackle the problem raised in Section [4.9] and Section #.10] We
wish to design a new neural network that will be trained with an optimization algorithm to update the
weights while the control points are obtained with the accurate algorithm presented in Section |4.10


https://github.com/BeatrizRubio/Article_NLAA_2020/tree/main/App_CurveFittingHRA/Curve_fitting_HRA_general_rational_bases
https://github.com/BeatrizRubio/Article_NLAA_2020/tree/main/App_CurveFittingHRA/Curve_fitting_HRA_particular_rational_bases

Total positivity and accurate computations
with Wronskian matrices of monomial,
exponential and Jacobi polynomials

ABOUT THIS CHAPTER

The purpose of this chapter is to justify the thematic unit of the articles [75] and [76] (see on pages [99]
and[117)), which belong to the compendium of publications of this thesis. The main results of [75] and
[76] are also presented.

[75] E. Mainar, J.M. Pefia, B.Rubio, Accurate computations with Wronskian matrices, Calcolo 58, 1
(2021).

[76] E.Mainar, J.M. Pefa, B. Rubio, Accurate computations with collocations and Wronskian matrices
of Jacoby polynomials, Journal of Scientific Computing 87, 77 (2021).

5.1 Introduction

The accuracy of the calculations is a desirable goal in Computational Mathematics. Let us recall that
an algorithm can be performed with high relative accuracy (HRA) if it does not include subtractions of
numbers having the same sign (except of the initial data if they are exact), that is, if it only includes
products, divisions, additions of numbers of the same sign and subtractions of the initial data having the
same sign provided that they are not affected by errors (cf. [23]]). For some structured classes of matrices
such algorithms have been found through an adequate parameterization of the matrix. In particular, this
has been achieved for some subclasses of totally positive (TP) matrices. In [62] it was shown that,
given the bidiagonal factorization of a nonsingular TP matrix A with HRA, we can compute with HRA
its eigenvalues and singular values, the matrix A~! and even the solution of Ax = b for vectors b with
alternating signs. Among the subclasses of TP matrices for which the bidiagonal factorization has
been obtained with HRA (cf. [15]], [17], [82]], [86]), there are many examples of collocation matrices
(uj—1(ti))1<i j<ns1 of systems (uo,...,u,) of functions defined on a real subset I (1] <1 < -+ < 41
in I). However, up to now, there are no examples of accurate computations for matrices involving
derivatives of the basis functions. This chapter presents some examples of Wronskian matrices for
which many algebraic computations can be performed accurately. These Wronskian matrices come
from applications in Computer-Aided Geometric Design (CAGD) and they can also arise in Hermite
interpolation problems, in particular in Taylor interpolation problems. For example, we provide the
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bidiagonal decomposition with HRA of the Wronskian matrix of monomials and an accurate bidiagonal
factorization of the Wronskian matrix of exponential polynomials.

This chapter also deals with the accurate computation when using collocation and Wronskian ma-
trices (see Section of Jacobi polynomials on (1,e). Crucial facts to derive our results have been
to prove the strict total positivity of the collocation matrices of Jacobi polynomials on (1,e) and the
total positivity of their Wronskian matrices. Then the bidiagonal factorization with HRA has been ob-
tained for these matrices and the algorithms presented in [63]] can be used for the algebraic computations
mentioned above with HRA.

The complexity of all the proposed algorithms of this chapter for solving the mentioned algebraic
problems is comparable to that of the traditional LAPACK algorithms, which, as we have ilustrated in
[75] and [76] (see the articles on pages [09)and[I17), deliver no such accuracy.

The layout of the chapter is as follows. Section[5.2] presents basic concepts and results. Section [5.3]
shows that the bidiagonal factorization of the Wronskian matrices of the monomial basis of polynomi-
als can be performed with HRA. In Section we prove that the Wronskian matrices of the basis of
exponential polynomials on positive real numbers are strictly totally positive. We also provide the bidi-
agonal factorization of these matrices. The computation with HRA of this factorization should require
the evaluation with HRA of the involved exponential functions. Although this cannot be guaranteed,
the numerical experiments presented in Section 5 of [75]] (see the article on page 09) show an accuracy
similar to the obtained for the monomial basis. In Section [5.5] the strict total positivity and bidiagonal
factorization of the collocation matrices of Jacobi polynomials on (1,c0) are obtained. In Section
the total positivity and bidiagonal factorization of the corresponding Wronskian matrices are derived.
Section particularizes the results for some well known families of Jacobi polynomials: Legendre
polynomials, Gegenbauer polynomials, Chebyshev polynomials of the first and second kind and ratio-
nal Jacobi polynomials.

5.2 Notations and previous results

In this chapter we shall use the following notations. Given an n-times continuously differentiable real
function f and x € R in its domain, f'(x) denotes the first derivative of f at x. For any i < n, f()(x)
denotes the i-th derivative of f at x. Given a basis (uo,...,u,) of a space of n-times continuously
differentiable functions, defined on a real interval I and x € I, the Wronskian matrix at x is

W (0, 1) (%) = () (1)) jmt, 1

Let us recall that A matrix is totally positive (TP) if all its minors are nonnegative. Some books with
many applications of TP matrices are [2} 27, 93]).

Neville elimination is an alternative procedure to Gaussian elimination and has been used to charac-
terize TP matrices. More details on this elimination method can be found in [34} 36} 37]. By Theorem
4.2 and the arguments of p.116 of [37], a nonsingular TP matrix A = (aim,-)l <i,j<n+1 admits a factoriza-
tion of the form

A=FF,1---F1DG; -G, 1Gy, (5.1)
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where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by

1 1

F; = ,GI = . , 5.2
i miy 1 T mir11 1 62
Myyinr1—i 1 Mgt pr1—i 1
and D = diag (p1,1,p2.2,---,Pnt1.+1) has positive diagonal entries. If, in addition, the entries m; s Mij
satisfy

mij:O = mh‘,-:O, Vh>1i, and ﬁl,‘jzo = ﬁz,-k:O, Vk>j,

then the decomposition is unique. The diagonal entries p;; of D are the diagonal pivots of the
Neville elimination of A and the elements m; ;, 7i; ; are positive and coincide with the multipliers of the
Neville elimination of A and A7, respectively.

In [61]], the bidiagonal factorization (5.1) of an (n+ 1) x (n+ 1) nonsingular and TP matrix A is
represented by defining a matrix BD(A) = (BD(A); j)1<i,j<n+1 such that

mi j, ifi > j,
BD(A)j:=q pii, ifi=], (5.3)
I:Iv/lj,,', ifi < j.

Given BD(A), using the results in [34, 36,37, a bidiagonal decomposition of A~! can be computed

as

A™'=GiGy---GD'Fy - BFy, (5:4)
where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matrices of the form of F;
and G;, respectively, but replacing the off-diagonal entries {m;; 1 1,...,My+1 n+1—i} and
{Miv10s g1 -} by {—=mi1,. .., —muy1} and { =it 1, ..., —H1u11 i} respectively.

Let us observe that if a matrix A is nonsingular and TP, then A” is also a nonsingular and TP matrix.
Moreover, the bidiagonal decomposition of A7 can be computed as

AT =GIG" | ...G"DF---F! |FT, (5.5)

where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matrices in (5.1)) .
Finally, let us recall that x € R is obtained with high relative accuracy (HRA) if the relative error of
the computed value ¥ satisfies
[lx — %]

< Ku,
x|
where K is a positive constant independent of the arithmetic precision and u is the unit round-off.
HRA implies that the relative errors of the computations are of the order of the machine precision. An
algorithm can be computed with HRA when it only uses products, quotients, sums of numbers of the
same sign or subtractions of exact data (cf. [23]], [61]).
If the bidiagonal factorization (3.1)) of a nonsingular TP matrix A is computed with HRA then, using
the algorithms in [62], we can also compute with HRA its eigenvalues and singular values, the matrix
A~" and even the solution of Ax = b for vectors b with alternating signs.
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5.3 Total Positivity and factorization of Wronskian matrices of mono-
mial basis

This section contains important results obtained in [75] (see the article on page[99). The monomial basis
of the space P" of polynomials of degree less than or equal to 7 is (my,...,m,) with

mi(x) :=x', i=0,...,n. (5.6)

. i=0,....n (5.7)

It can be checked that
(n’lo, oo ,mn) = (To, ceuy TH)W,

where W := W (my, ...,my)(xo). Equivalently, we can also write
(To, ..., T,) = (mg,...,m,)W L

In this section we are going to obtain the bidiagonal factorization (5.1)) of W and W~! and see that they
can be computed with HRA. First let us prove the following auxiliary result.

Lemma 5.1. Given i, j €N, then

1 1 i— X (i
=m)(x) = mmﬁ-l”<x> * E’"E‘Zl(’c)’ *EeR. 68

Proof. See Lemma 1 of [75] (see the article on page[99). O

For a given x € R, k,n € N with k < n, let Uy, = (u; j)1<i,j<n+1 be the upper triangular bidiagonal
matrix with unit diagonal entries and such that

wiip1:=0, i=1,...;k—1, wujp1:=x, i=k, ... ,n 5.9)
In the following result we obtain an explicit expression of the entries of the product matrix Uy ,, - - - Uy, .
Proposition 5.1. Fora givenx € Randn € N, let
Un:=Uipn--Unp,
where Uy p, k = 1,...,n, is the upper triangular bidiagonal matrix with unit diagonal entries satisfying

(5.9). Then U, = (u; j)1<i,j<nt1 is an upper triangular matrix and

1 i
Ui j = mmﬁif)(@, 1<i,j<n+1. (5.10)
Proof. See Proposition 1 of [75] (see the article on page[99).

O

Let us observe that for x > 0 the matrices Uy ,, k = 1,...,n, are TP. Then, as a direct consequence
of the previous result and taking into account that, by Theorem 3.1 of [2], the product of TP matrices is
TP, we can derive the following result providing a bidiagonal factorization of the Wronskian matrix of
the monomial basis (5.6).
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Corollary 5.1. Let n € N and (my,...,m,) be the monomial basis given in (5.6). Then for any x € R,

W =W (my,...,m,)(x) := . UrnUz--Upp, (5.11)
n!

where Uy, k =1,...,n, is the upper triangular bidiagonal matrix with unit diagonal entries satisfying
(3.9). Moreover, if x > 0 then W (my, ... ,my)(x) is TP.

Let us observe that (5.11) is the bidiagonal factorization (5.1I) of the upper triangular, nonsingular
and TP Wronskian matrix W = W (mo, ...,m,)(x), x > 0, where F; and G; are the TP, lower and upper
triangular bidiagonal matrices in (5.2)). Clearly BD(W) can be computed with HRA and, consequently,
using the bidiagonal factorization (5.4), W ! can also be computed with HRA as stated in the following
result.

Proposition 5.2. Let W be the Wronskian matrix at xo of the monomial basis of the space of polynomials
P". Then W= can be computed with HRA.

Finally, in the following example, we illustrate the bidiagonal factorization (3.11]) of the Wronskian
matrix of a basis of monomials.

Example 5.1. For the particular case n = 3, the bidiagonal factorization of the Wronskian matrix of
the basis (mg,my,mp,m3) at x € R is

1 000 1 x 00 1 00O 1 00O

W (mo, mi,ma, ms) (x) = 0100 01 x O 01 x O 0100
T 0020 001 x 0 01 x 001 x

0 0 0 6 0 0 01 0 001 0 0 01

In Section 5 of [75]] (see the article on page [09) it can be seen accurate results obtained when com-
puting the eigenvalues, singular values, the inverse and the solutions of some linear systems associated
with the Wronskian matrices of monomial bases, using the bidiagonal factorization (5.11)) and the al-
gorithms presented in [[62] and [63]]. The code with the numerical experimentation can be found and
downloaded at the following website: https://github.com/Calcolo2021.

5.4 Total positivity and factorization of Wronskian matrices of exponen-
tial polynomials

This section contains important results obtained in [73] (see the article on page [99). Given Ay, ..., A,
and x € R, let us consider the basis (u,...,u,) of exponential polynomials defined on R by

wi(x) =M, i=0,...,n. (5.12)

W (ug, ..., u,)(x) = (l}:}elj"x)i,jzl,...,n+1, (5.13)

is STP for any x € R.


https://github.com/BeatrizRubio/Article_Calcolo_2021
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Theorem 5.1. Let 0 < Ay < --- < A, and the basis (5.12)) of exponential polynomials. For any x € R,
the corresponding Wronskian matrix (5.13)) is STP and

detW (uo, ..., un)(x) = [T T (A=) (5.14)
k=0 0<k<(<n

Proof. See Theorem 1 of [75] (see the article on page 09). O

In the following result we present the bidiagonal decomposition (5.1) of the Wronskian matrices
(5.13) and their inverses.

Theorem 5.2. Let 0 < Ay < --- < A, and the corresponding basis (5.12) of exponential polynomials.
For a given x ¢ R, W := W (uy, . .., u,)(x) admits a factorization of the form

W =FF,_1--F1DG|---Gy,_1Gy, (5.15)

where F; and G;, 1 < i < n, are the lower and upper triangular bidiagonal matrices given by (5.2) and
D =diag(p1,1,p22,---,Pntri,n+1). The entries m; j,m; j and p;; are given by

i (et — Ak
. =~ (Ais1—Aio)x ( i—1 i—k
mij=2Aj_1, mjj=e —_—
b I b k=2 (A'i—Z /lifkfl) ’

I<j<i<n+l,

i—2
pl‘J:eAFIXH(lifl*)Lk)a 1 §l§n+1
k=0
Proof. See Theorem 2 of [75] (see the article on page[99). O

Let us observe that the computation with HRA of the bidiagonal decomposition (3.15)) should re-
quire the evaluation with HRA of the involved exponential function. Although this cannot be guaran-
teed, in Section 5 of [75] it can be seen accurate results obtained when computing their eigenvalues,
singular values, inverses or the solutions of some linear systems associated with the Wronskian matri-
ces of the bases of exponential polynomials, using the bidiagonal factorization (5.13) and the algorithms
presented in [62] and [63]. The code with the numerical experimentation can be found and downloaded
at the following website: https://github.com/Calcolo2021.

We finish this section illustrating the bidiagonal factorization (5.13)) of the Wronskian matrix of a
basis of exponential polynomials.

Example 5.2. For the particular case n = 2, the bidiagonal factorization of the Wronskian matrix of
the basis (e™*,eM* e*¥) at x € R is

W(e}q]x’ellx’elzx) _

1 0 0 1 0 0 pi 0 0 1 ehi—ho 0 1 0 0
0 1 0 o 1 0 0 pop O 0 o)l 0 1 et |
0 A |1 0 A |1 0 0 ps 0 0 ! 0 0 1

where p11 = €™, py o = eM* (A — Ao) and p33 = (A — Ao) (A — A1).

—_

The following sections contain important results obtained in [76] (see the article on page [TT7).


https://github.com/BeatrizRubio/Article_Calcolo_2021
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5.5 Total positivity and factorizations of collocation matrices of Jacobi
polynomials

Given o, 8 € R, the basis of Jacobi polynomials of the space P" of polynomials of degree less than or
equal to n is (J(()a’ﬁ), . ,J,Ea’ﬁ)) with

J@B) (= Lleatit]) i(i)r(a+ﬁ+i+k+1) <x—1

k
= =0,....n. (516
P Wit it ) & \k) T Tla+kt1) 2 > ) 1=0,m 0 (5.16)

Let us recall that Jacobi polynomials are orthogonal on the interval [—1,1] with respect to the weight
(1—x)%(1+x)°.
Let us consider the lower triangular matrix A = (a;;)1<; j<nt+1 given by

1 i—1 j—1 . . . . .
S e L (5.17)
’ 0, if i<j.
It can be checked that
P I PYT = A(vg, ... )T, (5.18)
where (vo,...,vy) is the basis of P" such that
-1\ .
vi(x) 1= 5 , 1=0,...,n. (5.19)

The following result provides the multipliers and the diagonal pivots of the Neville elimination of
the change of basis matrix A described in (5.17) and proves that this matrix is nonsingular and TP.

Theorem 5.3. Let A = (a; j)1§i7 j<n+1 be the lower triangular matrix defined in (3.17). Then the multi-
pliers m; j and diagonal pivots p;; of the Neville elimination of A are given by

oa+i—1 o+pB+2i—j . .
= — = i < < < .
mi 1 1 m; j a+ﬁ+2i—j—2mw , 1<j<i<n+1,1<i<n+1, (5.20)
i1 -
o+p+2i—r—1 _
pi,iIZI:Il( =7 ), 1<i<n+1.

Moreover, for any a,3 > —1, A is nonsingular and TP.

Proof. See Theorem 2 of [76] (see the article on page[I17).
O

Corollary 5.2. Let A = (ajj)1<i j<n+1 be the lower triangular matrix defined by (5.17). Then, for any
o, B > —1, the matrix A admits a factorization of the form

A=F,F,_---FD, (5.21)

where F;, i = 1,...,n, is the lower triangular, bidiagonal matrix given by (5.2) and
D =diag(p1,1,p22,---,Pnti,n+1)- The entries m; j and p;; can be obtained from (5.20).

Let us observe that the factorization (5.21]) corresponds to BD(A), the bidiagonal factorization (5.1))
of A. Furthermore, for any a, 8 > —1, BD(A) can be computed with HRA, since it does not require
subtractions (except of the initial data).
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Remark 5.1. It is well known that the monomial basis (1,t,...,t") of P" is STP on (0,00). Moreover,
given a sequence of positive parameters 0 < ty < --- < t,, the bidiagonal factorization (5.1)) of the
corresponding STP collocation matrix can be described by

ti—
szz(ti—l _tifk)
i—1
pii=[]ti—u), 1<i<n+1 (5.22)
k=1

(see [l61|] or Theorem 3 of [71]). Consequently, the basis (vy,...,v,) defined in (5.19) is also STP on
(1,00). Furthermore, given 1 < x| < -++ < Xp41, by considering t; := (x;—1)/2, i=1,...,n+1, and
using the bidiagonal factorization for the collocation matrix of the monomial basis at 0 < t| <

-+ < tyy1, it can be easily deduced that the bidiagonal decomposition (5.1)) of the collocation matrix of
(Voy«ooyvp) at x1 < -+ < X1 IS given by:

Hk 2()61- | — Xi—k)
Pii = 5= 1]_[ —x), 1<i<n+l1. (5.23)

The following result proves that, for any «, 8 > —1, the collocation matrix of the basis of
Jacobi polynomials at 1 < x; < -+ < Xp41,

B
My = (Jj*l (xl)> 1<i,j<nt+1’ (5.24)

is STP.

Theorem 5.4. Given o, 3 > —1, the corresponding basis of Jacobi polynomials defined in (5.16)) is STP
on (1,00).

Proof. See Theorem 3 of [76] (see the article on page[l17). O

Remark 5.2. By Section 4 of [61)], we can transpose the bidiagonal decomposition of the lower
triangular and TP matrix A to obtain the corresponding bidiagonal decompositon of AT (see (5.3)).
Clearly, since BD(A) can be computed with HRA, BD(AT) can be also computed with HRA. Moreover,
the collocation matrix of the basis (vo, . ..,v,) defined in (5.19) at nodes 1 < x; < ... < xp41 is STP and
its corresponding bidiagonal decomposition can be obtained with HRA (see (5.23)). If the bidiagonal
decompositions of two nonsingular, TP matrices can be computed with HRA, using Algorithm 5.1 of
[62], we can also obtain with HRA the bidiagonal decomposition of the nonsingular and TP product
matrix. Consequently, we can derive with HRA the bidiagonal matrices (5.2)) of the bidiagonal factor-
ization (5.1)) of the collocation matrices of Jacobi polynomials and thus, we can also compute with HRA
its inverse matrix, its eigenvalues and singular values as well as the solutions of some linear systems.

In Section 6 of [76] (see the article on page[TT7) it can be seen accurate results obtained when com-
puting the mentioned algebraic problems with the collocation matrices of Jacobi polynomials, using the
bidiagonal factorization (5.1)) and the algorithms presented in [62] and [63]. The code with the numerical
experimentation can be found and downloaded at the following website: https://github.com/JSC2021.


https://github.com/BeatrizRubio/Article_JSC_2021

5.6. Total positivity and factorizations of Wronskian matrices of Jacobi polynomials 181

5.6 Total positivity and factorizations of Wronskian matrices of Jacobi
polynomials

Given x € R, let W(Jéa’ﬁ U A ))(x) be the Wronskian matrix at x of the basis of Jacobi
polynomials. Using formula (5.18)), it can be checked that

WP BP0 = W (v, ) )AT, (5.25)

where W (vy,...,v,)(x) is the Wronskian matrix of the basis (vo,...,v,) given in (5.19) and A is the
lower triangular matrix defined by (5.17).

In Corollary [5.1] it have been proved that the Wronskian matrix at any positive real value of the
monomial basis (1,x,...,x") of the space of polynomials P" is TP on (0, ). It was also shown that this
Wronskian matrix and its inverse can be computed with HRA. Now we are going to extend these results
to the basis (4, ...,¢,) given by

li(x) = (ax+b)', x€R, i=0,...,n, (5.26)
where a,b € R with a > 0. First let us prove the following auxiliary result.

Lemma 5.2. The basis (Lo, ..., L,) defined in (5.26) satisfies

b i
a’;j; M), 1<ij<n (5.27)

ROy 1 (i-1)
— (" (x) = ai—l(i—l)!gj_l (x)+

Proof. See Lemma 1 of [76] (see the article on page [TT7).
O

Now, for a given x € R, k,n € N with k < n, let Uy, = (l/tl(kj))lgid'gn+1 be the upper triangular,
bidiagonal matrix with unit diagonal entries, such that

W =0, i=1. k=1, ult =axtb, i=k..n. (5.28)

The following result shows that the product matrix Uy , - -- U, , coincides, up to a positive scaling,
with the Wronskian matrix of ({g,¢1,...,¢,) at x.

Proposition 5.3. Fora givenx € Randn € N, let
Un = Ul,n te Un,nv

where Uy, k =1,...,n, are the upper triangular, bidiagonal matrices with unit diagonal entries satis-
fying 5.28). Then U, = (u; j)1<i, j<n+1 is an upper triangular matrix and

1 (i-1) .
=l <ij<n+l. '
Ml7./ alfl(i_l)!gj—l (x)? 1 —lJJ_n+1 (5 29)

Proof. See Proposition 1 of [76] (see the article on page[99). O

As a direct consequence of the previous result, we can provide the bidiagonal factorization (5.1) of
the Wronskian matrix of (4, ...,%,).
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Proposition 5.4. Let n € N and ({y, ..., 0,) be the basis given in (5.26). Then, for any x > —b/a, the
Wronskian matrix W ({y, ..., 0,)(x) is TP and

0!
a'l!
W(ﬁo,...,ﬁn)(x) = . U]n”-Un’n, (5.30)

)

n

a'n!

where Uy ,, k = 1,...,n, are the upper triangular, bidiagonal matrices with unit diagonal entries satis-
fying B.28).

Let us observe that the bidiagonal factorization (5.1)) of W (4o, . ..,¢,)(x) is given by (5.30). Clearly,
this factorization can be computed with HRA for any x > —b/a and, consequently, using (5.4), its
inverse matrix can also be computed with HRA as stated in the following result.

Proposition 5.5. Let W be the Wronskian matrix at x of the basis (o, . .. ,£,) given in (5.26). Then W~!
can be computed with HRA.

Now, using Proposition [5.4] we can immediately deduce the following factorization of the Wron-
skian matrix at x € R of the basis (vo,...,v,) in (5.19),

1
@0!
1
—1!
W(vo,...,va)(x) == 2! Uin- - Upp, (5.31)
L
ﬁl’l.
where Uy, = (ul(];)) 1<ij<n+1, Kk =1,...,n, is the upper triangular, bidiagonal matrix with unit diagonal
entries satisfying
W =0, i=1 k=1, ult = (-1)/2, i=k..n. (5.32)

Moreover, if x > 1, W(vy,...,v,)(x) is a nonsingular and TP matrix. Then, taking into account (5.25),
the fact that A7 is a nonsingular and TP matrix (see Theorem and that the product of nonsingular
TP matrices is a nonsingular and TP matrix (Theorem 3.1 of [2]]), we deduce the following result on the
total positivity of the Wronskian matrices of Jacobi polynomials.

Theorem 5.5. Letn € N and (Jéa'ﬂ ), e ,J,Sa’ﬁ )) be the Jacobi polynomial basis given in (5.16). For any
o, B > —1, the Wronskian matrix W(J(EO"B)7 e ,J,(,a’ﬁ))(x) at x > 1 is nonsingular and TP.

Remark 5.3. Taking into account (5.5)), we can obtain the bidiagonal decomposition of the ma-
trix AT in (5.25). Clearly, since BD(A) can be computed with HRA, BD(AT) can be also computed with
HRA. On the other hand, the Wronskian matrix of the basis (v, . ..,v,) defined in is nonsingular
and TP at any x > 1. Moreover, its corresponding bidiagonal decomposition (5.23)) can be obtained with
HRA. By Algorithm 5.1 of [62], if the bidiagonal decompositions of two nonsingular and TP matrices
can be computed with HRA, then the bidiagonal decomposition of the product matrix can be also ob-
tained with HRA. Consequently, the Wronskian matrix of the basis (5.16) of Jacobi polynomials can be
computed with HRA and thus, we can compute with HRA its inverse matrix, its eigenvalues and singular
values and the solutions of some linear systems.
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In Section 6 of [76] (see the article on page[TT7) it can be seen accurate results obtained when com-
puting the mentioned algebraic problems with the Wronskian matrices of Jacobi polynomials, using the
bidiagonal factorization (5.1)) and the algorithms presented in [62] and [63]. The code with the numerical
experimentation can be found and downloaded at the following website: https://github.com/JSC2021.

5.7 Collocation and Wronskian matrices of well known orthogonal bases

In this section we are going to see that the results on properties and factorizations of collocation and
Wronskian matrices of Jacobi polynomials obtained in the previous sections can be used to derive prop-
erties of collocation and Wronskian matrices of other well known orthogonal bases.

The following auxiliary results can be easily checked and will be useful to derive the bidiagonal
decomposition of matrices obtained by scaling with a diagonal matrix a nonsingular and TP matrix.

Lemma 5.3. Let F; and G;, i = 1,...,n, be the lower and upper, respectively, triangular bidiagonal
matrices described in (5.2)) and A = diag (dy,d, ... ,d,+1) a nonsingular diagonal matrix. Then

AF,=FA and GA=AG; i=1,...,n, (5.33)
where
1 1
- 1 . 1
Fie e g ~ : 534
! rigrg 1 ! P 1 (5.34)
Fontlptl—i 1 Tatlntl—i 1
with
d; N di ..
rivj:d.—lm,;j, ri’j:rlmi’j’ 1§]<l§n+1.
11— 11—

As a consequence, we have the following result.

Lemma 54. Let A= F,F,_---F\DG;---G,_1G, be the bidiagonal decomposition (5.1)) of a nonsin-
gular and TP matrix A. Then, given a nonsingular matrix A = diag (d,,da,...,dy+1), the bidiagonal
decomposition (5.1)) of AA and AA are given by

M = EF,1---FDGi -Gy iGy, (5.35)
AA = F,Fy_i---FDG,-Gy_1Gy, (5.36)
where F;, and G;, i = 1,...,n, are the lower and upper, respectively, triangular matrices described in

(34) and D = AD = DA.

Let us start by considering the basis (Ly,...,L,) of Legendre polynomials defined by

Li(x) =1"Y%), i=0,...,n, (5.37)

1

where (JO(O’O),..., ,(,0’0)) is the basis of Jacobi polynomials given in (5.16) with & = B = 0. From

Theorem [5.4] Remark [5.2] Theorem [5.5|and Remark [5.3] we can deduce the following result.
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Theorem 5.6. The basis (Ly,...,L,) of Legendre polynomials, defined by (5.37), is STP on (1,00).
Given x| < -++ < Xy41, withx; > 1, the bidiagonal decomposition (5.1)) of the corresponding collocation
matrix can be obtained with HRA. Moreover, for any x > 1, the Wronskian matrix W (Ly, ...,L,)(x) is
nonsingular and TP and its bidiagonal decomposition (5.1)) can be obtained with HRA.

Given A € R, the basis of Gegenbauer polynomials of P" is (Gy, ..., G,) with

iy . LA+1/2) T(@+24)  G-124-1/2)
G )= = Foa) Ti+a+1/2)”

(x), i=0,...,n, (5.38)

where (J(gl_l/ 241/ 2), e ,J,S is the basis of Jacobi polynomials given in (5.16) with a =

B =A—1/2. By Theorem and Remark Lemma and Remark we can deduce the
following result.

/1—1/2,1_1/2))

Theorem 5.7. For any A > —1/2, the basis (G, . ..,G,) of Gegenbauer polynomials, defined by (5.38),
is STP on (1,00). Given x; < -+ < Xp41, with x| > 1, the bidiagonal decomposition (5.1) of the corre-
sponding collocation matrix can be obtained with HRA. Moreover, for any x > 1, the Wronskian matrix
W(Go,...,Gy,)(x) is nonsingular and TP and its bidiagonal decomposition (5.1) can be obtained with
HRA.

The basis (T, ..., T,) of Chebyshev polynomials of the first kind is defined by

JEV212)

Ti(x) :== )
SO

1

i=0,....n, (5.39)

where (Jé_l/z’_l/z), e ,J,E_I/Z’_l/z)) is the basis of Jacobi polynomials given in (5.16) with a = 8 =
—1/2. Using again Theorem Remark Lemma and Remark we can deduce the following
result.

Theorem 5.8. The basis (To,...,T,) of Chebyshev polynomials of the first kind, defined by (5.39), is
STP on (1,00). Given x| < --+ < Xu41, with x| > 1, the bidiagonal decomposition of the corre-
sponding collocation matrix can be obtained with HRA. Moreover, for any x > 1, the Wronskian matrix
W(Ty,...,T,)(x) is nonsingular and TP and its bidiagonal decomposition (5.1)) can be obtained with
HRA.

The basis (Up, .. .,U,) of second kind Chebyshev polynomials is defined by

J-1/2-1/2) (x)

Ui(x) 1= (i4 1) e
SO 1y

1

i=0,....n, (5.40)

where (Jél/z’l/z), e 7J,(,l/z’l/z)) is the basis of Jacobi polynomials given in with a = =1/2.
Using again Theorem [5.4] Remark [5.2] Lemma [5.4] and Remark [5.3] we can deduce the following
result.

Theorem 5.9. The basis (Uy,...,U,) of Chebyshev polynomials of second kind, defined by (5.40), is
STP on (1,00). Given x; < -++ < Xp41, with x; > 1, the bidiagonal decomposition (5.1) of the corre-
sponding collocation matrix can be obtained with HRA. Moreover, for any x > 1, the Wronskian matrix
W (Uy,...,U,)(x) is nonsingular and TP and its bidiagonal decomposition (5.1)) can be obtained with
HRA.
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In [100], induced by Jacobi polynomials, a new orthogonal system of rational functions was intro-
duced. For given a, 3 € R, the system (R(()OC’I3 ), e ,R;a’ﬁ )) of rational Jacobi functions is defined by

(@B) . ap) (X1 .
R (x) =1, (x—i—l)’ i=0,...,n, (5.41)

where (J(()O"[3 )P )) is the basis (5.16) of Jacobi polynomials. Using again Theorem Remark
[5.2] Lemma[5.4]and Remark[5.3] we can deduce the following result.

Theorem 5.10. For any o, 3 > —1, the basis (R(()a’ﬁ ), . ,R,(qa'ﬁ )) of rational Jacobi functions given in

(5.41) is STP on (—oo,—1). Given xj < --+ < Xy41, with x,11 < —1, the bidiagonal decomposition (5.1))
of the corresponding collocation matrix can be obtained with HRA.

Similar results can be deduced by considering the rational counterparts of the basis of Legendre,
Gegenbauer and the first and second kind Chebyshev polynomials.

In Section 6 of [76] (see the article on page [IT7) it can be seen accurate results obtained when
computing the eigenvalues, singular values, or the solutions of some linear systems associated with the
collocation and Wronskian matrices of all the mentioned orthogonal bases, using their corresponding
bidiagonal decompositions and the algorithms presented in [62] and [63]. The code with the numerical
experimentation can be found and downloaded at the following website: https://github.com/JSC2021.
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Part IV

PRESENTATION OF THE LATEST OBTAINED RESULTS

In this part, we present the latest obtained results, which are not included in the articles that belong to
the compendium of publications of this thesis.
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Total positivity and accurate computations
with Wronskian matrices of Bessel and
Laguerre polynomials

ABOUT THIS CHAPTER

The purpose of this chapter is to present some of the latest results that we have obtained, which are not
included in the articles that belong to the compendium of publications of this thesis. It should be noted
that, in this chapter, we have taken into account some of the results shown in the article [[75] (see on

page[99).

6.1 Introduction

An important goal in computational mathematics is finding algorithms with high relative accuracy
(HRA) for matrix calculations such us obtaining their eigenvalues, singular values or inverses. After
an adequate parametrization of the matrices, this goal has been achieved for the collocation matri-
ces of some important systems of functions. This was obtained for the collocation matrices of Bessel
polynomials (see applications in [21]], [47] and references in there) and for the collocation matrices of
generalized Laguerre polynomials (see [20]). In both cases, the collocation matrices are totally posi-
tive (see Section and a bidiagonal factorization with HRA was obtained for them. This bidiagonal
factorization is the start step to apply the algorithms with HRA of [61L 162} [63]].

Algorithms with HRA for the Wronskian matrices of monomials have been obtained in [[75] (see
in Chapter [ or, in more detail, in the article on page [43). In this chapter, we obtain the bidiagonal
factorization with HRA for the Wronskian matrices of Bessel polynomials as well as for the Wronskian
matrices of generalized Laguerre polynomials, which can be used to calculate with HRA their singular
values or inverses. The complexity of the proposed algorithms for solving the mentioned algebraic
problems is comparable to that of the traditional LAPACK algorithms, which, as we shall ilustrate,
deliver no such accuracy.

The layout of the chapter is as follows. Section [6.2] presents basic concepts and results. Section
[6.3] proves the total positivity of the Wronskian matrices of Bessel polynomials defined on positive real
numbers and shows that the mentioned algebraic calculations can be performed with HRA. Section [6.4]
deals with the corresponding results for the Wronskian matrices of generalized Laguerre polynomials.
Section[6.5]includes numerical examples illustrating the great accuracy of the presented methods for the
computation of all singular values, the inverses of the matrices and the solution of some linear systems.
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6.2 Notations and previous results

In this chapter we shall use the following notations. Given an n-times continuously differentiable real
function f and x € R in its domain, f’(x) denotes the first derivative of f at x. For any i < n, f()(x)
denotes the i-th derivative of f at x. Given a basis (uo,...,u,) of a space of n-times continuously
differentiable functions, defined on a real interval / and x € I, the Wronskian matrix at x is

W(M(), ceey un)(x) = (u];] (x))i,jzl,‘..,nJrl-

A matrix is totally positive (TP) if all its minors are nonnegative. Some books with many applica-
tions of TP matrices are [2}, 127, 93]].

Neville elimination is an alternative procedure to Gaussian elimination and has been used to char-
acterize TP matrices. More details on this elimination method can be found in [34], 36, 37]].

By Theorem 4.2 and the arguments of p.116 of [37], a nonsingular TP matrix A = (a; j)1<i j<n+1
admits a factorization of the form

A:FnFn—l"'FIDGI"‘Gn—le (61)

where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by

1 1

6.2)

miyq1 1 r?liJrl,l 1

Myipnt1—i 1 Myipnr1—i 1

and D = diag (p1,1,P2.2;---,Pnt1+1) has positive diagonal entries. If, in addition, the entries m; s Mij
satisfy
mij:() = mhj:0, Vh>i, and I:)v’l,'j:() = I:)v’l,'k:O, Vk>j,

then the decomposition is unique. The diagonal entries p;; of D are the diagonal pivots of the
Neville elimination of A and the elements m; ;, 7i1; ; are positive and coincide with the multipliers of the
Neville elimination of A and A7, respectively.

In [61]], the bidiagonal factorization (6.1) of an (n+ 1) X (n+ 1) nonsingular and TP matrix A is
represented by defining a matrix BD(A) = (BD(A);,j)1<i,j<n+1 such that

m j, ifi > j,
BD(A);; = i ifi=], 6.3)
nﬂjlj’,', ifi < j.

Let us observe that if a matrix A is nonsingular and TP, then A is also a nonsingular and TP matrix.
Moreover, the bidiagonal decomposition of A7 can be computed as

A" =G}G!_|---GIDF ---Fl |F], (6.4)

where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matrices in (6.1)) .
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Finally, let us recall that x € R is obtained with high relative accuracy (HRA) if the relative error of
the computed value ¥ satisfies
[lx — ]|

< Ku,

[l
where K is a positive constant independent of the arithmetic precision and u is the unit round-off.
HRA implies that the relative errors of the computations are of the order of the machine precision. An
algorithm can be computed with HRA when it only uses products, quotients, sums of numbers of the
same sign or subtractions of exact data (cf. [23]], [61]).

If the bidiagonal factorization (6.1)) of a nonsingular TP matrix A is computed with HRA then, using
the algorithms in [62]], we can also compute with HRA its eigenvalues and singular values, the matrix
A~! and even the solution of Ax = b for vectors b with alternating signs. In the following sections we
shall obtain the bidiagonal factorization (6.1)) of Wronskian matrices associated to Bessel and Laguerre
polynomials, analyzing whether it can be computed with HRA.

6.3 Total positivity and factorization of Wronskian matrices of Bessel
polynomials

Let us denote by P" the space of polynomials of degree less than or equal to n and (po,...,p,) the
monomial basis of P such that

pi(x):=x', i=0,...,n. (6.5)

The following result restates Corollary 1 of [75] providing the bidiagonal factorization (6.1) of the
Wronskian matrix W (po, ..., p,)(x), x € R.

Proposition 6.1. Let (po, ..., pn) be the monomial basis given in (6.5). For any x € R, the Wronskian
matrix W (po, ..., pn)(x) is nonsingular and can be factorized as follows,

W(p0a~~7pn)(x) :DGLn"'anl,nflGn,n» (6.6)

where D = diag{0!,1!,...,n!} and G; », i = 1,...,n, are the upper triangular bidiagonal matrix in
with
f’hk,kfi:% i+1§k§n+l. (6.7)

Moreover, if x > 0 then W (po, ..., pn)(x) is nonsingular and TP, its bidiagonal decomposition is
given by (6.6) and and it can be computed with HRA.

Let us recall that the Bessel basis of P” is the polynomial system (By,...,B,) with

Loo(i4k)! .
B,'(x) :kgomxk, ZZO,...’I/I,. (68)

In [21], the total positivity of the matrix of change of basis between the Bessel polynomial basis
(Bo,...,By,) and the monomials (po, ..., py) is proved. As a consequence, accurate computations when
considering collocation matrices (Bj—1(xj-1));<; j<, 1 With (0 <)xo <x; <--- <.x, are derived.

Now, let W (B, ..., By)(x) be the Wronskian matrix at x € R of the basis (6.8) of Bessel polynomials.
The following result extends the results in [21] to W(By,...,B,)(x) at x > 0 and establishes the total
positivity of this Wronskian matrix.
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Theorem 6.1. Let (By,...,B,) be the Bessel polynomial basis defined in (6.8). For any x > 0, the Wron-
skian matrix W := W (By,...,By)(x) is nonsingular TP and can be computed with HRA. Furthermore,
the computation of all the singular values, the inverse of W, as well as the solution of the linear systems
Wx = b, where b = (by,...,b,)" has alternating signs, can be performed with HRA.

Proof. 1t can be checked that
(Bo,---Ba)" =A(pos--,pn)" (6.9)

where (po, ..., p,) is the monomial basis given in (6.5) and the change of basis matrix A = (a;;)1<i j<n+1
is lower triangular and satisfies

(+j-20
= = >J. 6.10
“ =g -ne @1
Using formula (6.9), it can be checked that
W (B, ...,By)(x) =W(po,....pn)(x)AT, (6.11)

where W (po, ..., pn)(x) is the Wronskian matrix of the monomial basis (py, ..., p,) and A is the lower
triangular matrix described by (6.10).

By Proposition W(po,...,pn)(x), x > 0, is nonsingular and TP and its bidiagonal factorization
can be computed with HRA. Furthermore, by Theorem 3 of [21]], A is a nonsingular TP matrix and
admits a factorization of the form

A=F,F, ---FD, (6.12)

where F;, i = 1,...,n, are the lower triangular bidiagonal matrices described in (6.2) and

D =diag(pi1,...,Pnt1n+1)- Theentries m; j, 1 < j<i<n+1,and p;;, | <i<n+1,are given by
(2i—2)(2i—3)

Qi—j-1)@2i—j-2)

mij = pii = (2i=3)!!, (6.13)

with the following double factorial notation for a positive integer k,

L(k=1)/2]
K= J] (k—2j),

Jj=0

where | (k—1)/2] is the greatest integer less than or equal to (k—1)/2. Clearly, m; ;, and p;; are
positive and can be obtained with HRA. The bidiagonal factorization (6.I) of AT is given by AT =
DF!---FI' |FT.

On the other hand, W (By,...,B,)(x), x > 0, is nonsingular and TP since, by (6.11), it can be ex-
pressed as the product of two nonsingular TP matrices (see Theorem 3.1 of [2]]).

Using Algorithm 5.1 of [62], if the bidiagonal decomposition (6.1)) of two nonsingular TP matrices is
provided with HRA, then the corresponding bidiagonal decomposition of the product is computed
with HRA. Consequently, the bidiagonal decomposition (6.1) of W = W(By,...,B,)(x), x > 0, can
be computed with HRA. This fact guarantees that algebraic problems such as the computation of all
the singular values, the inverse matrix of W, and the solution of the linear systems Wx = b, where

b = (by,... ,b,l)T has alternating signs, can be performed with HRA (see Section 3 of [23]). L]
Let us recall that the basis of reverse Bessel polynomials in P" is (R, ...,R,) with
I R Cha LI
Ri(x) :kzzomx y l:(),...,n. (614)
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Let us observe that this basis is obtained when reversing the order of the coefficients of the Bessel
polynomials B;(x), i =0,...,n, in (6.8).

In [21] it is proved that the matrix of change of basis between the reverse Bessel polynomials
(Ro,...,R,) and the monomials (po,...,p,) is TP. Therefore, accurate computations with collocation
matrices (Rj—1(xj-1)),<; j<,,; Where (0 <)xo <xj <--- <X, are provided.

Given x € R, W(Ry,...,R,)(x) denotes the Wronskian matrix at x of the basis (6.14) of reverse
Bessel polynomials. The following result extends the results in [21] to W(Ry,...,R,)(x) at x > 0 and
establishes the total positivity of this Wronskian matrix.

Theorem 6.2. Let (Ry,...,R,) be the reverse Bessel polynomial basis given in (6.14). For any x >
0, the Wronskian matrix Wg := W(Ry,...,R,)(x) is nonsingular TP and can be computed with HRA.
Furthermore, the computation of all the singular values, the inverse of Wy, as well as the solution of the
linear systems Wgx = b, where b = (by, . ..,b,)T has alternating signs, can be performed with HRA.

Proof. It can be checked that

(Ro,-..,Rx)" =C(po,...,pn)", (6.15)
where (po,...,p,) is the monomial basis given in (6.3) and C = (c;;)1<i j<n+1 is the lower triangular
change of basis matrix such that

2i—j—1)!
(Qi=j=-1) i> ] (6.16)

I = DI - )
By formula we can write
W(Ro,..,Ra)(x) = W (po,.-.,pa) (x)CT, (6.17)

where W (po, ..., pn)(x) is the Wronskian matrix of (po, ..., ps) at x and C is the lower triangular matrix
described by (6.16).

Let us recall that, by Proposition W(po,...,pn)(x), x > 0, is nonsingular and TP and its bidi-
agonal factorization (6.I) can be computed with HRA. On the other hand, by Theorem 5 of [21]], the
matrix C is nonsingular and TP and admits a factorization

C=F,F,_ - FD, (6.18)

where F;, i = 1,...,n, are the lower triangular bidiagonal matrices described in (6.2) and
D =diag(pi,1,.-.,Pnt1,0+1). The entries m; j and p;; are given by

mi;j=2—-2j-1,1<j<i<n+1, p;=11<i<n+]1, (6.19)

and, clearly, can be obtained with HRA. The bidiagonal factorization (6.1) of CT is given by CT =
DFI---FI |FT.

Since W (Ro, . ..,Ry)(x), x > 0, is the product of two nonsingular TP matrices, by (6.17), we deduce
that it is nonsingular and TP (see Theorem 3.1 of [2]).

Using Algorithm 5.1 of [62], if the bidiagonal decomposition (6.1)) of two nonsingular TP matrices is
provided with HRA, then the corresponding bidiagonal decomposition (6.1)) of the product is computed
with HRA. Consequently, the bidiagonal decomposition (6.1)) of W (Ry,...,R,)(x), x > 0, can be com-
puted with HRA and so, their inverse matrix, their singular values and the solutions of the mentioned
linear systems (see Section 3 of [23]]). O]

Section [6.5] shows accurate results obtained when solving the mentioned algebraic problems using
the bidiagonal factorization (6.1)) and the algorithms presented in [62] and [63]].
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6.4 Total positivity and factorization of Wronskian matrices of Laguerre

polynomials
Given o > —1, the generalized Laguerre basis of P" is the polynomial system (L(()a), .. ,Lﬁ,a)) described
by
i : k
@)y . Lk fitax
L% (x) ._k;)( 1) (l,_k>k!, i=0,...,n. (6.20)

It is well known that this polynomial basis is ortogonal on the interval [0,0) with respect to the weight
function x%e~*.
In [20] it is proved that the matrix of change of basis between the generalized Laguerre basis (6.20)

and the monomial basis is TP. Then, accurate computations when considering collocation matrices

a) . .
(LE‘_1 (xj,l)) L jeni with (0 >)xo > x; > --- > x, are provided.

The following result analyzes the total positivity of Laguerre Wronskian matrices and provides a
factorization that allows to solve with HRA some algebraic problems.

Theorem 6.3. Let (L(()a), LY ) be the Laguerre basis defined in (6.20) and J the diagonal matrix
J :=diag((—1)")1<i<nr1. Then, for any x < 0, the matrix

Wy =W (LY, .. L) (x) (6.21)

is a nonsingular TP matrix and its bidiagonal decomposition (6.1)) can be computed with HRA. Further-
more, the computation of all the singular values, the inverse of Wy, as well as the solution of the linear
systems Wyx = b, where b = (by, ...,b,)" has alternating signs, can be performed with HRA.

Proof. In Theorem 2 of [20] it is shown that the matrix A of the change of basis between the generalized
Laguerre basis (6.20) and the monomial basis (6.5]) such that

(L, LY = (po,..., p)A, (6.22)

satisfies
A=US,'PySy' S, (6.23)

where Sy, := diag((a +i—1)""")|<i<,1 and Py € R" is an upper triangular Pascal matrix, that is, the
(n+1) x (n+ 1) upper triangular matrix with (/) as (i, j)-entry for j > i.

Let ({,...,4,) such that £;(x) = (—x)!, i =0,...,n. Since (po,...,pn) = (Lo,...,¢)J, taking into
account identities (6.22)) and (6.23)), we can write

(L6, L) = (lo, - 0)S 3 PuSy  Sae 624)

Let us observe that the upper triangular Pascal matrix Py is nonsingular and TP (see [27]]) and so are the
positive diagonal matrices S, So "and S,. Then, we can deduce that S&lPUSa 1S, is also nonsingular
and TP since it is a product of nonsingular and TP matrices.

On the other hand, since ES-I)
be easily deduced

(x) = (—1) pS.’)(—x), 0 <i < j <n, the following matrix equality can

JW (Lo, ....0,)(x) =W (po,...,pn)(—x), x€R. (6.25)
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Then, using equality (6.25]), we can deduce that the scaled Wronskian matrix JW(LE)O‘), e ,Lf,a))(x),
x € R, satisfies

JWELP LY %) = IW (L, .. 0,)(x)Sy PuSy ' Sa
= W(po,....pn)(—x)Sg PuS; "' Sa.

Moreover, from Proposition W(po,...,pn)(—x), x < 0, is nonsingular TP and so is the matrix

JW(L(()a) e ,LS,“) )(x), since it is the product of nonsingular TP matrices.

The bidiagonal factorization (6.1)) of JW ({p, ..., ¢,)(x) =W (po,...,pn)(—x), x <0, is described by
(6.6) and (6.7). Clearly, it can be computed with HRA. On the other hand, in Theorem 2 of [20] it is
shown that the bidiagonal factorization (6.1)) of the matrix S&IPUSa 1§y is

Sy PuSy'Se =S5'G1 - Gy,

where Gy, k= 1,...,n, is the bidiagonal upper triangular matrix with unit diagonal whose (i,i+ 1) entry
is

~ i+ O

mji g = l+, , k<.

i
Again, this factorization can be computed with HRA. Finally, following Section 5.2 of [62], the bidiago-
nal factorization (6.1)) of J W(L(()a), e ,L,Sa) )(x), x <0, can be computed with HRA using the subtraction-
free Algorithm 5.1 in [62]], and the bidiagonal factorizations (6.1) of JW (¢, ..., £,)(x) and Sg' Py Sy ' Sa,
which can be provided with HRA.
This fact guarantees that algebraic problems such that the computation of all the singular values,

the inverse matrix of W), and the solution of the linear systems W;x = b, where b = (by, ... ,bn)T has

alternating signs, can be performed with HRA (see Section 3 of the [23]). O

As a consequence of the above theorem we can deduce the following result.

Corollary 6.1. Let W := W(L(()a), e ,Lg,a))(x) be the wronskian matrix of the Laguerre basis

(L(()a), . ,L,(,a)) defined in (6.20). Then, for any x < O, the bidiagonal factorization (6.1)) of W can be
computed with HRA. Moreover, the computation of all its singular values, the inverse of W, as well as
the solution of the linear systems Wx = b, where the elements of b= (b;...,b,)T have the same sign,
can be performed with HRA.

Proof. Let J := diag((—1)""")1<i<yr1. By Theorem the bidiagonal decomposition (6.1) of W; :=
JW can be computed with HRA. By multiplying this factorization by J = J~!, we can derive with HRA
the corresponding bidiagonal factorization of W.

On the other hand, let us observe that, since J is a unitary matrix, the singular values of W coincide
with those of W and then, from Theorem [6.3] their computation for x < 0 can be performed with HRA.
Similarly, taking into account that

wl=w,1J,
Theorem also guarantees the accurate computation of W~!. Finally, if we have a linear system of
equations Wx = b, where the elements of b = (b;...,b,)" have the same sign, from Theorem [6.3] we
will be able to solve with HRA the equivalent system JWx = Jb, since Jb has alternating signs. O
Let us now consider the polynomial basis (Z,(()a), e ,Z,S“)) obtained by changing the variable in the
Laguerre basis as follows:
S '
@@y (fTe\x
LY x):=L (—x)_k;o(i_k o =0 (6.26)
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As in Theorem using the results in this chapter, the analysis of the total positivity of the Wron-

skian matrix W(i(()a e ,iﬁ,a))(x), x € R, can also be performed.

Theorem 6.4. Let (Z((f‘),...,i,ﬁ"‘)) be the polynomial basis defined in (6.26). Then, for any x > 0, the

Wronskian matrix W := W(iéa), e ,Z,,(,a))(x), x > 0, is nonsingular and TP and its bidiagonal decom-
position (6.1) can be computed with HRA. Furthermore, the computation of all the singular values,
the inverse of W, as well as the solution of the linear systems Wx = b, where b = (by, ...,b,)T has
alternating signs, can be performed with HRA.

Proof. It can be easily checked that the matrix A of change of basis between the basis and the
monomial basis (6.3), such that (iéa), LI )= (po,---,Pn)A, satisfies

A=S,"PySy"Sq,

where Sy := diag((a +i—1)" )) 1<i §n+1 and Py is the the (n+ 1) x (n+ 1) upper triangular Pascal
matrix. Consequently, W(I:( ). ~na (x) satisfies
WIS, ... .L) () = W(pos..., pa)(X)Sy ' PuSy ' Sa, X ER,

where S&lPUSa 1S4 is nonsingular and TP because it is a product of nonsingular and TP matrices. As in
the proof of Theorem [6.3] from Proposition[6.1] and taking into account that the product of nonsingular
and TP matrices is nonsingular and TP, it can be deduced that W is nonsingular TP and its bidiagonal
factorization (6.1)) can be provided with HRA, which guarantees that the mentioned algebraic problems
can be performed with HRA. O

Section [6.5] shows accurate results obtained when solving the mentioned algebraic problems using
the bidiagonal factorization (6.1)) and the algorithms presented in [62] and [63].

6.5 Numerical experiments

Given a nonsingular and TP matrix whose bidiagonal factorization can be computed with HRA,
the functions

TNSingularValues, TNInverseExpand and TNSolve, available in the library TNTool of [63], can
be used to compute with HRA its singular values, its inverse matrix and the solution of some linear
systems, respectively. The function TNProduct is also avaliable in the mentioned library and com-
putes with HRA the bidiagonal decomposition (6.1])) of AB when the bidiagonal decomposition (6.1]) of
two nonsingular and TP matrices A and B is provided. The computational cost of the aforementioned
functions is O(n?) elementary operations for TNSolve and O(n?) for the other functions.

Using the results in this chapter, we have implemented Matlab functions for the efficient computa-
tion of the bidiagonal decomposition (6.1]) of the wronkian matrix at x € R of Bessel polynomial bases,
reverse Bessel polynomial bases, generalized Laguerre bases and the polynomial bases definided in
(6:26).

We have considered (n+ 1) x (n+ 1) Wronskian matrices Wy at x = 0.3, x =2, x = —5 and x = 50.
Table [6.1]illustrates the 2-norm condition number of the mentioned Wronskian matrices computed with
the Mathematica command Norm[A,2]- Norm[Inverse[A],2]. Observe that the condition number
of the matrices considerably increases with their dimension. Due to this ill conditioning, traditional
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Table 6.1: From left to right, condition number of Wronskian matrices at xo = 2 and x¢p = 50 of the
Bessel polynomial bases, condition number of Wronskian matrices at xo = 0.3 and xg = 50 of the
reverse Bessel polynomial bases, condition number of the Wronskian matrices of generalized Laguerre
polynomials (W of Corollary[6.1)) at xo = —5 (with @ = 2) and, finally, condition number of Wronskian
matrices at xo = 2 of the polynomial basis defined in (with a = 0).

n+l K’z(Wn) Kz(wn) Kz(Wn) Kz(wn) Kz(Wn) K’z(Wn)
10 [ 42x10™ [3.4x10°T [ 25x10% | 25%x10% | 7.3x10% | 1.1x 10°
15 | 3.4x10% | 3.5x10% | 1.7x 10" | 1.2x10%7 | 1.0x 10> | 9.6 x 108
20 | 3.5%x10% | 47x109 | 1.1 x10% | 1.6 x10* | 1.1 x 10" | 8.7 x 10'!
25 [ 2.6x10° | 6.4x10% | 2.8x10% | 8.6x 10 | 1.0x 10'® | 8.0x 10"

methods do not achieve accurate solutions when solving the mentioned algebraic problems. The fol-
lowing numerical results confirm this fact and illustrate the high accuracy obtained when using the
functions in [63]] with the bidiagonal factorizations in this chapter.

We have compared the singular values obtained when using the Matlab command svd and those
computed using the bidiagonal decompositions in this chapter and the Matlab function
TNSingularValues. In order to determine the accuracy of the approximations, we have also calculated
the singular values of the matrices by using Mathematica with a precision of 100 digits and computed the
relative errors corresponding to the approximations, considering the singular values provided by Math-
ematica as exact. We have computed the relative error of the approximations a of the exact eigenvalue
and singular value @ by means of the formula e = |a — d|/|a|.

Tables and show the relative errors of the approximations to the lowest singular value ob-
tained with both methods for the Bessel and the Laguerre case, respectively. Observe that the singular
values obtained using the factorization (6.1]) are very accurate for all considered n, whereas the approx-
imations of the singular values obtained with the Matlab commands svd are not very accurate when n
increases.

Table 6.2: Relative errors when computing the lowest singular value of Wronskian matrices of Bessel
polynomial bases at xp = 2 and Wronkian matrices of reverse Bessel polynomial bases at xo = 0.3.

n+1 svd TNSV svd TNSV

10 [3.0x10% 2.1x10°1 14x10° 39x10°P
15 | 7.6x107" 57x1071% 53x103 24x10°1
20 7.9 39x1071% 37x107! 6.8x1071
25 8.0 1.6x10710 96x107" 59x10°1

We have also used the function TNInverseExpand (see Section 4 of [87]]) with the factorization
(6.1) proposed in this chapter in order to compute the inverse of the considered Wronskian matrices.
We have also computed their approximations with the command function inv. In order to determine
the accuracy of the approximations, we have calculated the inverse of these matrices by using Math-
ematica with a precision of 100 digits and computed the relative errors corresponding to the approx-
imations, considering the inverse matrix provided by Mathematica as exact. We have computed the
relative error of each approximation A~ of the exact inverse matrix A~! by means of the formula
e=[lA = A2/ A7

Tables [6.4] and [6.5] show the relative errors of the approximation to the inverse of the considered
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Table 6.3: Relative errors when computing the lowest singular value of Wronskian matrices of gener-
alized Laguerre polynomials (W of Corollary [6.1)) at xo = —5 (with & = 2) and Wronskian matrices of
the polynomial bases defined in (6.26) at xo =2 (with & = 0).

n+1 svd TNSV svd TNSV

10 [3.6x10°1TT 22x1071° 1.6x10°7° 83x10°T®
15 1.6x107° 12x1075 56x10712 13x107V
20 | 24x107? 47x107% 13x107° 3.0x10°DB
25 | 48x107°% 2.6x107° 1.1x1077 14x10°1

matrices obtained with both methods. For all considered cases, the approximation of the inverse matrix
obtained by means of TNInverseExpand and the factorization is very accurate, providing much
better results than those obtained by using the command inv.

Table 6.4: Relative errors when computing the inverse of the Wronskian matrices of Bessel polynomial
bases at xp = 50 and the inverse of the Wronskian matrices of reverse Bessel polynomial bases at xy = 50.

n+1 inv TNIE inv TNIE

10 [20x10°™ 18x107° 6.1x10°"® 52x107"7
15 [37x10712 1.1x107'% 6.6x10°"" 1.8x10°16
20 | 35x107° 48x107'7 1.0x1077 4.6x10°16
25 | 24x107% 24x107'% 50x107° 3.0x10°'0

Table 6.5: Relative errors when computing the inverse of the Wronskian matrices of generalized La-
guerre polynomials (W of Corollary [6.T)) at xo = —5 (with &t = 2) and Wronskian matrices of the poly-
nomial bases defined in (6.26)) at xo = 2 (with o¢ = 0).

n+1 inv TNIE inv TNIE

10 | 74x107% 18x107° 19x10°% 57x107V
15 [ 27x107" 21x107'® 88x10°13 29x10°16
20 [47x10710 48x107 43x10°" 3.6x10°5
25 1.5x107% 1.6x107P 4.1x107'9 1.6x10°1

Finally, we shall illustrate the accuracy of the solutions of linear systems computed by using the
bidiagonal factorization (6.1]) with the function TNSolve. We have obtained the solution of the linear
systems using Mathematica with a precision of 100 digits and considered this solution exact. Then we
have also computed with Matlab two approximations, the first one using the previous functions and the
second one using the Matlab command \. We have computed the relative error of every approximation
¢ =(C1,...,Gn+1) of the solution ¢ of the linear system by means of the formula e = ||c —&||2/]|¢|2.

Tables [6.6] and show the relative errors when solving the linear systems W,c, = d,, where
d, = ((=1)™'d;)1<icny1 or d, = (d;)1<i<ns1, in the case the generalized Laguerre polynomials (W
of Corollary[6.1), and d;, i = 1,...,n+ 1, are random non negative integer values. The computed results
confirm the accuracy of the proposed method that, clearly, keeps the accuracy when the dimension of
the problem increases. In contrast, when n increases the condition number of the considered matrices
considerably increases and that explains the bad results obtained with the Matlab command \.
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Table 6.6: Relative errors when solving Wy, = d;,, with Wronskian matrices of Bessel polynomial

bases at xo = 50 and Wronskian matrices of reverse Bessel polynomial bases at xo = 50.

n+1 Wi\ dy TNSolve Wi\ dy TNsolve

10 [14x108 28x10717 32x10°™ 28x10°1®
15 | 14x107" 35%x1071% 27x107"" 13x10°16
20 | 5.1x107% 3.1x107' 6.1x1078 3.7x10°'6
25 1.4x107° 34x107'® 20x107° 25x10°16

Table 6.7: Relative errors when solving Wy, = d,, with Wronskian matrices of generalized Laguerre
polynomials (W of Corollary at xo = —5 (with @ = 2) and Wronskian matrices of the polynomial
bases defined in (6.26) at xo = 2 (with oo = 0).

n+1 Wi\ d, TNsolve Wi\ dy TNSolve

10 [67x107% 14x107 24x10°™% 72x107"
15 [ 3.1x10°" 1.5x1071° 65x10°13 33x10°16
20 | 1.9%x10710 37x1075 1.6x107'"" 2.6x1071
25 13x107% 15%x10°5 1.8x10719 6.6x10°13
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Total positivity and accurate computations
with Wronskian matrices of Bernstein and
related bases

ABOUT THIS CHAPTER

The purpose of this chapter is to present some of the latest results that we have obtained, which are not
included in the articles that belong to the compendium of publications of this thesis. It should be noted
that, in this chapter, we have taken into account some of the results shown in the article [75] (see on

page[99).

7.1 Introduction

The Bernstein basis of polynomials is the polynomial basis most used in Computer-Aided Geometric
Design (CAGD) (see [28], [31]). In fact, the Bernstein basis has optimal shape preserving [9]] and stabil-
ity [30] properties. In [82] it was shown that many algebraic computations with the collocation matrices
of the Bernstein basis can be performed with High Relative Accuracy (HRA). In fact, these matrices
are totally positive (TP) and so they posses a bidiagonal factorization. The bidiagonal factorization of
a nonsingular TP matrix A is the start point to compute with HRA its eigenvalues and singular values,
the matrix A~! and even the solution of Ax = b for vectors b with alternating signs. In this chapter we
consider the Wronskian matrices of Bernstein polynomials and other related bases, including interesting
bases such us the Bernstein basis of negative degree (see [41]) or the negative binomial basis. These
Wronskian matrices come from applications in CAGD and statistics and they can also arise in Hermite
interpolation problems, in particular in Taylor interpolation problems. A first difficulty found to obtain
HRA algorithms with these matrices comes from the fact that the Wronskian matrices of the Bernstein
basis is never TP, as can be seen in Corollary where we characterize when the Wronskian matrices
of these general bases are TP. However, in spite that they fail being TP, we have obtained a bidiagonal
factorization of these Wronskian matrices and we have used it to derive algorithms to compute with
HRA their eigenvalues and singular values, their inverses and the solution of some linear systems. The
complexity of the proposed algorithms for solving the mentioned algebraic problems is comparable to
that of the traditional LAPACK algorithms, which, as we shall ilustrate, deliver no such accuracy.

We now describe the layout of the chapter. Section [7.2] presents basic definitions and results that
will be used in the chapter. Section[7.3]provides the bidiagonal decomposition of the collocation matrix
of the general class of functions related with the Bernstein basis. Section [7.4] deals with the accurate
computations with the corresponding Wronskian matrices. We obtain a bidiagonal factorization of
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these matrices, we characterize when are they TP and we show the algebraic computations that can be
performed with HRA in the cases of the Bernstein basis, the Bernstein basis of negative degree and
the negative binomial basis. Section presents numerical experiments confirming the accuracy of
the proposed methods for the computation of all eigenvalues, all singular values, the inverses and the
solution of some linear systems. Our experiments use matrices whose condition numbers considerably
increase with their dimension. Due to this ill conditioning, traditional methods do not achieve accurate
solutions when solving the mentioned algebraic problems, in contrast to our proposed methods.

7.2 Notations and preliminary results

Our matrix notation follows the notation used in [34, 37)]. Given n € N and k € {1,...,n}, let Ok, be
the set of increasing sequences of k positive integers less than or equal to n. If &, B € Qx ,, we denote
by Ala|B] the k x k submatrix of A containing rows of places o and columns of places §. Moreover,
Ala] denotes A[ax|a].

We are going to use the following generalization of combinatorial numbers. Given & € Rand n € N,

<Z> :: oc(oc—l)..n.!(oc—nJrl)’ (ain> :: (Z)

Given an n-times continuously differentiable function f and x € R in its domain, f’(x) denotes its
first derivative at x. For any i < n, f(!)(x) denotes the i-th derivative of f at x.

Given a basis (uo,...,u,) of a space of functions defined on a real interval /, the corresponding
collocation matrix at the sequence x; < --- < X4 on [ is

M1 3y 2= (uj*1 (xi)) 1<i,j<n+1°

If the functions are n-times continuously differentiable at x € I, the Wronskian matrix at x is

W (ug, ... ,un)(x) = (Myjll)(x))i,jzl,...,nJrl-

A matrix is totally positive (TP) if all its minors are nonnegative. A matrix is strictly totally positive
(STP) if all its minors are positive. Some references with many applications of TP matrices are [2} 27,
93]).

By Theorem 4.2 and the arguments of p.116 of [37], we have the following result.

Theorem 7.1. A nonsingular TP matrix A = (a; j)1<i, j<n+1 admits a factorization of the form
A:FnFn—l"'FIDGI"‘Gn—lGn) (7.1)

where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by

1 1

- , 7.2
miy1y 1 miy1y 1 (7.2)

Mp4-1,n4+-1—i 1 ’%nJrl‘ani 1

and D =diag (p1.1,. .., Pn+1,n+1) has positive diagonal entries. If, in addition, the entries m;j, m;; satisfy

m,»j:O = mh‘,-:O, Vh>1i, and I’}N1ij:0 = n~1,-k:0, Vk>j,
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then the decomposition ([7.1) is unique. The diagonal entries p;; of D are the diagonal pivots of the
Neville elimination of A and the elements m; j, in; ; are nonnegative and coincide with the multipliers of
the Neville elimination of A and A", respectively.

In [61], the bidiagonal factorization (6.1) of an (n+1) x (n+ 1) nonsingular and TP matrix A is
represented by defining a matrix BD(A) = (BD(A); ) 1<i,j<n+1 such that

mi j, ifi > j,
BD(A)ij:=q pij, ifi=], (7.3)
I/Iﬂjlj,,', ifi < j.

Remark 7.1. Observe that, by Theorem 4.3 of [37)], the positivity of all multipliers and diagonal pivots
in Theorem I implies that A is STP.

The following result can be easily checked and will be useful in next sections.

Lemma 7.1. Let dy,...,dy+1 be real values and A an (n+ 1) x (n+ 1) TP matrix whose bidiagonal

factorization ([1.1)) is
A=F,F, |---FDG,---G, G,.

Then, the bidiagonal factorization of A := AA with A = diag(dy,...,dn.1) is
;{: FuFy - 'Flﬁél e 'énflém
where D = diag(dip1,1,d2p22,- .., dns1Pnvine1) and (N},-, i=1,...,n, are the upper bidiagonal matrices
described in (1.2) whose off diagonal entries are
- di .
rij = ——mjj, 1<j<i<n+1.
di-

Let us recall that x € R is obtained with high relative accuracy (HRA) if the relative error of the

computed value X satisfies
[lx—%|

< Ku,
x|

where K is a positive constant independent of the arithmetic precision and u is the unit round-off.
HRA implies that the relative errors of the computations are of the order of the machine precision. An
algorithm can be computed with HRA when it only uses products, quotients, sums of numbers of the
same sign, subtractions of numbers of opposite sign or subtraction of initial (cf. [23], [61]).

If the bidiagonal factorization of a nonsingular TP matrix A is computed with HRA then, using
the algorithms in [62], we can also compute with HRA its eigenvalues and singular values, the matrix
A~! and even the solution of Ax = b for vectors b with alternating signs.

In [[71], we can find algorithms for computing the bidiagonal decomposition of the collocation
matrices of a general class of bases (i), ...,u);) with

)= () e, velal =0
where f,g: I — R are functions such that f(x) # 0, g(x) # 0 for all x € (a,b) and f/g is strictly increas-
ing. These bases are of interesest in Computer Aided Geometric Design and also in Approximation
Theory. In particular, Theorem 2 of [[71]] proves that these collocation matrices,

Mn+l,x1,“.,xn+1 = ((jfl)fj;l(xi)gn7j+l(xi)>

1<i,j<nt1’
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are STP atx; < --- < x,.1 on (a,b). Moreover, Theorem 3 of [71]] deduces their bidiagonal factorization
(7.1). Using this factorization, in [71] accurate computations with collocation matrices of bases with
algebraic, trigonometric, or hyperbolic polynomials are illustrated.

It can be easily checked that, following the proof of Theorem 3 of [[71]], the bidiagonal factorization
of systems (u{,...,uy) with @ € R and

uf (x) = f'(x)g" (x), i=0,....m, (7.4)
can be obtained. The following result describes this factorization.

Theorem 7.2. The collocation matrix My x,,. of the basis (1.4]) at xy < -+ < x4 In its domain

admits the following factorization

- Xn41

Mn+1,x1,...,xn+1 =FF,_1---FDG;--- anlGn;

where the entries m; j,im; j and p;; of F; and G;, i = 1,...,n, and D are given by

¢ (w)gliny) Ty (f(i)g(riok) — f(vimi)8(x1))

MiJ 8X T (xic1)  TT_, (F(xim1)g(xiok) — f(ximi)g(xio1))
i = ggﬁ 1<j<i<n+l,

P S COR s YO : j

Pi = e H (et = fsex). 1<i<n+1.

Let us denote by P” the space of polynomials of degree less than or equal to n and (py, ..., p,) the
monomial basis of P” such that
pi(x):=x', i=0,...,n. (7.5)

The following result restates Corollary 1 of [75] (see the article on page[99), providing the bidiagonal
factorization (7.I) of the Wronskian matrix W (po,...,pn)(x), x € R.

Proposition 7.1. Let (po,...,ps) be the monomial basis given in (1.5). For any x € R, the Wronskian

matrix W (po, ..., pn)(x) is nonsingular and can be factorized as follows,

W(P0,~--7Pn)(x) :DGLn"'anl,nflGn,n» (7.6)
where D = diag{0!,1!,...,n!} and G;,, i =1,...,n, are the upper triangular bidiagonal matrices in
(7.2) with

mgk—i=x, i+1<k<n+1. T.7)

Moreover, if x > 0 then W (po,...,pn)(x) is nonsingular and TP, its bidiagonal decomposition (1.1) is
given by and (7.7) and it can be computed with HRA.

In [[75] (see the article on page[99), using this result, accurate computations with Wronskian matrices
of monomial bases are achieved.

In the following sections we shall obtain the bidiagonal factorization (7.1)) of collocation and Wron-
skian matrices associated to a general class of functions that includes, as particular cases, polynomial
Bernstein bases, negative binomial bases or Bernstein bases of negative degree. For all considered cases,
we are going to achive algebraic computations with HRA.
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7.3 Bidiagonal decomposition of the collocation matrix of a general class
of functions

Let us consider the system of functions (£, ..., f,*), o € R, defined by
fAx) =x(1-x)%" i=0,...,n, (7.8)

on their natural domain. Let us observe that the Berntein basis of the space P", given by (Bj,...,B})
and

B!(x) = (’7))&'(1 )" i=0,...n, (7.9

i
is (cofg,---,cnfy) with ¢; = ('Z), i =0,...,n. Moreover, there are other interesting bases which can
be obtained by scaling the systems (7-8). For example, if & = —n and ¢; = (") = (—l)i(”+l._1),

l 1
i=0,...,n,then (cofy",...,caf, ") is the Bernstein basis of negative degree (B,",...,B,") with

1 1

B(x) = <,n>xi(1—x)"i: ("+l:1>(—x)f(1 X)L i=0,...n,  (7.10)

(cf. [41]). On the other hand, if @ =n+1and ¢;= (}),i=0,...,n, then (cofy",...,c,f?*") is the
negative binomial basis (b0t ..., b0*1) with

b (x) = <’:)xi(l—x)"_i+l, i=0,...,n. (7.11)

Using Theorem [7.2] with f(x) = x and g(x) = 1 —x, it can be checked that the collocation matrix

- o
M, = (xJ 1 —x;)* 7+ )
L i (1—x) < jentt”

admits the following factorization

Mn+1,x1,...,xn+1 - FnFn—l t 'FIDGI tee Gn—lGn; (712)
where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matrices described in (7.2)
and D = diag(p11,...,Pntia+1). The entries m; j,7; ; and p;; are given by

(1= x)%= (1 —x; ;) TIZ) (i —xis)
(1 —xj1)%7*2 Ti_, (xi1 —xi—x)

mij = , 1< j<i<n+1,

‘ i1

=t 1<j<i<n+l, py=(1-x)" [ 1<i<n+1.
1 —Xj =1 1 — Xk

Then it can be easily deduced that M,

suchthat 0 <x; <--- <ux, < 1.

Using Lemma|7.1{and the decomposition of the collocation matrix of (f,..., f¥), the bidi-
agonal factorization of the collocation matrices of any system (cofy',...,cafY), ci€R,i=0,...,n,
can be obtained.

In particular, the bidiagonal factorization of the collocation matrices of Bernstein polynomial
bases and negative binomial bases can be deduced. By means of this factorization, accurate computa-
tions with these matrices have been already achieved (see [71]], [74]], [82]] and the references in there).

77777 x,., 18 STP for any o € R and any sequence of parameters
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Furthermore, we can also deduce that the collocation matrix of the Bernstein basis of degree —n
satisfies
(B%4(x)),_  =FFa1-FDGi-+-GyGy,
: St jsn

and the entries m; j,m; ; and p;; of F;, G;, i =1,...,n, and D, respectively, are given by

(1—x) " (1 =xiy) T (v —xis)
(1 —xjp) 7 +2 T (i1 —xix)

- n+i—2 Xj
mi ;= —

mjj = , 1<j<i<n+1,

: , 1<j<i<n+l1,
i—1 1—x;

) i—2 R et TRV
Pi.i:(_])ll<n—.i_l )(l—xi)”’“HM‘, 1<i<n+l.
’ i—1 i 1 — Xk

(7.13)

Analyzing the sign of the entries in (7.13), we can deduce that the collocation matrix of the Bernstein
basis of negative degree defined in (7.10) is TP for x4 < --- <x; <O0.

7.4 Accurate computations with Wronskian matrices of a general class
of functions including Bernstein polynomials
In the following results we analyze the total positivity of the Wronskian matrices of the systems (f, ..., f,¥),

a € R, with ' '
fAx) =x'(1-x)%" x<1, i=0,...,n, (7.14)

through their bidiagonal decomposition ((7.1)). First, we prove some auxiliary results.

Lemma 7.2. For given o,t € Randn €N, let Ly, = (li(’];-‘n))]gjignJrl, k=1,...,n bethe (n+1)x (n+
1), lower triangular bidiagonal matrix with unit diagonal entries, such that

=0, i=2...k I =(a+2-i)p, i=k+1l..n+1
Then, Ly := Ly -+ Ly 5, is a lower triangular matrix and

e w (=Dl fa+1-]
Lo = hsijenr by =G\ g1 — 1

>z"—f, 1<j<i<n+]1. (7.15)

Proof. Clearly, L, is a lower triangular matrix since it is the product of lower triangular bidiagonal
matrices. Let us prove (7.15)) by induction on n. For n =1,

1
Ll—L1,1—<m 1)7

and (7.13) clearly holds. Now, let us suppose that (7.15]) holds for n > 1 and consider the (n+2) x (n+2)
product matrix
Lyv1:=Lyy1ini1Lnpt1 - Ly

l’(n-&-l)

It can be checked that Ly, 1 := Lyy1+1 - Lont1 satisfies L1 = ( Li)i<ij<nt2, With

Z}fr_l) = 51'71; ZYII-_H) = 5171'7 = 17“-7”“‘27 Zn+1[27--~7n+2] :Ln,n"'Ll,n-
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Therefore, since L, 1[2,...,n+2] satisfies the induction hypothesis, we can deduce from (7.13)) that the
entries of L, ;| satisfy the following equalities

—2)! (oe+2—F\
jrtl) . g 7 2<j<i<n+2. 7.16
irj -2\ a+2—i o esJsisnt (710
Moreover, we can write
1
B 5 oar 1
Lyi1 = Lyv1Lynv1 = Lot . . : (7.17)

(a—n)t 1
Now, taking into account equalities ((7.16)), (7.17)) and the fact that
a+2—j_+a+2—j a+l—j\ i-1foa+2—j
a+2—i j—1 \a+2-i) j—1\a+2—i)’

we deduce that L, = (ll.(z.H)

)1§i,j§n+2 satifies

l(n—H) :Z§7’;+1)+Z~(n+l)(a+2—j)[

ij ij+1
(-2 (a+2—j\ ,.; (@—2)! [ /o+1—j N
— A oa+2— )t/
G-2i\at2—i)" T \atr2—i)@F27))
G-2!\\Na+2—i j—1 \a+2—i (-1 \a+2—i ’
for 1 < j <i<n+2. Consequently, (7.15) holds for all n € N. ]

Lemma 7.3. Fora givent € Randn €N, let Uy, = (ulskjjn))lgj’ing,], k=1,...,n bethe (n+1)x (n+
1), upper triangular bidiagonal matrix with unit diagonal entries, such that

(k,m)
i—1,i

(kn)

u =0, i=2,...,k u =t i=k+1,...,n+1.

Then, U, := U, - -+ Uy p, is an upper triangular matrix and

n —1 i—i . .
Un:(ul(f})lg’jgn% ul{j):(f_l)ﬂ 1<i<j<n+1. (7.18)

Proof. Clearly, U, is an upper triangular matrix since it is the product of upper triangular bidiagonal
matrices. Taking into account Proposition [7.1] we can deduce that

Un = (1= 1)1(ps1(0))

ij=1,nt 1

where p;(t) :==t/, j=0,...,n. Finally, taking into account that

2y = (1), 0izizn

equalities are immediately obtained. O
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Now, using Lemma [7.2] and Lemma we can derive the bidiagonal decomposition (7.1)) of the
Wronskian matrix of a system (7.14).

Theorem 7.3. Letn € N, a € R and (f§,...,f*) the system defined in (1.14). The Wronskian matrix
W =W(fs,..., 1Y) (x) admits a factorization of the form

W= Ln,nLnfl,n e 'Ll,nDUl,n T Unfl,nUn,n, (719)
where Ly, = (ll.(f;.’"))lg ji<n+1, k=1,...,n, are the lower triangular bidiagonal matrices with unit diag-
onal entries, such that

-1
*m =0, i=2,.. 0k 1% = (@+2—i)7—, i=k+1..ntl, (7.20)
b} b J— x
Uin = (ul(f}’n))lgj’igﬁl, k=1,...,n, are the upper triangular bidiagonal matrices with unit diagonal
entries, such that
W =0, =2,k W= % i=kt1,... 041, (7.21)
b k) _x

and D is the diagonal matrix D = diag (d,,...,d,+1) with

di=({i—1D)1(1—x)%2"2 =1, n+l. (7.22)

Proof. Letus observe that, by consideringz = —1/(1—x) in Lemma we deduce that L, := L, ,L,—1 -

is a lower triangular matrix satisfying

(n) (n) (i—l)! a+1—j —1 i=J o
L,= (" Vi<i jcns1, L7 = . , 1<j<i< L. 1.2
(lz,/ i< j<ntt ll-,] (j—1)! i— 1 JSi1<n+ (7.23)

On the other hand, using Lemma(7.3|with r = x/(1 —x), we conclude that U, := Uy - -- Uy, is an upper
triangular matrix with

n n ._1 X i . .
Uy = )11 j<msr. ”g»f):<f_1>(1—x> S 1<i<j<n+l. (7.24)

In order to prove the result, taking into account (7.19), (7.22)), (7.23) and (7.24), we have to check that

‘ min{i.j} _ i—1\ | -
(f‘_l)('U(x):(i—l)!( Y (—1)"<<O‘;r_1k k> <£_Dxf’<> (1—x)* T2, (7.25)

k=1

for 1 <i,j <n+ 1. Letus prove (7.25) by induction on i. Let i = 1, then

1 .
Z(_l)lfk <a—lf_ 1 ;k) <£_ i)x]k(l _X)Olflfj+2 :Xj71(1 _x)OH>17j — f;')il(x)a
k=1 o o

for j=1,...,n+1, and (7.25) follows. Now, let us assume that (7.25) holds for i > 1. Then, for any

'Ll,n
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i< j<n+1, we have

(@)

(g (o)
1)1 — ]<)_: a2 ’)<a?—1k_k> <£:DXH
+ (1—x)kil(_1)ik(j_k) (aj_—lk_k> (li:i)xfkl)

— e a+llj<i: )+ (a2 ”<ajj;k><£:i>

()0 ()

1

i+l j
a+2—k\[(j—1\ .
+ Y (D) ke i—k4+1 ) \k—2)"

k=2

T

+
= (= 1)1 -t ’(Z )T asl” k)’

where

ATk (=1
- i+1—k)\k—1)’
oo+l =i\[j—1
Ci+1 = (]_l) 0 i—1

Then, we can write

)
= (a+2_i_k)<a4.r1k>
k
)
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and check that (7.25) holds for j =i,...,n+ 1. Now, for 1 < j < i, we can follow a similar reasoning,

0w = () )

/
J a+1—k i—1Y\ .
— <l—1 |Z zk( —li__k )(i_l)xjk(l_x)(erZzJ)
k=1

= (F—le—xw+lij(iﬂ—lyk*%a+2—i—p<ajf;k)(£:i>ﬂk

k=1

+(1 _x)l§<—1>fk<j—k> (af_lk_k> (;Jc: 1)’”“)

= (i—1)(1—x)*r (i(—l)i-k“(au—i—j) <O‘;L_1k_k) <£: i)xj—k

k=1
1 J
(=k+ )(i—k—i—l k—2)*
ikt a+1—k\(j—=1\ ;&
k)< i—k J\k—1)"

J
_ (i—])!(] a+1 i— j(Z l k+1C x/ k),

B
L

and, again, ¢, = i(%; “5(Z)), k=1,...,j. Then, we can write
j .
Y ikl [CF1=k\ (=1 ;4 Fl—iej o
( jq—l)()(x)_l! (1;1(_1) (i—l—l—k 1 x/ (1—-x)* Lj=i...,n+1,
and (7.25) also follows for j=1,...,i—1. O

Theorem|[7.1]and the analysis of the sign of the entries (7.20), (7.21) and (7.22)) provides the follow-
ing characterization of the total positivity W (f,..., /) (x).

Corollary 7.1. Given ot € R, let (f',...,f) be the system defined in (1.14). The Wronskian matrix
W, .. f2)(x) is TP ifand only if ¢ <1 —nand 0 < x < 1.

Example 7.1. Let us illustrate with some examples the bidiagonal factorization (7.19), described by
(7.20), (7.21) and (7.22)), of the Wronskian matrix of (f,..., fn ) . For the particular case n =2 and
a = n, the Wronskian matrix of the system ((1 —x)?,x(1 — ) 2) can be decomposed as follows

W(fe, fi.f2)(x) =

1 0 0 1 0 0 d 0 0 1 &< 0 10 0
=2

0 1 0 = 1 0 0 & 0 0o 1 = 01 = |,

0 =~ 1 0 L 1 0 0 ds 0 0 1 00 1

where dy = (1 —x)%, dy = 1 and d3 = 2/(1 —x)?, and it is not a TP matrix for any x € R.
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For the particular case n =2 and o = —n, the Wronskian matrix of the system (1/(1 —x)?,x/(1 —
x)3,x2/(1 —x)*) can be decomposed as follows

W 2. )(x) =

1 0 0 1 0 0 d 0 0 1 & 0 10 o0
0 1 0 = 1 0 0 d 0 R 01 & |,
0 & 1 0 = 1 0 0 ds 0 0 1 00 1

where d) = 1/(1—x)% dp = 1/(1 —x)* and d5 = 2/(1 —x)®, and, clearly, is TP for x € (0,1).
For the particular case n =2 and o = —5 /2, the Wronskian matrix of the system (1/(1—x)>/%,x/(1—
x)72, 32 /(1 —x)°/%) can be decomposed as follows

W(fe [, f3)(x) =

L0 0 ! o 0 d 0 0 £ 0 10 0

0 % 0 30— L0 0 d 0 0o 1 & o1 &= |,
7

0 = 1 (= 0 0 ds 0o 0 1 00 1

where d; = 1/(1—x)%2,dy =1/(1 —x)%? and d3 = 2/ (1 —x)"3/2, and, clearly, is TP for x € (0,1).

W

—

Now, using Lema [7.1] and taking into account that the bidiagonal decomposition of the Wronskian
matrix of the polynomial basis (f},..., f;), provided by Theorem can be extended for all x # 1, we
can derive the bidiagonal factorization of the Wronskian matrix of the Bernstein basis (7.9) using that

1—

W(BL,....BY)(x) =W(fl,...,fN)(x)A, A:=diag << " 1)>1§i§n+1.

Theorem 7.4. Let n € N and (Bj, . ..,B};) the Bernstein basis of P" defined in (1.9). For a given x € R,
x # 1, the Wronskian matrix W := W (B, ..., Bpy)(x) admits a factorization of the form

W= Ln,nLn—l,n e 'Ll,nDUl ntce Un—l.,nUn,n’ (726)

where Ly , = (ll-(l;’"))lg ji<n+1, k=1,...,n, are the lower triangular bidiagonal matrices, with unit di-
agonal entries, such that

-1
=0, i=2..k 1= (n+2—i)—, i=k+l..ntl, (7.27)
Uin = (MES"))1§j7i§n+1, k=1,...,n, are the upper triangular bidiagonal matrices, with unit diagonal
entries, such that
o
Wm0 =2k W = (PR X ikt (7.28)
i~ = i—1 1—x
and D is the diagonal matrix D = diag (d,, ... ,dny1) with
di:<,n1>(i—1)!(l—x)”+2_2i, i=1,....n+1. (7.29)
l_

Example 7.2. Let us illustrate the bidiagonal factorization (1.26), described by (1.27), (7.28) and
(7.29), of the Wronskian matrix of the Bernstein polynomial basis. For the particular case n = 2,
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the Wronskian matrix of ((1 —x)2,2(1 —x)x,x?) can be decomposed as follows

1 0 0 10 0 d 0 0 & 0 1o 0
-2

0 10 T | 0 d 0 0 1 2(1):x) 01 2(1x—x)

0 = 1 0 = 1 0 0 d 0 0 1 00 1

where d; = (1 —x)%, dy =2 and d3 = 2/(1 —x)*.

Let us observe, that from Theorem [7.4] it can be deduced that the bidiagonal factorization (7.1)) of
the (n+ 1) x (n+ 1) dimensional Wronskian matrix W of the Bernstein basis of P” can be represented
by means of the (n+ 1) x (n+ 1) matrix BD(W) = (BD(W); j)1<i,j<nt+1 Such that

(n+2—i)L, ifi> ],
BD(W) ;=< (") (=111 —x)" 272 ifi=j, (7.30)
<n—]~'_311> 1XTXM 1fl<]

Let us observe that, analyzing the sign of the entries of (7.30), we can deduce that the Wronskian
matrix of the Bernstein basis of P" is not TP for any x € R. However, the following result shows that
the solution of several algebraic problems related to these matrices can be obtained with HRA using the
bidiagonal decomposition (7.26)).

Corollary 7.2. Let W := W(B},...,Bp)(x) be the Wronskian matrix of the Bernstein basis defined in
(7.9) and J the diagonal matrix J := diag((—1)""")1<i<p+1. Then, for any x <0,

Wy :=JwWJ

is an STP matrix and its bidiagonal factorization (71.1) can be computed with HRA. Consequently, the
computation of the eigenvalues, singular values of W, the matrix W, as well as the solution ¢ =
(c1...,cas1)T of linear systems Wc = b, where the entries of b= (by...,b,.1)" have the same sign,
can be performed with HRA.

Proof. Using Theorem and that J? is the identity matrix, by (7.26) we can write
Wy = (JLyuJ)--- (JL1 nJ)(IDI)(JU pJ ) - - (JUypd), (7.31)

which gives its bidiagonal factorization (7.31)). Now, it can be easily checked that the multipliers and
diagonal pivots of the bidiagonal factorization (7.1)) of W; are positive if

1 —X

>0, 1—-x>0.

Therefore, by Remark W; is STP and its bidiagonal decomposition can be computed with
HRA for any x < 0. This fact guarantees the computation with HRA of the eigenvalues and sin-
gular values of Wy, the inverse matrix WJ_1 and the solution of the linear systems W;c = d, where
d=(dy,...,d,,1)" has alternating signs (see Section 3 of [23]).

Let us observe that, since J is a unitary matrix, the eigenvalues and singular values of W coincide
with those of W; and therefore, using the bidiagonal decomposition (7.31)) of W, their computation for
x < 0 can be performed with HRA.
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For the accurate computation of W~!, we can take into account that
wl=gw, . (7.32)

Since, for x < 0, W, ! = (W; j)1<i j<+1 can be computed with HRA and, by (7.32), the inverse of the
Wronskian matrix W satisfies W' = ((—1)"™/; ;)1<; j<+1, we can also accurately compute W~ by
means of a suitable change of sign of the accurate computed entries of Wj_l.

Finally, if we have a linear system of equations W¢ = b, where the elements of b = (b; ..., b,1)"
have the same sign, we can compute with HRA the solution d € R"*! of W;d = Jb and, consequently,
the solution ¢ € R"*! of the initial system since ¢ = Jd. O

Now, the following result describes the bidiagonal factorization (7.1)) of Bernstein bases of negative
degree ([7.10). This decomposition can be easily deduced from Theorem|[7.3]and Lemma([7.1] taking into
account that

—n —n —n —n : ifn+ i—1
W(B,",....B,")(x) =W (fo",.. .. [, )(x)A, A:=diag| (1) 1 . (7.33)
L= 1<i<n+1

Theorem 7.5. Letn € N and (B",...,B,") the Bernstein basis of degree —n, defined in (1.10). For a
givenx € R, x # 1, the Wronskian matrix W_,, := W (B,",...,B,")(x) admits a factorization of the form

-yDy

W_,= Ln,nLn—l,n o 'L17nDU1,n Tt Un—l,nUn,m (734)
where Ly , = (li(’];-’n))lgjignﬂ, k=1,...,n, are the lower triangular bidiagonal matrices, with unit di-
agonal entries, such that
(k,n) . (k,n) ) 1 .
Lo =0, i=2,... .k, li7i_1:(l’l+l—2)17, i=k+1,...,n+1, (7.35)
Uin = (ul(’kjn))lgjiﬁnﬂ, k=1,...,n, are the upper triangular bidiagonal matrices, with unit diagonal
entries, such that
| —2
W =0, i=2,. .k uf=— <”+’ 1 ) lx Ci=k41,... 041, (7.36)
' ’ i— —Xx

and D is the diagonal matrix D = diag (d,, ... ,dny1) with

i (n+i—=2)!
(n—1)!

Example 7.3. Let us illustrate the bidiagonal factorization (1.34), described by (7.35), and
(7.37), of the Wronskian matrix of Bernstein bases of negative degree. For the particular case n = —2,

the Wronskian matrix of (1/(1 —x)?,—2x/(1 —x)3,3x?/(1 —x)*) can be decomposed as follows

di=(—1) (1—x)™"2720 i=1,...,n+1. (7.37)

1 0 0 1 0 0 d 0 0 120 10 o0
0 1 0 = 1 0 0 d 0 0 1 oy 0 1 525
0 & 1 0 = 1 0 0 ds 0 0 1 00 1

whered; = 1/(1 —x)%, dy = —2/(1 —x)* and d3 = 3! /(1 — x)®.
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Now, from Theorem the bidiagonal factorization (7.1)) of the (n+ 1) x (n+ 1) dimensional
Wronskian matrix W of the Bernstein basis of degree —n can be represented by means of the (n+ 1) x
(n—l— 1) matrix BD(W) = (BD(W)i,j)lgi,j§n+l such that

(n+i—2)1, ifi > j,
BD(W); ;=< (=) ("T ) (= D11 —x) 272 if i = j, (7.38)
_ nﬁf) = ifi < j.

B,
the following result shows that the bidiagonal decomposition (7.34) provides accurate computations
with these matrices.

Using Theorem it can be deduced that W (B;",...,B;,")(x) is not TP at any x € R. Nevertheless,

Corollary 7.3. LetW_,,:=W (B,",...,B;,")(x) be the Wronskian matrix of the Bernstein basis of degree

Dy

—n defined in (T.10) and J the diagonal matrix J := diag((—1)""")1<i<py1. Then, for 0 <x < 1,
Wy o= W_nJ

is an STP matrix and its bidiagonal factorization (1.1) can be computed with HRA. Consequently, the
computation of the singular values of W_,,, the matrix W:,,l, as well as the solution ¢ = (ci ...,cpi1)!
of linear systems W_,c = b, where the entries of b = (by...,b,11)" have alternating signs, can be

performed with HRA.

Proof. Taking into account Theorem (7.33) and Lemma [/.1] it can be easily checked that the
multipliers and diagonal pivots of the bidiagonal factorization (7.1)) of W_, ; are positive if

1 X

>0, 1—x>0,

that is, if 0 < x < 1. This fact guarantees, by Remark that W_,, ; is STP and the computation
with HRA of its bidiagonal decomposition (7.1)) and so, the computation with HRA of its eigenvalues
and singular values, the inverse matrix W:n{ ; and the solution of the linear systems W_, jc = b, where
b= (by,...,b,)" has alternating signs (see Section 3 of [23])).

On the other hand, since J is a unitary matrix, the singular values of W_,, ; coincide with those of
W_, and so, their computation for 0 < x < 1 can be performed with HRA. Similarly, taking into account
that

W, =JW.,,,
we can compute W:n] accurately. Finally, if we have a linear system of equations W_,c = b, where the
elements of b = (by,...,b,)T have alternating signs, we can solve with HRA the system W_,, jd = b and
then obtain ¢ = Jd. O

Finally, using Lemma and Theorem , we can derive the bidiagonal factorization of the
Wronskian matrices of negative binomial bases (7.11)), taking into account that

W(Bh, ... b (x) =W () ()A, A::diag<(,” >> .
i—1) ) <icni

Theorem 7.6. Let n € N and (b,...,b}) the negative binomial basis of P" defined in (T.11). For a
given x € R, x # 1, the Wronskian matrix Wy := W (b, ..., b)) (x) admits a factorization of the form

Wy = Ln,nLn—l,n e 'Ll,nDUl ntoe Un—l,nUn,ny (739)
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where Ly, = (ll.( i"l))lgjjgn“, k=1,...,n, are the lower triangular bidiagonal matrices, with unit di-

agonal entries, such that

—1

=0, =20k G = (43— i=k+ Lot (7.40)

' —X
Ui = (ul(’kj’n))lgjignJrl, k=1,...,n, are the upper triangular bidiagonal matrices, with unit diagonal

entries, such that
o

W =0, i=2, .k W= <”+ 1 ’) 1x =kt 1t (7.41)

' d i— —X

and D is the diagonal matrix D = diag (d,, ... ,dn41) with

di:<'n1>(i—l)!(1—x)n+3_2i7 i=1,...n+1 (7.42)
i

Example 7.4. Let us illustrate the bidiagonal factorization (1.39), described by (1.40), (7.41) and
(7.42), of the Wronskian matrix of the negative binomial polynomial basis. For the particular case
n = 2, the Wronskian matrix of ((1—x)*,2(1 —x)x, (1 —x)x?) can be decomposed as follows

W (b5, b7, b3) (x) =
1 0 0 1 0 0 d 0 0 1 = 0 10 0
0 1 0 = 1 0 0 d 0 0 1 57 0 1 5%
0 = 1 0 = 1 0 0 d 0 0 1 00 1

where dy = (1 —x)3, dy =2(1 —x) and d3 = 2/(1 —x).

Now, from Theorem the bidiagonal factorization (7.1)) of the (n+ 1) x (n+ 1) dimensional
Wronskian matrix W of the Bernstein basis of degree —n can be represented by means of the (n+ 1) X
(n+ 1) matrix BD(W) = (BD(W); j)1<i,j<n+1 Such that

(n+3—i)7L, ifi> ],
BD(W); ;=1 (," )( DI —x)" 3720 if i = j, (7.43)
m2o)) £ ifi < j.

j71 1

Taking into account Theorem [7.43] the Wronskian matrix of the negative binomial basis is
not TP at any x € R. However, following the reasoning in the proof of Corollary (7.2} we can guarantee
that the solution of several algebraic problems related to these Wronskian matrices can be computed
with HRA.

Corollary 7 4. Let Wy := W(bj,...,b))(x) be the Wronskian matrix of the negative binomial basis
defined in ( and J the diagonal matrix J := diag((—1)""')1<j<n11. Then, for any x < 0,

WNJ = JWN]

is TP and its bidiagonal factorization (1.1) can be computed with HRA. Consequently, the computation
of the eigenvalues, singular values of Wy, the matrix Wy 1 as well as the solution of linear systems
Wyx = b, where the entries of b= (by ...,b,1)! have the same sign, can be performed with HRA.

Section|[7.5|will show accurate computations with the Wronskian matrices of Bernstein bases, Bern-
stein bases of negative degree and negative binomial bases obtained by using the bidiagonal decompo-
sition ([7.1)) and the algorithms in [62].
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7.5 Numerical experiments

Given a nonsingular and TP matrix whose bidiagonal factorization can be computed with HRA, the
functions TNEigenValues, TNSingularValues, TNInverseExpand and TNSolve, available in the li-
brary TNTool of [63], can be used to compute with HRA its eigenvalues, singular values, its inverse
matrix and the solution of some linear systems, respectively. The computational cost of the aforemen-
tioned functions is O(n?) elementary operations for TNSolve and O(n?) for the other functions.

Using the results in this chapter, we have implemented Matlab functions for the efficient computa-
tion of the bidiagonal decomposition of the TP matrices JWyJ, where Wy, are (n+1) x (n+ 1)
Wronskian matrices of Bernstein and negative binomial bases or WyJ, where Wy, are (n+1) x (n+1)
Wronskian matrices of Bernstein bases of negative degree. In order to use the functions available in the
library TNTool of [[63]], all the implemented Matlab functions give the bidiagonal decomposition (7.1))
for the corresponding matrices by means of the (n+ 1) x (n+ 1) matrix BD(-) defined in (7.3)). Observe
that the computational complexity of the computation of the multipliers m; ;, m; ; and the pivots p;; of
the proposed bidiagonal decompositions is O(n?).

We have considered Wronskian matrices Wy atx = —1,x=1/7, x = —2 and x = —40. Tableil—
lustrates the 2-norm condition number of Wy, computed with the Mathematica command Norm[A,2]-
Norm[Inverse[A],2]. Observe that the condition number of the matrices considerably increases with
their dimension. Due to this ill conditioning, traditional methods do not achieve accurate solutions
when solving the mentioned algebraic problems. The following numerical results confirm this fact and
illustrate the high accuracy obtained when using the functions in [63]] with the bidiagonal factorizations
of the matrices JWyJ, or WyJ provided in this chapter.

Table 7.1: Condition number of Wronskian matrices of Bernstein bases at xo = — 1, Wronskian matrices
of Bernstein bases of negative degree at xo = 1/7 and Wronskian matrices of negative binomial bases at
xo = —2.

n+l | 1(Wy) K2(Wh) K2(Wh)
10 | 1.3x10° [ 1.7x 107 | 1.4 x 101
15 | 1.3x10'% | 43x10% | 1.0x 10'8
20 | 1.6x10%! | 2.6 x 103! | 2.3 x 10?3
25 | 9.9x10% | 3.4x10% | 3.3x10%

We have compared the eigenvalues and singular values obtained when using the Matlab commands
eigand svd, respectively, and those computed using the bidiagonal decompositions in this chapter
and the Matlab functions TNEigenValues and TNSingularValues, respectively. In order to determine
the accuracy of the approximations, we have also calculated the eigenvalues and singular values of the
matrices by using Mathematica with a precision of 100 digits and computed the relative errors corre-
sponding to the approximations, considering the eigenvalues and singular values provided by Mathe-
matica as exact. We have computed the relative error of the approximations a of the exact eigenvalue
and singular value @ by means of the formula e = |a — d|/|a|.

Tables and show the relative errors of the approximations to the lowest eigenvalue and the
lowest singular value obtained with both methods. Observe that the eigenvalues and singular values
obtained using the factorization are very accurate for all considered n, whereas the approximations
of the eigenvalues and singular values obtained with the Matlab commands eig and svd are not very
accurate when n increases.
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Table 7.2: Relative errors when computing the lowest eigenvalue of the Wronskian matrices of Bern-

stein bases at x) = —1 and negative binomial bases at xo = —2.
n+l eig TNEV eig TNEV
10 [3.0x10°1° 69x1071® 19x10° 8.0x10°'°
15 1.9x107% 99x10°"7 3.1x1077 1.0x10°"
20 28x 10" 44x1071° 19x10* 6.5x107"7
25 8.8x10° 49x1071° 15x10% 52x10°1°

Table 7.3: Relative errors when computing the lowest singular value of Wronskian matrices of Bernstein

bases at xo = — 1, Bernstein bases of negative degree at xo = 1 /7 and negative binomial bases at xo = —2.
n+1 svd TNSV svd TNSV svd TNSV
10 [24x10% 3.6x10°° 21x102 12x10°5 3.0x10° 12x10°D
15 [ 1.5x10° 3.0x10710 78x10° 13x10°5 54x1077 58x10°16
20 32x10° 52x1071%  1.6x107 1.1x10°5 88x10> 8.6x10°16
25 9.1x10° 1.0x107'% 56x10¥ 43x107° 3.7x10° 5.7x1071¢

We have also used the Matlab function TNInverseExpand (see Section 4 of [87]) with the bidiago-
nal factorization in order to compute the inverse of Wronskian matrices of the bases considered. We
have also computed their approximations with the Matlab functions inv. In order to determine the accu-
racy of the approximations, we have calculated the inverse of these matrices by using Mathematica with
a precision of 100 digits and computed the relative errors corresponding to the approximations, consid-
ering the inverse matrix provided by Mathematica as exact. We have computed the relative error of each
approximation A~! of the exact inverse matrix A~! by means of the formula e = [|[A~' —A~!||5/||A~|2.

The approximation of the inverse of the Wronskian matrices obtained by means of
TNInverseExpand is very accurate for all considered n, providing much more accurate results than
those obtained by Matlab using the command inv. Table shows the relative errors of the approxi-
mations to the inverse of the Wronskian matrices obtained with both methods.

Table 7.4: Relative errors when computing the inverse of Wronskian matrices of Bernstein bases at

xo = —1, Bernstein bases of negative degree at xyp = 1/7 and negative binomial bases at xo = —2.
n+1 inv TNIE inv TNIE inv TNIE
10 [66x10°1T 32x107"7 68x10°"" 82x10°P 15x108 3.7x10°"
15 13x107° 3.6x10717 12x107% 15x10°5 22x107%2 69x10°V7
20 3x1070 38x107Y7 65%x1072 1.8x10°1 2.3 1.8 x 10716
25 1.2 35x10717  57x107! 24x10°B 1.0 1.3x 10716

Finally, we shall illustrate the accuracy of the solutions of linear systems computed by using the
bidiagonal factorization (7.I)) with the function TNSolve. We have obtained the solution of the linear
systems using Mathematica with a precision of 100 digits and considered this solution exact. Then we
have also computed with Matlab two approximations, the first one using the previous functions and the
second one using the Matlab command \. We have computed the relative error of every approximation
¢=(€1,...,0n41) of the solution c of the linear system by means of the formula e = ||c — ¢||2/]|¢c||2-

Tableshows the relative errors when solving the linear systems W, ¢, = d,, where d,, = (d;)1<i<n+1
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ord, = ((—1)"'d;)1<i<ni1, in the case of Bernstein basis of negative degree, and d;,i = 1,...,n+1, are
random nonnegative integer values. The computed results confirm the accuracy of the proposed method
that, clearly, keeps the accuracy when the dimension of the problem increases. In contrast, when n
increases the condition number of the considered matrices considerably increases and that explains the
bad results obtained with the Matlab command \.

Table 7.5: Relative errors when solving Wye, = d, with Wronskian matrices of Bernstein bases at
xo = —1, Bernstein bases of negative degree at xyo = 1/7 and negative binomial bases at xo = —2.

n+1 Wi\ dy TNsolve Wy \dy TNsolve Wi\ dy TNsolve
10 |67x107" 14x107° 89x10°T 92x10°1® 1.5x10% 44x107"
15 [3.1x10°" 1.5x1071° 1.6x107° 1.6x10°10 22x10%2 59x10°"7
20 [ 19x10710 37x107° 84x1072 20x10°1 2.0 3.1x107"
25 13x107% 15%x10°5 7.1x107" 2.6x10°13 1.0 7.7x 10717




Total positivity and accurate computations
with Wronskian matrices of geometric and
Poisson bases

ABOUT THIS CHAPTER

The purpose of this chapter is to present some of the latest results that we have obtained, which are not
included in the articles that belong to the compendium of publications of this thesis. It should be noted
that, in this chapter, we have taken into account some of the results shown in the article [[75] (see on

page[99).

8.1 Introduction

The geometric distribution has applications in population and econometric models and the Poisson
distribution is popular for modeling the number of times an event occurs in an interval of time or space.
Associated to these distributions, the corresponding bases can be defined (see sections [8.3] and [8.4]
respectively). The Poisson basis also plays a useful role in Computer-Aided Geometric Design (see
[42] and [90])). Collocation matrices of both bases were analyzed in [[74] (see the article on page [59),
where it was proved their total positivity, and their bidiagonal factorization was obtained with high
relative accurate (HRA). Starting with such bidiagonal factorization, the algorithms presented in [[63]]
could be applied to calculate with HRA algebraic computations such as their inverses, their eigenvalues
or their singular values and the solutions of some linear systems. Other examples of collocation matrices
for which a bidiagonal factorization was obtained can be seen in [15]],[[17],[71]],[82], [83].

Wronskian matrices arise in many applications. For instance, in Hermite interpolation problems,
and in particular in Taylor interpolation problems. In [75] (see the article on page [99), the bidiagonal
decomposition of the Wronskian matrices of the monomial basis was obtained. In this chapter, we deal
with the Wronskian matrices of the two kind of bases mentioned in the previous paragraph. In contrast
with their corresponding collocation matrices or with the Wronskian matrices of the monomial basis, we
show that these Wronskian matrices are not totally positive. However, we relate them with other totally
positive matrices, so that their associated bidiagonal factorizations can be used to provide accurate algo-
rithms for the algebraic computations mentioned before. The complexity of the proposed algorithms for
solving the mentioned algebraic problems is comparable to that of the traditional LAPACK algorithms,
which, as we shall ilustrate, deliver no such accuracy.

We now describe the layout of the chapter. In Section[8.2] we present basic notations and preliminary
results. The bidiagonal factorization of Wronskian matrices of geometric bases is obtained in Section

219
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[8.3] where the methods to derive algorithms with HRA is shown. Section [8.4] provides the bidiagonal
factorization of Wronskian matrices of Poisson bases and the methods to derive accurate algorithms.
Finally, Section [8.5] presents numerical experiments confirming the accuracy of the presented methods
for the computation of eigenvalues, singular values, inverses or the solution of some linear systems.

8.2 Notations and preliminary results

Our matrix notation follows the notation used in [34, 36, [37]. Givenn € Nand k € {1,...,n}, let O,
be the set of increasing sequences of k positive integers less than or equal to n. If &, B € Ok »,, we denote
by A[a|B] the k x k submatrix of A containing rows of places & and columns of places . Moreover,
Alo] denotes Ala|a].

Given an n-times continuously differentiable function f and x € R in its domain, f’(x) denotes its
first derivative at x and f\)(x), i < n, i-th derivative of f at x. Given a basis (ug,...,u,) of a space of
functions defined on a real interval I and n-times continuously differentiable at x € I, the corresponding
Wronskian matrix at x is ‘

W (ug, . .., u,)(x) := (Mﬁ-l:ll)(X))i,jzl,“.,n-i-l.

A matrix is totally positive (TP) if all its minors are nonnegative and is strictly totally positive (STP)
if they are positive. About applications of TP matrices, see [2, 27, 193].

Neville elimination is an alternative procedure to Gaussian elimination and has been used to charac-
terize TP matrices. More details on this elimination method can be found in [34} 36, 37]. By Theorem
4.2 and the arguments of p.116 of [37]], we have the following result

Theorem 8.1. A nonsingular matrix A = (a; j)1<i,j<n+1 is TP if and only if it admits a factorization of
the form

A:FnFn—l"‘FIDGI"‘Gn—le (8.1)
where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by
1 1

8.2)

mip1y 1 mip1y 1 ’

Myrip+1—i 1 My ipt1—i 1

and D =diag (p1.1,. .., Pn+1.n+1) has positive diagonal entries. If, in addition, the entries m;j, m;; satisfy
mij=0 = my;=0, Yh>i, and mj;j=0 = my=0, Yk>j,

then the decomposition is unique. The diagonal entries p;; of D are the diagonal pivots of the
Neville elimination of A and the elements m; j, m; ; are nonnegative and coincide with the multipliers of
the Neville elimination of A and AT, respectively.

In [61], the bidiagonal factorization (6.1)) of an (n+ 1) x (n+ 1) nonsingular and TP matrix A is
represented by defining a matrix BD(A) = (BD(A);,j)1<i,j<n+1 such that
mi j, ifi > j,
BD(A);j:={ pii, ifi=], (8.3)
I:fv’ljJ, ifi <j.
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Remark 8.1. Observe that, by Theorem 4.3 of [37], the positivity of all multipliers and diagonal pivots
of the Neville elimination of A in Theorem I implies that A is STP.

Let us also recall that x € R is obtained with high relative accuracy (HRA) if the relative error of the
computed value ¥ satisfies

where K is a positive constant independent of the arithmetic precision and « is the unit round-off. HRA
implies that the relative errors of the computations are of the order of the machine precision. It is known
that an algorithm can be computed with HRA when it only uses products, quotients, sums of numbers
of the same sign, subtractions of numbers of opposite sign or subtraction of initial data (cf. [23]], [61]]).

If the bidiagonal factorization (8.1)) of a nonsingular TP matrix A is computed with HRA then, using
the algorithms in [62]], we can also compute with HRA its eigenvalues and singular values, the matrix
A~! and even the solution of Ax = b for vectors b with alternating signs.

Let us denote by P” the space of polynomials of degree less than or equal to n and (py, ..., p,) the
monomial basis of P such that

pi(x):=x', i=0,...,n. (8.4)

The following result restates Corollary 1 of [75] (see the article on page[99), providing the bidiagonal
factorization (8.1)) of the Wronskian matrix W (po,...,p,)(x), x € R.

Proposition 8.1. Let (po, ..., pn) be the monomial basis given in (8.4). For any x € R, the Wronskian

matrix W(po, ..., pn)(x) is nonsingular and can be factorized as follows,

W(p0a~-~apn)(x) :DGLn"'anl,nflGn,n» (8.5)
where D = diag{0!,1!,...,n!} and G;,, i = 1,...,n, are the upper triangular bidiagonal matrices in
(8.2) with

n~1k,k_,-:x, i+1<k<n+1. (8.6)

Moreover, if x > 0 then W (po, ..., pn)(x) is nonsingular and TP, its bidiagonal decomposition (8.1) is
given by and and it can be computed with HRA.

In [[75]] (see the article on page @]), using this result, accurate computations with Wronskian matrices
of monomial bases are achieved.

In the following sections we shall obtain the bidiagonal factorization (8.1)) of Wronskian matrices
of Poisson and geometric basis functions. For all considered cases, we are going to acheive algebraic
computations with HRA.

8.3 Bidiagonal factorization of Wronskian matrices of geometric bases

The geometric distribution has many applications in population and econometric models. Let us recall
that the probability of k failures up to obtain a success is given by

P(k failures until a success) := (1 —1)*z,

where the probability of success is 7 € [0,1]. Then, for a given n € N, we can define an (n+ 1)-
dimensional polynomial basis (go, .. .,g,), where

gr(x) = (1-x)x, k=0,....n. (8.7)
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In Section 4 of [74], it is proved that the collocation matrix at positive values 0 < x; < --- <
Xnt1 < 1 of (go,...,8n) is STP. Furthermore, the bidiagonal factorization of the collocation matrix
(8j—1(xi=1))1<i,j<n+1 is deduced by taking into account that each basis function gi(x) can be obtained
by scaling the polynomials (1 — x)¥ with the positive function ¢(x) = x, k = 0,...,n. Using this fac-
torization, HRA algebraic computations with collocation matrices of geometric bases (go,...,g,) are
achieved.

In this section we are going to deduce a bidiagonal decomposition of the form of the Wronskian
matrix of geometric bases (8.7). We shall see that, using this factorization and the algorithms in [62],
many algebraic problems related to these matrices can be solved with HRA.

Let us start with some auxiliary results.

Lemma 8.1. Fora givent € Randn €N, let Uy, = (uﬁﬁ"))1§j7i§n+1, k=1,...,n bethe (n+1)x (n+
1), upper triangular bidiagonal matrix with unit diagonal entries, such that

Wh=0, i=2,.0k W= i=kl 0+l

Then, U, :=U, ;- -+ Uy p, is an upper triangular matrix and

N
Un = (1<t jentr, uﬁf’j):(f_l)ﬂ—z 1<i<j<n+l. (8.8)

Proof. Clearly, U, is an upper triangular matrix since it is the product of upper triangular bidiagonal
matrices. Taking into account Proposition 8.1} we can deduce that

Up= (=D ) ") -

where p;(t) :==t/, j=0,...,n. Finally, taking into account that

(WUW0=<Qﬂ4,0§i§j§m
i
equalities (8.8) are immediately obtained. =

Theorem 8.2. Let (go,...,gn) be the (n+ 1)-dimensional geometric basis defined in (8.7). The Wron-
skian matrix W :=W(go,...,8n)(x) at a given x € R, x # 0, admits a factorization of the form

W= LnDnUl,n Tt Unfl,nUn,na (89)

where L, = (li(,r;))lﬁ ji<nt1 IS the lower triangular bidiagonal matrix with unit diagonal entries, such
that )
l(n) i1

L= ,
ii—1 X

i=2,...n+1, (8.10)

Uin = (ulg!kj’n) Ji<ji<nt+1, k =1,...,n, are the upper triangular bidiagonal matrices with unit diagonal
entries, such that

=0, i=2,...k u*=1-x i=k+1,...n+1, (8.11)
and D, is the diagonal matrix D, = diag(d, p, ... ,dn41,) With

dip= (=D =1), i=1,...,n+1. (8.12)
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Proof. First, let us observe that L,D, = (fl?jl-))lgi, j<n+1 1is the lower triangular bidiagonal matrix such
that

=) i-D, =10+l 10 =(1)-1), i=2...n+1L  (8.13)

ii

On the other hand, using Lemma [8.1] with = 1 — x, we derive that U, := Uy ,,++- Uy, is the (n+ 1) x
(n+ 1), upper triangular matrix described by

U = ("1 j<ns1, ”z(,nj):<?_1>(1_x)'lla 1<i<j<n+l. (8.14)

In order to prove the result, taking into account (8.9)), (8.13)) and (8.14), we have to check that

0, j=1,...,i—=2,
. (—D)iE—1), j=i—1,
(g7~ V(x) = . (8.15)
(=D —1)1 (1 —i+ix), j=1i,
(_1>lil(l_ 1)']7§+1 ({:;)(1 _x)jil<1 —l+]X), .]> l?

for 1 <i,j<n+1. Since

1 (i-1)
(8- (x) = (Z <] k 1) (—l)kxk“> :

k=0
equalities (8.15)) readily follow for 1 < j<iandi=1,...,n+ 1. For j > i, (8.I5) can be proved by

induction on i. If i = 1, we clearly have (—1)°(1— 1)!(j61) (1—-x)/"tjx/j=gj-1(x),for j=2,....n+1.
Now let us suposse that (8.15)) holds for i > 1 and j > i. Then, we can write

@00 = GO0 (D) ()

j—it1\i—1
, i—1 .
= (—1)‘(i—1)!<i_1>(1—x)f’1(—i—|—jx). (8.16)
Using (8.16)), since (i — 1)‘({:11) = i!(jjl)ﬁ, we have
(1) i 1 Jj—1 j—i—1 L
(80000 = (=1t (7 1) (1= (i o),
j=i+1,...,n, and consequently (8.13) follows. O

Example 8.1. Let us illustrate the bidiagonal factorization (8.9) of the Wronskian matrix of geomet-
ric bases with a simple example. For the particular case n = 2, the bidiagonal factorization of the
Wronskian matrix of the basis (x,x(1 —x),x(1 —x)?) at x € R is

W (x,x(1 —x),x(1 —x)%) =
1 0 O x 0 O I 1-x O 1 0 O
I/x 1 0 0 —x O 0 1 1—x 01 I—x
0 2/x 1 0 0 2x 0O O 1 00 1
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Let us observe that, from Theorem the bidiagonal factorization (8.1 of the (n+1) x (n+1)
dimensional Wronskian matrix W of the geometric basis can be represented by means of the (n+ 1) x
(n—l— 1) matrix BD(W) = (BD(W)i,j)lgi,j§n+1 such that

(i—1)/x, ifi=j+1,
D=1, ifi=j,
0, else.

Analyzing the sign of the entries in (8.17), we can deduce from Theorem [8.1] that the Wronskian
matrix of the geometric basis (8.7) is not TP for any x € R. However, the following result shows that,
using the bidiagonal decomposition (8.9), the solution of several algebraic problems related to these
matrices can be obtained with HRA .

Corollary 8.1. Let W := W(go,...,gn)(x) be the Wronskian matrix of the geometric basis defined in
®77) and J the diagonal matrix J := diag((—1)"")<i<n+1. Then, for x > 1,

Wy =WwJ

is a TP matrix and its bidiagonal factorization (8.1)) can be computed with HRA. Consequently, the
computation of the singular values of W, the matrix W=, as well as the solution ¢ = (c...,cas1)" of
linear systems Wc = b, where the entries of b= (by ...,b,1)" have alternating signs, can be performed
with HRA.

Proof. Using and the fact that J? is the identity matrix, we can write
Wy =Ly(DpJ)(JU uJ) -+ (JUnpJ ), (8.18)

which gives the bidiagonal factorization (8.1]) of W;. Now, it can be easily checked that if x — 1 > 0, the
bidiagonal matrices L,, JU; ,J,i=1,...,n, as well as the diagonal matrix D,J are TP. By Theorem 1, W;
is TP for x > 1. This fact guarantees the computation with HRA of its bidiagonal decomposition (8.1)
and so, the computation with HRA of its eigenvalues and singular values, the inverse matrix Wfl and
the solution of the linear systems W;c = b, where b = (by,...,b,)" has alternating signs (see Section 3
of [23]).

On the other hand, since J is a unitary matrix, the singular values of W; coincide with those of W
and so, their computation for x > 1 can be performed with HRA. Similarly, taking into account that

Wl =gw, !
we can compute W ! accurately. Finally, if we have a linear system of equations W¢ = b, where the
elements of b = (by,...,b,)T have alternating signs, we can solve with HRA the system W;d = b and
then obtain ¢ = Jd. O

8.4 Bidiagonal factorization of Wronskian matrices of Poisson bases

The Poisson distribution is popular for modeling the number of times an event occurs in an interval of
time or space. An event can occur k =0,1,2,... times in an interval. If the average number of events in
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an interval, also called the rate parameter, is designated by ¢, then the probability of observing k events
in an interval is given by

k
t
P(k events in interval) = Ee_[ :
The Poisson basis functions p
Pe(x) := Eefx, keN, (8.19)

are the limit as n tends to infinity of the Bernstein basis of degree n over the interval [0, ], that is,

P = Jim B /). B = ()00 xe ol

and they also play a useful role in CAGD (see [90]).

In Section 4 of [[74]], it is proved that the collocation matrix at positive values x; < --- < x,41 of a
basis of Poisson functions (P, ...,P,;) is STP on (0,c). Furthermore, the bidiagonal factorization of the
collocation matrix (Pj_1(xi—1))1<i j<n+1 is deduced by taking into account that each basis function Py (x)
can be obtained by scaling the polynomials x*/k! with the positive function @(x) = e, k=0,...,n.
Using this factorization, accurate algebraic computations with collocation matrices of Poisson bases are
achieved.

In this section we are going to deduce a bidiagonal decomposition of the form of the Wronskian
matrix of Poisson bases. We shall see that, using this factorization and the algorithms in [62]], many
algebraic problems related to these matrices can be solved with a great accuracy.

Let us start with some auxiliary results.

Lemma 8.2. Fora givenn €N, let Ly , = (ll-(l;7n))1§i7j§n+1, k=1,...,n, be the lower triangular bidiag-
onal matrix with unit diagonal entries, such that

En) 0, i=2, ok (%= 1, ikt l..nt

Then L, := L, ,---Ly, is a lower triangular bidiagonal matrix with
L i—1
L,= (l,-(,l}))1gi,jgn+1, lij=(—1)"" (j— 1>, 1<j<i<n+l1. (8.20)

Proof. Clearly, L is a lower triangular matrix since it is the product of lower triangular bidiagonal
matrices. Now let us prove (8.20) by induction on n. Forn =1,

1
L1=Ll,1=<_1 1 >

and (8.20) clearly holds. Let us now suppose that (8.20) holds for n > 1. Then

Ly :=Lytipr1 o Lins1 = Ly Ly ngt

where L1 := Lyy1 1 Long1 satisfies Ly = (Zy]l'+l))1§i7j§n+2 with [;; = &1, I;; = &, for i =
1,...,n+2and L,41[2,...,n+2] =Ly, L1 ,. Then we have that

L 1=2
Zl-(,;-+1):(_1)l+]<l_ 2>’ 2<j<i<n+2.
k2 J_
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Now, taking into account that

1
- N -1 1
Lyt1 = Lyy1Lipy1 = Ly N ,
-1 1

and the fact that (;:é) + (;:21) = (;:11) we deduce that L, | = (ll-(f]l-H))lgi’ j<nta2 satisfies

(1) _ 1) _ sntl) i+ (12 i (E 2 iy (11

=iy -t = o (73 o (S0]) = e (0
for1 <;j<i<n+2. ]

Lemma 8.3. Fora givent € Randn €N, let Uy, = (ug{jn))lgj7,-5n+1, k=1,...,n bethe (n+1) x (n+
1), upper triangular bidiagonal matrix with unit diagonal entries, such that
(k,n)

t
ui—l,i::07 i:27"‘7k7 u§f7il7)i::i_1, l:k+1,,l’l+1

Then, U, := Uy - - - Uy p, is an upper triangular matrix and

(n) (n) _

Un:(”i,j)lgi,jgnﬂa M,-J—W, 1<i<j<n+l.

Proof. First, let us observe that given Mn = (m; j)1<i j<n+1 and a nonsingular diagonal matrix D, =
diag(dl,...,dnﬂ), B
DnMn = Man

where M, = (m; j)i<i j<n+1 satisfies m; j = m; jd;/d;, i,j =1,...,n+ 1. Now, let us define D, :=
diag (d;) <;<y 1. Such that d; = (i— 1)1 i =1,...,n+ 1, and let Uy = (@ )12 i<ni1. k= 1,...,n, be
the (n+ 1) x (n+ 1), upper triangular bidiagonal matrix with unit diagonal entries, such that

=0, =2,k @ Vi=1, i=k+1,...n+1
Taking into account the fact thatd;_/d;=1/(i—1),i=2,...,n+ 1, we can write
DnﬁLn T ﬁn,n = Ul,n to Un,nDn-

Consequently, Uy -+ U, , = Dnl717,, ‘e ﬁn,anl and, applying Lemmato 1717,, ‘e 17,17,,,

) (=D [j=1\ ., ¢t .
Ul,n"'Un,n:(uz(,nj)lﬁi,jﬁn-&-lv u,(jlj):(j_l)! 1 = — o 1<i<j<n+l1.

Now, we can deduce a bidiagonal factorization of Wronskian matrices of Poisson bases.
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Theorem 8.3. Let n € N and (Py,...,PB,) the basis (8.19) of Poisson functions. For a given x € R,
W :=W(Py,...,P,)(x) admits a factorization of the form

W= Ln,nLnfl,n e 'Ll,nDnUl,n Tt Un717nUn7n7 (821)

where Ly, = (ll(];’n))lgj7i§n+1, k=1,...,n, are the lower triangular bidiagonal matrices with unit diag-

onal entries, such that

%M —o0, i=2, .k I =1, i=k+1,..n+1,

Un = (ul(’kjn))lgjiﬁnﬂ, k=1,...,n, are the upper triangular bidiagonal matrices with unit diagonal

entries, such that

=0, =2,k W= k1, a1,

i—1,i i—1’

and Dy, is the diagonal matrix D, = diag (dy,...,dy+1) withdi=e ™, i=1,...,n+ 1.
Proof. By Lemma L,:=L,,L,_1,-Ly,is alower triangular matrix and satisfies

i—1

L= hssjens 1 =04 (17

>, 1<j<i<n+]1.
On the other hand, by Lemma 8.3} U, := Uy , - - U1 nUp, satisfies

Up = (1t jomnrs u = 2 N <i<i<n+tl
n i,j 1§l7j§l’l+1’ i,j (]—l)" — —.]— .

Now, let us see that W = L,,D,U,,, that is,

(i-1) minz{i,j} i1\ Ak
P M) = (—1) ( ) e, 1<i,j<n+1. (8.22)
=1 = k—1) (j—k)!
We shall prove (8.22)) by induction on i. Fori =1,
1 i—k i—1
1—-1\ »/ x!
(—1)1+k< > : P e " =Pi_1(x), j=1,....n+1,
L )G TG D

and (8.22) holds. Now, let us assume that (8.22)) holds for i > 1. For any j such that 1 < j </, it can be

checked that
. !/ .
J ) i—1 xj—k J . xj—k
-1 i+k <l > . e | = -1 t+k+lck : e
(;;1( "k (J—k)! k;( ) (j—k)!

i—1 i—1 i—1 i
o= (o)== () (D)= (L) e

In a similar way it can be checked that, for any j > i, we have

zi:(—l)iJrk(i_l)xj_k e’ /: %(—1)i+k+lc‘k7xj_k e
] k—1) (j—k)! = (j—k)!

where
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where

() e (D)

Il
ul\.)
O
=

Il

-
(.
_—
N——

Therefore,
. min{i+1,j} . i~k
(@) i+k+1 ! X —x
P’ (x)= (—1) < ) ; e,
=1 ( k; k—1)(j—k)!
and (8.22) holds.

O]

Example 8.2. Let us illustrate the bidiagonal factorization (8.21)) of the Wronskian matrix of a Poisson
basis. For the particular case n = 2, the bidiagonal factorization of the Wronskian matrix of the basis

2 .
(eFxe™ e *)atx € Ris

2
W™ xe ™ Se ) =
1 1 0 O e* 0 0 1 x O 1 00
0 1 O -1 1 0 0 e* 0 01 3 01 3
0 -1 1 0 -1 1 0 0 e~ 0 0 1 0 0 1

Let us observe, that from Theorem [8.3] it can be deduced that the bidiagonal factorization (8.1 of
the (n+1) x (n+ 1) dimensional Wronskian matrix W of the Poisson basis can be represented by means
of the (n+1) x (n+ 1) matrix BD(W) = (BD(W); j)1<i j<n+1 such that

—1, ifi>j,
BD(W); j:=( e™* ifi = j, (8.23)

’ Y

x/(j—1), ifi<j.

Analyzing the sign of the entries in (8.23), we can deduce from Theorem [8.1] that the Wronskian
matrix of the Poisson basis is not TP for any x € R. However, the following result shows that the
solution of several algebraic problems related to these matrices can be obtained with HRA by using the
bidiagonal decomposition (8.21).

Corollary 8.2. LetW :=W (P, ..., PB,)(x) be the Wronskian matrix of the Poisson basis defined in (8.19)
and J the diagonal matrix J = diag((—1)"")1<i<n11. Then, for any x < 0,

Wy =JWJ

is an STP matrix. If, in addition, we know e ™ with HRA, then the bidiagonal factorization of Wy
can be computed with HRA. Consequently, the computation of the eigenvalues, singular values of W,
the matrix W~", as well as the solution ¢ = (c ...,ca+1)" of linear systems Wc = b, where the entries
of b= (by...,b,1)T have the same sign, can be performed with HRA.

Proof. Using Theorem and that J? is the identity matrix, by (8.21) we can write

Wy = (JLynJ) -+ (JL1pJ)(IDI) (UL pJ) - - (JUnnd), (8.24)
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which gives its bidiagonal factorization (8.1). Now, it can be easily checked that the multipliers and
diagonal pivots of the bidiagonal factorization (8.24)) of W; are positive if x < 0. Therefore, by Remark
[8.1] Wy is STP and its bidiagonal decomposition (8.24) can be computed with HRA for any x < 0. This
fact guarantees the computation with HRA of the eigenvalues and singular values of Wy, the inverse
matrix Wfl and the solution of the linear systems W;c = d, where d = (d,,... ,dnH)T has alternating
signs (see Section 3 of [23]]).

Let us observe that, since J is a unitary matrix, the eigenvalues and singular values of W coincide
with those of W; and therefore, using the bidiagonal decomposition of W;, their computation for
x < 0 can be performed with HRA.

For the accurate computation of W !, we can take into account that

Wl =gw, (8.25)

Since, for x < 0, Wfl = (Wi j)1<ij<+1 can be computed with HRA and, by (8.25), the inverse of the
Wronskian matrix W satisfies W' = ((—1)"/; ;)1<; j<+1, we can also accurately compute W~! by
means of a suitable change of sign of the accurate computed entries of Wfl.

Finally, if we have a linear system of equations Wc¢ = b, where the elements of b = (b ... ,an)T
have the same sign, we can compute with HRA the solution d € R"*! of W;d = Jb and, consequently,
the solution ¢ € R™*! of the initial system since ¢ = Jd.

O

Observe that Corollary requires the evaluation with HRA of e™*. Even when this does not hold,
Section [8.5] will show that the resolution of algebraic problems with W; can be performed through the
proposed bidiagonal factorization with an accuracy independent of the conditioning or the size of the
problem and so, similar to HRA. Consequently, as in the proof of Corollary [8.2] we can deduce that the
computation of the eigenvalues, singular values of W, the matrix W—!, as well as the solution of linear
systems Wx = b, where the entries of b= (b; ..., b, )T have the same signs, can be performed with an
accuracy similar to HRA.

8.5 Numerical experiments

Given a nonsingular and TP matrix whose bidiagonal factorization can be computed with HRA, the
functions TNEigenValues, TNSingularValues, TNInverseExpand and TNSolve, available in the li-
brary TNTool of [63], can be used to compute with HRA its eigenvalues, singular values, its inverse
matrix and the solution of some linear systems, respectively. The computational cost of the aforemen-
tioned functions is O(n?) elementary operations for TNSolve and O(n?) for the other functions.

Using the results in this chapter, we have implemented Matlab functions for the efficient compu-
tation of the bidiagonal decomposition (8.1)) of the TP matrices WyJ, where Wy, are (n+1) x (n+ 1)
Wronskian matrices of geometric bases or JWyJ, where Wy, are (n+ 1) X (n+ 1) Wronskian matrices of
Poisson bases. In order to use the functions available in the library TNTool of [63], all the implemented
Matlab functions give the bidiagonal decomposition (8.1)) for the corresponding matrices by means of
the (n+ 1) x (n+ 1) matrix BD(-) defined in (8.3). Observe that the computational complexity of the
computation of the multipliers m; ;, 1; ; and the pivots p;; of the proposed bidiagonal decompositions
is O(n?).

We have considered Wronskian matrices Wy, at x = 10 and x = —40. Table[8.T]illustrates the 2-norm
condition number of Wy, computed with the Mathematica command Norm[A,2]- Norm[Inverse[A],2].
Observe that the condition number of the matrices considerably increases with their dimension. Due to
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this ill conditioning, traditional methods do not achieve accurate solutions when solving the mentioned
algebraic problems. The following numerical results confirm this fact and illustrate the high accuracy
obtained when using the functions in [63] with the bidiagonal factorizations (8.1) of the matrices WyJ,
or JW,,J provided in this chapter. j

Table 8.1: Condition number of Wronskian matrices of geometric bases at xo = 10 and Poisson bases
at xo = —40.

n+l | K2(Wy) K2(Whp)
5 | 3.1x10° | 2.8x 10"
10 | 6.0x10'% | 1.3 x10?!
15 | 7.1x10'8 | 4.1 x 10%
20 | 2.2x10% | 5.3x10%

We have compared the eigenvalues and singular values obtained when using the Matlab commands
eig and svd, respectively, and those computed using the bidiagonal decompositions (8.1) in this chapter
and the Matlab functions TNEigenValues and TNSingularValues, respectively. In order to determine
the accuracy of the approximations, we have also calculated the eigenvalues and singular values of the
matrices by using Mathematica with a precision of 100 digits and computed the relative errors corre-
sponding to the approximations, considering the eigenvalues and singular values provided by Mathe-
matica as exact. We have computed the relative error of the approximations a of the exact eigenvalue
and singular value d by means of the formula e = |a — d|/|a|.

Tables [8.2] and [8.3] show the relative errors of the approximations to the lowest eigenvalue and the
lowest singular value obtained with both methods. Observe that the eigenvalues and singular values
obtained using the factorization (8.1) are very accurate for all considered n, whereas the approximations
of the eigenvalues and singular values obtained with the Matlab commands eig and svd are not very
accurate when n increases.

Table 8.2: Relative errors when computing the lowest eigenvalue of the Wronskian matrices of Poisson
bases at xg = —40.

n+1 eig TNEV

5 62x10°% 3.1x10°1°
10 93x 10" 52x10716
15 45%x10° 2.6x10°10
20 | 48x 10" 4.1x10716

Table 8.3: Relative errors when computing the lowest singular value of Wronskian matrices of geomet-
ric bases at xo = 10 (left) and Poisson bases at xo = —40 (right).

n+1 svd TNSV svd TNSV

5 41x10°" 19x10°10 [ 80x107 3.9x10°"
10 1.7x 10> 89x1071° | 25%x10° 6.6x10°16
15 54x102 19x10715 | 44%x103 48x10°16
20 1.2x102 80x10710 | 1.4%x10"0 13x10°1

We have also used the Matlab function TNInverseExpand (see Section 4 of [87]) with the bidiago-
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nal factorization (8.I)) in order to compute the inverse of Wronskian matrices of the bases considered. We
have also computed their approximations with the Matlab functions inv. In order to determine the accu-
racy of the approximations, we have calculated the inverse of these matrices by using Mathematica with
a precision of 100 digits and computed the relative errors corresponding to the approximations, consid-
ering the inverse matrix provided by Mathematica as exact. We have computed the relative error of each
approximation A~! of the exact inverse matrix A~! by means of the formula e = ||[A~! —A~!{|,/||[A7"|».
The approximation of the inverse of the Wronskian matrices obtained by means of

TNInverseExpand is very accurate for all considered n, providing much more accurate results than
those obtained by Matlab using the command inv. Table shows the relative errors of the approxi-
mations to the inverse of the Wronskian matrices obtained with both methods.

Table 8.4: Relative errors when computing the inverse of Wronskian matrices of geometric bases at
xo = 10 (left) and Poisson bases at xo = —40 (right).

n+l | inv(W,) TNIE(BDGWJ,) | inv(W,) TNIE(BDPJWJ],)
5 1.8x 10715 42 %1071 6.5x 10711 1.2x 10710
10 | 1.6x10713 7.0x 1017 23x1073 2.9x 10716
15 | 47x10711 1.0x 10716 1.0 43x 10716
20 1.4%x107° 1.6 x 10716 1.0 6.0 x 10716

Finally, we shall illustrate the accuracy of the solutions of linear systems computed by using the
bidiagonal factorization (8.1]) with the function TNSolve. We have obtained the solution of the linear
systems using Mathematica with a precision of 100 digits and considered this solution exact. Then we
have also computed with Matlab two approximations, the first one using the previous functions and the
second one using the Matlab command \. We have computed the relative error of every approximation
¢ =(&1,...,8n11) of the solution ¢ of the linear system by means of the formula e = ||c — ¢&||2/||c]|2-

Table shows the relative errors when solving the linear systems W,,c, = d,, where
d, = ((—1)"'d;)1<i<nys1, in the case of geometric bases, or d,, = (d;)1<i<n+1 , in the case of Poisson
bases, and d;, i =1,...,n+ 1, are random nonnegative integer values. The computed results confirm the
accuracy of the proposed method that, clearly, keeps the accuracy when the dimension of the problem
increases. In contrast, when n increases the condition number of the considered matrices considerably
increases and that explains the bad results obtained with the Matlab command \.

Table 8.5: Relative errors when solving Wy, = d, with Wronskian matrices of geometric bases at
xo = 10 (left) and Poisson bases at xo = —40 (right).

n+1 Wi\ dy TNsolve Wi\ dy TNsolve
5 1.5x10°5 78x1077 [82x103 1.1x10°10
10 | 1.8x10°13 29x10710 | 24x103 1.3x1071¢
15 | 43x107'"1 3.8.x107'° 1.0 42x 107V
20 | 27x107° 1.1x10°16 1.0 4.4 %107V
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Conclusiones

Esta tesis doctoral se ha enmarcado dentro de la teoria de la Positividad Total, concretamente en dos de
los campos que estdn relacionados con las matrices totalmente positivas. Por un lado, se ha desarrollado
dentro del campo del Disefio Geométrico Asistido por Ordenador. Particularmente, se han estudiado
aspectos relacionados con bases totalmente positivas y se han explorado bases que heredan propiedades
de preservacién de forma a partir de una dada. Por otra parte, también se ha desarrollado dentro del
campo del Algebra Lineal Numérica. En concreto, se ha disefiado y analizado algoritmos adaptados a
la estructura de diferentes matrices totalmente positivas que han permitido resolver con alta precisién
relativa problemas algebraicos asociados a estas matrices. A continuacidn sefialaremos las principales
aportaciones de esta tesis.

e Dado un sistema de funciones inicial, un conjunto de pesos y una funcién positiva ¢, hemos
definido un nuevo sistema de funciones llamado sistema ¢-transformado ponderado (weighted
o-transformed system), el cual incluye una amplia clase de representaciones ttiles en Estadistica
y Disefio Geométrico Asistido por Ordenador. Se ha demostrado que estos sistemas heredan
algunas propiedades geométricas de sus sistemas iniciales, como las propiedades de preservacion
de forma o las propiedades 6ptimas de preservacion de forma. Hemos mostrado que se puede
obtener una clase general de bases racionales importantes como un ejemplo particular de sistemas
¢-transformados ponderados. Para estas bases se han presentado algoritmos de evaluacién y
subdivisién. Ademds, se han sefialado algunas aplicaciones relevantes.

e Hemos obtenido la factorizacion bidiagonal de las matrices de colocacién de los sistemas ¢-
transformados ponderados. Esta factorizacién bidiagonal se ha utilizado para obtener métodos
con alta precision relativa para la resolucién de problemas algebraicos con las matrices de colo-
cacion de estos sistemas, como el calculo de valores propios, valores singulares y la solucin de
algunos sistemas lineales. Los ejemplos numéricos han ilustrado la precisién de los cédlculos
realizados.

e Hemos abordado el problema de encontrar una curva racional que se ajuste a un conjunto dado de
puntos. Para solucionar este asunto, hemos aplicado técnicas de Inteligencia Artificial y hemos
propuesto una red neuronal de una capa oculta basada en curvas racionales generadas por una
clase general de bases racionales pertenecientes a espacios que mezclan polinomios algebraicos,
trigonométricos e hiperbdlicos, pudiendo asi alcanzar formas més dificiles y ampliando de esta
manera el rango potencial de aplicaciones de esta red neuronal. Para obtener los pesos y puntos de
control de la curva racional de ajuste, la red neuronal se entrena con un algoritmo de optimizacién
que actualiza los pesos y los puntos de control mientras disminuye una funcion de pérdida. Las
curvas de ajuste obtenidas en los experimentos numéricos han demostrado que para ciertos con-
juntos de puntos el uso de bases racionales particulares proporciona mejores resultados.
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e Hemos obtenido algoritmos precisos para calcular la factorizacién bidiagonal de las matriz wron-
skiana de la base de los monomios y la factorizacién bidiagonal de la matriz wronskiana de las
base de polinomios exponenciales. También se ha demostrado que estos algoritmos pueden uti-
lizarse para realizar con precision algunos célculos algebraicos con estas matrices wronskianas,
como el célculo de sus inversas, sus valores propios o sus valores singulares y las soluciones de
algunos sistemas lineales. Experimentos numéricos han ilustrado los resultados.

e Hemos disefiado un método preciso para hallar la factorizacién bidiagonal de las matrices de
colocacién y wronskianas de los polinomios de Jacobi. Hemos utilizado el método mencionado
para calcular con alta precision relativa sus inversas, sus valores propios, sus valores singulares
y las soluciones de algunos sistemas lineales. Se han considerado también los casos particulares
de las matrices de colocacién y wronskianas de los polinomios de Legendre, los polinomios de
Gegenbauer, los polinomios de Chebyschev de primer y segundo tipo y los polinomios racionales
de Jacobi. Los ejemplos numéricos han ilustrado la precision de los célculos realizados.

o Hemos obtenido un método para obtener la factorizacién bidiagonal de la matriz wronskiana de
los polinomios de Bessel y la factorizacién bidiagonal de la matriz wronskiana de los polinomios
de Laguerre. Este método puede usarse para calcular con alta precisién relativa sus valores sin-
gulares y matrices inversas, asi como la solucién de algunos sistemas de ecuaciones lineales. Se
han incluido ejemplos numéricos que ilustran los resultados teéricos.

e Hemos disefiado algoritmos para construir la factorizacién bidiagonal de la matriz wronskiana de
las base de los polinomios de Bernstein y la factorizacion bidiagonal de las matrices wronskianas
de otras bases relacionadas, como la base de Bernstein de grado negativo o la base binomial
negativa. También hemos demostrado que estos algoritmos pueden usarse para realizar con alta
precision relativa algunos calculos algebraicos con estas matrices wronskianas, como el calculo
de sus inversas, sus valores propios o sus valores singulares y las soluciones de algunos sistemas
lineales relacionados. Experimentos numéricos han ilustrado los resultados tedricos obtenidos.

e Hemos proporcionado algoritmos para calcular la factorizacidon bidiagonal de la matriz wron-
skiana de la base geométrica y la factorizacién bidiagonal de la matriz wronskiana de la base
de Poisson. También hemos demostrado que estos algoritmos pueden usarse para realizar con
precision algunos célculos algebraicos con estas matrices wronskianas, como el cdlculo de sus
inversas, valores propios o valores singulares o las soluciones de algunos sistemas lineales rela-
cionados. Ademads, hemos incluido experimentos numéricos que han ilustrados los resultados
tedricos obtenidos.

e La complejidad de todos los algoritmos con los que hemos resuelto los problemas algebraicos
mencionados es comparable a la de los algoritmos LAPACK tradicionales, los cuales, como
hemos ilustrado, no ofrecen tal precision.
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Trabajo futuro

Las matrices de Gram aparecen en aplicaciones tan diversas como en el método de elementos finitos,
en el ajuste del modelo de la estructura de covarianza, en el aprendizaje automadtico (machine learning)
(vease [60],[6]], [65]) v en muchos de los problemas fundamentales de interpolaciéon y aproximacién
que dan lugar a interesantes cdlculos de dlgebra lineal relacionados. Desafortunadamente, las matrices
de Gram suelen estar mal condicionadas y, por lo tanto, los cdlculos mencionados pierden precisiéon a
medida que aumenta la dimensién del problema.

Recordemos que dado un espacio de Hilbert U con un producto interno (-,-) y un subespacio V de
dimensién (n+ 1) generado por una base (fp, ..., fy), el cdlculo de la mejor aproximacién en V, con
respecto a la norma definida en U de un u € U dado, es v =YY" ¢y f;, donde ¢ = (c1...,Cpt 1)T esla
solucién del sistema lineal Mc = by M = (M; j)1<i j<n+1 €s la matriz de Gram tal que

M; ;= (fi-1,fi-1)

y b= (bi)1<i<n+1 con b; := (fi—1,u).

Las matrices de Hilbert H, = (1/(i+ j —1))1<i j<n+1 son matrices de Gram notoriamente mal
condicionadas que corresponden a la base de los monomios (1,x,...,x") con respecto al producto es-
calar: < f,g>= fol f(t)g(r)dt. En [62], se obtienen cdlculos precisos con estas matrices utilizando una
representacion de ellas como un producto de matrices bidiagonales totalmente positivas. Hasta nuestro
conocimiento, no se han analizado cdlculos con alta precision relativa (HRA) utilizando matrices de
Gram de otras bases.

Gracias a la experiencia adquirida durante el desarrollo de la tesis en la obtencién de la factor-
izacién de matrices totalmente positivas como producto de matrices bidiagonales totalmente positivas,
nos vamos a centrar en encontrar la factorizacién bidiagonal de las matrices de Gram correspondientes
a las bases con las que hemos trabajado en esta tesis, como las bases de Bernstein de grado positivo
y negativo, la base geométrica y la base de Poisson. En este sentido, también vamos a estudiar otras
bases como la base de Ball o bases que forman soluciones fundamentales de las ecuaciones diferen-
ciales. Ademds, nos gustaria estudiar las aplicabilidad de las factorizaciones obtenidas en la resolucién
de ecuaciones diferenciales, en el método de elementos finitos y en el aprendizaje automadtico, entre
otros.

Recientemente, las bases duales han sido intensamente estudiadas por muchos autores y se han
encontrado diversas aplicaciones interesantes, especialmente en algunos problemas de aproximacién
relacionados con el andlisis numérico y la infografia (véase [[101] y sus referencias bibliograficas). Entre
otras propiedades, se ha demostrado que las matrices de Gram son la matriz de cambio de base entre
una base dada y su base dual. En particular, la base dual de Bernstein de grado n es la base (D}, ..., D))
que satisface (D?,B;?) =6 jparai,j=0,...,n (cf. [101,[102,166.67]) y consecuentemente se cumple
que

( 8,...,BZ)T =M( 87"'ﬂD2)T7
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(Lemma 1 de [69]) donde M es la matriz de Gram de la base de Bernstein de grado n (Bj, ..., B]).
Siguiendo esta interesante linea de investigacion, creemos que la obtencién de la factorizacion bidi-
agonal de las matrices de Gram de la base de Bernstein de grado negativo o de la base de Ball podria
permitir definir propiedades importantes de las correspondientes bases duales. Esto nos podria ayudar a
explorar y extender las propiedades bien conocidas de la base dual de Bernstein a dichas bases duales.
Finalmente, creemos que también seria de gran interés obtener la factorizacion bidiagonal de las
matrices de colocacién, wronskianas y de Gram de las bases spline polindmicas.
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Conclusions

This doctoral thesis is framed within the theory of Total Positivity, specifically in two of the fields
which are related to totally positive matrices. On the one hand, it is focused on the field of Computer
Aided Geometric Design. Aspects related to totally positive bases have been developed and bases that
inherit shape preservation properties from a given one have been explored. On the other hand, this
work has also focused on the field of Numerical Linear Algebra. Algorithms adapted to the structure
of different totally positive matrices have been designed and analyzed, making it possible to solve with
high relative accuracy algebraic problems associated with these matrices. Next, we will point out the
main contributions of this thesis.

e Given a system of functions, a set of weights and a positive function ¢, we have defined a new
system of functions called weighted ¢-transformed system, which includes a wide class of useful
representations in Statistics and Computer-Aided Geometric Design. It has been proved that these
systems inherit some geometric properties from their initial systems, such as shape preservation or
optimal shape preservation. We have shown that a general class of important rational bases can be
obtained as a particular example of weighted @-transformed systems. For these bases, evaluation
and subdivision algorithms have been presented. Moreover, some relevant applications have been
pointed out.

e We have obtained the bidiagonal factorization of the collocation matrices of the weighted ¢-
transformed systems. This bidiagonal factorization has been used to obtain computational meth-
ods with high relative accuracy for solving algebraic problems with the collocation matrices of
these systems such as the computation of eigenvalues, singular values and the solution of some
linear systems. Numerical examples have illustrated the accuracy of the performed computations.

o We have tackled the problem of finding a rational curve to fit a given set of data points. To solve
this issue, we have applied techniques of Artificial Intelligence and we have proposed a one-
hidden-layer neural network based on a general class of rational bases belonging to spaces wich
mix algebraic, trigonometric and hyperbolic polynomials, thus being able to reach more difficult
shapes and thus expanding the potential range of applications of this neural network. In order to
obtain the weights and control points of the rational curve to fit the set of data points, the neural
network is trained with an optimization algorithm that updates the weights and control points
while decreasing a loss function. The fitting curves of the numerical experiments have shown that
for certain curves the use of particular rational bases provides better results.

e We have obtained algorithms for computing the bidiagonal factorization of the Wronskian matrix
of the monomial basis of polynomials and the bidiagonal factorization of the Wronskian matrix
of the basis of exponential polynomials. It has been also shown that these algorithms can be used
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to perform accurately some algebraic computations with these Wronskian matrices, such as the
calculation of their inverses, their eigenvalues or their singular values, and the solutions of some
linear systems. Numerical experiments have illustrated the results.

We have design an accurate method to construct the bidiagonal factorization of collocation and
Wronskian matrices of Jacobi polynomials. We have used the mentioned method to compute
with high relative accuracy their inverses, their eigenvalues, their singular values and the solu-
tions of some related linear systems. The particular cases of collocation and Wronskian matrices
of Legendre polynomials, Gegenbauer polynomials, Chebyshev polynomials of the first and sec-
ond kind, and rational Jacobi polynomials have been also considered. Numerical examples have
illustrated the accuracy of the performed computations.

We have provided a method to obtain the bidiagonal factorization of the Wronskian matrix of
Bessel polynomials and the bidiagonal factorization of the Wronskian matrix of Laguerre poly-
nomials. This method can be used to compute with high relative accuracy the singular values,
inverses, as well as the solutions of some linear systems related to the Wronskian matrices of the
considered bases. Numerical examples illustrating the theoretical results have been included.

We have design algorithms for computing the bidiagonal factorization of the Wronskian matrix
of Bernstein basis of polynomials and the bidiagonal factorization of the Wronskian matrices of
other related bases, such as the Bernstein basis of negative degree or the negative binomial basis.
We have also shown that these algorithms can be used to perform with high relative accuracy
some algebraic computations with these Wronskian matrices, such as the calculation of their in-
verses, their eigenvalues or their singular values, and the solutions of some related linear systems.
Numerical experiments have illustrated the theoretical results.

We have provided algorithms to construct the bidiagonal factorization of the Wronskian matrix
of geometric basis and the bidigiagonal factorization of the Wronskian matrix of Poisson basis.
We have also shown that these algorithms can be used to perform accurately some algebraic
computations with these Wronskian matrices, such as the calculation of their inverses, eigenvalues
or singular values, and the solutions of some related linear systems. Moreover, we have included
numerical experiments illustrating the theoretical results.

The complexity of all the algorithms with which we have solved the mentioned algebraic problems
is comparable to that of traditional LAPACK algorithms, which, as we have illustrated, deliver no
such accuracy.
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Future work

Gram matrices appear in applications as diverse as in the finite element method, in the model fitting
of the covariance structure, in machine learning (see [5]) and in many of the fundamental problems of
interpolation and approximation which lead to interesting related linear algebra computations. Unfor-
tunately, Gram matrices are often ill-conditioned and therefore the aforementioned computations lose
accuracy as the dimension of the problem increases.

Let us recall that given a Hilbert space U under a inner product (-,-) and an (n + 1)-dimensional
subspace V generated by a basis (fp,...,f,), the computation of the best approximation in V, with
respect to the norm defined in U, of a given u € U is v = Y1 (ci—1 fi, where ¢ = (c; .. .7cn+1)T is the
solution of the linear system Mc = b and M = (M;, j)1§i7 j<n+1 1s the Gram matrix such that

M;j = (fi-1,fj-1)

and b = (bi)1§i§n+1 with b; .= <f,~,1,u).

Hilbert matrices H, = (1/(i+ j — 1))i<i j<nt1 are well-known notoriously ill-conditioned Gram
matrices corresponding to monomial bases (1,x,...,x") with respect to the inner product: < f,g >=
fol f(t)g(t)dt. In [62], accurate computations with these matrices are obtained by using an elegant rep-
resentation of them as a product of nonnegative bidiagonal matrices. As far as the authors’ knowledge,
up to now, computations with high relative accuracy (HRA) using Gram matrices of other bases have
not been achieved.

Thanks to the acquired experience during the development of the thesis in obtaining the factorization
of totally positive matrices as the product of totally positive bidiagonal matrices, we are going to focus
on finding the bidiagonal factorization of the Gram matrices corresponding to the bases with which we
have worked on this thesis, such as the Bernstein bases of positive and negative degree, the geometric
basis and the Poisson basis. In this sense, we are also going to study other bases such as the Ball basis
or bases that form fundamental solutions of differential equations. In addition, we would like to study
the applicability of the obtained factorizations for solving differential equations, in the finite element
method and in machine learning, among others.

Recently, dual bases have been deeply studied by many authors and several interesting applications
have been found, especially in some approximation problems related to numerical analysis and info-
graphics (see [101] and the references therein). Among other properties, it has been shown that Gram
matrices are the change of basis matrix between a given basis and its dual basis. In particular, the con-
strained dual Bernstein basis of degree n is (D, ..., D;,) satisfying (D}, B}) = §; j for i, j =0,...,n (cf.
(cf. [101} 1102, 166, 67]]) and then

(BS,....BNT =M(Dg,...,.D!)T
(see Lemma 1 of [69]) where M is the Gram matrix of the Bernstein basis of degree n (B, ...,B}).
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Following this interesting line of research, we believe that obtaining the bidiagonal factorization
of the Gram matrices of the negative degree Bernstein basis or the Ball basis could allow defining
important properties of the corresponding dual basis. This could help us explore and extend the well-
known properties of the Bernstein dual basis to such dual bases.

To conclude, we think that it would also be of great interest to obtain the bidiagonal factorization of
the collocation, Wronskian and Gram matrices of the polynomial spline bases.
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Appendix

Impact factor of publications

(73]

139]

E. Mainar, J.M. Pefia, B. Rubio, Evaluation and subdivision algorithms for general classes of to-
tally positive rational bases, Computer Aided Geometric Design 81 (2020).

The JCR journal impact factor of Computer Aided Geometric Design in 2018 is 1.517 (Q1, Math-
ematics, Applied).

E. Mainar, J.M. Pefia, B. Rubio, Accurate bidiagonal decomposition of collocation matrices of
weighted @-transformed systems, Numerical Linear Algebra Appl. €2295 (2020).

The JCR journal impact factor of Numerical Linear Algebra with Applications in 2018 is 1.281
(Q1, Mathematics).

R. Gonzalez, E.Mainar, E.Paluzo, B.Rubio, Neural-Network-Based Curve Fitting Using Totally
Positive Rational Bases, Mathematics 8, 2197 (2020).
The JCR journal impact factor of Mathematics in 2019 is 1.747 (Q1, Mathematics).

E. Mainar, J.M. Pefia, B.Rubio, Accurate computations with Wronskian matrices, Calcolo 58, 1
(2021).
The JCR journal impact factor of Calcolo in 2019 is 1.603 (Q1, Mathematics, Applied).

E. Mainar, J.M. Pefia, B. Rubio, Accurate computations with collocations and Wronskian matri-
ces of Jacoby polynomials, Journal of Scientific Computing 87, 77 (2021).

The JCR journal impact factor of Scientific Computing in 2019 is 2.228 (Q1, Mathematics, Ap-
plied).
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