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Preface 

 

Nanoscience and nanotechnology are two related promising areas that take 

advantage of the novel properties that nanostructured materials exhibit. At the 

nanoscale the classical laws of physics are not able to explain some properties of 

materials, and the chemical behaviour differs from bulk materials of the same 

composition. This opens new opportunities to design and develop new functional 

materials in areas as chemistry, physics, biology, material science, electronics and 

medicine. 

Nanosystems are materials composed by different constituents with at least one of 

its dimensions at the nanoscale range. One of the most common structures of 

nanosystems are the core-shell materials, which comprehend single-core and multi-

core. Magnetic nanoparticles are of great interest for biomedical applications, and 

good candidates for being nanosystems cores. Maghemite is especially appealing 

because it exhibits superparamagnetic behaviour at nanoscale, is non-toxic and is less 

sensitive to oxidation than other magnetic particles as cobalt, nickel or iron. But it is 

also important to study the design of the nanosystems in order to optimize the desired 

characteristics for a chosen application. Normally these particles need to be coated to 

avoid agglomeration and degradation. The election of the material of the shell is 

usually based on the size of the particles and the environment they are to be used in. 

Furthermore, the functionalization of these core-shell systems can also be an extra 

benefit, so it is better to chose easily functionalized materials for the shell if the 

application requires it. 

 In this thesis the production and characterization of aqueous and organic iron 

oxide nanoparticles and stabilized by different coatings for their application in 

nanobiomedicine are reported. 
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In chapter 1, a brief introduction about biomedical applications of nanoparticles is 

reported. There are also described some especial magnetic properties that are observed 

in nanoparticulate materials that can be useful for the design of new core-shell 

materials for biomedical applications. Eventually, the purpose and goals of this thesis 

are exposed.  

The methods and the synthesis and characterization of aqueous and organic 

ferrofluids are described in chapter 2. These ferrofluids are mentioned later in other 

chapters because they are the former particles, and from them, several studies were 

performed and explained in chapters 3, 4 and 5. 

Chapter 3 is about how to obtain aqueous dispersions of high quality iron oxide 

nanoparticles synthesised in organic solvents. For this purpose, a ligand exchange 

technique is used, which consists on the substitution of the hydrophobic ligand used in 

the organic synthesis by a hydrophilic ligand. 

Chapter 4 describes the contribution to the design and development of a biosensor 

based on impedance measurements that are made in order to improve the signal. A 

multi-core-shell structure is functionalised with a siloxane ended in a carboxylic 

group. This group is able to bond an antibody that can interact with the capacitor of 

the biosensor, changing the signal. 

Chapter 5 describes a multifunctional multi-core-shell system that is able to 

combine the magnetic properties of the superparamagnetic nanoparticles of the core 

and the pH response of the polymer that forms the shell. This system can be used in 

biomedical applications with some modifications. 

 

 

 



 

Chapter 1 

Introduction and goals 

 

1.1 Advantages of MNPs in biomedical uses 

The use of magnetic nanoparticles (MNPs) in biomedicine began at the end of the 

70s when they were employed as enzyme carriers (Magnogel, Dynabeads and Estapor) 

in bioanalysis [1, 2]. Since then, they have been used in many other biotechnological 

applications such as biocatalysis, bioprocessing, separation and purification. In 

biocatalysis, it is well known that homogeneous catalysts are more efficient than 

heterogeneous ones, but they are very difficult to remove from the medium after 

reaction. MNPs are very helpful for this task because when they are used as support 

for the catalysts they can be easily separated from the reaction medium with a magnet 

[3]. In bioprocessing, the magnetophoretic behaviour of MNPs can improve the 

mobility of a biosystem to perform bioseparation and target isolation under a 

continuous flow processing conditions [4]. For separation and purification, magnetic 

solid-phase extraction is a widely used technique. The typical procedure is to 

functionalize the target with MNPs that can interact with a magnetic adsorbent. Then, 

the target contained in the absorbent is recovered from the solution in a magnetic 

separator [5]. The physical principle behind these applications is simple: the magnetic 

particle is attached to a biological molecule (enzyme, cell, antibody, DNA, etc.) and 

the magnetic moment of the particle is used to move or fix the biomolecule with an 

external magnet.  

In the 80s, MNPs were commercially used for the first time in clinical 

applications, as contrast agents in Magnetic Resonance Imaging (MRI) [6]. This 

application is based on the effect of MNPs on the relaxation time of neighbouring 

water protons, especially on spin-spin relaxation time t2 [7, 8].  
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An additional and interesting application of MNPs already in the market is 

biosensing [9]. It is important to highlight the importance of magnetic nanoparticles 

for detection of biomolecules and cells based on magnetic resonance [10]. Baby and 

col. fabricated an amperometric biosensor by deposition of glucose oxidase over a 

Nafion-solubilized Fe3O4@SiO2 electrode, which retains its biocatalytic activity and 

offers fast and sensitive glucose quantification [11].  

Another exciting clinical application of MNPs is found in hyperthermia cancer 

therapy [12]. When superparamagnetic nanoparticles are exposed to an alternating 

magnetic field, they produce heat that can be used to heat cells over 4245ºC causing 

cellular death. Tumour cells are more sensitive to heat than healthy cells so it is 

expected to achieve a higher population of death tumour cells [13].  

Other biomedical use of MNPs that has been further developed in the last decade 

is targeted drug delivery. Systemic disease treatments require a large drug doses to 

achieve high local concentrations that produces undesired side effects elsewhere. This 

can be avoided with drug targeted administration. In magnetic targeting, the drug is 

attached to a MNP than can be directed to the desired zone with a magnetic field. This 

system can be reinforced by biological specific vectors implemented in the surface of 

MNPs that are capable of specific recognition and binding to the target site [14]. 

Recently, a most promising area of application of MNPs in medicine has emerged, 

namely theranostics, which is based in performing therapy and diagnosis 

simultaneously [15]. 

 Besides their unquestionable biomedical interest, MNPs have a large variety of 

industrial applications such as polymer processing through homogeneous heating or 

selective heating, soldering or glue-welding procedures, magnetic recording, magnetic 

refrigeration, magnetic printing, lubrication and sealing in vacuum systems, magnetic 

sensors, and others [16].  

Nanoparticulate materials open a new opportunity to study at the molecular and 

cellular levels. Therefore, promoting fast advances in life sciences and healthcare 
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because they are capable to pass barriers that bigger systems cannot. Small size is a 

great advantage of NPs, although not the only one arising from their unique properties 

with respect to bulk materials, which can be even more important for biomedical 

applications. One of these properties of MNPs is superparamagnetism. When a 

magnetic field is applied, the MNPs give a magnetic response, but when the field is 

removed, no remanent magnetization is observed. This is very important in order to 

avoid magnetic agglomeration when the influence of the magnetic field is taken away. 

The magnetic response of nanoparticles strongly depends on their morphology, 

crystallinity and size, therefore controlling these characteristics is of great interest to 

have a fine control on the MNPs properties.  

Most biomedical applications require specific MNPs characteristics. Ideally and 

for optimum use, nanoparticles of homogeneous size and uniform shape are desired. It 

would be interesting to have a procedure that permits the production of controlled 

nanoparticle diameter in the order of nanometers. Good crystallinity and phase control 

are also desirable tunable properties. MNPs also must have good thermal stability, 

biocompatibility, and an adequate magnetic moment. It is important as well that they 

form stable dispersions in biological fluids, such as blood. MNPs can be coated with 

biomolecules in order to increment the residence time in the blood circulation systems 

or to make them interact with a cell or a biological entity. 

As we mentioned before, in order to design a potential biosystem it is very 

important to take into account the requirements of the applications it is conceived for. 

Each application needs different features from the magnetic nucleus and from the 

coatings to obtain the optimum response of the system, as it will be commented in the 

following sections.  
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1.1.1 MRI  

In recent years, medical imaging research has experienced immense 

improvements with the introduction of techniques such as Magnetic Resonance 

Imagine (MRI). In this technique, contrast agents are often needed in order to improve 

the diagnosis. Magnetic nanoparticles systems are good candidates for this purpose, 

especially, superparamagnetic iron oxide nanoparticles [17]. Superparamagnetic iron 

oxide nanoparticles modify the relaxation time of water protons changing the contrast 

image intensity of the tissue where they are present [18]. In order to avoid particle 

aggregation and improve stabilization, the iron oxide nanoparticles are covered by a 

coating. This coating may also be used to facilitate the distribution of the particles in 

the tissue and to add new functionalities to the system as described below.  

Some requirements are needed to create an ideal contrast agent system, for 

example, the system has to be homogeneous in size because it is important to get a 

uniform distribution in the tissue, and the hydrodynamic radius has to be small in 

order to get long blood circulation time. It is also important to control the magnetic 

properties. In order to be superparamagnetic, the particle size has to be smaller than 

2530 nm. Moreover, the particle morphology has to be homogeneous, and the size 

distribution must be narrow, to achieve consistent results. The surface properties are 

also relevant for this application. It has been shown that surface modification with 

hydrophilic molecules such as PEG increases circulation times. An additional 

advantage of PEG coating is that it enables particles to cross cell membranes because 

PEG is soluble in both polar and non-polar solvents and it has high permeability in 

cell membranes [19]. Another possible coating is silica as shown by Taboada et al., 

who presented a system composed by monodisperse iron oxide and microporous silica 

core/shell nanoparticles of around 100 nm in diameter. This system has a high 

magnetization and may be particularly useful as an enhanced T2 imaging agent [20].  
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1.1.2 Magnetic hyperthermia  

The amount of heat released by MNPs under an alternating magnetic field is a 

promising tool for biomedical applications based on hyperthermia [21] and on 

thermally assisted drug delivery [22]. The use of superparamagnetic nanoparticles for 

hyperthermia purposes was first introduced by Jordan et al. in 1993 [23]. Further 

studies have demonstrated that magnetic hyperthermia could be an alternative to 

current therapeutic approaches for cancer treatment, by inducing tumour regression in 

combination with other toxic agents, or by causing necrosis of cancerous cells [24-26]. 

Hyperthermia is also producing a strong enhancement of radiation damage. For 

instance, a local heating of 43.5ºC for 1 hour yields an approximate enhancement ratio 

of 5 [27]. According to Rosenzweig, a ferrofluid subjected to an alternating magnetic 

field produces a power dissipation that comes from the orientational relaxation of 

particles having thermal fluctuations in a viscous medium [28]. From the point of view 

of the study of hyperthermic behaviour of magnetic iron oxide nanoparticles some 

work has still to be carried out in order to confirm Rosenzweig theoretical predictions. 

The heating capacity of MNPs is quantified by the specific absorption rate (SAR), 

which accounts for the heating power per mass unit of dissipating material. This 

magnitude depends on the MNPs characteristics, such a phase composition, particle 

shape, magnetic anisotropy, mean size and size distribution, as well as on the 

alternating magnetic field parameters, such as amplitude and frequency [29]. With 

respect to the particle size, Rosenzweig reported a very sharp maximum of SAR at 14 

nm in case of magnetite nanoparticles. For the case of maghemite and magnetite 

nanoparticles, widely used due to their biocompatibility, small particles in the order of 

1015 nm in diameter are desired because they lie well below the critical size of single 

domain particles. In this size range, the heat dissipation is due to the thermal 

relaxation of magnetic moments [29], the heating power decreases strongly with the 

size dispersion [28]. The heating capacity is greatly influenced by nanoparticle 

environment, and the degree of particle aggregation. Therefore, a protecting 

nanoparticle coating is highly important for hyperthermia applications.  
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1.1.3 Biosensors 

Sensing was the first application of magnetic nanoparticles in biomedicine and 

this area continue to rapidly evolve with very important developments and future 

perspectives in this area.  An example is the work of Han et al., who have reported 

extensively on the use of functionalized magnetic micro- and nanoparticles for 

biosensing. These authors have proposed a sensing system based on the absorption of 

magnetic particles by hybridized DNA that alters the sensor resistance and generates 

electrical signals that can be directly measured. In this system, the cells are first 

treated with a biotinylated primary antibody or ligand. Then, they are magnetically 

labelled with streptavidin coated magnetic beads. Under an electromagnetic field, the 

magnetic labelled cells are retained in a column containing a magnetically soft 

material, whereas the unlabeled cells will just flow through [30]. Another effective 

material for biosensing is that composed by core/shell iron oxide MNPs coated with 

gold as is reported by Wang et al. [31]. This system has been used as a solid support 

for goat anti-human antibody IgM, which could be immobilized on the surface of a 

surface plasmon resonance biosensor.  

1.1.4 Drug delivery 

Nowadays nanobiosystems are of great interest in drug delivery. Novel 

nanoparticles are designed to alter their structure and properties during the drug 

delivery process to make them most effective for distribution [32]. This alteration can 

be achieved through the incorporation of materials that are able to respond to physical 

or biological stimuli, including changes in pH, redox potential or enzymes. The idea of 

employing MNPs for drug delivery was proposed by Widder and Senyei in 1978 [33, 

34]. The basic argument is that therapeutic agents are encapsulated or attached to 

MNPs. These particles may have magnetic cores protected with a stabilizing material 

like polymers or other kind of coatings which can be functionalized. They may also 

consist of porous polymers containing MNPs precipitated within the pores [35-37]. 

Advantages of the use of these devices are conjugation with biological ligands and 

also the possibility to increase the circulation time of MNPs in the blood stream [38].  
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1.1.5 Targeting 

Ideally, the treatment of local diseases should be local therapy, but when the 

disease problem is inaccessible to common local treatments, a systemic treatment is 

often used. This requires the administration of large amounts of drugs with the 

consequent side effects. The use of drug targeting allows reduction of drugs quantities 

that diminishes the side effects and increases the treatment efficacy. Although 

magnetic targeting has been successful in a number of studies, there are only a small 

number of clinical trials. Lubbe et al. carried out a clinical study in mice and rats 

where two forms of treatment were studied [39]. Epirubicin, a well-know drug that is 

widely employed for chemotherapy, was attached to MNPs by electrostatic 

interaction, and the mechanical occlusion of the tumour with high concentrations of 

ferrofluid was studied as well as the targeted delivery of epirubicin with low 

nanoparticle concentration. As in many other related in vivo studies, the particles not 

attached to the tumour were accumulated in the liver and spleen and not harmful 

effects on organ functions were observed.  

Novel strategies are being developed for applying magnetic fields and MNPs 

which could lead to new treatments. Rapid developments in particle synthesis have 

enabled the use of new materials for more efficient capture and targeting. In order to 

design an efficient biosystem, it has to be taken into account that the nanoscale 

dimensions of particles should allow them not only to pass through the blood vessels 

but also to penetrate cell membranes when necessary [40]. Chemotherapeutic agents 

require internalization and slow drug release, gene therapy demands positive 

interaction with the nucleus, radiotherapeutic systems requires cellular internalization. 

The maximum size that can be used for a biosystem is 1.4 µm in diameter to avoid 

capillary occlusion.  

A great number of chemical methodologies have been used for the conjugation of 

targeting molecules with the biosystem surface. The primary goal is to bind the 

targeting molecule without compromising its functionality once attached. For 

example, if an antibody is bonded to the particle surface and its active site is covered, 
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it may loose its capacity to bind a target [41]. Some of the most interesting candidates 

for being targeting molecules are tumoral markers for brain and gene therapy, such as 

siRNA or Tat that facilitate intracellular delivery [42]. Another interesting possibility 

of targeting consists of magnetic targeting. In magnetic targeted drug delivery, the 

systems formed of coated MNPs loaded with anti-cancer drugs are injected into the 

body via the blood circulatory system. An external magnetic field is used to localize 

the biosystem at the tumour site and the drug can then be released from the system via 

enzymatic activity or changes in physiological conditions such as pH or temperature 

and be taken up by tumour cells [43]. Alexiou et al. showed that magnetic targeted 

drug delivery caused complete tumour remission in rabbits without any negative side 

effects and allowed a drug dose reduction of 20% of the usual dose [14]. 

1.2 Magnetic properties of nanoparticles 

All materials can be classified by their magnetic response to an external magnetic 

field. This response is related to the magnetic interactions of the constituent atoms and 

the crystalline structure of the material [44]. The main types of magnetism include 

diamagnetism, paramagnetism and ferromagnetism. Antiferromagnetism and 

ferrimagnetism are considered to be subclasses of ferromagnetism. In Figure 1.1, it 

can be observed the different possible orientation of magnetic moments. Below a 

certain magnetic ordering temperature, ferromagnetic materials exhibit parallel 

alignment of permanent magnetic moments resulting in a large net magnetization that 

can remain in the absence of a magnetic field. Two characteristics, albeit not 

exclusive, of ferromagnetic materials are their spontaneous magnetization and the 

existence of hysteresis. In ferrimagnets, the moments of adjacent atoms or ions are in 

an antiparallel alignment, but they do not cancel to each other. 
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Figure 1.1 Possible magnetic moments orientation.  

An example of a ferrimagnetic mineral is magnetite (Fe3O4). Ferrimagnetism 

exhibits all the properties of ferromagnetic behaviour like spontaneous magnetization, 

Curie temperatures (Tc), hysteresis, and remanence. However, ferro and ferrimagnets 

have very different magnetic ordering. 

Below a critical temperature, Tc, the moments in a ferromagnet order and align 

parallel to each other. However, in order to minimise the magnetic free energy, the 

whole magnetic structure splits in small-volume regions known as domains, in which 

there is mutual alignment of the magnetic moments in the same direction, as illustrated 

in Figure 1.2. Each domain is magnetized to its saturation magnetization, adjacent 

domains being separated by domain walls. 

 

Figure 1.2 Nanometric magnetic structures above TC. 
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Ferromagnets can retain a memory of an applied field even after the field is 

removed. This behaviour is called hysteresis and the plot of the variation of 

magnetization with magnetic field is called hysteresis loop. The hysteresis loop is 

useful to characterize magnetic materials and various parameters can be determined 

from it. 

It is well known that magnetism and most of the physical properties of materials 

depend on their size, particularly when the size reaches the nanometer range (1100 

nm) [45] (see Figure 1.2). There are two main sources for that: (1) size effects, when 

the particle size becomes smaller than that of magnetic domain, the mechanisms of 

magnetization reversal change, something that affects magnetization properties 

particularly the saturation and remanent magnetizations, the coercive field and the 

magnetic anisotropy; and (2) surface effects, when the surface/volume ratio increases, 

structural and magnetic surface disorders become increasingly influential. These 

circumstances cause the apparition of unique magnetic phenomena not found in bulk 

materials, such as superparamagnetism, giant magnetoresistance [46], quantum 

tunnelling of magnetization [47], and large coercivities [48]. In sufficiently small 

magnetic particles, ferro or ferrimagnetic, a phenomenon that is known as 

superparamagnetism, can be observed. When an external magnetic field is applied to 

superparamagnetic nanoparticles, the magnetic moments tend to align along the 

magnetic field, leading to a net magnetization. When the magnetic field is removed, 

the magnetic moments will not randomize their direction immediately, but rather it 

will take some length of time to do so and no remanent magnetization is kept as it can 

be seen in Figure 1.3. This behaviour can be useful in biomedical applications, as we 

will see later.  

1.2.1 Superparamagnetism  

 The first consequence of size reduction is the formation of single domain 

particles. At a temperature below Tc, ferromagnets are composed of small-volume 

regions known as domains, in which there is mutual alignment of the magnetic 

moments in the same direction, as illustrated in Figure 1.2. Domains are formed in 



1.2. Magnetic properties of nanoparticles 13 

order to reduce the magnetostatic energy of the system. Each domain is magnetized to 

its saturation magnetization, adjacent domains being separated by domain walls where 

the spins gradually rotate between the respective spin orientations of neighbouring 

domains.  

In single domain particles, the anisotropy energy barrier that prevents the reversal 

of magnetization direction depends on the size. When the size is reduced below a 

point (below 2530 nm in magnetite or maghemite), the anisotropy energy becomes 

lower than the thermal energy, so the particle cannot maintain a fixed orientation of 

the magnetic moment and becomes superparamagnetic. The resulting fluctuations in 

the direction of magnetization cause the magnetic field to average zero. The material 

behaves in a similar way to a paramagnet, except that instead of each individual atom 

being independently influenced by an external magnetic field, the magnetic moment of 

the entire particle tends to align with the magnetic field. At temperatures below TB, 

when the applied field is removed, the particle magnetic moment takes time to recover 

its initial state by thermal influence. In sufficiently small particles, with an effective 

uniaxial anisotropy constant, the relaxation of the magnetization will vary 

exponentially with the temperature following a Néel-Brown process [1, 49, 50].  

 

Figure 1.3 Ferrimagnetic and superparamagnetic behaviour.  
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1.2.2 Magnetic relaxation 

There are two main mechanisms of particle relaxation (Figure 1.4): spin rotation 

(Néel relaxation) and particle rotation (Brown relaxation). The time required for the 

reversal of the magnetic moment of the particle (spin rotation) is related to the 

magnetic anisotropy of the material.  

 

Figure 1.4 Nanoparticle magnetic relaxation.  

The existence of different particle sizes and shapes leads to a distribution of 

relaxation times, with an average value τ that in general is also temperature dependent. 

The time τ is then the average time needed for a given kind of particle to reverse its 

magnetization after removing the external applied field. The practical consequence is 

that when the measuring time τm, is greater than τ it can be observed a 

superparamagnetic behaviour. However, for τm< τ the complete reorientation of the 

magnetic moments of the cluster cannot take place during the measuring time. Thus, 

below a blocking temperature TB, given by the condition τ(TB) = τm, the system 

appears "blocked" and its behaviour is strongly dependent on τ m.  

There are a large amount of techniques to experimentally observe 

superparamagnetism: magnetization, ac susceptibility, neutron scattering and 

Mössbauer spectroscopy. Since each of these experimental techniques has a 

characteristic measuring time, which ranges from 10100 s for dc magnetization 
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measurements to 10114 1012 s for neutron scattering experiments, each one can 

provide information from different relaxation rates.  

1.2.3 Specific absorption rate  

The history of hyperthermia with MNPs in alternating magnetic fields started in 

the late 1950s, but most of the studies were unfortunately conducted with inadequate 

animal systems, inexact thermometry and poor magnetic field parameters, so that any 

clinical implication was far behind to be useful [51].  

More than three decades later, it was found, that colloidal dispersions of 

superparamagnetic nanoparticles exhibit an extraordinary specific absorption rate. 

Heating of certain organs or tissues to temperatures between 41ºC and 46ºC, 

preferentially for cancer therapy, is called hyperthermia. Higher temperatures, up to 

56ºC, cause cellular necrosis or carbonization, and it is called thermoablation. Both 

mechanisms act completely different concerning biological response and application 

technique [52]. The classical hyperthermia induces irreversible damage to cells and 

tissues, but hyperthermia is also used to enhance radiation injury of tumour cells and 

chemotherapeutic efficacy. Modern clinical hyperthermia studies focus mainly on the 

optimization of thermal homogeneity at moderate temperatures (43ºC) in the target 

volume, a problem requiring extensive technical efforts and advanced therapy and 

thermometry systems.  

The most important parameter that determines the quantity of heat that magnetic 

particles can produce is the specific absorption rate. This value is defined as the rate at 

which the electromagnetic energy is absorbed by mass unit. It is proportional to the 

rate of the temperature increase (ΔT/Δt), and is expressed in calories per kilogram: 


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








t

T
CSAR t      (Eq. 1.1) 

where Ct is the total specific heat capacity of the entire sample. Based on the 

Brown and Néel relaxation, it has been shown, that single domain particles (nanometer 



16  Chapter 1. Introduction and goals 

in size) absorb much more power at tolerable alternating magnetic fields than 

multidomain particles (microns in size) [23].  

1.2.4 Surface effects  

For very small particles, as the particle size decreases, the surface/volume ratio 

increases and surface effects become increasingly important [47, 53, 54], see Figure 

1.2. The lattice symmetry breaks at the surface resulting in large perturbations in 

crystal and electronic structures. Differences in the magnetocrystalline anisotropy with 

respect to the core and spin disorder are observed, particularly in ferrimagnets. Surface 

ions have incomplete coordination shells, which alters their spin orientation producing 

a disorder near the surface and a reduction of the magnetization as compared to bulk 

[47, 5457]. In the case of antiferromagnetic particles, the formation of net 

magnetisation has also been observed and it is associated to uncompensated moments 

and spin canting due to the breaking of symmetry and differences in the 

magnetocrystalline anisotropy at the surface [58, 59].  

Surface effects can be further enhanced by the particle coating. Interactions 

between an inorganic coating or a polymeric matrix and the nanoparticles have the 

effect to introduce some further disorder at the particle surface, particularly in the 

presence of strong covalent bonds between the particle and the coating.  

1.3 Core-Shell structures of MNPs used in medicine 

In general, MNPs used in biomedical applications have the following structure: 

(1) one or several magnetic nucleus; (2) a biocompatible shell that permits a good 

stability of the particles in biological media, and have binding sites for the anchoring 

of physical and/or biological functionalities; (3) a biological vector (antibody, DNA, 

peptide, oligosacharide, etc.) capable of binding to the target biological entity 

(macromolecules, cells, tissues, etc.); and (4) a therapeutic agent (drugs, enzymes, 

etc.). The scheme of a typical biosystem is described in Figure 1.5. An obvious 

condition in biomedical applications is that the materials have to be biocompatible. 
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This requirement restricts severely the type of compounds used for the magnetic 

nucleus and the shell. 

 

Figure 1.5 Components of biological systems. 

From this general scheme, the structure and size of MNPs can vary depending on 

the desired application. Thus MNPs for "in vitro" applications in biosensors or in 

magnetic separation must have a size large enough to reach a sufficient magnitude for 

the magnetic moment or to be confined in liquid permeable chambers. In these 

applications, the size of the magnetic nucleus is usually in the range from 10 nm to 50 

nm in diameter and the total size is between 0.1 µm and 10 µm. However, in in vivo 

applications the size must be small enough to permeate biological barriers, and 

therefore typical sizes of MNPs for MRI are 2 to 50 nm for the core and 7 to 400 nm 

for the entire particle.  
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For instance, in magnetic hyperthermia therapy, only MNPs in a narrow size 

range contribute to the SAR for a given frequency of the alternating field. Other 

relevant structural factors are: internal structural disorder [1], aggregation [60], and 

interparticle separation [61]. In order to find an optimum magnetothermal behaviour, 

it is necessary to have a system in which these factors can be varied independently, 

while keeping a narrow size distribution.  

1.3.1 Materials for the core  

The most common magnetic materials are composed by Fe, Co, Ni, their oxides 

and their alloys. Actually, the minerals magnetite (Fe3O4) and maghemite (-Fe2O3) 

are typical examples of ferrimagnetic materials. It is well known that maghemite and 

magnetite are biocompatible materials [62]. Maghemite has the advantage over 

magnetite that it is more stable because it is the oxidized form of magnetite. So among 

the magnetic compounds, -Fe2O3 is the one that provides the best expectations for use 

in living organisms together with a fine magnetic performance. In fact, there are many 

iron oxide-based particles in the market for biological applications. For example, 

superparamagnetic contrast agents used for MRI consist of maghemite-magnetite 

cores encapsulated in a polisacharide of dextran family or other coatings like Endorem 

(nanoparticles of 4-15 nm in diameter coated with dextran, with a total hydrodynamic 

diameter of 150 nm), Sinerem (nanoparticles of 4-15 nm coated with dextrane, 

hydrodynamic diameter: 30 nm), and MION-46 (nanoparticles in the order of the 20 

nm of hydrodynamic diameter coated with dextrane) [63].  

Apart from iron oxide nanoparticles, other magnetic nanoparticulate materials 

have been employed in biomedical applications. Recently, gadolinium hexanedione 

nanoparticles of about 140 nm in diameter, fabricated in microemulsions [64] have 

shown greater image enhancement ability than commercial gadolinium molecular 

products, and they are non-toxic for human stem cells. MnxZn11-xFe2O4 nanoparticles 

have been investigated as hyperthermia agents with the aim to improve heating 

temperature, SAR and biocompatibility [65]. Also in this field, monodisperse 

metastable Fe-Ni MNPs, synthesized by chemical reduction, showed tuneable Curies 
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temperatures. This is particularly important because it opens the possibility of self-

regulated heating of cancer cells, as the Curie temperature sets an upper limit to 

heating preventing the damage to neighbouring healthy tissue [66]. Magnetic nanorods 

composed of Ni and Au, synthesized by electrodeposition into a porous alumina 

membrane, have been proposed for biomolecular separation [67]. Moreover, 

biofunctionalized FePt MNPs (3-4 nm) have been successfully used for rapid 

detection of gram-positive bacteria at very low concentration [68]. Therefore, we can 

conclude that there is good variety of magnetic nanomaterials susceptible for being 

employed in biomedical applications. In the work described here and in spite of the 

moderate magnetic performance of iron oxide MNPs, we decided to use them because 

of their biocompatibility advantage over other materials.  

1.3.1.1 Iron oxides: An introduction 

Iron oxides are the result of iron metal in contact with the atmosphere, which 

contains oxygen. So, iron oxides exist in the earth as long as both iron and oxygen 

have been on the planet. Iron oxides present a large variety of crystal phases. There are 

16 known iron oxides, hydroxides and oxide-hydroxides [69]. Among them, only 

magnetite (Fe3O4) maghemite (-Fe2O3) and lepidocrocite (-FeOOH) are 

ferrimagnetic, the rest being antiferromagnetic or weakly ferromagnetic. 

Magnetite is black, ferrimagnetic, and contains both Fe(II) and Fe(III). The 

structure is an inverse spinel, and it was one of the first minerals being studied by 

XRD.  It has a face-centered cubic unit cell with an edge length of a = 0.8394 nm, and 

8 formula units. The formula can be written as Fe(III)[Fe(II)Fe(III)]O4, and the 

structure can be seen as an inverse spinel where octahedral (Oh) sites are occupied by 

both Fe(II) and Fe(III) ions, whereas tetrahedral (Td) sites are occupied by Fe(III), see 

Figure 1.6. This mineral is frequently non-stoichiometric with a deficient Fe(III) 

sublattice.  
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Figure 1.6 Crystalline structure of magnetite (left) and maghemite (right).  

Maghemite is brown-red, ferrimagnetic, and all of the iron ions in the structure 

are trivalent. The structure is also a inverse spinel, thus, to compensate the higher 

charge in the structure, cation vacancies are created. Each cell of maghemite contains 

32 O2- ions, 21 Fe(III) ions and 2 vacancies. The 8 Fe cations occupy Td sites and the 

other are distributed in the Oh sites, as shown in Figure 1.6. The vacancies are 

confined in the Oh sites. The unit cell edge is 0.834 nm, slightly shorter than that of 

magnetite. The oxidation of magnetite takes place by migration of Fe(II) cations from 

the inside to the outside of the particle, creating the vacancies (□). Then, Fe(II) cations 

are oxidized to Fe(III) at the surface generating maghemite [70]. The resulting formula 

structure can be written as follows: 

[Fe8 
3+]T d[Fe8 

3+Fe8
 2+]Oh O32   →   [Fe8 

3+]T d[Fe8
 3+Fe3+ 5.33□2.66]Oh O32 

In the case of magnetite, Fe(III) ions are equally split between Oh and Td, they 

are coupled antiferromagnetically, and hence do not contribute to the magnetic 

moment. The magnetic moment of magnetite is therefore due to the contribution of 

Fe(II) ions occupying Oh sites, which have a moment of 4 µB. The sublattice of Fe(III) 

in the Td sites has magnetic moment of 40 µB (8 cations x 5 µB) and the sublattice 

made of Fe(II) and Fe(III) in Oh sites has 72 µB (40 µB from Fe(III) and 32 µB Fe(II)). 

The total magnetic moment of the two combined sublattices is 32 µB. The saturation 
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magnetization of bulk magnetite is 84 emu/g at room temperature, and the Curie 

temperature is 850 K.  

[Fe3+ ↑]T d [Fe2+ ↓, Fe3+ ↓]Oh O4 

In maghemite the magnetic structure consists on two sublattices corresponding to 

the Fe(III) located on Td and Oh sites. The spins in each sublattice align 

ferromagnetically, but the spins between the sublattices align antiparallel. 

Ferrimagnetism arises from decompensation between the number of Fe(III) cations in 

each sublattice. The sublattice that consist on Fe(III) in Td sites is 40 µB and for Oh 

sublattice is 66.7 µB (40/3 cations in Oh sites). The total magnetic moment is 26.7 µB. 

The saturation magnetization of bulk maghemite is 74 emu/g at room temperature, and 

the Curie temperature is in the range of 820986 K. Maghemite has a phase transition 

to hematite at 800 K.  

[Fe3+ ↑]T d [Fe3+ 5/3 ↓, □1/3]Oh O4 

1.3.1.2 Synthesis of iron oxide MNPs 

The preparation of iron oxide nanoparticles can be realized through bottom-up or 

top-down methods. The top-down approach is based on solid phase procedures. In the 

first known method for the production of iron oxide nanoparticles, large iron oxide 

materials are broken down to smaller particles by means of mechanical milling. But 

this method has a long preparation time and generates very high size dispersion [71]. 

In a bottom-up process, small building blocks such as atoms or clusters are assembled 

into nanoparticles. This approach includes chemical synthesis in solution and gas-

phase routes [72, 73]. Various synthetic strategies for the preparation of MNPs have 

been investigated, including chemical co-precipitation [74], microwave heating [75], 

micro- and nanoemulsion [76], sol-gel [77], hydrothermal routes [78], high 

temperature decomposition [79], sonochemical reactions [80], and laser pyrolysis [81]. 

Emulsion methods use two immiscible liquids, an organic solvent and an aqueous 

solution, in which small droplets are formed. The dispersion is achieved by 
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mechanical mixing that forms a non-stable droplet dispersion, however the addition of 

surfactants improves both stability and homogeneity. Organic and aqueous solvents 

often contain several dissolved components that allow nanoparticles formation, 

consequently this system behaves as a micro- or nano-reactor, depending on the 

droplet size. The temperature and surfactant concentration permit size and shape 

control of the obtained nanoparticles because they control the droplets size. This 

procedure is inexpensive and rapid but cumbersome for large-scale production [76]. 

The co-precipitation procedure consists on the treatment of a mixture of different 

metal precursors with a base in an aqueous medium. Complete precipitation can be 

obtained at a pH between 8 and 14. The main advantage of co-precipitation is that a 

large amount of nanoparticles can be synthesized. However the control of particle size 

distribution is limited because kinetic factors are the only controlling factor of the 

growth process [74]. 

Microwave co-precipitation allows a fast heating of the reaction mixtures, 

especially those containing water, so the formation of MNPs occurs almost 

immediately. This leads to very small particle sizes and narrow size distributions. This 

method offers the additional benefit of very short reaction times [75]. The main 

drawback is agglomeration, so an additional size-sorting process is needed. 

As in microwave heating processes, sonication of a liquid also produces rapid 

heating, but the precipitation mechanism goes through acoustic cavitation, which is 

the formation, growth, and collapse of a bubble in an irradiated liquid. This generates 

a transitory localized hot spot, with an effective high temperature (more than 700ºC) 

and a short lifetime (less than 1s). The chemical reactions take place inside the 

bubbles. One advantage is that no surfactant is used. The disadvantages are that 

amorphous materials are always obtained whenever a volatile liquid is used, and 

cooling rates are large. Nevertheless, the sonochemical decomposition of metal 

carbonyls in alkene solvents has been widely used to prepare iron metallic 

nanoparticles [80]. 
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Hydrothermal reactions are performed in reactors that permit high pressure and 

temperature conditions. Most of the solvents in these methods are polar, such as water, 

methanol or isopropanol, but also other organic solvents have been used. Two main 

chemical routes are employed to obtain iron oxide nanoparticles in hydrothermal 

methods: hydrolysis/oxidation, and neutralization of mixed metal hydroxides [78]. In 

the well-known polyol process, a metallic precursor is dissolved in polyethylenglicol 

or pyrrolidone solvent and the solution is stirred and heated to reach the boiling point 

to get metal nanoparticles that are later oxidized. By controlling the precipitation 

kinetics, well-dispersed iron oxide MNPs with well-defined shape and size can be 

obtained [82]. 

In liquid aerosols routes, particles are obtained by spraying a solution into a series 

of reactors where the aerosol droplets evaporate. If the key step is drying, the 

technique is called aerosol evaporation, and when a thermolysis process is involved, it 

is called spray pyrolysis. Most of the pyrolysis techniques used to produce iron oxide 

nanoparticles start with an Fe(III) salt in a solution containing an organic reducing 

agent. This method is simple, rapid and continuous, but the obtained particles are often 

difficult to coat [81].  

Sol-gel methods consist on the hydrolysis and condensation of alkoxide-based 

precursors at low temperature. This method starts from a chemical solution (sol) that 

acts as the precursor for an integrated network (or gel) of discrete particles. Typical 

precursors are metal alkoxides, such as tetraethyl orthosilicate (TEOS) or 

alkoxysilanes, and metal chlorides, which undergo a series of hydrolysis and 

condensation reactions in aqueous media. One of the advantages of sol-gel methods is 

the low reaction temperature that enables small particles to be grown. The main 

drawback is that the resulting particles are not homogeneous in size and shape [77]. 

The method allowing higher level of monodispersity and size control in iron 

oxide nanoparticles production (see Figure 1.7) is probably thermal decomposition of 

iron organic precursors, such as Fe(Cup)3, Fe(CO)5, or Fe(acac)3, in organic solvents, 

and in the presence of surfactants. The particle diameter can be tuned from 4 to 20 nm, 
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and the hydrophobic particles can be transformed into hydrophilic ones by adding a 

bipolar surfactant [79] and [83]. However, this process must be improved, especially 

in terms of reactants safety and high temperatures required, in order to be suitable for 

industrial preparation. 

 

Figure 1.7 Iron oxide nanoparticles obtained by thermal decomposition of metallorganic 

precursors.  

Nanoparticles growth in confined spaces is another methodology to achieve size 

control in nanoparticles. Superparamagnetic nanoparticles can be obtained by 

controlling the gelation time of a mesoporous material and an iron oxide precursor 

[84]. Mixtures of TEOS and alcoholic solutions of iron nitrate generate iron oxide 

nanoparticles homogeneously dispersed in the silica matrix [85]. Polymers can act as 

confined spaces as well, and the synthesis of tuneable size nanoparticles can 

performed using these conditions [86-88].  

Reverse micelles are shown to be a suitable procedure to achieve nanoparticles 

with a tailored size, which can be controlled by modifications in the reaction 

temperature, the concentration of the precursor, or the water:surfactant ratio [89-91].  
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1.3.1.3 Strategies for the control of size in nanoparticles  

In order to obtain MNPs, direct precipitation methods are of great interest because 

a certain control of particle size can be achieved by adjusting the conditions of 

reaction. In batch precipitation systems, the supersaturation decreases as nucleation 

and growth occurs, and so does the growth rate, thus limiting the maximum size. Low 

solubility, fine mixing of reactants and temperature are also factors that may help to 

control the size and size dispersion in these systems. A typical example of direct 

precipitation method is the popular Massart method. There, iron oxide nanoparticles 

are precipitated by addition of a base to a solution of Fe(II) and Fe(III) salts in a 1:2 

ratio, at a pH between 8 and 9.6. The size varies with the strength of the precipitating 

base [92], so that a stronger base leads to larger particles (NH3: 6 nm, CH3NH2: 10 

nm, NaOH: 19 nm). This strategy is not sufficient to ensure a narrow size distribution 

that is usually in between 20% and 30%. A higher control can be obtained with the 

ratio of reactants in the reaction medium. This is very efficient in organic solution 

precipitation, but it is far less effective in aqueous media due to the strong solvation 

capacity of water. The size distribution can be further narrowed by size-sorting 

procedures, such as centrifugation [93], size-selective precipitation [95], magnetic 

separation [95], field-flow fractionation and size-exclusion chromatography [96]. 

The size dispersion associated to direct precipitation methods can be largely 

avoided by the use of additives that adsorb on the particle surface and inhibit particle 

growth and aggregation. This is especially the case of surfactants that have a part that 

binds to the particle surface and another part with a high affinity for the solvent. So 

they serve as growth restrainers and colloidal stabilizers at the same time. They are 

widely used to control the average particle size and size distribution in chemical 

synthesis routes. The surfactant nature and its concentration are important parameters 

that have an influence in particle size. Turning back to metal organic decomposition 

methods, the interaction between Fe atoms and the functional group of the surfactant 

produces small particles when this interaction is strong. The group of Cheon made a 

comparative study with two surfactants, trioctylphosphine (TOPO) and dodecylamine 

(DDA) [97]. The alkylamine ligand used in this study seems to bind weakly to the 
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metal centers on the surface of nanocrystals, while the TOPO ligand forms a much 

stronger bond to the crystal surface due to its high oxophilicity. A weakly binding 

ligand can reversibly coordinate to the metal sites on the surface, and further growth is 

possible when sufficient amounts of alkylamine ligand are available. The Fe-

surfactant interaction determines the decomposition temperature and the number of 

nucleus. The molar ratio surfactant/precursor is also important, the size increases as 

the quantity of surfactant increases, as it was shown in a study of Yu et al. [98]. They 

have reported that when the ratio moves from 1:3 to 1:8 the particle size becomes 4 

times greater. However, there is an upper size limit that cannot be overcome by 

varying the solvent temperature, the concentration of surfactants and the concentration 

of precursor. In order to increase the size limit Hyeon et al. proposed a variation of the 

method that consisted on using an iron oleate complex as the growth source. In this 

way, they synthesized monodisperse iron nanoparticles of 20 nm with controlled size 

by the additional incremental growth of the previously prepared nanoparticles, in a 

seed mediated process [99]. The same group has obtained nanoparticles of a diameter 

of 50 nm using FeCl3 as iron precursor and sodium oleate [100]. 

1.3.2 Materials for the shell 

The stabilization of the iron oxide MNPs in aqueous solutions and organic media 

is crucial to obtain magnetic colloidal ferrofluids that are stable against aggregation 

even under the presence of a magnetic field. The stability of a magnetic colloidal 

suspension can be controlled reaching the equilibrium between attractive and repulsive 

forces. Four kinds of forces can contribute to the interparticle potential in the system. 

Van der Waals forces induce strong short-range isotropic attractions. The electrostatic 

repulsive forces can be partially screened by adding a salt to the suspension. 

Moreover, steric repulsion forces have to be taken into account. For magnetic 

suspensions, magnetic dipolar forces between two particles must be added. Because of 

the growing interest of in the use of iron oxide nanoparticles for biomedical 

applications many efforts have been employed to render them stable in biological 

fluids. As we mentioned before, the method of precipitation from organic solutions is 

the most adequate to obtain samples with good size control, narrow size distribution 
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and high crystallinity. Making these particles hydrophilic could open the possibility of 

their use in biomedical applications. There are many different approaches to stabilize 

nanoparticles using a compound that coats the nanoparticles surface. The most usual 

are: (1) organic coatings such as dextran, polyethylene glycol or chitosan; (2) 

inorganic coatings such as gold, silica or carbon. 

The coating of iron oxide nanoparticles avoids aggregation but also may affect the 

magnetic properties of the system due to the modification of the particle surface. In 

fact, a decrease of Ms has been observed for iron oxide nanoparticles coated with 

certain organic or inorganic coatings [101]. Therefore, it is important to take this into 

account for biomedical applications.  

1.3.2.1 Organic coatings 

The stability of a magnetic colloidal suspension results from the equilibrium 

between attractive and repulsive forces. The interparticle repulsion can be electrostatic 

if the polarity of the solvent is high enough, steric if a suitable surfactant or polymer is 

used as a steric barrier, or it can be produce by the properties of solvation of the 

particle coating in the solvent [102]. For an organic solvent, the use of surfactants is 

the most common way to stabilize the dispersions. The surfactant employed must 

contain one or more functional groups that interact with the surface of the particle and 

another group, for example, a long enough hydrocarbon chain to render the coated 

particle stable in the solvent. The chain of the surfactant provides a permanent 

distance between the particles and compatibility with the solvent. The functional 

group, which can be cationic, anionic or non-ionic, is attached to the magnetic particle 

surface by chemical bonding, physical interaction or a combination of both. As we 

mentioned before, the high-temperature decomposition methods yield more uniform 

nanoparticles with better magnetic properties than aqueous routes, but for biomedical 

applications it is important to make them water stable.  

Organic coatings are usually employed to render MNPs stable in water at neutral 

pH and physiological salinity [103]. The coating can be performed by different 
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methodologies: in situ coating, post synthesis adsorption and post synthesis grafting 

via covalent bonds [104]. Many examples of MNPs organic coatings have been 

reported in the literature; here we will mention some of the most common. Natural 

polymers are widely used due to their advantages: they are nontoxic, non-

immunogenic and biodegradable. Dextran is a branched polysaccharide composed of 

glucose. At the end of the 80´s, Widder et al. coated iron oxide with dextran by mixing 

the polymer with MNPs obtained by coprecipitation [105]. Jung and Jacob have 

obtained a colloidal dispersion of dextran coated nanoparticles, called Ferumoxan that 

is stable over a pH range from 3 to10 [106]. Chitosan is a cationic hydrophilic natural 

polymer that is very popular in drug delivery applications because it is very abundant 

in nature and is easy to functionalize. Kim et al. have produced MNPs coated with 

chitosan by physically adsorption above oleic acid coated nanoparticles [107]. 

Poly(ethylene glycol) (PEG) is a biocompatible linear synthetic polyether. It improves 

the dispersibility and blood circulation time of the MNPs and it can favour the 

transport across the blood-brain barrier. An example of PEG coating method is that 

described by Kohler et al. who grafted PEG to MNPs via a silane group in toluene 

[108]. Polyethyleneimine (PEI) is another water soluble cationic polymer that has 

been used for decades for gene delivery. An in situ method for PEI coating of MNPs is 

given by Corti et al. [109]. However PEI coatings still present several problems 

including PEI´s toxicity. Pluronics are a family of poly(ethylene oxide)-b-

poly(propylene oxide)-b-poly(ethyleneoxide) triblock copolymers that are often used 

as non-ionic surfactants in biotechnological and pharmaceutical industries due to their 

high surfactant capacities, low toxicity and minimal immune response. These block-

copolymers have been used for the thermal synthesis of iron based MNPs [110].  

Recently, several groups have achieved the encapsulation by nanoprecipitation 

method of oleic acid-coated magnetite nanoparticles inside spheres of polymers, or 

hydrogels, such as poly (D,L-caprolactone (PCL) [111], poly(lactide) acid (PLLA) 

[112], poly(D,L-lactide-co-glycolide) (PLGA) [113], and methoxy poly (ethylene 

glycol) poly (lactide) copolymer (MPEGPLA) [111]. These polymers can provide the 

system with additional advantages. For instance, the group of T.Y. Liu demonstrated 
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that beads of poly(ethylene-oxide)- poly(propylene-oxide)- poly(ethylene-oxide) block 

copolymers (PEO-PPO-PEO) encapsulating iron oxide nanoparticles and a drug could 

be magnetically triggered for drug release[114].  

A group of polymers that deserve special attention concerning drugs and NPs 

encapsulation is that of polymer hydrogels. These hydrogels can be prepared in 

several ways. When synthetic polymers are used, they are typically dissolved in a 

convenient solvent followed by precipitation in a liquid environment leading to 

particle formation. The drug or nanoparticles intended to be encapsulated in the 

spheres are usually incorporated during the polymer solvation and precipitation 

processes. Solvent diffusion, solvent evaporation, nanoprecipitation and salting-out 

methods are widely applied techniques and they have been discussed in several 

reviews [115118]. In solvent evaporation, the dissolved polymer is emulsified with 

an aqueous phase with the help of a high-energy source such as ultrasound or 

homogenization followed by solvent evaporation (vacuum and/or temperature). In the 

salting-out method, polymer precipitation is obtained via phase separation (organic 

solvent-aqueous phase) by the addition of a salting-out agent. Similarly, in solvent 

diffusion, nanospheres are formed when the saturation limit of a partially water-

miscible solvent is exceeded by addition of water. In both techniques, the phase 

separation is accompanied by vigorous stirring. Techniques such as supercritical fluid 

technologies [119120] are different approaches to nanoscale spheres preparation. 

Additionally, polymer nanospheres can be created directly from monomers by means 

of different polymerization techniques as presented in some reviews [115,117]. 
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Figure 5.4 Nanoprecipitation method. 

In nanoprecipitation, introduced by Fessi et al. [121], the spheres formation is 

based on precipitation and subsequent solidification of the polymer at the interface of 

a solvent and non-solvent. The polymer is dissolved in a water miscible organic 

solvent and then added to an aqueous solution, where the organic solvent is dispersed 

by stirring the mixture, as shown in Figure 5.4. Particle formation is spontaneous, 

because the polymer precipitates in the aqueous environment. It is currently accepted 

that the Marangoni effect explains the process as follows [118]: solvent flow, 

diffusion and surface tensions are the interface of the organic solvent and the aqueous 

phase cause turbulences, which form small droplets containing the polymer. 

Subsequently, as the solvent diffuses out from the droplets, the polymer precipitates. 

The emulsification step is critical because the stirring speed determine the size of the 

particles. Finally, the organic solvent is typically evaporated with help of vacuum or 

temperature. Usually, surfactants or stabilizers are included in the process to modify 

the size and the surface properties, or to ensure the stability of the spheres dispersion. 

However, the presence of surfactants is not indispensable for the formation of the 

particles. The drug substance or the nanoparticles to be encapsulated are, depending 

on its solubility, dispersed as an aqueous solution or dissolved in the organic solvent 

before the fusion of the phases. The nanoprecipitation technique suffers from poor 

encapsulation efficacy of hydrophilic drugs or nanoparticles, because they can diffuse 
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to the aqueous outer phase during polymer precipitation [122]. By modifying the 

solubility of the drug by changes in the pH, the drug can be easily encapsulated [123]. 

Another way to improve the encapsulation is accelerating the precipitation rate of the 

polymer, modifying solvent composition or increasing the Mw of the polymer. 

Alternatively, multi-functional and/or multi-responsive polymeric systems have 

been developed due to their potential applications. Multi-responsive core-shell 

nanospheres that exhibit volume changes in response to temperature and pH were 

synthesized by incorporating a temperature responsive polymer and a pH sensitive 

polymer in the core and shell structure, respectively [124]. The nanostructured 

polymer particles, however, have an average diameter of about 100200 nm, which 

limits the hydrogels for drug and gene delivery applications. Most self-assembling 

polymeric micelles and polyelectrolyte complex nanoparticles have a size smaller than 

100 nm, but they are unstable, tend to aggregate, or easily disintegrate in body fluid 

conditions because their structures are primarily maintained by weak interactions. 

Thus, it is desirable to synthesize robust and stable hydrogels with sizes under 200 nm 

that are stable in physiological conditions. They have definite advantages as carriers 

for drugs and imaging agents. There are several studies about diverse types of pH-

responsive hydrogels. These include metacrylic latexes [125], N-isopropylacrylamide 

copolymer microgels containing another monomers [126], and monomers such as 4-

vinylpyridine (4VP) [127], 2-vinylpyridine (2VP) [128], 2-(diethylamino)ethyl 

methacrylate (DEA) [129], 2- (diisopropylamino)-ethyl methacrylate (DPA) [130]. It 

is known that poly (vinylpyridine) is a pH dependent polymer by itself and in 

combination with other polymers [131, 133],  but as far as it is known, no work has 

been carried out, up to date, on the preparation of polyvinylpyridine polymer spheres 

by the nanoprecipitation method. 
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1.3.2.2 Inorganic coatings 

Inorganic coatings present some unique differences with respect to organic ones. 

They do not experiment swelling or porosity changes with changes in pH, ionic 

strength or temperature, and they are not vulnerable to microbiological attacks. 

Coatings such as gold, carbon and silica have been widely investigated because they 

can be quite adequate for biological applications due to their biocompatibility. These 

coatings can provide not only good dispersibility of the particles in aqueous medium, 

but also chemical stability and easy functionalization. A paradigmatic case, widely 

reported in the bibliography, is that of gold, which can be easily functionalized due to 

its binding abilities with thiol groups [134]. Alternatively, the advantage of carbon 

coatings is in its porosity that allows the adsorption of a large variety of compounds 

[135]. Regarding silica, a silicon dioxide with chemical formula SiO2, it has been 

known since a long time for its hardness. Silica is the most abundant mineral in the 

Earth's crust. It is most commonly found in nature as sand or quartz, as well as in the 

cell walls of diatom algae. In the vast majority of silicates, the Si atom shows 

tetrahedral coordination, with 4 oxygen atoms surrounding a central Si atom, as it can 

be seen in Figure 1.8. In each of the most thermodynamically stable crystalline forms 

of silica, on average, all 4 of the vertices (or oxygen atoms) of the SiO4 tetrahedra are 

shared with others, yielding the simplified chemical formula of SiO2. 

 

Figure 1.8 Tetrahedral structure unit of silica and amorphous structure of silica. 
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Silica can be obtained by a large variety of methods. The most common involves 

exposing silicon to oxygen. When silicon is exposed to air under ambient conditions, a 

very thin oxide layer is formed on the surface. In order to grow well-controlled layers 

of silicon dioxide, higher temperatures and alternative environments are used. 

However, the most interesting method to synthesize silica is that of sol-gel. This 

method is a wet chemical route; the sol evolves gradually towards the formation of a 

gel network containing both a liquid phase and a solid phase. In basic solutions, the 

particles may grow to sufficient size to become colloids. Then the sol evolves towards 

the formation of a phase gel. In the case of the colloid, the number of particles in an 

extremely dilute suspension may be so low that the removal of a significant amount of 

solvent may be needed for the gel properties to be recognized. This can be 

accomplished in a number of ways. The simplest method is to allow time for 

sedimentation to occur, or by centrifugation to separate the solid from the solvent. The 

removal of all the solvent requires drying. Chemically, the synthesis of SiO2 involves 

hydrolysis and condensation of a precursor, such as tetraethyl orthosilicate (TEOS), in 

an appropriate solvent, such as ethanol or water, with or without the use of a catalyst. 

SiOEt)4 + H2O + OH- → (OEt)3Si(OH) + ROH 

(OEt)3Si(OH) + H2O →  SiO2  + 3EtOH 

As these reactions proceed, a network of Si-O-Si bonds is formed and the 

viscosity of the solution increases due to the gel formation. Finally, the gel condenses 

and the particles precipitate. Many efforts have been dedicated to obtain silica coated 

MNPs using this approach. The group of Philipse has prepared them by precipitation 

of sodium silicate followed by hydrolysis of tetraethylorthosilicate (TEOS) in basic 

conditions [136]. 

Another strategy to obtain well coated nanoparticles is microemulsion. Yang et al. 

achieved this and went a bit farther by entrapping biological molecules inside the 

porous of the silica shell [137]. Aerosol methods also provide good results in magnetic 

nanoparticle silica encapsulation, as Tartaj et al. have demonstrated [138]. Yi et al. 
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prepared a soluble hybrid material consisting of MNPs and silica by a modified Stöber 

method [139]. The Stöber method for the preparation of monodisperse spherical silica 

particles, see Figure 1.9, in basic solution was published in 1968 [140]. 

 

Figure 1.9 TEM micrograph of silica particles obtained by the Stöber method. 

The use of silica as a coating permits also the tuning of the magnetic properties of 

the MNPs [141]. Besides, another advantage of silica is the presence of the silanol 

groups on the surface that can easily react with a wide variety of ligands carrying a 

diversity of functionalities. In this way, enzymes, proteins and other molecules that are 

useful for different biomedical applications can be anchor to the particle surface. 

Furthermore, besides surface functionalization, this material can be produced with a 

mesoporous structure, i.e. MCM-41 or SBA-15, with a pore size large enough to 

house MNPs and/or biological molecules [142]. These materials are amorphous but 

show a hexagonal arrangement of pores with a size that can be varied by adjusting the 

synthesis parameters. The group of Yang has used materials of this kind, SBA-15, to 

transport drugs such as ibuprofen [143]. 

Even though silica offers many potential advantages as a coating of MNPs, it also 

represents a controversial issue concerning the use of silica in biomedical applications 

with regard to toxicity. Some studies have found negative toxic effects of silica in 

living organisms; they have proven that silica nanoparticles cause lung fibrosis in rats, 

and toxic effects and alterations in the protein expression in HaCaT cells [144, 145]. 
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However, others contrast these findings, for example, a study on this subject has been 

presented by Rondeau et al. [146], they concluded that it is indigestible, without 

nutritional value, but no toxic. When silica is ingested orally, it passes unchanged 

through the gastrointestinal tract, leaving no trace behind. Actually, a study on 

volunteer persons over 15 years showed that high levels of silica in water appeared to 

decrease the risk of dementia. This study found that with an increase of 10 milligram 

per day of the intake of silica in drinking water, the risk of dementia dropped by 11%. 

1.4 Purpose of the thesis and goals 

The work presented in this thesis can be classified in three main areas: (1) 

monodisperse ferrofluids for biomedical applications; (2) superparamagnetic beads for 

a biosensor; and (3) MNPs encapsulated in a polymer for drug delivery. All of them 

share the same fundamental perspective, which is to control the synthesis and 

properties of functionalized nanoparticles based on their magnetic properties. Each 

area of research is summarized in the following sections and a detailed discussion is 

presented in the following chapters. 

1.4.1 Ferrofluids for biomedical applications 

Our main objective in this area was to obtain aqueous dispersions of high quality 

iron oxide nanoparticles with a coating that could be easily functionalised and used in 

biomedical applications. Therefore, the nanoparticles were produced in organic 

solvents by thermal decomposition of organometallic precursors. Then these 

nanoparticles were transferred to aqueous medium. Finally, they were coated with a 

silica shell. For this purpose, we have followed a ligand exchange technique that 

consists on the substitution of the hydrophobic ligand used in the organic synthesis by 

a hydrophilic ligand. The exchange ligand was a compound consisting on a 

hydrocarbon chain having a silica precursor at one end and a group with a strong 

affinity for the surface of iron oxide particle, namely an iron coordination group. The 

silica precursor group was always triethoxysilane. Several iron coordination groups 

have been comparatively studied in this work: imidazole, phosphate and carboxylate. 
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The length of the hydrocarbon chain has been also systematically varied. Stable 

aqueous dispersions have been obtained with both short and long chain lengths. For 

short chain length, the best performance was obtained with N-(3-triethoxysilylpropyl)-

4,5-dihydroimidazole and its imidazole iron coordination groups. Finally, in order to 

improve the biocompatibility of the nanoparticles, some of the samples were 

successfully covered with polyethylenglicol by reacting the silica coated nanoparticles 

with a PEG-alkoxysilane derivative.  

1.4.2 Superparamagnetic beads for a biosensor 

A second thrust of research in this dissertation involves the contribution to the 

development of a biosensor based on the changes in the impedance produced by iron 

oxide nanoparticles encapsulated in silica spheres when they interact with the 

capacitor plates. As we mentioned before, iron oxide nanoparticles obtained by the 

thermal decomposition method have better qualities than those obtained in aqueous 

media, but depending on the application for what they are desired it can be better to 

use the nanoparticles synthesized in aqueous media. After careful consideration and 

focusing on the final application, we synthesized MNPs by an aqueous method and 

subsequently we encapsulated them in silica spheres by a modified Stöber method. 

Afterwards, the nanospheres were functionalized with a siloxane that ends in a 

carboxylic group. Then, the spheres were attached to the capacitor plate surface by the 

sandwich technique [147]. In parallel, a plate was coated with a capture antibody, the 

same antibody that we have used to functionalize the nanosphere and was bonded by 

the carboxylic group. Then, an antigen was added to the suspension of nanospheres 

that binds to the antibody. The interaction of the system with the capacitor plates was 

investigated by means of an Enzyme-Linked Immuno Sorbent Assay (ELISA). In 

addition, the measurement of the impedance of the capacitor before and after the 

treatment has permitted us to determine the sensibility of this biosensor.  
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1.4.3 MNPs encapsulated in a polymer for drug delivery 

The main objective is to design a multifunctional system able to combine the 

properties that will make it suitable to be used for therapy and diagnostics. We have 

developed in this work a multi-responsive system and it consists on a pH-responsive 

polymer that form microspheres with encapsulated MNPs that allows the magnetic 

core to enable externally controlled actuation under magnetic induction. Magnetic 

measurements have shown that the iron oxide nanoparticles are superparamagnetic 

and therefore are able to undergo a local increase of the temperature when an 

oscillating magnetic field is applied. Poly(4-vinylpyridine) is a pH-responsive material 

that can provide new opportunities for the organic-inorganic system and it is a widely 

studied polymer in our group. The synthesis of PVP polymer spheres is conducted 

without help of crosslinking or monomer polymerization but using a very simple 

modified nanoprecipitation process. Afterwards, magnetic polymer spheres P4VP-

PEG were obtained by means of nanoprecipitation technique, in order to improve their 

stability in biological fluids, increase the blood circulation time and can be 

conveniently functionalized for targeting. The system with magnetically triggered 

heating and pH sensitivity can be potentially useful with some modifications for 

biomedical applications like separation, purification, MRI, targeted drug delivery and 

biosensors. 
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Chapter 2 

Experimental and methods 

 

2.1 Introduction 

In this chapter materials and methods are described, as well as the experimental 

procedures for the synthesis of the MNPs that are used in the work described in next 

chapters.  These samples are prepared in both aqueous and organic solvents. As the 

formation mechanisms of the particles are different depending on the reaction media, a 

brief summary of mechanisms is given in order to explain the main differences 

between the MNPs, and reveal the characteristics that can be expected for the particles 

obtained in aqueous media and organic media. The morphological, chemical and 

physical characterization of six different ferrofluids is also included in this chapter.  

 

2.2 Experimental  

Depending on the application of MNPs, it is not only the size what is important. 

Many times the synthesis conditions need to be tuned so that the resulting 

nanoparticles have uniform size, and homogeneous shape. Moreover, the chemical 

composition and the crystal structure of these materials are desirable because they 

influence the behaviour of the ferrofluids. The reproducibility of the synthesis is also 

relevant in order to get ferrofluids with the same characteristics. Eventually, 

nanoparticle agglomeration must be avoided, so that the final product can be easily 

dispersed in a solution [1]. 
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As we have previously explained, there are different procedures to prepare MNPs, 

however, we will focus here on aqueous media and on thermal decomposition of 

organic precursors in organic media. Depending on the application of the ferrofluid we 

choose, we will select the synthetic procedure that implies better conditions for that 

specific application. 

2.2.1 A survey of methods for the production of ferrofluids in organic media 

The production of ferrofluids in organic media has been widely studied.  High 

temperature decomposition of organic precursors in organic media leads to 

monodisperse nanoparticles, but what is also important is that the method permits to 

tune the mean size of the nanoparticles. Moreover, the high growing temperature used 

in this method yields nanoparticles with high crystallinity. There are several methods 

based on the thermal decomposition of organic precursors, as summarized in Table 

2.1.  Several factors have to be considered in the synthesis process: nature of the 

solvent, temperature of reaction, types of precursor and surfactant and their 

concentrations, and even the speed at which the reactants are added, [25].  

The use of metalorganic precursors and organic solvents in the production of 

inorganic nanoparticles was introduced in the middle 90s, when Murray et al prepared 

highly crystalline CdSe nanoparticles in this way [14]. Later, Alivisatos et al applied 

this method to the production of γ -Fe2O3 with variable particle size [6]. They used 

iron cupferron complexe Fe(Cup)3 (Cup: N-nitrosophenylhydroxylamine, 

C6H5N(NO)O-) as precursor  in trioctylamine solvent, and they could vary the size of 

the nanoparticles from 4 to 10 nm by increasing  the quantity of Fe(Cup)3 injected and 

the reaction temperature. Since then, many other groups have used this methodology 

to synthesize nanoparticles of several compounds in a wide range of sizes.  



2.2 Experimental 51 

Table 2.1: Methods for the production of ferrofluids in organic media 

Precursor Solvent Surfactant Reaction T Particle size Reference 

Fe(Cup)3 Trioctylamine - 250-300ºC 4-10 nm [6] 

Co(acac)2·4H2O Diphenylether 

Oleic acid 

Trioctylphosphine 100-300ºC 1-15 nm [7] 

Pt(acac)2 

Fe(CO)5 Octyl ether 

Oleic acid 

Oleylamine 298ºC 4 nm [8] 

Fe(CO)5 Octyl ether 
Oleic acid or 
lauric acid 298ºC 4-16 nm [9] 

Fe(acac)3 Phenyl ether 
Oleic acid 
Oleylamine 265ºC 4-20 nm [10] 

Fe(CO)5 Decalin Polyisobutene 170ºC 2-10 nm [11] 

FeCl2·4H2O 

FeCl3·6H2O 
Diethylene 
glicol 

N-methyl 
diethanolamine 210-220ºC 6-17 nm [2] 

FeO(OH) 1-octadecene Oleic acid 350ºC 20-30nm [12] 

FeCl2·4H2O 

FeCl3·6H2O 1-octadecene Oleic acid 300ºC 3-50 nm [4] 

Fe(acac)3 Dibenzylether Decanoic acid 200ºC 3-50 nm [13] 

 

In 2001 Murray and his group described the synthesis of Co and FePt 

nanoparticles based on high temperature decomposition of organic precursors.  In 

order to obtain Co nanoparticles they decomposed cobalt acetylacetonate in 

diphenylether, and oleic acid and trioctylphosphine as stabilizers at 200ºC.  Tailoring 

the ratio of the concentration of reagents to that of surfactants, and the temperature, 

they control the nanoparticles size in a range of 115 nm [7]. In other paper they 
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described the synthesis of 4 nm FePt nanoparticles. They used Pt(acac)2 and Fe(CO)5 

as metal precursors and decomposed them in octyl ether with oleic acid and 

oleylamine as surfactants at 300ºC [8]. The same year, Hyeon and col. reported a two 

step synthesis of maghemite nanoparticles with a size range of 416 nm. In a first step 

they add Fe(CO)5 to a mixture containing octyl ether and oleic acid or lauric acid at 

100ºC, then they rose the temperature to 298ºC for 1h. In the second step they oxide 

the sample with (CH3)3NO. The nanoparticles were highly crystalline and 

monodisperse [9]. In 2002 Sun et al got 4 nm Fe3O4 nanoparticles by decomposition of 

Fe(acac)3 in phenyl ether with 1,2-hexadecanediol, oleic acid, and oleylamine under 

nitrogen at 265ºC. To make larger Fe3O4 nanoparticles, they used a seed-mediated 

growth method [10].  

Another variation of the high temperature decomposition method is to employ 

polymers instead of surfactants for the control of the particle size and to avoid 

nanoparticle agglomeration. Butter and col. reported the preparation of Fe 

nanoparticles with a 2 to 5 nm size in dilute solutions of decalin containing 

polyisobutene at 170ºC [11]. In 2004, Caruntu et al. described a method based on high 

temperature hydrolysis of chelate iron alkoxide complexes in solutions of the 

corresponding alcohol, diethylene glycol, and N-methyl diethanolamine. They 

obtained the chelate iron alkoxide from FeCl2·4H2O and FeCl3·6H2O and diethylene 

glycol, then a NaOH solution was added and leave to react for 5 h. They were able to 

produce nanoparticles from 6 to 17 nm [2]. In the same year, Yu was the first to report 

the synthesis of iron oxide nanoparticles with a particle size larger than 20 nm using 

non-toxic hydrated iron oxides as iron precursor in octadecene and oleic acid [12]. The 

next year, Jana et al. used an analogous procedure to obtain magnetite from 3 to 50 nm 

but in this case they started from iron chlorides instead hydrated iron oxides [4]. In 

2010, Guardia and col. reported the effect of decanoic acid as a surfactant on the 

synthesis of iron oxide nanoparticles by thermal decomposition of Fe(CO)5 in dibenzyl 

ether. They achieved nanoparticles ranging from 5 to 30 nm [13]. 
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2.2.2 Synthesis of IOMNPs in organic solvents by thermal decomposition of 

Fe(CO)5 

In this work, we have used the synthesis method proposed by the group of Hyeon 

that yields highly crystalline and monodisperse γ-Fe2O3 nanoparticles [9]. As it can be 

seen in Figure 2.1, this procedure, which allows a variation of the particle size by 

controlling the experimental parameters, is based on the thermal decomposition of an 

iron precursor in the presence of a surfactant and subsequently the product is oxidized. 

The iron precursor is Fe(CO)5, the solvent is dioctyl ether (OE) or dichlorobencene 

(DCB), the surfactant is oleic acid, and the oxidant is trimethylamine oxide.  

 

Figure 2.1 Iron oxide organic synthesis scheme. 

 Mechanisms of reaction: The formation of iron oxide nanoparticles in the Hyeon 

method occurs in several steps: 

Step 1. Decomposition: In a first stage the Fe(CO)5 complex is decomposed 

according to the following global reaction:  

Fe(CO)5 → Feo + 5CO    (1) 

According to Redl et al. the decomposition of the complex occurs already at 

170oC, liberating all CO that is no longer observed in IR [15]. After decomposition of 

the precursor the iron seems to be in the form of Fe-oleate coordination compounds 

[16].  

Step 2. Nucleation and growth. After an initation time, nucleation of Fe 

nanoparticles occurs.  

Fe-oleate → ↓ Fe NPs    (2) 



54   Chapter 2. Experimental and methods 

 

Fe-oleate complexes are very stable in solution and consequently initation times 

in the presence of oleic acid are large and the supersaturation at the burst of nucleation 

is very high, thus favouring monodispersity, as shown by Casula et al [17]. Nucleation 

of Fe nanoparticles occurs at 300oC when the temperature is increased after 

decomposition of Fe(CO)5. However, even when the reactants are added by rapid 

injection at 280300ºC, initation times can be as long as 1 h. Using ligands weaker 

than oleate, such as oleylamine, or no ligand at all, results in shorter nucleation times 

and broader size distributions. The initation time and subsequently the size dispersion 

are also dependent of the temperature and of the reactants concentration.  

Step 3. Oxidation. In the presence of a mild oxidant, trimethyl amine oxide, iron 

nanoparticles are oxidized to -Fe2O3. 

Fe NPs + (CH3)3NO → -Fe2O3    (3) 

The process of oxidation is not straightforward, but it goes through intermediate 

phases, first wüstite (FeO) and then magnetite (Fe3O4) [5]. Therefore, it is very 

important to ensure a complete oxidation to avoid a mixture of iron oxide phases in 

the final ferrofluid. 

Particle size can be varied from 4 to 16 nm by controlling the experimental 

parameters. Particles in the order of 20 nm can be obtained by seeding the reaction 

media. Figure 2.2 shows a TEM micrograph of an organic ferrofluid prepared in this 

way. 
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Figure 2.2 Transmission electron micrograph of an organic ferrofluid. 

2.2.2.1 Procedure for the synthesis of organic MNPs suspensions  

We have synthesised several ferrofluids in organic media that were later used in 

chapter 3 and 5 in the production of aqueous suspensions for biomedical applications. 

As pointed out above, the Hyeon method was used. The experimental set-up is shown 

in Figure 2.3. The organic solvent is placed in a three neck rounded flask together with 

the surfactant. A refrigerant is adapted to the central neck, and it is topped with a 

bubbler. The other two necks are closed with septa. In one of them a thermocouple is 

placed through the septum in order to control the reaction temperature. The last neck 

is used to inject the reactants. The procedure can be described as follows. An argon 

flux is passed through the experimental set up in order to remove the air. The 

temperature is raised to 100ºC and then the iron pentacarbonyl is injected through the 

septum. Then the temperature is raised gradually until the solvent boiling point. The 

reaction is left to react till the colour changes from yellow to black, from 2 to 48 

hours, depending on the carbonyl/surfactant ratio. Iron nanoparticles were formed in 

this process. In order to obtain iron oxide nanoparticles the system is cooled to room 

temperature for oxidation. The oxidation is carried out by either employing a mild 

oxidant such as trimethylammonium oxide or by atmospheric air at high temperature. 
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Figure 2.3 Experimental set up. 

Five different organic ferrofluids were produced. The reaction conditions are 

summarized in Table 2.2, indicating the solvent, the precursor, the oleic acid and the 

oxidant quantities.  

Table 2.2: Synthesis of an organic ferrofluid stabilized by oleic acid 

Sample Chapter Solvent Fe(CO)5 

Oleic 

acid 

Trimethylamine 

oxide 

A0 2 20 ml OE 0.4 ml 3.41 g 0.68 g 

A1 3 40 ml DCB 0.8 ml 2.2 g 1.36 g 

A2 3 30 ml OE 0.6 ml 3.4 g air 

A3 3 20 ml OE 0.4 ml 2.2 g air 

A4 5 40 ml DCB 0.8 ml 2.2 g 1.36 g 

OE = dioctyl ether; DCB = dichlorobencene 
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2.2.3 Ferrofluids in aqueous media 

The process of iron oxide precipitation in aqueous media is really complex. 

Iron(III) ions are initially in the form of [Fe(H2O)6]
3+ octahedral units [18]. These 

units link to each other by hydrolysis reactions generating protons, and the pH of the 

solution decreases to a level at which hydrolysis stops. When a base is added to the 

solution, the pH increases rapidly, and the hydrolysis process is restarted until the pH 

reaches a new equilibrium value, which depends on the iron concentration and the 

hydrolysis ratio, n = [OH]/[Fe]. Continuous hydrolysis results in the formation of 

dimers, then trimers and then linear iron polymers [18, 19] that become branched as n 

increases, as it can be seen in Figure 2.4. The precipitates are finally formed from 

these iron polymers by condensation [18, 20]. 

 

Figure 2.4 Chains of Fe(H2O)6]
2+  octahedra. 

Magnetite can be formed by addition of an alkali solution to an aqueous solution 

containing Fe(III) and Fe(II) in a molar ratio of 2. As explained above the hydrolysis 

of Fe(III) ions occurs readily at acid pH forming amorphous hydrated iron (III) oxides. 

Above pH=7, the Fe(II) ions also precipitate, first as green rust (Fe(OH)2), and then as 

magnetite by redisolution of Fe(II) and Fe(III) intermediate oxides. The overall 

reaction can be expressed as: 
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[Fe(H2O)6]
2+ + 2[Fe(H2O)6]

3+ + 8OH →  Fe3O4 + 4H2O 

Magnetite is sensitive to oxidation transforming into maghemite. In aqueous 

solution is frequent to obtain mixtures of both phases, but oxidation in air is not the 

only way to transform Fe3O4 in -Fe2O3. Various electron or ion transfers are involved 

depending upon the pH of the suspension. 

Fe3O4 + 2H+  →  -Fe2O3 + Fe2+ + H2O 

The oxidation of magnetite to maghemite is a topotactic transformation. That 

implies migration of ferrous ions from the interior to the surface through the lattice 

framework, creating vacancies to maintain the charge balance. 

A typical crystallization process involves two stages: 1) a short burst of 

nucleation when the concentration of the species reaches critical supersaturation, and 

2) a slow growth of the nuclei by diffusion of the growth units to the particle surface. 

To produce monodisperse iron oxide nanoparticles, these two stages must be 

separated. This means that nucleation should be avoided during the period of growth 

like in a LaMer precipitating system, see Figure 2.5. In this system the particle size 

decreases with the concentration of reactants [21]. 

In iron oxide aqueous systems, the precipitation occurs by condensation of 

polymeric precursors, which size will increase with the iron concentration in solution. 

Thus, one may expect that the size of iron oxide particles precipitated in aqueous 

solutions should increase with the concentration of iron in the medium, as it is actually 

the case. 
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Figure 2.5 Formation mechanism of uniform particles in solution. LaMer diagram. 

Nevertheless, uniform particles can also be obtained after multiple nucleation and 

growth stages (Figure 2.6). This spontaneous process occurs because larger particles 

are more energetically favoured than smaller particles [22]. Molecules on the surface 

of a particle are energetically less stable than the ones already well ordered and packed 

in the interior. Large particles, exhibit lower surface to volume ratio that results in a 

lower energy state. As the system tries to lower its overall energy, molecules on the 

surface of a small particle will tend to detach and diffuse through solution and then 

attach to the surface of larger particle. Therefore, the number of smaller particles 

continues to decrease, while larger particles continue to grow. In aqueous media, 

Ostwald ripening causes the diffusion of monomers from smaller to larger particles 

due to greater interaction of the single monomer molecules in the larger particles. The 

rate of this diffusion process is linked to the solubility of the monomer in the 

continuous water phase. 
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Figure 2.6 Formation mechanism of uniform particles in solution. Ostwald ripenning. 

The main advantage of iron oxide production in aqueous media is that the 

nanoparticles are already in a biological fluid. The principal drawbacks of this 

procedure is that the resulting nanoparticles are not homogeneous in shape and size, 

see Figure 2.7, and due to the complex mechanisms involved, it is difficult to control 

the iron oxide phase that originates a coexistence of different phases. Nevertheless, 

depending on the application for which the MNPs are destined, these drawbacks can 

be irrelevant. 
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Figure 2.7 Transmission electron micrograph of an aqueous ferrofluid. 

2.2.4 Procedure for the synthesis of aqueous MNPs suspensions 

The methodology used here for the production of aqueous iron oxide ferrofluids 

consists on the formation of maghemite nanoparticles by basic hydrolysis of iron 

halogenide precursors and subsequent coating with a silica shell by different methods 

employing tetraethyl orthosilicate (TEOS) as silica precursor. We employed iron 

bromides as precursors because it is easier to control the crystalline phase than with 

other halogenate precursors. 

In a typical synthesis of maghemite nanoparticles, 0.5 ml of FeBr3 1M were 

mixed in a beaker with 0.25 ml of FeBr2 1M. Then 3.75 ml of NaOH 1M were added 

with mechanical stirring and maintained 30 min under agitation. 

2.3 Methods 

2.3.1 Chemical analysis 

The chemical characterization of the ferrofluids consisted of iron titration, 

thermogravimetric analysis, gel permeation chromatography and nuclear magnetic 

resonance. Iron titration was used to analyse the presence of Fe(II) ions in the particles 

in order to determine the maghemite/magnetite ratio because XRD is not enough to 

differentiate between these two iron oxide structures. We used thermogravimetric 

analysis to quantify the amount of organic compounds in the particle coating. Finally, 

we also use gel permeation chromatography and nuclear magnetic resonance to 

determine the composition and molecular weight of the polymers that were used as 

coatings 

2.3.1.1 Iron titration 

The percentage of Fe(II) and total Fe in iron oxide samples is determined by 

titration with a standard solution of potassium dichromate (VI). Amounts of iron oxide 

samples were dissolved in concentrated HCl, and then H3PO4 was added to decolorize 
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the solution by formation of colourless Fe(III) complexes, that makes the detection 

final point more clear and increase the reaction speed.  

The overall titration reaction to determine the Fe(II) quantity is: 

6Fe2+ + Cr2O7
2- + 14H+   →  6Fe3+ + 2Cr3+ + 7H2O 

In order to determine the total iron content all of the iron in solution must be in 

the Fe(II) state prior to titration. Thus, the sample solution was treated with tin (II) 

chloride in hot HCl media to reduce any amount of Fe(III) in the sample: 

SnCl4
2- + 2 Fe3+ + 2Cl- → SnCl6

2- + 2 Fe2+ 

The excess Sn(II) is then removed by reaction with mercury (II) chloride, which 

produces insoluble mercury (I) chloride: 

SnCl4
2- + 2 HgCl2 → SnCl6

2- + Hg2Cl2 

The HgCl2 addition has to be fast and at low temperature in order to avoid the 

following reaction: 

SnCl4
2- + HgCl2 → SnCl6

2- + Hg 

Potassium dichromate (VI) solution turns green as it reacts with the Fe(II) ions. 

Nevertheless, we have used a redox indicator, ferroin, for a more clear detection. 

Ferroin changes its colour from orange to pale green in the absence of Fe(II). The 

standard procedure is to put three drops of ferroin in the dissolved and decoloured 

sample and titrate it with potassium dichromate (VI) 0.01M. In order to determine the 

content of Fe(II) in the sample we dissolved the washed sample in HCl and H3PO4, 

then we added three drops of ferroin and titrated with potassium dichromate(VI) 

0.01M. 

Following this procedure we are able to say if we have a sample composed by 

maghemite or a mixture of maghemite and magnetite. If we find Fe(II) we can say that 
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we have some magnetite in our system, otherwise, if no Fe(II) was found, we can 

point that we have only maghemite. But we have to take into account that this is only 

valid in case the XRD pattern shows only the spinel structure. 

2.3.1.2 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) is a type of assay performed on liquid or solid 

samples that determines changes in weight in relation to a gradual change in 

temperature in a controlled atmosphere. Simultaneous measurement of these two 

properties improves and simplifies interpretation of the results. Variations in weight 

denote evaporation of the solvents when no change in temperature is observed, but 

when there is an exothermic or endothermic change it can be due to a reaction or 

degradation process, a change in the composition of the sample occurs. When no 

change in weight and an exothermic or endothermic process is observed it involves 

melting or crystallization.  

We use this methodology to know the concentration of some organic samples or 

find the relation between iron oxide nanoparticles and surfactant. The measurements 

were performed using a Mettler Toledo Star System TGA/SDTA851e in the presence 

of N2 gas as inert atmosphere or air in order to get an oxidative atmosphere, with a 

heating rate of 20ºC/min. The temperature in many testing methods reaches 800ºC. 

The analyser consists of a high-precision balance with a container loaded with the 

sample. The container is placed in a small electrically heated oven with a 

thermocouple to accurately measure the temperature. The atmosphere may be purged 

with an inert gas to prevent oxidation or other undesired reactions. But some times an 

oxidative atmosphere is required in order to study the oxidation of maghemite.  

2.3.1.3 Gel permeation chromatography 

Gel permeation chromatography (GPC) is a term used for the separation of 

polymers depending on their size or their hydrodynamic volume. Separation occurs 

via the use of porous beads packed in a column. This differs from other separation 

methods which depend in chemical or physical interactions to separate polymers. The 
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smaller polymers can enter into the pores more easily and therefore spend more time 

in these pores, increasing their retention time. Larger polymers spend little if any time 

in the pores and are eluted quickly. All columns have a range of molecular weights 

that can be separated. 

When a polymer is characterized, it is important to consider the polydispersity 

index (PDI) as well as the molecular weight. Polymers can be characterized by a 

variety of definitions for molecular weight including the number average molecular 

weight (Mn), the weight average molecular weight (Mw), the size average molecular 

weight (Mz), or the viscosity molecular weight (Mv).  

The sample preparation consists of the dispersion of 1 mg of polymer in 1 ml of 

THF. The dispersion was filtered through a 0.45 µm organic filter. In our case 

molecular weight distribution (Mw/Mn) of the polymer was evaluated by GPC 

performed on a Alliance Waters 2695 auto-sampler separation module equipped with 

a Waters 2420 ELSD detector on two in line Phenogel 5 µm Linear/ Mixed (2) 

(7.8x300 mm) columns with a mixture of tetrahydrofuran /(methanol/ ethanol amine 

(99/1)) (70/30) as eluent at a flow rate of 1ml/min at 35ºC. Polystyrene standards were 

used for calibration.  

2.3.1.4 1H-NMR 

Nuclear magnetic resonance (NMR) is based in the response of the magnetic 

nucleus of a substance to a magnetic field. The nuclei absorb the electromagnetic 

energy and then emit it. This energy absorbance occurs at a specific resonance 

frequency which depends on the magnetic field and other factors. But not all the atom 

nuclei are magnetic (non-zero nuclear spin), as it depends on the number of protons 

and/or neutrons. The most commonly studied magnetic nucleus is 1H. 

1H-NMR is the application of nuclear magnetic resonance in NMR spectroscopy 

with respect to 1H nuclei within the molecules of a substance, in order to determine the 

structure of its molecules. Simple NMR spectra are measured in solution, and solvent 
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protons must not be allowed to interfere. Deuterated solvents especially for use in 

NMR are preferred, like deuterated chloroform, CDCl3. 

1H-NMR spectra of most organic compounds are characterized by chemical shifts 

in the range +12 to -4 ppm and by spin-spin coupling between protons. The integration 

curve for each proton reflects the abundance of the individual protons. 1H-NMR 

spectra of the polymers were recorded at 300 MHz in CDCl3 solution at room 

temperature using a BRUKER ARX-300 spectrometer.  

2.3.2 Structural characterization 

Some of the characterization techniques for nanomaterials differ from the 

characterization methods for macroscopic materials. Actually, the synthesis and study 

of nanomaterials have been rapidly developed since we have the appropriate 

methodologies to observe them. Since the transmission electron microscopes were 

developed the observation of nanoparticles and nanomaterials was easily achieved. 

Nowadays, we are able to study the morphology and the size, but also the structure of 

these materials with a transmission electron microscope tool, the selected area electron 

diffraction. Moreover, chemical information about the samples can be obtained by 

means of another transmission electron microscope tool, the electron energy loss 

spectroscopy. Due to these applications, the transmission electron microscope is a 

very helpful device for nanoscience. Otherwise, it is also useful the utilisation of 

classical characterization tools as infrared, dynamic light scattering or X ray 

diffraction, that are cheaper and more accessible.  

2.3.2.1 Fourier transform infrared spectroscopy 

The main aim of infrared (IR) absorption spectroscopy is to measure how a 

sample absorbs light at different wavelength. Chemical bonds have specific 

frequencies at which they vibrate corresponding to energy levels. Resonant 

frequencies can be related to the strength of the bond and the mass of the atoms. Thus 

the frequency of the vibrations can be associated with a particular bond type. In order 

to analyze a sample a monochromatic light beam is directed to the sample and how 
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much of the light is absorbed is measured. This step is repeated for each distinct 

wavelength. Fourier transform infrared spectroscopy (FTIR) is a less intuitive way to 

obtain information. This technique is based in the impact of a beam containing many 

different frequencies of light at once to the sample, and measures how much of that 

beam is absorbed by it. Then, the beam is modified to contain a different combination 

of frequencies, giving a second data point. This process is repeated many times. 

Afterwards, a computer takes all these data and gives the absorption at each 

wavelength. 

The samples were measure in a Spectrum 100 FTIR, its optical module contains a 

Helium Neon laser, which emits visible, continuous wave radiation at a wavelength of 

633 nm and a maximum power of 1 mW. This system enables to collect data over a 

total range of 7800 to 370 cm-1 with a best resolution of 0.5 cm-1. 

2.3.2.2 X-ray diffraction 

Powder x-ray diffraction (XRD) is a method for determining the localization of 

atoms within a crystal, in which a beam of x-rays interacts with the crystal powders 

and diffracts into specific directions. From the angles and intensities of these 

diffracted beams, the positions of the atoms in the sample can be determined, as well 

as their chemical bonds, their disorder, the nanoparticles average size and various 

other information. 

Relative to other methods of analysis, powder diffraction allows for rapid and 

non-destructive analysis of multicomponent mixtures without complicated sample 

preparation. The positions, corresponding to lattice distances, and the relative intensity 

of the peaks are indicative of a particular phase and material, providing a "fingerprint" 

for comparison to the standards database Joint Committee on Powder Diffraction 

Standards (JCPDS).  

The XRD patterns of the dry nanoparticles samples were obtained using a D-Max 

Rigaku diffractometer equipped with a CuKa1 radiation source. The dry powders were 
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separated from the as prepared organic suspensions by addition of acetone, washed 

three times with acetone, and dried in air. 

2.3.2.3 Dynamic light scattering 

The potential uses for metal oxide nanoparticles are often size dependent. 

Dynamic light scattering is a physical technique that can be used to determine the size 

distribution of small particles in suspension. The basic principle in this technique is 

the measurement of the scattering of an incident monochromatic and coherent beam of 

light in to a sample (composed by particles in suspension) with time. DLS measures 

Brownian motion of the particles in solution and relates this to the size of these 

particles. The particle size distributions are often reported in terms of volume, number 

or scattering intensity but usually produce different interpretations of the results, 

despite the data come from exactly the same sample. When comparing size results 

obtained by DLS with electron microscopy, it must be noticed that the best 

corresponding DLS size distribution for comparison is the number distribution for us, 

because in microscopy techniques particle are counted and sorted into histograms 

from the images.  

The DLS measurements were preformed on a Malvern Zetasizer Nano-ZS 

(Malvern Instruments, Malvern, UK). Diluted suspensions of the samples were 

irradiated with red light (HeNe laser, wavelength λ= 632.8 nm) and the intensity 

fluctuations of the scattered light (detected at a backscattering angle of 173º) analysed 

to obtain an autocorrelation function. Samples were measured in disposable 

polystyrene cuvettes at a temperature of 25ºC. Data were acquired in automatic mode, 

ensuring enough photons were accumulated for the result to be statistically relevant. 

The software (DTS v 5.03) incorporates a "data quality report" that indicates good 

quality for all data obtained, and provides both the size mean and polydispersity index 

(PdI), employing the size distribution data obtained by intensity. Measurements were 

conducted in triplicate.  
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2.3.2.4 Transmission electron microscopy 

Transmission electron microscopy (TEM) is a microscopy technique based on a 

beam of electrons that is transmitted through a sample. The electrons interact with the 

sample as they pas through it and an image is formed. The image is magnified and 

focused in an imaging device, as a fluorescent screen, on a photographic film, or 

registered in a digital camera. TEMs are capable of imaging at a significantly higher 

resolution than light microscopes. At smaller magnifications TEM image contrast is 

due to absorption of electrons in the material, due to the thickness and composition of 

the material. At higher magnifications complex wave interactions modulate the 

intensity of the image, requiring expert analysis of observed images. Alternate modes 

of use allow us to observe chemical properties, crystal orientation and electronic 

structure as well as the sample image. 

Electron energy loss spectroscopy (EELS) is a technique that can be performed 

inside a TEM and permits to obtain maps of elements of a sample. In order to achieve 

that, a sample is exposed to electron beam energy. The electron paths are slightly 

deflected and detected so the energy loss can be measured. The inner shell ionizations 

are especially useful for determining the elemental components of the sample.  

Selected area electron diffraction (SAED) is a crystallographic technique 

associated to a TEM microscope. The electron beam hits the sample, and the electrons 

are diffracted to particular angles, allowing the characterization of the crystalline 

structure of a selected area. The result is an image that consists of a series of spots 

called SAED patterns that are a projection of the reciprocal lattice. This technique is 

similar to x-ray diffraction but the area of analysis is in the nanometer scale. 

Sample preparation is a necessary prerequisite for TEM. In order to be transparent 

to an electron beam, the samples must be thin, typically about 100 nm or less 

depending on the average atomic number of the material. Particulate materials sample 

preparation normally consists on transferring a suspension of the particles in a solvent 

to a carbon coated grid, and letting the solvent to evaporate. Our TEM samples were 
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prepared by putting a drop of the as prepared suspension on a carbon coated copper 

grid and then dried in air. The grid was then placed under a Philips CM-30 instrument. 

The images were taken at an acceleration voltage of 300 kV. Another microscope that 

we have used is a Hitachi 800MT with Gatan Multiscan chamber working at an 

acceleration voltage of 200 kV. EELS spectra were obtained in a Gatan Image Filter 

(GIF2000) coupled to a Jeol 2010F microscope. 

2.3.3 Magnetic characterization 

The magnetic behaviour of the MNPs that compose our systems is very important 

in order to decide if they are suitable for the potential applications that they are 

conceived for. Measurements of magnetization provide us information about the 

sample magnetic properties, like superparamagnetism, a valuable property for certain 

applications requiring the particles to be single domain and to remain not aggregated 

after the removal of a magnetic field. But we also are interested in the heating capacity 

of the MNPs. The SAR of a ferrofluid depends on the magnetic field strength and the 

field frequency. But it also depends on the ferrofluid characteristics, as the magnetic 

particle size and the magnetic particle concentration. 

2.3.3.1 Magnetic measurements SQUID 

Measurements of magnetization versus applied field at a fixed temperature 

provide us information about the response of the MNPs to a magnetic gradient. The 

measurement of the magnetization while the temperature is increasing allows us to 

estimate the magnetic size of the particles and also to calculate the blocking 

temperature of the ferrofluid, in other words, the temperature above which the sample 

becomes superparamagnetic.  

The magnetic properties of nanoparticles were determined with a commercial 

SQUID magnetometer (MPMS, Quantum Design). The measurements were performed 

on ferrofluid samples in organic and aqueous solvents. The dispersions were diluted 

down to a certain concentration and then frozen inside a capsule of gelatine or 

polycarbonate depending on the solvent.  
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2.3.3.1 SAR  

SAR was determined by a calorimetric method using a special purpose magneto-

thermal setup [23] working under adiabatic conditions. Compared to current 

nonadiabatic installations, this setup and method allows direct measurement of sample 

temperature increments with negligible heat losses, overcoming the limitation of heat 

dissipation for SAR estimation in standard SAR equipments. 

2.4 Characteristics of the organic MNPs suspensions  

Five different organic suspensions samples of monodisperse iron oxide 

nanoparticles, A0A4, have been prepared, according to the methods described above, 

which have been used in the following chapters as the starting materials for the 

preparation of biological ferrofluids. Sample A0 has been used to explore the 

magnetothermic effect of iron oxide nanoparticles when they are submitted to an 

alternating magnetic field. Samples A1, A2 and A3 have been used in chapter 3 for the 

preparation of monodisperse silica coated aqueous ferrofluids for biomedical 

applications. And sample A4 has been used in chapter 5 for the preparation of polymer 

coated aqueous ferrofluids for drug delivery. Here we present the results of the 

structural characterization of these samples. The main structural parameters are shown 

in Table 2.3. 
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Table 2.3: Structural parameters of the organic ferrofluids 

Sample Structure Diameter (nm) 
(TEM) 

Hydrodynamic  
diameter (DLS) 

 

A0 

98.7% Maghemite 

1.3 % Magnetite 

 

11.6 ± 1 

 

14 nm 

A1 Magnetite & Maghemite 5.9 ± 1 11 nm 

A2 Magnetite & Maghemite 9.6 ± 1.5 15.5 nm 

 

A3 

97.2 % Maghemite 

2.8 % Magnetite 

 

13.5 ± 2.5 

 

11 nm 

 

A4 

99.97% Maghemite 

0.03 % Magnetite 

 

5.7 ± 1 

 

 

 

Fig. 2.8 shows the x-ray diffraction patterns of dry powder samples separated 

from the as prepared organic suspensions by addition of acetone as described in 

section 3.2.2. All the patterns show the typical broad peaks of nanoparticles of iron 

oxide spinel structure at angles 2 close to 2.95, 2.52 2.09, 1.70, 1.61, 1.48 

corresponding to (2 2 0), (3 1 1 ), (4 0 0), (4 2 2 ), (5 1 1) and (4 4 0) reflections of 

maghemite crystal structure. No other peaks are observed apart from these ones, 

confirming the phase purity of the samples. 
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Figure 2.8 XRD of A0, A1, A2 and A4 powder samples. 
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The crystal structure of sample A3 was determined from electron diffraction 

patterns that are also consistent with maghemite crystal structure as shown in Fig. 2.9. 

By the titration method we find that this sample is composed by 97.2 % of maghemite. 

 

Figure 2.9 Electron diffraction pattern of sample A3 showing rings corresponding to 

interplanar distances: 2.99, 2.51, 2.10, 1.65, and 1.50 A that are close to the main reflections in 

maghemite structure: (220), (311), (400), (422), (511), (440) (2.95, 2.52, 2.09, 1.70 and 1.48 

A). 

     
 

    
 

Figure 2.10 TEM image of the as prepared iron oxide nanoparticle samples A0, A1, A2, A3 

and A4.  
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TEM images in Fig 2.10 show, in all cases, electron-dense spherical nanoparticles 

covered with a layer of light material corresponding to the oleic acid coating.  

 

 

 

Figure 2.11 Histograms of TEM nanoparticle size distributions of A0A4 samples. 
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A particle size analysis performed over a population of 300 nanoparticles yield 

narrow size distributions with average sizes 11.6 ± 1 nm, 5.9 ± 1 nm, 9.6 ± 1.5 nm, 

13.5 ± 2.5 nm, and 5.7 ± 1 nm for samples A0, A1, A2, A3 and A4, respectively. 

Histograms shown in Fig 2.11 fit well to log-normal distributions. 

The distribution of hydrodynamic sizes from DLS measurements are shown in 

Fig. 12. The average hydrodynamic diameters, DH, are 14, 11, 15.5 and 11 for samples 

A0, A1, A2 and A3 respectively. Comparing DH values with DTEM values it is apparent 

that the former are consistently higher than the later, as it should be expected because 

the hydrodynamic diameter includes the shell of surfactant and solvation molecules 

around the particle. 

 

  

Figure 2.12 Hydrodynamic diameter of A0A3 samples. 
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Sample A3 was also examined by thermogravimetry. The TGA plot is shown in 

Fig. 2.13. For instance, a loss of 47.5wt% can be observed in between 200ºC and 

400ºC that can be attributed to evaporation of the OA surfactant layer covering the 

iron oxide nanoparticles. 

 

Figure 2.13: TGA profile of the washed and dried IO@OA sample. 

2.5. Magnetic properties of the organic MNPs suspensions 

The magnetic properties of the precursor organic ferrofluids have been also 

determined. The sample A4 was found to have 99.97% of maghemite in its 

composition by the titration method. An additional method to identifying the iron 

oxide phase was to measure the saturation magnetization of the sample. The 

magnetization curves of sample A4 (Figure 2.14a) indicate a superparamagnetic 

behaviour at 200 K, with no hysteresis, and a blocked magnetic moment at 5 K, with 

coercive field of 240 Oe. The saturation magnetization MS was 75 emu/g Fe2O3, that is 

in agreement with the typical values for maghemite [24]. The anisotropy constant was 

estimated from the analysis of the ac susceptibility measurements. The out-of-phase 

susceptibility component ” Figure 2.14b presented a maximum at the average 

blocking temperature TB (”) [25].  
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Figure 2.14 a) Magnetization curves at 200 and 5K, b) Susceptibility. 

The dependence of TB with the excitation frequency of the alternating field was 

well described by the Arrhenius law. The fitting to the expression: 
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where the activation energy U is, as a first approximation, proportional to the 

average particle volume: 

U = KeffV 

The effective anisotropy constant Keff = 1.7 x 105 erg/cm3 (1.7 x 104 J/m3) was in 

the range expected for maghemite nanoparticles [26]. 
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2.6 Magnetothermic properties of the organic MNPs suspensions 

The amount of heat released by magnetic nanoparticles subject to an alternating 

magnetic field is a key factor for some biomedical applications, like magnetic fluid 

hyperthermia for cancer treatment or thermally-assisted drug release. Thus, it is 

important to determine the specific absorption rate (SAR) of the ferrofluid we use.  

In practice, the spatial arrangement, concentration and possible agglomeration of 

the magnetic nanoparticles within the tissues may differ considerably from those of 

the initial ferrofluid. Therefore, these are also parameters to take into account when 

studying the nanoparticles performance, since they can modify their heating capacity 

and, consequently, the heat they produce. In particular, the magnetic nature of the 

particles may give rise to inter-particle interactions. Although the effects of such 

interactions have been widely studied from the point of view of magnetic properties, 

very few works dealing with such effects on the heating ability are found in the 

literature. Here we present a SAR study of three ferrofluids obtained from the same 

sample in order to find how the concentration affects the heating capacity.  

SAR accounts for the heating power per mass unit of dissipating material. Direct 

temperature increments, ΔT, obtained upon application of ac-magnetic-field pulses 

during a time interval, Δt, were determined. SAR was then calculated as 
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where mNP is the mass of magnetic material and Ct, the heat capacity of the whole 

sample. For the case of maghemite or magnetite nanoparticles, widely used due to 

their biocompatibility, these sizes lie well below the critical size of single domain 

particles. Such particles are likely to lie also in the superparamagnetic regime, in 

which the heat dissipation is due to the thermal relaxation of magnetic moments. In 

this situation, it has been demonstrated that monodisperse particles give optimum SAR 

values, and that the heating power decreases strongly as the standard deviation of the 
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size distribution increases [27]. As iron oxide nanoparticles with an average diameter 

of 5 nm are very small to produce significant SAR values, we selected sample A0, a 

ferrofluid with an average size bigger than 10 nm. The A0 sample was composed of 

well dispersed, highly-crystalline and monodisperse nanoparticles with an average 

diameter of 11.6 nm, and an initial concentration of 8.14 mg/ml. Its structure was 

determined by the titration method, ant it was found to be 98.7% maghemite. 

Moreover we profit the chance to study the variation of the SAR value with the 

sample concentration. First of all, a magnetic characterization of three different 

concentrations of this ferrofluid was performed (see Table 2.4). As shown in Figure 

2.15, the M(H) curves reveal several effects typical of the presence of magnetic 

interactions, such as the decrease of initial susceptibility values, as it can be seen in 

Table 2.4.  

Table 2.4: SAR values for different concentration 

Sample Concentration 

(mg/ml) 

SAR (W/g) X” 

FF100 8.14 0.38 5.22 

FF50 4.65 0.47 5.52 

FF25 1.89 0.89 6.12 

 

The initial susceptibility is larger for the dilutions than for the original fluid, 

which responds less readily to the applied field than the dilutions. This fact suggests 

that as the ferrofluids concentration increases, the alignment of the nanoparticle 

magnetic moments parallel to the external field is hindered.  
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Figure 2.15 dc magnetization curves at room temperature. Inset: detail susceptibility variation 

at low fields. 

As an example of this type of measurements, Figure 2.16 shows three pulses, one 

for each sample. Due to the low concentration of the samples, we measured T values 

lower than 1oC, fact that explains the slight dispersion of the experimental data. Given 

that the original and diluted ferrofluids come from the same batch, with identical 

magnetic nanoparticles, SAR values, expressed in watts per gram of magnetic 

material, should be also similar, and so should the increments. However, these 

increments are higher for the dilutions, respectively, about 24 % and 134 % higher, for 

samples FF50 and FF25. This fact points out a loss of heating power with increasing 

ferrofluid concentration. 
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Figure 2.16 Heating steps at f= 109 kHz: experimental data with a smooth field. The dotted 

lines are extrapolation of the T drifts after ac-field application. 

As it can be observed in Table 2.4, the SAR of a ferrofluid, measured at 315 K, 3 

kA/m and 109 kHz was found to double as the ferrofluids concentration was decreased 

by a factor 4.  

Summarily, in our case, four times more concentrated sample implies half SAR 

value, that is, half the nanoparticle mass can be used to obtain the same temperature 

increase, because the concentration of the sample promote interactions between 

particles.
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2.7 Characteristics of aqueous prepared ferrofluids 

Ferrofluid B1 was synthesised as we described before. In Figure 2.17 it can be 

seen the TEM micrograph of the sample, the shape of the nanoparticles is irregular 

and the size dispersion is wide, but we can estimate an average size of 5 nm (Figure 

2.18).  

 

Figure 2.17 Transmission electron micrograph of ferrofluid B1. 

 

Figure 2.18 Histogram of iron oxide aqueous nanoparticles. 

From Figure 2.17 we can say that the particles are agglomerated, moreover it 

confirmed by DLS (Figure 2.19). The XRD pattern, in Figure 2.20, shows that the 

sample is composed by iron oxide inverse spinel structure, as it can be maghemite and 
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magnetite. We can also indicate that the peaks are very broad due to that the sample is 

composed by small nanoparticles. 

 

Figure 2.19 DLS of iron oxide aqueous nanoparticles. 

 

Figure 2.20 DRX of iron oxide aqueous nanoparticles. 

To summarize we use Table 2.5 in order to have an easy view of the average size 

of the samples we employ in next chapters. 
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Table 2.5: Samples, chapter, and average size of the MNPs 

Sample Chapter Diameter (nm) 

A0 2 11.6 

A1 3 5.9 

A2 3 9.6 

A3 3 13.5 

A4 5 5.7 

B1 4 ~5 
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Chapter 3 

Core-Shell ferrofluids for 

biomedical applications 

 

3.1 Introduction 

As it has been pointed out in chapter 1, there is a broad range of applications for 

magnetic nanoparticles in biology and medicine. Consequently, the structural 

requirements for each application are also variable. For instance, biotechnological 

applications such as enzyme carriers, separation, purification, analysis, catalysis and 

processing need particles with a large size and high magnetic moment [1]. However, 

in vivo applications require a more complex particle structure. That is especially true 

in the case of magnetic resonance imaging contrast agents targeted drug delivery and 

cancer therapy [2-4]. Before going into the structural requirements for these 

applications, let us remind the advantages they may bring. Superparamagnetic 

nanoparticles (SPN) with respect to usual contrast agents have higher responses 

necessary to reach single cell detection [5]. Concerning cancer therapy, this technique 

is already in clinical phase for particles directly injected in the tumour [6], and they 

will be really useful when they are biologically vectorised so they can reach tumours 

that, due to their location and/or small size, are currently not accessible by other 

therapies [7]. In addition, they would avoid most of the undesirable secondary effects 

associated with radiotherapy and chemotherapy treatments [8]. Moreover, therapy and 

diagnosis with SPN could be performed simultaneously, thus entering the most 

promising area of theranostics [9]. 

Coming back to the structural requirements for in vivo applications, the first one 

is, of course, biocompatibility. Apart from that, there are three important issues to be 
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considered: 1) optimal magnetic performance, which is obtained when the 

nanoparticles are monodisperse; 2) high facility to penetrate biological barriers, this 

requires small hydrodynamic sizes, which in single-core iron oxide nanoparticles (IO) 

are minimized with a narrow shell; and 3) easy particles functionalization, which 

requires to have them coated with an adequate reactive surface. This chapter addresses 

these three issues.  

Concerning the first issue, aqueous preparation methods are simple, cheap and, 

therefore, the favourite for industrial production. However aqueous methods are 

associated with high size dispersion and interparticle agglomeration that may diminish 

their magnetic performance. These problems are overcome by organic methods that 

allow a precise control of the particle size, particle size dispersion and particle 

agglomeration [10]. The problem with organic methods is that, in order to control the 

particle growth, they use hydrophobic surfactants. That makes the resulting particles 

non dispersible in water. 

With respect to the second and third issues, the main strategies to coat and 

redisperse these hydrophobic particles in aqueous media are [1112]: 1) to attach 

amphiphilic molecules to the hydrophobic surface [1314], and 2) to coat the particles 

with polymeric or silica shells [1517]. The first approach yields small single-core 

nanoparticles as desired but the multifunctionalization requires complex chemical 

processing. The second approach facilitates further multifunctionalization of the 

particles by means of remnant surface reactive groups in the coating, such as the 

silanol groups on silica coatings [1820].  

In the following we will consider several chemical routes to obtain aqueous 

suspensions of functionalized magnetic nanoparticles departing from nanoparticles 

produced in organic solvents.  
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3.1.1 Transferring nanoparticles from organic to aqueous media 

A summary of typical coating methods used for transferring NPs dispersed in an 

organic solvent to an aqueous medium is given in Table 3.1. 

Table 3.1: Phase transfer routes from organic to aqueous medium for 

nanoparticles 

Type of coating Chemical route Example 

 

Carboxylic acid 

Oxidation of double bond in 
oleic acid 

O3 [21], KMnO4  [22]  

Intercalation Pluronic F-127 [23], 
PMMA-PEO [24], 
Tetradecene [15], PEI 
[24], Cyclodextrine [11] 

In situ precipitation of  
nanoparticles in polymer 
matrixes 

Norbornano [25], HOOC-
PEG-COOH [26]  

In situ polymerization in the 
presence of nanoparticles 

2-Bromopropionilesther 
[27] 

 

 

 

Polymers 

Micelle methods PMAO–PEG [13] 

Particle encapsulation DSP-PEG-Biotine [28]  

Liposomes Micelle methods PEG-PE +PC [29] 

Sol-gel TEOS [30]  

Silica Microemulsion Silsesquioxano [31] 

Heterogeneous nucleation Ciclohexane/igepal [32] 

Bridge bifunctional 
molecule 

HS(CH2)10COOH [33] 

 

Gold 

Reduction of Au HAuCl4   [34] 
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In the first method, the particle surface is modified from hydrophobic to 

hydrophilic affinity without removal of the oleic molecules. This is achieved by 

oxidation of the oleic acid double bond by a strong oxidant, such as KMnO4 or O3. 

The oxidation produces the breaking of the double bond and creates a carboxylic 

group at the end, without affecting the carboxylic group at the other chain end 

interacting with the iron oxide surface [21, 22]. This method has the advantage that the 

surface of the IO core is never altered during the process. 

When the coating material is a polymer, the stability of the resulting nanoparticles 

depends on several factors: the ratio between hydrophobic and hydrophilic parts in the 

polymer chain, the chain length, the anchoring bond, and the polymer conformation. 

The most popular chemical route for polymer coating is the intercalation of the 

hydrophobic part of an amphiphilic polymer with the surfactant hydrocarbonous chain 

[11, 15, 23, 24]. A second route is in situ iron oxide precipitation [25, 26] and a third 

one, in situ polymerization,  which consists in using monomers as surfactants that are 

later polymerized to form compact polymer coatings [27]. Besides those, micelle 

methods based on the use of amphiphilic polymers as surfactants are simple and 

versatile [13].   

An example of nanoparticle encapsulation into liposomes was given by 

Gopalakhrisnan et al. These authors prepared hybrid vesicles of CdSe quantum dots 

by dispersing them together with phospholipids that formed the double liposome 

membrane [28]. The amount of nanoparticles encapsulated inside the liposome can be 

adjusted by regulating the volume of the organic solvent and the ratio of nanoparticles. 

Another possibility is to encapsulate nanoparticles in phospholipid block-copolymers 

micelles. In this way, the formation of single-core nanoparticles can be achieved [29]. 

Inorganic coatings can also be very effective, especially silica and gold coatings. 

Gold is an ideal inert material and it is also biocompatible. Besides, gold surfaces can 

be easily functionalised with macromolecules or any other ligand having a thiol 

terminal group (-SH). Moreover, it confers optical properties to the material due to 

superficial plasmons. Gold-IO dimmer structures can be built by epitaxial growth of 
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magnetite particles on preformed Au nanoparticles [32]. Another strategy is to use 

bifunctional molecules with a thiol group at one end and a carboxylic group at the 

other (i.e. 11-mercaptoundecanoic acid) to link both types of particles [33]. The 

formation of core-shell structures can be achieved by thermal decomposition of gold 

organic precursors as gold acetate, or by reduction of HAuCl4 in a mixture of 

water/chloroform/oleilamine in the presence of IO nanoparticles [34].  

Silica coatings are very versatile as they allow a control of shell thickness, shell 

porosity, encapsulation of drugs and other active components, surface 

functionalization, etc. For this reason they have been the choice in this work. 

3.1.2 Use of silanes for particle coating and redispersion in water  

Silanes are outstandingly useful materials because as they are organic-inorganic 

compounds they provide the characteristics of inorganic networks (mechanical and 

thermal stability) and of organic compounds (hydrophobic/hydrophilic nature or 

biochemical reactivity) [35, 36]. Besides, silica is biocompatible and inert and the 

chemistry for the functionalization of silica surfaces is well established, thus opening 

the way for bioconjugation [17, 18]. The stabilization of silica colloids at pH 7 is 

realized by electrostatic repulsion because the isoelectric point is in between 3 and 4. 

Silica coating is usually conducted by hydrolysis of alkoxysilane precursors, such as 

TEOS, and the most popular procedure is probably the Stöber method [37]. Besides 

TEOS, a preferred organosilica precursor is APTS that permits to obtain amino 

functionalized nanoparticles or silsesquioxane (TMA-POSS) [31, 38]. 

The Stobër method is carried out in water/alcohol medium. A priori, this is 

unpractical for our purpose because IO@OA particles are not dispersible in this 

medium. There are several options to overcome this problem: 1) to carry out the 

hydrolysis in a microemulsion system; 2) to transfer the particles into water after 

surface modification; 3) a direct coating by hydrolysis of tetraethoxysilane (TEOS) 

precursor in organic medium; 4) to replace the oleic acid with an organic alkoxysilane 

precursor by ligand exchange and then perform the hydrolysis of this precursor.  
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Some of the methods pointed out above may present inconveniences. The first 

one usually yields multi-core nanoparticles [19, 20]. The second presents several 

alternatives. One of them uses secondary surfactants, such as 

cetyltrimethylammonium bromide [38], to transfer the IO@OA nanoparticles to 

water/ethanol media, and there, they are coated with TEOS. Another alternative is the 

exchange of the primary surfactant by a hydrophilic ligand containing alkoxysilane 

groups that can be hydrolysed to form a silica monolayer. Following this approach, 

Kohler [39] coated IO@OA with poly(ethylene glycol) (PEG) trialkoxisilane in 

toluene, and Shen et al. [40] coated Pt@Fe3O4 core-shell nanoparticles with methoxy-

poly(ethylene glycol) silane also in toluene. Then, both of them coated the particles 

with TEOS in an ethanol/water mixture to obtain Fe2O3@MPEG-sil/SiO2 core-shell 

nanoparticles that were dispersible in various biological fluids. However, this method 

may lead to multi-core particles with relatively large sizes (100200 nm).  

The third method may present interparticle gelation problems [41]. On the other 

hand, the fourth method has been used with success for coating several types of 

nanoparticles [42]. For instance, Liz-Marzan et al. [43] describe a method for coating 

gold nanoparticles with silica that uses silane coupling agents as surface primers to 

render the particle surface able to interact with TEOS. Silane coupling agents act as 

surface primers providing the nanoparticle surface with silanol groups, and therefore 

endowing them with chemical affinity for silica. During this first step, the small 

organic ions initially adsorbed onto the surface are displaced by the coupling agents, 

which show a larger adsorption affinity. In a second step, sodium silicate solution is 

added to the dispersion to promote the formation of a thin, dense and relatively 

homogeneous silica layer around the particles using the silanol groups as anchor 

points. The particles can then be transferred into ethanol and coated with a silica layer 

of a controlled thickness by the Stöber process.  

3.1.3 Dispersing hydrophobic nanoparticles in water by ligand exchange 

A number of ligand exchange methods are classified in Table 3.2. Ligand 

exchange by bifunctional molecules is a simple process that consists on the 
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substitution of the surfactant employed in their synthesis by a hydrophilic ligand. 

Bifunctional molecules have, at least, two functional groups: one that interacts with 

the nanoparticle surface with strength enough as to displace the surfactant; and another 

that stabilizes the particles in water usually by electrostatic interactions [12, 4548].  

Table 3.2: Examples of ligand exchange techniques using different ligands 

Type of molecule Example 

Bifunctional molecules DMSA [12], phosphonates [44], citric acid [45], 

dopamine [46], dendrimers [47], TMAOH [48]. 

Polymers PAA-PAH [49], HOOC-PEG-COOH [50]. 

Silanes Silane-PEG [39], APTS [38], Thiolsilane [51], 

Aminosilane [51], Phosphatosilane [52]. 

 

Polymers used for ligand exchange contain a carboxylic group that can replace  

oleic acid. The exchange is carried out in hard conditions (high temperatures and 

vigorous stirring) because of the slow replacement kinetic of the polymer owing to its 

large volume [4950]. The factors determining the stability of the nanoparticles in 

suspension have already been commented above.  

When the purpose is to coat particles with silica it is quite convenient to use 

exchange ligands having alkoxysilane groups. Several trialkoxysilanes used as 

exchange ligands by Weller et al. for gold and CdTe nanoparticles are presented in 

Figure 3.1 [51, 52]. Gold particles were already synthesized in the presence of ligand 

1, and CdTe nanoparticles were coated later on by exchange of cysteamine-stabilized 

CdTe nanoparticles with ligand 1. Then, different silanes (ligands 2, 3, and 4) were 

condensed on the resulting particle surface, leading to a cross-linked, negatively 

charged shell.  
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Figure 3.1 Trialkoxysilanes used by Weller et al. 

3.1.4 Our approach for the production of silica coated aqueous dispersions 

In this chapter we investigate methods for the production of monodispersed silica 

coated aqueous dispersions based on the ligand exchange approach. The oleic acid 

surfactant is exchanged by an organic iron coordinating compound ending in an 

alkoxysilane group (Figure 3.2). Then, the alkoxysilane precursor layer is hydrolysed 

in an organic solvent, and the particles are immediately transferred into water to get a 

stable aqueous dispersion. Finally, the particles are covered with a silica layer by a 

modified Stöber method.  

 

Figure 3.2 Preparation of iron oxide aqueous dispersions. 

Two types of ligands have been used: i) commercial short chain organosilanes 

with a stronger affinity for iron oxide surface than oleic acid, which is the surfactant 

usually employed in the synthesis of the NPs; and ii) long chain ligands with a 

molecular structure similar to that of oleic acid. For type i) ligands the following 

compounds have been selected: 1) diethyl [2-(triethoxysilyl)ethyl]phosphonate 
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(DTESP); and 2) N-(3-triethoxysilylpropyl)-4, 5-dihydroimidazole (TESDI). For type 

ii) ligands, there was no commercial choice available. Therefore, we have synthesized 

the organoalkoxysilane precursor, 3-(triethoxisilyl) propylureido dodecanoic acid 

(TESPDA), which is structurally similar to oleic acid. 

In the first ligand of type i), DTESP (Figure 3.3a), the iron coordinating group is 

phosphonate and it is separated by an ethylene chain from the trialkoxisilane group. 

This organophosphorus compound contains a phosphoryl group that may interact 

efficiently with many metal ions. Besides, the hydrolysis of siloxane group will form 

an organic-inorganic coating stabilizing the nanoparticles in aqueous medium. 

 

Figure 3.3 Chemical structures of silane precursors: a) diethyl [2-

(triethoxysilyl)ethyl]phosphonate (DTESP), b) N-(3-triethoxysilylpropyl)-4,5-

dihydroimidazole (TESDI), c) , 3-(triethoxisilyl) propylureido dodecanoic acid (TESPDA). 

The second ligand of type i), TESDI (Figure 3.3b), is widely used in the 

functionalization of mesoporous materials for different applications, i.e. precious 

metal ions adsorbents, and direct ethanol fuel cells [53, 54]. The coordinating group is 

imidazole and the spacer is a propyl chain. The imidazole group is also able to interact 

with metal ions on the particle surface and generate hydrophilic organic-inorganic 

shells by hydrolysis of the siloxane group. 
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The ligand of type ii), TESPDA (Figure 3.3c), has a long chain structure and a 

carboxylic acid ending group. The carboxylic group, as the one in oleic acid, is able to 

interact with the nanoparticle and, as the other silanes, it has the potential to achieve 

single core-shell nanoparticles in aqueous dispersion. 

3.2 Experimental 

3.2.1 Synthesis 

Synthesis of IO@OA nanoparticles. Iron oxide nanoparticles coated with oleic 

acid were prepared following the method proposed by Hyeon as described in chapter 

2, samples A1, A2 and A3.  

Synthesis of IO@DTESP and IO@TESDI particle aqueous suspensions. 1 ml of 

IO@oleic acid octyl ether nanoparticle suspension was washed with acetone and dried 

with Argon for three times. The resulting solid was dispersed in 10 ml of hexane 

containing 0.1 ml of alkosysilane precursor by sonication and then separated by 

magnetic decantation and dried with Argon. After repeating this procedure at least 

once, the solid was redispersed in water to obtain a IO@Silane particle aqueous 

suspension. 

Synthesis of IO@DTESP@TEOS and IO@TESDI@TEOS particles. An amount 

of IO@silane dried powder sample was dispersed in 4 ml of isopropanol by 

sonication, then 1 ml of water was added and sonicated for an extra 5 minutes time. 

After that 300 µl of a NH4OH/ethanol 1:1 mixture were added and sonicated again. 

Finally, 2.5 ml of the resulting suspension was mixed with 25 ml of isopropanol 

containing 70 µl of TEOS and stirred for 24 hours.  

Synthesis of IO@DTESP@TEOS@Sil-PEG and IO@TESDI@TEOS@Sil-PEG 

particles. 100 µl of N-(triethoxysililpropyl) O-polyethyleneoxide urethane (Sil-PEG) 

were added to 15 ml of IO@Silane@TEOS particle suspension and stirred during 24 

hours. 
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Synthesis of TESPDA. The synthesis of TESPDA was carried out by 

condensation of the amine alkyl carboxylic acid with trialkoxysilane isocyanate by 

means of urea bridges as represented in scheme 3. In a standard procedure, 2.15 g of 

12-aminododecanoic acid (1) were dissolved in a mixture of 8 ml of acetic acid, 16 ml 

of ethanol, and 16 ml of chloroform, then 2.5 g of 3-cyanobutyltriethoxysilane (2) 

were added, and the solution was kept under stirring overnight to obtain the 

alkoxysilane precursor (3). 

 

Figure 3.4 Synthesis of the silane precursor. 

Synthesis of IO@TESPDA particles. An scheme of the procedure is shown in Fig. 

3.4. 10 ml of IO@OA organic suspension were mixed with 0.3 ml of TESPDA and 15 

ml of acetone. The resulting nanoparticles were separated with the help of a magnet 

and the solution was discarded. This operation was repeated twice. Then, the iron 

oxide nanoparticles were dispersed in 30 ml of hexane during 10 minutes and then 

treated with 1 ml of alkoxysilane solution. After 15 minutes stirring, 0.1 ml of 

NH4OH/ethanol (1:1 by volume) and 0.1 ml of Milli-Q water were added and 

sonicated during 3 minutes. The sample was well dispersed. Subsequently the sample 

was magnetically stirred during 4 hours. Then a quantity of 20 ml of Milli-Q water 

was added. The organic and aqueous phases were easily separated, the aqueous phase 

containing all the magnetic nanoparticles. 

3.2.2 Physical and chemical characterization 

The characterization of the materials has been carried out using techniques 

described in chapter 2. Namely, XRD, TEM, TGA, DLS and SQUID magnetometer. 
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3.3 Results 

3.3.1 Use of short chain organosilanes with iron coordinating groups 

3.3.1.1 DTESP 

 The organic ferrofluid A1, described in chapter 2 has been used for these 

experiments. The ligand exchange has been performed as described in the 

experimental section. Figure 3.5 shows the two liquid phases before and after the 

coating with the phosphate organosilane. It is clear that all the particles passed to the 

aqueous medium after coating. The colour of the particles becomes lighter due to the 

silica layer around the black magnetite particles. The aqueous suspension remains 

stable for several days. 

 

Figure 3.5 Images of the organic and aqueous media before and after ligand exchange. 

In Figure 3.6 we can see some TEM micrographs of the sample dispersed in 

water. The particles seem to be agglomerated in assemblies of different sizes up to 100 

nm. The particle size analysis for individual iron oxide nanoparticles yield an average 

size of 6.2 ± 0.6 nm. A histogram is shown in Figure 3.7. Comparing this size with 

that of the original organic ferrofluid, D=5.9 ± 1 nm (see sample A1 in chapter 2), we 

can see that the diameter of the particles has slightly increased after the ligand 

exchange. Figure 3.8 shows DLS plots of the aqueous suspension. The distribution of 

hydrodynamic diameters is bimodal with one population with average size DH=65 nm, 
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corresponding to small aggregates and a second population with average size DH=290 

nm that corresponds to larger aggregates probably formed by secondary aggregation 

of the smaller ones. Let’s remind that the original ferrofluid had a hydrodynamic size 

of 11 nm corresponding to individual nanoparticles. Therefore a particle 

agglomeration has taken place during the coating reaction.  

      

Figure 3.6 TEM micrographs of IO@DTESP nanoparticles. 

 

Figure 3.7 Histogram of IO@DTESP nanoparticles. 
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Figure 3.8 DLS of IO@DTESP nanoparticle aqueous suspensions. 

In a second stage the IO@DTESP nanoparticles were coated with TEOS. With 

that purpose, an amount of aqueous suspension of these particles was redispersed in a 

mixture of isopropanol and water. Then, NH4OH was added to catalyse the hydrolysis 

of TEOS on the surface of the silane-stabilized nanoparticles. Figures 3.9 and 3.10 

show the corresponding TEM image and DLS plot after the hydrolysis of TEOS. 

Comparing with TEM results before coating, it is apparent that the layer of lighter 

material around the aggregates is broader after coating with TEOS indicating the 

deposition of a new layer of TEOS around the particles. Nevertheless, the DLS peak 

does not show any significant shift to larger sizes indicating that the average size has 

not changed too much in comparison with the total particle size. It is also clear from 

DLS plot that the coating process did not cause any particle aggregation. Aqueous 

suspensions of IO@DTESP@TEOS were quite stable along the time (Figure 3.11).  
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Figure 3.9 TEM micrographs of IO@DTESP@TEOS nanoparticles 

 

Figure 3.10 DLS of IO@DTESP@TEOS nanoparticle aqueous suspensions. 

 

Figure 3.11 Photograph of iron oxide nanoparticles coated with TEOS stabilized in water.   
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In a last step the IO@DTESP@TEOS nanoparticles were coated with PEG in 

order to improve their biocompatibility, make then more stable in the blood stream, 

and make then invisible to macrophages. The choice of PEG for surface coating is 

founded on its protein anti-adherence properties that make it the preferred polymer 

coating by far for in vivo applications of nanoparticles in general. The anchoring of 

PEG to the surface was performed by hydrolysis of a PEG trialkoxysilane precursor 

following the procedure described in the experimental section. The TEM micrographs 

(Figure 3.12) and DLS plots (Figure 3.13) show that the particles have not 

experienced important changes during the process. The small size and aqueous 

stability of the resulting nanoparticle makes them very appropriate for biomedical 

applications.  

       

Figure 3.12 TEM micrographs of iron oxide nanoparticles coated with TEOS (left) and Sil-

PEG (right). 
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Figure 3.13: DLS of iron oxide nanoparticles coated by TEOS and Sil-PEG. 

3.3.1.2 TESDI  

The procedure to obtain aqueous suspensions of magnetic nanoparticles using 

TESDI as ligand exchange organosilane precursor was similar to that used for DTESP. 

The starting material was with the sample A2, described in chapter 2, with an average 

diameter of 9.6 ± 1.4 nm. In a first step, the original nanoparticles were dispersed in 

hexane where the ligand exchange was carried out. Then, the nanoparticles were 

transferred to water. Figure 3.14 shows the nanoparticle dispersion in water. In a 

further step, the nanoparticles were coated with TEOS in isopropanol/water media. As 

it can be appreciated in Figure 3.15, the transferred nanoparticles could be easily 

dispersed in water with better stability than in the added octyl ether.   
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Figure 3.14 Photograph of iron oxide nanoparticles suspension after coating with TDESDI in 

water (right). 

 

Figure 3.15: Photograph of iron oxide nanoparticles in a two phase octyl ether/water system 
as prepared (left) and after coating with TEOS (right). Notice that all the silica coated 
nanoparticles are in the bottom water phase. 

In order to study the size, the shape and the state of aggregation of the 

nanoparticles in the aqueous suspension we analyse them by TEM and DLS. Figure 

3.16 shows two TEM micrographs of the sample. The nanoparticles seem to have the 

same size as the former nanoparticles that is 9.6 nm, and they form aggregates.  In 

Figure 3.17 we can see the histogram of the particle size obtained from TEM 

micrographs. In the second micrograph we can observe some aggregates produced by 

nanoparticle agglomeration that are also evident in DLS plots (Figure 3.18). 
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Figure 3.16 TEM micrograph of iron oxide nanoparticles coated with TESDI in water. 

 

Figure 3.17 Histogram of the particle size distribution. 
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Figure 3.18 DLS of iron oxide nanoparticles stabilized by means of TESDI in water.  

 

   

Figure 3.19 DLS of iron oxide nanoparticles stabilized by means of TEOS.  
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Figure 3.20: TEM micrograph of iron oxide nanoparticles coated with TEOS. 

An examination of the suspension by DLS shows the presence of agglomerates 

(Figure 3.20). That presence is not as abundant as it appears in the plot. As the plot 

signal corresponds to the intensity of scattered light, large particles scatter 

proportionally more than small particles. This is reflected on TEM images (Figure 

3.19) that shows that the ratio of agglomerates in number is relatively low. 

3.3.2 Use of long chain organosilanes with iron coordinating groups, TESPDA 

The third approach to obtain single–core aqueous stable nanoparticles has been 

based on the use of exchange organosilane ligands with long hydrocarbon chains, such 

as TESPDA. In this case, the starting organic ferrofluid was sample A3 described in 

chapter 2. Aqueous dispersions of iron oxide nanoparticles coated with an organosilica 

layer IO@silane were prepared according to the procedure described in the 

experimental section. First, sample A3 powders were precipitated with acetone and 

redispersed in a solution of the alkoxysilane precursor in hexane by ultrasounds. Then, 

the hydrolysis of the alkoxysilane precursor was carried out by addition of water and 

ammonia. After addition of an aqueous phase and stirring, all the particles passed to 

the aqueous phase as shown in Figure 3.21. In order to obtain an individual coating of 

the particles it is necessary to perform the ligand substitution by successive steps of 

dispersion and reprecipitation in acetone/alkoxysilane mixtures. In the absence of this 
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procedure the resulting particles were dispersible in water but they showed intense 

aggregation as observed by TEM and DLS (data not shown).  

 

Figure 3.21 Left: IO@AO nanoparticles in organic medium. Right: IO@TESPDA 

nanoparticles in aqueous medium. 

The characteristics of the aqueous dispersion sample are shown in the next 

figures. A TEM image of the IO@silane sample is shown in Figure 3.22. It is clear 

from the image that the particles are also rounded and uniform in size. Although the 

silica shell was hard to distinguish in most cases due to the low contrast, it was 

occasionally observed in some particles. The inset in Figure 3.22 shows a particle with 

a dark nucleus of 14.6 nm in diameter surrounded by a layer with a 6.0 nm in 

thickness. Histogram and Gaussian fitting of the particle size distribution is shown in 

Figure 3.23. The estimated mean diameter was 13.5 nm, and the standard deviation 

was 3 nm, thus very similar to those of the as prepared sample. However, a DLS 

analysis of the aqueous suspension (Figure 3.24) yields an average hydrodynamic 

diameter of 20 nm, which is 9 nm larger than that of the organic dispersion. This 

diameter is in accordance with the TEM size of particle in Figure 3.22 that is 20.6 nm. 

It is well known that compounds that mainly consist in hydrocarbonous structures 

have low contrast in TEM images. Analysis by EDX (Figure 3.25) confirms the 

presence of Fe and Si in the sample. The Cu and Cr signals appearing in the spectrum 

come from the grid and the sample holder, respectively. 
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Figure 3.22 TEM image of IO@silane particles. In the insert HRTEM image of a particle 

surrounded by a halo with a thickness of 6 nm. 

 

Figure 3.23 Histogram of the particle size distribution. 

 

Figure 3.24 DLS of IO@silane in aqueous medium. 
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Figure 3.25 EDX spectrum of the IO@silane sample. 

The resulting nanoparticles are single-core, have a small hydrodynamic diameter, 

20 nm, and no agglomeration is observed. This new procedure opens multiple 

possibilities for an easy functionalization of the particles because of the large array of 

trialkoxide precursors available, including luminescent dyes, and anchoring groups for 

drugs, antibodies and other biological functionalities. 

3.3.2.1 Magnetic Properties 

The three most important magnetic parameters of SPN for most biomedical 

applications are: saturation magnetization, MS, important for separation, purification, 

processing and targeted drug delivery, magnetic anisotropy, K, important for MRI and 

out-of-phase ac susceptibility, ”, important for hyperthermia. In order to determine 

the values of these parameters in our ferrofluids, we have measured the variation of 

the magnetization with a field, and the variation of the ac susceptibility with the 

temperature, in both organic and aqueous dispersions. MS(H) plots are shown if Figure 

3.26 after subtracting the contribution from the fluid and the silica sample holder. The 

shape of the curves is very similar in both cases, but there is a difference of scale that 

may be due to surface effects from different coatings or to uncertainties in the 

determination of iron concentration in the aqueous dispersion due to an incomplete 
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dissolution of the particles. The curves do not reach saturation; instead they show a 

region of linear increase of the magnetization with the field that is typical in 

maghemite particles in the nanometre size range. The curves have been fitted to a 

modified Langevin function:  

χH
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


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


      (1) 

where MS is the saturation magnetization and  is the average magnetic moment 

of the core. The linear contribution to the magnetization, H, is an additional term that 

is often used for antiferromagnetic and ferromagnetic nanoparticles [55, 56]. The fits 

yield values of 43.3 and 38.6 emu/g(Fe2O3) for, respectively, the organic and aqueous 

dispersions. These values are lower than the bulk value (76 emu/g(Fe2O3)), as 

expected for particles of their size. The MS decrease in nanoparticles has been 

attributed to a “magnetically death layer” with a thickness that have been estimated in 

1 nm [57]. A fitting to eq. 2 in ref [55] yields a thickness of 1.07 nm for the organic 

sample and 1.29 nm for the aqueous dispersion, which are in good agreement with the 

referred model.  

 

Figure 3.26 Variation of the magnetization with the magnetic field for organic and aqueous 

dispersions. 
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Figure 3.27 Variation of the in-phase (a) and out-of-phase (b) ac magnetic susceptibility with 

the temperature for organic and aqueous dispersions, at several frequencies of the alternating 

field (1 Hz, 5 Hz, 15 Hz, 117 Hz and 852 Hz). 

AC measurements are presented in Figure 3.27. The data correspond well to 

superparamagnetic behaviour, as expected for 13.5 nm maghemite particles. Again, as 

in the case of M(H) data, there is a difference of scale between the organic and the 

aqueous dispersions. The scaling factor is very similar in both cases. It is known that 

magnetic properties of nanoparticles are very sensitive to surface binding state [58]. 

Actually, it has already been found in magnetite nanoparticles that an increase on the 

thickness of the coating layer causes a decrease of the magnetization with slight 

changes in the blocking temperature [59], as it is observed here. Once re-scaled, the 

data from both dispersions are similar for temperatures below the freezing temperature 

(around 270 K). Therefore, the Néel relaxation behaviour of the particles is hardly 

changing in the process of hydrophilization. A detailed analysis of the data within the 

Néel theory of relaxation yields blocking temperatures, at 117 Hz, of TB(FForg) = 160 

K and TB(FFaq) = 150.7 K, time relaxation constants of -log0(FForg) = 24,6 and -

log0(FFaq) = 21,1, and effective anisotropy constants Keff(FForg) = 3,8·105 erg/cm3 and 

Keff(FFaq) = 3,1·105 erg/cm3. Thus, the analysis reveals some difference between 

organic and aqueous suspensions: TB decreases slightly, 0 increases, and U decreases. 
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Above the freezing temperature, there is a sudden susceptibility increase, 

particularly in ’, in the case of aqueous dispersion that is absent in the organic 

dispersion. This increase can be attributed to the onset of Brown relaxation that is not 

appearing in the organic dispersion. Thus, contrary to the case of Néel relaxation, 

Brown relaxation is indeed affected by the dispersing medium. The Brownian 

relaxation time can be expressed as: 
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

3
B      (2) 

where  is the viscosity of the medium, and Vhyd is the hydrodynamic volume, 

respectively. Thus, the differences of intensity must be related to differences of the 

solvent viscosity that hinder the rotation of the particles in the organic medium with 

respect to water. This can be of considerable importance for magnetothermic 

applications. 

3.4 Conclusions 

Phase transfer of iron oxide nanoparticles from organic to aqueous solvents 
has been achieved by ligand exchange of oleic acid with three different 
organoalkoxysilanes. The shape and size of the original nanoparticles are 
maintained after the phase-transfer process in all cases. The 
diethylphosphatoethyltriethoxysilane ligand yielded stable aqueous dispersions, 
but the resulting particles were agglomerated to some extent. The N-(3-
triethoxysilylpropyl)-4,5-dihydroimidazole ligand presented similar results but 
with a lower degree of agglomeration was lower, so thatthe quantity of single-
core nanoparticles was substantially increased. This can be due to the 
interactions between the iron oxide and the silanes functional groups. As the 
phosphate group interacts weaker than the imidazole with the iron oxide 
nanoparticle, the concentration of free silane increases and condense forming 
agglomerates.  In both cases the single-core particles can be isolated from the 
agglomerated particles by filtration, magnetic separation or centrifugation. 

  
Alternatively, by means of 3-(triethoxisilyl) propylureido dodecanoic acid, 

we have described a straightforward procedure to transfer high quality iron 
oxide nanoparticles synthesized in organic medium into aqueous medium 
forming single core-shell nanoparticle suspensions. The phase transfer is more 
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efficient than in the methods described before, probably due to the fact that the 
long chain permits a better ordered disposition of ligands around the the 
nanoparticles. The aqueous magnetic nanoparticles maintain the shape, 
crystallinity and size distribution of the original organic nanoparticles, as well 
as with short chain ligands. The magnetic studies of organic and aqueous 
ferrofluids are consistent with the superparamagnetic behaviour of the 
nanoparticles. 

 
To summarize we can conclude that the first two ligand exchange 

procedures employing two short chain commercial silanes permit to obtain 
stable aqueous suspensions of iron oxide nanoparticles. The phosphateligand, 
produces agglomerates and the imidazol ligand a mixture of single-core 
nanoparticles and agglomerated nanoparticles. The main drawback of these 
procedures is is a low yield. The ferrofluids obtained in these ways can be 
useful in biomedical applications after separation of aggregates by filtration, 
magnetic separation or centrifugation. In the third procedure, using a long 
chain ligand, the transfer from organic to aqueous medium is more effective, 
and it yields single-core aqueous suspensions, which was one of the purposes 
of this work. Besides, the resulting nanoparticles can be further coated with a 
silica layer that can be easily functionalized by hydrolysis of biofunctional 
molecules having alkoxysilane groups. Therefore these methodology can be 
very useful for the production of multifunctional biomedical magnetic 
nanoparticle suspensions.  
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Chapter 4 

Superparamagnetic beads for a 

biosensor 

 

4.1 Introduction 

Nanoparticulate materials have risen great interest in the last decades, particularly 

after new specific characterization techniques and synthetic procedures allowing the 

study of their unique properties became available. It is well known that materials at 

the nanometric scale can present qualitatively different behaviour than their analogous 

materials in bulk do not show. In this sense, nanoparticulate magnetic materials are a 

clear example. The novel physical properties these materials exhibit can be exploited 

in many and interesting applications and can be used in fields such as information 

storage, environmental decontamination, cooling fluids, inks, lubricants, biomedicine, 

etc. Indeed, magnetic nanoparticles present appealing possibilities in biomedicine [1]. 

Because of their response to a magnetic field gradient they can be used as magnetic 

carriers, as they can be moved and fixed at distance and throughout human tissues. 

They can be directed to a particular target and there release a specific drug or 

molecule, in a magnetic-driven drug delivery process.  They are able to be used as 

contrast agents to enhance the image contrast in magnetic resonance imaging (MRI). 

They can also be heated at distance by applying an alternating magnetic field as part 

of a hyperthermia process. Moreover, they can be a part of important ex vivo 

applications, like magnetic separation where the nanoparticles can be functionalized 

with a molecule that specially recognizes an analyte and thus separate it from solution, 

and biosensors, as it will be shown in this chapter. 
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One of the major demands in biomedicine is the early diagnosis of diseases. A 

large number of research groups are developing new methodologies to measure 

biomolecules and cells with high sensitivity in order to enable and improved the 

detection of a wide range of targets including DNA, RNA, proteins, enzymes, drugs, 

pathogens, and tumour cells. In particular, the development of biosensors involves the 

participation of multidisciplinary groups due to the necessity of integration of 

chemistry, physics, medicine, molecular biology and informatics. A biosensor is a 

device that includes a biological entity to measure in a selective way, specific 

substances of biological importance, and it can be used in fields such as environmental 

science, food science and biomedicine. 

Nowadays the design of biosensor parameters is focused on improving sensitivity 

and providing detection in real times. Grant et al. presented a new strategy to detect 

biomolecules. They have developed a protease biosensor that is able to detect trypsin, 

by means of physical adsorption on the surface of silica nanobeads and detecting it by 

fluorescence resonance energy transfer. The nanosensors demonstrated a limit 

detection of 12.3 g/ml with a response time of 2 min [2]. Another strategy has been 

reported by Fan and col. They describe a new technology based on the measurement 

of the Brownian motion of polymer nanobeads using a microparticle tracking 

velocimetry to detect antigen–antibody interactions [3]. The group of Goodey have 

developed a chip biosensor that use polystyrenepoly(ethylene glycol) and agarose 

microspheres to detect a variety of analytes including acids, bases, metal cations, and 

antibody reagents. Identification and quantification of analytes occurs via colorimetric 

and fluorescence changes to the indicator molecules that are covalently attached to the 

polymeric microspheres [4]. 

Magnetic nanoparticle materials have been an interesting object of study in 

biosensing due to the improvement of sensibility, and their capacity to be integrated in 

multianalyte systems. Maghemite and magnetite are both iron oxides that present 

special properties in the nanometric scale. They are widely used in biomedical 

applications. The superparamagnetic behaviour from iron oxide nanoparticles confers 

magnetic properties to the materials that manifest only under a magnetic filed. When 
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the field is taken away, the particles do not retain any magnetic remanence. Zhang et 

al have reported a theoretical study for the detection of magnetic nanoparticles in 

sensors based on the Hall Effect [5]. An experimental approximation of biosensors 

based on the Hall Effect has been proposed by Thanh and co-workers. They have 

developed a sensor that can provide real-time profiles for the detection of Dynabeads 

M-280 under a magnetic field with a resolution of 0.04 beads per µm2 [6]. Another 

approach to use magnetic particles in biosensors has been described by Ghionea and 

col. They present a detection scheme for a immunoassay sensor based on antigen-

antibody interactions by means of a microwave circuit and using magnetic beads that 

improve the signal [7]. The advantages of using magnetic nanoparticles were 

highlighted in a study carried out by Qui et al. In this work, the magnetic core–shell 

Fe3O4@Au nanoparticles attached to the surface of a magnetic electrode were applied 

to study the immobilization of myoglobin. The electrochemistry of the nanocomposite 

was characterized by electrochemical impedance spectroscopy, and cyclic 

voltammetry. This system shows potential application for fabricating novel biosensors 

[8]. 

A number of iron oxides are biocompatible as they are present in living 

organisms. However, to be used in biomedical applications is fundamental to keep 

them in a reduced size by preserving them from agglomeration by a protective layer 

that can be composed by different materials.   Organic coatings are widely employed 

in the field of biosensors in order to obtain core-shell nanoparticles. Patris and col. [9] 

have developed an electrochemical immunosensor assay for the determination of anti-

Clostridium tetani antibody in serum. The antigen was immobilized above 

superparamagnetic beads coated with streptavidin and then they were put in contact 

with the tetani antibody. Later they react with a peroxidase-labeled anti-IgG. The 

resulting immunobeads were retained onto the carbon working electrode by means of 

a magnet. The quantity of tetani antibody in the samples was determined by an 

amperometric method. The assay was less time consuming than the ELISA method 

and can be easily implemented using a portable electrochemical device. Mak and his 

group have reported an electromagnetic biosensor that employed magnetic labelled 



126  Chapter 4. Superparamagnetic beads for a biosensor 

analytes (proteins, antibodies, DNA) with a magnetic system for binding strength 

measurements [10]. By labelling these analyte molecules with superparamagnetic 

polystyrene microbeads and by generation of an electrochemical current at the 

microelectrodes the successful biochemical recognition can be transformed into an 

electrical signal. The application of a magnet on the microbead labels can be used to 

separate non-specific from specific bindings allowing the measurement of the binding 

force between the molecules. The data could be obtained in a single measurement and, 

the instrument required is very low cost. 

However, organic coatings use to be chemically unstable. Silica is an inorganic 

biocompatible coating that avoids agglomeration and confers to iron oxide core-shell 

nanoparticles stability in physiological media. Moreover, silica posses free silanol 

groups localized at the surface, which can interact chemically with different molecules 

providing a high added value to the system. Jang et al. have described a method to 

functionalize well-dispersed silica coated iron oxide nanoparticles with magnetic cores 

of 10 nm in diameter and about 2 nm thick silica shell [11].  First, the particles were 

synthesized using a coprecipitation method. Then, they were coated with a silica layer 

by means of TEOS hydrolysis and condensation. Next, the particles were bonded to 

the amino group of APTS. The carbonyl groups that point outward can be covalently 

attached to the amine groups of antibodies, enzymes, proteins, etc. through the 

formation of a very stable amide bond. This experiment successfully showed the 

functionalization procedure of the magnetic nanobeads with some proteins. This kind 

of materials based on nanobeads-protein bonding has been widely studied for 

biosensing and for biological markers [12, 13].  

One of the main objectives in magnetic biosensors is how to achieve materials 

with high chemical stability, superparamagnetic behaviour, with a considerable size of 

a few hundreds of nanometres, and the capacity to be functionalized with a biological 

vector. These are the reasons why we decided to design a system able to integrate 

magnetic nanoparticles into a solid material. These nanoparticles are protected by a 

silica coating in a core-shell structure, which provide mass and stability to the system, 

and also points of anchoring to functionalize the particles with biological entities. 



4.1. Introduction   127 

In the design of systems for biological applications is of great interest to take into 

account the specific applications for what it has been conceived for. Consequently, 

each case requires a group of characteristics to be accomplished by the materials for 

the smooth running of the biological system. In most applications the size and 

morphology of the entire system is of remarkable importance, that is why is needed to 

have a good control of such parameters since the synthesis of the materials. But it is 

also fundamental the easy functionalization of the system. All these requirements had 

to be considered in the design of the biosensor materials described in this chapter. 

The main aim of this chapter is the design and synthesis of a material, which we 

are going to name nanobeads, to be useful in a molecular recognition system. 

Nanobeads consist of silica spheres of about 150 nm that contain inside maghemite 

nanoparticles of 5 nm of diameter. Their surface has to be functionalized by a 

carboxylic acid to allow bioconjugation with several proteins. The nanobeads will be 

utilized for protein determination in an impedimetric biosensor proposed as part of the 

ONCNOSIS project within the Programa CENIT Ingenio 2010. 

4.2 Synthesis and characterization of superparamagnetic nanobeads 

In this section we describe the synthesis of the superparamagnetic nanobeads and 

their characterization developed according to the requirements of the impedimetric 

biosensor. We will also describe some of the difficulties that had to be overcome to fit 

with such requirements.  

 4.2.1  Synthesis of nanobeads 

As we mentioned before, maghemite is a biocompatible iron oxide that coated 

with silica acquires suitable properties to be functionalized by means of the interaction 

of chemical functional groups that favour protein or antibody conjugation, depending 

on the biosystem necessities. Moreover, silica facilitates particle dispersion in 

biological fluids. 
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The procedure that we chose to synthesize maghemite nanoparticles coated with 

silica in aqueous medium is based in the sol-gel method.  This synthetic route has the 

advantage that the nanoparticles are in a biocompatible medium since the first step, as 

only adjusting the pH and the ionic strength of the .medium. This technique consists in 

the formation of maghemite nanoparticles by basic hydrolysis in aqueous medium of 

halogenate precursors of iron, as we describe in chapter 1, and subsequently the 

coating with silica by different methodologies employing tetraethyl orthosilicate 

(TEOS) as silica precursor to obtain the beads. 

Once the aqueous ferrofluid is obtained the product was filtered and resuspended 

in 20 ml of water. In this way the ferrofluid is prepared to be coated with silica by the 

Stöber method [14]. In order to get this, several procedures were carried out in which 

silica beads with size between 100 and 300 nm and maghemite nanoparticles from 5 to 

10 nm in diameter inside silica structure were achieved. In the Stöber method, 

condensation of a silica precursor was produced in a mixture of ethanol and water, as 

is shown in the next scheme:  

Si(OEt)4  +  H2O  + OH-  →  (OEt)3Si(OH)  + ROH 

(EtO)3Si(OH)  +  H2O  →  SiO2 ↓  +  3EtOH 

In Scheme 4.1, it can be seen a general view of the strategy for the formation of 

core-shell beads. In a first step, the iron oxide particles were obtained. Afterwards, a 

layer of silica was formed around the nanoparticle by the Stöber method. In Figure 

4.1a the TEM micrograph shows an image of iron oxide nanoparticles in aqueous 

medium. The shape and size are heterogeneous but for this application this is 

irrelevant. In Figure 1b the micrograph shows the iron nanoparticles encapsulated in 

the silica shell.  
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  Scheme 4.1 Chemical scheme of nanobeads synthesis. 

     

Figure 4.1 a) TEM maghemite NP b) TEM magnetic nanobeads. 

Two processes have been studied in order to develop the best methodology to get 

the maghemite nanoparticles internalized in the silica matrix in aqueous medium for 

the biosensor. The first one is the method described by Deng et al based in the 

hydrolysis and condensation of TEOS in isopropanol-water mixture [15]. The second 

method is the one described by Salgueriño-Maceira performed in an ethanol/water 

mixture [16]. 

The first synthetic procedure is based in the Stöber method with some 

modifications. The coating of magnetite nanoparticles with silica was carried out in 

basic alcohol/water mixture at room temperature by using magnetic ferrofluids as 

seeds. First, the magnetic ferrofluid was diluted with water, alcohol and aqueous 

ammonia. Then, this dispersion was homogenized by ultrasonic vibration in a water 

bath. Finally, under continuous mechanical stirring, TEOS was slowly added to this 

dispersion, and after stirring for 4 h, silica was formed on the surface of magnetite 

nanoparticles through hydrolysis and condensation of TEOS. 
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In a typical synthesis of the second procedure, a mixture of NH4OH, H2O, EtOH, 

and the previously washed magnetic nanoparticles in water solution was added to an 

ethanolic solution of TEOS in EtOH while the solution was mechanically stirred. The 

hydrolysis and condensation of TEOS onto the magnetic nanoparticles was completed 

in 4 h. The formed nanobeads were centrifuged to eliminate excess reactants and 

redispersed in pure water. 

4.2.2 Characterization 

Both procedures permit to obtain silica nanobeads, but we achieve them with 

different shape and morphology. By means of TEM (Figure 4.2) we can observe an 

average diameter of 130 nm for the spheres formed by the isopropanolic method, and 

80 nm for the ethanolic procedure.  It is clear that the ethanolic method permits to 

achieve more homogeneous nanobeads than the ones obtained by the isopropanolic 

procedure; however, the ethanolic method also has also drawbacks as we explain 

below.  

   

Figure 4.2 a) Isopropanolic method b)  Ethanolic method. 

We carried out several experiments to probe the reproducibility of both 

methodologies. The results were positive, but we also found some difficulties related 

to the sample concentration and the presence of impurities that we can see in TEM 

micrographs. 
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The first inconvenient that we tried to solve was sample dilution. We need more 

concentrate samples in order to perform the bioconjugation experiments. The 

obtaining of nanobeads is carried out in diluted solutions due to requirements of the 

synthesis. More concentrated samples can lead to form agglomerated nanobeads in the 

condensation of TEOS. So it was necessary to study concentration procedures that 

could provide non-agglomerated nanobeads. We chose centrifugation and evaporation 

of the solvent as possible methodologies to concentrate the sample. 

The first methodology that we used to concentrate the sample was to evaporate 

the solvent. The ethanol was easily evaporated; however, the results were not as 

convenient as it can be seen in Figure 4.3: the samples were agglomerated. 

    

Figure 4.3 Solvent evaporation in ethanolic synthesis. a) Before evaporation, b) After solvent 

evaporation. 

Then, we tried to concentrate the sample by centrifugation. The results can be 

seen in Figure 4.4 where the beads have lost quality as when we tried to concentrate 

them by evaporating the solvent. Before centrifuge, the nanobeads have well defined 

edges and spherical shape, then, after centrifuge the beads agglomerate and lose 

homogeneity in shape and size. 
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Figure 4.4 Solvent evaporation in ethanolic synthesis. a) Before centrifuge b) after centrifuge. 

Moreover, although the ethanol method permits to obtain a major concentration of 

nanobeads, they are smaller than the obtained by the isopropanolic method. We 

attempted to grow the beads by employing more silica precursor in a posterior step. 

The results are shown in Figure 4.5. The nanobeads keep their shape and size but after 

centrifuge they agglomerate as well. 

         

Figure 4.5 Ethanolic synthesis. a) Before centrifuge, b) alter centrifuge. 

Analysis of equivalent results of the same concentration study following the 

isopropanolic synthesis are even more frustrated, as it can be seen in Figure 4.6.  
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Figure 4.6 Isopropanolic synthesis. a) Before solvent evaporation b) after solvent 

evaporation. 

We also attempted to increase the reaction time. The silica precursor was allowed 

to react during 24 hours in an isopropanolic suspension of the magnetic nanoparticles. 

We obtain nanobeads of diameters from 150 to 200 nm. In Figure it 4.7 can be 

observed the results of a synthesis of 24 hours in isopropanol. When we centrifuge the 

sample and disperse it in water, the morphology and size of the nanobeads are 

maintained and they do not seem to agglomerate after elimination of the solvent by 

evaporation. 

     

Figure 4.7 Isopropanolic synthesis 24 h. A) Initial sample, b) Centrifugation, c) Solvent 

evaporation. 

Similarly, we carried out the ethanolic synthesis for 24 hours obtaining nanobeads 

of 100200 nm with more uniform morphology than the one obtained by the 
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isopropanolic synthesis. When we centrifuged the sample, the particles conserved their 

original characteristics. Concentrating the sample by the solvent evaporation method 

also yielded good results. However, TEM images shown that there were impurities in 

the sample. When we centrifuge the sample we observe two deposits, one brown 

coloured on the bottom and another one, white, on the top.  It can be due to the 

presence of maghemite nanoparticles outside the silica beads, instead in TEM pictures 

it can not be seen any nanoparticle neither, inside or outside, the silica nanobeads.  

This may be due to the high contrast of the sample in TEM. Thus, it is impossible to 

distinguish magnetic nanoparticles inside the nanobeads. Taken into account the 

obtained results, we decide to use the isopropanolic synthetic route instead of the 

ethanolic one and the centrifugation method to concentrate the sample.  

In Figure 4.8 the procedure followed to obtain nanobeads following the ethanolic 

synthesis and keeping it for 24 hours is shown. As in the short reaction time synthesis, 

the centrifuged sample presented lower impurities content.   

      

Figure 4.8 Ethanolic synthesis 24 h. a) Initial sample,  b) centrifugation, c) solvent evaporation. 

3.2.3 Nanobeads functionalization 

To functionalize the surface of the silica nanobeads with carboxylic groups we 

chose carboxyethylsilanetriol.  In aqueous/alcoholic media and by means of the action 

of an alkaly, this alcoxysilane reacts with the silanol groups at the nanobeads surface 

and condenses leaving the carboxylic group pointing outward. In Figure 4.9 it can be 

observed how, by means of the hydrolysis of a silane, it is possible to anchor to the 
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nanobead surface a molecule with a functional carboxylic group that is able to anchor 

a protein.  

 

Figure 4.9 Scheme of the silanization of the nanobeads. 

Once nanobeads were obtained following either the ethanolic or the isopropanolic 

routes explained before, the alcoxysilane was added. In both cases 0.07 ml of 

carboxyethylsilanetriol were added and mixed during 20 hours. After centrifugation, 

the sample was resuspended in water and washed several times to remove the excess 

of silane that was not reacted. The TEM micrographs of both preparations can be seen 

in Figure 4.10 before and after sililation. 

   

Figure 4.10: isopropanolic procedure. a) Before silanization, b) after silanization. 

The morphology of the particles is well kept, however this does not indicate the 

anchoring of the alcoxysilane. In order to find it out, we compare the IR spectra before 

and after silanization, as depicted in Figure 4.11.  
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Figure 4.11 IR spectra of functionalized nanobeads (red line) and non-functionalized 

nanobeads (blue line).  

The spectra of both preparations are coincident in almost all the frequencies, 

except in those where the silanol bonds appear. Silanol groups are only localized on 

the surface of the silica beads, hence there have been a surface modification.  Due to 

the low concentration of the carboxylic groups their characteristic IR absorptions are 

not observed. 

 A study about the degree of functionalization of the nanobeads varying silane 

concentration was also carried out. With this purpose we perform a battery of 

experiments changing progressively the silane concentration, from 0.1 to 0.025 g of 

carboxyethylsilanetriol: A1: 0,1 g,  A2: 0,085 g, A3: 0,05  g y A4: 0,025 g. The 

general tendency is that the silanization degree increases as the concentration of silane 

is augment. However for low concentrations, the results were more homogeneous, as 

it can be observed in Figure 4.12. 
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Figure 4.12 TGA of the silanized nanobeads with different quantities of silane. 

The TGA technique consists of a study of the variation of weight while the 

temperature of the sample is increased at inert atmosphere. We can observe the total 

mass lose corresponding to the silane in the table.  

A1:  0,1 g silane  16,53% 

A2:  0,085 g silane  14,28% 

A3:  0,05 g silane  12,85% 

A4:  0,025 g silane  12,77% 
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4.2.4 Magnetic characterization 

Magnetic measurements were performed using a commercial device MPMS-XL 

from Quantum Design with a SQUID magnetometer. The samples StoAc1 

(isopropanolic) and StoAc2 (ethanolic) were washed, centrifuged and dried to obtain 

light brown powders, for their posterior magnetic characterization.  The diamagnetic 

contributions of the sample holder (-4.90·10-7 emu/Oeg capsule) and silica (-4.47·10-7 

emu/Oegsilica) were calibrated independently and their contribution was subtracted 

from the sample experimental data. 

The in-phase susceptibility of samples StoAc1 and StoAc2 show evidence of a 

superparamagnetic blocking at temperatures TB around 25 K (see Figure 4.13). Notice 

that TB does not depend with the synthetic methodology used.  

 

Figure 4.13: In-phase susceptibility at 1Hz, 9 Hz, 117 Hz, 852 Hz shows superparamagnetic 

relaxation at TB = 25 K; Inset: out-of-phase susceptibility at  9 Hz show similar blocking 

temperatures for StoAc1 and StoAc2 samples.  

Above TB magnetic nanoparticles behave as superparamagnets so that 

magnetization curves should scale with H/T. The magnetization isotherms of StoAc1, 

shown in Figure 4.14, follow such behaviour, considering the temperature dependence 

of the magnetic moment displayed in Figure 4.16. However, this is not the case for the 
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magnetization isotherms of sample StoAc2 (see Figure 4.15).  The discrepancy can be 

accounted for by a diamagnetic component. It may arise from an excess of silica in 

sample StoAc2 some nanoparticles which were unprotected by silica, become 

dissolved, leaving a mass contribution of the silica comparable to the contribution of 

the nanoparticles. Let us mention, at this point, that the silica contribution subtracted 

from the experimental data was calculated considering the preparation. 

 

Figure 4.14 Magnetization isotherms of StoAc1 sample show superparamagnetic behaviour. 

 

Figure 4.15 Magnetization isotherms of StoAc2 sample do not show superparamagnetic 

behaviour. 
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 The magnetic moment of the nanoparticles is proportional to (T)1/2, where  is 

the in-phase susceptibility. Figure 4.16 shows that this quantity is similar for StoAc1 

and StoAc2 samples indicating that the nanoparticle magnetic volume of StoAc1 and 

StoAc2 samples is similar. 

 

Figure 4.16: (T)1/2 of  StoAc1 and StoAc2 samples is similar for both samples indicating that 

they have similar average nanoparticle magnetic volume.  

The magnetic volume of the nanoparticles can be determined from the saturation 

magnetization. We obtain an average diameter of around 5 nm in agreement with the 

average nanoparticle volume observed in TEM images (Figure 4.17). 

 

Figure 4.17 TEM micrograph of iron oxide nanoparticles  
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The blocking temperature TB, determined as the temperature where the 

susceptibility is maxima at each measured frequency f=1/2follows the Arrhenius 

law =0exp(E/kBTB), as shown in Figure 4.18. 

 

Figure 4.18 Relaxation time obtained from the out-of-phase (OP) and in-phase (IP) 

susceptibilities.  

The magnitude of the relaxation time at 1/TB → 0 is in agreement with the values 

reported for systems with presence of magnetic interactions between magnetic 

nanoparticles. Notice that as the blocking temperatures of both samples, StoAc1 and 

StoAc2, are coincident the influence of magnetic interactions on both samples is 

similar, suggesting that the distribution of the nanoparticles inside the nanobeads 

obtained by both procedures is similar. 

Considering the values of the estimated particle size and the magnetic anisotropy 

of maghemite, Keff ~ 0.05·106 erg/cm3, the susceptibility should show the 

superparamagnetic blocking at temperatures TB ~ 15 K, a value which is lower than 

the experimentally observed (see Figure 4.13) even considering the influence of 

magnetic interactions. This reveals the existence of a large surface anisotropy.  
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Summarizing, the samples obtained by both synthetic methodologies provide 

silica nanobeads embedding magnetic nanoparticles of 5 nm diameter in average. The 

distribution of the nanoparticles inside the nanobeads obtained by both procedures can 

be considered similar, as the influence of magnetic interactions is equivalent. In the 

ethanolic route, some nanoparticles may become unprotected by the silica coating, 

being dissolved in the solvent, diminishing the ratio mass of nanoparticle/silica 

nanobead. However, the isopropanolic synthesis provides iron oxide nanoparticles 

well coated and with superparamagnetic behaviour.  

4.2.5 Antibody conjugation 

The bioconjugation reaction permits to attach a protein to a nanobead. It is based 

on the utilization of a crosslinker to favour the covalent bond between the carboxylic 

group at the surface of the functionalized nanobead and the protein amino group.  

A protein consists of a sequence of amino acids. Some of these amino acids, like 

lysine, have amino groups in its structure that can react with the carboxylic groups of 

the nanobead forming a covalent bond.  The amino group is a positive charge group in 

physiological conditions, and it is oriented outside the protein structure, thus is a 

group with easy accessibility for bioconjugation. But the protein-nanobead attachment 

it is not so easy. Normally the proteins have very amino groups and depending on the 

groups that interact with the nanobeads the protein can be denaturalized, losing its 

activity.  

The 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) is a crosslinker 

widely used in the bioconjugation of antibodies. As it does not appear in the final bond 

between the grafting group, in our case the carboxylic acid, and the antibody, it is 

called zero-length crosslinker. Its efficiency can be increased by employing N-

hydroxysuccinimida (NHS) or pentafluorophenol (PFP). In Figure 4.19, the chemical 

structure of these molecules is shown. 
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Figure 4.19 Molecular structures of EDC crosslinker and PFP and NHS activators. 

In Figure 4.20 it can be seen the reaction scheme of a direct bioconjugation with 

EDC also employing PFP and NHS as activators to improve yields and decrease side 

reactions. In a typical reaction the carbodiimide of EDC reacts with the carboxylic 

group to produce an intermediate, the O-acylisourea. If there is not an accessible 

amine group able to react, the intermediate hydrolyze and lose its activity while the 

carboxylic group of the nanobead is regenerated. The use of activators, like PFP or 

NHS, avoids the undesired hydrolisys reaction thus increasing the efficiency of the 

bioconjugation reaction. Both, PFP and NHS are used to activate carboxylic acids 

towards an ester formation, which is more resistant to hydrolysis than O-acylisourea. 

 

Figure 4.20 Bioconjugation scheme with EDC as croslinker. Ball 1 is the functionalized 

nanobead and ball 2 represents the protein.  
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The PFP permits the formation of high reactive esters that are very useful in 

nucleophilic substitutions. They react with primary and secondary amines to form an 

amide bond. The PFP esters are more reactive than the NHS esters, and easily 

handled, but more toxics. This is why NHS is widely used. 

Commonly in reactions with EDC it is typically to achieve maximum yields in the 

4.5 – 7.5 pH range. However, proteins are pH dependent and it is advisable to carry 

out the reactions at neutral pH to avoid conformational changes and even 

denaturalization which would affect its activity. The protein activity centres are very 

delicate. This is the reason why we carried out all the steps of bioconjugation in a 

phosphate buffer solution (PBS) at pH 7.2. 

In the following we are going to describe step by step the bioconjugation of 

functionalized nanobeads with superficial carboxylic groups of two different proteins, 

the carcinoembryonic antigen (CEA) and an antibody bond to a peroxidase, anti-Goat-

HRP.  The bioconjugation reactions were carried out at the laboratories of Oryzon 

Genomics, from the Consorcio ONCNOSIS, and supervised by Dra. Cristina 

Fernandez.  

The antibody anti-Goat-HPR is a polyclonal protein bonded to a horseradish 

peroxidase. This peroxidase is very useful to detect proteins, as we will explain later. 

A typical antibody consists of several structural units. Each unit consists of two heavy 

and two light chains. The structural units can form monomers if consists of one unit, 

dimers of two or pentamers of five. Although the general structure of all antibodies is 

similar, differences stay in a small region of the protein. This generates the existence 

of millions of antibodies, each one with a different end. The extremes can be bonded 

to a different target, and it is known as the antigen. This enormous diversity of 

antibodies allows the immunogenic system to recognize an equivalent amount of 

antigens. To produce large quantities of a specific antibody, an antigen is injected to a 

mammal, like a goat. The isolated blood of these animals has polyclonal antibodies 

(antibodies bond to the same antigen) in the blood serum. However, for analytical 
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applications a major specificity is needed. This is the case to detect small molecules 

and to block or detect very specific markers used in therapeutic applications.  

CEA is a protein that is not usually present in the blood of healthy adults, 

although it presents significant levels in smokers, and in patients that suffer colon 

carcinoma, gastric carcinoma, lung carcinoma and breast carcinoma. CEA 

concentration is used as a tumour marker to identify recurrences after a cancer 

incidence. The CEA blood test is not reliable for diagnosing cancer but is a first 

indication of a possible recurrence. The level of CEA, in some cancers, can rise even 

before the precise point of recurrence can be localized by means of other techniques. 

That is why oncologists recommend a test of CEA levels for early detection of cancer. 

The antibody anti-CEA is non-specific, i.e. it is only recognized by the CEA antigen. 

Reactants 

Marker protein anti-CEA  

Marker antibody Pab-Goat-HRP 

EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimida 

PFP (Pentafluorofenol) 

EDIPA (Ethyldiisopropylamine) 

NaHCO3 

Aminoethoxy Ethanol (AEE) 

1x PBS (Phosphate buffer solution)  

1x PBS is 10mM. (8g of NaCl, 0.2 g KCl, 1.44 g Na2HPO4 0.24 g KH2PO4 in 800 

ml of distilled H2O. Adjust the pH to 7.4 with HCl. Add H2O to 1 litre.  

Scheme for template 1 
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Table 1 gives the concentration of nanobeads and proteins we used for the 

conjugation of antibodies. The samples A398, A337 and A341 were prepared 

following the isopropanolic method and sililated as described before. In Figure 4.21 it 

can be observed the morphology and the size of the nanobeads samples used for 

protein conjugation. 

A341   A398      A337 

   

Figure 4.21 TEM of sililated nanobeads. 

Table 4.1: Template for assay Nº 1 

Sample Nanobead/Protein Nanobead Protein 

A 1:106 6000 µl A398A 2 µl anti-CEA 

B 1:106 6000 µl A398A x 4 20 µl  anti-CEA 

C 1:105 3000 µl A398A 1 µl anti-CEA 

D1 1:105 500 µl A341 1.25 µl  anti-
Goat-HRP 

D2 1:105 2000 µl A398A 1.25 µl  anti-
Goat-HRP 
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Activation of the carboxylic groups 

The first step for the conjugation of proteins to the nanobeads consists in the 

activation of the carboxylic groups at the surface of the nanobeads. For this purpose, 

we prepared a mixture of 144 µl of EDIPA with 144 mg of PFP in 4 ml of absolute 

ethanol. Subsequently 152 mg EDC-HCl were added. EDC was used to activate the 

carboxylic acid, as a metastable intermediate with PFP reacts with the amine of the 

protein. To remove the excess of PFP we used EDIPA. 

 On the other hand, the nanobeads were washed. We put 16 ml in eppendorfs of 

1.5 ml (1ml ethanol: ml 0.5 ml nanobeads), and we wash them by means of 

centrifugation (3000xg, 1 minute, room temperature (RT)). The sample A398 is more 

diluted than A341 so we centrifuged 1.5 ml of sample A398, eliminated the 

supernatant and added 1.5 ml more. We made five samples like this and another one 

with 1ml of A398A.  With A341 we only made one sample with 500 µl. 

The samples A, B and C were incubated with 1 ml of EDC-HCl in the spinning 

wheel at room temperature during 60 min. In the reactions D1 and D2 we added only 

500µL. Then the samples were washed with absolute ethanol (1 ml of ethanol: 1 ml 

nanobeads) by means of centrifugation (3000xg, 1 minute, RT). We washed three 

times and resuspend in the same initial volume of 1x PBS. 

Conjugation of antibodies 

The next step is the conjugation with antibodies. For reactions A and B we mixed 

two eppendorfs in one. Then we added the quantity of protein indicated in table 1. The 

mix was incubated in the spinning wheel for 3 hours at room temperature. The excess 

of antibody was removed by centrifugation (3000xg, 1 minute, 4ºC). The resulting 

liquid was washed with 1 ml of 1x PBS, for six times, and then proceeded to 

deactivate the carboxylic groups not bonded to an antibody.  
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Blocking the carboxylic groups 

The non-reacted carboxylate groups were deactivated in a solution of 

aminoethoxy ethanol (AEE). This solution was prepared dissolving 10 mM in 100 ml 

of bicarbonate buffer solution at pH 8.3 (NaHCO3 100 mM: 0.84 g of NaHCO3 in 100 

ml of Milli-Q water). Then, 1 ml of nanobeads was resuspended in the NaHCO3-AEE 

solution. The preparation was mixed in the spinning wheel for 30 min at room 

temperature. After that, the nanobeads were washed. We resuspend them in 1 ml de 1x 

PBS and centrifuge (3000xg, 1 minute, 4ºC). Finally the sample was resuspended with 

its initial volume but in 1x PBS. 

Template schemes for assays Nº 2, 3 y 4 

The same procedure was employed to carry out the assays that we show at the 

templates 2, 3 y 4 but with some variations: 

In the assay Nº 2 we studied the bond between the marker protein Pab-Goat and 

the functionalized nanobeads at different concentrations and using EDC combined 

with NHS as crosslinkers, and without crosslinkers, as we show in Table 2.   

Table 4.2: Template of the assay Nº 2 

Sample Nanobeads/Pab-Goat Crosslinker 1 Crosslinker 2 

A 1:105 EDC NHS 

B 1:106 EDC NHS 

C 1:105   

D 1:106   
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The assay Nº 3 consists in studying the effect of crosslinkers (only EDC, or 

combiner with PFP, or without crosslinkers) in the reaction. The combination of both 

crosslinkers was analyzed together with the variation of the concentration of 

immunoglobulin G (IgG). The IgG is one of the five classes of antibodies that are 

produced by human body. It is the immunoglobulin predominant in physiologic fluids, 

as blood. This specific protein is synthesized by the organism in response to bacteria, 

virus and fungus invasion. Is the most abundant immunoglobulin in blood serum, with 

a concentration between 618 mg/ml. 

 

Table 4.3: Template of the assay Nº 3 

Sample Nanobead/IgG Crosslinker 1 Crosslinker 2 

A 1:105 EDC PFP 

B 1:106 EDC PFP 

C 1:106   

D 1:106 EDC  

 

The assay Nº 4 combines the study of different proteins CEA and Pab-Goat with 

combined crosslinkers PFP and EDC. 
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Table 4.4: Template of the assay Nº 4 

Sample Nanobead/Protein Protein Crosslinker 1 Crosslinker 2 

A 1:105 CEA EDC PFP 

B 1:106 CEA EDC PFP 

C 1:105 CEA   

D 1:105 Pab-Goat EDC PFP 

 

4.2.6 ELISA assay 

The "Enzyme-Linked Immuno Sorbent Assay" (ELISA) is a biochemical 

procedure that permits to determine the presence of antigens or antibodies in a sample. 

The sandwich ELISA is a variant of this technique and is based on the detection of an 

antigen immobilized in a solid substrate by means of an antibody, the quantity of 

antigen in the sample is developed by adding a marked antibody to produce a visible 

signal measurable with a spectrophotometer.  

Figure 4.22 shows a scheme of the assay. In a first step a protein is anchored in a 

polystyrene microtiter plate. Subsequently the walls of the holes of the plate were 

blocked with a blocking agent to avoid other proteins to interact and bond the surface. 

Then, the sample (protein conjugated nanobeads) is put in contact in the polystyrene 

plate with the adsorbed proteins. Weak bonds, such as hydrogen bridges, van der 

Waals forces and electrostatic and hydrophobic interactions stabilized the interaction 

between antigen and antibody, altogether forming a stable bond. The next step consists 

of attaching a detection antibody to the nanobead. The quantity of marked antibodies 

can be detected by means of a marked antibody, this is called direct ELISA). But the 
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antibody concentration can also be detected by employing a primary antibody and a 

secondary one marked, that is able to interact with the primary antibody, this is the 

indirect ELISA. The second method permits signal amplification, as more detection 

antibodies can be anchored to the primary one. The signal is measured by a 

spectrophotometer. The peroxidase (in our case HPR) of the secondary antibody reacts 

with 3, 3´, 5, 5´-tetramethylbenzidine (TMB), to form a blue compound. The TMB is a 

chromophore that in its oxidized form is blue coloured. This occurs when oxygen 

radicals are formed by the hydrolysis of the hydrogen peroxide from the HPR. The 

colour changes when the reaction stops by means of the addition of phosphoric acid or 

sulphuric acid producing a yellow colour measurable by a spectrophotometer at 460 

nm. The TMB is a widely used substrate in ELISA assays because it is more sensitive 

and faster than other substrates. 

 

Figure 4.22 Scheme of a ELISA assay. 

Experimental 

0. Reactants: 

1x PBS (Phosphate buffer solution) 

CEA (carcinoembryonic antigen) 
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Anti-CEA 

TMB (3,3´, 5, 5´-Tetramethylbenzidine) 

H3PO4 2N 

BSA 10% (Bovine serum albumin) 

Capture antibody: Donkey anti-Rabbit 

Secondary antibody:  Pab-Goat-HRP and Anti-Mouse-HRP 

1. ELISA for Template Nº1. 

Table 5 shows the disposition of the samples in the holes of the plate prepared for 

the ELISA assay. Lines B and F show four dilutions of the used proteins, anti-CEA 

and Pab-Goat-HRP, acting as positive controls. There is needed unless four 1x PBS 

blanks as negative controls, that are distributed in the holes of the plate.  We use them 

to assign the zero concentration signal. 

Table 4.5: Disposition of the simples in the ELISA plate 

  1 2 3 4 5 6 

A Reac. A Reac. B Reac. C PBS PBS   

B 1:100 1:10E4 1:10E6 1:10E12     

C Reac. A Reac. B Reac. C Reac. D1 Reac. D2 PBS 

D 
Reac. 

D1 

Reac. 

D1 Reac. D2 Reac. D2 PBS PBS 

E Reac. A Reac. B Reac. C Reac. D     

F 1:100 1:10E4 1:10E6 1:10E12     
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1. ELISA plate sensibilization. 

 In order to study the protein adhesion to ELISA plate, we fill the holes in this 

way: (1) cover the holes 1 A  6 A and 1 B – 6 B con 100 µl of CEA 2 µl/ml in PBS, 

(2) cover the holes 1 C  6 C with PBS, and (3) cover the holes 1 D  6 D, 1 E  6 E y 

1 F  6 F with 100 µl of Donkey antiRabbit  2 µl/ml in PBS. Then, we seal the plate 

with adhesive tape and incubate overnight at 4ºC. Afterwards, we wash the plate three 

times with PBS 0.1 % washing. 

2. Blocking of the plate. 

The next step is to block the plate. For this propose we add to each hole 200 µl of 

BSA at 1% in PBS and incubate during two hours at room temperature. Later, we 

wash three times the plate with washing solution. 

3. Sample addition 

Subsequently, we add 100 µl of sample in the corresponding holes. Then, we seal 

the plate with adhesive tape, and we leave it incubating for 1.5 hours at room 

temperature. Finally, we wash six times.  
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4. Detection antibody. 

At this stage, we incubate the whole plate with 100 µl of secondary antibody in 

each hole, (anti-CEA diluted in BSA 1%) for 1 hour at room temperature. Then, we 

wash the plate six times. 

5. Secondary antibody: 

In order to increase the signal, we incubate the holes 1 A  6 A, 1 B  6 B and 1 C 

 6 C with a secondary antibody bond to a peroxidase (100 µl of anti-Mouse-HRP 

(1:25000)) 

6. Detection 

Finally, we add 50 µl of TMB by hole (2.5 mg/250 µL of DMSO; to 25 ml with 

sodium citrate buffer  0.1M pH 6; add 5 µL of hydrogen peroxide 30%), and then, we 

leave it to react for 5 minutes. The colour of the holes turns blue. In order to stop the 

reaction, we add 25 µl of H3PO4 2N. The colour turns to yellow. The results are stable 

for 1 hour, so it is needed to measure immediately. Eventually, we measure at 450 nm. 

The results are shown in Table 4.6. 

Table 4.6: Spectrophotometric signal of the plate holes  

  1 2 3 4 5 6 

A 0,302 0,44 0,252 0,191 0,194 0,163 

B 0,236 0,165 0,16 0,157 0,03 0,041 

C 0,157 0,176 0,156 0,233 0,156 0,142 

D 2,615 2,737 2,909 2,758 0,138 0,136 

E 2,466 3,505 1,186 2,235 0,057 0,082 

F 3,282 2,248 0,287 0,15 0,037 0,049 
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3. Results 

 Template 1 

 

Graphic 4.1 Assay 1. 

As we have mentioned before, CEA protein is used as a biomarker to detect 

gastric and other tumours. However, due to its poor specificity and sensibility cannot 

be the unique parameter for the diagnosis. The detection of high concentration of this 

protein in blood does not imply the presence of cancer, but is a first indicator.  

Reaction C corresponds to non-activated nanobeads (without EDC and PFP). The 

signal is similar to the obtained for A (with EDC and PFP and a concentration of 

1:105), but reaction A produces more signal, and B, with more concentration of 

conjugated antibody (1:105), produces even more signal. Hence from Graphic 4.1 we 

can conclude that a certain amount of nanobeads have been attached to the plate. 

Reaction D generates more signal because it corresponds to another antibody, the anti-

Goat-HRP. Nevertheless, the relatively low signal of CEA should not be taken as a 

drawback. The human body has CEA at low concentrations and it can saturate the 

detector if it is very compatible with the substrate. So a low compatibility is better in 

this case.  
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 Template 2 

 

Graphic 4.2 Assay 2. 

Protein Pab-Goat is widely used in protein studies due to its low specificity.  As it 

is not able to interact with CEA, we chose Donkey anti-Rabbit as a capture antibody 

of Pab-Goat. In Graphic 4.2 it is observed that the signal was increased with respect to 

the concentration of Pab-Goat, in reaction A (1:105) with respect to B (1:106) as to C 

(1:105) respects to D (1:106). This is a good indication due to that evidences that the 

detection method is really rapid. But it is not a good signal that nanobeads without 

activation by a combination of crosslinkers (EDC and NHS), reactions C and D, are 

given a high signal, and that at high concentration of Pab-Goat (D) was rather 

significant. That shows that it is possible that a non-specific absorption between 

proteins and the surface of the nanobeads exists, due to electrostatic interactions.  
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 Template 3 

 

Graphic 4.3: Assay 3. 

The immunoglobulin G (IgG) is one of the most widely used protein in biological 

studies due to it is easy to be obtained and cheap. The capture antibody that we use for 

this polyclonal protein is Pab-Goat. In Graphic 4.3 can be seen the behaviour of the 

IgG when it is conjugated to the nanobead and interacts with Pab-Goat that is 

immobilized above the ELISA plate. Reaction C represents nanobeads without 

functionalization. The signal is small, but it is bigger than nanobeads alone. As we 

compare it with the signal obtained for PBS, the nanobeads seem not to interact with 

the plate.  These results made us suspect that also for this protein can exist weak 

interactions between nanobeads and IgG. With EDC, signal D, the signal is slightly 

increased revealing the small efficiency that the crosslinker has by itself (we have to 

remind that the optimum pH for EDC is 4.5 and we are at pH 7.2). However, as it has 

been demonstrated in other bioconjugation reactions, the combination EDC and PFP 

improves the yield of the reaction, as it can be seen in reaction B. Reaction A was 

performed with EDC and PFP, too, but the protein concentration was lower that in 

reaction B, so its signal is in accordance with B signal. C is a non-activated reaction, 
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so its signal is the lowest. And D signal is also smaller than A because it is not 

completely activated.  

 Template 4  

 

Graphic 4.4 Assay 4. 

In this study we used the interaction between CEA and anti-CEA. The Graphic 

number 4.4 shows the line of action of the bioconjugated nanobeads with CEA, 

without activation (without EDC and PFP) reaction C (1:105), and activated with EDC 

and PFP, reactions A (1:105) and B (1:106) respectively.  The signal of the reaction C 

in comparison with the signal of nanobeads without functionalization is similar and 

demonstrates that there are weak non-specific interactions. The signal of sample A 

shows that there is an increment due to the activation and the signal B indicates that 

when increasing CEA concentration the signal increases. It will be interesting to 

perform a kinetic study for a CEA concentration of 1:105, for example, by varying the 

incubation time, in order to study the speed at which these interactions are established, 

for both samples the activated sample (A) and the non-activated one (b). Signal D 

corresponds to the activated nanobeads in contact with Pab-Goat (1:105). If we 

compare this signal with the obtained for CEA (1:105) activated with EDC and PFP 
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(signal A), it can be observed that the nanobeads functionalized with Pab-Goat show 

more affinity to anti-CEA.  

4.3 Description of the biosensor 

The main aim of the implantable biosensor named Oncnosense proposed in the 

frame of the project ONCNOSIS, is the detection of a variety of specific proteins in 

blood, particularly the quantification of the temporal variation of their concentration. 

In order to accomplish that purpose, a prototype that works in continuous is proposed. 

The proteins of interest for the biosensor are biological markers that are generated in 

four types of cancer: lung, ovaries, colon carcinoma and melanoma. The development 

of the biosensor and its components corresponds to other groups implicated in 

Oncnosis, where our responsibility was the design, preparation and supply of 

biofunctionalized nanobeads. However, due to the close relationship between the 

features of the nanobeads and the sensibility of the biosensor, we will briefly describe 

it here. We will also present the results of impedance measurements obtained with our 

samples. 

Figure 4.23 shows a scheme of the implantation of the biosensor in a patient. The 

device is totality internalized and is in permanent contact with the bloodstream.  In 

this way, when a target protein appears in the flowing blood, it will be detected 

immediately by the molecular recognition device and a signal will be sent to a 

reception system from the biosensor by means of radiofrequencies, indicating to the 

external receptor the likely presence of specific tumour cells. This will permit the 

doctors to know since a very early stage whether the cancer has been reproduced 

without the necessity of a periodic monitoring of the patient (analysis each six months, 

one year…) and allow them to act since the first moment before the cancer spreads 

and a drastic solution has to be taken. Therefore, the implantable biosensor will be 

indicated to patients that have suffered cancer before and they have high or middle 

possibilities of recurrence. 
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Figure 4.23 Biosensor implantation. 

The Oncnosense system is formed by a reservoir and a catheter. The molecular 

recognition device and the radiofrequency transmitter are integrated in the reservoir of 

the system. While the catheter contains the microfluidic system that permits the 

separation of the plasma from the blood. The microfluidic system, therefore, enables 

the entrance of the plasma with the proteins to be analyzed in the molecular 

recognition device. In Figure 4.24 it can be seen a scheme of these components.  
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Figure 4.24  Biosensor components. 

The molecular recognition device is based on the measurement of the impedance 

signal produced by the interaction of a system that we call nanobead with the electrode 

of a capacitor. In order to transform molecular interactions to measurable parameters, 

we will use nanobeads which dielectric and superparamegnetic nature will permit to 

detect significant changes in the impedance signal of the capacitor when they are 

modified by attachment of molecules to their surface. This nanobead system has many 

advantages in terms of durability and stability with time as compared to other sensing 

systems [17, 18]. In addition, the nanobeads enhance the amplification of the signal as 

they interact simultaneously with the electric fields (capacitive effect) and the 

magnetic fields (inductive effect) of the capacitor. Hence, the combination of both 

effects (dielectric and superparamagnetic) potentiates the detection of minor 

alterations in the nanobead surface by means of electrochemical impedance 

spectroscopy.  

 The nanobeads are made by the combination of a superparamagnetic material as 

iron oxide nanoparticles in the core of the system, and a dielectric material as silica, 



162  Chapter 4. Superparamagnetic beads for a biosensor 

that acts as a shell protecting the nanoparticles and forming a nanostructure with a 

spherical morphology. Both materials have the property of being biocompatible. The 

design and preparation of the nanobeads has been described in the first sections of this 

chapter.  

Next, we will describe in detail the principal aspects of the biosensor that are 

directly related with the role played by the nanobead system in the molecular 

recognition device. 

4.3.1 Molecular recognition device 

As we mentioned before, the main objective of the molecular recognition device 

is to detect the proteins that are over-expressed in four types of cancer: lung, ovary, 

colon and melanoma. The detection of these analytes was performed by means of the 

interactions that are established between the nanobead core-shell system and the 

capacitor electrode. In Figure 4.26 we show the different components of the molecular 

recognition device. First of all, we have the nanobead system, designed according to 

the requirements mentioned before. The iron oxide nanoparticles contribute with their 

superparamagnetic property to the nanobead system as they decrease the impedance 

signal produced in the capacitor as they interact with the electrode. The encapsulation 

with silica, provides stability to the system but also, avoids particle agglomeration, 

and provides a mass increase with a positive influence in the signal as well.  A most 

important advantage of silica stays in its surface, as the presence of silanol groups 

permits a simple functionalization of the nanobead with a carboxylic acid thus 

allowing its bioconjugation with a protein, e.g., a specific antibody of the cancer that 

we want to detect. 
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Figure 4.26: Components of the molecular recognition device. 

There are several options for the functionalization of the electrode as it can be 

seen in Figure 4.27. The electrode consists of a silica oxide substrate coated with a 

gold layer. To anchor an antibody to this surface is necessary to coat the gold surface 

with a connective molecule such as an alkyl thiol carboxilate molecule. As it is well 

known, there is a strong covalent interaction between the thiol functional groups and 

gold surfaces. Then, when the bond is formed, the carboxylic group of the molecule 

will be orientated towards the external part of the surface and it can be able to interact 

with an antibody. Another methodology to functionalize the electrode is to coat this 

material with a biotynilated antibody. The thiol group can be bounded to the gold 

layer leaving the biotin in a good disposition to interact with other molecules. 

Subsequently a neutravidine is added. The avidine is a glucoprotein that presents in its 

surface hydrophobic regions where the biotine can be easily bonded. Once we obtain 

this union, the system can be exposed to the protein in which we are interested, but it 

has to be biotinylated to interact with the neutravidine. 
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Figure 4.27 Methodologies for the functionalization of the capacitor. 

In Figure 4.28 a photograph of the substrate coated with a layer of gold is shown. 

The electrode on the left has been coated, while the one on the right shows a clean 

surface just before coating.  

 

Figure 4.28: Silica substrate before and after coating with gold. 

The technique used for the electrode functionalization is the micro contact 

printing (µ-CP), as it can be seen in Figure 4.29 where we illustrate the steps followed 

in this technique. In a first step a polymeric template made of polymethylsiloxane 

(PDMS) is fabricated. Subsequently, it is immersed in a solution containing the 

reactants and put in contact with the electrode. Then the template is taken off leaving 

in the electrode surface the adequate reactants fixed.  
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Figure 4.29 Micro-contact printing technique. 

Hence, we have a system named nanobead that consist of iron oxide 

superparamagnetic nanoparticles encapsulated in silica and biofunctionalized with an 

antibody, and at the other side, a capacitor electrode that is functionalized by the same 

antibody. In order to establish an interaction between the nanobead and the electrode 

an antigen is needed, this antigen has to be able to interact with both systems. Figure 

4.30 shows a scheme of the action of the antigen in contact with the different parts of 

the molecular recognition system. In a first step the antigen forms a stable bond with 

the nanobead.  

 

Figure 4.30:  Sandwich interaction between nanobeads and the electrode. 

Subsequently, when the nanobeads suspension is put in contact with the electrode, 

the antigen bonded to the nanobead can interact by means of a covalent or an 

electrostatic bond with an antibody in the capacitor electrode. This kind of bond 

between the antigen and the antibodies is called sandwich union.  The change of mass 

in the electrode, the influence of the superparamagnetic nanoparticles, and the silica as 
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a dielectric, lead to a significant, and quantifiable, change in the capacitor electrode 

impedance. 

A general scheme of a capacitor designed for the molecular recognition system 

given in Figure 4.31. Three gold electrodes were deposited on a silica substrate. One 

of them will act as reference electrode, another one as contra-electrode and the third as 

the analysis electrode, which will be functionalized with the corresponding proteins 

and will be able to interact with the analyte present in the plasma. 

 

Figure 4.31 Molecular recognition system. 

One of the advantages of the Oncnosense biosensor is that it can be potentially 

used to perform the simultaneous detection of several analytes. For this purpose a 

chamber is specially designed, where several biosensors are included and where the 

plasma is introduced. Each biosensor is functionalized with a protein over-expressed 

in each type of cancer (melanoma, ovary, lung and colon), in this way each biosensor 

individually will transmit its own signal. In Figure 4.32 it can be observed how 4 

biosensors where integrated inside the same chamber. 

 

Figure 4.32 Chamber with four molecular recognition devices. 
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4.4 Impedance measurements and results. 

 4.4.1 Introduction 

The electrochemical impedance spectroscopy (EIS) is based on the application of 

a low alternating current to an electrode in corrosion systems. Corrosion is an 

electrochemical process that involves molecules and ions. This method can be used in 

biological applications as biomolecules are able to interact with the electrode and 

change the impedance signal. 

Often, the results obtained are analyzed using combinations of electrical circuit 

elements as capacitors, resistors and inductors. The analogous circuit components 

provide a way of modelling and allow the understanding of the corrosion process, see 

Figure 4.34, but they are not components of the corrosion process itself. We can 

observe how the reduction of the compound described in Figure 4.34a can be related 

to circuit described in Figure 4.34b. The response measured in current at different 

frequencies, it is named impedance spectra and the data obtained by EIS can be 

expressed graphically in a Nyquist plot (Figure 4.35). 

 

Figure 4.34 a) Scheme of the interface of the system b) Electronic components. 
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 The nature of the interface, i.e. the solution in the proximity of the electrode, 

can influence impedance measurements in relation of its composition and the type of 

interactions that can be established with the electrode, see Figure 4.34. The Nyquist 

plot, also called Cole-Cole plot, are the most common way to represent the data of 

impedance spectra, it is also called graphic in complex plane due to the real 

component (Z´) is represented versus the imaginary component (Z´´) of the 

impedance, as it can be observed in Figure 4.35. 

 

Figure 4.35 Impedance spectra (Nyquist). 

The impedance immunosensors arise, among other reasons, as an alternative to 

ELISA assays for the determination of proteins. They present many important 

advantages, for example, they are cheap to produce, they can be easily miniaturized, 

can be integrated in a multianalyte diagnosis system, they posses a low detection limit, 

and they can be utilized in implantable systems. In the last years, this kind of sensors 

has raised much interest in biomedical applications. Several types of electrodes have 

been studied as the gold plates functionalized with a monolayer of thiols, metallic 

oxides coated with silanes, polymeric coated electrodes that are able to interact with 

biomolecules and covalent interactions between non-conducting films bonding 

covalently to biomolecules [1922]. But also have been proposed other impedance 

immunosensors based on, for example, the electrodeposition of nanometric 

hydroxiapatite and magnetic nanobeads, among others [23, 24]. However, it is 
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necessary to study deeply the immunosensors, due to it is of great interest to improve 

characteristics as reproducibility, stability, or optimize the interactions between 

analyte and electrode, because the real samples complicate the process.  

4.4.2 Impedance measurements 

The impedance measurements that we describe here have been performed with 

our functionalized nanobeads samples, and have been carried out under the 

supervision of Dr. Christian Sporer in the Laboratory of Nanobioengineery from the 

Instituto de Bioingeniería de Cataluña (IBEC), directed by Prof. Josep Samitier. 

The first step to obtain impedance measurements is to functionalize an electrode 

with the antibodies. In order to get this, we use commercial electrodes, and we 

functionalize them. Figure 4.36 depicts the general characteristics of the sensors we 

used. To functionalize the capacitor electrode it is essential to keep the work plate in 

contact with the reactants in a continuous way, avoiding solvent evaporation and the 

contact with the reference electrode.  

   

 

 

Figure 4.36  Electrode properties. 
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The way to obtain the electrode is to use a polymeric template, as shown in Figure 

4.37. The reactants are dispersed in a solution that can diffuse through a capillary and 

the stamp to the desired area.  

            

Figure 4.37 Capillary system and stamp above the electrode. 

Impedance measurements have been performed following the methodology 

described before: 1) the electrode was treated with an alkyl thiol carboxylate, 

subsequently, the carboxylic groups were activated, and CEA was used as a capture 

antibody; finally the deactivation was carried out by means of AEE, and 2) the 

electrode was treated with alkyl thiol biotinylated molecule, then it was treated with 

neutravidine and mab-CEA biotinylated as capture antibody.  

 

Series 1  

In a first study we analyzed by means of impedance measurements the interaction 

between two proteins: Donkey anti-Rabbit and anti-Goat. One was attached to the 

electrode surface and the other one was dispersed in PBS. We choose this system first 

because the interactions are more powerful than the ones established between CEA 

and anti-CEA. The subsequent set of measurements was performed above a 

functionalized electrode with alkyl thiol carboxylate. Then the electrode was treated 

with Donkey anti-Rabbit to attach the protein to the electrode. In Figure 4.38 we can 

observe the results obtained for the electrode functionalization by means of atomic 

force microscopy (AFM). We can remark how the volume is increased by several 
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nanometers when the alkyl thiol carboxylate functionalized electrode is put in contact 

with the Donkey anti-Rabbit solution.  

       

Figure 4.38 AFM of the electrode: gold/alkythiol-carboxylate/Anti-Rabbit 

In Figure 4.39 the signals obtained for two suspensions of protein, one 10-8 M and 

the other 10-7 M of antibody anti-Goat can be observed. As it can be seen the signal 

are quite good in comparison with the signal obtained for a blank solution consisting 

in PBS. Although the detection limit is very low the saturation of the electrode arises 

somewhat faster than convenient. This depends on the degree of interactions that the 

proteins have with the substrate which in the specific case of anti-Goat and Donkey 

anti-Rabbit it is really high. 

 

Figure 4.39: Impedance spectrum with two anti-Goat solutions. 
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In a first approximation with nanobeads, the measure of non-functionalized 

nanobeads was first carried out in a sample of 11 mg/ml and its dilution in PBS at 1:10 

and 1:100, as shown in Figure 4.40. The signal decreases as the nanobead 

concentration increases. The small change that we can observe can be due to non-

specific adsorption of some nanobeads at the electrode surface. 

     

Figure 4.40: Impedance spectrum of nanobeads without functionalization and without 

secondary antibody. 

Then, the measurements of a sample consisting of nanobeads with secondary 

antibody (anti-Goat) were performed. The sample was prepared in a proportion 1:106 

but without EDC (the protein is not covalently bonded to the nanobead), and its 

dilutions in PBS 1:10 and 1:100. Figure 4.41 shows how the signal considerably 

diminishes, probably due to interactions between free anti-Goat and Donkey anti-

Rabbit.  

 

Figure 4.41 Impedance spectrum of non-activated nanobeads with secondary antibody. 
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Figure 4.42 shows AFM results obtained for the electrode in contact with non-

activated nanobeads and secondary antibody, after washing. It can be clearly seen that 

the nanobeads were not attached to the electrode. This is in accordance with the 

supposition that the interactions between the nanobeads and the electrode were weak 

otherwise we should see by this methodology the nanobeads anchored to the electrode 

surface. However an increment of volume is observed as shows Figure 4.42.  A 

possible explanation is that the signal can be produced by the secondary antibody that 

directly interacts with the functionalized electrode and not from the nanobeads.  

       

Figure 4.42 AFM of the electrode: gold/ alkyl thiol carboxylate/ Anti-Rabbit/nanobeads-anti-

Goat  without EDC. 

The last assay of this set of experiments with anti-Goat and Donkey anti-Rabbit, 

corresponds to functionalized nanobeads (with EDC and PFP) in a proportion 1:106  in 

contact with an electrode functionalized with Donkey anti-Rabbit and its dilution in 

PBS in a 1:100 ratio. Figure 4.43 shows the signal produced by the concentrated and 

diluted suspensions. In the case of the diluted sample no variation compared to PBS is 

observed. For the concentrate sample it can be seen a light variation. 
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 Figure 4.43 Impedance spectrum of activated nanobeads with anti-Goat.  

If the nanobeads were covalently bonded to the secondary antibody and then 

bonded to the electrode antibody, we should notice a large change in the impedance 

signal with respect to PBS signal, however such change is not observed. To ensure 

whether the union is produced, an AFM study of the washed electrode was carried out. 

Figure 4.44 shows that there are not nanobeads above the functionalized surface with 

anti-Rabbit, thus corroborating the data obtained from the impedance spectrum. We 

can conclude that the union between the proteins was not satisfactorily established. It 

is possible that interactions between both proteins are not strong enough to resist the 

washing. But also can be due to problems in the interactions between anti-Goat (from 

the nanobead) and Donkey anti-Rabbit (from the electrode), because the active centres 

of this kind of proteins are very delicate. The signal obtained for this assay is similar 

to the obtained for nanobeads without anti-Goat, so we can assert that the nanobead do 

not interact with the electrode but neither with anti-Goat. 



4.4. Impedance measurements and results  175 

      

Figure 4.44 AFM of the electrode gold/alkylthiol carboxylate/ Anti-Rabbit/anti-Goat- 

nanobeads. 

Finally we want to remark that nanobeads were only observed above non-washed 

electrodes as shown in Figure 4.45.  

 

Figure 4.45 Nanobeads without functionalization directly avobe a gold electrode.  

The AFM technique permits us to observe every step of the functionalization 

process, and results indicate that the antibodies attach to the electrode surface but not 

to the nanobeads, except in non-washed plates.  
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Series 2  

Next, we are going to study another system that consists of the interaction CEA 

and anti-CEA with a functionalized electrode composed of an alkyl thiol carboxilate. 

The measures corresponding to Figure 4.46 are from an alkyl thiol functionalized 

electrode. It can be observed that as CEA concentration increases the impedance 

signal decreases due to CEA interactions with the electrode surface.  

 

Figure 4.46 Variation of the impedance signal of  alkylthiol functionalized electrode. 

Next, we functionalize an alkyl thiol carboxylate electrode with anti-CEA in PBS, 

and then place it in contact with several solutions of CEA at different concentrations 

in PBS: 1, 2, 10, 20, y 40 ng/ml. Figure 4.47 shows the variation of the impedance 

signal of the samples in comparison with the PBS signal without CEA, considered the 

blank. For the measurements, a potential of 500 mV, an amplitude ac of 100 mV, and 

a range of frequency from 100 to 500 mHz were used. 
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Figure 4.47 effect of CEA concentration in an electrode modified with anti-CEA. 

It can be observed that the signal variation is quite small. In order to further 

characterize the µ-CP functionalized electrode we carried out AFM and Time-of-

Flight Secondary Ion Mass Spectrometry (ToF-SIMS) experiments.  Figure 4.48 

shows the electrode characterized by AFM and ToF-SIMS. The circles in the AFM 

picture are where the anti-CEA is deposited; the rest of the electrode surface is the 

alkyl-thiol. In Figure 4.49 we show a 3-D image of the protein deposits by means of 

µ-CP.  

 

Figure 4.48 Analysis of the functionalized electrode by means of TOF-SIMS. 
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Figure 4.49 AFM characterization. 

As in the previous series the interaction of antibody and antigen was not identified 

positively. It seems to be a problem related to the interaction of both proteins in their 

respective systems.  

 4.4.3 Electrode functionalization 

In order to verify the electrode functionalization, three functionalized electrodes 

were characterized by means of cyclic voltametry (CV). CV is generally used to study 

the electrochemical properties of an analyte in solution. In our case, we will use 

ferrocianate to study its interaction with the electrode. The three functionalized 

electrodes analyzed were treated differently: the first one is an electrode treated with 

thiol acid, then activated with EDC and PFP, subsequently with CEA and finally 

deactivated with AEE; the second one is an electrode treated with 2 x alkyl thiol 

biotinylated, then neutravidine and finally CEA biotinylated, and the third one an 

electrode treated with 3 x alkyl thiol biotinylated, then neutravidine and finally CEA 

biotinylated.  The alkyl thiol functionalized electrode CV signal shows an interaction 

between ferrocianate and the electrode. It can be due to that CEA was not covering the 

whole electrode surface. The second and the third experiments reveal better results 
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with ferrocianate. The best results are the obtained for the third electrode as it can be 

seen in Figure 4.50. The interaction of ferrocianate with the electrode is lower than in 

the alkyl thiol carboxilate electrode. It is due to that the alkyl thiol biotinylated 

electrode is coated very well with CEA. 

 

Figure 4.50: Electrode CV characterization. 
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4.5 Conclusions 

- Several synthetic routs for the preparation of superparamagnetic and dielectric 

core-shell nanoparticles have been studied. 

- The isopropanolic procedure has provided particles with better characteristics to 

be used in the molecular recognition device. 

- Magnetic studies have proved that the iron oxide nanoparticles that are protected 

by silica behave as superparamagnets.  

- The silanization of nanobeads was carried out by means of 

carboxyethylsilanetriol. This permit the nanobead to interact with biological 

molecules through the carboxylic acid.  

- The nanobeads were bioconjugated with anti-CEA, anti-Goat-HRP, Pab-Goat and 

IgG. 

- ELISA assays were performed to determine the union between the nanobeads and 

the proteins. We can conclude that: 

- PFP is an activator better than NHS. 

- As the concentration of antibody with respect to the nanobeads concentration 

is raised the adhesion increases.  

- The nanobeads biocojugated with EDC and PFP give more intense signals 

than the non-activated reactions.  

- The presence of a signal in samples without activation indicates the presence 

of non-specific interactions, mainly electrostatic interactions. 

- Pab-Goat is the most interacting protein, then IgG and the last CEA. 

- From impedance measurements: 
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- The interaction between the functionalized electrodes by means of alkyl thiol 

carboxylated with Donkey anti-Rabbit it is good enough. 

-  The interaction between the electrode functionalized by means of alkyl thiol 

carboxylated with Donkey anti-Rabbit and anti-Goat is good enough. 

- The interaction between the electrode functionalized by means of alkyl thiol 

carboxylated with Donkey anti-Rabbit and the system nanobead-anti-Goat is 

not observed.  

- The interaction between the electrode functionalized by means of alkyl thiol 

carboxylated with anti-CEA and CEA is not very good. 

- The union between primary antibody CEA and the electrode functionalized 

by means of alkyl thiol biotinilated is better than the primary antibody CEA 

and the electrode functionalized by means of alkyl thiol carboxylated.
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Chapter 5 

MNPs encapsulated in a polymer for 

drug delivery 

 

5.1 Introduction  

The idea of using magnetic nanoparticles for drug delivery, where therapeutic 

agents are encapsulated or attached to magnetic nanoparticles, was proposed by 

Widder and Senyei in 1978 [1,2]. These particles may have magnetic cores protected 

with a stabilizing material like polymers or other kind of coatings that can be 

functionalized. They may also consist of porous polymers that contain magnetic 

nanoparticles precipitated within the pores [3-5]. Advantages of the use of these 

complex materials are conjugation with biological ligands and also the possibility to 

increase the circulation time of magnetic nanoparticles in the blood stream [6]. 

Moreover, it is of high interest to find a system that permits controlled drug release. In 

our case the approach that can allow this, is to control the swelling of the system with 

an external factor, like temperature, ionic strength, or pH. The heating capacity of 

MNPs can be used for this propose, because it can increase the polymer internal 

mobility inducing drug release as shown in Figure 5.1. We demonstrate in chapter 2 

that the sample A0 can generate heat when an alternating field is applied.  

 

Figure 5.1 An alternating magnetic field induce magnetic nanoparticles to generate heat that 

can improve the polymer chains mobility facilitating drug delivery. 
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As a polymeric coating to render magnetic nanoparticles stable in aqueous 

medium and protect them from aggregation, we have considered poly(4-vinyl 

pyridine) because the behaviour of solid composites of maghemite nanoparticles in 

this polymer have been extensively studied in the group [710]. In addition, a number 

of studies have been conducted, mainly from Dupin and co-workers, where they have 

been demonstrated that microgels made of crosslinked poly(2-vinyl pyridine) (P2VP) 

showed pH sensitivity and volumetric swelling ratios up to 3 orders of magnitude with 

mean diameters ranging from 280 to 1010 nm [1114]. They synthesized the polymer 

P4VP hydrogel spheres by using monomer polymerization or crosslinking but to the 

best of our knowledge no work has been introduced up to date in which the fabrication 

consists on nanoprecipitation. We also want to mention the work of Ren et al. [15], 

they have shown that copolymers of P4VP-g-PEO of different lengths react very 

sensitively to temperature, pH and ionic strength. As a result, a magnetic multi-

responsive system can be build consisting in a number of components that are: 

magnetic nanoparticles, a protective coating and a biomolecule that implies the 

therapeutic effect 

Not much work has been carried out concerning to the encapsulation of magnetic 

nanoparticles for remote heating and controlled local temperature increase in 

combination with drug encapsulation in order to induce a controlled local release. 

Here we propose a functional system that is able to combine its thermic effect and pH 

and ionic strength response in order to facilitate drug delivery. Our system is 

composed of magnetic iron oxide nanoparticles core and a P4VP coating polymer. The 

coating polymer enables the system to have an active response to changes in the 

system environment, like modifications in the pH or ionic strength of the medium, as 

depicted in Figure 5.2. This change in the polymer structure permits to deliver any 

drug in a controlled manner. 



5.1 Introduction   187 

 

Figure 5.2: As the pH or the ionic strength decreases, the polymer sphere swells 

Since our aim is to develop a multifunctional system for drug delivery, we need 

the magnetic and monodisperse iron oxide nanoparticles, a pH responsive polymer and 

an active drug.  In the following we will introduce the design of such system, its 

synthesis and characterization. 

5.2 Experimental 

5.2.1 Materials 

1, 2 Dichlorobencene (DCB) (99%) was supplied by Panreac. Oleic acid (pure) 

was purchased from Fluka and iron pentacarbonyl (pure), surfactant polyvinyl alcohol 

(PVA) (8789%, hydrolyzed and average Mw 1300023000), trimethylamine N-oxide 

dehydrate, Copper dichloride CuCl2 (99.999%), methyl 2- chloropropionate (MCP) 

(97%) acetic acid, morpholino ethanesulfonic acid monohydrate (MES) were all 

products of Sigma Aldrich. Ethanol absolute (reagent grade), dichloromethane (DCM) 

(extra-pure) and methanol (min 99.8%) were purchased from Scharlau. These solvents 

and reactants were used as received without further purification. 4-vinyl pyridine 

(4VP) (Aldrich, 95%) was distilled under vacuum and stored at -5ºC. Copper chloride 

(CuCl) was purified by stirring with acetic acid for several hours, then filtered, washed 

with acetic acid, ethanol and diethyl ether, successively, and stored under vacuum. 

Tris [(2-pyridyl) methyl] amine (TPMA) was prepared following literature procedures 

[16]. 
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5.2.2 Synthesis of poly(4-vinyl pyridine) 

We use Atomic Transfer Radical Polymerization (ATRP), discovered by 

Matyjaszewski´s group in 1995 [17], as polymer synthesis route to obtain polymers 

with narrow molecular weight dispersion with established average chain lengths. The 

uniform polymer chain growth was carried out using a transition metal based catalyst. 

This catalyst provides a balance between active polymer and an inactive form of the 

polymer, known as the dormant form. Since the dormant state of the polymer is 

preferred in this equilibrium, side reactions are suppressed. This equilibrium lowers 

the concentration of propagating radicals, suppressing unintentional termination and 

permitting the control of molecular weight. ATRP reactions are very robust and they 

tolerate many functional groups like allyl, amino, epoxy, hydroxy and vinyl groups 

present in either the monomer or the initiator as shown in Figure 5.3. These methods 

present other advantages, such as easy preparation, and commercial availability and 

low cost reactants.  

 

Figure 5.3 Synthesis of P4VP by ATRP. 

The propagation rate of the reaction is unique for each individual monomer. 

Monomers that are typically used in ATRP are molecules with substituents that can 

stabilize the propagating radicals. Therefore, it is important that the other components 

of the polymerization (initiator, catalysts, ligands and solvents) are optimized in order 

to get a higher concentration of the dormant species to be greater than that of 

propagating radicals so the reaction does not slows down or stops.  

Monomer 4VP and polymer P4VP can form complexes with a copper centre 

without effective catalyst activity in ATRP [18]. In addition, due to the nucleophilic 

character of the pyridine ring, monomer and polymer can react with the active 
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polymer chain end "killing" the living nature of the polymerization and leading to 

branching [19]. To overcome the polymerization of this monomer authors make use of 

multidentate stronger binding ligands (TPMA, Me6-tren or Me6-[14]ane-N4) with a 

high complexation constant with the copper centre. Furthermore polymerization is 

carried out in protic solvents as 2-propanol to reduce polymer contamination by the 

catalyst. In a similar way authors describe the advantages of chlorine based initiating 

and catalytic systems over bromine ones. Chlorine based compounds minimizes side 

reactions as nucleophilic substitution or elimination reactions. Moreover, the initial 

addition of a certain percentage of a deactivator like a CuCl2 complex resulted in an 

excellent control over the polymerization [19,20]. 

In a typical synthesis a 50 ml Schlenk flask with a magnetic stir bar was charged 

with 51.41 mg of CuCl, 29.90 mg of CuCl2 and 215.20 mg of TPMA. The flask was 

degassed by three vacuum-argon cycles, and 6 ml of 2-propanol previously 

deoxygenated by passing argon during 30 minutes were introduced using a syringe. 

After stirring, 6 ml of deoxigenated monomer 4VP was added under argon 

atmosphere. Immediately, the mixture was frozen in liquid nitrogen and degassed by 3 

freeze-pump cycles. The flask was immersed in an oil bath thermostated at 40oC. After 

10 minutes 0.0825 ml of deoxygenated methyl 2-chloroproprionate were introduced 

into the flask using a syringe purged with argon. After 7 h of reaction, the flask was 

open to the atmosphere and the mixture was cooled to room temperature. The 

homogeneous dark green solution was then diluted with a small amount of 2-propanol 

and poured into a large amount of cold diethyl ether. The green precipitated polymer 

was dissolved in dichloromethane, 2 g of Dowex R°50WX2-100 ion-exchange resin 

were added and the mixture was stirred for 90 minutes at room temperature. After 

stirring, the mixture was filtered to remove the resin beads. The obtained polymer 

solution was washed with water until a colourless aqueous phase was observed, and 

then dried over anhydrous magnesium sulphate and concentrated under vacuum. The 

polymer was dissolved in a small amount of dichloromethane and poured into a large 

volume of cold diethyl ether. Finally, the purified polymer, precipitated as a white 
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powder and was collected by filtration and dried under vacuum at 50ºC for three days. 

Yield: 2.32 g (39%). 

5.2.3 Preparation of blank P4VP nanospheres 

The P4VP nanospheres were prepared by a modified nanoprecipitation technique. 

This method involves the precipitation of the polymer from an organic solution in 

which is obtained by the diffusion of the organic solvent in the aqueous medium in the 

presence of a surfactant. 

First, 50 mg of P4VP were dissolved in a solution of 1 ml of DCM with 1 ml of 

methanol. This organic solution was then poured under magnetic stirring into a polar 

phase consisting of 16 ml ethanol:water in proportion (1:3) and PVA for 20 min at 800 

rpm. PVA was used as stabilizing and emulsifying agent. Different concentrations of 

surfactant PVA (0%, 0.1%, 0.4% and 1%) were used in order to study its influence on 

the spheres properties. 

With the aim of finding out the influence of ionic strength on the swelling of the 

particles, we dispersed a P4VP suspension of nanospheres synthesized with 1% of 

PVA (pH 6.8) in 10 mM and 100 mM NaCl respectively and measure their size as a 

function of time. 

5.2.4 Preparation of oleic acid coated magnetic nanoparticles 

The synthesis of highly crystalline and monodisperse maghemite nanoparticles 

was carried out in organic medium by the Hyeon method [21] and it is described in 

chapter 2. 

5.2.5 Encapsulation of oleic acid coated magnetic nanoparticles into P4VP 

spheres 

Magnetic iron oxide nanoparticles have been encapsulated in P4VP spheres by a 

simple nanoprecipitation process. The encapsulation method involved the formation of 

an oil-in-water emulsion consisting of an organic phase including the polymer and the 
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magnetic nanoparticles and an aqueous phase containing the surfactant. A typical 

encapsulation is described as follows. The aqueous phase was prepared dissolving 15 

mg de PVA in 12 ml of hot Milli-Q water. When the solution was cooled, 4 ml of 

ethanol were added and the mix was poured into a beaker. The organic phase was 

prepared dispersing one drop of magnetic ferrofluid in 1 ml of DCM, then 1 ml of 

methanol was added and 50 mg of PVP was dissolved. The organic phase was then 

added into the aqueous one under magnetic stirring at 800 rpm for 20 min. 

In order to study the influence of EtOH:H2O proportion in the formation of 

spheres, three different samples were prepared varying the proportion (1:1, 1:3 and 

3:1). Some experiments were also carried out varying PVA concentration (0 mg, 15 

mg, 30 mg, 45 mg and 100 mg) and modifying P4VP concentration (25 mg, 50 mg, 75 

mg and 100 mg) without PVA and finally the behaviour of the system was studied by 

changing the magnetic charge (1 drop, 2 drops of ferrofluid).  

5.2.6 Buffer synthesis 

Buffer was adjusted using acetic acid or MES from pH 4 to 7 using appropriate 

amounts of NaOH or HCl to a concentration of 10 or 100 mM. 

5.3 Results and discussion 

5.3.1 Poly(4-vinyl pyridine) 

In order to characterize the synthesized P4VP, the polymerization degree (DP: 45) 

and number-average molecular weight (Mn: 4854 Da) of the polymer were determined 

by 1H-NMR (CDCl3). The 1H NMR spectrum (see Figure 5.4) was fully consistent 

with the chemical structure and confirmed the purity of the final compound. 

Molecular weight distribution (Mw/Mn) of the polymer was evaluated by gel 

permeation chromatography (GPC) performed on a Waters 2695 autosampler 

equipped with a Waters 2420 ELSD detector on two in line Phenogel 5 µm Linear/ 
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mixed (2) (7.8x300 mm) columns with a mixture of tetrahydrofuran /(methanol/ 

ethanol amine (99/1)) (70/30) as eluent at a flow rate of 1ml/min at 35ºC. 

 

Figure 5.4 1H NMR spectrum of P4VP prepared by ATRP of 4VP at 40ºC with molar ratio 

4VP/MCP/CuCl/CuCl2/TPMA 75/1/0.7/0.3/1. 

 

Figure 5.5 GPC trace of P4VP (light scattering detection) synthesized by ATRP. 

The GPC measurements (see Figure 5.5) showed a narrow molecular weight 

distribution for the polymer with a polydispersity index of 1.17. Molecular weight of 

the polymer was calculated from NMR signals, using the following equations: 
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Where MIn corresponds to the molecular weight of the initiator (MIn = 122.55), 

M4VP is the molecular weight of the monomer (M4VP = 105.14) and DP represents to 

the degree of polymerisation of the polymer. Iaryl denotes the integration of peaks of 

aryl hydrogens (HF+HG, see inset in figure 1) from 6.19 to 8.58 ppm and Imet that of 

the hydrogens of the methoxy group in the polymer chain end (HA) from 3.353.58 

ppm. From the NMR spectrum the calculated DP was 45 and Mn; NMR = 4854 Da. 

5.3.2 Blank P4VP nanospheres 

Figure 5.6a shows a SEM micrograph of the polymer spheres with a content of 

1% in PVA. It can be observed that the particles have a spherical regular shape with 

sizes ranging from 200 to 300 nm and no aggregation can be observed. The size of the 

as-prepared P4VP spheres was also estimated by dynamic light scattering (Figure 

1.6b) with an average mean-size of 230 nm. The spheres size is ranging between 150 

nm to 450 nm and it can be considered that this is in concordance with SEM data, 

although SEM diameter is a little bit smaller than the diameter observed by means of 

DLS.  
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Figure 5.6 a) SEM micrograph of 1% PVA polymer spheres b) DLS of 1% PVA polymer 

spheres. 

The smaller diameter of the spheres measured by SEM with respect to DLS can 

be explained because dynamic light scattering measures the hydrodynamic diameter, 

resulting in an increase of the measured diameter. 

5.3.2.1 Effect of surfactant concentration 

The mean particle size of the nanospheres as a function of PVA concentration in 

the external aqueous phase was analyzed (Figure 5.7). In this study the mean sphere 

size was determined by means of DLS. Different concentration of surfactant PVA (0 

%, 0.1 %, 0.4 %, 1 %) (w/v) were used in order to analyze the dependence of the 

nanospheres properties. A number of previous reports demonstrated that by increasing 

the PVA concentration in the external aqueous phase the size of the nanospheres 

decreases. In our case, the mean nanosphere size decreased from 440 to 210 nm with 

an increase in the PVA concentration in the external aqueous phase from 0% to 1% 

w/v. The bars in the graphic indicate the peak width of DLS measurements this can be 

considered as the polydispersity estimation. So, as it can be observed the 

polydispersity was found to increase as the surfactant content decreases, resulting in 

higher errors. That is in good agreement with previous reports on other polymeric 

hydrogels like in PLGA micro- and nanospheres [22], showing a decrease of the 

nanospheres size when increasing the PVA concentration in the external aqueous 

phase. Such general effect is probably due to the increasing viscosity of the solution 

upon addition of PVA. The viscosity of the solution increases with increasing PVA 

concentrations, and this could result in the formation of a stable emulsion with smaller 

and uniform droplet size, leading to the generation of smaller sized nanospheres with 

lower polydispersity. 
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Figure 5.7 Effect of PVA concentration in the spheres size. 

5.3.2.2 Stability and swelling kinetics 

The major factors that influence the degree of swelling of ionic polymers include 

the properties of the polymer (charge concentration, pKa of the ionizable group, 

degree of ionization, crosslinking density and hydrophobicity), and properties of the 

swelling medium (pH, temperature, ionic strength, counterions in solution and their 

valence). 

With respect to the equilibration time, it has to be stressed that the kinetics of the 

volume change of gels is not fully understood. For a long time it was assumed that the 

swelling of a gel was determined by the diffusion of water molecules into a polymer 

network and that the swelling was fast for very porous networks, facilitating the 

diffusion of water molecules into it, and slow for dense networks. Now it is generally 

believed that the swelling process is determined by the diffusion of the polymer 

network, which has been shown both experimentally and theoretically [23]. 

In addition to other major factors that influence the swelling of hydrogels, the 

nature of the buffering species has also been reported to affect the polymer swelling 

kinetics. For example, swelling in solutions buffered by weak organic acids like acetic 

acid and MES (used in our experiments) was found to reach equilibrium within a few 

hours, whereas in unbuffered media it took weeks or months [24]. 
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The fabricated spheres at pH 6.8 were observed to be very stable in water at room 

temperature during several months and their size remained unchanged over this time 

(Table 5.1). 

Table 5.1: P4VP spheres diameter and polydispersity index values measured as a 

function of time 

Time (months) Diameter (nm) PdI 

0 230 0.139 

2 240 0.194 

4 240 0.121 

 

5.3.3 Oleic acid coated magnetic nanoparticles 

The iron oxide MNPs are characterized in chapter 2. 

5.3.4 Magnetic P4VP spheres 

To obtain a multi-responsive system, iron oxide magnetic nanoparticles with a 

mean size of 6 nm were encapsulated in P4VP polymer spheres by the 

nanoprecipitation method as described in the experimental section. Figure 5.8a shows 

a TEM micrograph of the sample as prepared without further purification, the spheres 

range in size between 1 and 3 µm. It can be observed from the images that the 

concentration of nanoparticles inside the spheres is higher than outside in the samples 

without purification, so the particle internalization is considered good. The inset of 

Figure 5.8 presents the electron diffraction (ED) pattern of a selected area inside a 

sphere. All the rings in the pattern are clearly defined, which reveals is the presence of 

a nanocrystalline material inside the sphere. 

Some studies were performed in order to analyze the influence of some 

parameters in the particle formation. We can conclude that the proportion of 
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EtOH:H2O in the aqueous phase does not affect the particle size. In the absence of 

PVA the particle diameter increased, however, in the presence of PVA in amounts 

varying from 15 mg to 100 mg no significant changes were observed. The same 

occurred when we fixed the PVA concentration and changed the amount of P4VP 

from 25 mg to 100 mg. 

    

Figure 5.8 a) TEM micrograph of iron oxide nanoparticles inside of polymer spheres b) TEM 

and ED. 

However, if we change the magnetic nanoparticle loading, a variation in particle 

size can be observed. If we compare two samples prepared in the same way, and using 

the same amount of reactants, but with one and two drops of iron oxide DCB solution 

respectively, the size changes as it can be seen in Figure 5.9. The sample with only 

one drop, with an average diameter of 710 nm, is higher in size than the two drops 

sample, with an average diameter of 240 nm. TEM micrographs of both samples are 

shown in Figure 5.10. It is thus clear that both the polydispersity and the average size 

of the obtained polymer spheres decreases with the magnetic loading. That can be 

explained because of the DCB solvent of the iron oxide nanoparticle suspension 

interacts with the organic phase composed of DCM. 
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Figure 5.9 DLS of samples loaded with one and two drops of ferrofluid respectively. 

In order to study the effect of P4VP concentration in the particle size in the 

absence of surfactant, four experiments were performed. The experimental data and 

the mean diameter estimated by DLS are presented in Table 5.2. It can be seen that the 

diameter increased with the P4VP content. 

Table 5.2: DLS values for different concentration 

Sample [P4VP] (mg) DLS mean size 
(nm) 

C1 25 1200 

C2 50 1800 

C3 75 2800 

C4 100 3000 
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Figure 5.10 a) TEM micrograph of one drop loaded spheres b) TEM micrograph of two drops 

loaded spheres. 

5.3.4.1 Magnetic P4VP-PEG spheres 

It is well known that PEG is a biocompatible polymer which is capable of 

increasing the blood circulation time of nanoparticles in biosystem. Therefore, a 

P4VP-PEG block-co-polymer was employed instead of P4VP to encapsulate iron 

oxide nanoparticles using the nanoprecipitation technique. Two different procedures 

were followed, one of them in the presence of PVA (15 mg) and the other in the 

absence of any surfactant. DLS measurements indicated that the average diameters 

were 460 nm for spheres prepared with PVA, whereas that and 575 nm for those 

prepared in the absence of surfactant. That increment of size in the absence of 

surfactant was confirmed by TEM measurements, as shown in Figure 5.11, and is 

coincident with the behaviour of P4VP polymer previously presented. 

   

Figure 5.11: a) TEM micrograph of P4VP-PEG spheres with PVA, b) TEM micrograph of 

P4VP-PEG spheres without PVA.
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5.4 Conclusions 

Summarizing, we describe a simple synthesis method to obtain a multifunctional 

and multi-responsive system for a number of biomedical applications. This system 

renders the core magnetic to enable external controlled actuation under a magnetic 

field, and the polymeric coating consists on a pH responsive polymer. Furthermore, 

the system is shown to be ionic strength responsive. 

In a first stage we have developed a new and straightforward chemical synthesis 

to prepare stimuli-responsive non crosslinked P4VP nanospheres. The P4VP polymer 

was synthesized by atom transfer radical polymerization in order to have a good 

control of the average molecular weight and the polydispersity. A nanoprecipitation 

process was used to obtain P4VP nanospheres due to its advantages, as it is simple, 

rapid and reproducible. The obtained nanoparticle suspensions in water were stable 

during several months. It is found that the surfactant concentration in the synthesis 

step plays a very important role in the size control of the nanospheres. In particular, as 

the concentration increases the volume decreases resulting in mean diameters varying 

from 200 to 420 nm.  

In order to give these systems magnetic heating functionality we encapsulated 

oleic acid coated iron oxide nanoparticles with defined size and crystallinity. As 

described in chapter 2, these nanoparticles are superparamagnetic and capable of 

undergo a magnetically driven heating, and their relative heating performance 

decreases with the concentration due to interparticle interactions. 

We have also described a chemical synthesis procedure to prepare multi-

responsive P4VP microspheres loaded with iron oxide nanoparticles, based on the 

nanoprecipitation method. We achieved a hybrid (organic-inorganic) material by 

encapsulating oleic acid-coated iron oxide nanoparticles with sizes of the order of 6 

nm in a P4VP spheres with sizes between 1 and 3 µm. Subsequently we use P4VP-

PEG block-co-polymer to encapsulate the iron oxide nanoparticles in order to provide 
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the system with a protective biocompatible layer and increase the blood circulation 

time, with an average size of 460 nm.  

It is interesting to combine the possibilities that offer this kind of systems in order 

to take the maximum advantage of them fusing the therapeutic effect with diagnosis. 

The system has the potential capacity of deliver a therapeutic agent in a controlled 

manner. The magnetic nanoparticles can induce remote effects since it is possible to 

use their properties to absorb energy and convert it into heat, it also can be consider 

that they can be directed by a magnetic field to a target point and deliver a specific 

drug. Another interesting possibility is to use their diagnosis properties as a contrast 

agent in MRI. However, there is still a lot of work to do to develop this system before 

arriving to clinical practice. 
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µ-CP  Micro contact printing 

2VP  2-Vinylpyridine 

4VP  4-Vinylpyridine 

acac  Acetylacetonate 

AEE  Aminoethoxy ethanol 

AFM  Atomic force microscopy 

ATRP  Atomic transfer radical polymerization 

BSA  Bovine serum albumin 

CEA  Carcinoembryonic antigen 

Cup  N-nitrosophenylhydroxylamine 

CV   Cyclic voltametry 

DCB  Dichlorobencene 

DCM  Dichloromethane 

DDA  Dodecilamine 

DEA  2-(Diethylamino) ethyl methacrylate 

DLS  Dynamic light scattering 

DPA  2-8diisopropylamino) ethyl methacrylate 

DTESP  Diethyl [2-(triethoxysilyl) ethyl] phosphonate 

ED   Electron diffraction 

EDC  1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EDIPA  Ethyldiisopropylamine 
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EELS  Electron energy loss spectroscopy 

EIS  Electrochemical impedance spectroscopy 

ELISA  Enzyme-Linked immuno sorbent assay 

FTIR  Fourier transform infrared spectroscopy 

GPC  Gel permeation chromatography 

IBEC  Instituto de Bioingeniería de Cataluña 

IgG  Immunoglobuline G 

IO   Iron oxide 

IOMNPs  Iron oxide magnetic nanoparticles 

IP   In-phase 

IR   Infrared 

JCPDS  Joint committee on powder diffraction standards 

MCP  methyl 2-chloropropionate 

MES  Morpholino ethanesulfonic acid monohydrate 

MNPs   Magnetic nanoparticles 

MPEGPLA Methoxy poly(ethylene glycol) polylactide copolymer 

MRI  Magnetic resonance imaging 

NHS  N-hydroxysuccinimide 

NMR  Nuclear magnetic resonance 

OA  Oleic acid 

OE   Dioctyl ether 

OP   Out-of-phase 

P4VP  Poly 4-vinyl pyridine 
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PBS  Phosphate buffer solution 

PCL  D, L-caprolactone 

PD   Polymerization degree 

PdI   Polydispersity index 

PEG  Poly(ethylene glycol) 

PEI  Poly(ethylene imine) 

PEO-PPO-PEO Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block 

copolymers 

PFP  Pentafluorophenol 

PLLA  Poly(D, L-lactide-co-glycolide) 

PVA  polyvinyl alcohol 

RT   Room temperature 

SAED  Selected area electron diffraction 

SAR  Specific absorption rate 

Sil-PEG  N-(3-triethoxysilylpropyl) O-polyethylene oxide urethane 

TEM  Transmission electron microscopy 

TEOS  Tetraethyl orthosilicate 

TESDI  N-(3-triethoxysilylpropyl)-4, 5-dihydroimidazole 

TESPDA  3-(Triethoxysilyl) propylureido dodecanoic acid 

TGA  Thermogravimetric analysis 

TMB  3, 3´, 5, 5´-Tetramethylbenzidine 

ToF-SIMS   Time-of-flight secondary ion mass spectrometry 

TOPO  Trioctylphosphine 
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TPMA  Tris [(2-pyridyl)methyl] amine 

XRD  X-ray diffraction 
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