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Prologo

En 1763, a titulo péstumo, se publicé el conocido Teorema de Bayes [1]. Este teorema supuso no
solo el desarrollo de una potente herramienta de calculo de probabilidades, sino la inauguracién de una
perspectiva nueva de la probabilidad, entendiéndola como medida de incertidumbre.

Esta perspectiva se prolonga de forma consecuente en la disciplina de la estadistica matemdtica,
dando forma a la estadistica bayesiana. Entender lo incierto como aleatorio lleva a la interpretacién de
los pardmetros desconocidos como variables aleatorias con una cierta distribucién de probabilidad. El
objetivo de la estadistica bayesiana consiste en tratar de estimar la distribucién a posteriori de estos pa-
rametros tras obtener una muestra de la poblacién estudiada y conjugarla con las premisas de las que se
partia —distribucion a priori. Esta visidn, ya desde los inicios de la estadistica clasica o frecuentista, des-
pert6 el rechazo de varios de sus principales exponentes como Ronald Fisher —véase Fisher, R., (1949)
[4]. No obstante, el tiempo y la practica parecen haber demostrado la poca justedad de sus afirmaciones.
En los ultimos afios, la estadistica bayesiana ha vivido un repunte significativo y en especial con el gran
desarrollo que ha experimentado el estudio de métodos computacionales. En su favor, encontramos la
gran flexibilidad que permite en la modelizacién y que exploraremos brevemente en los Capitulos 3 y
4, la sencilla interpretacion de algunas de sus herramientas frente a sus homologas frecuentistas —como
se observa en los intervalos de credibilidad bayesianos y los intervalos de confianza frecuentista—, y,
ademds, el hecho de que ha permitido dar salida a limitaciones, cada vez mds evidentes para mayor parte
de la comunidad cientifica, del paradigma cldsico; por ejemplo, en los contrastes de hipétesis y p-valores
—McShane, B. B. et al (2019) [8].

El paradigma bayesiano se ha convertido en el referente en varios escenarios diferentes. Entre ellos
encontramos: el andlisis del indice de paternidad; en problemas legales y juicios, por ejemplo, para
desenmascarar la falacia del fiscal; e incluso los filtros de spam del correo electrénico, basados en lo que
se conoce como filtros bayesianos, esto es, filtros que irdn aprendiendo a decidir a partir de los datos que
el usuario le va ensefiando paulatinamente, de forma que la probabilidad de filtrar solamente el material
indeseado aumenta.

Volviendo al terreno de la modelizacién estadistica, en este trabajo se presentan, primero, los funda-
mentos de la estadistica bayesiana como enfoque diferenciado, y, posteriormente, se centra en uno de sus
pilares fundamentales: los modelos jerdrquicos. Mds precisamente, son cuatros los puntos principales
que se incluyen en este trabajo, divididos en cuatro capitulos principales.

En el Capitulo 1, junto con la introduccién al enfoque bayesiano, se recogen algunos apuntes sobre
sus herramientas fundamentales, tales como la eleccion de la distribucién a priori, la necesidad de los
métodos MCMC o los estimadores Bayes e intervalos de credibilidad.

En cuanto al Capitulo 2, se desarrolla el cdlculo de las distribuciones a posteriori de pardmetros
asociados a variables normales segiin diferentes casos —media desconocida y varianza desconocida, el
caso opuesto y ambos pardmetros desconocidos.

Ya en el Capitulo 3, se retoman las cuestiones mds de concepto, pues se exponen las caracteristi-
cas principales de los modelos jerarquicos bayesianos. Su desarrollo se justifica por su capacidad para
relaciones de dependencia, a la par de producir modelos mas realistas al reconocer los pardmetros que
determinan la distribucién a priori de los pardmetros —llamados hiperpardmetros— como desconocidos.
Nuevamente, se desarrolla un ejemplo relativo a variables normales para ejemplificar los pasos habituales
para la caracterizacion de las diferentes distribuciones a posteriori del modelo.

Finalmente, en el Capitulo 4, en una primera parte, se estudian algunos modelos de regresion ex-
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plorando y haciendo hincapié, nuevamente, en la flexibilidad del anélisis bayesiano. Esto se expresa,
principalmente, en su capacidad para generalizar el modelo de regresion cldsico a situaciones con datos
correlados o heterocedésticos partiendo de cédlculos sencillos. En la segunda parte del Capitulo 4, se pro-
pone un ejemplo de como la obtencién de las distribuciones a posteriori conjugadas se pueden combinar
con técnicas MCMC para ajustar un modelo bayesiano de forma eficiente. El ejemplo propuesto sobre las
temperaturas medias del verano es meramente ilustrativos, ya que un ajuste 6ptimo requeriria un modelo

mds complicado con mds términos para representar la variabilidad espacial, y queda fuera del objetivo
de esta memoria.



Abstract

Two main points that distinguish Bayesian analysis from classical statitistics are the subjective way
of comprehending probability as a measure of uncertainty and regarding the unknown parameter 6 in a
statistical model as a random variable. Therefore, 6 has its own distribution.

Bayes’s Theorem establishes that the parameters distributions depend on the quantity of prior in-
formation that we have available, which is reflected on the prior distribution or density of 6, denoted
by [0], and one sample y = (y1,...,y,) of the studied population. The joint distribution of y —usually
called likelihood— depends on 6 and is denoted by [y|68]. According to the introduced notation, Bayes’s
Theorem for absolutely continuous random variables asserts that

oy 10161 [6]ve)
] Jol611y16]d6
where [0|y] is the posterior distribution or density and @ is the support of the density of 6. For Bayesian
inference, the posterior distribution is the main goal. It expresses all our knowledge about the parameter
0 and, therefore, it is the distribution that we use to estimate.

In Chapter 1, besides of going over all these concepts, we also include a brief discussion on the diffe-
rent kinds of prior distributions, especially, conjugate prior distributions due to their advantages related
to posterior distribution computations. Furthermore, we introduce the necessity of MCMC methods in
Bayesian analysis and frequent tools that Bayesian analysis uses to summarize posterior distributions,
such that Bayes estimators and credible intervals.

In Chapter 2, we focus on showing posterior distributions computations in detail for normal variables,
that is, y ~ N(u,?). The aim is to look into different case studies depending on which parameter is
supposed to be unknown: i, 62 or both, and making different choices about the prior distributions: non-
informative prior distributions and conjugate prior distributions. These results will be frequently used
throughout the following chapters. Besides, two important remarks are raised. One of them shows that
the influence of the prior distribution in the posterior distribution is very slight if we have a substantial
quantity of data, what justifies making use of non-informative prior information in such cases. The other
remark is an actual defence of Bayesian analysis, since we will see that classical properties of frequentist
statistics can be followed easily thanks to Bayes’s Theorem, and without necessity of counting with a
great amount of prior information.

As for Chapter 3, we first go back to a more conceptual framework and principal issues regarding
hierarchical modeling are brought up. The usual scenes where hiercachical model shows up are models
with clustered data as it allows us to establish a depency relation easily. We consider the hierarchical mo-
del given by normal data y; j ~ N(6;, 0?) clustered in J different groups. The parameters 6 ; are assumed
to be unknown and we consider them as a sample such that 6;|u, 7 ~ N(p, 72) for all j with parame-
ters —usually called hyperparameters— ¢ = (1, T) unkown too. As a result, hierarchical modeling is
more realistic than usual modeling since it also takes the uncertainty associated to the hyperparameters
into consideration. The prior information will not be [6] any longer, but [8|¢] = [0|u, 7] together with
[¢] = [, T]. Thus, we include a brief discussion on what non-informative prior distribution for ¢ one can
choose in a model like ours. Our main objetive will be to characterize the posterior conditional distribu-
tion of the parameters given the hyperparameters [0|¢,y] and the marginal posterior distributions of the
hyperparameters [¢|y]. We use this example to show the usual steps followed in these characterizations
in Bayesian hierarchical models.




VI Abstract

Finally, in Chapter 4, we collect some results related to different linear regression models. Given an
explained variable y and explanatory variables xp,...,x;, a linear regression model is

y=PBo+Bixi+...+ B +e,

where B = (Po,. .., Bx) are the regression coefficients and € is a normal variable that expresses the error.
Different assumptions about this error term determine the complexity of the model. The classical re-
gression model is the first model we will cope with. Our goal will be the posterior distributions of the
regression coefficients and the variance. Afterwards, in order to insist on the flexibity Bayesian statistics
provides, we will show that some models with correlated and heterocedastic data can be faced with si-
milar computations to those that are developed for the classical regression model. In addition, we study
the applications of hierarchical modeling in the field of regression models by including random effects.
As an example of the use of the previous results, two simple models based on summer temperatures in la
Comunidad Auténoma de Aragén are studied, so that we can show how combining the analytical deriva-
tions of the posterior distributions and MCMC methods leads us to a more efficient way to fit a Bayesian
model. The given example related to summer temperatures is merely illustrative, given that an optimal
adjustment would require a more complex model with specific terms to express the spatial variability,
what is further from our purposes.

To obtain the desired marginal posterior distributions, we develop a Gibbs sampling algorithm. The
R codes used to implement the approach, together with the results of the simulation —the marginal
posterior densities, posterior expectations and credible intervals—, are provided in the Appendix.
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Capitulo 1

Generalidades del analisis bayesiano

1.1. Introduccién al analisis bayesiano

La probabilidad como medida de incertidumbre es utilizada con frecuencia en el lenguaje cotidiano.
Afirmaciones como «es cien por cien seguro que ocurrird» expresan la creencia de un sujeto ante un
fenémeno, reflejando una perspectiva condicionada por la informacién de la que un sujeto parte. En este
sentido, podemos decir que la probabilidad puede entenderse de forma intuitiva como medida de incer-
tidumbre. La estadistica bayesiana es una rama de la estadistica que se basa en esta interpretacion de la
probabilidad como medida de incertidumbre, en lugar de la interpretacion frecuentista de la probabilidad,
fundamento de la estadistica cldsica. Ademads, otra diferencia esencial entre ambos paradigma es la forma
de considerar los pardmetros desconocidos. Para la estadistica cldsica o frecuentista, tales parametros se
suponen valores fijos y uno de los objetivos princpales es obtener estimadores de esos pardmetros. Por
el contrario, la estadistica bayesiana reconoce a los pardmetros como variables aleatorias y el objetivo es
caracterizar su distribucién.

1.2. Distribucion a posteriori. Teorema de Bayes

El objetivo principal de la estadistica bayesiana es caracterizar la distribucién de 0, el pardmetro o
vector de pardmetros bajo estudio, incuyendo la informacidn que proporciona una muestra observada y
la informacidn a priori que podemos tener sobre él. Esta distribucién se denomina distribucién a poste-
riori y se trata de la distribucién del pardametro condicionada a la muestra observada. Esta distribucién
condicionada se calcula utilizando el Teorema de Bayes —Bayes, T. (1763) [1]— como se muestra en el
siguiente teorema. El resultado se enuncia para variables absolutamente continuas, pero también es vali-
do para variables discretas sustituyendo las densidades por probabilidades. A lo largo de todo el estudio
denotaremos por ® C R’ al dominio paramétrico.

Teorema 1.1. Sea y = (yi1,...,yn) una muestra con densidad |y|0] dependiente de un pardmetro 6.
Entonces, si suponemos que 0 tiene densidad [0, se tiene que su densidad a posteriori es
GG ele
[e\y]:M 6] _ _Dielle] (w1
] Jolv/6][6]d6
La densidad [0] se denomina densidad a priori, ya que refleja la informacion sobre 6 previa a la
muestra y, y la densidad [y|0] es la verosimilitud de la muestra, que satisface

n

vie] = [lvilel,
i=1
puesto que las variables y;|0, i = 1,...,n, se suponen independientes entre si.
Dado que el objetivo es caracterizar la distribucion a posteriori [0|y], se puede considerar como
constante todos los términos que no dependan de 0 y se puede prescindir de ellos en el calculo porque
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su Unico cometido es corregir la densidad, de manera que su integral sobre el dominio paramétrico sea 1.
Por este motivo, en el anélisis bayesiano, es habitual utilizar la proporcionalidad en lugar de la igualdad
y trabajar con el kernel de una distribucién, que es, precisamente, la parte de la densidad dependiente de
0, en lugar de la distribucién completa. De este modo, por ejemplo, el Teorema de Bayes resulta

[61y] =< [v[6][6]. (1.2)

De esta ultima expresion, se deduce que la distribucién a posteriori solo depende realmente de la
verosimilitud de la muestra y y de la distribucién a priori de 8. Notemos que la verosimilitud es clara
de partida, en tanto que corresponde a la modelizacion de los datos que estudiamos, pero, en cuanto a la
distribucion a priori, es oportuno detenerse sobre algunas consideraciones alrededor de su eleccion.

1.3. Distribuciones a priori. Consideraciones

La distribucién a priori representa la informacién que se tiene sobre el pardmetro antes de observar la
muestra. Se distinguen diferentes distribuciones, que son las distribuciones informativas, no informativas
y débilmente informativas, segtin el grado de conocimiento que tengamos. Por otro lado, para el andlisis
bayesiano, son especialmente importantes por las simplificaciones de cédlculo que ofrecen, las distribu-
ciones a priori conjugadas puesto que, como veremos a continuacién, proporcionan una distribucién a
posteriori que pertenece a una familia conocida.

1.3.1. Distribuciones conjugadas

Dada una verosimilitud [y|6], se dice que la distribucién a priori [0] es conjugada si la distribucion
a posteriori [0|y] continda siendo de la misma familia que [0], es decir, sus densidades tienen la misma
forma funcional. La principal ventaja de las distribuciones conjugadas es que, al conservar la familia de
distribuciones, reducen el problema de caracterizacioén de la distribucion a posteriori al de la estimacién
de los pardmetros, ademds de que nos permite llegar a una distribucién conocida explicita, lo que facilita
su simulacién.

Observacion 1.2. Pese a no existir siempre, para muchas verosimilitudes puede encontrarse una distribu-
cibn a priori conjugada. De hecho, siempre existe para datos procedentes de la familia exponencial —que
engloba a la mayoria de distribuciones habituales— como demostraremos a continuacién. Recordemos
que una familia exponencial es aquella cuya distribucién [y;|6] puede escribirse en términos de funciones
f,8,® y h medibles satisfaciendo que

[vil6] = f(v:)8(0) exp(9(6)'h(yi)), i=1,....n.

Asi, bajo la hipétesis de independencia de los datos y;|0, tenemos que la verosimilitud es

/6] = (ﬁf(w)) 8(6)"exp (90(9)’ fﬂw)) :

Y si escogemos
[6] = 8(6) exp (@(6)'n) (1.3)
para k > 0 y u una tupla de la dimensién adecuada, entonces,
[61y] < g(6)" ™ exp ((P(G)t <M+ h(w)) ) :
i=1

Lo que prueba que, en efecto, la familia (1.3) es conjugada para la verosimilitud dada.
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1.3.2. Distribuciones a priori informativas, no informativas y débilmente informativas

Una de las mayores virtudes del andlisis bayesiano es que nos permite introducir, como punto de
partida, los resultados de otras investigaciones, incluyendo, de este modo, una considerable cantidad de
informacién afiadida junto con nuestros datos. Esta es la atribucién de las distribuciones informativas,
que pueden tener bastante influencia en la distribucién a posteriori. Por este motivo, en caso de carecer de
informacion previa, la imposicién de una distribucién que condicione considerablemente la distribucién
a posteriori no esta justificada y podria inducir a un anélisis poco fiable. Por ello, en este caso, la mejor
eleccion es tomar distribuciones no informativas y débilmente informativas, esto es, distribuciones que,
en la mayor medida de lo posible, no incluyan regiones especialmente probables, de manera que la
distribucién a posteriori no se incline hacia ellas. Un ejemplo sencillo de distribucién no informativa es
la distribucién uniforme. En la préctica, las distribuciones no informativas pueden ser impropias, i.e.,
con densidad no integrable, lo que no es ningln problema siempre que la distribucién a posteriori sea
propia. Un ejemplo de este tipo de distribuciones a priori es la ley uniforme en R. El hecho de que
las distribuciones a priori impropias puedan generar distribucién a posteriori impropias da paso a la
necesidad de las distribuciones débilmente informativas, que tratan de garantizar la integrabilidad de la
densidad a posteriori, pero respetando el protagonismo de la verosimilitud, como pueden ser aquellas
distribuciones con varianza muy grande aproximando, asi, a una distribucién uniforme.

1.4. Calculo de la distribucion a posteriori. Métodos MCMC

Ya se ha expuesto que, si se cuenta con una distribucién conjugada, el célculo de la distribucién a
posteriori se simplifica dristicamente, pudiendo obtener una familia conocida. Sin embargo, en la pric-
tica, lo general, y mas atin cuando el nimero de parametros J es elevado, es que la expresion de la
distribucién (1.2) sea demasiado complicada para realizar célculos analiticos a partir de ella, lo que im-
pide caracterizarla o resumirla. En esta situacién, se hace obligatorio el uso de métodos computaciones,
principalmente métodos de Monte Carlo basados en cadenas de Markov, mds conocidos como métodos
MCMC. Existen multiples métodos de este tipo y aunque no es objetivo de este trabajo la descripcién
de los mismos, se expone brevemente el método de Gibbs sampling, ya que se utilizara en la aplicacién
desarrollada en el Capitulo 4. Una revision detallada de estos métodos se puede encontrar en Robert, C.
y Casella, G. (1992) [9] y (1998) [10].

1.4.1. Método de Gibbs sampling

Sea 6 = (6y,...,6;) un vector de parametros. Supongamos que podemos simular a partir de las
distribuciones a posteriori completamente condicionadas, i.e.,

[ej‘el,...,ej_1,9j+1,...,917y], j:1,...,.].

Entonces, el algoritmo Gibbs sampling viene dado por la siguiente transiciéon de 0" a 6+1: dada
(Gl(l), ey Gj(t)), se generan
g+ [ 9

1 ~

G(t)703(t)7""6}t)7yi| )

—_

o) [6, ef””,ey),...,e}”,y},

91(z+1) ~ o, 91(z+1)’92(t+1)’”"ej(tjll)’y}'

El algoritmo, asi, fabrica una cadena de Markov (Q(I)),zl y asegura que la distribucion estacionaria de
las observaciones asi generadas es la distribucion a posteriori conjunta [0y, ..., 6;|y]. Ademas, si consi-
deramos las componentes del vector de forma separada, la distribucidn estacionaria de las observaciones
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(0]@),21 es la distribucion marginal a posteriori [8;|y| para j = 1,...,J. En la aplicacién del Capitulo 4,
obtendremos las densidades a posteriori completamente condicionadas analiticas, de modo que la apli-
cacion del algoritmo de Gibbs nos ofrecerd una estimacién mucho mds rdpida, ya que no serd necesario

combinarlo con otros algoritmos MCMC aproximar las densidades.

1.5. Resumen de la distribucion a posteriori

Una vez caracterizada la distribucién a posteriori, pueden calcularse diferentes medidas que resumen
en un valor algunas de sus caracteristicas principales. Algunas de ellas especialmente habituales son los
estimadores Bayes y los intervalos de credibilidad.

1.5.1. Funciones de pérdida y estimadores Bayes

Definicion 1.3. Una funcion de pérdida es una funcion £ : ® x ® — [0, +o0) medible tal que £(0,0) =0
para todo 6. En esta situacion, se define el estimador Bayes como el valor 6 € O, si existe, tal que la
esperanza a posteriori E(¢(6,0)|y) toma valor minimo.

Es una comprobacién sencilla, demostrar que, para el caso £(x,y) = (x —y)?> —denominada funcién
de pérdida cuadréitica—, el estimador Bayes es la esperanza a posteriori, esto es, 6 = E(0]y).

1.5.2. Intervalos de credibilidad

Definamos, a continuacion, los intervalos de credibilidad bayesianos.

Definicién 1.4. Dada una distribucion a posteriori 8|y y & € (0, 1), se denomina intervalo de credibilidad
o intervalo a posteriori a nivel 1 — o a un intervalo de la forma [(0]y)q,,(6]y)1-a,], donde (B8]y)q
denota al cuantil o de la distribucion a posteriori 0|y y a;,a > 0 tales que o + 0 = o. Ademas, si
o = o = a/2, el intervalo se dird también centrado.

Los intervalos de credibilidad son la versién bayesiana de los intervalos de confianza frecuentista.
Algo especialmente notorio de estos intervalos es que son muy sencillos de estimar, siendo suficiente
con tomar cuantiles muestrales. Ademds, su interpretacién es mds intuitiva. Al considerar los pardmetros
como variables aleatorias, el nivel de confianza 1 — & del intervalo de credibilidad es la probabilidad de
que el pardmetro pertenezca a dicho intervalo.



Capitulo 2

Analisis bayesiano en variables
normalmente distribuidas

Procedemos a ilustrar los cdlculos y distribuciones caracteristicas del anélisis bayesiano para el caso
particular de verosimilitudes normales. Sea y = (y1,...,y,) una muestra aleatoria simple con [y;|it, 6%] =
N(y;|u,0?) parai=1,...,n, entonces

1 1 &
|, o HN (vilu, o? Wexp (‘20_2;(%—#)2>a (2.1

donde u es la media de la distribucién y o2 la varianza. La distribucién posee dos pardmetros, por lo
que se puede o bien suponer uno de ellos conocido y estimar el otro, o bien considerar el vector de
pardmetros (i, 62). Dado que este tltimo caso exige el desarrollo del primero, estudiamos primero dos
modelos uniparamétricos para | y 62 respectivamente partiendo de distribuciones a priori conjugadas.
Los fundamentos tedricos para este capitulo y el siguiente pueden consultarse en Gelman, A. et al (2021)

[5].

2.1. Modelos uniparamétricos

2.1.1. Media desconocida y varianza conocida

Sea y una muestra con distribucién normal de parametros i y 6> —como en (2.1)— tal que 62 > 0
es conocido. Por la Observacién 1.2, una distribucién conjugada para u es

=P

1] = N(it|to, ) o< exp (— -

En efecto, por el Teorema de Bayes —véase la ecuacion (1.2)—,

[e]y] o< [p][ylu]
_ 2 n
o< exp <_w2?) exp ( 21;()’1'—/4)2>

1 1 n 2 1 n
oc —— — 4+ — —2u| —= —y . 2.2
exp( 2<<T§+G2>u n T3H0+62y>>> ( )
Y denotando a los términos
1 n =
—ZHo+ zy 1 1
7 o n
_ [ R 2.3
Hi Lz i % y 712 ’Eg + 62, ( )
O
de (2.2), se sigue que
uly ~N(ui,77). 2.4)

5
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Observacion 2.1. a) La expresion de 1/ le en (2.3) demuestra que la relacién de varianzas entre dis-

b)

tribucion a priori, a posteriori y la verosimilitud viene dada por la suma de sus inversas. Como
consecuencia, para el andlisis bayesiano, se prefiere la parametrizacion de la distribucién normal
en términos de 1/02, que recibe el nombre de precision. En lo que a las medias se refiere, en
(2.3), la media a posteriori [ aparece como una media ponderada de la media a priori y la media
muestral, cuyos pesos son las precisiones de sendas distribuciones.

De estas relaciones, puede deducirse el comportamiento asintético de la distribucién a posteriori,
de manera que, para n suficientemente grande,

(1Y) ~ N(u[y,0/n);
puesto que, como puede comprobarse facilmente,

p-y
o/vn

En esta distribucidn asintética, los parametros de las distribucién a priori —denominados hiperpa-
rdmetros— ya no intervienen; concluyendo que, cuando el nimero de datos es suficientemente
grande, la distribucion a posteriori no depende asintéticamente de la eleccion de la distribucion a
priori. Esta observacion justifica el uso de distribuciones a priori no informativas en la practica. En
efecto, si consideramos la distribucién a priori no informativa impropia [u] o< 1, que se trata de la
distribucién uniforme sobre R, es inmediato comprobar por (2.1), que

v 2L N, 1).

] < exp 5 1k = 2011) ) < Nl %),

por lo que no hay diferencia con respecto al caso conjugado si el volumen de datos es suficiente-
mente grande.

2.1.2. Media conocida y varianza desconocida

Por la Observacion 2.1, en lugar de trabajar con la distribucién de la varianza, es habitual proponer
una distribucién a priori para la precisién, o equivalentemente, una distribucién inversa para 2.

Definicion 2.2. Sean vy € Ny 59 > 0, se dice que el pardmetro 0 tiene distribucién inversa-x> con Vg
grados de libertad y pardmetro de escala s si vos% /6 ~ )(30, es decir,

(/) e Vosg ~(vo/2+1) vos}
6] = T(vo/2) 500 exp 0 0 exp 20 )’ 6 > 0.

La distribucién inversa-y> para 62 es conjugada para la verosimilitud normal si u es conocido.
Efectivamente, si y es la verosimilitud normal de (2.1) con media u € R conocida y 62 ~ Inv-x2(vo, s(%),

[0°]y] < [0°][y]07]

—((Votn 1 -
oc (0%) (024 D exp 502 Vosg + Z(yi —w? |,
i=1

que es, por la Definicidn 2.2, el kernel de la distribucién

2 _
donde sy =

vos% + nsﬁ

2 2
o = Inv- Vi
[ ‘y] 4 0+ 1, Vo +n

) (2.5)

(yi—u)*/n.

Tt

]
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Observacion 2.3. a) Notemos que la distribucién de (2.5) cuenta, por un lado, con el cuadrado del
parametro de escala igual a una media ponderada por los grados de libertad del cuadrado del
pardmetro de escala a priori, s%, y la varianza muestral de los datos respecto de y, si; y, por otro,
con grados de libertad igual a la suma de los grados de libertad a priori y el niimero de datos.

b) La distribucién a priori conjugada escogida es una distribucién impropia si vy = 0, ya que

1
2
[07]= (2.6)
no es integrable sobre (0, +c<). Sin embargo, por la distribucién (2.5), es claro que la distribucién
a posteriori contintia siendo propia, por lo que (2.6) es una distribucién a priori no informativa
vdlida.

2.2. Modelos multiparamétricos. Media y varianza desconocidas

Tras haber desarrollado los modelos uniparamétricos, es mds sencillo abordar el problema de carac-
terizar la distribucion a posteriori conjunta de la media y varianza, asi como las distribuciones condicio-
nales y marginales. En concreto, utilizaremos las distribuciones de u dado o desarrolladas en la Seccién
2.1.1, tanto para obtener la distribucién conjunta de (i, 62) como la a priori y a posteriori. Por ejemplo,
en cuanto a la distribucién a priori, notemos que la distribucién conjunta del pardmetro (1,c?) puede
expresarse como

1, 0% = [u|o?][07],

donde la distribucién [tt|c?] se corresponde con la distribucién a priori [u] especificada en la seccién ya
mencionada —ya que se trata de la distribucién de u supuesto 6 dado o conocido. Esto significa que
podemos escoger las mismas distribuciones para |c? y 62 que en la Seccién 2.1 —tanto las distribu-
ciones conjugadas como las impropias no informativas— resolviendo de forma inmediata el problema
de la eleccidn de la distribucién conjunta a priori.

Observacion 2.4. Antes de proceder con las demostraciones, introducimos otra forma de expresar la
verosimilitud normal que serd ttil en varias ocasiones. Dada y una muestra con distribucién normal de
pardmetros [l y 62, entonces, la verosimilitud puede expresarse a través de los estadisticos suficientes s?
—que es cuasivarianza muestral de y— y la media y, puesto que

Vi, 0% < (67) 2 exp (2;2 gn‘,(yi - u)2>

i=1

= (6%)"?exp <—%i_2((n— 1)s?+n(y— ,u)2)> . (2.7)

Con esta observacion, damos paso a la caracterizacion de las distribuciones a posteriori en ambos
casos.
2.2.1. Distribucion a posteriori conjunta con distribucién a priori impropia

Comenzando por las distribuciones impropias de las Observaciones 2.1 y 2.3, consideramos
[ulo?] o<1, [0%] e (07) 71,

esto es,
[, 0% o< (%)
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Asi, utilizando la verosimilitud (2.7) y el Teorema de Bayes, la distribucién a posteriori resulta

[, 0%[y] o 1, 6% [y|p, 07]

= (0?)~ /> exp (—2;2((;1 —1)s*+n(y— u)2)> : (2.8)

Al contrario de lo que sucedia en los modelos uniparamétricos, la distribucién aqui obtenida no
corresponde con ninguna distribucién conocida. Sin embargo, la caracterizacién de la distribucién con-
junta no es imprescindible en tanto que puede describirse por medio de distribuciones condicionales y
marginales a posteriori.

= Distribucion condicional a posteriori [lt|c2,y]. Por las observaciones hechas al comienzo de la
seccion, [|62,y] se corresponde con lo que, en la Observacién 2.3, era la distribucién a posteriori
de u, luego

plo®,y ~N(y,0%/n). 2.9)
» Distribucion marginal a posteriori [6>|y]. Al contar la distribucién conjunta a posteriori, sabemos

que

o= [ lw.olau.

—oo

Luego, utilizando (2.8),

—o0

/mexp <_2cr12/n(y_“)2> =

—o0

0%b] (02 " Vexp (=3 a0 102 ) [ e (<507 -7 o

donde

puesto que el integrando se trata del kernel de la distribucién N(u |y, 62 /n). En consecuencia,

1
[62]y] o< (62)~ "D/ 2 exp (—w(n — 1)s2> o< Inv-x2(0?|n—1,5°). (2.10)
Y obtenemos una distribucién inversa-y> de pardmetros n — 1 y s°.

A partir de estos resultados, es inmediato caracterizar la distribucién a posteriori conjunta como
producto de (2.9) y (2.10). Sin embargo, por el especial interés que posee el pardmetro [ —que es,
generalmente, sobre el que se desea hacer inferencia—, también es interesante calcular su distribucién
marginal a posteriori.

» Distribucion marginal a posteriori [t|y]. Utilizando el mismo procedimiento, sabemos que

oo
bl = [ w.0?hido®
Para ello, proponemos el cambio de variable

(n—1)s*+n(u—y)?
202 ’

=

con el que la integral se transforma en

(=1 =3P [ 2 exp(-2)de = (0= D)5+ =) T (w/2)
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Por tanto,
[I""‘y] o< ((” - 1)52 —|—n(u _y)2)fn/2
= —n/2
o< (] + n('u_y)z>
(n—1)s2
o< tn*l(.u“‘yvsz/n), (211)

que se trata de una distribucion ¢ de Student no centrada de media y y pardmetro de escala s/+/n
de n— 1 grados de libertad.

Observacion 2.5. Las distribuciones (2.10) y (2.11) pueden escribirse también como

(n—1)s? 2 H—Yy

62 Yo~ X1 Y m

respectivamente. Esto establece una conexién muy interesante entre el paradigma bayesiano y el frecuen-
tista. Se observa que, en este caso, se deducen resultados andlogos al Teorema de Fisher cldsico desde el
enfoque bayesiano suponiendo que no contdbamos con informacién a priori. Esta observacién pone de
relieve las ventajas del andlisis bayesiano: notemos, primero, que, a partir de unos célculos sencillos, he-
mos llegado a un resultado fundamental para el enfoque frecuentista; pero, mds atn, obsérvese que si nos
hubiésemos apoyado en una distribucion a priori informativa, con un procedimiento similar, podriamos
haber obtenido propiedades que desde la estadistica cldsica no serian evidentes.

yr~ip—1,

2.2.2. Distribucion a posteriori conjunta con distribucién a priori conjugada

Veamos las densidades de los pardmetros en el caso con distribucién a priori conjugada. De acuerdo
a las distribuciones a priori conjugadas de las Secciones 2.1.1 y 2.1.2, escogemos la distribucién conjunta
a priori [u, 2] tal que

ulo® ~N(uo, 0% /),
o ~ Inv-x*(vo,03).
Es decir,
. ) 1
4,67 (03) 02 T enp (=1 (w0 + o — ). .12)

Definicion 2.6. Sean yj € R, 02,k >0 y Vo € N. A la distribucién (2.12) se la denomina distribucion
normal-inversa-y* de pardmetros L, Gg, Ko Y Vo. La denotaremos como

(nu7 62) ~ N'InV'XZ(“Oy G(%/K'(); Vo, G(%)

Esta distribucion es conjugada para la verosimilitud normal. Mds concretamente, se cumple

1, 62|y ~ N-Inv-x>(ty, O / K Vi, O ) (2.13)
donde
Ko n _

— 2.14

Ha K0+nu0+1(0+ny’ ( )

Ky = Ko +n, 2.15)

Vp = Vo +n, (2.16)

2 _ 2 2 Kon _ 2
V0, =Vooy + (n—1)s"+ ——(— Ho)”. (2.17)

Ko+n
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En efecto, como comprobaremos a continuacidn, si consideramos la verosimilitud expresada en tér-
minos de s y y —véase (2.7)—,

1
1, 6%y] o (%) 00D/ T g <‘sz (Vo0 + Koo — )2 + (n— 1)s2+n(y—u)2)> @)

Y, gracias a la ecuacién (2.17),

Kon
Ko+n

(¥—Ho)?,

voog + (n—1)s* = v,62 —

por lo que, sustituyendo en la expresion (2.18), se obtiene que

_ _ 1 Kon ,_ _
0.7 (02) 2 e (=50 (o = 2 o+ )+ ) )

Ko+n
(2.19)
Por otro lado, es una simple comprobacién ver que
Ko (H — o) + (5 — 1) = (ko +n) (- 0T " Kot + iy — (0bo + )’
— n(y — = n - ny— —————.
o(H — Ho y—H Ko H Ko7 Koo +ny Ko 1
Y esta ultima expresion es
2, Kon 2
K J— J—
(= ) T O o)’

por las definiciones (2.14) y (2.15) y agrupando el resto de sumandos. Luego, sustituyendo en (2.19), se
tiene (2.13).

A diferencia del caso anterior, esta vez si que es conocida la distribucion conjunta a posteriori, siendo
esta, precisamente, la ventaja de trabajar con distribuciones a priori conjugadas. Ademds, este resultado
es también interesante porque, en €l, se observa ese compromiso particular de la distribucién normal que
ya se coment6 en el estudio de modelos uniparamétricos. Nos referimos aqui a U, que vuelve a ser un
promedio ponderado entre la media a priori y la media muestral de los datos, y a 62, que es la suma de
las incertidumbres a priori y muestral, afiadiéndose un sumando més por la diferencia de las medias ug
yy.

En cuanto a las distribuciones condicionales y marginales, utilizando los mismos argumentos que en
el caso de distribucién a priori impropia, puede probarse que tales distribuciones son las siguientes.

» Distribucién condicional a posteriori [lt|6?,y]. Simplemente, aplicando (2.4),

Ko n_s
Sz Mo+ 52y 1
plo?y~N ( T ) = N(tn, 0%/ K)-

Ko n n
62+62 62+62

» Distribucion marginal a posteriori [6?|y]. Es suficiente con calcular la integral de (2.13) respecto
de u, resultando
&2y ~ Inv-22(V,, 62).

» Distribucion marginal a posteriori [i|y]. Integrando (2.13) respecto de 62 y haciendo uso del
mismo cambio de variable que en (2.11), se tiene

—(Vat1)/2
Kn — Mn 2
[1]y] o< <1+($ 0_5) ) o< ty, (U |Hn, 67/ Ky).



Capitulo 3

Modelos jerarquicos

En estadistica, es frecuente el tratamiento de modelos que, por la estructura del problema, conten-
gan varios pardmetros 0y,...,0; que son dependientes entre si. En este capitulo, consideraremos una
estructura jerdrquica, lo que, en esencia, significa abordar un modelo con las siguientes propiedades. En
primer lugar, consideraremos a los pardmetros 6; como observaciones de una distribucién a priori [6|¢]
dependiente de algiin hiperparametro ¢, que suponemos desconocido. En segundo lugar, una hipdtesis
basica de un modelo jerarquico es que la distribucién de y solo depende de ¢ a través de 0, es decir,
¥19,6] = [y|].

En este capitulo, consideraremos datos y; ; con distribucién normal N(6;, o?),para j=1,....J e
i=1,...,nj, y supondremos que 6; ~ N(u, 72). Gréficamente, la estructura de dependencia jerdrquica
se refleja en la Figura 3.1.

TR

N

0; ~N(u,1?) 0, 0,

| |

yl-_,j\GJ-NN(Gj,Gz) Yi,15--+5Yn 1 YiJye-s¥n;J

Figura 3.1: Modelo jerdrquico para variables normales.

El potencial de los modelos jerdrquicos se basa en que permite considerar pardmetros relacionados
entre si, pero no iguales. Por ejemplo, en el modelo jerdrquico anterior, los pardmetros 6; son las medias
de J grupos diferentes. En un modelo no jerarquico podriamos considerar que esas medias son todas
iguales, o bien que son diferentes e independientes. La primera opcién es muy restrictiva, ya que impone
que todas las observaciones compartan la misma media, lo que es una hipétesis poco oportuna en varias
situaciones. En cuanto a la segunda opcidn, pese a ser mds flexible, no permite capturar las posibles,
y probables, relaciones de dependencia entre las medias de diferentes grupos. Un modelo jerdrquico
nos permite representar un rango de situaciones mucho mds general, que incluye los dos casos anteriores
como particulares. Ademads, la estructura jerarquica consigue evitar problemas de sobreajuste, al permitir
una gran flexibilidad en el modelo con un nimero reducido de pardmetros.

Otra ventaja del modelo jerarquico es que ofrece la posibilidad de cuantificar la incertidumbre aso-
ciada a la estimacién del modelo de una forma maés realista, puesto que recoge la incertidumbre asociada
a los parametros 6; y a los correspondientes hiperparametros. Esta aproximacion implica que debemos
asignar una distribucién a priori al vector (¢,0), que puede expresarse como [@,0] = [0|¢][¢]. Y la
distribucion conjunta a posteriori serd [@, 0]y] o< [y|¢, 0][¢, 0] = [y|0][¢, 0], donde la ltima igualdad se
sigue de que la verosimilitud y solo depende de ¢ a través de 8. A continuacién, presentamos un modelo
jerdrquico centrdndonos, nuevamente, en variables normales. Previamente introducimos el procedimien-

11
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to habitual para el célculo de las distribuciones a posteriori en modelos jerdrquicos.

3.1. Derivacion analitica de las distribuciones a posteriori

La derivacion analitica se resume en tres pasos:
1) Escribir la distribucién conjunta a posteriori, [¢, 6 |y], como proporcional al producto [¢][6|¢][y|0].
11) Determinar analiticamente la distribucién condicional a posteriori [6|¢,y] como funcién de ¢.
111) Calcular la distribucién marginal a posteriori [¢|y].
Los pasos II) y III) proporcionan un procedimiento sencillo para obtener muestras de la distribucién
a posteriori, que, con frecuencia, no puede utilizarse en la practica por su complejidad. El paso 1) es
inmediato, ya que se corresponde con el paso habitual de cdlculo de la distribucién a posteriori ya tratado.
En cuanto al paso 11), en el caso particular de familias conjugadas, es especialmente sencillo, ya que

J nj J
[v/6] ZHHyu\@ =116,
=1

j=1li=

donde [y;|0;] representa la verosimilitud asociada al grupo j con datos y; j,..., Yn;,j para cada j =
1,...,J. Asi, es claro que

J J J
[01¢,y] < [[6](6]¢] = [ TIv;10; [ T[616] = [ [6i]¢. 1],
j=1 j=1 j=1

por lo que la distribucién a posteriori condicional se calcula como producto de las distribuciones a pos-
teriori condicionales de las componentes.

Por ultimo, acerca del paso III), cabe sefialar que existen dos posibles vias —ambas basadas en la
distribucién conjunta a posteriori del paso 1).

a) Por un lado, el proceso habitual de integracion de la distribucién conjunta, esto es,

(0= [ [6.9ly]d

b) Y, por otro, en algunos casos como con variables normales, puede ser Util la propia definicién de
la densidad condicionada [0|¢,y], que permite expresar [¢|y] como

[6,0]y]
6]¢,y]

Un ejemplo de aplicacién de este procedimiento se muestra en la Seccién 3.2.1.

[oly] =

3.2. Modelo jerarquico conjugado para verosimilitudes normales

Consideramos un modelo en el que partimos de J € N grupos de manera que los datos observados
en cada uno de ellos, que denotaremos como y; ;, son normalmente distribuidos. Cada una de estas
distribuciones normales tendrd una media 6; distinta y desconocida y varianza o2 comiin a todos ellos y
conocida. En suma, si 6 = (6y,...,0;) es el vector de las medias, partimos de la verosimilitud [y|0] =

521 H?i] N(y;;|0;,0%), donde n; es el nimero de datos del grupo .

Con el objetivo de simplificar la notacién, definimos

1 & )
51:*2)’“7 .]:177']
njizi

Notemos que, como, para j fijo, los datos y; j,¥2 j, ..., yx; j son normales independientes e idénticamente
distribuidos, se tiene que

v.;10,] =N ;]6;, J) (3.1
con GJZ = 02 /n;. Con estas elecciones, la expresién de la verosimilitud se simplifica, ya que [y|6] es
proporcional, respecto de 6, a H§:1 N(y 165, o; 2). Utilizaremos esta verosimilitud en el resto del capitulo.
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3.2.1. Distribuciones a posteriori del modelo jerarquico normal

Supongamos que nuestras medias 6; tienen distribucién normal de media  y varianza 72 para todo
j=1,...,J,y que son independientes condicionadas a estos hiperpardmetros. Es claro, por tanto, que
estas medias son intercambiables y su distribucidn conjunta es

o=l 00= [ (TI <.9!u,ﬂ>[u,ﬂdudt

Esta distribucién podria utilizarse para determinar la distribucion a posteriori [8]y], pero, en la practica,
en los modelos jerdrquicos, esta no es la distribucién de interés. En este caso, caracterizaremos la distri-
bucion a posteriori de las medias dados los hiperpardmetros, [0;|u, T,y] para j=1,...,J, y ladistribucién
a posteriori de los hiperpardmetros, [i, T|y].

Notemos que la distribucion a priori de los hiperparametros 1, 7] se puede expresar como [7][u|7].
Por tanto, podemos razonar como en el estudio de modelos multiparamétricos del Capitulo 2. En esta
situacion, fijaremos [u|T] o< 1 y, al final, discutiremos qué opciones pueden tomarse para la distribucion
marginal a priori de 7. De momento, consideraremos (L, T] o< [T].

Determinemos las distribuciones a posteriori aplicando el procedimiento descrito en la Seccién 3.1.

1) Distribucion conjunta a posteriori. Utilizando la simplificacién anterior de la verosimilitud, se
tiene

J J
(6,1, Tly] o< [1t,7][0] 1, ] [y]6] o< [u, 7] [IIN(GAM,TZ)I_IIN(yjIGj,G})-

1) Distribucion condicional a posteriori de las medias dados los hiperpardmetros [0;|1,7,y]. Al
contar con J medias que, una vez condicionadas a i y T, son independientes y poseen distribucién
a priori normal, sabemos que, por (2.4),

01,7,y ~N(6;,V)), 3.2)
donde | '
. YTk 111
9-:7 _—=— _—
! %4‘% y Vj Gj2+T2
I

De nuevo, la media a posteriori, 6;, se trata de una ponderacién de la media a priori de la po-
blacién y la media muestral del j-ésimo grupo con pesos dados por las precisiones de sendas
distribuciones. La precision a posteriori es la suma de las dos precisiones. Para acabar con este
punto, obsérvese que [0|u, T,y] es

~
~

[116ilu,7,5] = []N(6;(6;,V)).

Jj=1 Jj=1

111) En cuanto a la caracterizacién de la distribucion a posteriori de los hiperpardmetros [, T|y|, por
tratarse de la verosimilitud normal, aplicamos el Teorema de Bayes, ya que la distribucién [y|u, 7]
se determina de forma sencilla —no es asi en verosimilitudes cualesquiera. En efecto, consideran-
do la distribucién conjunta de 6 y y ; dados p y 7 e integrando respecto de 6 se tiene que

5lne= [ 5ol = [ 0ol rde, =10 63

Gracias a las distribuciones (3.2) y (3.1), el integrando [y ;|6;][6;|u, 7] resulta

_ )2
(G )~ 1/zexp< (BJZszj) )exp( (9121_2“) > (3.4)
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Denotando a los términos
Y + H

B o? ' T 1 1 1

uj= =

1 1 A2 2 27

la expresion (3.4) se puede reescribir como

) LY w 1(1 i
(o77%) "/ exp (—2 (Gé—i—ﬂ exp | =3 ?9]2—26—]2@
J J j
- 1Y a7 (6, — fi)?
= (GJZ’EZ) 12 exp (—2 (oé + )| 2(;2 exp —# .
J J J

Y notando que el ultimo factor es el kernel de una distribucion normal N(fi;, 6}), resulta que la
distribucién (3.3) se trata de

_ 1 (¥ u? 7
7 2, 2\-1)2 J j
Vi, 7] o< (05 +77) /Zexp <—2 ((;]2 + 2| | 2612

- 2
_ 2 2\—1/2 _(y.j_.u) i—1 J
(o7 +717) exp< 72(6}4_172) ., J=1,....J.

Luego y ;|u, 7 tiene distribucién normal N(u, CFJ2 + 72) para todo j. Y, por tanto, se deduce que
! 2, .2
i, 7] o< [NG jlu, 05 + 7%), 3.5)

Jj=1

respecto de 1 y 7. Asfi, por el Teorema de Bayes, la distribucidn a posteriori de los hiperpardmetros
resulta ;
[, ly] o< [, 7] [ylu, 7] o< [, T [[NG jl1, 07 + 7°). (3.6)
j=1

3.2.2. Distribucion condicional y marginal a posteriori de los hiperparametros

Si bien el procedimiento descrito en la Seccidn 3.6 permite caracterizar la distribucién conjunta a
posteriori [0, i, T|y]; en la prictica, el objetivo es caracterizar las distribuciones a posteriori condicional
[tt|7,y] y marginal [t|y] porque ofrecen una factorizacion de la distribucién conjunta a posteriori que
puede usarse para la simulacion.

a) Distribucion a posteriori condicionada [|1|T,y]. De nuevo, por el Teorema de Bayes y (3.5),

J
(1| 7,y] o< [u]7]lylp, 7] < [[N(uly ;, 07 + %),

j=1
que serd una distribucién normal de media f1 y varianza V,, con

7 1 <
o L=l oY 1 &1
H=-=7 1 y V:ZGZ—i—rz'

wo =10

J=1 6?+12

3.7

b) Distribucion a posteriori marginal [t|y|. Esta distribucién, dada su distribucion a priori, puede
obtenerse por medio de la expresion de la densidad condicionada y las distribuciones ya calculadas.
Teniendo en mente que [U, T] < [T], se tiene

[, Ty - [7] Hf':l NG 4, GJZ +17%)
[u|7,y] N(u |, V)

[zly] =



Modelos jerdrquicos bayesianos - Martin Alcalde Navarro 15

A continuacién, nétese que el lado izquierdo de la igualdad no depende de . Esto nos proporciona
una via para simplificar su expresion al poder fijar 4 = fi, de manera que

[ [T/ NG |2, 67 +7°) 2t 5 o 5,—pn)?
: o< [1]V, o) Vexp [ L2 |, (38
N(@|f, V) WV JUI(GJ T exp 2(07 +12) (3-8)

[T]y] o

Por tltimo, puesto que, en todos estos desarrollos, hemos indicado la distribucién a priori de 7, pero
sin escoger ninguna en particular, propondremos algunas elecciones.

3.2.3. Distribucion a priori de los hiperparametros

Dado que en la prictica es frecuente trabajar con distribuciones a priori no informativas para las
varianzas, las densidades que presentaremos a continuacién son opciones razonables. Notemos que, al
ser T > 0, estudiaremos la integrabilidad de la densidad [7|y] sobre (0, +e0).

a)

b)

Distribucion a priori [t] o< 1/7. Tras las demostraciones ya vistas, una primera apuesta razonable
es [7] < 1/7. Sin embargo, notemos que, al sustituir en (3.8), este factor hace aparecer un problema
en el comportamiento en T = 0. En efecto, es claro que

J S )2
1/2 2 2\-1/2 _ ()’Aj_.u)
Vu jl;Il(GJ +177) exp( 2<sz+1.2)>

tiende a una constante positiva si T — 0T Por este motivo, gracias al criterio de comparacién por
paso al limite, si estudiamos la integrabilidad de la densidad en (0, 1), esta tiene el mismo cardcter
que 1/, que es divergente. Por tanto, esta densidad a priori no es vélida en esta situacion.

Por contra, si que lo serd la distribucién no informativa por antonomasia: la distribucién uniforme.
Distribucion a priori uniforme [t] o< 1. Comprobemos que la distribucion a posteriori de T es
propia. Por (3.8),

o] o< 2 [ Ti07 + ) Pexe (‘Uﬁ“)z>

jo 2(07 +12)
-1/2 — A
a 1 L 2 v 5, -7
_ —1/2 J
= o, +7T exp | —
(JZI o%+f2> Her+ 70 e “yiaria)
~1/2
. 1L G
— 2 2 .J
= j;g(@ +7) eXp <_2]§'1 o7+ 12
i#] '
I 1 G,-R)?
L S W Ly ,
I ( 2; o7 412 ©9)

Gracias a que la densidad es continua sobre cualquier intervalo acotado en [0, 40), bastard estu-
diar su comportamiento cuando T — +-oo. Con tal fin, consideramos la cota (3.9). Recuperando la
expresion de (3.7), es facil ver que

1 _
m = V5 —5
Jim o= j;y_J v,
que es una cantidad finita, por lo que el limite de la exponencial resulta

1L 6,—0)
limexp[—2) —2 | =1
T—+oo p( 2/; 612—1—12 ’
puesto que cada sumando (y ; — )3/ (6]2 + 72) tiende a 0. En consecuencia, se tiene que (3.9) es
equivalente a (J 12771 )~! cuando 7 tiende a +oo, y, asf, puede garantizarse que la distribucién a
priori uniforme de 7 produce una distribucién a posteriori propia si el nimero de grupos es mayor

o igual que 3.






Capitulo 4

Modelos de regresion lineal bayesianos

4.1. Modelos regresion

Los modelos de regresiéon son una de las técnicas estadisticas mds utilizadas con aplicaciones en
multiples campos. En estos modelos, se plantea que una variable y, denominada respuesta, es una funcién
lineal de una o varias variables explicativas o predictoras x;. En general, supondremos & el niimero de
variables regresoras, de este modo, el modelo de regresion se expresa como

y=PBo+pBixi+---+ Bxr + €,

donde B = (Po,...,Bx) son los coeficientes de regresion y € es un término de error aleatorio. El objetivo
de un modelo de regresion habitual consiste en tratar de obtener una estimacidn de los coeficientes para
obtener un buen ajuste de la variable y. Estas estimaciones pueden hacerse a partir de una muestra de
observaciones (yi,...,y,) ¥ una matriz del disefio n x (k+ 1), X.

Nétese que las hipdtesis que se tomen sobre la distribucién de y; determinan la complejidad del
modelo. En el caso de considerar el modelo de regresion cldsico, se supone que & ~ N(0, 62) para todo
i, por lo que, en consecuencia:

= Las variables y; son homoceddsticas, esto es, Var(y;|,62) = 6 paratodo i = 1,...,n.

» Las variables y; tienen distribucién normal dados 8,62 y X.

Ademds, las variables y; deben ser independientes entre si dados B, 6% y X; y se afiade una condicién de
no colinealidad sobre la matriz X, lo que significa que sus columnas deben ser linealmente independien-
tes, luego ran(X) =k + 1.

4.2. Analisis bayesiano del modelo de regresion clasico

Los pardmetros que intervienen en el modelo anterior son 8 = (B, ..., B, 6%) y nuestro objetivo serd
determinar las distribuciones a posteriori condicional [8]62,X,y] y marginal [62|X,y] puesto que ofre-
cen una factorizacion de la distribucién conjunta a posteriori. Tales distribuciones las denotaremos como
[B|o?,y] y [62|y] respectivamente, eliminando la indicacién explicita de X ya que siempre lo supondre-
mos conocido. Para caracterizar estas distribuciones es necesario fijar la distribucion a priori de 0. Si el
nimero de pardmetros a estimar es mayor que el nimero de datos serd preciso utilizar una distribucién
a priori informativa. En otro caso, es razonable utilizar una distribucién a priori no informativa, siendo
una eleccion habitual

[B,0%] o< (%)~ L. (4.1)

Las distribuciones que se presentan a continuacion se desarrollan a partir de esta distribucién a priori. En
el caso de modelos de regresion, la verosimilitud corresponde a la distribucién del vector y. En el modelo
clasico, la verosimilitud es

¥|B,0%] = N(y|XB,0°1,) < (6%) " ?exp <—2;2(y —XB) (vy— Xﬁ)) : (4.2)

17
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con I, la matriz indentidad de dimensién n. Y la distribucién conjunta a posteriori es

B0 (0%) 2 Vexp (3030~ XP) - X)) @)

Procedemos con la caracterizacién de las distribuciones a posteriori condicional [8|6?,y] y marginal
2
[o1y].

» Distribucion condicional a posteriori [B|c?,y]. Por (4.1) y (4.2),

Bl0% 5] exp (525 (- XBY - XB) )
<exp (0 (BXXB - 26X1) )
<exp (~5(B'(0%) 1XXB - 28'(07) IXX(XX) X))

Por ser 62(X’X)~! una matriz simétrica y definida positiva puesto que ran(X) = k+ 1, se tiene
que

[Blo?,y] = N(BIB.Vp), (4.4)

con
B=XX)'Xy y V=0*(XX)"!

» Distribucion marginal a posteriori [6?|y]. En este caso, por la definicién de distribucién condicio-
2
nal [B|o7,y],

_ [B,o?}]
T o7y

Y dado que la expresion anterior no depende de 3, basta con sustituir § = ﬁ en (4.3)y (4.4). Asi,

(n/2+1) e k—1 . X
[67]y] o< E;‘;Z;WI)/ZGXP <_262(n—k—1)(y_xﬁ) (y—XB))

o< Inv-x (0% |n—k —1,s%),

con
5 1 . R

= m(y—Xﬁ)’(y—XB).

De estas distribuciones, se deduce que la distribucién conjunta (4.3) es propia yaque n > k+1y
el rango de X es k4 1. Asi, se comprueba que el niimero de datos ha de ser siempre mayor que el
nimero de pardmetros, k+ 1, en el caso de ausencia de informacién previa y, por otro lado, que las
columnas de X han de ser linealmente independientes. Ademads, se observa otra vez la relacién entre el
paradigma bayesiano y frecuentista comentado en la Observacién 2.5 en las distribuciones [B|c? ,y] y
[62|y] —compdrense con las distribuciones de los estimadores por minimos cuadrados frecuentistas [3 y
o2

4.3. Modelos con varianzas desiguales y correlaciones

Una generalizacion bésica del modelo de regresion basico es permitir que las varianzas de la variable
respuesta sean diferentes y/o que las variables no sean independientes entre si. Esto supone considerar
un modelo en el que la matriz de varianzas-covarianzas de y sea una matriz X, n x n, simétrica y definida
positiva no restringida a la forma ¢I,,. En consecuencia, la distribucién de la respuesta es
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_ 1 _
DIB.%,] = N([XB,Z,) o< det (%,) "/ exp <—2(y —XB)'E (y— XB)) : (4.5)
En primer lugar, determinaremos [B|X,,y] y, después, la distribucién marginal X,|y, que dependerd
la eleccion de X,.
» Distribucion condicional [B|L,,y]. Andlogamente a (4.4), puede verse que
[BIZy,y] =N(BIB,Vp),
donde
=Xz 'X)'XE Ny y Vp=(XE X)L
» Distribucion marginal [Z,|y].

_ [B,Zyb’] — [Z,V]N(Y|Ba2’)
=P85, = NIy

— 5Jdec(z) Raen (V) Pexp (50 XBYE0-XB)). @

donde la ultima igualdad se deduce al tomar 8 = [§ .
A continuacion, presentamos la distribucion (4.6) para algunos ejemplos particulares de X,.

Ejemplo 4.1.  a) Matriz de varianzas-covarianzas conocida salvo por un factor escalar. En este caso
suponemos que la matriz de varianzas-covarianzas es £, = 62Q,, con Q, conocida y 6% desco-
nocido. Notemos que se trata de una generalizacién del modelo cldsico, que considera Q, = I,,.
La distribucién a posteriori, dada la distribucién a priori [8,062] o< (62)~!, se calcula de forma
andloga. Asi, es inmediato comprobar que

[0%1y] = Inv-x*(6%[n —k — 1,5%),

y
~ 1 ~ ~
—(xto-1x)-1xt -1 _ ~2(xt-1x) -] 2 _ 11
B=X0,'X)" X0y, Vg=0"(XQ,X)", = —m()’—xﬁ) 0, (y—Xp).
Notese que este ejemplo incluye como caso particular el modelo regresion con pesos, pues este se
corresponde con el caso Qy = diag(1/w1,...,1/w,), donde w; > 0 paratodoiy Y7 w; = 1.

b) Grupos con misma varianza. En este ejemplo, tratamos un modelo de regresion en el que las n
observaciones pueden dividirse en / grupos con misma varianza en cada uno. Supongamos que
tenemos n; datos del grupo i parai=1,...,/ —de manera que n| + - - - +n; = n—y que, para tales
grupos, los datos tienen distribucién normal con varianza Giz. En tal caso,

O, s, 0 e 0

o o1 :
— 2 tnpXny
¥, = '
: - . (0]
2
0 ctt 0 6] Inl Xny
Una distribuci6n a priori no informativa de los pardmetros (B,07,...,07) es

B.0%.... 07 < [(c2)".

i=1

que proporciona distribuciones a posteriori marginales para G,-Z sin; > 2 —Gelman, A. et al (2021)
[5]. Sustityendo en (4.6), se tiene

I A
0F -1, b] = [ (07) " det (V)" det () exp (-30-xBrs 0-xB)).
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4.4. Modelos de regresion jerarquicos

Los modelos de regresion jerarquicos permiten representar situaciones donde los predictores tienen
distintos niveles de variacion. Para fijar ideas se expone brevemente el siguiente ejemplo —Gelman, A.
y Hill, J. (2007) [6]. Supongamos que se desea analizar los efectos de los programas de preparacién
de colegios diferentes para un test de aptitud. En este ejemplo, se puede disponer de informacién a
distintos niveles: a nivel individual de cada alumno —como su entorno familiar—, informacion relativa
a la clase —caracteristicas del profesor— o0 a nivel de toda la escuela. También, por otro lado, los modelos
jerdrquicos sirven para modelizar datos que provienen de un muestreo por grupos.

4.4.1. Modelo de regresion con efectos aleatorios

El modelo de regresion jerarquico mds sencillo es un modelo de efectos aleatorios simple. En esta
situacion, se consideran grupos de coeficientes 8 que son intercambiables y normalmente distribuidos.
Mas concretamente, el modelo queda especificado por la verosimilitud (4.5) y la distribucién a priori

Blb, 05 ~N(b1,05111), 4.7)

donde 1 = (1,...,1)" € R*! y los hiperpametros son desconocidos. Notemos que esta distribucién in-
cluye como casos particulares tanto el hecho de que los pardmetros 3; no estén relacionados, lo que se
expresa escogiendo 63 = oo, 0 que sean iguales, esto es, Gé = 0; por lo que, en efecto, permite expresar
de forma sencilla una estructura de dependencia jerarquica como la ya vista en el Capitulo 3.

Ejemplifiquemos esto tltimo retomando el ejemplo de los programas de estudio en los colegios. Sea
J el niimero de colegios. Si denotamos por y; ; al resultado de un alumno i en el colegio j, es razonable
suponer que

yij=MW+PBj+e&; &;j~N(0,0%),

donde B = (B,..., ) tiene densidad conjunta (4.7). De este modo, los resultados del test de alumnos de
un mismo colegio se ven relacionados al considerarse observaciones de una misma distribucién N(u +
Bj, 0?), y, ademds, se establece una estructura jerrquica que relaciona a todos los colegios. Tenemos
entonces un efecto aleatorio que actiia en el nivel de los colegios.

Para completar la especificacién de un modelo jerdrquico como el del comienzo, es preciso escoger
una distribucién a priori de los hiperparametros by GI%. En esta situacién, pueden suponerse ambos hiper-
pardmetros independientes. Para b, escogemos [b] « 1. En cuanto a [Gé], consideraremos la distribucién

inversa-y2. Mds concretamente,
[b] o< 1, [Gé] = Inv—xz(célv,sz), (4.8)

donde u € R, 62,52 >0y veN.

Observacion 4.2. Es importante destacar que el modelo de efectos aleatorios planteado, con independen-
cia de las elecciones de las distribuciones a priori de los hiperparametros, permite representar situaciones
en las que existe una correlacion dentro de las observaciones de un mismo grupo. En efecto, puede pro-
barse —vedse Gelman, A. et al (2021) [5, p. 382]— que los modelos

1) y=(y1,...,yn) distribuidos en J grupos diferentes y con distribucién N(»1,X,), donde Var(y;) =

n? para todo i y Cov(y;,,yi,) = pn?* > 0 si los datos pertenecen al mismo grupo y 0 en otro caso;
1) y= (y1,...,y,) con distribucién N(XB,06°I,) y B como (4.7), donde X es una matriz indicadora
con X; ; = 1 siiestd en el grupo jy O en caso contrario
son equivalentes siempre que 1> = 62 + Gl% yp= Gé /(62 + Gﬁ).

En resumen, la conclusién que se extrae es que se puede construir un modelo que capture la corre-
lacidn existente entre observaciones de un mismo grupo incluyendo los efectos aleatorios apropiados.
Esta observacion es especialmente interesante puesto que abre la posibilidad de modelizar dependencias
dentro de un grupo.
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4.5. Aplicacion al analisis espacio-temporal de temperaturas medias en
verano en una region

En esta seccidn, se desarrolla un modelo bayesiano de regresion para representar las temperaturas
medias durante el verano en un drea alrededor de la Comunidad Auténoma de Aragén. Para ello, conta-
mos con un conjunto de datos que contiene observaciones de temperaturas maximas diarias medidas en
grados centigrados en 18 localidades proporcionadas por la Agencia Estatal de Meteorologia (AEMET)
—véase la Figura A.1. Estos datos recogen temperaturas desde 1956 hasta 2015 durante el periodo es-
tival, desde junio hasta agosto inclusive. Computando las medias de tales datos, se han construido las
temperaturas medias en verano recogidas en la matriz de datos y.

Para el estudio de las temperaturas medias cabe tener en cuenta las siguientes caracteristicas. En
primer lugar, es esperable una evolucidn creciente a lo largo del tiempo como consecuencia del calen-
tamiento global y que suele modelizarse como una tendencia lineal en el tiempo o mediante efectos
aleatorios—vid. Castillo-Mateo, J. (2022) et al [3]. Ademads, es claro que las temperaturas medias pre-
sentardn una dependencia de las diferentes caracteristicas geogréficas de las localidades puesto que la
zona de estudio estd conformada por regiones con climas diferentes como son el Valle del Ebro, los
Pirineos y el Sistema Ibérico. Estas diferencias climdticas se ven influenciadas, en gran medida, por la
diferente altitud respecto del nivel del mar, motivo por el cual es sensato considerar la altitud —medida en
metros— como variable explicativa. Junto con todo lo anterior, es también razonable suponer que existe
dependencia de la temperatura de un afio con la del afio anterior en una misma localidad —esto es, que
existe una correlacion serial. Esta correlacion suele representarse mediante una estructura autorregresi-
va, es decir, establecer que dicha dependencia sea lineal —vid. Brockwell, P. J. y Davis, R. A. (2006)
[2]— y que se satisfaga una relaciéon markoviana de dependencia de las temperaturas respecto de ¢, i.e.,
Ve.slYi—t1.5,- > ¥1.5] = Ves|[yi—1,5]. Como resultado de imponer esta estructura, el modelo representard la
distribucion condicionada de la temperatura de un afio por la del afio anterior. Como tdltima observacion,
notemos que, en un modelo para temperaturas en distintas localidades espaciales, cabe esperar que las
observaciones de todos los observatorios correspondientes a un mismo afio no sean independientes, sino
que exista relacion entre ellas. Esta dependencia se puede representar en un modelo jerdrquico con un
efecto aleatorio asociado a cada afio, como los descritos anteriormente.

Teniendo en cuenta todo lo anterior, se plantean dos modelos, uno no jerdrquico —por lo que no
incluird el efecto aleatorio en la tendencia— y otro jerarquico. La diferencia entre ambos estard, asi, en
que el modelo no jerdrquico modeliza la tendencia con una covariable asociada a una tendencia lineal,
mientras que el jerdrquico permite mayor flexibilidad y lo hace mediante efectos aleatorios para cada ao.
En ambos casos, los ejemplos propuestos reflejaran cémo las distribuciones a posteriori conjugadas junto
con técnicas MCMC permiten ajustar un modelo bayesiano de manera eficiente. Es importante destacar
que estos modelos sobre las temperaturas medias del verano son meramente ilustrativo, ya que un ajuste
Optimo requeriria un modelo mas complicado con mds términos para representar la variabilidad espacial.
Entre ellos, por ejemplo, tenemos términos independientes, tendencias especificas de cada localidad
espacial s y la parametrizacion en términos de anomalias —véase Castillo-Mateo, J. et al (2022) [3].
Todos estos elementos quedan fuera de los objetivos de este trabajo.

4.5.1. Modelo de regresion no jerarquico

Se considera el modelo
Vis=Bo+at+py_1s+valt(s)+&s, &s~NO,06%), t=1,...,60, s=1,...,18,

donde y; ; representa la temperatura en el afio ¢ y localidad s; o expresa la tendencia lineal respecto del
tiempo; alt(s), la altitud de la localidad s y p es el factor de correlacion de la serie temporal, que puede
considerarse en el intervalo (—1, 1) para que la serie sea estacionaria —Brockwell, P. J. y Davis, R. A.
(2006) [2]. De este modo, los pardmetros de este modelo son 8 = (B, &, ,p,62).
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Distribucion conjunta a posteriori

Dada la estructura autorregresiva del modelo, la verosimilitud, [y|60], se expresa como
18 60 18 60

HHylS’yl 157 HHN yls|ﬁ0+at+pyt L,s }/alt() )

s=1t= s=1t=

- | 18 60
< (0?) 540exp< 202 Ziz Yrs = Po—at — py,—1,s—yalt(s )? |- 4.9)
s=1t
Puesto que, como se indicaba, condicionamos a y;_1 4, la verosimilitud es andloga a (4.2).

Suponiendo que las distribuciones a priori siguientes son independientes,

ﬁONN<uﬁ07T§O)7 aNN<.uOt7ng)7 ’}/NN(“%T}%)a
pNU(_lal)a GZNIHV—ZZ(H(),S%)’

se tiene que la densidad conjunta a posteriori es proporcional a

s=1t=

18 60
[ﬁo][a][y][p}[02](02)‘54°exp( 212 ZZ Ves — Bo— &t — pyi—1,,— v alt(s)) ) (4.10)

Dado que la distribucién a posteriori obtenida es multivariante y no corresponde a una distribucién
conocida, es necesario, a la hora de hacer inferencia, recurrir a métodos MCMC para obtener simula-
ciones de los valores de los pardmetros y, a partir de ello, simulaciones de valores de la respuesta. En
este caso, utilizaremos un método de Gibbs sampling, cuyo funcionamiento ya fue expuesto brevemente
en el Capitulo 1. Para implementar el algoritmo, se han de determinar las distribuciones completamente
condicionales a posteriori, esto es, las distribuciones condicionales a los datos y a los demds pardmetros.

Distribuciones completamente condicionales

A estas distribuciones completamente condicionales las denotaremos como [Byy,...], [aly,...], etc.
para simplificar la notacién.

Observemos que el calculo de las distribuciones a posteriori condicionadas a todos los demés pa-
rametros es sencillo por la observacién siguiente. Centrandonos en ffy —es andlogo para las deméas—,
nétese que, por definicion de densidad condicional,

[Bo, @, ¥,p, 0> ]y]
[, 7,p,07y]
Esto significa que las densidades completamente condicionales a posteriori son proporcionales a la densi-
dad conjunta a posteriori. Calcularemos de forma detallada la distribucién completamente condicionada

de By y las demds se expondrédn brevemente.
» Distribucion [Boyly, . ..]. Por la observaci6n anterior,

[ﬁo‘av’}/vl)?szy]: o< [ﬁ07a7’)/7p762|y]'

18 60
[5o|y7~--]°<[ﬁo]exp( ZZ Yi.s = Bo—at — py,—15—yalt(s )))

s=1t=

Y, dado que By ~ N(ug,, Téo),

_ 2 18 60
[BO‘% e ] o< €Xp <_(ﬁ021’l;ﬁ(’)> €xp <_2;2 (1080ﬁ()2 - 2[30 Z Z(yt,s —Ql—PYyr-15— ?’alt(s))>> :

Bo s=1t=1
Es claro, asi, que la distribucién sera normal al ser el exponente una funcién cuadratica de f3. De
este modo, es suficiente con calcular los coeficientes de ,302 y Bo, de manera que resulta

.uﬁo/ ﬁ0+2 lzt 1(yts pyt—Ls_yalt(s))/Gz 1
1/4:[30+1080/62 "1/7; +1080/02

[ﬁoy,---]=N<B

De forma completamente andloga, se deducen las distribuciones de & y 7.
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» Distribucion [y, .. .].

[a‘y ]:N o nuOC/Tgt+ lzt 1t(ytv ﬁO—P)’t—l,s—?’ah(s))/Gz 1
T 1/t2 41328580/ 02 "1/72 + 1328580/ 02
= Distribucion [yly,...].
=N (7 iy /T + 138 alt(s) B2, (vrs — Bo— at — pyi 1) /67 1
1/72+60%, alt(s)? /o> "1/T+60%,% alt(s)?/0? |
» Distribucion [ply,...]. Al ser la distribucién a priori de p uniforme en (—1,1), su distribucién
a posteriori estard concentrada (—1,1). De hecho, para p € (—1,1), es claro que [p|y,...] serd
propocional a una densidad normal, por lo que se trata de una densidad normal truncada. Mds

concretamente,

18 60 18 60
[p|y,,..]o<exp< 262 (p ZZ)’, L,s ZPZZYt 1,s yts ﬁo—al—yalt( )))) (-1 )(p)

s=1t= s=1t=

Y3 X0 v ls(st ﬁo—(xt—yalt(s)) o’
=N 1,_ .
( ‘ UAED Bls Ls DI MR 1s> 10P)

= Distribucion [62y,...]. Notemos que de (4.9) y la eleccién de [62], es inmediato que

1 18 60
1080 -+ ng, 1080 <n0s3 +Y Y (s —Bo—at —py—1s—yali(s)* | .

s=1t=1

[62%]y,...] =Inv-x2 <62

Los resultados de la simulacién basada en Gibbs sampling, asi como los c6digos utilizados, pueden
consultarse en el Apéndice A en la Seccién A.2. También se incluyen criterios para comprobar la con-
vergencia del método, las densidades marginales a posteriori de los pardmetros del modelo lineal y sus
esperanzas a posteriori junto con intervalos de credibilidad al 95 %. En el Apéndice B Seccién B.1 puede
consultarse la implementacién de cédigo de R.

4.5.2. Modelo jerarquico

Segin lo expuesto en la Seccién 4.4.1, el sentido de un efecto aleatorio es incorporar, a un conjunto
de datos en un mismo grupo, un parametro comun a todos ellos para establecer una relacidon entre sus
valores en la variable explicada.

Por la estructura de nuestros datos y; s, en los que aparece el afio y la localidad, para crear una relacién
de tipo espacial, hemos de afiadir un parametro J, para cada afio t = 1,...,60. De este modo, en cada afio
t, incluimos ese término aleatorio mencionado que afectard a todas las localidades por igual. Como ya
indicidbamos en la seccidn anterior, estos efectos aleatorios sustituirdn a la tendencia lineal o del modelo
no jerarquico. Ademds, el parametro f3y desaparece de la verosimilitud y se incluye como hiperpardmetro
de los &, para todo ¢. Asi, el efecto aleatorio &, representard la aleatorizacién de esa temperatura de base
Bo en el afio 7. Consideramos, asi,

&|Bo, > ~N(Bo,7%), t=1,...,60,
junto con las distribuciones independientes a priori de los hiperdmetros (4.8):
[Bol < 1, [2°] = Inv-x*(2|m1, 57).
El modelo jerdrquico a estudiar ahora es

Vis =& +py1s+yalt(s)+ &, &s~N(006%), t=1,..,60, s=1,...,18,
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con vector de pardmetros 8 = (Jy,..., 0, p,7,62) e hiperpardmetros ¢ = (B, t>). La distribucién con-
junta a posteriori serd a andloga a (4.10) pero afadiendo los hiperparametros.

0,0[y] = [S1,.., 560, Bo, T°, €, p, ¥, G2|]
o< [81|Bo, 7] - [8601Bo, T][Bo][2*] (][] [1][07]

1 18 60
X(Gz)_54OeXP< 26 222 (V15— & — ot = pyr—1,s — Y alt(s )))

s=1t=

Distribuciones completamente condicionales

Para el cdlculo de las densidades completamente condicionales, observemos que, para los parametros
p,7y o2, el resultado debe ser andlogo, ya que son independientes de los hiperpardmetros y, como
sabemos, estos no aparecen en la verosimilitud. De hecho, es suficiente con sustituir By + o por los
nuevos parametros . En efecto, vedmoslo para 7.

» Distribucion [Yly,...]. Como antes, la distribucién completamente condicional a posteriori [y]y, .. .]

serd propocional a la densidad conjunta, que ahora es [0, ¢|y]. Luego,

1 18 60
[’}"y,]“[’}’]@Xp( 20 ZZZ yté_(sl PYr—1,s— Yalt( )))

s=1t=

1 18 60
o< [Y]exp (‘262 (607’2 Z alt(s)* 272 Z alt(s) (vr,s — & — Pyt—l,s))) .
s=1

s=1t=

Como en el caso no jerdrquico, sustituyendo [y] por su expresion, se deduce inmediatamente que

My ] :N(a 'uY/T +Z IZ alt( )(yts—(st_p)&f[’s)/ o2 1 )

1/724+60%8, alt(s)?/ 02 "1/ +60%8 ali(s)?/ 02
= Por el mismo razonamiento, las distribuciones de p y 62 pueden consultarse en el modelo no
jerdrquico con la sustitucién indicada.
» Distribuciones [61]y,...],...,[00y,...]. Seat’ =1,...,60. Observemos que, si nos centramos en
el pardmetro ¢'-ésimo, la expresion de la verosimilitud puede simplificarse, resultando

1 18
[v|0] o< exp <_202 Y s — 8 —pyr_1s— Yalt(s))2>
s=1

1 18
o< exXp <_262 (1863 —25z/ Z(yt/,s —PYr—1,s— yalt(s)))>‘

s=1

Asf, multiplicando la verosimilitud anterior por la expresién de la distribucién a priori [5,|Bo, 2],

se obtiene
1/1 18 Bo 1
[(Sz/b/;...] o< eXp <_2 <’L’2+62> 61%—251/ ( +gyzl Yi's —Pyr— 1,s — }/alt( ))>>
x5 [P/ BT O —pyo s —yals)/o> 1
1/12418/0? "1/124+18/02% |

= En cuanto a los hiperpardmetros, su distribucién a posteriori completamente condicional es es-
pecialmente simple de calcular, ya que, al no aparecer en la verosimilitud, se satisface que tales
densidades serdn proporcionales a

[6,01y] o< [811Bo0,7°] - [860lBo, 7] [Bo][7°]- (4.11)
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* Distribucion [Byly,...]. Dado que [By|y,...] es proporcional a (4.11), calculando los coefi-
cientes de 83 y Bo. se tiene que
1 60

| ) 60 2
[Boly, - -] o< exp <_2r2 (60[30 —zﬁot; 5z>> =N (ﬁo 6();16”6()) :

s Distribucion [t?|y,...]. De nuevo, por (4.11) y sustituyendo [72] por su expresién, puede verse
inmediatamente agrupando las exponenciales que

60
22y ] e (22) 000 exp (‘zi (Z(a —ﬁo>2+s%>>

t=1

1 60
i + 60, ny + 60 (Z(5t — ﬁo)z "'S%) ) .

t=1

oc Inv-y (‘52

Como ejemplo de los resultados, se muestra una comparativa de los boxplots de la tendencia en el
modelo no jerdrquico, reflejada por By + o *t, que representaremos solo cada 5 afios para mayor claridad
del gréfico, y su versién jerdrquica, que son los efectos aleatorios dy, ..., . Se observa esa mayor
flexibilidad del modelo jerarquico, puesto que no se impone ninguna dependencia lineal respecto de ¢.
En el Apéndice A Seccidn A.3, se incluyen, ademds, los mismos anélisis que en el modelo no jerdrquico.
En el Apéndice B Seccién B.2 se incluye el cddigo de R utilizado.

i iliii @
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14 7 11 15 19 23 27 31 35 39 43 47 51 55 59 147 11 15 19 23 27 31 35 39 43 47 51 55 59

(a) Boxplot de By + ot cada 5 afios. (b) Boxplot de 6, .. ., 6.

4.6. Conclusiones finales

En este trabajo, se ha presentado de forma general los conceptos fundamentales y elementos basicos
del andlisis bayesiano, como la distribucion a priori y la distribucién a posteriori de un pardmetro y
otras medidas propias de la inferencia bayesiana. En mas detalle, se han presentado el desarrollo de las
distribuciones necesarias para realizar inferencia en algunos de los casos mds importantes relacionados
con la distribucién normal. También se han introducido los modelos jerdrquicos en el marco bayesiano.
El interés de estos modelos es que permiten representar situaciones donde existen distintos niveles de
variacién y expresar la dependencia de pardmetros procedentes de poblaciones agrupadas. Finalmente,
se han presentado el uso de los resultados anteriores al caso particular de los modelos de regresion y los
modelos de regresidn jerdrquicos. Estos modelos son de gran importancia en el campo de la modelizacién
estadistica. Como un ejemplo ilustrativo de la metodologia presentada, se han obtenido las distribuciones
completamente condicionadas necesarias para implementar un algoritmo de Gibbs sampling que permite
estimar un modelo no jerdrquico y otro jerdrquico para las series de temperaturas medias del verano de
un conjunto de localidades en una regién.
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Apéndice A

Simulacion en R

A.1. Mapa de la Comunidad Auténoma de Aragoén y alrededores

Elevation (m a.s.l.
0-250
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Figura A.1: Mapa geografico de Aragén y localidades estudiadas.

A.2. Modelo no jerarquico

A la hora de implementar el algoritmo de Gibbs sampling, hemos escogido los hiperpardmetros de
las distribuciones a priori utilizadas en la Seccidn 4.5.1, de manera que resulten débilmente informati-
vas considerando distribuciones con varianzas de gran magnitud —salvo p—, ya que no contamos con
ningun estudio previo. Mds precisamente,

Bo, o,y ~N(0,5000),
p~U(-1,1),
2 2
o° ~Inv-x°(1,1).
Ademds, dado que el algoritmo se basa en cadenas de Markov, hemos considerado dos cadenas de

200 000 observaciones cada una con diferentes valores iniciales. Ademas, se han eliminado las ultimas
100 000 iteraciones a modo de burn-in en cada cadena.

27
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Primera cadena Segunda cadena

B 0 1
al) 0 1
p 0 0,2
¥ 0 1
CA 1 2

Cuadro A.1: Valores iniciales de los pardmetros en las cadenas de Markov para el modelo no jerdrquico.

A.2.1. Convergencia de las cadenas de Markov

En primer lugar, para garantizar que los resultados que expondremos a continuacién son vélidos,
recogemos algunos diagnésticos de convergencia, que son, los traceplots, que representan los valores
que ha ido tomando cada pardmetro en cada iteracion, y el test de diagndstico basado en el factor de
reduccién de escala potencial, generalmente denotado por R.

Traceplots

Representando los traceplots, se observa claramente como, en todos los casos, los valores de todos los
pardmetros oscilan en torno a algin valor. Habiendo eliminando las primeras muestras, vemos como las
gréficas estdn muy concentradas y las dos cadenas, que se representan en colores diferentes, se solapan,
lo que es signo de convergencia.
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28
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(e) Traceplot de o?

Figura A.2: Traceplots de las ultimas 100 000 observaciones para el modelo no jerarquico. La primera
cadena se representa en verde y la segunda en azul.

Factor de reduccién de escala potencial R

Segtin Gelman, A. y Rubin, D. B. (1992) [7], R es un valor siempre mayor o igual que 1 y, cuanto mas
préximo es su valor a 1, con seguridad puede afirmarse que la cadena converge. El criterio utilizado m4s
habitual es R < 1,1. Esto, junto a las graficas anteriores, evidencia la convergencia de ambas cadenas
de Markov, ya que, incluso para la cota superior al 95 % del coeficiente se satisface el criterio. Para
implementarlo hemos utilizado la funcién gelman.diag() —vid. Apéndice B Seccién B.1.

Estimacion R Cota superior al 95 %

Bo 1,0040 1,0145
a 1,0000 1,0001
p 1,0038 1,0137
y 1,0024 1,0094
c? 1,0000 1,0000

Cuadro A.2: Anilisis de convergencia para el modelo no jerdrquico. Criterio por factor R.

A.2.2. Densidades a posteriori marginales

Tras comprobar la convergencia de ambas cadenas, podemos utilizar un estimador kernel de densi-
dades dadas las dltimas 100 000 observaciones generadas para cada pardmetro y en cada cadena. En las
gréficas se observa como las distribuciones estacionarias a la que se aproximan las observaciones, que
son las distribuciones marginales a posteriori de los pardmetros, son asintéticamente normales.
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Densidad [ Densidad a Densidad p
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(d) Densidad marginal de 7. (e) Densidad marginal de ¢2.

Figura A.3: Densidades a posteriori marginales estimadas para el modelo no jerarquico. En verde se
presenta la densidad estimada a partir de la primera cadena de Markov y en azul, la densidad estimada a
partir de la segunda.

A.2.3. Resumen niamerico. Esperanzas a posteriori e intervalos de credibilidad de los
parametros

Las esperanzas pueden aproximarse por la media de todas las dltimas 100 000 observaciones que
hemos generado de la primera cadena. Para los intervalos de credibilidad, es suficiente con aproximar
los cuantiles poblacionales por los cuantiles muestrales 0,025 y 0,975.

Esperanzas a posteriori  Extremo inferior IC  Extremo superior IC

Bo 11,7096 10,2025 13,1921
o 0,0151 0,0097 0,0205
p 0,6246 0,5780 0,6718
y —0,0024 —0,0028 —0,0020
o’ 2,3176 2,1299 2,5226

Cuadro A.3: Resumen de los resultados para el modelo no jerdrquico.

Especialmente interesante resulta que en los intervalos de credibilidad de ¢ y p no esté contenido
el 0, ya que esto es indicativo de la existencia real de la tendencia creciente de la temperatura respecto
del tiempo. En suma, los datos y el modelo ajustado parecen evidenciar la existencia del calentamiento
global.

Por otra parte, también es notorio es signo de ¥ que es negativo al 95 % de confianza. En efecto, en
las zonas de mayor altitud, como los Pirineos, las temperaturas medias tienden a ser menores.
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A.3. Modelo jerarquico

Para simulacién del modelo jerarquico, volvemos a considerar distribuciones a priori débilmente
informativas tanto para los pardmetros p,7 y ¢ como para los hiperpardmetros 3y y 72 de & para

t =1,...,60. En concreto, las elecciones tomadas son las siguientes:
61‘[30,1'2 ~ N(ﬁo,fz), t= 1,. .. ,60,
ﬁO ~ U(R)7

72 ~Tnv-x%(1,1),
¥ ~ N(0,5000),
p~U(=1,1),

o ~Tnv-x%(1,1).

Ademads, como en el caso no jerarquico, también se consideran dos cadenas de Markov con diferentes
valores iniciales para estudiar la convergencia.

Primera cadena Segunda cadena

s 0 1
pM 0 0,2
¥ 0 1
GO 1 2
U 0 1
(z2)M 1 2

Cuadro A.4: Valores iniciales de los pardmetros en las cadenas de Markov para el modelo jerarquico.

Los métodos y diagnésticos que usaremos seran los mismos y también expondremos los mismos
puntos: andlisis de la convergencia, densidades marginales a posteriori y resimenes numéricos. En este
caso, sin embargo, no se incluirdn los pardmetros 8y, . . ., 0go, puesto que eso supondria un uso innecesario
de espacio. En su lugar, recogemos un boxplot de todos ellos en la Seccién A.3.2.

A.3.1. Convergencia de las cadenas de Markov

Traceplots
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Figura A.4: Traceplots de las ultimas 100 000 observaciones para el modelo jerdrquico. La primera
cadena se representa en verde y la segunda en azul.
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Factor de reduccién de escala potencial R

Estimacién R Cota superior al 95 %

) 1,0059 1,0238
y 1,0042 1,0178
o’ 1,0000 1,0000
Bo 1,0049 1,0198
72 1,0000 1,0001

Cuadro A.5: Andlisis de convergencia para el modelo jerarquico. Factor R.
Ademads, pese a no recogerse por el espacio que ello ocuparia, el diagnéstico también se ha llevado

acabo para los pardmetros &, t = 1,...,60. Los factores obtenidos han sido también muy préximos a 1,
por lo que tenemos evidencia de la convergencia de todos los pardmetros.

A.3.2. Densidades a posteriori marginales

Densidad p Densidad y Densidad o”
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Figura A.5: Densidades a posteriori marginales estimadas para el modelo jerdrquico. En verde se presenta
la densidad estimada a partir de la primera cadena de Markov y en azul, la densidad estimada a partir de
la segunda.
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A.3.3. Resumen nimerico. Esperanzas a posteriori e intervalos de credibilidad de los
parametros

Esperanzas a posteriori  Extremo inferior IC  Extremo superior IC

D 0,8957 0,8708 0,9187
y —0,0007 —0,0009 —0,0005
o2 0,5398 0,4949 0,5887
Bo 3,4039 2,5180 4,3855
2 2,1446 1,4823 3,0844

Cuadro A.6: Resumen de los resultados para el modelo jerarquico.



Apéndice B

Implementacion del codigo de R

B.1. Modelo no jerarquico

### IMPLEMENTACION DE GIBBS SAMPLING. MODELO NO JERARQUICO.
library(extraDistr)

library(xtable)

library (coda)

# Datos de temperaturas y altitudes

temp <- readRDS("meanTempAragonJJA19562015.rds.ds")
elev <- readRDS("elev.rds")

# Matriz de datos. Filas por afios y columnas por localidades.

=+

Generamos la fila 1 de y, que se corresponde con y_0,s.
# En general, la fila t refiere a las temperaturas del afio t-1.

y <- matrix(nrow = 61, ncol = 18)
y[2:61,] <- temp
y[1,] <- apply(temp, MARGIN

2, FUN = mean)

# Definimos la matriz que contiene los 60 afios (1,...,60) en cada columna.
t <- matrix(data = 1:60, nrow = 60, ncol = 18, byrow = FALSE)

# Definimos la matriz alt que contiene las 18 de las localidades en cada fila.
alt <- matrix(data = elev$altitude, nrow = 60, ncol = 18, byrow = TRUE)

# Parametros

number0OfSamples <- 200000

beta_0 <- rep(0, numberOfSamples)

alpha <- rep(0, numberOfSamples)

gamma <- rep(0, numberOfSamples)

rho <- rep(0, numberOfSamples)

sigma2 <- rep(0, numberOfSamples)

beta_02 <- rep(0, numberOfSamples)

alpha2 <- rep(0, numberOfSamples)

gamma?2 <- rep(0, numberOfSamples)
rho2 <- rep(0, numberOfSamples)
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sigma22 <- rep(0, number0fSamples)
# Valores iniciales de los parametros.

beta_O0[1] <- 0
alpha[1l] <- 0
gamma[1] <- O
sigma2[1] <- 1
rho[1] <- 0

beta_02[1] <- 1
alpha2[1] <- 1
gamma2[1] <- 1
sigma22[1] <- 2
rho2[1] <- 0.2

# Iteraciones de Gibbs sampling.

# La constante sumSquares es necesaria la funcidn sampleRho
sumSquares <- sum(y[ -61,]1"2)

# La constante sumHeightsSq es necesaria la funcién sampleGamma
sumHeightsSq <- sum(alt[1,]1°2)*60

for (i in 2:numberOfSamples) {

beta_0[i] <- sampleBeta0(0, 5000, alphal[i-1], gamma[i-1], rho[i-1],
sigma2[i-1])

alpha[i] <- sampleAlpha(0, 5000, beta_O[i], gammal[i-1], rho[i-1],
sigma2[i-11)

gamma [i] <- sampleGamma (0O, 5000, beta_O[i], alphalil, rho[i-17,
sigma2[i-11)

rho[i] <- sampleRho(beta_0[i], alphal[i], gamma[i], sigma2[i-1])

sigma2[i] <- sampleSigma2(1l, 1, beta_O0[il], alphalil, rhol[il],
gamma [i])

for (i in 2:numberQ0fSamples) {

beta_02[i] <- sampleBeta0O(0, 5000, alpha2[i-1], gamma2[i-1], rho2[i-1],
sigma22[i-11])

alpha2[i] <- sampleAlpha(0, 5000, beta_02[i], gamma2[i-1], rho2[i-1],
sigma22[i-1])

gamma2[i] <- sampleGamma (0, 5000, beta_02[i], alpha2[il], rho2[i-1],
sigma22[i-1])

rho2[i] <- sampleRho(beta_02[i], alpha2[i], gamma2[i], sigma22[i-1])

sigma22[i] <- sampleSigma2(1l, 1, beta_02[i], alpha2[i], rho2[il],
gamma?2[il])

# Implementacidon de las distribuciones condicionales a posteriori y muestreo.

sampleBetaO <- function(mu, tau2, alpha, gamma, rho, sigma2) A
suma <- sum(y[-1,] - alpha * t - rho * y[-61,] - gamma * alt) / sigma?2
precision <- (1 / tau2 + 1080 / sigma2)
media <- (mu / tau2 + suma) / precision
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return (rnorm(n = 1, mean = media, sd = 1 / sqrt(precision)))

sampleAlpha <- function(mu, tau2, beta_0O, gamma,

suma <- sum(t * (y[-1,] - beta_0 - rho * y[-61,]

precision <- (1 / tau2 + 1328580 / sigma2)
media <- (mu / tau2 + suma) / precision

rho,

sigma2) {
- gamma * alt)) / sigma?2

return (rnorm(n = 1, mean = media, sd = 1 / sqrt(precision)))

sampleGamma <- function(mu, tau2, beta_0, alpha,
suma <- sum(alt * (y[-1,] - beta_0 - alpha * t - rho * y[-61,])) / sigma2

precision <- (1 / tau2 + sumHeightsSq / sigma2)

media <- (mu / tau2 + suma) / precision

rho,

sigma2) {

return (rnorm(n = 1, mean = media, sd = 1 / sqrt(precision)))

sampleRho <- function(beta_0O, alpha, gamma, sigma2) {
suma <- sum(y[-61,] * (y[-1,] - beta_0 - alpha * t - gamma * alt))

media <- suma / sumSquares
varianza <- sigma2 / sumSquares

return(rtnorm(n = 1, mean = media, sd = sqrt(varianza),

sampleSigma2 <- function(n, s2, beta_0, alpha,
scale2 <- n * s2 + suma
return(scale2 / rchisq(n = 1, df = 1080 + n))
}

# Traceplots de ambas cadenas

rho,

_11 1))

gamma) {
suma <- sum((y[-1,] - beta_0 - alpha * t - rho * y[-61,]

- gamma * alt)~2)

>Iteraciones’,

plot(beta_0[1:1], type=’1’, col = ’blue’, xlab =
ylab = expression(betal[0]))
lines (beta_02[100001:200000], col = ’red’)
plot (alpha[100001:200000], type=’1’, col = ’blue’, xlab

ylab = expression(alpha))

lines (alpha2[100001:200000], col = ’red’)

plot (rho[100001:200000], type=’1l’, col = ’blue’, xlab =
ylab = expression(rho))

lines (rho2[100001:200000], col = ’red’)

plot (gamma[100001:200000], type=’1’, col = ’blue’, xlab
ylab = expression(gamma))

lines (gamma2[100001:200000], col = ’red’)

plot (sigma2[100001:200000], type=’1l’, col = ’blue’, xlab
ylab = expression(sigma~2))

lines(sigma22[100001:200000], col = ’red’)

# Factor de reduccidén de escala pontecial RHat.

gelman.diag (mcmc.list (as.mcmc(beta_0[100001:200000]1),
as.mcmc (beta_02[100001:200000]1)),
confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmc.list (as.mcmc (alpha[100001:200000]1),
as.mcmc (alpha2[100001:200000])),
confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmec.list (as.mecmec (rho[100001:200000]1),
as.mcmc (rho2[100001:2000001)),

’Iteraciones’,

Iteraciones’,

’Iteraciones’,

Iteraciones’,
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confidence = 0.95, autoburnin = FALSE)
gelman.diag (mcmc.list (as.mcmc (gamma[100001:200000]),
as.mcmc (gamma2[100001:200000])),
confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmc.list (as.mcmc(sigma2[100001:200000]),
as.mcmc (sigma22[100001:200000]1)),
confidence = 0.95, autoburnin = FALSE)

# Densidades marginales a posteriori

plot (density (beta_0[100001:200000]), col = ’green’)
lines(density(beta_02[100001:200000]), col = ’blue’)
plot(density (alpha[100001:200000]), col = ’green’)
lines (density(alpha2[100001:200000]), col = ’blue’)
plot (density (rho[100001:200000]), col = ’green’)
lines (density(rho2[100001:200000]), col = ’blue’)
plot(density (gamma [100001:200000]), col = ’green’)
lines (density (gamma2[100001:200000]), col = ’blue’)
plot (density(sigma2[100001:200000]), col = ’green’)
lines(density(sigma22[100001:200000]), col = ’blue’)

# Valores aproximados de la esperanza a posteriori

mean (beta_0[100001:200000])
mean (alpha[100001:200000])
mean (rho[100001:200000])

mean (gamma [100001:200000])
mean (sigma2[100001:200000])

#Intervalos de credibilidad
matrix <- cbind(beta_0[100001:200000], alpha[100001:200000],

rho[100001:200000], gamma[100001:200000],
sigma2[100001:200000])

lowerBoundsCI <- apply(matrix, MARGIN
quantile(x, probs = 0.025))

2, FUN = function(x)

upperBoundsCI <- apply(matrix, MARGIN 2, FUN function (x)

quantile(x, probs = 0.975))

B.2. Modelo jerarquico

### IMPLEMETANCION MODELO JERARQUICO.
# Cargamos las mismas librerias.

# Tomamos los mismos datos y, alt.
number0OfSamples <- 200000

tau2 <- rep(0, numberOfSamples)
beta_0 <- rep(0, numberOfSamples)
gamma <- rep(0, numberOfSamples)

rho <- rep(0, numberOfSamples)
sigma2 <- rep(0, numberOfSamples)
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# La primera fila de deltas corresponde a delta_0O. En general, la fila t
# corresponde a delta_{t-1}
deltas <- matrix(data = 0, nrow = number0OfSamples, ncol = 60)

tau22 <- rep(0, numberOfSamples)

beta_02 <- rep(0, numberOfSamples)

gamma?2 <- rep(0, numberOfSamples)

rho2 <- rep(0, numberOfSamples)

sigma22 <- rep(0, numberOfSamples)

# La primera fila de deltas2 corresponde a delta_0. En general, la fila t
# corresponde a delta_{t-1}

deltas2 <- matrix(data = 0, nrow = numberOfSamples, ncol = 60)

# Valores iniciales de los parametros.

tau2[1] <- 1

beta_0[1] <- 0

gamma [1] <- O

sigma2[1] <- 1

rho[1] <- 0

deltas[1,] <- rep(0, 60)

tau22[1] <- 2

beta_02[1] <- 1

gamma2[1] <- 1

sigma22[1] <- 2

rho2[1] <- 0.2
deltas2[1,] <- rep(1l, 60)

# Iteraciones de Gibbs sampling.

sumSquares <- sum(y[ -61,]1"2)
sumHeightsSq <- sum(alt[1,]72)*60

for (i in 2:numberOfSamples) {
for (j in 1:60) {
deltas[i,j] <- sampleDeltas(j, beta_0[i-1], tau2[i-1], gammal[i-1],
rho[i-1], sigma2[i-1])
mDeltas <- matrix(data = deltas[i,], nrow = 60, ncol = 18)
}
gamma [i] <- sampleGamma (0O, 5000, mDeltas, rho[i-1], sigma2[i-1])

rho[i] <- sampleRho(mDeltas, gammal[i], sigma2[i-1])
sigma2[i] <- sampleSigma2(1, 1, mDeltas, rho[i], gammalil)
beta_0[i] <- sampleBeta_O(deltas([i,], tau2[i-1])

tau2[i] <- sampleTau2(1l, 1, beta_0[i], deltas[i,])

for (i in 2:numberQ0fSamples) {
for (j in 1:60) {
deltas2[i,j] <- sampleDeltas(j, beta_02[i-1], tau22[i-1], gamma2[i-1],
rho2[i-1], sigma22[i-1])
mDeltas <- matrix(data = deltas2[i,], nrow = 60, ncol = 18)
}
gamma2[i] <- sampleGamma (0, 5000, mDeltas, rho2[i-1],
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sigma22[i-1])
rho2[i] <- sampleRho(mDeltas, gamma2[i], sigma22[i-1])

sigma22[i] <- sampleSigma2(1, 1, mDeltas, rho2[i], gamma2[i])
beta_02[i] <- sampleBeta_O(deltas2[i,], tau22[i-1])

tau22[i] <- sampleTau2(l, 1, beta_02[i], deltas2[i,])

# Implementacidén de las distribuciones condicionales a posteriori y muestreo.

sampleDeltas <- function(j, beta_0, tau2, gamma, rho, sigma2) A
suma <- sum((y[j + 1,] - rho * y[j,] - gamma * alt[1,]) / sigma2)
precision <- (1 / tau2 + 18 / sigma2)
media <- (beta_0 / tau2 + suma) / precision
return (rnorm(n = 1, mean = media, sd = 1 / sqrt(precision)))

sampleGamma <- function(mu, tau2, deltas, rho, sigma2) A
suma <- sum(alt * (y[-1,] - deltas - rho * y[-61,])) / sigma2
precision <- (1 / tau2 + sumHeightsSq / sigma2)
media <- (mu / tau2 + suma) / precision
return (rnorm(n = 1, mean = media, sd = 1 / sqrt(precision)))

sampleRho <- function(deltas, gamma, sigma2) {
suma <- sum(y[-61,] * (y[-1,] - deltas - gamma * alt))
media <- suma / sumSquares
varianza <- sigma2 / sumSquares
return (rtnorm(n = 1, mean = media, sd = sqrt(varianza), -1, 1))

sampleSigma2 <- function(n, s2, deltas, rho, gamma) {
suma <- sum((y[-1,] - deltas - rho * y[-61,] - gamma * alt)~2)
scale2 <- n *x s2 + suma
return(scale2 / rchisq(n = 1, df = 1080 + n))

}

sampleBeta_0 <- function(deltas, tau2) {
return (rnorm(n = 1, mean = (sum(deltas)) / 60, sd = sqrt(tau2 / 60)))
}

sampleTau2 <- function(n, s2, beta_0, deltas) A
scale <- sum((deltas - beta_0)"2) + s2
return(scale / rchisq(n = 1, df = n + 60))

}

# Traceplots de ambas cadenas

plot (rho[100001:200000], type=’1’, col = ’blue’, xlab = ’Iteraciomnes’,
ylab = expression(rho))

lines (rho2[100001:200000], col = ’green’)

plot (gamma[100001:200000], type=’1’, col = ’green’, xlab = ’Iteraciones’,
ylab = expression(gamma))

lines (gamma2[100001:200000], col = ’blue’)

plot (sigma2[100001:200000], type=’1’, col = ’green’, xlab = ’Iteraciones’,

ylab = expression(sigma~2))
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lines(sigma22[100001:200000], col = ’blue’)

plot (beta_0[100001:200000], type=’1l’, col = ’green’, xlab = ’Iteraciones’,
ylab = expression(betal[0]))

lines (beta_02[100001:200000], col = ’blue?)

plot (tau2[100001:200000], type=’1’, col = ’green’, xlab = ’Iteraciones’,
ylab = expression(tau~2))

lines (tau22[100001:200000], col = ’blue’)

# Factor de reduccidén de escala pontecial RHat.

gelman.

gelman.

gelman.

gelman.

diag(mcmc.list (as
as

confidence =
diag(mcmc.list (as
as

confidence =
diag(mcmc.list (as
as

confidence =

diag(mecmc.list (as.
.mcmc (beta_02[100001:2000001)),

as
confidence =

.mcmc (rho[100001:2000001]) ,
.mcmc (rho2[100001:2000001)),

0.95, autoburnin = FALSE)

.mcmc (gamma [100001:2000001]) ,
.mcmc (gamma?2[100001:2000001)),

0.95, autoburnin = FALSE)

.mcmc (sigma2[100001:2000001]1),
.mcmc (sigma22[100001:200000]1)),

0.95, autoburnin = FALSE)
mcmc (beta_0[100001:2000001),
FALSE)

0.95, autoburnin =

gelman.diag (mcmc.list (as.mcmc (tau2[100001:200000]),
as.mcmc (tau22[100001:2000001)) ,

confidence = 0.95, autoburnin = FALSE)

for (i in 1:60) {

gelman.diag(mcmc.list (as.mcmc(deltas[100001:200000, i]),
as.mcmc (deltas2[100001:200000, il)),
confidence = 0.95, autoburnin = FALSE)

}

# Densidades marginales a posteriori

plot (density (rho[100001:200000]), col = ’blue’)

lines (density(rho2[100001:200000]), col = ’red’)

plot (density (gamma[100001:200000]), col = ’blue’)

lines(density (gamma2[100001:200000]), col = ’red’)

plot (density(sigma2[100001:200000]), col = ’blue’)

lines(density(sigma22[100001:200000]), col = ’red?’)

plot (density (beta_0[100001:200000]), col = ’blue’)

lines (density(beta_02[100001:200000]), col = ’red?’)

plot (density (tau2[100001:200000]), col = ’blue’)

lines (density(tau22[100001:200000]), col = ’red’)

# Boxplot de los deltas

boxplot (deltas[100001:200000, ], outline = FALSE)

# Estimaciones de las esperanzas a posteriori

mean (rho[100001:2000001])
mean (gamma [100001:200000])
mean (sigma2[100001:2000001)
mean (beta_0[100001:200000])
mean (tau2[100001:20000017)

# Intervalos de credibilidad
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matrix <- cbind(rho[100001:200000], gamma[100001:200000],
sigma2[100001:200000], beta_0[100001:200000],
tau2[100001:2000001)

lowerBoundsCI <- apply(matrix, MARGIN = 2, FUN = function(x)
quantile(x, probs = 0.025))
upperBoundsCI <- apply(matrix, MARGIN = 2, FUN = function(x)

quantile(x, probs = 0.975))
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