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Prólogo

En 1763, a título póstumo, se publicó el conocido Teorema de Bayes [1]. Este teorema supuso no
solo el desarrollo de una potente herramienta de cálculo de probabilidades, sino la inauguración de una
perspectiva nueva de la probabilidad, entendiéndola como medida de incertidumbre.

Esta perspectiva se prolonga de forma consecuente en la disciplina de la estadística matemática,
dando forma a la estadística bayesiana. Entender lo incierto como aleatorio lleva a la interpretación de
los parámetros desconocidos como variables aleatorias con una cierta distribución de probabilidad. El
objetivo de la estadística bayesiana consiste en tratar de estimar la distribución a posteriori de estos pa-
rámetros tras obtener una muestra de la población estudiada y conjugarla con las premisas de las que se
partía —distribución a priori. Esta visión, ya desde los inicios de la estadística clásica o frecuentista, des-
pertó el rechazo de varios de sus principales exponentes como Ronald Fisher —véase Fisher, R., (1949)
[4]. No obstante, el tiempo y la práctica parecen haber demostrado la poca justedad de sus afirmaciones.
En los últimos años, la estadística bayesiana ha vivido un repunte significativo y en especial con el gran
desarrollo que ha experimentado el estudio de métodos computacionales. En su favor, encontramos la
gran flexibilidad que permite en la modelización y que exploraremos brevemente en los Capítulos 3 y
4, la sencilla interpretación de algunas de sus herramientas frente a sus homólogas frecuentistas —como
se observa en los intervalos de credibilidad bayesianos y los intervalos de confianza frecuentista—, y,
además, el hecho de que ha permitido dar salida a limitaciones, cada vez más evidentes para mayor parte
de la comunidad científica, del paradigma clásico; por ejemplo, en los contrastes de hipótesis y p-valores
—McShane, B. B. et al (2019) [8].

El paradigma bayesiano se ha convertido en el referente en varios escenarios diferentes. Entre ellos
encontramos: el análisis del índice de paternidad; en problemas legales y juicios, por ejemplo, para
desenmascarar la falacia del fiscal; e incluso los filtros de spam del correo electrónico, basados en lo que
se conoce como filtros bayesianos, esto es, filtros que irán aprendiendo a decidir a partir de los datos que
el usuario le va enseñando paulatinamente, de forma que la probabilidad de filtrar solamente el material
indeseado aumenta.

Volviendo al terreno de la modelización estadística, en este trabajo se presentan, primero, los funda-
mentos de la estadística bayesiana como enfoque diferenciado, y, posteriormente, se centra en uno de sus
pilares fundamentales: los modelos jerárquicos. Más precisamente, son cuatros los puntos principales
que se incluyen en este trabajo, divididos en cuatro capítulos principales.

En el Capítulo 1, junto con la introducción al enfoque bayesiano, se recogen algunos apuntes sobre
sus herramientas fundamentales, tales como la elección de la distribución a priori, la necesidad de los
métodos MCMC o los estimadores Bayes e intervalos de credibilidad.

En cuanto al Capítulo 2, se desarrolla el cálculo de las distribuciones a posteriori de parámetros
asociados a variables normales según diferentes casos —media desconocida y varianza desconocida, el
caso opuesto y ambos parámetros desconocidos.

Ya en el Capítulo 3, se retoman las cuestiones más de concepto, pues se exponen las característi-
cas principales de los modelos jerárquicos bayesianos. Su desarrollo se justifica por su capacidad para
relaciones de dependencia, a la par de producir modelos más realistas al reconocer los parámetros que
determinan la distribución a priori de los parámetros —llamados hiperparámetros— como desconocidos.
Nuevamente, se desarrolla un ejemplo relativo a variables normales para ejemplificar los pasos habituales
para la caracterización de las diferentes distribuciones a posteriori del modelo.

Finalmente, en el Capítulo 4, en una primera parte, se estudian algunos modelos de regresión ex-
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plorando y haciendo hincapié, nuevamente, en la flexibilidad del análisis bayesiano. Esto se expresa,
principalmente, en su capacidad para generalizar el modelo de regresión clásico a situaciones con datos
correlados o heterocedásticos partiendo de cálculos sencillos. En la segunda parte del Capítulo 4, se pro-
pone un ejemplo de cómo la obtención de las distribuciones a posteriori conjugadas se pueden combinar
con técnicas MCMC para ajustar un modelo bayesiano de forma eficiente. El ejemplo propuesto sobre las
temperaturas medias del verano es meramente ilustrativos, ya que un ajuste óptimo requeriría un modelo
más complicado con más términos para representar la variabilidad espacial, y queda fuera del objetivo
de esta memoria.



Abstract

Two main points that distinguish Bayesian analysis from classical statitistics are the subjective way
of comprehending probability as a measure of uncertainty and regarding the unknown parameter θ in a
statistical model as a random variable. Therefore, θ has its own distribution.

Bayes’s Theorem establishes that the parameters distributions depend on the quantity of prior in-
formation that we have available, which is reflected on the prior distribution or density of θ , denoted
by [θ ], and one sample y = (y1, . . . ,yn) of the studied population. The joint distribution of y —usually
called likelihood— depends on θ and is denoted by [y|θ ]. According to the introduced notation, Bayes’s
Theorem for absolutely continuous random variables asserts that

[θ |y] = [θ ][y|θ ]
[y]

=
[θ ][y|θ ]∫

Θ
[θ ][y|θ ]dθ

,

where [θ |y] is the posterior distribution or density and Θ is the support of the density of θ . For Bayesian
inference, the posterior distribution is the main goal. It expresses all our knowledge about the parameter
θ and, therefore, it is the distribution that we use to estimate.

In Chapter 1, besides of going over all these concepts, we also include a brief discussion on the diffe-
rent kinds of prior distributions, especially, conjugate prior distributions due to their advantages related
to posterior distribution computations. Furthermore, we introduce the necessity of MCMC methods in
Bayesian analysis and frequent tools that Bayesian analysis uses to summarize posterior distributions,
such that Bayes estimators and credible intervals.

In Chapter 2, we focus on showing posterior distributions computations in detail for normal variables,
that is, y ∼ N(µ,σ2). The aim is to look into different case studies depending on which parameter is
supposed to be unknown: µ , σ2 or both, and making different choices about the prior distributions: non-
informative prior distributions and conjugate prior distributions. These results will be frequently used
throughout the following chapters. Besides, two important remarks are raised. One of them shows that
the influence of the prior distribution in the posterior distribution is very slight if we have a substantial
quantity of data, what justifies making use of non-informative prior information in such cases. The other
remark is an actual defence of Bayesian analysis, since we will see that classical properties of frequentist
statistics can be followed easily thanks to Bayes’s Theorem, and without necessity of counting with a
great amount of prior information.

As for Chapter 3, we first go back to a more conceptual framework and principal issues regarding
hierarchical modeling are brought up. The usual scenes where hiercachical model shows up are models
with clustered data as it allows us to establish a depency relation easily. We consider the hierarchical mo-
del given by normal data yi, j ∼ N(θ j,σ

2) clustered in J different groups. The parameters θ j are assumed
to be unknown and we consider them as a sample such that θ j|µ,τ ∼ N(µ,τ2) for all j with parame-
ters —usually called hyperparameters— φ = (µ,τ) unkown too. As a result, hierarchical modeling is
more realistic than usual modeling since it also takes the uncertainty associated to the hyperparameters
into consideration. The prior information will not be [θ ] any longer, but [θ |φ ] = [θ |µ,τ] together with
[φ ] = [µ,τ]. Thus, we include a brief discussion on what non-informative prior distribution for φ one can
choose in a model like ours. Our main objetive will be to characterize the posterior conditional distribu-
tion of the parameters given the hyperparameters [θ |φ ,y] and the marginal posterior distributions of the
hyperparameters [φ |y]. We use this example to show the usual steps followed in these characterizations
in Bayesian hierarchical models.
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Finally, in Chapter 4, we collect some results related to different linear regression models. Given an
explained variable y and explanatory variables x1, . . . ,xk, a linear regression model is

y = β0 +β1x1 + . . .+βk + ε,

where β = (β0, . . . ,βk) are the regression coefficients and ε is a normal variable that expresses the error.
Different assumptions about this error term determine the complexity of the model. The classical re-
gression model is the first model we will cope with. Our goal will be the posterior distributions of the
regression coefficients and the variance. Afterwards, in order to insist on the flexibity Bayesian statistics
provides, we will show that some models with correlated and heterocedastic data can be faced with si-
milar computations to those that are developed for the classical regression model. In addition, we study
the applications of hierarchical modeling in the field of regression models by including random effects.
As an example of the use of the previous results, two simple models based on summer temperatures in la
Comunidad Autónoma de Aragón are studied, so that we can show how combining the analytical deriva-
tions of the posterior distributions and MCMC methods leads us to a more efficient way to fit a Bayesian
model. The given example related to summer temperatures is merely illustrative, given that an optimal
adjustment would require a more complex model with specific terms to express the spatial variability,
what is further from our purposes.

To obtain the desired marginal posterior distributions, we develop a Gibbs sampling algorithm. The
R codes used to implement the approach, together with the results of the simulation —the marginal
posterior densities, posterior expectations and credible intervals—, are provided in the Appendix.
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Capítulo 1

Generalidades del análisis bayesiano

1.1. Introducción al análisis bayesiano

La probabilidad como medida de incertidumbre es utilizada con frecuencia en el lenguaje cotidiano.
Afirmaciones como «es cien por cien seguro que ocurrirá» expresan la creencia de un sujeto ante un
fenómeno, reflejando una perspectiva condicionada por la información de la que un sujeto parte. En este
sentido, podemos decir que la probabilidad puede entenderse de forma intuitiva como medida de incer-
tidumbre. La estadística bayesiana es una rama de la estadística que se basa en esta interpretación de la
probabilidad como medida de incertidumbre, en lugar de la interpretación frecuentista de la probabilidad,
fundamento de la estadística clásica. Además, otra diferencia esencial entre ambos paradigma es la forma
de considerar los parámetros desconocidos. Para la estadística clásica o frecuentista, tales parámetros se
suponen valores fijos y uno de los objetivos princpales es obtener estimadores de esos parámetros. Por
el contrario, la estadística bayesiana reconoce a los parámetros como variables aleatorias y el objetivo es
caracterizar su distribución.

1.2. Distribución a posteriori. Teorema de Bayes

El objetivo principal de la estadística bayesiana es caracterizar la distribución de θ , el parámetro o
vector de parámetros bajo estudio, incuyendo la información que proporciona una muestra observada y
la información a priori que podemos tener sobre él. Esta distribución se denomina distribución a poste-
riori y se trata de la distribución del parámetro condicionada a la muestra observada. Esta distribución
condicionada se calcula utilizando el Teorema de Bayes —Bayes, T. (1763) [1]— como se muestra en el
siguiente teorema. El resultado se enuncia para variables absolutamente continuas, pero también es váli-
do para variables discretas sustituyendo las densidades por probabilidades. A lo largo de todo el estudio
denotaremos por Θ ⊆ RJ al dominio paramétrico.

Teorema 1.1. Sea y = (y1, . . . ,yn) una muestra con densidad [y|θ ] dependiente de un parámetro θ .
Entonces, si suponemos que θ tiene densidad [θ ], se tiene que su densidad a posteriori es

[θ |y] = [y|θ ][θ ]
[y]

=
[y|θ ][θ ]∫

Θ
[y|θ ][θ ]dθ

. (1.1)

La densidad [θ ] se denomina densidad a priori, ya que refleja la información sobre θ previa a la
muestra y, y la densidad [y|θ ] es la verosimilitud de la muestra, que satisface

[y|θ ] =
n

∏
i=1

[yi|θ ],

puesto que las variables yi|θ , i = 1, . . . ,n, se suponen independientes entre sí.
Dado que el objetivo es caracterizar la distribución a posteriori [θ |y], se puede considerar como

constante todos los términos que no dependan de θ y se puede prescindir de ellos en el cálculo porque
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2 Capítulo 1. Generalidades del análisis bayesiano

su único cometido es corregir la densidad, de manera que su integral sobre el dominio paramétrico sea 1.
Por este motivo, en el análisis bayesiano, es habitual utilizar la proporcionalidad en lugar de la igualdad
y trabajar con el kernel de una distribución, que es, precisamente, la parte de la densidad dependiente de
θ , en lugar de la distribución completa. De este modo, por ejemplo, el Teorema de Bayes resulta

[θ |y] ∝ [y|θ ][θ ]. (1.2)

De esta última expresión, se deduce que la distribución a posteriori solo depende realmente de la
verosimilitud de la muestra y y de la distribución a priori de θ . Notemos que la verosimilitud es clara
de partida, en tanto que corresponde a la modelización de los datos que estudiamos, pero, en cuanto a la
distribución a priori, es oportuno detenerse sobre algunas consideraciones alrededor de su elección.

1.3. Distribuciones a priori. Consideraciones

La distribución a priori representa la información que se tiene sobre el parámetro antes de observar la
muestra. Se distinguen diferentes distribuciones, que son las distribuciones informativas, no informativas
y débilmente informativas, según el grado de conocimiento que tengamos. Por otro lado, para el análisis
bayesiano, son especialmente importantes por las simplificaciones de cálculo que ofrecen, las distribu-
ciones a priori conjugadas puesto que, como veremos a continuación, proporcionan una distribución a
posteriori que pertenece a una familia conocida.

1.3.1. Distribuciones conjugadas

Dada una verosimilitud [y|θ ], se dice que la distribución a priori [θ ] es conjugada si la distribución
a posteriori [θ |y] continúa siendo de la misma familia que [θ ], es decir, sus densidades tienen la misma
forma funcional. La principal ventaja de las distribuciones conjugadas es que, al conservar la familia de
distribuciones, reducen el problema de caracterización de la distribución a posteriori al de la estimación
de los parámetros, además de que nos permite llegar a una distribución conocida explícita, lo que facilita
su simulación.

Observación 1.2. Pese a no existir siempre, para muchas verosimilitudes puede encontrarse una distribu-
ción a priori conjugada. De hecho, siempre existe para datos procedentes de la familia exponencial —que
engloba a la mayoría de distribuciones habituales— como demostraremos a continuación. Recordemos
que una familia exponencial es aquella cuya distribución [yi|θ ] puede escribirse en términos de funciones
f ,g,ϕ y h medibles satisfaciendo que

[yi|θ ] = f (yi)g(θ)exp(ϕ(θ)th(yi)), i = 1, . . . ,n.

Así, bajo la hipótesis de independencia de los datos yi|θ , tenemos que la verosimilitud es

[y|θ ] =

(
n

∏
i=1

f (yi)

)
g(θ)n exp

(
ϕ(θ)t

n

∑
i=1

h(yi)

)
.

Y si escogemos
[θ ] = g(θ)k exp(ϕ(θ)tu) (1.3)

para k ≥ 0 y u una tupla de la dimensión adecuada, entonces,

[θ |y] ∝ g(θ)n+k exp

(
ϕ(θ)t

(
u+

n

∑
i=1

h(yi)

))
.

Lo que prueba que, en efecto, la familia (1.3) es conjugada para la verosimilitud dada.
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1.3.2. Distribuciones a priori informativas, no informativas y débilmente informativas

Una de las mayores virtudes del análisis bayesiano es que nos permite introducir, como punto de
partida, los resultados de otras investigaciones, incluyendo, de este modo, una considerable cantidad de
información añadida junto con nuestros datos. Esta es la atribución de las distribuciones informativas,
que pueden tener bastante influencia en la distribución a posteriori. Por este motivo, en caso de carecer de
información previa, la imposición de una distribución que condicione considerablemente la distribución
a posteriori no está justificada y podría inducir a un análisis poco fiable. Por ello, en este caso, la mejor
elección es tomar distribuciones no informativas y débilmente informativas, esto es, distribuciones que,
en la mayor medida de lo posible, no incluyan regiones especialmente probables, de manera que la
distribución a posteriori no se incline hacia ellas. Un ejemplo sencillo de distribución no informativa es
la distribución uniforme. En la práctica, las distribuciones no informativas pueden ser impropias, i.e.,
con densidad no integrable, lo que no es ningún problema siempre que la distribución a posteriori sea
propia. Un ejemplo de este tipo de distribuciones a priori es la ley uniforme en R. El hecho de que
las distribuciones a priori impropias puedan generar distribución a posteriori impropias da paso a la
necesidad de las distribuciones débilmente informativas, que tratan de garantizar la integrabilidad de la
densidad a posteriori, pero respetando el protagonismo de la verosimilitud, como pueden ser aquellas
distribuciones con varianza muy grande aproximando, así, a una distribución uniforme.

1.4. Cálculo de la distribución a posteriori. Métodos MCMC

Ya se ha expuesto que, si se cuenta con una distribución conjugada, el cálculo de la distribución a
posteriori se simplifica drásticamente, pudiendo obtener una familia conocida. Sin embargo, en la prác-
tica, lo general, y más aún cuando el número de parámetros J es elevado, es que la expresión de la
distribución (1.2) sea demasiado complicada para realizar cálculos analíticos a partir de ella, lo que im-
pide caracterizarla o resumirla. En esta situación, se hace obligatorio el uso de métodos computaciones,
principalmente métodos de Monte Carlo basados en cadenas de Markov, más conocidos como métodos
MCMC. Existen múltiples métodos de este tipo y aunque no es objetivo de este trabajo la descripción
de los mismos, se expone brevemente el método de Gibbs sampling, ya que se utilizará en la aplicación
desarrollada en el Capítulo 4. Una revisión detallada de estos métodos se puede encontrar en Robert, C.
y Casella, G. (1992) [9] y (1998) [10].

1.4.1. Método de Gibbs sampling

Sea θ = (θ1, . . . ,θJ) un vector de parámetros. Supongamos que podemos simular a partir de las
distribuciones a posteriori completamente condicionadas, i.e.,

[θ j|θ1, . . . ,θ j−1,θ j+1, . . . ,θJ,y], j = 1, . . . ,J.

Entonces, el algoritmo Gibbs sampling viene dado por la siguiente transición de θ (t) a θ (t+1): dada
(θ

(t)
1 , . . . ,θ

(t)
J ), se generan

θ
(t+1)
1 ∼

[
θ1

∣∣∣θ (t)
2 ,θ

(t)
3 , . . . ,θ

(t)
J ,y

]
,

θ
(t+1)
2 ∼

[
θ2

∣∣∣θ (t+1)
1 ,θ

(t)
3 , . . . ,θ

(t)
J ,y

]
,

...

θ
(t+1)
J ∼

[
θJ

∣∣∣θ (t+1)
1 ,θ

(t+1)
2 , . . . ,θ

(t+1)
J−1 ,y

]
.

El algoritmo, así, fabrica una cadena de Markov (θ (t))t≥1 y asegura que la distribución estacionaria de
las observaciones así generadas es la distribución a posteriori conjunta [θ1, . . . ,θJ|y]. Además, si consi-
deramos las componentes del vector de forma separada, la distribución estacionaria de las observaciones
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(θ
(t)
j )t≥1 es la distribución marginal a posteriori [θ j|y] para j = 1, . . . ,J. En la aplicación del Capítulo 4,

obtendremos las densidades a posteriori completamente condicionadas analíticas, de modo que la apli-
cación del algoritmo de Gibbs nos ofrecerá una estimación mucho más rápida, ya que no será necesario
combinarlo con otros algoritmos MCMC aproximar las densidades.

1.5. Resumen de la distribución a posteriori

Una vez caracterizada la distribución a posteriori, pueden calcularse diferentes medidas que resumen
en un valor algunas de sus características principales. Algunas de ellas especialmente habituales son los
estimadores Bayes y los intervalos de credibilidad.

1.5.1. Funciones de pérdida y estimadores Bayes

Definición 1.3. Una función de pérdida es una función ℓ : Θ×Θ → [0,+∞) medible tal que ℓ(θ ,θ) = 0
para todo θ . En esta situación, se define el estimador Bayes como el valor θ̂ ∈ Θ, si existe, tal que la
esperanza a posteriori E(ℓ(θ̂ ,θ)|y) toma valor mínimo.

Es una comprobación sencilla, demostrar que, para el caso ℓ(x,y) = (x− y)2 —denominada función
de pérdida cuadrática—, el estimador Bayes es la esperanza a posteriori, esto es, θ̂ = E(θ |y).

1.5.2. Intervalos de credibilidad

Definamos, a continuación, los intervalos de credibilidad bayesianos.

Definición 1.4. Dada una distribución a posteriori θ |y y α ∈ (0,1), se denomina intervalo de credibilidad
o intervalo a posteriori a nivel 1 − α a un intervalo de la forma [(θ |y)α1 ,(θ |y)1−α2 ], donde (θ |y)α

denota al cuantil α de la distribución a posteriori θ |y y α1,α2 > 0 tales que α1 +α2 = α . Además, si
α1 = α2 = α/2, el intervalo se dirá también centrado.

Los intervalos de credibilidad son la versión bayesiana de los intervalos de confianza frecuentista.
Algo especialmente notorio de estos intervalos es que son muy sencillos de estimar, siendo suficiente
con tomar cuantiles muestrales. Además, su interpretación es más intuitiva. Al considerar los parámetros
como variables aleatorias, el nivel de confianza 1−α del intervalo de credibilidad es la probabilidad de
que el parámetro pertenezca a dicho intervalo.



Capítulo 2

Análisis bayesiano en variables
normalmente distribuidas

Procedemos a ilustrar los cálculos y distribuciones características del análisis bayesiano para el caso
particular de verosimilitudes normales. Sea y = (y1, . . . ,yn) una muestra aleatoria simple con [yi|µ,σ2] =
N(yi|µ,σ2) para i = 1, . . . ,n, entonces

[y|µ,σ2] =
n

∏
i=1

N(yi|µ,σ2) =
1

(2πσ2)n/2 exp

(
− 1

2σ2

n

∑
i=1

(yi −µ)2

)
, (2.1)

donde µ es la media de la distribución y σ2 la varianza. La distribución posee dos parámetros, por lo
que se puede o bien suponer uno de ellos conocido y estimar el otro, o bien considerar el vector de
parámetros (µ,σ2). Dado que este último caso exige el desarrollo del primero, estudiamos primero dos
modelos uniparamétricos para µ y σ2 respectivamente partiendo de distribuciones a priori conjugadas.
Los fundamentos teóricos para este capítulo y el siguiente pueden consultarse en Gelman, A. et al (2021)
[5].

2.1. Modelos uniparamétricos

2.1.1. Media desconocida y varianza conocida

Sea y una muestra con distribución normal de parámetros µ y σ2 —como en (2.1)— tal que σ2 > 0
es conocido. Por la Observación 1.2, una distribución conjugada para µ es

[µ] = N(µ|µ0,τ
2
0 ) ∝ exp

(
−(µ −µ0)

2

2τ2
0

)
.

En efecto, por el Teorema de Bayes —véase la ecuación (1.2)—,

[µ|y] ∝ [µ][y|µ]

∝ exp
(
−(µ −µ0)

2

2τ2
0

)
exp

(
− 1

2σ2

n

∑
i=1

(yi −µ)2

)

∝ exp
(
−1

2

((
1
τ2

0
+

n
σ2

)
µ

2 −2µ

(
1
τ2

0
µ0 +

n
σ2 y

)))
. (2.2)

Y denotando a los términos

µ1 =

1
τ2

0
µ0 +

n
σ2 y

1
τ2

0
+ n

σ2

y
1
τ2

1
=

1
τ2

0
+

n
σ2 , (2.3)

de (2.2), se sigue que
µ|y ∼ N(µ1,τ

2
1 ). (2.4)

5
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Observación 2.1. a) La expresión de 1/τ2
1 en (2.3) demuestra que la relación de varianzas entre dis-

tribución a priori, a posteriori y la verosimilitud viene dada por la suma de sus inversas. Como
consecuencia, para el análisis bayesiano, se prefiere la parametrización de la distribución normal
en términos de 1/σ2, que recibe el nombre de precisión. En lo que a las medias se refiere, en
(2.3), la media a posteriori µ1 aparece como una media ponderada de la media a priori y la media
muestral, cuyos pesos son las precisiones de sendas distribuciones.

b) De estas relaciones, puede deducirse el comportamiento asintótico de la distribución a posteriori,
de manera que, para n suficientemente grande,

[µ|y]≈ N(µ|y,σ2/n);

puesto que, como puede comprobarse fácilmente,

µ − y
σ/

√
n

∣∣∣∣y (L )−−→ N(0,1).

En esta distribución asintótica, los parámetros de las distribución a priori —denominados hiperpa-
rámetros— ya no intervienen; concluyendo que, cuando el número de datos es suficientemente
grande, la distribución a posteriori no depende asintóticamente de la elección de la distribución a
priori. Esta observación justifica el uso de distribuciones a priori no informativas en la práctica. En
efecto, si consideramos la distribución a priori no informativa impropia [µ] ∝ 1, que se trata de la
distribución uniforme sobre R, es inmediato comprobar por (2.1), que

[µ|y] ∝ exp
(
− 1

2σ2 (nµ
2 −2nµy)

)
∝ N(µ|y,σ2/n),

por lo que no hay diferencia con respecto al caso conjugado si el volumen de datos es suficiente-
mente grande.

2.1.2. Media conocida y varianza desconocida

Por la Observación 2.1, en lugar de trabajar con la distribución de la varianza, es habitual proponer
una distribución a priori para la precisión, o equivalentemente, una distribución inversa para σ2.

Definición 2.2. Sean ν0 ∈ N y s0 > 0, se dice que el parámetro θ tiene distribución inversa-χ2 con ν0
grados de libertad y parámetro de escala s0 si ν0s2

0/θ ∼ χ2
ν0

, es decir,

[θ ] =
(ν0/2)ν0/2

Γ(ν0/2)
sν0

0 θ
−(ν0/2+1) exp

(
−

ν0s2
0

2θ

)
∝ θ

−(ν0/2+1) exp
(
−

ν0s2
0

2θ

)
, θ > 0.

La distribución inversa-χ2 para σ2 es conjugada para la verosimilitud normal si µ es conocido.
Efectivamente, si y es la verosimilitud normal de (2.1) con media µ ∈R conocida y σ2 ∼ Inv-χ2(ν0,s2

0),

[σ2|y] ∝ [σ2][y|σ2]

∝ (σ2)−((ν0+n)/2+1) exp

(
− 1

2σ2

(
ν0s2

0 +
n

∑
i=1

(yi −µ)2

))
,

que es, por la Definición 2.2, el kernel de la distribución

[σ2|y] = Inv-χ2

(
ν0 +n,

ν0s2
0 +ns2

µ

ν0 +n

)
, (2.5)

donde s2
µ =

n
∑

i=1
(yi −µ)2/n.
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Observación 2.3. a) Notemos que la distribución de (2.5) cuenta, por un lado, con el cuadrado del
parámetro de escala igual a una media ponderada por los grados de libertad del cuadrado del
parámetro de escala a priori, s2

0, y la varianza muestral de los datos respecto de µ , s2
µ ; y, por otro,

con grados de libertad igual a la suma de los grados de libertad a priori y el número de datos.
b) La distribución a priori conjugada escogida es una distribución impropia si ν0 = 0, ya que

[σ2] ∝
1

σ2 (2.6)

no es integrable sobre (0,+∞). Sin embargo, por la distribución (2.5), es claro que la distribución
a posteriori continúa siendo propia, por lo que (2.6) es una distribución a priori no informativa
válida.

2.2. Modelos multiparamétricos. Media y varianza desconocidas

Tras haber desarrollado los modelos uniparamétricos, es más sencillo abordar el problema de carac-
terizar la distribución a posteriori conjunta de la media y varianza, así como las distribuciones condicio-
nales y marginales. En concreto, utilizaremos las distribuciones de µ dado σ2 desarrolladas en la Sección
2.1.1, tanto para obtener la distribución conjunta de (µ,σ2) como la a priori y a posteriori. Por ejemplo,
en cuanto a la distribución a priori, notemos que la distribución conjunta del parámetro (µ,σ2) puede
expresarse como

[µ,σ2] = [µ|σ2][σ2],

donde la distribución [µ|σ2] se corresponde con la distribución a priori [µ] especificada en la sección ya
mencionada —ya que se trata de la distribución de µ supuesto σ2 dado o conocido. Esto significa que
podemos escoger las mismas distribuciones para µ|σ2 y σ2 que en la Sección 2.1 —tanto las distribu-
ciones conjugadas como las impropias no informativas— resolviendo de forma inmediata el problema
de la elección de la distribución conjunta a priori.

Observación 2.4. Antes de proceder con las demostraciones, introducimos otra forma de expresar la
verosimilitud normal que será útil en varias ocasiones. Dada y una muestra con distribución normal de
parámetros µ y σ2, entonces, la verosimilitud puede expresarse a través de los estadísticos suficientes s2

—que es cuasivarianza muestral de y— y la media y, puesto que

[y|µ,σ2] ∝ (σ2)−n/2 exp

(
1

2σ2

n

∑
i=1

(yi −µ)2

)

= (σ2)−n/2 exp

(
− 1

2σ2

(
n

∑
i=1

(yi − y)2 +n(y−µ)2

))

= (σ2)−n/2 exp
(
− 1

2σ2 ((n−1)s2 +n(y−µ)2)

)
. (2.7)

Con esta observación, damos paso a la caracterización de las distribuciones a posteriori en ambos
casos.

2.2.1. Distribución a posteriori conjunta con distribución a priori impropia

Comenzando por las distribuciones impropias de las Observaciones 2.1 y 2.3, consideramos

[µ|σ2] ∝ 1, [σ2] ∝ (σ2)−1,

esto es,
[µ,σ2] ∝ (σ2)−1.
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Así, utilizando la verosimilitud (2.7) y el Teorema de Bayes, la distribución a posteriori resulta

[µ,σ2|y] ∝ [µ,σ2][y|µ,σ2]

= (σ2)−(n/2+1) exp
(
− 1

2σ2 ((n−1)s2 +n(y−µ)2)

)
. (2.8)

Al contrario de lo que sucedía en los modelos uniparamétricos, la distribución aquí obtenida no
corresponde con ninguna distribución conocida. Sin embargo, la caracterización de la distribución con-
junta no es imprescindible en tanto que puede describirse por medio de distribuciones condicionales y
marginales a posteriori.

Distribución condicional a posteriori [µ|σ2,y]. Por las observaciones hechas al comienzo de la
sección, [µ|σ2,y] se corresponde con lo que, en la Observación 2.3, era la distribución a posteriori
de µ , luego

µ|σ2,y ∼ N(y,σ2/n). (2.9)

Distribución marginal a posteriori [σ2|y]. Al contar la distribución conjunta a posteriori, sabemos
que

[σ2|y] =
∫ +∞

−∞

[µ,σ2|y]dµ.

Luego, utilizando (2.8),

[σ2|y] ∝ (σ2)−(n/2+1) exp
(
− 1

2σ2 (n−1)s2
)∫ +∞

−∞

exp
(
− 1

2σ2/n
(y−µ)2

)
dµ,

donde ∫ +∞

−∞

exp
(
− 1

2σ2/n
(y−µ)2

)
dµ =

√
2πσ2/n,

puesto que el integrando se trata del kernel de la distribución N(µ|y,σ2/n). En consecuencia,

[σ2|y] ∝ (σ2)−(n+1)/2 exp
(
− 1

2σ2 (n−1)s2
)

∝ Inv-χ2(σ2|n−1,s2). (2.10)

Y obtenemos una distribución inversa-χ2 de parámetros n−1 y s2.

A partir de estos resultados, es inmediato caracterizar la distribución a posteriori conjunta como
producto de (2.9) y (2.10). Sin embargo, por el especial interés que posee el parámetro µ —que es,
generalmente, sobre el que se desea hacer inferencia—, también es interesante calcular su distribución
marginal a posteriori.

Distribución marginal a posteriori [µ|y]. Utilizando el mismo procedimiento, sabemos que

[µ|y] =
∫ +∞

0
[µ,σ2|y]dσ

2.

Para ello, proponemos el cambio de variable

z =
(n−1)s2 +n(µ − y)2

2σ2 ,

con el que la integral se transforma en

((n−1)s2 +n(µ − y)2)−n/2
∫ +∞

0
zn/2−1 exp(−z)dz = ((n−1)s2 +n(µ − y)2)−n/2

Γ(n/2).
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Por tanto,

[µ|y] ∝ ((n−1)s2 +n(µ − y)2)−n/2

∝

(
1+

n(µ − y)2

(n−1)s2

)−n/2

∝ tn−1(µ|y,s2/n), (2.11)

que se trata de una distribución t de Student no centrada de media y y parámetro de escala s/
√

n
de n−1 grados de libertad.

Observación 2.5. Las distribuciones (2.10) y (2.11) pueden escribirse también como

(n−1)s2

σ2

∣∣∣∣y ∼ χ
2
n−1 y

µ − y√
s2/n

∣∣∣∣∣y ∼ tn−1,

respectivamente. Esto establece una conexión muy interesante entre el paradigma bayesiano y el frecuen-
tista. Se observa que, en este caso, se deducen resultados análogos al Teorema de Fisher clásico desde el
enfoque bayesiano suponiendo que no contábamos con información a priori. Esta observación pone de
relieve las ventajas del análisis bayesiano: notemos, primero, que, a partir de unos cálculos sencillos, he-
mos llegado a un resultado fundamental para el enfoque frecuentista; pero, más aún, obsérvese que si nos
hubiésemos apoyado en una distribución a priori informativa, con un procedimiento similar, podríamos
haber obtenido propiedades que desde la estadística clásica no serían evidentes.

2.2.2. Distribución a posteriori conjunta con distribución a priori conjugada

Veamos las densidades de los parámetros en el caso con distribución a priori conjugada. De acuerdo
a las distribuciones a priori conjugadas de las Secciones 2.1.1 y 2.1.2, escogemos la distribución conjunta
a priori [µ,σ2] tal que

µ|σ2 ∼ N(µ0,σ
2/κ0),

σ
2 ∼ Inv-χ2(ν0,σ

2
0 ).

Es decir,

[µ,σ2] ∝ (σ2)−(ν0+1)/2−1 exp
(
− 1

2σ2 (ν0σ
2
0 +κ0(µ0 −µ)2)

)
. (2.12)

Definición 2.6. Sean µ0 ∈ R, σ2,κ0 > 0 y ν0 ∈ N. A la distribución (2.12) se la denomina distribución
normal-inversa-χ2 de parámetros µ0,σ

2
0 ,κ0 y ν0. La denotaremos como

(µ,σ2)∼ N-Inv-χ2(µ0,σ
2
0 /κ0;ν0,σ

2
0 ).

Esta distribución es conjugada para la verosimilitud normal. Más concretamente, se cumple

µ,σ2|y ∼ N-Inv-χ2(µn,σ
2
n /κn;νn,σ

2
n ), (2.13)

donde

µn =
κ0

κ0 +n
µ0 +

n
κ0 +n

y, (2.14)

κn = κ0 +n, (2.15)

νn = ν0 +n, (2.16)

νnσ
2
n = ν0σ

2
0 +(n−1)s2 +

κ0n
κ0 +n

(y−µ0)
2. (2.17)
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En efecto, como comprobaremos a continuación, si consideramos la verosimilitud expresada en tér-
minos de s2 y y —véase (2.7)—,

[µ,σ2|y] ∝ (σ2)−(ν0+n+1)/2−1 exp
(
− 1

2σ2

(
ν0σ

2
0 +κ0(µ0 −µ)2 +(n−1)s2 +n(y−µ)2)) . (2.18)

Y, gracias a la ecuación (2.17),

ν0σ
2
0 +(n−1)s2 = νnσ

2
n −

κ0n
κ0 +n

(y−µ0)
2,

por lo que, sustituyendo en la expresión (2.18), se obtiene que

[µ,σ2|y] ∝ (σ2)−(νn+1)/2−1 exp
(
− 1

2σ2

(
νnσ

2
n −

κ0n
κ0 +n

(y−µ0)
2 +κ0(µ0 −µ)2 +n(y−µ)2

))
.

(2.19)
Por otro lado, es una simple comprobación ver que

κ0(µ −µ0)
2 +n(y−µ)2 = (κ0 +n)

(
µ − κ0µ0 +ny

κ0 +n

)2

+κ0µ0 +ny− (κ0µ0 +ny)2

κ0 +n
.

Y esta última expresión es
κn(µ −µn)

2 +
κ0n

κ0 +n
(y−µ0)

2,

por las definiciones (2.14) y (2.15) y agrupando el resto de sumandos. Luego, sustituyendo en (2.19), se
tiene (2.13).

A diferencia del caso anterior, esta vez sí que es conocida la distribución conjunta a posteriori, siendo
esta, precisamente, la ventaja de trabajar con distribuciones a priori conjugadas. Además, este resultado
es también interesante porque, en él, se observa ese compromiso particular de la distribución normal que
ya se comentó en el estudio de modelos uniparamétricos. Nos referimos aquí a µn, que vuelve a ser un
promedio ponderado entre la media a priori y la media muestral de los datos, y a σ2

n , que es la suma de
las incertidumbres a priori y muestral, añadiéndose un sumando más por la diferencia de las medias µ0
y y.

En cuanto a las distribuciones condicionales y marginales, utilizando los mismos argumentos que en
el caso de distribución a priori impropia, puede probarse que tales distribuciones son las siguientes.

Distribución condicional a posteriori [µ|σ2,y]. Simplemente, aplicando (2.4),

µ|σ2,y ∼ N

(
κ0
σ2 µ0 +

n
σ2 y

κ0
σ2 +

n
σ2

,
1

κ0
σ2 +

n
σ2

)
= N(µn,σ

2/κn).

Distribución marginal a posteriori [σ2|y]. Es suficiente con calcular la integral de (2.13) respecto
de µ , resultando

σ
2|y ∼ Inv-χ2(νn,σ

2
n ).

Distribución marginal a posteriori [µ|y]. Integrando (2.13) respecto de σ2 y haciendo uso del
mismo cambio de variable que en (2.11), se tiene

[µ|y] ∝

(
1+

κn(µ −µn)
2

νnσ2
n

)−(νn+1)/2

∝ tνn(µ|µn,σ
2/κn).



Capítulo 3

Modelos jerárquicos

En estadística, es frecuente el tratamiento de modelos que, por la estructura del problema, conten-
gan varios parámetros θ1, . . . ,θJ que son dependientes entre sí. En este capítulo, consideraremos una
estructura jerárquica, lo que, en esencia, significa abordar un modelo con las siguientes propiedades. En
primer lugar, consideraremos a los parámetros θ j como observaciones de una distribución a priori [θ |φ ]
dependiente de algún hiperparámetro φ , que suponemos desconocido. En segundo lugar, una hipótesis
básica de un modelo jerárquico es que la distribución de y solo depende de φ a través de θ , es decir,
[y|φ ,θ ] = [y|θ ].

En este capítulo, consideraremos datos yi, j con distribución normal N(θ j,σ
2), para j = 1, . . . ,J e

i = 1, . . . ,n j, y supondremos que θ j ∼ N(µ,τ2). Gráficamente, la estructura de dependencia jerárquica
se refleja en la Figura 3.1.

µ,τ

θ1 . . . θJ

y1,1, . . . ,yn1,1 . . . y1,J, . . . ,ynJ ,J

θ j ∼ N(µ,τ2)

yi, j|θ j ∼ N(θ j,σ
2)

Figura 3.1: Modelo jerárquico para variables normales.

El potencial de los modelos jerárquicos se basa en que permite considerar parámetros relacionados
entre sí, pero no iguales. Por ejemplo, en el modelo jerárquico anterior, los parámetros θ j son las medias
de J grupos diferentes. En un modelo no jerárquico podríamos considerar que esas medias son todas
iguales, o bien que son diferentes e independientes. La primera opción es muy restrictiva, ya que impone
que todas las observaciones compartan la misma media, lo que es una hipótesis poco oportuna en varias
situaciones. En cuanto a la segunda opción, pese a ser más flexible, no permite capturar las posibles,
y probables, relaciones de dependencia entre las medias de diferentes grupos. Un modelo jerárquico
nos permite representar un rango de situaciones mucho más general, que incluye los dos casos anteriores
como particulares. Además, la estructura jerárquica consigue evitar problemas de sobreajuste, al permitir
una gran flexibilidad en el modelo con un número reducido de parámetros.

Otra ventaja del modelo jerárquico es que ofrece la posibilidad de cuantificar la incertidumbre aso-
ciada a la estimación del modelo de una forma más realista, puesto que recoge la incertidumbre asociada
a los parámetros θ j y a los correspondientes hiperparámetros. Esta aproximación implica que debemos
asignar una distribución a priori al vector (φ ,θ), que puede expresarse como [φ ,θ ] = [θ |φ ][φ ]. Y la
distribución conjunta a posteriori será [φ ,θ |y] ∝ [y|φ ,θ ][φ ,θ ] = [y|θ ][φ ,θ ], donde la última igualdad se
sigue de que la verosimilitud y solo depende de φ a través de θ . A continuación, presentamos un modelo
jerárquico centrándonos, nuevamente, en variables normales. Previamente introducimos el procedimien-

11
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to habitual para el cálculo de las distribuciones a posteriori en modelos jerárquicos.

3.1. Derivación analítica de las distribuciones a posteriori

La derivación analítica se resume en tres pasos:
I) Escribir la distribución conjunta a posteriori, [φ ,θ |y], como proporcional al producto [φ ][θ |φ ][y|θ ].

II) Determinar analíticamente la distribución condicional a posteriori [θ |φ ,y] como función de φ .
III) Calcular la distribución marginal a posteriori [φ |y].

Los pasos II) y III) proporcionan un procedimiento sencillo para obtener muestras de la distribución
a posteriori, que, con frecuencia, no puede utilizarse en la práctica por su complejidad. El paso I) es
inmediato, ya que se corresponde con el paso habitual de cálculo de la distribución a posteriori ya tratado.
En cuanto al paso II), en el caso particular de familias conjugadas, es especialmente sencillo, ya que

[y|θ ] =
J

∏
j=1

n j

∏
i=1

[yi, j|θ j] =
J

∏
j=1

[y j|θ j],

donde [y j|θ j] representa la verosimilitud asociada al grupo j con datos y1, j, . . . ,yn j, j para cada j =
1, . . . ,J. Así, es claro que

[θ |φ ,y] ∝ [y|θ ][θ |φ ] =
J

∏
j=1

[y j|θ j]
J

∏
j=1

[θ j|φ ] ∝

J

∏
j=1

[θ j|φ ,y. j],

por lo que la distribución a posteriori condicional se calcula como producto de las distribuciones a pos-
teriori condicionales de las componentes.

Por último, acerca del paso III), cabe señalar que existen dos posibles vías —ambas basadas en la
distribución conjunta a posteriori del paso I).

a) Por un lado, el proceso habitual de integración de la distribución conjunta, esto es,

[φ |y] =
∫

Θ

[θ ,φ |y]dθ .

b) Y, por otro, en algunos casos como con variables normales, puede ser útil la propia definición de
la densidad condicionada [θ |φ ,y], que permite expresar [φ |y] como

[φ |y] = [θ ,φ |y]
[θ |φ ,y]

.

Un ejemplo de aplicación de este procedimiento se muestra en la Sección 3.2.1.

3.2. Modelo jerárquico conjugado para verosimilitudes normales

Consideramos un modelo en el que partimos de J ∈ N grupos de manera que los datos observados
en cada uno de ellos, que denotaremos como yi, j, son normalmente distribuidos. Cada una de estas
distribuciones normales tendrá una media θ j distinta y desconocida y varianza σ2 común a todos ellos y
conocida. En suma, si θ = (θ1, . . . ,θJ) es el vector de las medias, partimos de la verosimilitud [y|θ ] =
∏

J
j=1 ∏

n j
i=1 N(yi, j|θ j,σ

2), donde n j es el número de datos del grupo j.
Con el objetivo de simplificar la notación, definimos

y. j =
1
n j

n j

∑
i=1

yi, j, j = 1, . . . ,J.

Notemos que, como, para j fijo, los datos y1, j,y2, j, . . . ,yn j, j son normales independientes e idénticamente
distribuidos, se tiene que

[y. j|θ j] = N(y. j|θ j,σ
2
j ), (3.1)

con σ2
j = σ2/n j. Con estas elecciones, la expresión de la verosimilitud se simplifica, ya que [y|θ ] es

proporcional, respecto de θ , a ∏
J
j=1 N(y. j|θ j,σ

2
j ). Utilizaremos esta verosimilitud en el resto del capítulo.
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3.2.1. Distribuciones a posteriori del modelo jerárquico normal

Supongamos que nuestras medias θ j tienen distribución normal de media µ y varianza τ2 para todo
j = 1, . . . ,J, y que son independientes condicionadas a estos hiperparámetros. Es claro, por tanto, que
estas medias son intercambiables y su distribución conjunta es

[θ ] = [θ1, . . . ,θJ] =
∫∫

R×(0,+∞)

(
J

∏
j=1

[θ j|µ,τ]

)
[µ,τ]dµ dτ.

Esta distribución podría utilizarse para determinar la distribución a posteriori [θ |y], pero, en la práctica,
en los modelos jerárquicos, esta no es la distribución de interés. En este caso, caracterizaremos la distri-
bución a posteriori de las medias dados los hiperparámetros, [θ j|µ,τ,y] para j = 1, . . . ,J, y la distribución
a posteriori de los hiperparámetros, [µ,τ|y].

Notemos que la distribución a priori de los hiperparámetros [µ,τ] se puede expresar como [τ][µ|τ].
Por tanto, podemos razonar como en el estudio de modelos multiparamétricos del Capítulo 2. En esta
situación, fijaremos [µ|τ] ∝ 1 y, al final, discutiremos qué opciones pueden tomarse para la distribución
marginal a priori de τ . De momento, consideraremos [µ,τ] ∝ [τ].

Determinemos las distribuciones a posteriori aplicando el procedimiento descrito en la Sección 3.1.

I) Distribución conjunta a posteriori. Utilizando la simplificación anterior de la verosimilitud, se
tiene

[θ ,µ,τ|y] ∝ [µ,τ][θ |µ,τ][y|θ ] ∝ [µ,τ]
J

∏
j=1

N(θ j|µ,τ2)
J

∏
j=1

N(y. j|θ j,σ
2
j ).

II) Distribución condicional a posteriori de las medias dados los hiperparámetros [θ j|µ,τ,y]. Al
contar con J medias que, una vez condicionadas a µ y τ , son independientes y poseen distribución
a priori normal, sabemos que, por (2.4),

θ j|µ,τ,y ∼ N(θ̂ j,Vj), (3.2)

donde

θ̂ j =

1
σ2

j
y. j +

1
τ2 µ

1
σ2

j
+ 1

τ2

y
1
Vj

=
1

σ2
j
+

1
τ2 .

De nuevo, la media a posteriori, θ̂ j, se trata de una ponderación de la media a priori de la po-
blación y la media muestral del j-ésimo grupo con pesos dados por las precisiones de sendas
distribuciones. La precisión a posteriori es la suma de las dos precisiones. Para acabar con este
punto, obsérvese que [θ |µ,τ,y] es

J

∏
j=1

[θ j|µ,τ,y] =
J

∏
j=1

N(θ j|θ̂ j,Vj).

III) En cuanto a la caracterización de la distribución a posteriori de los hiperparámetros [µ,τ|y], por
tratarse de la verosimilitud normal, aplicamos el Teorema de Bayes, ya que la distribución [y|µ,τ]
se determina de forma sencilla —no es así en verosimilitudes cualesquiera. En efecto, consideran-
do la distribución conjunta de θ y y. j dados µ y τ e integrando respecto de θ se tiene que

[y. j|µ,τ] =
∫
RJ
[y. j,θ |µ,τ]dθ =

∫
R
[y. j|θ j][θ j|µ,τ]dθ j, j = 1, . . . ,J. (3.3)

Gracias a las distribuciones (3.2) y (3.1), el integrando [y. j|θ j][θ j|µ,τ] resulta

(σ2
j τ

2)−1/2 exp

(
−
(θ j − y. j)

2

2σ2
j

)
exp
(
−
(θ j −µ)2

2τ2

)
. (3.4)



14 Capítulo 3. Modelos jerárquicos

Denotando a los términos

µ̃ j =

y. j
σ2

j
+ µ

τ2

1
σ2

j
+ 1

τ2

y
1

σ̃2
j
=

1
σ2

j
+

1
τ2 ,

la expresión (3.4) se puede reescribir como

(σ2
j τ

2)−1/2 exp

(
−1

2

(
y2
. j

σ2
j
+

µ2

τ2

))
exp

(
−1

2

(
1

σ̃2
j

θ
2
j −2

µ̃ j

σ̃2
j

θ j

))

= (σ2
j τ

2)−1/2 exp

(
−1

2

(
y2
. j

σ2
j
+

µ2

τ2

))
exp

(
µ̃2

j

2σ̃2
j

)
exp

(
−
(θ j − µ̃ j)

2

2σ̃2
j

)
.

Y notando que el último factor es el kernel de una distribución normal N(µ̃ j, σ̃
2
j ), resulta que la

distribución (3.3) se trata de

[y. j|µ,τ] ∝ (σ2
j + τ

2)−1/2 exp

(
−1

2

(
y2
. j

σ2
j
+

µ2

τ2

))
exp

(
µ̃2

j

2σ̃2
j

)

= (σ2
j + τ

2)−1/2 exp

(
−

(y. j −µ)2

2(σ2
j + τ2)

)
, j = 1, . . . ,J.

Luego y. j|µ,τ tiene distribución normal N(µ,σ2
j + τ2) para todo j. Y, por tanto, se deduce que

[y|µ,τ] ∝

J

∏
j=1

N(y. j|µ,σ2
j + τ

2), (3.5)

respecto de µ y τ . Así, por el Teorema de Bayes, la distribución a posteriori de los hiperparámetros
resulta

[µ,τ|y] ∝ [µ,τ][y|µ,τ] ∝ [µ,τ]
J

∏
j=1

N(y. j|µ,σ2
j + τ

2). (3.6)

3.2.2. Distribución condicional y marginal a posteriori de los hiperparámetros

Si bien el procedimiento descrito en la Sección 3.6 permite caracterizar la distribución conjunta a
posteriori [θ ,µ,τ|y]; en la práctica, el objetivo es caracterizar las distribuciones a posteriori condicional
[µ|τ,y] y marginal [τ|y] porque ofrecen una factorización de la distribución conjunta a posteriori que
puede usarse para la simulación.

a) Distribución a posteriori condicionada [µ|τ,y]. De nuevo, por el Teorema de Bayes y (3.5),

[µ|τ,y] ∝ [µ|τ][y|µ,τ] ∝

J

∏
j=1

N(µ|y. j,σ2
j + τ

2),

que será una distribución normal de media µ̂ y varianza Vµ con

µ̂ =
∑

J
j=1

1
σ2

j +τ2 y. j

∑
J
j=1

1
σ2

j +τ2

y
1

Vµ

=
J

∑
j=1

1
σ2

j + τ2 . (3.7)

b) Distribución a posteriori marginal [τ|y]. Esta distribución, dada su distribución a priori, puede
obtenerse por medio de la expresión de la densidad condicionada y las distribuciones ya calculadas.
Teniendo en mente que [µ,τ] ∝ [τ], se tiene

[τ|y] = [µ,τ|y]
[µ|τ,y]

∝
[τ]∏J

j=1 N(y. j|µ̂,σ2
j + τ2)

N(µ|µ̂,Vµ)
.
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A continuación, nótese que el lado izquierdo de la igualdad no depende de µ . Esto nos proporciona
una vía para simplificar su expresión al poder fijar µ = µ̂ , de manera que

[τ|y] ∝
[τ]∏J

j=1 N(y. j|µ̂,σ2
j + τ2)

N(µ̂|µ̂,Vµ)
∝ [τ]V 1/2

µ

J

∏
j=1

(σ2
j + τ

2)−1/2 exp

(
−

(y. j − µ̂)2

2(σ2
j + τ2)

)
. (3.8)

Por último, puesto que, en todos estos desarrollos, hemos indicado la distribución a priori de τ , pero
sin escoger ninguna en particular, propondremos algunas elecciones.

3.2.3. Distribución a priori de los hiperparámetros

Dado que en la práctica es frecuente trabajar con distribuciones a priori no informativas para las
varianzas, las densidades que presentaremos a continuación son opciones razonables. Notemos que, al
ser τ > 0, estudiaremos la integrabilidad de la densidad [τ|y] sobre (0,+∞).

a) Distribución a priori [τ] ∝ 1/τ . Tras las demostraciones ya vistas, una primera apuesta razonable
es [τ] ∝ 1/τ . Sin embargo, notemos que, al sustituir en (3.8), este factor hace aparecer un problema
en el comportamiento en τ = 0. En efecto, es claro que

V 1/2
µ

J

∏
j=1

(σ2
j + τ

2)−1/2 exp

(
−

(y. j − µ̂)2

2(σ2
j + τ2)

)
tiende a una constante positiva si τ → 0+. Por este motivo, gracias al criterio de comparación por
paso al límite, si estudiamos la integrabilidad de la densidad en (0,1), esta tiene el mismo carácter
que 1/τ , que es divergente. Por tanto, esta densidad a priori no es válida en esta situación.
Por contra, sí que lo será la distribución no informativa por antonomasia: la distribución uniforme.

b) Distribución a priori uniforme [τ] ∝ 1. Comprobemos que la distribución a posteriori de τ es
propia. Por (3.8),

[τ|y] ∝ V 1/2
µ

J

∏
j=1

(σ2
j + τ

2)−1/2 exp

(
−

(y. j − µ̂)2

2(σ2
j + τ2)

)

=

(
J

∑
j=1

1
σ2

j + τ2

)−1/2 J

∏
j=1

(σ2
j + τ

2)−1/2 exp

(
−

(y. j − µ̂)2

2(σ2
j + τ2)

)

=

 J

∑
j=1

J

∏
i=1
i ̸= j

(σ2
i + τ

2)


−1/2

exp

(
−1

2

J

∑
j=1

(y. j − µ̂)2

σ2
j + τ2

)

≤ 1
J1/2τJ−1 exp

(
−1

2

J

∑
j=1

(y. j − µ̂)2

σ2
j + τ2

)
. (3.9)

Gracias a que la densidad es continua sobre cualquier intervalo acotado en [0,+∞), bastará estu-
diar su comportamiento cuando τ →+∞. Con tal fin, consideramos la cota (3.9). Recuperando la
expresión de (3.7), es fácil ver que

lı́m
τ→+∞

µ̂ =
1
J

J

∑
j=1

y. j = y.,

que es una cantidad finita, por lo que el límite de la exponencial resulta

lı́m
τ→+∞

exp

(
−1

2

J

∑
j=1

(y. j − µ̂)2

σ2
j + τ2

)
= 1,

puesto que cada sumando (y. j − µ̂)2/(σ2
j + τ2) tiende a 0. En consecuencia, se tiene que (3.9) es

equivalente a (J1/2τJ−1)−1 cuando τ tiende a +∞, y, así, puede garantizarse que la distribución a
priori uniforme de τ produce una distribución a posteriori propia si el número de grupos es mayor
o igual que 3.





Capítulo 4

Modelos de regresión lineal bayesianos

4.1. Modelos regresión

Los modelos de regresión son una de las técnicas estadísticas más utilizadas con aplicaciones en
múltiples campos. En estos modelos, se plantea que una variable y, denominada respuesta, es una función
lineal de una o varias variables explicativas o predictoras xi. En general, supondremos k el número de
variables regresoras, de este modo, el modelo de regresión se expresa como

y = β0 +β1x1 + · · ·+βkxk + ε,

donde β = (β0, . . . ,βk) son los coeficientes de regresión y ε es un término de error aleatorio. El objetivo
de un modelo de regresión habitual consiste en tratar de obtener una estimación de los coeficientes para
obtener un buen ajuste de la variable y. Estas estimaciones pueden hacerse a partir de una muestra de
observaciones (y1, . . . ,yn) y una matriz del diseño n× (k+1), X.

Nótese que las hipótesis que se tomen sobre la distribución de yi determinan la complejidad del
modelo. En el caso de considerar el modelo de regresión clásico, se supone que εi ∼ N(0,σ2) para todo
i, por lo que, en consecuencia:

Las variables yi son homocedásticas, esto es, Var(yi|β ,σ2) = σ2 para todo i = 1, . . . ,n.
Las variables yi tienen distribución normal dados β ,σ2 y X.

Además, las variables yi deben ser independientes entre sí dados β ,σ2 y X; y se añade una condición de
no colinealidad sobre la matriz X, lo que significa que sus columnas deben ser linealmente independien-
tes, luego ran(X) = k+1.

4.2. Análisis bayesiano del modelo de regresión clásico

Los parámetros que intervienen en el modelo anterior son θ = (β0, . . . ,βk,σ
2) y nuestro objetivo será

determinar las distribuciones a posteriori condicional [β |σ2,X,y] y marginal [σ2|X,y] puesto que ofre-
cen una factorización de la distribución conjunta a posteriori. Tales distribuciones las denotaremos como
[β |σ2,y] y [σ2|y] respectivamente, eliminando la indicación explícita de X ya que siempre lo supondre-
mos conocido. Para caracterizar estas distribuciones es necesario fijar la distribución a priori de θ . Si el
número de parámetros a estimar es mayor que el número de datos será preciso utilizar una distribución
a priori informativa. En otro caso, es razonable utilizar una distribución a priori no informativa, siendo
una elección habitual

[β ,σ2] ∝ (σ2)−1. (4.1)

Las distribuciones que se presentan a continuación se desarrollan a partir de esta distribución a priori. En
el caso de modelos de regresión, la verosimilitud corresponde a la distribución del vector y. En el modelo
clásico, la verosimilitud es

[y|β ,σ2] = N(y|Xβ ,σ2In) ∝ (σ2)−n/2 exp
(
− 1

2σ2 (y−Xβ )t(y−Xβ )

)
, (4.2)

17
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con In la matriz indentidad de dimensión n. Y la distribución conjunta a posteriori es

[β ,σ2|y] ∝ (σ2)−(n/2+1) exp
(
− 1

2σ2 (y−Xβ )t(y−Xβ )

)
. (4.3)

Procedemos con la caracterización de las distribuciones a posteriori condicional [β |σ2,y] y marginal
[σ2|y].

Distribución condicional a posteriori [β |σ2,y]. Por (4.1) y (4.2),

[β |σ2,y] ∝ exp
(
− 1

2σ2 (y−Xβ )t(y−Xβ )

)
∝ exp

(
− 1

2σ2 (β
tXtXβ −2β

tXty)
)

∝ exp
(
−1

2
(β t(σ2)−1XtXβ −2β

t(σ2)−1XtX(XtX)−1Xty)
)
.

Por ser σ2(XtX)−1 una matriz simétrica y definida positiva puesto que ran(X) = k+ 1, se tiene
que

[β |σ2,y] = N(β |β̂ ,Vβ ), (4.4)

con
β̂ = (XtX)−1Xty y Vβ = σ

2(XtX)−1.

Distribución marginal a posteriori [σ2|y]. En este caso, por la definición de distribución condicio-
nal [β |σ2,y],

[σ2|y] = [β ,σ2|y]
[β |σ2,y]

.

Y dado que la expresión anterior no depende de β , basta con sustituir β = β̂ en (4.3) y (4.4). Así,

[σ2|y] ∝
(σ2)−(n/2+1)

(σ2)−(k+1)/2 exp
(
− n− k−1

2σ2(n− k−1)
(y−Xβ̂ )t(y−Xβ̂ )

)
∝ Inv-χ2(σ2|n− k−1,s2),

con

s2 =
1

n− k−1
(y−Xβ̂ )t(y−Xβ̂ ).

De estas distribuciones, se deduce que la distribución conjunta (4.3) es propia ya que n > k+ 1 y
el rango de X es k + 1. Así, se comprueba que el número de datos ha de ser siempre mayor que el
número de parámetros, k + 1, en el caso de ausencia de información previa y, por otro lado, que las
columnas de X han de ser linealmente independientes. Además, se observa otra vez la relación entre el
paradigma bayesiano y frecuentista comentado en la Observación 2.5 en las distribuciones [β |σ2,y] y
[σ2|y] —compárense con las distribuciones de los estimadores por mínimos cuadrados frecuentistas β̂ y
σ̂2.

4.3. Modelos con varianzas desiguales y correlaciones

Una generalización básica del modelo de regresión básico es permitir que las varianzas de la variable
respuesta sean diferentes y/o que las variables no sean independientes entre sí. Esto supone considerar
un modelo en el que la matriz de varianzas-covarianzas de y sea una matriz Σy n×n, simétrica y definida
positiva no restringida a la forma σ2In. En consecuencia, la distribución de la respuesta es
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[y|β ,Σy] = N(y|Xβ ,Σy) ∝ det(Σy)
−1/2 exp

(
−1

2
(y−Xβ )t

Σ
−1
y (y−Xβ )

)
. (4.5)

En primer lugar, determinaremos [β |Σy,y] y, después, la distribución marginal Σy|y, que dependerá
la elección de Σy.

Distribución condicional [β |Σy,y]. Análogamente a (4.4), puede verse que

[β |Σy,y] = N(β |β̂ ,Vβ ),

donde
β̂ = (Xt

Σ
−1
y X)−1Xt

Σ
−1
y y y Vβ = (Xt

Σ
−1
y X)−1.

Distribución marginal [Σy|y].

[Σy|y] =
[β ,Σy|y]
[β |Σy,y]

=
[Σy]N(y|β ,Σy)

N(β |β̂ ,Vβ )

= [Σy]det(Σy)
−1/2 det(Vβ )

1/2 exp
(
−1

2
(y−Xβ̂ )t

Σ
−1
y (y−Xβ̂ )

)
, (4.6)

donde la ultima igualdad se deduce al tomar β = β̂ .

A continuación, presentamos la distribución (4.6) para algunos ejemplos particulares de Σy.

Ejemplo 4.1. a) Matriz de varianzas-covarianzas conocida salvo por un factor escalar. En este caso
suponemos que la matriz de varianzas-covarianzas es Σy = σ2Qy, con Qy conocida y σ2 desco-
nocido. Notemos que se trata de una generalización del modelo clásico, que considera Qy = In.
La distribución a posteriori, dada la distribución a priori [β ,σ2] ∝ (σ2)−1, se calcula de forma
análoga. Así, es inmediato comprobar que

[σ2|y] = Inv-χ2(σ2|n− k−1,s2),

y

β̂ = (XtQ−1
y X)−1XtQ−1

y y, Vβ = σ
2(XtQ−1

y X)−1, s2 =
1

n− k−1
(y−Xβ̂ )tQ−1

y (y−Xβ̂ ).

Nótese que este ejemplo incluye como caso particular el modelo regresión con pesos, pues este se
corresponde con el caso Qy = diag(1/w1, . . . ,1/wn), donde wi ≥ 0 para todo i y ∑

n
i=1 wi = 1.

b) Grupos con misma varianza. En este ejemplo, tratamos un modelo de regresión en el que las n
observaciones pueden dividirse en I grupos con misma varianza en cada uno. Supongamos que
tenemos ni datos del grupo i para i = 1, . . . , I —de manera que n1+ · · ·+nI = n— y que, para tales
grupos, los datos tienen distribución normal con varianza σ2

i . En tal caso,

Σy =


σ2

1 In1×n1 O · · · O

O σ2
2 In2×n2

. . .
...

...
. . . . . . O

O · · · O σ2
I InI×nI

 .

Una distribución a priori no informativa de los parámetros (β ,σ2
1 , . . . ,σ

2
I ) es

[β ,σ2
1 , . . . ,σ

2
I ] ∝

I

∏
i=1

(σ2
i )

−1,

que proporciona distribuciones a posteriori marginales para σ2
i si ni ≥ 2 —Gelman, A. et al (2021)

[5]. Sustityendo en (4.6), se tiene

[σ2
1 , . . . ,σ

2
I |y] ∝

I

∏
i=1

(σ2
i )

−1 det(Vβ )
1/2 det(Σy)

−1/2 exp
(
−1

2
(y−Xβ̂ )t

Σ
−1
y (y−Xβ̂ )

)
.
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4.4. Modelos de regresión jerárquicos

Los modelos de regresión jerárquicos permiten representar situaciones donde los predictores tienen
distintos niveles de variación. Para fijar ideas se expone brevemente el siguiente ejemplo —Gelman, A.
y Hill, J. (2007) [6]. Supongamos que se desea analizar los efectos de los programas de preparación
de colegios diferentes para un test de aptitud. En este ejemplo, se puede disponer de información a
distintos niveles: a nivel individual de cada alumno —como su entorno familiar—, información relativa
a la clase —características del profesor— o a nivel de toda la escuela. También, por otro lado, los modelos
jerárquicos sirven para modelizar datos que provienen de un muestreo por grupos.

4.4.1. Modelo de regresión con efectos aleatorios

El modelo de regresión jerárquico más sencillo es un modelo de efectos aleatorios simple. En esta
situación, se consideran grupos de coeficientes β que son intercambiables y normalmente distribuidos.
Más concretamente, el modelo queda especificado por la verosimilitud (4.5) y la distribución a priori

β |b,σ2
β
∼ N(b1,σ2

β
Ik+1), (4.7)

donde 1 = (1, . . . ,1)t ∈ Rk+1 y los hiperpámetros son desconocidos. Notemos que esta distribución in-
cluye como casos particulares tanto el hecho de que los parámetros β j no estén relacionados, lo que se
expresa escogiendo σ2

β
= ∞, o que sean iguales, esto es, σ2

β
= 0; por lo que, en efecto, permite expresar

de forma sencilla una estructura de dependencia jerárquica como la ya vista en el Capítulo 3.
Ejemplifiquemos esto último retomando el ejemplo de los programas de estudio en los colegios. Sea

J el número de colegios. Si denotamos por yi, j al resultado de un alumno i en el colegio j, es razonable
suponer que

yi, j = µ +β j + εi, j, εi, j ∼ N(0,σ2),

donde β = (β1, . . . ,βJ) tiene densidad conjunta (4.7). De este modo, los resultados del test de alumnos de
un mismo colegio se ven relacionados al considerarse observaciones de una misma distribución N(µ +
β j,σ

2), y, además, se establece una estructura jerárquica que relaciona a todos los colegios. Tenemos
entonces un efecto aleatorio que actúa en el nivel de los colegios.

Para completar la especificación de un modelo jerárquico como el del comienzo, es preciso escoger
una distribución a priori de los hiperparámetros b y σ2

β
. En esta situación, pueden suponerse ambos hiper-

parámetros independientes. Para b, escogemos [b] ∝ 1. En cuanto a [σ2
β
], consideraremos la distribución

inversa-χ2. Más concretamente,

[b] ∝ 1, [σ2
β
] = Inv-χ2(σ2

β
|ν ,s2), (4.8)

donde µ ∈ R, σ2
β
,s2 > 0 y ν ∈ N.

Observación 4.2. Es importante destacar que el modelo de efectos aleatorios planteado, con independen-
cia de las elecciones de las distribuciones a priori de los hiperparámetros, permite representar situaciones
en las que existe una correlación dentro de las observaciones de un mismo grupo. En efecto, puede pro-
barse —veáse Gelman, A. et al (2021) [5, p. 382]— que los modelos

I) y = (y1, . . . ,yn) distribuidos en J grupos diferentes y con distribución N(b1,Σy), donde Var(yi) =
η2 para todo i y Cov(yi1 ,yi2) = ρη2 ≥ 0 si los datos pertenecen al mismo grupo y 0 en otro caso;

II) y = (y1, . . . ,yn) con distribución N(Xβ ,σ2In) y β como (4.7), donde X es una matriz indicadora
con Xi, j = 1 si i está en el grupo j y 0 en caso contrario

son equivalentes siempre que η2 = σ2 +σ2
β

y ρ = σ2
β
/(σ2 +σ2

β
).

En resumen, la conclusión que se extrae es que se puede construir un modelo que capture la corre-
lación existente entre observaciones de un mismo grupo incluyendo los efectos aleatorios apropiados.
Esta observación es especialmente interesante puesto que abre la posibilidad de modelizar dependencias
dentro de un grupo.
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4.5. Aplicación al análisis espacio-temporal de temperaturas medias en
verano en una región

En esta sección, se desarrolla un modelo bayesiano de regresión para representar las temperaturas
medias durante el verano en un área alrededor de la Comunidad Autónoma de Aragón. Para ello, conta-
mos con un conjunto de datos que contiene observaciones de temperaturas máximas diarias medidas en
grados centígrados en 18 localidades proporcionadas por la Agencia Estatal de Meteorología (AEMET)
—véase la Figura A.1. Estos datos recogen temperaturas desde 1956 hasta 2015 durante el período es-
tival, desde junio hasta agosto inclusive. Computando las medias de tales datos, se han construido las
temperaturas medias en verano recogidas en la matriz de datos y.

Para el estudio de las temperaturas medias cabe tener en cuenta las siguientes características. En
primer lugar, es esperable una evolución creciente a lo largo del tiempo como consecuencia del calen-
tamiento global y que suele modelizarse como una tendencia lineal en el tiempo o mediante efectos
aleatorios—vid. Castillo-Mateo, J. (2022) et al [3]. Además, es claro que las temperaturas medias pre-
sentarán una dependencia de las diferentes características geográficas de las localidades puesto que la
zona de estudio está conformada por regiones con climas diferentes como son el Valle del Ebro, los
Pirineos y el Sistema Ibérico. Estas diferencias climáticas se ven influenciadas, en gran medida, por la
diferente altitud respecto del nivel del mar, motivo por el cual es sensato considerar la altitud —medida en
metros— como variable explicativa. Junto con todo lo anterior, es también razonable suponer que existe
dependencia de la temperatura de un año con la del año anterior en una misma localidad —esto es, que
existe una correlación serial. Esta correlación suele representarse mediante una estructura autorregresi-
va, es decir, establecer que dicha dependencia sea lineal —vid. Brockwell, P. J. y Davis, R. A. (2006)
[2]— y que se satisfaga una relación markoviana de dependencia de las temperaturas respecto de t, i.e.,
[yt,s|yt−1,s, . . . ,y1,s] = [yt,s|yt−1,s]. Como resultado de imponer esta estructura, el modelo representará la
distribución condicionada de la temperatura de un año por la del año anterior. Como última observación,
notemos que, en un modelo para temperaturas en distintas localidades espaciales, cabe esperar que las
observaciones de todos los observatorios correspondientes a un mismo año no sean independientes, sino
que exista relación entre ellas. Esta dependencia se puede representar en un modelo jerárquico con un
efecto aleatorio asociado a cada año, como los descritos anteriormente.

Teniendo en cuenta todo lo anterior, se plantean dos modelos, uno no jerárquico —por lo que no
incluirá el efecto aleatorio en la tendencia— y otro jerárquico. La diferencia entre ambos estará, así, en
que el modelo no jerárquico modeliza la tendencia con una covariable asociada a una tendencia lineal,
mientras que el jerárquico permite mayor flexibilidad y lo hace mediante efectos aleatorios para cada año.
En ambos casos, los ejemplos propuestos reflejarán cómo las distribuciones a posteriori conjugadas junto
con técnicas MCMC permiten ajustar un modelo bayesiano de manera eficiente. Es importante destacar
que estos modelos sobre las temperaturas medias del verano son meramente ilustrativo, ya que un ajuste
óptimo requeriría un modelo más complicado con más términos para representar la variabilidad espacial.
Entre ellos, por ejemplo, tenemos términos independientes, tendencias específicas de cada localidad
espacial s y la parametrización en términos de anomalías —véase Castillo-Mateo, J. et al (2022) [3].
Todos estos elementos quedan fuera de los objetivos de este trabajo.

4.5.1. Modelo de regresión no jerárquico

Se considera el modelo

yt,s = β0 +αt +ρyt−1,s + γ alt(s)+ εt,s, εt,s ∼ N(0,σ2), t = 1, . . . ,60, s = 1, . . . ,18,

donde yt,s representa la temperatura en el año t y localidad s; α expresa la tendencia lineal respecto del
tiempo; alt(s), la altitud de la localidad s y ρ es el factor de correlación de la serie temporal, que puede
considerarse en el intervalo (−1,1) para que la serie sea estacionaria —Brockwell, P. J. y Davis, R. A.
(2006) [2]. De este modo, los parámetros de este modelo son θ = (β0,α,γ,ρ,σ2).
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Distribución conjunta a posteriori

Dada la estructura autorregresiva del modelo, la verosimilitud, [y|θ ], se expresa como
18

∏
s=1

60

∏
t=1

[yt,s|yt−1,s,θ ] =
18

∏
s=1

60

∏
t=1

N(yt,s|β0 +αt +ρyt−1,s + γ alt(s),σ2)

∝ (σ2)−540 exp

(
− 1

2σ2

18

∑
s=1

60

∑
t=1

(yt,s −β0 −αt −ρyt−1,s − γ alt(s))2

)
. (4.9)

Puesto que, como se indicaba, condicionamos a yt−1,s, la verosimilitud es análoga a (4.2).
Suponiendo que las distribuciones a priori siguientes son independientes,

β0 ∼ N(µβ0 ,τ
2
β0
), α ∼ N(µα ,τ

2
α), γ ∼ N(µγ ,τ

2
γ ),

ρ ∼ U(−1,1), σ2 ∼ Inv-χ2(n0,s2
0),

se tiene que la densidad conjunta a posteriori es proporcional a

[β0][α][γ][ρ][σ2](σ2)−540 exp

(
− 1

2σ2

18

∑
s=1

60

∑
t=1

(yt,s −β0 −αt −ρyt−1,s − γ alt(s))2

)
. (4.10)

Dado que la distribución a posteriori obtenida es multivariante y no corresponde a una distribución
conocida, es necesario, a la hora de hacer inferencia, recurrir a métodos MCMC para obtener simula-
ciones de los valores de los parámetros y, a partir de ello, simulaciones de valores de la respuesta. En
este caso, utilizaremos un método de Gibbs sampling, cuyo funcionamiento ya fue expuesto brevemente
en el Capítulo 1. Para implementar el algoritmo, se han de determinar las distribuciones completamente
condicionales a posteriori, esto es, las distribuciones condicionales a los datos y a los demás parámetros.

Distribuciones completamente condicionales

A estas distribuciones completamente condicionales las denotaremos como [β0|y, . . .], [α|y, . . .], etc.
para simplificar la notación.

Observemos que el cálculo de las distribuciones a posteriori condicionadas a todos los demás pa-
rámetros es sencillo por la observación siguiente. Centrándonos en β0 —es análogo para las demás—,
nótese que, por definición de densidad condicional,

[β0|α,γ,ρ,σ2,y] =
[β0,α,γ,ρ,σ2|y]
[α,γ,ρ,σ2|y]

∝ [β0,α,γ,ρ,σ2|y].

Esto significa que las densidades completamente condicionales a posteriori son proporcionales a la densi-
dad conjunta a posteriori. Calcularemos de forma detallada la distribución completamente condicionada
de β0 y las demás se expondrán brevemente.

Distribución [β0|y, . . .]. Por la observación anterior,

[β0|y, . . .] ∝ [β0]exp

(
− 1

2σ2

18

∑
s=1

60

∑
t=1

(yt,s −β0 −αt −ρyt−1,s − γ alt(s))2

)
.

Y, dado que β0 ∼ N(µβ0 ,τ
2
β0
),

[β0|y, . . .] ∝ exp

(
−
(β0 −µβ0)

2

2τ2
β0

)
exp

(
− 1

2σ2

(
1080β

2
0 −2β0

18

∑
s=1

60

∑
t=1

(yt,s −αt −ρyt−1,s − γ alt(s))

))
.

Es claro, así, que la distribución será normal al ser el exponente una función cuadrática de β0. De
este modo, es suficiente con calcular los coeficientes de β 2

0 y β0, de manera que resulta

[β0|y, . . .] = N

(
β0

∣∣∣∣∣µβ0/τ2
β0
+∑

18
s=1 ∑

60
t=1(yt,s −αt −ρyt−1,s − γ alt(s))/σ2

1/τ2
β0
+1080/σ2 ,

1
1/τ2

β0
+1080/σ2

)
.

De forma completamente análoga, se deducen las distribuciones de α y γ .
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Distribución [α|y, . . .].

[α|y, . . .] =N
(

α

∣∣∣∣µα/τ2
α +∑

18
s=1 ∑

60
t=1 t(yt,s −β0 −ρyt−1,s − γ alt(s))/σ2

1/τ2
α +1328580/σ2 ,

1
1/τ2

α +1328580/σ2

)
.

Distribución [γ|y, . . .].

[γ|y, . . .] =N

(
γ

∣∣∣∣∣µγ/τ2
γ +∑

18
s=1 alt(s)∑

60
t=1(yt,s −β0 −αt −ρyt−1,s)/σ2

1/τ2
γ +60∑

18
s=1 alt(s)2/σ2

,
1

1/τ2
γ +60∑

18
s=1 alt(s)2/σ2

)
.

Distribución [ρ|y, . . .]. Al ser la distribución a priori de ρ uniforme en (−1,1), su distribución
a posteriori estará concentrada (−1,1). De hecho, para ρ ∈ (−1,1), es claro que [ρ|y, . . .] será
propocional a una densidad normal, por lo que se trata de una densidad normal truncada. Más
concretamente,

[ρ|y, . . .] ∝ exp

(
− 1

2σ2

(
ρ

2
18

∑
s=1

60

∑
t=1

y2
t−1,s −2ρ

18

∑
s=1

60

∑
t=1

yt−1,s(yt,s −β0 −αt − γ alt(s))

))
1(−1,1)(ρ)

∝ N

(
ρ

∣∣∣∣∣∑18
s=1 ∑

60
t=1 yt−1,s(yt,s −β0 −αt − γ alt(s))

∑
18
s=1 ∑

60
t=1 y2

t−1,s
,

σ2

∑
18
s=1 ∑

60
t=1 y2

t−1,s

)
1(−1,1)(ρ).

Distribución [σ2|y, . . .]. Notemos que de (4.9) y la elección de [σ2], es inmediato que

[σ2|y, . . .] = Inv-χ2

(
σ

2

∣∣∣∣∣1080+n0,
1

1080+n0

(
n0s2

0 +
18

∑
s=1

60

∑
t=1

(yt,s −β0 −αt −ρyt−1,s − γ alt(s))2

))
.

Los resultados de la simulación basada en Gibbs sampling, así como los códigos utilizados, pueden
consultarse en el Apéndice A en la Sección A.2. También se incluyen criterios para comprobar la con-
vergencia del método, las densidades marginales a posteriori de los parámetros del modelo lineal y sus
esperanzas a posteriori junto con intervalos de credibilidad al 95%. En el Apéndice B Sección B.1 puede
consultarse la implementación de código de R.

4.5.2. Modelo jerárquico

Según lo expuesto en la Sección 4.4.1, el sentido de un efecto aleatorio es incorporar, a un conjunto
de datos en un mismo grupo, un parámetro común a todos ellos para establecer una relación entre sus
valores en la variable explicada.

Por la estructura de nuestros datos yt,s, en los que aparece el año y la localidad, para crear una relación
de tipo espacial, hemos de añadir un parámetro δt para cada año t = 1, . . . ,60. De este modo, en cada año
t, incluimos ese término aleatorio mencionado que afectará a todas las localidades por igual. Como ya
indicábamos en la sección anterior, estos efectos aleatorios sustituirán a la tendencia lineal α del modelo
no jerárquico. Además, el parámetro β0 desaparece de la verosimilitud y se incluye como hiperparámetro
de los δt para todo t. Así, el efecto aleatorio δt representará la aleatorización de esa temperatura de base
β0 en el año t. Consideramos, así,

δt |β0,τ
2 ∼ N(β0,τ

2), t = 1, . . . ,60,

junto con las distribuciones independientes a priori de los hiperámetros (4.8):

[β0] ∝ 1, [τ2] = Inv-χ2(τ2|n1,s2
1).

El modelo jerárquico a estudiar ahora es

yt,s = δt +ρyt−1,s + γ alt(s)+ εt,s, εt,s ∼ N(0,σ2), t = 1, . . . ,60, s = 1, . . . ,18,
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con vector de parámetros θ = (δ1, . . . ,δ60,ρ,γ,σ
2) e hiperparámetros φ = (β0,τ

2). La distribución con-
junta a posteriori será a análoga a (4.10) pero añadiendo los hiperparámetros.

[θ ,φ |y] = [δ1, . . . ,δ60,β0,τ
2,α,ρ,γ,σ2|y]

∝ [δ1|β0,τ
2] · · · [δ60|β0,τ

2][β0][τ
2][α][ρ][γ][σ2]

× (σ2)−540 exp

(
− 1

2σ2

18

∑
s=1

60

∑
t=1

(yt,s −δt −αt −ρyt−1,s − γ alt(s))2

)

Distribuciones completamente condicionales

Para el cálculo de las densidades completamente condicionales, observemos que, para los parámetros
ρ,γ y σ2, el resultado debe ser análogo, ya que son independientes de los hiperparámetros y, como
sabemos, estos no aparecen en la verosimilitud. De hecho, es suficiente con sustituir β0 +αt por los
nuevos parámetros δt . En efecto, veámoslo para γ .

Distribución [γ|y, . . .]. Como antes, la distribución completamente condicional a posteriori [γ|y, . . .]
será propocional a la densidad conjunta, que ahora es [θ ,φ |y]. Luego,

[γ|y, . . .] ∝ [γ]exp

(
− 1

2σ2

18

∑
s=1

60

∑
t=1

(yt,s −δt −ρyt−1,s − γ alt(s))2

)

∝ [γ]exp

(
− 1

2σ2

(
60γ

2
18

∑
s=1

alt(s)2 −2γ

18

∑
s=1

60

∑
t=1

alt(s)(yt,s −δt −ρyt−1,s)

))
.

Como en el caso no jerárquico, sustituyendo [γ] por su expresión, se deduce inmediatamente que

[γ|y, . . .] = N

(
α

∣∣∣∣∣µγ/τ2
γ +∑

18
s=1 ∑

60
t=1 alt(s)(yt,s −δt −ρyt−1,s)/σ2

1/τ2
γ +60∑

18
s=1 alt(s)2/σ2

,
1

1/τ2
γ +60∑

18
s=1 alt(s)2/σ2

)
.

Por el mismo razonamiento, las distribuciones de ρ y σ2 pueden consultarse en el modelo no
jerárquico con la sustitución indicada.
Distribuciones [δ1|y, . . .], . . . , [δ60|y, . . .]. Sea t ′ = 1, . . . ,60. Observemos que, si nos centramos en
el parámetro t ′-ésimo, la expresión de la verosimilitud puede simplificarse, resultando

[y|θ ] ∝ exp

(
− 1

2σ2

18

∑
s=1

(yt ′,s −δt ′ −ρyt ′−1,s − γ alt(s))2

)

∝ exp

(
− 1

2σ2

(
18δ

2
t ′ −2δt ′

18

∑
s=1

(yt ′,s −ρyt ′−1,s − γ alt(s))

))
.

Así, multiplicando la verosimilitud anterior por la expresión de la distribución a priori [δt ′ |β0,τ
2],

se obtiene

[δt ′ |y, . . .] ∝ exp

(
−1

2

(
1
τ2 +

18
σ2

)
δ

2
t ′ −2δt ′

(
β0

τ2 +
1

σ2

18

∑
s=1

(yt ′,s −ρyt ′−1,s − γ alt(s))

))

∝ N

(
δt ′

∣∣∣∣∣β0/τ2 +∑
18
s=1(yt ′,s −ρyt ′−1,s − γ alt(s))/σ2

1/τ2 +18/σ2 ,
1

1/τ2 +18/σ2

)
.

En cuanto a los hiperparámetros, su distribución a posteriori completamente condicional es es-
pecialmente simple de calcular, ya que, al no aparecer en la verosimilitud, se satisface que tales
densidades serán proporcionales a

[θ ,φ |y] ∝ [δ1|β0,τ
2] · · · [δ60|β0,τ

2][β0][τ
2]. (4.11)
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• Distribución [β0|y, . . .]. Dado que [β0|y, . . .] es proporcional a (4.11), calculando los coefi-
cientes de β 2

0 y β0, se tiene que

[β0|y, . . .] ∝ exp

(
− 1

2τ2

(
60β

2
0 −2β0

60

∑
t=1

δt

))
∝ N

(
β0

∣∣∣∣∣ 1
60

60

∑
t=1

δt ,
τ2

60

)
.

• Distribución [τ2|y, . . .]. De nuevo, por (4.11) y sustituyendo [τ2] por su expresión, puede verse
inmediatamente agrupando las exponenciales que

[τ2|y, . . .] ∝ (τ2)−(n1+60)/2−1 exp

(
− 1

2τ2

(
60

∑
t=1

(δt −β0)
2 + s2

1

))

∝ Inv-χ2

(
τ

2

∣∣∣∣∣n1 +60,
1

n1 +60

(
60

∑
t=1

(δt −β0)
2 + s2

1

))
.

Como ejemplo de los resultados, se muestra una comparativa de los boxplots de la tendencia en el
modelo no jerárquico, reflejada por β0+α ∗ t, que representaremos solo cada 5 años para mayor claridad
del gráfico, y su versión jerárquica, que son los efectos aleatorios δ1, . . . ,δ60. Se observa esa mayor
flexibilidad del modelo jerárquico, puesto que no se impone ninguna dependencia lineal respecto de t.
En el Apéndice A Sección A.3, se incluyen, además, los mismos análisis que en el modelo no jerárquico.
En el Apéndice B Sección B.2 se incluye el código de R utilizado.
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(a) Boxplot de β0 +αt cada 5 años.
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(b) Boxplot de δ1, . . . ,δ60.

4.6. Conclusiones finales

En este trabajo, se ha presentado de forma general los conceptos fundamentales y elementos básicos
del análisis bayesiano, como la distribución a priori y la distribución a posteriori de un parámetro y
otras medidas propias de la inferencia bayesiana. En más detalle, se han presentado el desarrollo de las
distribuciones necesarias para realizar inferencia en algunos de los casos más importantes relacionados
con la distribución normal. También se han introducido los modelos jerárquicos en el marco bayesiano.
El interés de estos modelos es que permiten representar situaciones donde existen distintos niveles de
variación y expresar la dependencia de parámetros procedentes de poblaciones agrupadas. Finalmente,
se han presentado el uso de los resultados anteriores al caso particular de los modelos de regresión y los
modelos de regresión jerárquicos. Estos modelos son de gran importancia en el campo de la modelización
estadística. Como un ejemplo ilustrativo de la metodología presentada, se han obtenido las distribuciones
completamente condicionadas necesarias para implementar un algoritmo de Gibbs sampling que permite
estimar un modelo no jerárquico y otro jerárquico para las series de temperaturas medias del verano de
un conjunto de localidades en una región.
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Apéndice A

Simulación en R

A.1. Mapa de la Comunidad Autónoma de Aragón y alrededores

Figura A.1: Mapa geográfico de Aragón y localidades estudiadas.

A.2. Modelo no jerárquico

A la hora de implementar el algoritmo de Gibbs sampling, hemos escogido los hiperparámetros de
las distribuciones a priori utilizadas en la Sección 4.5.1, de manera que resulten débilmente informati-
vas considerando distribuciones con varianzas de gran magnitud —salvo ρ—, ya que no contamos con
ningún estudio previo. Más precisamente,

β0,α,γ ∼ N(0,5000),

ρ ∼ U(−1,1),

σ
2 ∼ Inv-χ2(1,1).

Además, dado que el algoritmo se basa en cadenas de Markov, hemos considerado dos cadenas de
200 000 observaciones cada una con diferentes valores iniciales. Además, se han eliminado las últimas
100 000 iteraciones a modo de burn-in en cada cadena.

27
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Primera cadena Segunda cadena
β
(1)
0 0 1

α(1) 0 1
ρ(1) 0 0,2
γ(1) 0 1

(σ2)(1) 1 2

Cuadro A.1: Valores iniciales de los parámetros en las cadenas de Markov para el modelo no jerárquico.

A.2.1. Convergencia de las cadenas de Markov

En primer lugar, para garantizar que los resultados que expondremos a continuación son válidos,
recogemos algunos diagnósticos de convergencia, que son, los traceplots, que representan los valores
que ha ido tomando cada parámetro en cada iteración, y el test de diagnóstico basado en el factor de
reducción de escala potencial, generalmente denotado por R̂.

Traceplots

Representando los traceplots, se observa claramente como, en todos los casos, los valores de todos los
parámetros oscilan en torno a algún valor. Habiendo eliminando las primeras muestras, vemos como las
gráficas están muy concentradas y las dos cadenas, que se representan en colores diferentes, se solapan,
lo que es signo de convergencia.

(a) Traceplot de β0 (b) Traceplot de α

(c) Traceplot de ρ (d) Traceplot de γ
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(e) Traceplot de σ2

Figura A.2: Traceplots de las últimas 100 000 observaciones para el modelo no jerárquico. La primera
cadena se representa en verde y la segunda en azul.

Factor de reducción de escala potencial R̂

Según Gelman, A. y Rubin, D. B. (1992) [7], R̂ es un valor siempre mayor o igual que 1 y, cuanto más
próximo es su valor a 1, con seguridad puede afirmarse que la cadena converge. El criterio utilizado más
habitual es R̂ < 1,1. Esto, junto a las gráficas anteriores, evidencia la convergencia de ambas cadenas
de Markov, ya que, incluso para la cota superior al 95% del coeficiente se satisface el criterio. Para
implementarlo hemos utilizado la función gelman.diag() —vid. Apéndice B Sección B.1.

Estimación R̂ Cota superior al 95%
β0 1,0040 1,0145
α 1,0000 1,0001
ρ 1,0038 1,0137
γ 1,0024 1,0094

σ2 1,0000 1,0000

Cuadro A.2: Análisis de convergencia para el modelo no jerárquico. Criterio por factor R̂.

A.2.2. Densidades a posteriori marginales

Tras comprobar la convergencia de ambas cadenas, podemos utilizar un estimador kernel de densi-
dades dadas las últimas 100 000 observaciones generadas para cada parámetro y en cada cadena. En las
gráficas se observa como las distribuciones estacionarias a la que se aproximan las observaciones, que
son las distribuciones marginales a posteriori de los parámetros, son asintóticamente normales.
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Figura A.3: Densidades a posteriori marginales estimadas para el modelo no jerárquico. En verde se
presenta la densidad estimada a partir de la primera cadena de Markov y en azul, la densidad estimada a
partir de la segunda.

A.2.3. Resumen númerico. Esperanzas a posteriori e intervalos de credibilidad de los
parámetros

Las esperanzas pueden aproximarse por la media de todas las últimas 100 000 observaciones que
hemos generado de la primera cadena. Para los intervalos de credibilidad, es suficiente con aproximar
los cuantiles poblacionales por los cuantiles muestrales 0,025 y 0,975.

Esperanzas a posteriori Extremo inferior IC Extremo superior IC
β0 11,7096 10,2025 13,1921
α 0,0151 0,0097 0,0205
ρ 0,6246 0,5780 0,6718
γ −0,0024 −0,0028 −0,0020

σ2 2,3176 2,1299 2,5226

Cuadro A.3: Resumen de los resultados para el modelo no jerárquico.

Especialmente interesante resulta que en los intervalos de credibilidad de α y ρ no esté contenido
el 0, ya que esto es indicativo de la existencia real de la tendencia creciente de la temperatura respecto
del tiempo. En suma, los datos y el modelo ajustado parecen evidenciar la existencia del calentamiento
global.

Por otra parte, también es notorio es signo de γ que es negativo al 95% de confianza. En efecto, en
las zonas de mayor altitud, como los Pirineos, las temperaturas medias tienden a ser menores.
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A.3. Modelo jerárquico

Para simulación del modelo jerárquico, volvemos a considerar distribuciones a priori débilmente
informativas tanto para los parámetros ρ,γ y σ2 como para los hiperparámetros β0 y τ2 de δt para
t = 1, . . . ,60. En concreto, las elecciones tomadas son las siguientes:

δt |β0,τ
2 ∼ N(β0,τ

2), t = 1, . . . ,60,

β0 ∼ U(R),
τ

2 ∼ Inv-χ2(1,1),

γ ∼ N(0,5000),

ρ ∼ U(−1,1),

σ
2 ∼ Inv-χ2(1,1).

Además, como en el caso no jerárquico, también se consideran dos cadenas de Markov con diferentes
valores iniciales para estudiar la convergencia.

Primera cadena Segunda cadena
δ
(1)
t 0 1

ρ(1) 0 0,2
γ(1) 0 1

(σ2)(1) 1 2
β
(1)
0 0 1

(τ2)(1) 1 2

Cuadro A.4: Valores iniciales de los parámetros en las cadenas de Markov para el modelo jerárquico.

Los métodos y diagnósticos que usaremos serán los mismos y también expondremos los mismos
puntos: análisis de la convergencia, densidades marginales a posteriori y resúmenes numéricos. En este
caso, sin embargo, no se incluirán los parámetros δ1, . . . ,δ60, puesto que eso supondría un uso innecesario
de espacio. En su lugar, recogemos un boxplot de todos ellos en la Sección A.3.2.

A.3.1. Convergencia de las cadenas de Markov

Traceplots

(a) Traceplot de ρ (b) Traceplot de γ
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(c) Traceplot de σ2 (d) Traceplot de β0

(e) Traceplot de τ2

Figura A.4: Traceplots de las últimas 100 000 observaciones para el modelo jerárquico. La primera
cadena se representa en verde y la segunda en azul.
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Factor de reducción de escala potencial R̂

Estimación R̂ Cota superior al 95%
ρ 1,0059 1,0238
γ 1,0042 1,0178

σ2 1,0000 1,0000
β0 1,0049 1,0198
τ2 1,0000 1,0001

Cuadro A.5: Análisis de convergencia para el modelo jerárquico. Factor R̂.

Además, pese a no recogerse por el espacio que ello ocuparía, el diagnóstico también se ha llevado
acabo para los parámetros δt , t = 1, . . . ,60. Los factores obtenidos han sido también muy próximos a 1,
por lo que tenemos evidencia de la convergencia de todos los parámetros.

A.3.2. Densidades a posteriori marginales
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Figura A.5: Densidades a posteriori marginales estimadas para el modelo jerárquico. En verde se presenta
la densidad estimada a partir de la primera cadena de Markov y en azul, la densidad estimada a partir de
la segunda.
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A.3.3. Resumen númerico. Esperanzas a posteriori e intervalos de credibilidad de los
parámetros

Esperanzas a posteriori Extremo inferior IC Extremo superior IC
ρ 0,8957 0,8708 0,9187
γ −0,0007 −0,0009 −0,0005

σ2 0,5398 0,4949 0,5887
β0 3,4039 2,5180 4,3855
τ2 2,1446 1,4823 3,0844

Cuadro A.6: Resumen de los resultados para el modelo jerárquico.



Apéndice B

Implementación del código de R

B.1. Modelo no jerárquico

### IMPLEMENTACIÓN DE GIBBS SAMPLING. MODELO NO JERÁRQUICO.

library(extraDistr)
library(xtable)
library(coda)

# Datos de temperaturas y altitudes

temp <- readRDS("meanTempAragonJJA19562015.rds.ds")
elev <- readRDS("elev.rds")

# Matriz de datos. Filas por años y columnas por localidades.
# Generamos la fila 1 de y, que se corresponde con y_0,s.
# En general , la fila t refiere a las temperaturas del año t-1.

y <- matrix(nrow = 61, ncol = 18)
y[2:61 ,] <- temp
y[1 ,] <- apply(temp , MARGIN = 2, FUN = mean)

# Definimos la matriz que contiene los 60 años (1 ,...,60) en cada columna.

t <- matrix(data = 1:60, nrow = 60, ncol = 18, byrow = FALSE)

# Definimos la matriz alt que contiene las 18 de las localidades en cada fila.

alt <- matrix(data = elev$altitude , nrow = 60, ncol = 18, byrow = TRUE)

# Parámetros

numberOfSamples <- 200000

beta_0 <- rep(0, numberOfSamples)
alpha <- rep(0, numberOfSamples)
gamma <- rep(0, numberOfSamples)
rho <- rep(0, numberOfSamples)
sigma2 <- rep(0, numberOfSamples)

beta_02 <- rep(0, numberOfSamples)
alpha2 <- rep(0, numberOfSamples)
gamma2 <- rep(0, numberOfSamples)
rho2 <- rep(0, numberOfSamples)

35
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sigma22 <- rep(0, numberOfSamples)

# Valores iniciales de los parámetros.

beta_0[1] <- 0
alpha[1] <- 0
gamma[1] <- 0
sigma2[1] <- 1
rho[1] <- 0

beta_02[1] <- 1
alpha2[1] <- 1
gamma2[1] <- 1
sigma22[1] <- 2
rho2[1] <- 0.2

# Iteraciones de Gibbs sampling.

# La constante sumSquares es necesaria la función sampleRho
sumSquares <- sum(y[ -61 ,]^2)
# La constante sumHeightsSq es necesaria la función sampleGamma
sumHeightsSq <- sum(alt[1 ,]^2)*60

for (i in 2:numberOfSamples) {
beta_0[i] <- sampleBeta0(0, 5000, alpha[i-1], gamma[i-1], rho[i-1],

sigma2[i-1])
alpha[i] <- sampleAlpha(0, 5000, beta_0[i], gamma[i-1], rho[i-1],

sigma2[i-1])
gamma[i] <- sampleGamma(0, 5000, beta_0[i], alpha[i], rho[i-1],

sigma2[i-1])
rho[i] <- sampleRho(beta_0[i], alpha[i], gamma[i], sigma2[i-1])

sigma2[i] <- sampleSigma2(1, 1, beta_0[i], alpha[i], rho[i],
gamma[i])

}

for (i in 2:numberOfSamples) {
beta_02[i] <- sampleBeta0(0, 5000, alpha2[i-1], gamma2[i-1], rho2[i-1],

sigma22[i-1])
alpha2[i] <- sampleAlpha(0, 5000, beta_02[i], gamma2[i-1], rho2[i-1],

sigma22[i-1])
gamma2[i] <- sampleGamma(0, 5000, beta_02[i], alpha2[i], rho2[i-1],

sigma22[i-1])
rho2[i] <- sampleRho(beta_02[i], alpha2[i], gamma2[i], sigma22[i-1])

sigma22[i] <- sampleSigma2(1, 1, beta_02[i], alpha2[i], rho2[i],
gamma2[i])

}

# Implementación de las distribuciones condicionales a posteriori y muestreo.

sampleBeta0 <- function(mu , tau2, alpha , gamma , rho , sigma2) {
suma <- sum(y[-1,] - alpha * t - rho * y[-61 ,] - gamma * alt) / sigma2
precision <- (1 / tau2 + 1080 / sigma2)
media <- (mu / tau2 + suma) / precision
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return(rnorm(n = 1, mean = media , sd = 1 / sqrt(precision )))
}

sampleAlpha <- function(mu , tau2, beta_0, gamma , rho , sigma2) {
suma <- sum(t * (y[-1 ,] - beta_0 - rho * y[-61 ,] - gamma * alt)) / sigma2
precision <- (1 / tau2 + 1328580 / sigma2)
media <- (mu / tau2 + suma) / precision
return(rnorm(n = 1, mean = media , sd = 1 / sqrt(precision )))

}

sampleGamma <- function(mu , tau2, beta_0, alpha , rho , sigma2) {
suma <- sum(alt * (y[-1 ,] - beta_0 - alpha * t - rho * y[-61 ,])) / sigma2
precision <- (1 / tau2 + sumHeightsSq / sigma2)
media <- (mu / tau2 + suma) / precision
return(rnorm(n = 1, mean = media , sd = 1 / sqrt(precision )))

}

sampleRho <- function(beta_0, alpha , gamma , sigma2) {
suma <- sum(y[-61,] * (y[-1,] - beta_0 - alpha * t - gamma * alt))
media <- suma / sumSquares
varianza <- sigma2 / sumSquares
return(rtnorm(n = 1, mean = media , sd = sqrt(varianza), -1, 1))

}

sampleSigma2 <- function(n, s2, beta_0, alpha , rho , gamma) {
suma <- sum((y[-1,] - beta_0 - alpha * t - rho * y[-61 ,] - gamma * alt)^2)
scale2 <- n * s2 + suma
return(scale2 / rchisq(n = 1, df = 1080 + n))

}

# Traceplots de ambas cadenas

plot(beta_0[1:1], type='l', col = 'blue', xlab = 'Iteraciones ',
ylab = expression(beta[0]))

lines(beta_02[100001:200000], col = 'red')
plot(alpha[100001:200000], type='l', col = 'blue', xlab = 'Iteraciones ',

ylab = expression(alpha))
lines(alpha2[100001:200000], col = 'red')
plot(rho[100001:200000], type='l', col = 'blue', xlab = 'Iteraciones ',

ylab = expression(rho))
lines(rho2[100001:200000], col = 'red')
plot(gamma[100001:200000], type='l', col = 'blue', xlab = 'Iteraciones ',

ylab = expression(gamma))
lines(gamma2[100001:200000], col = 'red')
plot(sigma2[100001:200000], type='l', col = 'blue', xlab = 'Iteraciones ',

ylab = expression(sigma^2))
lines(sigma22[100001:200000], col = 'red')

# Factor de reducción de escala pontecial RHat.

gelman.diag(mcmc.list(as.mcmc(beta_0[100001:200000]),
as.mcmc(beta_02[100001:200000])),

confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmc.list(as.mcmc(alpha[100001:200000]),

as.mcmc(alpha2[100001:200000])),
confidence = 0.95, autoburnin = FALSE)

gelman.diag(mcmc.list(as.mcmc(rho[100001:200000]),
as.mcmc(rho2[100001:200000])),
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confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmc.list(as.mcmc(gamma[100001:200000]),

as.mcmc(gamma2[100001:200000])),
confidence = 0.95, autoburnin = FALSE)

gelman.diag(mcmc.list(as.mcmc(sigma2[100001:200000]),
as.mcmc(sigma22[100001:200000])),

confidence = 0.95, autoburnin = FALSE)

# Densidades marginales a posteriori

plot(density(beta_0[100001:200000]), col = 'green ')
lines(density(beta_02[100001:200000]), col = 'blue')
plot(density(alpha[100001:200000]), col = 'green ')
lines(density(alpha2[100001:200000]), col = 'blue')
plot(density(rho[100001:200000]), col = 'green ')
lines(density(rho2[100001:200000]), col = 'blue')
plot(density(gamma[100001:200000]), col = 'green ')
lines(density(gamma2[100001:200000]), col = 'blue')
plot(density(sigma2[100001:200000]), col = 'green ')
lines(density(sigma22[100001:200000]), col = 'blue')

# Valores aproximados de la esperanza a posteriori

mean(beta_0[100001:200000])
mean(alpha[100001:200000])
mean(rho[100001:200000])
mean(gamma[100001:200000])
mean(sigma2[100001:200000])

#Intervalos de credibilidad

matrix <- cbind(beta_0[100001:200000], alpha[100001:200000],
rho[100001:200000], gamma[100001:200000],
sigma2[100001:200000])

lowerBoundsCI <- apply(matrix , MARGIN = 2, FUN = function(x)
quantile(x, probs = 0.025))

upperBoundsCI <- apply(matrix , MARGIN = 2, FUN = function(x)
quantile(x, probs = 0.975))

B.2. Modelo jerárquico

### IMPLEMETANCIÓN MODELO JERÁRQUICO.

# Cargamos las mismas librerías.

# Tomamos los mismos datos y, alt.

numberOfSamples <- 200000

tau2 <- rep(0, numberOfSamples)
beta_0 <- rep(0, numberOfSamples)
gamma <- rep(0, numberOfSamples)
rho <- rep(0, numberOfSamples)
sigma2 <- rep(0, numberOfSamples)
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# La primera fila de deltas corresponde a delta_0. En general , la fila t
# corresponde a delta _{t-1}
deltas <- matrix(data = 0, nrow = numberOfSamples , ncol = 60)

tau22 <- rep(0, numberOfSamples)
beta_02 <- rep(0, numberOfSamples)
gamma2 <- rep(0, numberOfSamples)
rho2 <- rep(0, numberOfSamples)
sigma22 <- rep(0, numberOfSamples)
# La primera fila de deltas2 corresponde a delta_0. En general , la fila t
# corresponde a delta _{t-1}
deltas2 <- matrix(data = 0, nrow = numberOfSamples , ncol = 60)

# Valores iniciales de los parámetros.

tau2[1] <- 1
beta_0[1] <- 0
gamma[1] <- 0
sigma2[1] <- 1
rho[1] <- 0
deltas[1,] <- rep(0, 60)

tau22[1] <- 2
beta_02[1] <- 1
gamma2[1] <- 1
sigma22[1] <- 2
rho2[1] <- 0.2
deltas2[1,] <- rep(1, 60)

# Iteraciones de Gibbs sampling.

sumSquares <- sum(y[ -61 ,]^2)
sumHeightsSq <- sum(alt[1 ,]^2)*60

for (i in 2:numberOfSamples) {
for (j in 1:60) {

deltas[i,j] <- sampleDeltas(j, beta_0[i-1], tau2[i-1], gamma[i-1],
rho[i-1], sigma2[i-1])

mDeltas <- matrix(data = deltas[i,], nrow = 60, ncol = 18)
}
gamma[i] <- sampleGamma(0, 5000, mDeltas , rho[i-1], sigma2[i-1])

rho[i] <- sampleRho(mDeltas , gamma[i], sigma2[i-1])

sigma2[i] <- sampleSigma2(1, 1, mDeltas , rho[i], gamma[i])

beta_0[i] <- sampleBeta_0(deltas[i,], tau2[i-1])

tau2[i] <- sampleTau2(1, 1, beta_0[i], deltas[i,])
}

for (i in 2:numberOfSamples) {
for (j in 1:60) {

deltas2[i,j] <- sampleDeltas(j, beta_02[i-1], tau22[i-1], gamma2[i-1],
rho2[i-1], sigma22[i-1])

mDeltas <- matrix(data = deltas2[i,], nrow = 60, ncol = 18)
}
gamma2[i] <- sampleGamma(0, 5000, mDeltas , rho2[i-1],
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sigma22[i-1])
rho2[i] <- sampleRho(mDeltas , gamma2[i], sigma22[i-1])

sigma22[i] <- sampleSigma2(1, 1, mDeltas , rho2[i], gamma2[i])

beta_02[i] <- sampleBeta_0(deltas2[i,], tau22[i-1])

tau22[i] <- sampleTau2(1, 1, beta_02[i], deltas2[i,])
}

# Implementación de las distribuciones condicionales a posteriori y muestreo.

sampleDeltas <- function(j, beta_0, tau2, gamma , rho , sigma2) {
suma <- sum((y[j + 1 ,] - rho * y[j,] - gamma * alt[1 ,]) / sigma2)
precision <- (1 / tau2 + 18 / sigma2)
media <- (beta_0 / tau2 + suma) / precision
return(rnorm(n = 1, mean = media , sd = 1 / sqrt(precision )))

}

sampleGamma <- function(mu , tau2, deltas , rho , sigma2) {
suma <- sum(alt * (y[-1 ,] - deltas - rho * y[-61 ,])) / sigma2
precision <- (1 / tau2 + sumHeightsSq / sigma2)
media <- (mu / tau2 + suma) / precision
return(rnorm(n = 1, mean = media , sd = 1 / sqrt(precision )))

}

sampleRho <- function(deltas , gamma , sigma2) {
suma <- sum(y[-61,] * (y[-1,] - deltas - gamma * alt))
media <- suma / sumSquares
varianza <- sigma2 / sumSquares
return(rtnorm(n = 1, mean = media , sd = sqrt(varianza), -1, 1))

}

sampleSigma2 <- function(n, s2, deltas , rho , gamma) {
suma <- sum((y[-1,] - deltas - rho * y[-61 ,] - gamma * alt)^2)
scale2 <- n * s2 + suma
return(scale2 / rchisq(n = 1, df = 1080 + n))

}

sampleBeta_0 <- function(deltas , tau2) {
return(rnorm(n = 1, mean = (sum(deltas )) / 60, sd = sqrt(tau2 / 60)))

}

sampleTau2 <- function(n, s2, beta_0, deltas) {
scale <- sum(( deltas - beta_0)^2) + s2
return(scale / rchisq(n = 1, df = n + 60))

}

# Traceplots de ambas cadenas

plot(rho[100001:200000], type='l', col = 'blue', xlab = 'Iteraciones ',
ylab = expression(rho))

lines(rho2[100001:200000], col = 'green')
plot(gamma[100001:200000], type='l', col = 'green ', xlab = 'Iteraciones ',

ylab = expression(gamma))
lines(gamma2[100001:200000], col = 'blue')
plot(sigma2[100001:200000], type='l', col = 'green ', xlab = 'Iteraciones ',

ylab = expression(sigma^2))
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lines(sigma22[100001:200000], col = 'blue')
plot(beta_0[100001:200000], type='l', col = 'green ', xlab = 'Iteraciones ',

ylab = expression(beta[0]))
lines(beta_02[100001:200000], col = 'blue')
plot(tau2[100001:200000], type='l', col = 'green ', xlab = 'Iteraciones ',

ylab = expression(tau^2))
lines(tau22[100001:200000], col = 'blue')

# Factor de reducción de escala pontecial RHat.

gelman.diag(mcmc.list(as.mcmc(rho[100001:200000]),
as.mcmc(rho2[100001:200000])),

confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmc.list(as.mcmc(gamma[100001:200000]),

as.mcmc(gamma2[100001:200000])),
confidence = 0.95, autoburnin = FALSE)

gelman.diag(mcmc.list(as.mcmc(sigma2[100001:200000]),
as.mcmc(sigma22[100001:200000])),

confidence = 0.95, autoburnin = FALSE)
gelman.diag(mcmc.list(as.mcmc(beta_0[100001:200000]),

as.mcmc(beta_02[100001:200000])),
confidence = 0.95, autoburnin = FALSE)

gelman.diag(mcmc.list(as.mcmc(tau2[100001:200000]),
as.mcmc(tau22[100001:200000])),

confidence = 0.95, autoburnin = FALSE)
for (i in 1:60) {

gelman.diag(mcmc.list(as.mcmc(deltas[100001:200000, i]),
as.mcmc(deltas2[100001:200000, i])),

confidence = 0.95, autoburnin = FALSE)
}

# Densidades marginales a posteriori

plot(density(rho[100001:200000]), col = 'blue')
lines(density(rho2[100001:200000]), col = 'red')
plot(density(gamma[100001:200000]), col = 'blue')
lines(density(gamma2[100001:200000]), col = 'red')
plot(density(sigma2[100001:200000]), col = 'blue')
lines(density(sigma22[100001:200000]), col = 'red')
plot(density(beta_0[100001:200000]), col = 'blue')
lines(density(beta_02[100001:200000]), col = 'red')
plot(density(tau2[100001:200000]), col = 'blue')
lines(density(tau22[100001:200000]), col = 'red')

# Boxplot de los deltas

boxplot(deltas[100001:200000, ], outline = FALSE)

# Estimaciones de las esperanzas a posteriori

mean(rho[100001:200000])
mean(gamma[100001:200000])
mean(sigma2[100001:200000])
mean(beta_0[100001:200000])
mean(tau2[100001:200000])

# Intervalos de credibilidad
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matrix <- cbind(rho[100001:200000], gamma[100001:200000],
sigma2[100001:200000], beta_0[100001:200000],
tau2[100001:200000])

lowerBoundsCI <- apply(matrix , MARGIN = 2, FUN = function(x)
quantile(x, probs = 0.025))

upperBoundsCI <- apply(matrix , MARGIN = 2, FUN = function(x)
quantile(x, probs = 0.975))
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