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Abstract

In this dissertation, we are going to apply statistical methods to football matches’ analysis. More
specifically, we will analyse FC Barcelona’s passes in the 2020-2021 season, a leading team in the Liga
Santander whose game is characterised by long possession time with a great control of the ball and by
delivering a high number of passes.

Our objective is to build a model that predicts with certitude the probability that a pass with be co-
rrect, in respect to a series of characteristics of the pass itself (predictive variables). It is worth noticing
that the probability of a right pass follows a Bernoulli distribution (p), which means that a right pass is a
binary variable. The models that better predict binary variables are the logistic models.

In addition, we will specify which players are the best and the worse passers in comparison with how
difficult the passes that they deliver are. Finally, we will create an auxiliary model to predict which pla-
yers are dangerous and which ones aren’t.

In the first section of this paper we present an introduction which explains the importance of passes
in football and the benefits of analysing sports data. Afterwards we explain how the data was processed
(and the fact that there exists a very extensive data set, with many variables that are not needed), such as
the creation of new variables that can affect the probability of a successful pass.

We will explain the theoretical basis for the logistic models, such as the concept of ODDs and ODDs
Ratios. These models are used especially when the variables in question are binary. In these models the
probability of a succesful pass is not directly predicted, instead it is estimated through the function:

P (succesful pass) =
eβ0+β1x1+···+βpxp

1+ eβ0+β1x1+···+βpxp

x1, · · · ,xp are the predictive variables.

We create a first logistic model with simple variables to predict the probability of the pass and we check
its accuracy via binned graphics. Once we have a final model, which is adjusted correctly, we calculate
its ability to predict via ROC curves. The area below the curve (AUC) is an indicator of the power of
prediction of the models.

Using the previous logistic model we compare the quality of the pases of the various players to deci-
de who has the best pass ability. We will do this comparing the percentage of successful passes with the
number of successful passes that players should deliver according to the model.

In the last part of the dissertation, we will create another logistic model to describe how dangerous a
pass is via looking at a simple variable that allows us to discover which players are more dangerous.
The objective is to create a holistic observation of the players, to be able to simultaneously observe how
dangerous they are in combination with how often they achieve a successful pass.
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Capítulo 1

Introducción

En España no hay duda de que el fútbol es el deporte rey. Este deporte mueve una cantidad ingente
de dinero. Los medios de comunicación: periódicos deportivos, programas de radio y televisión, dedican
prácticamente todo el tiempo de sus contenidos a las noticias relacionadas con el fútbol. Por todo ello
también tiene una gran influencia en la sociedad en la que vivimos. Prueba de ello es la gran cantidad de
público que se congrega en los acontecimientos deportivos y en las transmisiones televisivas cada fin de
semana, especialmente cuando juegan equipos grandes con muchos seguidores.

Pero no sólo es afición, también es el deporte más popular del mundo en cuanto a participación, pues lo
practican unos 270 millones de personas [1]. El mundial de fútbol, que se organiza cada cuatro años, es
el evento deportivo más popular, en el que participan países distribuidos por los cinco continentes.

Y para marcar un gol, se necesitan los pases. Un pase se considera la acción de enviar el balón a un
compañero. Los pases son la columna vertebral del fútbol [2], es decir, el pase es el medio más común y
seguro de llevar el balón cerca de la portería rival. Se trata del elemento principal de cada combinación,
siendo la base del juego en equipo. Sabedores de esto, cabe notar que todos los equipos de fútbol profe-
sionales de la liga española (Liga Santander) destinan grandes cantidades de recursos en contratar a los
mejores pasadores. Dada su importancia, es uno de los elementos mas entrenados.

Si hablamos de pases, el equipo de la Liga Santander que más pases realiza es el Fútbol Club Barce-
lona. Desde la época cuando fue entrenado por Johan Cruyff (1988-1996), el Barcelona ha tenido un
estilo propio basado en la posesión de balón, la construcción de jugadas en el centro del campo, con
jugadores capaces de mover el balón rápidamente y ofrecer asistencias a los delanteros [3]. La máxima
expresión de este estilo se dio en la época de Pep Guardiola como entrenador (2008- 2012), donde fue
reconocido como el Barcelona del "tiki-taka", ganando numerosos títulos (un año ganaron todos los tí-
tulos posibles, con el famoso "sextete"). Durante todos estos años hasta la actualidad, el Barcelona ha
mantenido esta misma idea de juego, usando el pase como elemento principal.

Debido a este estilo de juego, una de las piezas fundamentales del Barcelona son los pasadores. Ju-
gadores capaces de ser muy precisos, sin cometer apenas errores. Son capaces de filtrar los balones entre
los jugadores rivales creando ocasiones de gol.

Cabe notar que no todos los pases tienen la misma dificultad. Cuanta más dificultad haya en el pase,
menor es la probabilidad de que el pase sea acertado, es decir, que el balón llegue al jugador del mismo
equipo deseado. Un pase no tiene la misma dificultad cuando es entre los defensas, es decir, en el campo
propio y sin estar presionados por el equipo rival, que un pase en el borde del área rival, donde los juga-
dores del equipo contrario tienen mucha más posibilidad de interceptarlo.

El análisis de datos en los partidos de fútbol ha sido muy utilizado a lo largo de los últimos tiempos.
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2 Capítulo 1. Introducción

Se han realizado una gran cantidad de estudios con el objetivo de analizar a los equipos para ver quienes
son mejores jugadores o qué posiciones mejorar. Estos son por ejemplo [4],[5].Para nuestro estudio nos
hemos basado en una serie de artículos donde relacionan la probabilidad del acierto del pase respecto a
variables que pueden afectar en esta probabilidad [4]. No hemos utilizado exactamente la misma técnica
que se utilizan en estos artículos, sino que hemos cogido las ideas de posibles casos de estudio.

El objetivo de nuestro estudio es relacionar la probabilidad de acierto de los pases del Fútbol Club
Barcelona respecto a una serie de variables sencillas sobre el propio pase y los jugadores que participan
en él. Una vez obtenido este modelo, nuestro objetivo es deducir qué jugadores son los mejores y peores
pasadores, es decir, los jugadores que aciertan más pases de los que deberían por su dificultad y los juga-
dores que erran más pases de los estimados por su dificultad. Este estudio lo haremos mediante regresión
logística múltiple.

En la parte final del trabajo haremos un modelo logístico auxiliar para estimar qué jugadores son más
o menos peligrosos. Compararemos si está relacionado el concepto peligrosidad con el concepto difi-
cultad. Veremos qué jugadores hacen más pases peligrosos y su relación con su probabilidad de acierto
(dificultad).



Capítulo 2

Tratamiento de datos

2.1. Introducción

Los datos con los que hemos realizado el TFG son los correspondientes a los partidos del FC Bar-
celona en la temporada 2020-2021, en particular, los relativos a los pases entre los jugadores de este
equipo. En este capítulo también explicaremos las transformaciones de los datos que hemos utilizado
para obtener el conjunto de variables finales (utilizadas en los modelos de predicción). Para facilitarnos
la tarea, he creado varios programas de Java que se encuentran en el anexo D.

2.2. Obtención de datos

Los datos de cada partido del Barcelona están sacados de la pagina web: [6]

Me he registrado vía correo electrónico, para poder acceder a la base de datos. Cada partido está en
formato .json. Para poder transformarlo a un formato .csv he usado el transformador: [7]

Estas bases de datos contienen información detallada sobre todas las acciones del juego de cada par-
tido, es decir, sobre pases, tiros, faltas, tarjetas, presión, regates... y las características de cada acción
de forma cronológica. En el anexo C adjunto alguna fila de la base de datos como ejemplo (Figura 12).
Debido a que las bases de datos son demasiado grandes (sobre 250 variables), con demasiada informa-
ción sobre los partidos, necesitamos un filtrado de variables. Cada partido consta de alrededor de 4000
registros, correspondientes a todas las acciones que ocurren en su trascurso. He hecho un primer filtrado
eliminando las columnas no interesantes para nuestro estudio (las relacionadas con otro tipo de accio-
nes como es los tiros, las presiones o los regates). Para realizar este filtrado, he eliminado del partido
Real Madrid-Barcelona las variables no necesarias. Una vez obtenido un ejemplo de partido con menos
variables, he creado un programa en Java, en el que solo introduciendo el archivo .csv de cada partido,
dé como resultado otro archivo .csv que tenga las mismas variables que el archivo filtrado Real Madrid-
Barcelona. El programa se encuentra en el anexo como filtrado.java (D.1)

Hay algún partido que no tenía las variables necesarias para nuestro estudio, por lo que ese partido
no han sido incluido en el estudio final.

Posteriormente, he introducido una nueva variable al archivo ya filtrado. Es una variable binaria que
indica con un 1 cada uno de los tres pases anteriores a un tiro del Barcelona. Las demás filas tienen
un valor de 0. Los de los equipos rivales no los he indicado ya que luego procederé a filtrar los datos
para quedarme sólo con los pases del Barcelona. Mediante este valor, defino posteriormente el concepto
peligrosidad. Este programa devuelve un archivo.csv que contiene los datos del archivo de entrada mas
la variable peligrosidad añadida en última posición. El programa de Java se encuentra en el anexo como
peligrosidad.java.(D.2)
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4 Capítulo 2. Tratamiento de datos

He introducido nuevas variables al conjunto de datos relacionadas con los duelos. Un duelo es una dispu-
ta equilibrada del balón entre dos jugadores de distinto equipo. Se espera que la probabilidad de acierto
de un pase sea muy diferente si el pase proviene de un duelo o no. Para introducir estas variables averiguo
qué pases van inmediatamente después de un duelo. Dependiendo del tipo de duelo, varío la cantidad de
filas entre el duelo y el pase que delimitan si un pase va inmediatamente después de un duelo (de una
a tres) . Por ejemplo, si el duelo es aéreo, delimito que el pase se ve afectado por el duelo si va justo
en la fila de después. En cambio, si el duelo es raso (terrestre), puede haber más filas entre el duelo y
el pase, como un regate o una presión casi en el mismo instante de tiempo, por lo que en este caso he
delimitado que un pase va inmediatamente después de un duelo si está a una distancia menor de cuatro
filas. Mediante estos datos, y contando con el jugador que da el pase, creo tres variables factor. Una,
indicando si el pase se ve afectado por un duelo terrestre o no (llamada dt en el programa de java), otra,
si el pase se ve afectado por el duelo aéreo o no (llamada da en el programa de java) y la última, si el
jugador que ha realizado el pase es el mismo que ha disputado el duelo (llamada ds en el programa de
java). Estas variables también se utilizan en [4]. El programa completo se encuentra en el anexo como
duelo.java.(D.3)

Introduzco una nueva variable calculando la posición media de cada jugador en cada partido. Para ello,
hago la media de las coordenadas de todas las acciones que realiza cada jugador en cada partido (presión,
pases, tiros, duelos, etc) y las añado como dos nuevas variables a cada pase según quien lo realiza. El
programa se adjunta en el anexo como posicion.java.(D.4)

Añado dos nuevas variables a cada pase, en las que cuento el número de pases que se llevan en la
misma posesión y el tiempo que ha trascurrido desde el último pase. Para ello, considero que dos pases
se encuentran en la misma posesión si no hay pases del equipo contrario entre ambos. También considero
distinta posesión el pase del balón sacado desde un córner, saque de banda o saque de puerta. He usado
el valor 0 por defecto al número y al tiempo de los primeros pases de cada posesión. En este programa
también he introducido otra nueva variable factor, siendo 1 si el pase ha sido realizado con los pies y
0 en el caso contrario. En este programa, el archivo.csv de salida solo contiene los pases, no todas las
acciones. El programa completo se encuentra en el anexo como pase.java(D.5)

El último programa que he usado, es un filtrado de las primeras columnas (variables) quedándome sólo
con las elegidas (copiadas al final en el programa pase) obteniendo un archivo .csv listo para introducir a
R. El programa se encuentra en los anexos como eliminado.java(D.6)

He introducido cada partido en el conjunto de estos programas, para obtener los datos con las varia-
bles deseadas y filtrados para introducir a R. Notar que en cada partido he de variar algunos parámetros,
ya que el orden de las variables en los archivos iniciales no es igual en todos los archivos, ni el número
de variables totales. Es decir, algún partido tiene los datos más detallados que otros.

Una vez introducidos los datos de todos los partidos en R, he creado un nuevo dataframe uniéndolos
mediante la función cbind() y, eliminando los que no son realizados por el Barcelona obtenemos los
datos finales con los que trabajar. Vamos a eliminar los pases realizados por los porteros ya que muchos
de ellos se realizan a balón parado y no se consideran iguales al resto de pases. Una vez filtrados los
pases realizados por los porteros, se obtiene una muestra de 21776 pases del Barcelona y un total de 15
variables.



Capítulo 3

Variables utilizadas

3.1. Variables dependientes

Como hemos indicado en la introducción, nuestro objetivo es estimar la probabilidad de acierto de
cada pase dependiendo de una serie de variables. Notar que cada pase puede ser acertado o fallado,
es decir, es una variable binaria. Se denomina pase acertado si el siguiente jugador que toca el balón
después del lanzamiento del pase es del mismo equipo del jugador que ha realizado el lanzamiento. Si el
primer jugador que toca el balón es del equipo contrario, decimos que el pase se ha fallado. También se
determina pase fallado si el balón sale fuera del terreno de juego sin que sea tocado por ningún jugador.

Pase acertado: Variable binaria en la que se indica si un pase ha sido acertado mediante un 1 y si
un pase ha sido fallado mediante un 0.

En la última parte del trabajo haremos un modelo auxiliar para ver qué jugadores realizan más pases
peligrosos. Un pase es peligroso si se encuentra entre los tres últimos pases antes de un disparo. No
tengo en cuenta si el disparo ha terminado en gol o no. Para considerarse pase peligroso, los pases deben
ser del Barcelona y no tiene que haber pases del equipo contrario entre ellos y el tiro. Por lo que la
variable es:

Pase peligroso: Variable binaria en la que se indica si un pase ha sido peligroso mediante un 1 y si
un pase no lo ha sido, mediante un 0.

3.2. Variables predictoras

Nuestro objetivo es predecir la variable binaria Y, acierto de pase, respecto a una serie de variables
predictoras. Estas variables son elegidas según la influencia que pueden tener para predecir nuestra va-
riable dependiente.

Todos los campos de fútbol de la base de datos tienen unas coordenadas de medida de 120 unidades
en el largo del campo, es decir, la distancia entre las dos porterías y 80 unidades en el ancho del campo,
es decir, entre las dos líneas de banda. Las coordenadas de los puntos iniciales y finales del pase tienen
como origen el punto (0,0), que se define como el córner izquierdo de la portería dónde está el portero del
equipo que realiza el pase. Según esta definición, la posición desde donde se ejecuta el pase y la posición
dónde se recibe el pase es independiente del lado del campo en el que se está atacando. Notar también
que no todos los campos de fútbol tienen exactamente las mismas medidas en metros. En cambio, al
usar como medida total del largo (o ancho), una medida fija, si el pase se realiza en una posición inicial
(x,y), y suponemos que se recibe m metros más adelante en el eje x (largo), la posición final que resulta
es (x+ m*120

longitud del campo ,y). Por lo que las medidas de la posición inicial y final son indicadas como un
porcentaje de la longitud del campo. Esta forma de medir es la más beneficiosa para nuestro objetivo, ya
que lo que queremos comparar es la distancia respecto al campo, si el lanzamiento o recepción del pase
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6 Capítulo 3. Variables utilizadas

se encuentra cerca (en porcentaje) o lejos del área rival.

A partir de ahora, cuando hablemos de posiciones o distancias, están definidas de la forma anterior.
Vamos a llamar a la posición inicial del pase en el eje X (largo), I0, en el eje Y (ancho), I1, posición
final en el eje X, F0 y posición final en el eje Y, F1, con la definición anterior. Notar que las distancias y
posiciones según esta definición son positivas. Las variables utilizadas son:

Distancia media del pase a la portería rival: se han tomado como coordenadas de la portería rival,
el centro de esta: (120,40). Primero se calcula las distancia inicial y final del pase a la portería rival
mediante la fórmula: DI=

√
(I0−120)2 +(I1−40)2 y DF=

√
(F0−120)2 +(F1−40)2 Luego se

hace la media de las distancias,
DI+DF

2
Notar que siempre es positiva. Según mi intuición, un crecimiento de la distancia media del pase
implicaría una mayor probabilidad de acierto, ya es un pase más lejano a la zona de presión.

Acercamiento a la portería: está definida como la distancia desde el lanzamiento del pase a la
portería rival menos la distancia de la posición final del mismo a la portería rival. El acercamiento
es calculado mediante 1a fórmula:√

(I0−120)2 +(I1−40)2 −
√

(F0−120)2 +(F1−40)2

Si el acercamiento es positivo, implica que la posición final del pase está mas cerca de la portería
rival que la posición inicial.

Bajo mi intuición, es lógico pensar que un pase cuánto más se acerque a la portería rival, me-
nos posibilidad tiene de ser acertado, ya que los jugadores rivales se suelen encontrar mucho más
cerca del balón.

Longitud del pase: es la distancia entre la posición inicial y la posición final del pase. Se calcula
mediante la fórmula: √

(F0− I0)2 +(F1− I1)2

Notar que la longitud siempre es positiva. Cabe esperar que un pase, cuanto más largo sea, haya
menos probabilidad de acierto, ya que es complicado realizar pases largos precisos.

Largo: Variable factor que indica si un pase tiene longitud mayor que 10 (expresada como largo
en ese caso). Si el pase es de longitud menor de 10 está indicado mediante la palabra corto. Esta
variable es incluida debido a que el efecto de la longitud en la probabilidad de acierto en un
pase varía dependiendo de si es largo o corto. En el capítulo 5 explicaremos con más detalle su
influencia.

Campo: variable binaria que indica si el lanzamiento del pase se ha realizado en el campo propio
o en el campo contrario. Se indica como TRUE si se ha realizado en campo del propio o FALSE
si se ha realizado en campo rival.

Se espera que los realizados en campo rival tengan una menor probabilidad de acierto, ya que
los jugadores suelen estar mucho más presionados.

Distancia media a la portería rival del jugador que realiza el pase en el partido: en cada partido,
se calcula la posición media de cada jugador. Es decir, se realiza la media de las posiciones de las
acciones en las que un jugador participa. En esta media no sólo se cuentan los pases, se cuentan
tiros, presiones, regates... Cada acción tiene unas coordenadas, por lo que es posible hacer su
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media. Se usa una medida similar en [4]. Luego, con estas coordenadas, se calcula la distancia
mediante la fórmula:√

(posición media x−120)2 +(posición media y−40)2

Los entrenadores varían mucho los esquemas de juego dependiendo de los rivales, por lo que en
cada partido, ordenan a sus jugadores situarse en una zona diferente, es decir, la mayoría de las
acciones se sitúan sobre esa zona, que puede ser diferente en cada partido para cada jugador. Al
introducir esta variable, estamos aportando si un jugador actúa cerca o lejos de la portería rival
en ese partido. Cabe esperar que cuanto mayor sea la distancia media de un jugador respecto a la
portería rival en ese partido, mayor sea la probabilidad de acertar el pase.

Parte del cuerpo con la que el jugador golpea balón en el lanzamiento del pase: he considerado una
variable factor binaria en la que el valor uno implica que el pase ha sido realizado con el pie, ya
sea el pie izquierdo o el derecho. El valor cero indica que el pase ha sido golpeado por alguna de
las partes restantes del cuerpo como cabeza, pecho....

Se espera que cuando un pase se ha realizado con el pie, las probabilidades de acierto sean su-
periores que si se ha realizado con otra zona del cuerpo.

Presión de enemigos: variable factor binaria en la que indica si el pase ha sido realizado bajo pre-
sión de algún enemigo. Se dice que un pase está en presión si justo antes del momento exacto de
realizar el pase, el jugador que lo realiza se encuentra bajo presión, o en el tiempo que tarda el ba-
lón hasta que es recibido (aunque sea interceptado por un rival), existe una presión sobre el pasador.

Se espera que al no haber presión sobre el pasador, la probabilidad de acierto del pase sea ma-
yor que cuando el pasador se encuentra bajo presión.

Duelo aéreo: variable factor binaria que indica si el pase se ha realizado en un duelo aéreo. Un
duelo aéreo es un duelo (disputa equilibrada del balón entre dos jugadores de distinto equipo) en
el que el balón no va cerca del suelo. Esta expresado con el factor 0 si el pase no procede de un
duelo aéreo y con el factor 1 en caso contrario.

Se espera que los pases que son realizados justo después de un duelo aéreo tengan menos pro-
babilidad de ser acertados.

Jugador: es el jugador que da el pase. Se considera que la habilidad individual del jugador que da
el pase influya en la probabilidad de acierto.

3.3. Análisis descriptivo

Vamos a realizar un análisis cualitativo de todas las variables que usamos en el estudio. Notar que
la muestra de datos del Barcelona en la que estamos trabajando tiene 21776 filas, es decir 21776 pases
realizados por jugadores del Barcelona en la temporada 2020-2021. Estos no son la cantidad total de
pases ya que de algún partido no ha sido posible obtener las variables explicativas del modelo.

Pase acertado: Los pases acertados del Barcelona son:

Acertado Fallado
Número 19475 2301

Porcentaje 89.43 10.57

Notar que se aciertan muchos mas pases de los que se fallan, algo muy lógico.
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Pase peligroso: los pases peligrosos del Barcelona son:

No Peligroso Peligroso
Número 20544 1232

Porcentaje 94.34 5.66

La mayoría de pases no son peligrosos, ya que los tiros son elementos no muy frecuentes en un
partido en comparación con los pases.

Promedio de la distancia del pase a la portería rival:

Mín 1st Qu. Median Mean 3st Qu. Max Sd
6.115 41.039 54.977 57.812 72.852 123.748 22.457

Notar que la desviación típica es elevada comparada con la media, algo coherente ya que hay
pases muy lejanos y muy cercanos a la portería rival. La media aproximadamente coincide con
la longitud de mitad del largo del campo (60 con nuestra medida), ya que la mayoría de pases se
realizan cerca del centro del campo.

Acercamiento portería:

Mín 1st Qu. Median Mean 3st Qu. Max Sd
-46.406 -3.965 2.375 2.618 7.934 79.505 10.662

Notar que el acercamiento a la portería rival es muy desigual. Hay valores extremos, como el
máximo, que ocurren cuando los defensas pasan en largo, ya que se acercan mucho a la portería
rival. Este hecho se ve reflejado en la desviación típica, siendo 10.66 un valor elevado. La media
también se ve influenciada por estos valores extremos, por lo que la medida de centralidad más
recomendable es elegir la mediana. Como se observa en la tabla, la mayor parte de los pases son
hacia la portería contraria.

Longitud del pase:

Mín 1st Qu. Median Mean 3st Qu. Max Sd
0.0 10.20 14.75 17.14 21.41 87.81 10.072

Una longitud tan pequeña como 0.1 puede ser explicada en un córner cuando un jugador saca
desplazando mínimamente el balón y acude otro para continuar el ataque. Notar que también hay
pases muy largos, que al igual que en el caso anterior suelen ser de los defensas. Hay bastante
variabilidad en los datos, como se espera ya que los pases pueden ser muy diferentes en cuanto a
longitud.

Largo:

Corto Largo
Número 5189 16587

Porcentaje 23.83 76.17

Notar que la mayoría de los pases tienen una longitud de más de 10 unidades.
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Campo:

Propio Rival
Número 8167 13609

Porcentaje 37.5 62.5

Hay más porcentaje de pases en el campo contrario que en campo propio. Esto es lógico ya que en
el campo propio, si el equipo rival no presiona, es relativamente sencillo llegar a campo rival con
poca cantidad de pases. En el campo rival es donde tienes que realizar mayor cantidad de pases
para crear ocasiones de gol.

Distancia media a la portería rival del jugador que realiza el pase en el partido

Mín 1st Qu. Median Mean 3st Qu. Max Sd
56.57 57.19 60.02 62.47 65.40 91.57 6.804

Los defensas son los que tienen medias mayores, muy cerca de su propia portería. Los delanteros,
aunque parezca que solo juegan cerca de la portería rival, también interactúan en acciones defen-
sivas, y saques a balón parado, lo que implica que la posición media sea cerca del medio campo.
Como se observa en los cuantiles, la mayoría de de distancias medias se engloba en 10 unidades
(57-67).

Parte del cuerpo:

Pie Otra
Número 21297 479

Porcentaje 97.8 2.2

La mayoría de los pases son realizados con el pie ya que es de la forma en la que se mejor se
controla el balón. Solo un 2 por ciento de los pases son lanzados con otras partes del cuerpo.

Presión de los enemigos: La tabla se encuentra en el anexo A, (Tabla 1). La mayoría de los pases
se hacen sin estar estrictamente presionados, ya que los jugadores profesionales suelen hacer pases
adelantándose a la posible presión de los jugadores rivales.

Duelo aéreo: La tabla se encuentra en el anexo A, (Tabla 2). Hay muy pocos pases realizados
después de duelos aéreos ya que el juego del Barcelona no se basa en colgar centros, ni pases
largos, sino en la combinación con pases rasos.

Jugadores del Barcelona: Se han eliminado los pases de Carles Aleñá, ya que el jugador sólo ha
dado 42 pases en toda la temporada, que es una cantidad muy baja para comparar la diferencia
de probabilidad de acierto en el pase con otros jugadores. (Se fue cedido al Getafe en el mercado
invernal). La tabla se encuentra en el anexo: (Tabla 3)

Cabe notar que el Barcelona suele salir con parecidos jugadores titulares en la mayoría de partidos
y por tanto estos jugadores tienen más tiempo para realizar pases, por lo que su porcentaje de pa-
ses totales es mayor. Los jugadores que más pases realizan son: Leo Messi, Sergio Busquets, Jordi
Alba y Frenkie de Jong, titulares indiscutibles para el Barcelona de Ronald Koeman.

Notar que Junior Firpo es el jugador que más porcentaje de pases acierta y Leo Messi es el jugador
que más porcentaje de pases falla. Samuel Umtiti es el jugador menos peligroso y Leo Messi es el
jugador más peligroso.
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Capítulo 4

Modelo de regresión logística

4.1. Introducción

Estamos interesados en encontrar un procedimiento para estimar la probabilidad de que un pase sea
acertado. Vamos a considerar Y como la variable aleatoria acierto en el pase, que toma los valores:

1 si el pase ha sido acertado, es decir, el primer jugador que toca el balón después del lanzamiento
es del Barcelona.

0 si el pase ha sido fallado, es decir, el primer jugador que toca el balón después del lanzamiento
es del equipo rival o el balón sale fuera del campo.

Este tipo de problemas donde la variable respuesta es una respuesta binaria son muy comunes en estadís-
tica, por ejemplo, saber si una semilla germina o no dependiendo de la cantidad de agua que se le aporta
o por ejemplo, si se ha concedido un préstamo o no dependiendo del nivel de ingresos del solicitante.

Los problemas de este tipo se pueden analizar mediante mínimos cuadrados. Podríamos analizar la pro-
babilidad de que un pase sea acertado o fallado mediante mínimos cuadrados tal como se estudia en la
asignatura Técnicas de Regresión. Podemos suponer que se trata de una regresión lineal simple, es decir,
Y = β0+β1 ∗X1. En el caso de regresión lineal múltiple se obtiene las mismas conclusiones. Ocurre que,
al tratarse de una recta, para valores extremos del predictor, se obtienen valores de Y menores que 0 o
mayores que 1, lo que entra en contradicción con el hecho de que las probabilidades siempre están dentro
del rango [0,1] [9].

Otra razón por la que el método ordinario de mínimos cuadrados es inapropiado es debido a que el
acierto de cada pase es una variable aleatoria Bernoulli(p), y como consecuencia, su varianza depende
de p (en concreto, su varianza es p(1-p)), por lo que no se cumple la hipótesis de varianza constante (ho-
mocedasticidad), necesaria para realizar un ajuste de regresión lineal por mínimos cuadrados ordinarios
ya que cada pase tiene un coeficiente de p diferente.

Después de estas consideraciones concluimos que usar el método de mínimos cuadrados no es una opción
correcta para de analizar este tipo de problemas con variables respuesta binarias.

4.2. Modelos lineales generalizados

El modelo lineal generalizado se define como una generalización del modelo lineal cuando una o
varias condiciones no se satisfacen. En particular, esta generalización permite varianzas no constantes y
errores con distribuciones no normales, como es nuestro caso, con la distribución Bernoulli. Estos mo-
delos tienen tres componentes principales.

11
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La componente aleatoria es el vector aleatorio Y = (y1,y2 , , ,yn), cuyos elementos son independien-
tes y están distribuidos con función de distribución perteneciente a la familia exponencial (capítulo 5 de
[8]). Notar que es nuestro caso, ya que la variable respuesta tiene distribución Bernoulli(p), que se puede
escribir como :

P[X = x] = px(1− p)1−x = ex log( p
1−p)+log(1−p) x=0,1

Componente sistemática, formada por las variables explicativas (X1, , ,Xp), cada variable formada por n
observaciones. En nuestro caso está formada por las variables que considero influyentes en la dificultad
del pase. Su combinación lineal se denomina predictor [10], que se puede expresar de forma:

ηi = β0 +
p

∑
j=1

β jxi j

donde β = (β0,β1, , ,βp) es el vector de estimadores. Es decir η = Xβ , siendo X la matriz del diseño.

Función de ligadura o enlace: denotamos como µ = E(Y ) al valor de la esperanza de Y (en nuestro
caso p, probabilidad de acierto, ya que Y tiene distribución Bernoulli(p)). La función de enlace g es
una función monótona y diferenciable que relaciona µ con el predictor lineal. Esta función cumple
ηi = g(µi) ∀i ∈ (1,n). En nuestro caso usaremos g(µ) = log

(
µ

1−µ

)
[10].

4.3. Modelos logísticos

Mediante regresión lineal, nos encontrábamos el problema que a valores extremos de predicto-
res, se podrían estimar probabilidades fuera de los límites [0,1]. Para solucionar este problema, la re-
gresión logística transforma el valor devuelto por la regresión lineal o regresión lineal generalizada
(Y = β0 +β1 ∗X) empleando una función cuyo resultado está siempre comprendido entre 0 y 1. Su obje-
tivo principal es modelar como afectan las variables regresoras en la probabilidad asociada a la variable
binaria. [9]

La función que se aplica es conocida como la función sigmoide:

σ(x) =
ex

1+ ex

Notar que para todo valor de x ∈ R, su imagen pertenece al intervalo [0,1]. Para valores muy pequeños
de x, la función sigmoide tiene valores muy cercanos a 0. En cambio, para valores muy grandes de x, la
función sigmoide tiene valores cercanos a 1.

Cambiando la variable x, por la función de un modelo de regresión lineal generalizado, se obtiene la
expresión:

P[Y = 1|X1 = x1,X2 = x2, , ,Xp = xp] =
eβ0+β1∗x1+···+βp∗xp

1+ eβ0+β1∗x1+···+βp∗xp
(4.1)

La relación entre la probabilidad y una variable predictora tiene forma de curva S, como se muestra en
la figura Figura 4.1:
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Figura 4.1: Ejemplo de curva S

4.4. ODDs y ODDs Ratio

Para ajustar la función anterior mediante una tendencia lineal, la función anterior puede ser lineali-
zada por medio de lo que se conoce como transformación logística (transformación logit). En este caso,
en lugar de trabajar directamente con P[Y = 1|X1 = x1,X2 = x2, , ,Xp = xp], se trabaja con un valor trans-
formado de P[Y = 1|X1 = x1,X2 = x2, , ,Xp = xp]. Despejando β0 + β1 ∗ x1 + · · ·+ βp ∗ xp de (4.1) se
obtiene:

log
(

P[Y = 1|X1 = x1,X2 = x2, , ,Xp = xp]

1−P[Y = 1|X1 = x1,X2 = x2, , ,Xp = xp]

)
= β0 +β1 ∗ x1 + · · ·+βp ∗ xp

Como hemos detallado antes, la función de enlace es log
(

µ

1−µ

)
.

Definición. Los ODDs o razón de probabilidad de que el suceso ocurra se definen como el ratio entre la
probabilidad de que el suceso ocurra y la probabilidad de que no ocurra el suceso

ODDs =
p
q
=

p
1− p

Supóngase que la probabilidad de que un suceso ocurra es de p=0.8, por lo que la probabilidad de
que no ocurra es de q=1 - 0,8 = 0,2. En este caso los ODDs de que el suceso ocurra son 0,8

0,2 = 4, lo que
equivale a decir que se esperan que ocurran 4 sucesos por cada suceso que no ocurra. Los ODDs están
comprendidos en el intervalo [0,∞] dado que el valor de la probabilidad está acotado en el intervalo [0,1].

En nuestro caso, los ODDs son la probabilidad de que un pase sea acertado entre la probabilidad de
que un pase sea fallado.

Notar que la transformación de probabilidades a ODDs es monótona, si la probabilidad aumenta también
lo hacen los ODDs, y viceversa. Llamando α = P[Y = 1|X1 = x1,X2 = x2, , ,Xn = xp] se tiene:

∂
(

α

1−α

)
∂α

=
1

(α −1)2 > 0 ∀α ∈ (0,1)

Definición. El ODDs Ratio, OR, es la razón de los ODDs correspondiente a un suceso bajo una cierta
condición entre los ODDs del mismo suceso bajo otra condición. En nuestro caso, llamando p a la
probabilidad de acierto bajo condiciones A, p|A, q=1-p|A, y llamando p’ a la probabilidad de acierto
bajo condiciones B, es decir, p’|B, q’=1-p’|B, se tiene que:

OR =

p
q
p′
q′
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Voy a poner un ejemplo para facilitar la interpretación del término ODDs ratio. Suponer que los ODDs
de padecer gripe en España a lo largo de la vida son de 6, es decir, por cada 6 personas que tienen gripe
en España, hay una que no la tiene. En cambio, en Australia, los ODDs de padecer gripe son de 3. Por
cada 3 personas que tienen gripe a lo largo de su vida en Australia, hay una que no la tiene. Entonces
el ODDs Ratio entre España y Australia es de 6

3 = 2. Esto quiere decir que por cada dos personas que
padecen gripe en España, hay una que padece en Australia.

Por lo que ODDs Ratio es una indicación de como aumentan o disminuyen los ODDs de que ocurra
un cierto suceso dependiendo de unas determinadas condiciones.

4.5. Obtención de los estimadores

En los modelos lineales generalizados, los estimadores se calculan mediante el método de máxima
verosimilitud. Llamamos al vector de estimadores β̂ =

(
β̂0, β̂1, , ,β̂p

)
. Estos estimadores son obtenidos

numéricamente por métodos iterativos. En este trabajo no vamos a centrarnos en qué fórmulas utilizan
ya que son complejas y los cálculos los realiza un ordenador. Los cálculos y el análisis estadístico lo
realizaremos mediante el programa R.



Capítulo 5

Modelo aplicado a los datos

5.1. Modelo logístico inicial probabilidad de acierto del pase

Recordar que nuestro objetivo es predecir el logit de la probabilidad de acierto de un pase respecto a
una serie de variables predictores, es decir:

log
(

P[Y = 1|X1 = x1,X2 = x2, , ,Xn = xp]

1−P[Y = 1|X1 = x1,X2 = x2, , ,Xn = xp]

)
= β0 +β1 ∗ x1 + · · ·+βp ∗ xp

Dado que tenemos un número elevado de variables predictoras, hemos realizado el modelo de regresión
logística paso a paso con criterio AIC. El criterio de información de Akaike (AIC) es una medida de la
calidad relativa de un modelo estadístico, para un conjunto dado de datos. Como tal, el AIC proporciona
un medio para la selección del modelo [11]. AIC maneja un balance entre la bondad de ajuste del modelo
y la complejidad del modelo. He realizado varios modelos introduciendo más variables de las explicadas
anteriormente, pero resultaban no ser relevantes. Estas variables son:

Minuto del partido, esperando que cuanto más tarde sea un pase, el jugador está más cansado y
más probabilidad de errar el pase.

El número de pases en la secuencia de pases, esperando que cuanto más alto sea el número en la
misma secuencia de pases, mas posibilidad de presión del rival y menor probabilidad de acertar el
pase.

Variable factor que indica si el pase ha sido realizado justo inmediatamente después de un duelo
terrestre. (el balón va cerca del suelo)

De todas estas variables, el modelo indica que no son significativas y al eliminarlas, el AIC disminuye
notablemente.

Hacemos un primer modelo:

log
(

y
1− y

)
= β0 +β1 ∗distancia promedio del pase+β2 ∗ acercamiento+β3 ∗ longitud+β4 ∗ campo

(5.1)
+β5 ∗distancia media del jugador+β6 ∗duelo aéreo+β7 ∗parte del cuerpo+β8 ∗presión

5.1.1. Validación del modelo

Para cada pase, se tiene un valor ajustado de la probabilidad de acertar un pase por el modelo. Esta
predicción se obtiene mediante la formula:

eβ̂0+β̂1∗x1+β̂2∗x2+β̂3∗x3···+β̂8∗x8

1+ eβ̂0+β̂1∗x1+β̂2∗x2+β̂3∗x3···+β̂8∗x8

15
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Siendo x1, , ,x8 las variables regresoras del apartado anterior.

El gráfico binnedplot agrupa los datos en 100 grupos diferentes, mediante los valores ajustados. Es decir,
como hay 21776 pases, hay 21776 valores ajustados, por lo que hace 100 grupos de alrededor de 217 o
218 pases según el valor de los valores ajustados, por orden de menor a mayor. (Primer grupo, los 217
valores ajustados más pequeños, segundo grupo, los 217 siguientes valores ajustados). Para cada grupo,
calcula la media de los valores ajustados. También calcula la probabilidad de acierto de ese grupo con-
tando los pases acertados y dividiendo por los pases totales. El este gráfico binnedplot se representa la
diferencia entre la media de los valores ajustados y el porcentaje real de acierto, frente a la media de los
valores ajustados.

Para que se considere que el modelo se ajusta correctamente a los datos, aproximadamente el 95 por
ciento de los puntos deben caer dentro de las franjas negras que representan el intervalo de confianza del
95%.

Figura 5.1: Binnedplot del modelo logit (5.1)

Además los puntos no deben seguir una tendencia clara, ya que se trata de residuos, y si siguen
una tendencia, implica que el modelo no ha sido ajustado correctamente. En nuestro caso, la Figura 5.1
muestra que hay un mayor porcentaje de puntos que se encuentran fuera de los intervalos de confianza.

Representamos los residuos del modelo respecto a las variables numéricas en un binnedplot. Ahora los
grupos se hacen según las variables numéricas, es decir, por ejemplo, si representamos los residuos frente
al acercamiento, se hacen 100 grupos en orden creciente según el acercamiento. (primer grupo, los 217
que menor acercamiento tienen, segundo grupo, los siguientes 217 que menor acercamiento tienen y así
hasta el grupo 100). Se calcula la media de los valores ajustados para cada grupo. También se calcula la
probabilidad de acierto de cada grupo contando los pases acertados y dividiendo por los pases totales. Se
representa, la diferencia entre la media de los valores ajustados y el porcentaje real de acierto, frente la
media del acercamiento de cada grupo. Ver Figura 5.2.
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Figura 5.2: Binnedplot de los residuos frente a las variables numéricas del modelo (5.1)

En estos gráficos hay dos variables que no se ajustan correctamente. Representando los residuos
frente a la distancia promedio del pase y frente a la longitud se observan que hay muchos puntos que
no se encuentran dentro del intervalo de confianza. Tampoco tienen tendencia aleatoria, que es lo que se
esperaría si el modelo estuviese bien especificado.

El gráfico de los residuos frente a la distancia promedio del pase tiene una tendencia cuadrática. Es
decir, la relación del modelo logit de acierto del pase no es lineal respecto a la variable distancia prome-
dio del pase. Por ello, añadimos el término cuadrático al modelo.

Se puede distinguir que los puntos menores de 10 unidades de longitud siguen una tendencia diferente
a los puntos que tienen más de 10 unidades de longitud. Para evitar esa tendencia y conseguir que el
modelo se ajuste correctamente a los datos, introducimos la variable largo en el modelo (variable fac-
tor que indica que un pase tiene más de 10 unidades de longitud), así como su interacción con la longitud.

5.2. Modelo logístico corregido probabilidad acierto del pase

El modelo queda:

log
(

y
1− y

)
= β0 +β1 ∗distancia promedio+β2 ∗distancia promedio2 +β3 ∗ acercamiento+

β4 ∗ longitud+β5 ∗ largo+β6 ∗ campo+β7 ∗distancia media del jugador+ (5.2)

β8 ∗duelo aéreo+β9 ∗parte del cuerpo

+β10 ∗presión+β11 ∗ longitud si el pase es largo
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Resumen del modelo:

Figura 5.3: Resumen del modelo logit (5.2)

Como se observa en el resumen (Figura 5.3), todas las variables son muy significativas a la hora de
predecir si un pase ha sido acertado o fallado.

La exponencial de los coeficientes está muy relacionado con el ODDs ratio. Si aumentáramos una uni-
dad el acercamiento (llamando al acercamiento X3), y si el resto de variables se mantuvieran constantes,
disminuirían los ODDs de acertar el pase en 0.894 veces más que si no se aumentara esa unidad del
acercamiento. Esto es debido a que:

OR =
eβ̂3∗(X3+n)+β̂1∗(X1)+...

eβ̂3∗(X3)+β̂1∗(X1)+...
= enβ̂3 = (si n=1) = e−0,11246 = 0,894

De hecho, en este caso, el ODDs Ratio entre aumentar una unidad el acercamiento y no, coincide con la
exponencial del coeficiente acercamiento.

Aplicando el mismo razonamiento, si golpeáramos el balón con el pie, es decir el coeficiente del predic-
tor parte es uno, y mantenemos constantes el resto de predictores, aumentarían los ODDs de acertar el
pase en e1,857 =6.409 veces más que si se golpeara con otra parte del cuerpo.

En el caso de la distancia promedio a la portería, si aumentamos en n unidades la distancia, (llaman-
do la distancia X1) los ODDs Ratio varían de este modo:

eβ̂1∗(X1+n)+β̂2∗(X1+n)2+β̂3∗(X3)+...

eβ̂1∗(X1)+β̂2∗(X1)2+β̂3∗(X3)+...
=

eβ̂1∗(X1)+nβ̂1+β̂2∗(X1)
2+2nβ̂2∗(X1)+n2β̂2+β̂3∗(X3)+...

eβ̂1∗(X1)+β̂2∗(X1)2+β̂3∗(X3)+...
= enβ̂1e2nβ̂2∗X1en2β̂2=
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= (si n=1) = 1,132∗ e−0,0016∗X1

Notar que este número es positivo para números menores que 77. Es decir si la distancia es menor que
77, si aumentamos la distancia en una unidad, los ODDs de que el pase fuera acertado aumentarían en
1,132∗ e−0,0016∗X1 veces. Notar que el porcentaje de pases con distancia promedia del pase menor de 77
es del 80%.

En el caso de la longitud ocurre una cosa diferente. Si el pase tiene una longitud menor de 10 unidades y
aumentamos n unidades tal que el pase nuevo no pasa de 10 unidades, el ODDs Ratio es e0,54074 = 1,717,
es decir si aumentamos una unidad, los ODDs de acierto del pase aumentan se multiplican por 1,717.
En cambio, si tenemos X4 unidades de longitud (<10) y aumentamos n unidades (suficientes para que el
pase fuera largo), el ODDs Ratio es: (llamamos X4 a la variable longitud y a su coeficiente del modelo
β4, tomando β5 al coeficiente de largo si un pase es largo, y llamandoβ11 al coeficiente de como aumenta
la longitud si un pase es largo)

OR =
eβ̂4∗(X4+n)+β̂5+β̂11∗(X4+n)+...

eβ̂4∗(X4)+...
= enβ̂4eβ̂5eβ̂11(X4+n) = (si n=1) = 202,06∗ e−0,546(X4+1)

Si el pase tiene X4 unidades de longitud (>10 para que sea considerado pase largo) al aumentar n unida-
des, se obtiene un ODDs Ratio de:

eβ̂4∗(X4+n)+β̂5+β̂11∗(X4+n)+...

eβ̂4∗(X4)+β̂5+β̂11∗(X4)+...
= enβ̂4enβ̂11 = en(β̂4+β̂11) = en∗−0,0048 ≈ 1

Es decir, a partir de 10 metros en los pases, la longitud no afecta a la probabilidad del pase. Notar que la
mayor longitud de un pase es 87.

Los coeficientes de los ODDs Ratio mayores que uno señalan que un aumento de la variable regresora,
aumenta los ODDs de acertar el pase (es decir, la variable dependiente). En cambio, un coeficiente del
Odd Ratio menor de 1 indican que un aumento de la variable regresora (de los predictores), disminuye
los ODDs de acertar el pase.

Notar que excepto la longitud, las variables predictoras varían los ODDs disminuyendo y aumentan-
do como se esperaba. Según el modelo, un aumento de la longitud aumenta la probabilidad de acertar
un pase hasta un punto en el que se mantiene constante. La posible explicación es que la mayoría de
los pases entre los defensas, o entre los centrocampistas son muy largos, ya que el objetivo es cambiar
el balón de una banda a otra y los jugadores se encuentran muy separados. Pero notar que también son
muy seguros, ya que son hechos desde unas posiciones defensivas. En cambio, cuando se realizan pases
cortos, es debido a que están cerca del área rival, y los jugadores están muy presionados por los rivales,
por lo que necesitan combinarse para crear peligro, reduciendo la probabilidad de acierto en el pase.

5.2.1. Validación del modelo

Vamos a comprobar si con el modelo actual se ha solucionado las tendencias que se representaban en
el caso anterior. Representamos en un binnedplot los residuos frente a los valores ajustados: (Figura 5 en
el anexo B) En nuestro caso, el 95% de los datos se engloban dentro de los intervalos de confianza, pero
los datos siguen una pequeña tendencia, que la solucionaremos con el modelo incluyendo el jugador que
ha realizado el pase.

Representando los residuos del modelo respecto a las variables numéricas en un binnedplot, (agrupando
en grupos de 217 observaciones en orden de la variable numérica de cada gráfico) , (Figura 6 en el anexo
B), se observa que la mayoría de los puntos se encuentran dentro de los intervalos de confianza. Además,
no presentan ninguna tendencia.
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5.2.2. Curva ROC

Una vez que tenemos un modelo que se ajusta correctamente a los datos, procedemos a validar su
capacidad de predicción. Esto lo haremos mediante la curva ROC.

Los modelos de regresión logística nos proporciona el valor estimado de P(Y = 1| X = Xi) para el
pase i, pero no nos dice si el pase es acertado o fallado. Solo nos indica la probabilidad de ocurrencia
que le asigna. Debemos ser nosotros quienes decidamos que un pase es fallado o acertado a partir de esa
probabilidad. Por lo que una cuestión clave es decidir a partir de qué valor de corte, c, decidimos que el
el pase es acertado si P(Y = 1|X = Xi) ≥ c y que es fallado si P(Y = 1|X = Xi) < c.

Definición. El concepto sensibilidad, mide la probabilidad de que un pase acertado sea clasificado como
que un pase acertado

Definición. El concepto especificidad, mide la probabilidad de que un pase fallado sea clasificado como
que un pase fallado.

La curva ROC (Receiver Operating Characteristic) representa la 1-especificidad (pases que se clasi-
fiquen fallados cuando han sido acertados) frente a la sensibilidad para cada posible valor de c. Así, el
área bajo la curva ROC (AUC) proporciona una medida global de la capacidad del modelo para separar
los pases que son acertados frente a los que son fallados [12]. A partir de 0.7 en el AUC se considera que
las predicciones del modelo son aceptables.

Figura 5.4: Curva Roc modelo logit 5.2

El valor del AUC es de 0,883 > 0,7, por lo que el modelo se considera aceptable y tiene buena
capacidad predictiva.
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5.3. Modelo logístico probabilidad de acierto de un pase incluyendo los
jugadores

Aún teniendo el modelo anterior (5.2) buena capacidad predictiva, el gráfico binnedplot de los re-
siduos frente a los valores ajustados presenta una ligera forma no aleatoria (Figura 5 del anexo B). Por
ello vamos a introducir al modelo anterior la variable jugadores, ya que cada jugador puede tener una
habilidad distinta para hacer un pase.

El modelo es:

log
(

y
1− y

)
= β0 +β1 ∗distancia promedio+β2 ∗distancia promedio2 +β3 ∗ acercamiento

+β4 ∗ longitud+β5 ∗ largo+β6 ∗ campo+β7 ∗duelo aéreo+β8 ∗parte del cuerpo+ (5.3)

β9 ∗presión+β10 ∗ longitud si el pase es largo+β11 ∗ jugador

Es decir, nuestro modelo es un modelo de regresión logística con efecto fijo debido al jugador. Notar
que en este modelo hemos eliminado la distancia media de los jugadores respecto a la portería rival ya
que la variable no resultaba ser significativa. Esto es lógico ya que la influencia de los jugadores ya está
corregida mediante la variable jugadores.

El resumen de este modelo se muestra en la Figura 7 del anexo B

Hemos comparado los dos modelos, 5.2 y 5.3 mediante un test anova y resulta que la variable juga-
dor sí es relevante en la predicción del acierto del pase, por lo que es correcto incluirla en el modelo.
(p-valor=2,08 ∗ 10−10) Para cada jugador, si hacemos la exponencial del coeficiente que le acompaña,
obtenemos el ODDs Ratio del pase entre ese jugador y Ansu Fati (primero en orden alfabético). Ansu
Fati tiene el coeficiente 0, ya que respecto a él son comparados los demás jugadores. Notar que el AIC=
9730 disminuye en este modelo en comparación con el anterior. Eso nos da una pista de que este modelo
se ajusta más a los datos. Aún así, vamos a comprobarlo dibujando el gráfico binned de los residuos
frente a los valores ajustados (Figura 8 del anexo B).

Notar que más del 95 por ciento de los puntos se incluyen dentro del intervalo de confianza, es de-
cir, solo hay 5 o menos puntos fuera de tal intervalo y se ha eliminado la tendencia que se intuía. Este
modelo predice mejor la probabilidad de acierto del pase.

Representando la curva ROC de este modelo: (Figura 9 del anexo B) Se observa una buena capacidad
predictiva. Notar también que el AUC= 0.885 se ha incrementado respecto al modelo anterior, suponien-
do una mejora en la predicción.

Una vez comprobado que el modelo cumple todos los requisitos, fijamos este modelo como modelo
final para predecir la probabilidad de acierto de los pases del Barcelona en la temporada 2020-2021.
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Capítulo 6

Análisis de resultados

6.1. Diferencias entre jugadores

Para analizar la habilidad de los jugadores respecto de los pases podemos hacerlo a partir de las es-
timaciones de sus efectos fijos en el modelo (5.3) o, de manera (aproximadamente) equivalente, a partir
de las predicciones que obtenemos para ellos en el modelo (5.2). Elegimos esta segunda opción porque
nos será más sencillo hacer su interpretación cuando incluyamos el modelo para peligrosidad.

Así, a partir del modelo (5.2) que calcula una predicción de la probabilidad de acierto o fallo del pase,
nuestro objetivo es ver qué jugadores del Barcelona son mejores pasadores y qué jugadores son peores
pasadores.

Pero claro, el acierto o fallo del pase depende de las variables explicadas en el apartado anterior: es
menos probable acertar un pase en el que el acercamiento a portería es elevado, o es más difícil acertar
un pase si se efectúa con otra parte del cuerpo que no sean los pies. Nuestro criterio para decidir quién
es mejor o peor pasador es ver qué jugador tiene más probabilidad de acierto en los pases que la media
de las probabilidades estimadas (valores ajustados del modelo (5.2)) de los pases de ese jugador.

Pongo un ejemplo:

Supongamos que un jugador acierta 3 pases y falla 1. Entonces la probabilidad de acierto del jugador es

de
3

3+1
= 0,75. Supongamos que mediante el modelo anterior (5.2), hemos predicho que la probabi-

lidad de los pases es: 0.75, 0.5, 0.25, 0.75. Es decir, la probabilidad media estimada de este jugador de

acertar los pases es de
0,75+0,5+0,25+0,75

4
= 0,5625. Como este jugador tiene más probabilidad de

acierto que la predicha por el modelo, se puede decir que es buen pasador, ya que acierta más pases de
los que debería acertar debido a las características de los pases.

En cambio, supongamos que otro jugador acierta y falla exactamente los mismos pases, es decir, acier-

ta 3 pases y falla 1. La probabilidad de acierto del jugador es
3

3+1
= 0,75, la misma que en el caso

anterior. Supongamos que las probabilidades de acierto de esos estimadas por el modelo (5.2) son: 0.9,

0.9, 0.75, 0.6. Calculando la media de las probabilidades estimadas es:
0,9+0,9+0,75+0,6

4
= 0,7875.

Como tiene un porcentaje de acierto más bajo que el porcentaje estimado, se deduce que el jugador es
peor pasador que lo esperado. Cuanto más positiva sea la diferencia entre el valor real y el valor esperado,
mejor pasador es, ya que realiza más pases acertados de los que debería realizar. Cuanto más negativa
sea la diferencia entre estos dos valores, el jugador falla más pases de los que debería fallar.

23
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La Figura 6.1 muestra el valor real de cada jugador frente al valor medio estimado por el modelo
(5.2):

Figura 6.1: Comparación jugadores

Una primera lectura del gráfico se obtiene al mirar el eje de las X, que es el indicativo de la difi-
cultad de un pase. Valores pequeños indican que el pase es difícil y valores grandes indican que el pase
es sencillo. Así vemos, que Leo Messi realiza con bastante diferencia, los pases más difíciles, ya que
la predicción de la probabilidad de acierto de sus pases es la más baja. Además se encuentra alejado
de Ousmane Dembelé, siguiente jugador que realiza pases más difíciles. Notar que es Samuel Umtiti el
jugador que realiza pases más sencillos.

Mirando los dos ejes, nos damos cuenta que el jugador que tiene menos probabilidad de acierto en
los pases es Leo Messi, pero también tiene menor probabilidad estimada de acertar, ya que sus pases son
de gran dificultad. En cambio, jugadores como Martin Braithwaite o Francisco Trincao, tienen probabi-
lidades de acierto parecidas a las de Messi, pero su probabilidad estimada de acierto es muy superior, lo
que indica que fallan muchos más pases de los que deberían fallar. Los jugadores que mas probabilidad
de acierto tienen son los defensores como Samuel Umtiti, Gerard Piqué o Junio Firmo, ya que juegan
en zonas muy defensivas y no arriesgan casi con la pelota. La diferencia entre el valor real y el valor
esperado por el modelo se muestra en la Figura 6.2.
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Figura 6.2: Diferencia entre probabilidad real y estimada por jugador

En este gráfico, cuanto mayor sea la diferencia entre la probabilidad real y la probabilidad estimada
implica que eres mejor pasador, es decir que aciertas más pases de los que deberías debido a la dificultad
de ellos mismos. El mejor pasador según la definición dada antes del Barcelona es Junior Firpo, seguido
por Antoine Griezman y Frenkie De Jong. Los peores pasadores según la definición dada antes del
Barcelona son Martin Braithwaite, Francisco Trincao y Philipe Coutinho. Notar que Junior Firpo, Martin
Braithwaite, Francisco Trincao o Philipe Coutinho tienen un número de pases muy reducido, ya que no
son importantes para el equipo y sólo juegan en determinadas ocasiones. Esto ha podido influir a la hora
de predecir la probabilidad estimada ya que se ha tenido que realizar con un número pequeño de datos.
Dentro de los jugadores que juegan habitualmente, (tienen más de 500 pases), los mejores pasadores son
Antoine Griezmann y Frenkie De Jong. Los peores pasadores son Pedri y Ousmane Dembelé.

6.2. Relación entre dificultad y peligrosidad

En esta sección vamos a ver qué jugadores son peligrosos y compararlos con la dificultad de sus
pases que realiza. Recordar que hemos definido pase peligroso si es uno de los tres últimos pases antes
de un tiro. Nuestro objetivo no es averiguar si un pase es peligroso o no dependiendo de las características
del pase, sino deducir qué jugadores realizan más pases peligrosos y qué jugadores realizan pocos pases
peligrosos dependiendo de la distancia media del jugador a la portería rival (definida en las variables
explicativas). Es decir, queremos ver las diferencias entre los jugadores quitando la influencia de dónde
juega un jugador de media (ya que si un jugador juega de media cerca de la portería rival, se espera que
sea más probable que realice más pases peligrosos que otro jugador que juega de media a una distancia
mayor de la portería rival). Usamos un modelo logístico ya que la peligrosidad de un pase está definida
como una variable binaria. Llamando Y a la peligrosidad del pase, el modelo es:

log
(

P[Y = 1|X1 = x1]

1−P[Y = 1|X1 = x1]

)
= β0 +β1 ∗distancia media del jugador a la portería rival (6.1)

Notar que no incluimos los jugadores en el modelo ya que al igual que en el apartado anterior queremos
ver las diferencia que existen entre ellos.

Validamos el modelo mediante un binnedplot de los residuos respecto la variable numérica distancia
media del jugador a la portería rival (para ver si necesitamos introducir al modelo términos cuadráticos)
(Figura 10 del anexo B)
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Cómo se observa, no presentan ninguna tendencia por lo que no incluimos más términos a nuestro
modelo.

El resumen de este modelo se muestra en la Figura 11 del anexo B

Notar que el coeficiente de la distancia media del jugador es negativo, es decir, cuanto mayor sea la
distancia media de un jugador a la portería rival, es menos probable que el pase sea peligroso.

Para ver la diferencia entre los jugadores vamos a usar la misma técnica que usamos con el modelo
(5.2). Para cada pase se tiene un valor ajustado de la probabilidad de que un pase sea peligroso depen-
diendo de la distancia media del jugador a la portería rival. Para cada jugador hago la media de los valores
ajustados que corresponden a sus pases. Y calculo el porcentaje real de pases peligrosos dividiendo el
número de pases peligrosos entre el número de pases totales. Representando la diferencia entre el valor
real y el valor ajustado frente a los valores ajustados en la Figura 6.3.

Figura 6.3: Diferencias entre la peligrosidad de los jugadores

En primer lugar, el eje X indica la peligrosidad estimada de un pase según el modelo (6.1). El juga-
dor más peligroso es Leo Messi seguido muy de cerca por Ansu Fati y Antoine Griezmann y el menos
peligroso es Samuel Umtiti seguido de Gerard Piqué.

Si la diferencia entre el valor real y el predicho es positiva implica que haces más pases peligrosos
en comparación con los que deberías hacer según el modelo (6.1), es decir, debido a la posición en la que
un jugador juega de media. (recogida en la variable distancia media a la portería rival). Ansu Fati es el
jugador más peligroso en comparación con lo que se esperaba según el modelo. En cambio, Ilaix Moriba
es el jugador menos peligroso.

En la Figura 6.4 se representa en el eje X la diferencia entre la probabilidad de acierto de un jugador
menos la probabilidad estimada y en el eje Y los valores correspondientes a su peligrosidad.
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Figura 6.4: Comparación de la dificultad y la peligrosidad de los jugadores

Al observar el gráfico, en primer lugar nos damos cuenta que cuanto más a la derecha se encuentre un
jugador implica que es mejor pasador. Por el contrario, si un jugador se encuentra a la izquierda implica
que es un mal pasador. Cuánto más arriba se encuentre un jugador, implica que es un jugador peligroso,
y por el contrario, si un jugador se encuentra en la parte baja del gráfico implica que es poco peligroso.
Por tanto, los mejores jugadores en cuanto a la relación acierto de pase-peligrosidad se encuentran en
el cuadrante de arriba a la derecha. Antoine Griezmann es el jugador que es mejor pasador a la vez que
es peligroso. Otros, como Leo Messi, es un jugador muy peligroso, pero es un pasador normal, ya que
se espera que acierte parecidos pases a los que acierta en realidad. En cambio Philipe Coutinho es un
jugador que falla muchos más pases de los que le corresponde (mal pasador) y además es mucho menos
peligroso de lo que debería, por lo que concluimos que es un mal jugador en este aspecto.

6.3. Conclusión

Hemos sido capaces de encontrar un modelo de regresión logística para la probabilidad de éxito de
los pases del Barcelona con buena capacidad predictiva. Notar que hemos visto que los jugadores tienen
mucha importancia en nuestro modelo, por lo que sí que es importante quién realiza el pase.

Después hemos realizado un modelo auxiliar para deducir qué jugadores son peligrosos y cuáles no
dependiendo de la distancia a la portería rival.

Gracias a estos modelos, podemos identificar jugadores más o menos precisos y más o menos peligrosos
quitando la influencia de las variables regresoras de los modelos.
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Anexos

A. Tablas de las variables explicativas

Sin presión Con presión
Número 19181 2595

Porcentaje 88.08 11.92

Cuadro 1: Tablas de pases realizados sin presión y con presión

No duelo aéreo Duelo aéreo
Número 21612 164

Porcentaje 99.25 0.75

Cuadro 2: Tablas de pases realizados tras un duelo aéreo

29
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Número de pases Porcentaje del total Pases acertados(%) Pases peligrosos(%)
Junior Firpo 176 0.81 95.5 4.5
Sergino Dest 1042 4.79 90.5 4.6

Francisco Trincao 329 1.51 83 8.8
Ricki Puig 413 1.90 91.5 6.8

Pedri 1448 6.65 87.2 7.2
Ansu Fati 115 0.53 86.1 11.3

Ronald Araujo 636 2.92 92.1 2
Philiphe Coutinho 331 1.52 84.9 5.4

Ilaix Moriba 363 1.67 91.7 3.9
Óscar Mingueza 1328 6.10 92.7 2.4

Martin Braithwaite 173 0.79 82.7 9.8
Sergio Busquets 2261 10.38 92.2 4.9

Jordi Alba 2325 10.68 85.3 5.7
Gerard Piqué 1032 4.74 94.7 1.6

Ousmane Dembelé 854 3.92 83.4 10.7
Antoine Griezmann 1068 4.90 89.1 9.6

Samuel Umtiti 382 1.75 96.1 1
Leo Messi 2034 9.34 81.9 10.6

Sergi Roberto 761 3.49 90.3 3.9
Clément Lenglet 1977 9.08 93.2 2.6
Miralem Pjanić 517 2.37 90.7 8.5
Frenkie de Jong 2211 10.15 92.2 5

Cuadro 3: Tabla del número de pases por jugador, porcentaje del total de pases realizados por el jugador,
porcentaje de pases acertados y porcentaje de pases peligrosos

B. Gráficas de los modelos

Figura 5: Binnedplot del modelo logit (5.2) residuos frente valores ajustados
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Figura 6: Binnedplot de los residuos del modelo (5.2) frente a las variables dependientes
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Figura 7: Resumen del modelo logit (5.3)
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Figura 8: Binnedplot modelo logit (5.3) entre residuos y valores ajustados

Figura 9: Curva Roc modelo logit (5.3)
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Figura 10: Gráfico binned de los residuos del modelo (6.1) frente a la distancia media del jugador a la
portería

Figura 11: Resumen del modelo (6.1)
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C. Ejemplo de fila de datos
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Figura 12: Ejemplo base de datos de un partido

D. Programas de java

D.1. Filtrado.java

package segunda;

import java.io.File;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Scanner;

public class filtrado {
public static String primeralinea;
public static void filtro(String nombreFich) {

File fentrada = new File(nombreFich);
File ffiltrado = new File("realmadrid-barcelonafiltrado.csv");
File fsalida = new File("filtrado.csv");
Scanner in = null;
PrintWriter out = null;
String aux = "";
int i = 0;
ArrayList<String> auxlis1 = new ArrayList<>();
ArrayList<Integer> auxlis2 = new ArrayList<>();
try {

try {
in = new Scanner(ffiltrado);
out = new PrintWriter(fsalida);
primeralinea = in.nextLine();
primeralinea = primeralinea + ";";
while (aux.equals("pass/shot_assist") == false) {

aux = Pase.tipo(i, primeralinea);
auxlis1.add(aux);
i++;

}
in = new Scanner(fentrada);
String linea = in.nextLine();
linea = linea + ";";
i = 0;
out.print("index;");
int k = 1;
while (aux.equals("shot/freeze_frame/15/player/id") == false) {

aux = Pase.tipo(i, linea);
if (auxlis1.contains(aux)) {

auxlis2.add(i);
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out.print(aux + ";");
}
i++;

}
out.println("");
while (in.hasNext()) {

out.print(k + ";");
linea = in.nextLine();
linea = linea + ";";
for (int j = 0; j < auxlis2.size(); j++) {

out.print(Pase.tipo(auxlis2.get(j), linea));
out.print(";");

}
out.println("");
k++;

}
} finally {

if (in != null) {
in.close();

}
if (out != null) {

out.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

}
}

}

D.2. Peligrosidad.java

package segunda;
import java.io.File;
import java.io.PrintWriter;
import java.util.Scanner;
public class Peligrosidad {

static String primeralinea;
public static void peligro(String nombreFich) {

File fentrada = new File(nombreFich);
File fsalida = new File("__auxiliarpeligro.csv");
Scanner in = null, in1 = null;
PrintWriter out = null;
String linea = "", linea1 = "", cont1 = "", cont2, tipo1 = "", tipo2 = "";
boolean aux = false;
try {

try {
in = new Scanner(fentrada);
out = new PrintWriter(fsalida);
primeralinea = in.nextLine();
out.println(primeralinea + "peligrosidad;");
int j;
int contador = 0;
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while (in.hasNext()) {
contador++;
linea = in.nextLine();
out.print(linea);
if (Pase.pruebatipo(3, linea, primeralinea).equals("30") &&

Pase.pruebatipo(7, linea, primeralinea).equals("217")) {
in1 = new Scanner(fentrada);
in1.nextLine();
for (int i = 0; i < contador; i++) {

in1.nextLine();
}
aux = false;
j = 0;
while (aux == false) {

if (in1.hasNextLine()) {
linea1 = in1.nextLine();
if (Pase.pruebatipo(3, linea1,

primeralinea).equals("16")) {
if (Pase.pruebatipo(7, linea1,

primeralinea).equals("217")) {
aux = true;
out.print("1" + ";");

} else {
out.print("0" + ";");

}
}
if (Pase.pruebatipo(3, linea1,

primeralinea).equals("30")) {
j++;

}
if (j == 3) {

aux = true;
out.print("0" + ";");

}
} else {

aux = true;
out.print("0;");

}
}
out.println();

} else {
out.println("0;");

}
}

} finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

}
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}
}

D.3. Duelo.java

package segunda;

import java.io.File;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;

public class duelos {

static String primeralinea;

public static void duelo(String nombreFich) {
File fentrada = new File(nombreFich);
File fsalida = new File("__auxiliarduelo.csv");
Scanner in = null;
PrintWriter out = null;
String linea = "", linea1 = "", cont1 = "", cont2, tipo1 = "", tipo2 = "";
boolean aux = false;
try {

try {
in = new Scanner(fentrada);
out = new PrintWriter(fsalida);
primeralinea = in.nextLine();
out.println(primeralinea + "dt;da;ds;");
int i = 0;
while (in.hasNext()) {

aux = false;
linea = in.nextLine();
out.print(linea);
if (Pase.pruebatipo(3, linea, primeralinea).equals("4")) {

tipo1 = Pase.pruebatipo(29, linea, primeralinea);
tipo2 = Pase.pruebatipo(31, linea, primeralinea);
cont1 = Pase.pruebatipo(0, linea, primeralinea);

}
if (Pase.pruebatipo(3, linea, primeralinea).equals("30")) {

aux = false;
cont2 = Pase.pruebatipo(0, linea, primeralinea);
if (tipo2.equals("10")) {

if (Integer.parseInt(cont2) - Integer.parseInt(cont1) == 1
&& cont1 != null) {
out.println("0;1;1;");
tipo2 = "";
tipo1 = "";
aux = true;

}
}
if ((tipo1.equals("1") || tipo1.equals("4"))) {

if (Integer.parseInt(cont2) - Integer.parseInt(cont1) <= 3
&& cont1 != null) {
out.println("1;0;1;");
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tipo2 = "";
tipo1 = "";
aux = true;

}
}
if ((tipo1.equals("13") || tipo1.equals("16"))) {

if (Integer.parseInt(cont2) - Integer.parseInt(cont1) <= 3
&& cont1 != null) {
out.println("1;0;0;");
tipo2 = "";
tipo1 = "";
aux = true;

}
}
if (aux == false) {

out.println("0;0;0;");
}

} else {
out.println("0;0;0;");

}
}

} finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

}
}

}

D.4. Posicion.java

package segunda;

import java.io.File;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;

public class Posicion {

static String primeralinea;

public static void posi(String nombreFich) {
File fentrada = new File(nombreFich);
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File fsalida = new File("__auxiliar__posi.csv");
Scanner in = null;
String linea = null, aux = null, aux1 = null;
double aux4;
boolean fin = false;
double numero;
List<Double> lista = new ArrayList<>();
HashMap<String, List<Double>> mapax = new HashMap<>();
HashMap<String, Double> mapafinalx = new HashMap<>();
HashMap<String, List<Double>> mapay = new HashMap<>();
HashMap<String, Double> mapafinaly = new HashMap<>();
try {

in = new Scanner(fentrada);
primeralinea = in.nextLine();
while (in.hasNext()) {

linea = in.nextLine();
aux = Pase.pruebatipo(10, linea, primeralinea);
if (aux.equals("") == false) {

if (mapax.containsKey(aux)) {
lista = new ArrayList<>();
lista = mapax.get(aux);
String aux2 = Pase.pruebatipo(14, linea, primeralinea);
if (aux2.equals("") == false) {

numero = Double.parseDouble(Posicion.puntocoma(aux2));
lista.add(numero);

}
} else {

lista = new ArrayList<>();
String aux2 = Pase.pruebatipo(14, linea, primeralinea);
if (aux2.equals("") == false) {

numero = Double.parseDouble(Posicion.puntocoma(aux2));
lista.add(numero);
mapax.put(aux, lista);

}
}

}
aux = Pase.pruebatipo(10, linea, primeralinea);
if (aux.equals("") == false) {

if (mapay.containsKey(aux)) {
lista = new ArrayList<>();
lista = mapay.get(aux);
String aux2 = Pase.pruebatipo(15, linea, primeralinea);
if (aux2.equals("") == false) {

numero = Double.parseDouble(Posicion.puntocoma(aux2));
lista.add(numero);

}
} else {

lista = new ArrayList<>();
String aux2 = Pase.pruebatipo(15, linea, primeralinea);
if (aux2.equals("") == false) {

numero = Double.parseDouble(Posicion.puntocoma(aux2));
lista.add(numero);
mapay.put(aux, lista);

}
}

}
}

} catch (Exception e) {
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System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

} finally {
if (in != null) {

in.close();
}

}
mapafinalx = Posicion.media(mapax);
mapafinaly = Posicion.media(mapay);

try {
PrintWriter out = new PrintWriter(fsalida);
in = new Scanner(fentrada);
out.print(in.nextLine());
out.println("mediax;mediay;");
while (in.hasNext()) {

linea = in.nextLine();
if (Pase.pruebatipo(4, linea, primeralinea).equals("Pass")) {

out.print(linea);
aux = Pase.pruebatipo(10, linea, primeralinea);
aux = Posicion.comapunto(aux);
aux4 = mapafinalx.get(aux);
aux1 = String.valueOf(aux4);
out.print(aux1 + ";");
aux = Pase.pruebatipo(10, linea, primeralinea);
aux = Posicion.comapunto(aux);
aux4 = mapafinaly.get(aux);
aux1 = String.valueOf(aux4);
out.print(aux1 + ";");
out.println();

}
}
out.flush();

} catch (Exception e) {
System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

} finally {
if (in != null) {

in.close();
}

}
}

public static String puntocoma(String j) {
String aux1 = "";
String aux2;
String concat;
char a;
for (int i = 0; i < j.length(); i++) {

a = j.charAt(i);
aux2 = String.valueOf(a);
if (aux2.equals(",") == false) {

concat = aux1.concat(aux2);
aux1 = concat;
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} else {
concat = aux1.concat(".");
aux1 = concat;

}
}
return aux1;

}

public static String comapunto(String j) {
String aux1 = "";
String aux2;
String concat;
char a;
for (int i = 0; i < j.length(); i++) {

a = j.charAt(i);
aux2 = String.valueOf(a);
if (aux2.equals(".") == false) {

concat = aux1.concat(aux2);
aux1 = concat;

} else {
concat = aux1.concat(",");
aux1 = concat;

}
}
return aux1;

}

public static HashMap<String, Double> media(Map<String, List<Double>> m) {
HashMap<String, Double> mapa = new HashMap<>();
List<Double> lista = new ArrayList<>();
double suma = 0;
for (String x : m.keySet()) {

lista = new ArrayList<>();
lista = m.get(x);
for (int i = 0; i < lista.size(); i++) {

suma = suma + lista.get(i);
}
suma = suma / lista.size();
mapa.put(x, suma);

}
return mapa;

}
}

D.5. Pase.java

package segunda;

import java.io.*;
import java.util.*;

public class Pase {

static String primeralinea;

public static void ordenar(String nombreFich) {
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File fentrada = new File(nombreFich);
File fsalida = new File("pase.csv");
Scanner in = null;
String linea = "", aux = "", aux0 = "", aux1 = "";
PrintWriter out = null;
boolean fin = false;
ArrayList<String> auxlis1 = new ArrayList<>();
ArrayList<String> auxlis2 = new ArrayList<>();
ArrayList<String> auxlis3 = new ArrayList<>();
int k = 0, min0, min1, seg0, seg1, dec0, dec1;
try {

try {
in = new Scanner(fentrada);
out = new PrintWriter(fsalida);
primeralinea = in.nextLine();
out.println(primeralinea +

"timestamp;minute;possession_team/id;possession_team/name;team/id;team/name;"+
"player/id;player/name;pass/recipient/id;pass/recipient/name;" +

"numero;tiempo;" + "under_pressure;" + "acertado-fallado;" +
"location0;" + "location1;" + "endlocation0;" +
"endlocation1;" + "parte");

while (in.hasNext()) {
linea = in.nextLine();
if (Pase.pruebatipo(4, linea, primeralinea).equals("Pass")) {

aux = Pase.pruebatipo(1, linea, primeralinea);
auxlis3.add(aux);
out.print(linea);
aux = Pase.pruebatipo(1, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(2, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(5, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(6, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(7, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(8, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(10, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(11, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(16, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(17, linea, primeralinea);
out.print(aux + ";");
aux = Pase.pruebatipo(8, linea, primeralinea);
auxlis1.add(aux);
if (auxlis1.size() >= 2) {

if (auxlis1.get(auxlis1.size() -
1).equals(auxlis1.get(auxlis1.size() - 2))) {
fin = true;

} else {
fin = false;

}
}
aux = Pase.pruebatipo(20, linea, primeralinea);
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if (aux.equals("") && fin == true) {
} else {

fin = false;
}
aux = Pase.pruebatipo(25, linea, primeralinea);
auxlis2.add(aux);
if (auxlis2.size() >= 2) {

if (auxlis2.get(auxlis1.size() - 2).equals("") && fin ==
true) {
fin = true;

} else {
fin = false;

}
}
if (fin == true) {

k++;
out.print(k);
out.print(";");
if (auxlis3.size() >= 2) {

aux = Pase.reloj(auxlis3);
out.print(aux);
out.print(";");

}
} else {

out.print("0;");
out.print("0;");
k = 0;

}
if (Pase.pruebatipo(24, linea, primeralinea).equals("")) {

out.print("false;");
} else {

out.print("true;");
}
if (Pase.pruebatipo(25, linea, primeralinea).equals("")) {

out.print("1;");
} else {

out.print("0;");
}
String aux23;
aux23 = Pase.pruebatipo(14, linea, primeralinea);
aux23 = Posicion.puntocoma(aux23);
out.print(aux23 + ";");
aux23 = Pase.pruebatipo(15, linea, primeralinea);
aux23 = Posicion.puntocoma(aux23);
out.print(aux23 + ";");
aux23 = Pase.pruebatipo(18, linea, primeralinea);
aux23 = Posicion.puntocoma(aux23);
out.print(aux23 + ";");
aux23 = Pase.pruebatipo(19, linea, primeralinea);
aux23 = Posicion.puntocoma(aux23);
out.print(aux23 + ";");
if (Pase.pruebatipo(22, linea, primeralinea).equals("40") ||

Pase.pruebatipo(22, linea, primeralinea).equals("38") ||
Pase.pruebatipo(22, linea, primeralinea).equals("69") ||
Pase.pruebatipo(22, linea, primeralinea).equals("")) {
out.print("1;");

} else {
out.print("0;");
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}
out.println();

}
}

} finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

}
}

public static int numero1(int numero, String linea) {
int cont = 0;
int i = 0;
while (cont != numero) {

if (linea.charAt(i) == ’:’) {
cont++;

}
i++;

}
return i;

}

public static String tipo1(int numero, String linea) {
int aux1, aux2;
String aux;
aux1 = Pase.numero1(numero, linea);
aux2 = Pase.numero1(numero + 1, linea);
aux = linea.substring(aux1, aux2 - 1);
return aux;

}

public static String puntodospuntos(String j) {
String aux1 = "";
String aux2;
String concat;
char a;
for (int i = 0; i < j.length(); i++) {

a = j.charAt(i);
aux2 = String.valueOf(a);
if (aux2.equals(".") == false) {

concat = aux1.concat(aux2);
aux1 = concat;

} else {
concat = aux1.concat(":");
aux1 = concat;

}
}
aux1 = aux1 + ":";
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return aux1;
}

public static String reloj(List<String> auxlis3) {
String aux0 = auxlis3.get(auxlis3.size() - 2);
String fin;
String aux1 = auxlis3.get(auxlis3.size() - 1);
aux0 = Pase.puntodospuntos(aux0);
aux1 = Pase.puntodospuntos(aux1);
int min = 0, seg = 0, dec = 0;
int min0 = Integer.parseInt(Pase.pruebatipo1(1, aux0, primeralinea));
int min1 = Integer.parseInt(Pase.pruebatipo1(1, aux1, primeralinea));
int seg0 = Integer.parseInt(Pase.pruebatipo1(2, aux0, primeralinea));
int seg1 = Integer.parseInt(Pase.pruebatipo1(2, aux1, primeralinea));
int dec0 = Integer.parseInt(Pase.pruebatipo1(3, aux0, primeralinea));
int dec1 = Integer.parseInt(Pase.pruebatipo1(3, aux1, primeralinea));
boolean c1 = false, c2 = false;
dec = dec1 - dec0;
if (dec < 0) {

dec = 1000 + dec;
c1 = true;

}
seg = seg1 - seg0;
if (seg < 0) {

seg = 60 + seg;
c2 = true;

}
if (c1 == true) {

seg = seg - 1;
}
fin = String.valueOf(seg) + "." + String.valueOf(dec);
return fin;

}

public static int numero(int numero, String linea) {
int cont = 0;
int i = 0;
while (cont != numero) {

if (linea.charAt(i) == ’;’) {
cont++;

}
i++;

}
return i;

}

public static String tipo(int numero, String linea) {
int aux1, aux2;
String aux;
aux1 = Pase.numero(numero, linea);
aux2 = Pase.numero(numero + 1, linea);
aux = linea.substring(aux1, aux2 - 1);
return aux;

}

public static String pruebatipo(int numero, String linea, String primera1) {
File ffiltrado = new File("realmadrid-barcelonafiltrado.csv");
Scanner in = null;
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String aux = "", primera, columna = null;
int i = 0;
try {

try {
in = new Scanner(ffiltrado);
primera = in.nextLine();
columna = Pase.tipo(numero, primera);
if (numero == 0) {

columna = columna.substring(1, columna.length());
}
while (aux.equals(columna) == false) {

aux = Pase.tipo(i, primera1);
i++;

}
i = i - 1;

} finally {
if (in != null) {

in.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
}
return Pase.tipo(i, linea);

}

public static String pruebatipo1(int numero, String linea, String primera1) {
File ffiltrado = new File("realmadrid-barcelonafiltrado.csv");
Scanner in = null;
String aux = "", primera, columna;
int i = 0;
try {

try {
in = new Scanner(ffiltrado);
primera = in.nextLine();
columna = Pase.tipo(numero, primera);
while (aux.equals(columna) == false) {

aux = Pase.tipo(i, primera1);
i++;

}
i = i - 1;

} finally {
if (in != null) {

in.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
}
return Pase.tipo1(i, linea);

}

}

D.6. Eliminado.java
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package segunda;

import java.io.File;
import java.io.PrintWriter;
import java.util.Scanner;
import static segunda.duelos.primeralinea;

public class eliminado {

public static void eliminar(String nombreFich) {
File fentrada = new File(nombreFich);
File fsalida = new File("final.csv");
Scanner in = null;
PrintWriter out = null;
String aux = "";
try {

try {
in = new Scanner(fentrada);
out = new PrintWriter(fsalida);
while (in.hasNext()) {

aux = in.nextLine();
aux=aux+";";
for (int i = 37; i < 62; i++) {

out.print(Pase.tipo(i, aux)+";");
}
out.println();

}
} finally {

if (in != null) {
in.close();

}
if (out != null) {

out.close();
}

}
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
if (fsalida.exists()) {

fsalida.delete();
}

}
}

}

E. Código de R

library(readr)
final <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/alaves-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final <- within(final, {
X26 <- NULL
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})

final1 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/atletic-barcelona/final.csv",
";", escape_double = FALSE, col_types = cols(mediax = col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final1 <- within(final1, {
X26 <- NULL

})
final2 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/atletico-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final2 <- within(final2, {
X26 <- NULL

})
final3 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-alaves/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final3 <- within(final3, {
X26 <- NULL

})
final4 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-atletic/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final4 <- within(final4, {
X26 <- NULL

})
final5 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-atletico/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final5 <- within(final5, {
X26 <- NULL

})
final6 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-betis/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),
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trim_ws = TRUE)
final6 <- within(final6, {
X26 <- NULL

})
final7 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-cadiz/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final7 <- within(final7, {
X26 <- NULL

})
final8 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-celta/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final8 <- within(final8, {
X26 <- NULL

})
final9 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-elche/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final9 <- within(final3, {
X26 <- NULL

})
final10 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-getafe/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final10 <- within(final10, {
X26 <- NULL

})
final11 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-granada/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final11 <- within(final11, {
X26 <- NULL

})
final12 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-huesca/final.csv",
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";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final12 <- within(final12, {
X26 <- NULL

})
final13 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-osasuna/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final13 <- within(final13, {
X26 <- NULL

})
final14<- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-realmadrid/final.csv",

";", escape_double = FALSE, col_types = cols(mediax = col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final14 <- within(final14, {
X26 <- NULL

})
final15 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-sevilla/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final15 <- within(final15, {
X26 <- NULL

})
final16 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/barcelona-valencia/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final16 <- within(final16, {
X26 <- NULL

})
final17 <- read_delim("C:/aa yo/4

ao/TFG/temporada2021/barcelona-valladolid/final.csv",
";", escape_double = FALSE, col_types = cols(mediax =

col_number(),
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mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final17 <- within(final17, {
X26 <- NULL

})
final18 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/betis-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final18 <- within(final18, {
X26 <- NULL

})
final19 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/cadiz-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final19 <- within(final19, {
X26 <- NULL

})
final20 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/getafe-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final20 <- within(final20, {
X26 <- NULL

})
final21 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/granada-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final21 <- within(final21, {
X26 <- NULL

})
final22 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/huesca-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
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"%H:%M:%S")),
trim_ws = TRUE)

final22<- within(final22, {
X26 <- NULL

})
final23 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/levante-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final23 <- within(final23, {
X26 <- NULL

})
final24 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/osasuna-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final24 <- within(final24, {
X26 <- NULL

})
final25 <- read_delim("C:/aa yo/4

ao/TFG/temporada2021/realmadrid-barcelona/final.csv",
";", escape_double = FALSE, col_types = cols(mediax =

col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final25 <- within(final25, {
X26 <- NULL

})
final26 <- read_delim("C:/aa yo/4

ao/TFG/temporada2021/realsociedad-barcelona/final.csv",
";", escape_double = FALSE, col_types = cols(mediax =

col_number(),
mediay = col_number(),

timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final26 <- within(final26, {
X26 <- NULL

})
final27 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/sevilla-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),



56 Anexos

trim_ws = TRUE)
final27 <- within(final27, {
X26 <- NULL

})
final28 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/valencia-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final28 <- within(final28, {
X26 <- NULL

})
final29 <- read_delim("C:/aa yo/4 ao/TFG/temporada2021/villareal-barcelona/final.csv",

";", escape_double = FALSE, col_types = cols(mediax =
col_number(),

mediay = col_number(),
timestamp =
col_time(format =
"%H:%M:%S")),

trim_ws = TRUE)
final29 <- within(final29, {
X26 <- NULL

})
union<-rbind(final,final1,final2,final3,final4,final5,final6,final7,final8,final9,final10,

final11,final12,final13,final14,final15,final16,final17,final18,final19,final20
,final21,final22,final23,final24,final25,final26,final27,final28,final29)

#tomo slo los datos del FC Barcelona
datosbarcelona <- subset(union, subset=union$‘team/id‘==217)
#elimino los que tienen menos de 50 respuestas(solo hay uno)
datosbarcelona$player.id<-as.factor(datosbarcelona$player.id)
summary(datosbarcelona$player.id)
datosbarcelona <- subset(datosbarcelona, subset=datosbarcelona$player.id!=13599)
#conversion de variables
datosbarcelona$numero<-as.numeric(datosbarcelona$numero)
datosbarcelona$tiempo<-as.double(datosbarcelona$tiempo)
datosbarcelona$under_pressure<-as.logical(datosbarcelona$under_pressure)
datosbarcelona$acertado.fallado<-as.logical(as.numeric(datosbarcelona$‘acertado-fallado‘))
datosbarcelona$location0<-as.numeric(datosbarcelona$location0)
datosbarcelona$parte<-as.factor(datosbarcelona$parte)
datosbarcelona$minute<-as.numeric(datosbarcelona$minute)
datosbarcelona$peligrosidad<-as.logical(datosbarcelona$peligrosidad)
datosbarcelona$dt<-as.factor(datosbarcelona$dt)
datosbarcelona$da<-as.factor(datosbarcelona$da)
datosbarcelona$ds<-as.factor(datosbarcelona$ds)
datosbarcelona$tiempo0<-as.factor(datosbarcelona$tiempo==0)
#poner variables nuevas
datosbarcelona$distancia0 <- with(datosbarcelona,

sqrt((location0-120)^2+(location1-40)^2))
datosbarcelona$distancia1 <- with(datosbarcelona,

sqrt((endlocation0-120)^2+(endlocation1-40)^2))
datosbarcelona$acercamiento<- with(datosbarcelona, distancia0-distancia1)
datosbarcelona$longitud<-with(datosbarcelona,

sqrt((location0-endlocation0)^2+(location1-endlocation1)^2))
datosbarcelona$mediajugadordistan <- with(datosbarcelona,

sqrt((mediax-120)^2+(mediax-40)^2))
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datosbarcelona$campo <- with(datosbarcelona,location0 < 60,
class(location0))

datossinporteros$largo=as.factor(1*(datossinporteros$longitud>10))
levels(datossinporteros$largo)=c("corto","largo")
datosbarcelona$peligrosidad<-as.numeric(datosbarcelona$peligrosidad)
datosbarcelona$promdis<-(datosbarcelona$distancia0+datosbarcelona$distancia1)/2
datosbarcelona$promdis2<-datosbarcelona$promdis*datosbarcelona$promdis
for (i in seq(1,22741)){
if(datosbarcelona$player.id[i]==17304) {
datosbarcelona$jugador[i]<-"Junior Firpo"

}
if(datosbarcelona$player.id[i]==20055 ) {
datosbarcelona$jugador[i]<-"Ter Stegen"

}
if(datosbarcelona$player.id[i]==21881 ) {
datosbarcelona$jugador[i]<-"Sergino Dest"

}
if(datosbarcelona$player.id[i]==22390 ) {
datosbarcelona$jugador[i]<-"Francisco Trincao"

}
if(datosbarcelona$player.id[i]==24841 ) {
datosbarcelona$jugador[i]<-"Ricki Puig"

}
if(datosbarcelona$player.id[i]==30486 ) {
datosbarcelona$jugador[i]<-"Pedri"

}
if(datosbarcelona$player.id[i]==30756 ) {
datosbarcelona$jugador[i]<-"Ansu Fati"

}
if(datosbarcelona$player.id[i]==32480 ) {
datosbarcelona$jugador[i]<-"Ronald Araujo"

}
if(datosbarcelona$player.id[i]==3501 ) {
datosbarcelona$jugador[i]<-"Philiphe Coutinho"

}
if(datosbarcelona$player.id[i]==39073 ) {
datosbarcelona$jugador[i]<-"Ilaix Moriba"

}
if(datosbarcelona$player.id[i]==43728 ) {
datosbarcelona$jugador[i]<-"scar Mingueza"

}
if(datosbarcelona$player.id[i]==4447 ) {
datosbarcelona$jugador[i]<-"Martin Braithwaite"

}
if(datosbarcelona$player.id[i]==5203 ) {
datosbarcelona$jugador[i]<-"Sergio Busquets"

}
if(datosbarcelona$player.id[i]==5211 ) {
datosbarcelona$jugador[i]<-"Jordi Alba"

}
if(datosbarcelona$player.id[i]==5213 ) {
datosbarcelona$jugador[i]<-"Gerard Piqu"

}
if(datosbarcelona$player.id[i]==5477 ) {
datosbarcelona$jugador[i]<-"Ousmane Dembel"

}
if(datosbarcelona$player.id[i]==5487 ) {
datosbarcelona$jugador[i]<-"Antoine Griezmann"
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}
if(datosbarcelona$player.id[i]==5492 ) {
datosbarcelona$jugador[i]<-"Samuel Umtiti"

}
if(datosbarcelona$player.id[i]==5503 ) {
datosbarcelona$jugador[i]<-"Leo Messi"

}
if(datosbarcelona$player.id[i]==6379 ) {
datosbarcelona$jugador[i]<-"Sergi Roberto"

}
if(datosbarcelona$player.id[i]==6590 ) {
datosbarcelona$jugador[i]<-"Norberto Neto"

}
if(datosbarcelona$player.id[i]==6826 ) {
datosbarcelona$jugador[i]<-"Clment Lenglet"

}
if(datosbarcelona$player.id[i]==6947 ) {
datosbarcelona$jugador[i]<-"Miralem Pjani"

}
if(datosbarcelona$player.id[i]==8118 ) {
datosbarcelona$jugador[i]<-"Frenkie de Jong"

}
}
datosbarcelona$jugador<-as.factor(datosbarcelona$jugador)
#elimino los porteros de la base de datos
datossinporteros<-subset(datosbarcelona, subset=datosbarcelona$jugador!="Ter Stegen")
datossinporteros<-subset(datossinporteros, subset=datossinporteros$jugador!="Norberto

Neto")

#primer modelo
modelo22<-glm(acertado.fallado ~

promdis+acercamiento+longitud+campo
+mediajugadordistan+da+parte+
+under_pressure,family = binomial, data =
datossinporteros)

binnedplot(fitted.values(modelo22),
residuals(modelo22, type = "response"),
nclass = 100,
xlab = "Expected Values",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

par(mfrow=c(2,2))
binnedplot(datossinporteros$acercamiento,residuals(modelo22, type = "response"),

nclass = 100,
xlab = "Acercamiento",
ylab = "Average residual",
main = "Binned residual plot Acercamiento",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(datossinporteros$promdis,residuals(modelo22, type = "response"),
nclass = 100,
xlab = "distancia promedio del pase a la portera rival",
ylab = "Average residual",
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main = "Binned residual plot distancia promedio del pase a la portera
rival",

cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(datossinporteros$longitud,residuals(modelo22, type = "response"),
nclass = 100,
xlab = "longitud del pase",
ylab = "Average residual",
main = "Binned residual plot longitud",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(datossinporteros$mediajugadordistan,residuals(modelo22, type = "response"),
nclass = 100,
xlab = "distancia media del jugador a la portera rival",
ylab = "Average residual",
main = "Binned residual plot distancia media del jugador a la portera

rival",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

#segundo modelo
modelo33<-glm(acertado.fallado ~

promdis+promdis2+acercamiento+longitud*largo+campo
+mediajugadordistan+da+parte+
+under_pressure,family = binomial, data =
datossinporteros)

summary(modelo33)
binnedplot(fitted(modelo33),

residuals(modelo33, type = "response"),
nclass = 100,
xlab = "Expected Values",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

par(mfrow=c(2,2))
binnedplot(datossinporteros$acercamiento,residuals(modelo33, type = "response"),

nclass = 100,
xlab = "Acercamiento",
ylab = "Average residual",
main = "Binned residual plot Acercamiento",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(datossinporteros$promdis,residuals(modelo33, type = "response"),
nclass = 100,
xlab = "distancia promedio del pase a la portera rival",
ylab = "Average residual",
main = "Binned residual plot distancia promedio",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(datossinporteros$longitud,residuals(modelo33, type = "response"),
nclass = 100,
xlab = "distancia promedio del pase a la portera rival",
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ylab = "Average residual",
main = "Binned residual plot distancia promedio",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(datossinporteros$mediajugadordistan,residuals(modelo33, type = "response"),
nclass = 100,
xlab = "distancia promedio del pase a la portera rival",
ylab = "Average residual",
main = "Binned residual plot distancia promedio",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

pred <- prediction(modelo33$fitted.values, datossinporteros$acertado.fallado)
perf <- performance(pred,measure="tpr",x.measure="fpr")
AUC<- performance(pred,measure="auc")
AUCaltura <- AUC@y.values[[1]]
plot(perf,

main = "Curva ROC",
xlab="Tasa de falsos positivos",
ylab="Tasa de verdaderos positivos")

abline(a=0,b=1,col="blue",lty=2)
legend("bottomright",legend=paste(" AUC =",round(AUCaltura,4)))

probmedia <- aggregate(modelo33$fitted.values~datossinporteros$jugador,
datossinporteros, mean, na.rm=TRUE)

names(probmedia) <- make.names(names(probmedia))
names(probmedia)[c(1)] <- c("jugador")
datossinporteros$acertado.fallado<-as.numeric(datossinporteros$acertado.fallado)
probmedia$datos<-aggregate(datossinporteros$acertado.fallado==1~datossinporteros$jugador,

datossinporteros, sum, na.rm=TRUE)[,2]
totalpasesporjugador<-aggregate(datossinporteros$acertado.fallado==0~datossinporteros$jugador,

datossinporteros, sum, na.rm=TRUE)
totalpasesporjugador[,2]<-totalpasesporjugador[,2]+aggregate(datossinporteros$acertado.fallado==1~datossinporteros$jugador,

datossinporteros, sum, na.rm=TRUE)[,2]
probmedia$datos<-probmedia$datos/totalpasesporjugador[,2]
#dibujo los datos reales vs las medias estimadas
plot(probmedia$modelo33.fitted.values,probmedia$datos,xlab=’Prediccin probabilidad

acierto pase’
,ylab=’Probabilidad acierto pase’,main=’Comparacin probabilidad real vs

probabilidad predicha por jugador’)
text(probmedia$modelo33.fitted.values,probmedia$datos,

labels = (as.character(probmedia[,1])),
cex = 0.6, pos=3,col = "red")

abline(a = 0, b = 1)
legend("topleft", legend = c(’Probabilidad real=Probabilidad predicha’),

lwd = 2, col = c("black"))

probmedia$diferencia<-probmedia$datos-probmedia$modelo33.fitted.values
plot(probmedia$modelo33.fitted.values,probmedia$diferencia,xlab=’Prediccin

probabilidad acierto pase’
,ylab=’Probabilidad real-probabilidad predicha’,main=’Diferencia entre jugadores’)

text(probmedia$modelo33.fitted.values,probmedia$diferencia,
labels = (as.character(probmedia[,1])),
cex = 0.6, pos=3,col = "red")

abline(a = 0, b = 0)
legend("topleft", legend = c(’Probabilidad real=Probabilidad predicha’),

lwd = 2, col = c("black"))
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#modelo con jugadores
modelo32<-glm(acertado.fallado ~

promdis+promdis2+acercamiento+longitud*largo+campo
+da+parte+
+under_pressure+jugador,family = binomial, data =
datossinporteros)

summary(modelo32)
library(arm)
binnedplot(fitted(modelo32),

residuals(modelo32, type = "response"),
nclass = 100,
xlab = "Expected Values",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

library(ROCR)
pred <- prediction(modelo32$fitted.values, datossinporteros$acertado.fallado)
perf <- performance(pred,measure="tpr",x.measure="fpr")
AUC<- performance(pred,measure="auc")
AUCaltura <- AUC@y.values[[1]]
plot(perf,

main = "Curva ROC",
xlab="Tasa de falsos positivos",
ylab="Tasa de verdaderos positivos")

abline(a=0,b=1,col="blue",lty=2)
legend("bottomright",legend=paste(" AUC =",round(AUCaltura,4)))

#modelo peligrosidad
modelo1<-glm(peligrosidad~

mediajugadordistan,family = binomial, data =
datossinporteros)

summary(modelo1)

library(arm)
binnedplot(datossinporteros$mediajugadordistan,

residuals(modelo1, type = "response"),
nclass = 100,
xlab = "distancia media del jugador a la portera rival",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

probmedia1 <- aggregate(modelo1$fitted.values~datossinporteros$jugador,
datossinporteros, mean, na.rm=TRUE)

names(probmedia1) <- make.names(names(probmedia1))
names(probmedia1)[c(1)] <- c("jugador")
datossinporteros$peligrosidad<-as.numeric(datossinporteros$peligrosidad)
probmedia1$datos<-aggregate(datossinporteros$peligrosidad==1~datossinporteros$jugador,

datossinporteros, sum, na.rm=TRUE)[,2]
totalpasesporjugador1<-aggregate(datossinporteros$peligrosidad==0~datossinporteros$jugador,

datossinporteros, sum, na.rm=TRUE)
totalpasesporjugador1[,2]<-totalpasesporjugador1[,2]+aggregate(datossinporteros$peligrosidad==1~datossinporteros$jugador,

datossinporteros, sum, na.rm=TRUE)[,2]
probmedia1$datos<-probmedia1$datos/totalpasesporjugador1[,2]
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plot(probmedia1$modelo1.fitted.values,probmedia1$datos,xlab=’Prediccin probabilidad
acierto pase’
,ylab=’Probabilidad acierto pase’,main=’Comparacin probabilidad real vs

probabilidad predicha por jugador’)
text(probmedia1$modelo1.fitted.values,probmedia1$datos,

labels = (as.character(probmedia[,1])),
cex = 0.9, pos=3,col = "red")

abline(a = 0, b = 1)
legend("topleft", legend = c(’Probabilidad real=Probabilidad predicha’),

lwd = 2, col = c("black"))
probmedia1$diferencia<-probmedia1$datos-probmedia1$modelo1.fitted.values
plot(probmedia1$modelo1.fitted.values,probmedia1$diferencia,xlab=’Prediccin

probabilidad de pase peligroso’
,ylab=’Probabilidad real-probabilidad predicha’,main=’Diferencia entre jugadores’)

text(probmedia1$modelo1.fitted.values,probmedia1$diferencia,
labels = (as.character(probmedia[,1])),
cex = 1.1, pos=3,col = "red")

abline(a = 0, b = 0)
legend("topleft", legend = c(’Probabilidad real=Probabilidad predicha’),

lwd = 2, col = c("black"))

#represento el grafico final.
plot(probmedia$diferencia,probmedia1$diferencia,xlab=’Probabilidad real de acierto

del pase - probabilidad estimada de acierto de pase’
,ylab=’Probabilidad real de pase peligroso - probabilidad estimada de pase

peligroso’)
text(probmedia$diferencia,probmedia1$diferencia,

labels = (as.character(probmedia[,1])),
cex = 0.9, pos=3,col = "red")

abline(a = 0, b = 0)
abline(v=0)
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