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Introducción

El objetivo de este trabajo es estudiar trayectorias de part́ıculas bajo la influencia de un

objeto masivo. En concreto, nos centraremos en trayectorias de part́ıculas bajo la influencia gra-

vitatoria de un agujero negro. Estudiaremos cuáles son dichas trayectorias tanto en el interior,

como en el exterior del agujero. Para ello emplearemos la métrica de Schwarzschild, que nos per-

mitirá estudiar tanto el campo exterior de un objeto masivo, como el generado por un agujero

negro. El trabajo se divide en dos partes, y en cada una utilizaremos un sistema de coordenadas

distinto. A su vez cada una de las partes se divide en dos secciones, la primera en la que nos cen-

traremos en obtener resultados anaĺıticos, y la segunda en la que resolveremos numéricamente las

trayectorias descritas por las ecuaciones geodésicas con un algoritmo de Runge-Kutta de orden 4.

En la primera parte del trabajo estudiaremos algunas soluciones a las ecuaciones geodésicas

de dicha métrica. Esta métrica nos permitirá estudiar, entre otras cosas, trayectorias en el exte-

rior de un agujero negro. Serán de gran interés las geodésicas radiales al tratarse del caso más

simple obtenible anaĺıticamente. En esta parte estudiaremos también el cierre de los conos de

luz a medida que disminuye la distancia al horizonte de sucesos.

En la segunda parte nos centraremos en explorar soluciones en el interior de un agujero negro,

introduciendo para ello las coordenadas de Eddington-Finkelstein. Este sistema de coordenadas

nos permitirá explorar trayectorias de part́ıculas en el interior del agujero. Será interesante

comparar el comportamiento de la coordenada temporal en este sistema con respecto al anterior

para obtener información de cómo vaŕıan los tiempos de colapso en función del observador.

Retomaremos, en este caso, el cierre de los conos de luz para poder extraer alguna conclusión

más.
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Parte I: Métrica de Schwarzschild

La solución de Schwarzschild es una de las soluciones más simples de las ecuaciones de

Einstein. Su elección viene motivada por la simetŕıa esférica del espacio tiempo que vamos a

considerar pues, según el teorema de Birkhoff, cualquier solución con simetŕıa esférica de las

ecuaciones de campo de vaćıo debe ser asintóticamente plana y estática. Según este teorema

la métrica de Schwarzschild describe el campo generado por un agujero negro, y también el

campo exterior de una estrella. Por lo tanto su uso nos va a permitir explorar las ecuaciones

del movimiento de objetos sometidos a la influencia gravitatoria de dichos cuerpos. De aqúı en

adelante vamos a considerar el convenio para la signatura de la métrica (+ - - -) y tomaremos

unidades con c=1. Con todo esto el elemento de ĺınea de la métrica de Schwarzschild toma la

siguiente forma:

ds2 = −
(
1− r0

r

)
dt2 +

(
1− r0

r

)−1
dr2 + r2(dθ2 + sin2 θ dϕ2) . (1)

En ella hemos introducido por conveniencia el radio gravitacional, definido a partir de la masa

M del objeto que origina el campo y de la constante de gravitación universal G:

r0 = 2MG . (2)

En la forma de la métrica, se destaca la existencia de dos singularidades. Una se da en r = 0

y la otra en r = r0. Sin embargo solo la correspondiente a r = 0 es una singularidad f́ısica,

pues la que aparece en r = r0 se debe al sistema de coordenadas. Esta segunda singularidad

denota un horizonte de eventos por lo que las señales emitidas en radios menores que el radio

gravitacional no pueden escapar del agujero y acabarán colapsando inevitablemente en el origen.

El estudio del interior del agujero no es conveniente en este sistema de coordenadas por lo que a

partir de ahora nos centraremos en estudiar solo la zona exterior y posteriormente utilizaremos

otras coordenadas para explorar el interior del agujero.

Para estudiar las distintas trayectorias que puede describir una part́ıcula utilizaremos las

ecuaciones geodésicas. Debido a la simetŕıa esférica del problema podemos fijar el ángulo θ a

π/2 sin perder generalidad y de esta forma nos centramos en un plano espacial formado solo

por la dimensión radial y una angular. Las ecuaciones geodésicas que manejaremos de ahora en

adelante son, por lo tanto, las siguientes:

dT

dτ
+

r0
r(r − r0)

T R = 0 , (3)

dR

dτ
+

r0(r − r0)

2r3
T 2 − r0

2r(r − r0)
R2 − (r − r0)Ψ

2 = 0 , (4)

dΨ

dτ
+

2

r
R Ψ = 0 . (5)

Se ha introducido τ como un parámetro af́ın cualquiera y las variables T, R y Ψ como las deri-

vadas de t, r y ϕ con respecto a τ , que representan las celeridades en las direcciones temporal,

radial y angular respectivamente.

A estas ecuaciones hay que sumarle otra ecuación de ligadura para la cuadrivelocidad(
1− r0

r

)
T 2 −

(
1− r0

r

)−1
R2 − r2Ψ2 = m , (6)
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donde denotamos como m a un parámetro que vale 0 si la part́ıcula tiene masa nula y 1 en caso

contrario.

Cálculos anaĺıticos

Lo primero que vamos a hacer es resolver anaĺıticamente algunas trayectorias sencillas. El

caso más simple es el de un fotón, que verifica que ds2 = 0.

Lo más sencillo que podemos plantearnos es el caso de un fotón que se mueve en dirección

radial, obteniendo la siguiente ecuación diferencial en r y t:(
1− r0

r

)
dt2 =

(
1− r0

r

)−1
dr2 . (7)

Tomando la ráız y agrupando se obtiene lo siguiente:

dt = ±
(
1− r0

r

)−1
dr . (8)

Vemos que tenemos dos posibles trayectorias. Puesto que en el exterior del agujero, r > r0,

el término
(
1− r0

r

)
es positivo, de forma que si elegimos en la ecuación (8) el signo positi-

vo tendremos que dr/dt es positiva, lo que indica que el radio aumenta conforme aumenta el

tiempo. Esto se corresponde con el caso de lanzar un fotón desde fuera del agujero hacia el

infinito en dirección radial. Sin embargo, si tomamos el signo negativo la cantidad dr/dt es

negativa, por lo que en este caso el radio disminuye al aumentar el tiempo, correspondiéndose

aśı con una situación en la que el fotón se lanza desde fuera del agujero hacia dentro radialmente.

Integrando la ecuación diferencial anterior y manteniendo la posibilidad de elegir el signo

positivo o negativo, en función de si el fotón va hacia el infinito o hacia el origen, se obtienen

estas dos geodésicas:

t = ±(r + r0 log |r − r0|) + constante . (9)

Como se puede ver en la figura 1, las trayectorias de los fotones salientes lejos del horizonte de

sucesos, tienden a una linea t = r correspondiente a la trayectoria de una part́ıcula sin masa en el

espacio de Minkowski. También observamos que para los fotones que se dirigen desde el exterior

a la singularidad, un observador situado en el infinito ve que ese tiempo diverge, debido a que

t tiende a infinito conforme r tiende a r0. Esta divergencia es debida al sistema de coordenadas

como ya hemos indicado antes, y veremos más adelante que se pueden tomar otras coordenadas

donde el tiempo para ese observador no será asintótico y desaparecerá esta singularidad.

Utilizando la ecuación (9) podemos obtener un nuevo resultado. Imaginemos ahora el caso

de una estrella que está colapsando hacia su radio gravitacional y un observador situado en su

superficie (observador 1) que emite señales separadas por un cierto tiempo. Este tiempo será

distinto medido por un observador en el infinito (observador 2). El observador 1 emite el primer

fotón cuando se encuentra en un radio r1 y el segundo fotón, cuando la estrella se ha contráıdo

a un radio r2 < r1. La trayectoria de los dos fotones desde r1 hasta infinito es la misma, por

lo que el redshift viene dado por el tiempo que le cuesta al fotón ir de r1 a r2 medido por un

observador en el infinito. Aśı, el redshift es:

∆t = t(r1)− t(r2) = r1 − r2 + r0 log

(
r1 − r0
r2 − r0

)
. (10)

3



Figura 1: Trayectorias radiales de fotones en la métrica de Schwarzschild.

Como podemos ver si r1 = r2 el redshift es nulo, puesto que la estrella no se ha contráıdo. Por

el contrario si r2→r0, tiende a infinito. Esto quiere decir que el observador 2 no verá nunca

contraerse por completo a la estrella. Esto es similar a lo discutido en la figura 1, donde se véıa

que el tiempo diverǵıa al tender r a r0.

Otro caso anaĺıtico que se puede calcular es el de la esfera de fotones, correspondiente a la

única órbita circular al agujero que puede realizar un fotón. Para ello partimos de nuevo del

elemento de ĺınea de la ecuación (1) y al considerar fotones volvemos a considerar ds2 = 0. La

ecuación diferencial que se obtiene es la siguiente:(
1− r0

r

)
dt2 = r2dϕ2 → dϕ

dt
=

1

r

√
1− r0

r
. (11)

Utilizando ahora la ecuación geodésica (4) e imponiendo dr = 0, se obtiene que(
dϕ

dt

)2

=
r0
2r3

, (12)

y sustituyendo esto en la ecuación anterior se llega a que el radio que tiene la órbita es

r =
3

2
r0 . (13)

Por lo tanto, los fotones lanzados desde esa posición con celeridad radial nula y celeridad angular

no nula describirán una órbita circular alrededor del agujero.
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Resolución numérica

Debido a la dificultad para obtener resultados anaĺıticos en el caso de fotones en dirección no

radial, optamos por utilizar el método de Runge-Kutta a 4º orden para resolver numéricamente

las ecuaciones geodésicas completas.

Las condiciones iniciales de la resolución numérica vienen dadas al elegir adecuadamente los

valores de r, R, t, ϕ y Ψ y fijar T con la ligadura, que toma la forma siguiente:

T = ±

√
r2

(r − r0)2
R2 +

r3

r − r0
Ψ2 +

r

r − r0
m (14)

Tenemos dos elecciones posibles del signo de T pero vamos a tomar la positiva. Tomar T con

signo negativo haŕıa que el tiempo disminuyera conforme avanza el tiempo del programa te-

niendo esta elección de signo el significado f́ısico de ir hacia atrás en el tiempo. Por elección

tomaremos siempre t=0 como origen de tiempos y el ángulo inicial lo igualaremos también a 0.

El signo de R dará la dirección de la velocidad de la part́ıcula, pudiendo dirigirse esta hacia

el origen si R es negativo o hacia el infinito si es positivo. Asimismo, la velocidad angular viene

dada por Ψ, siendo nula si Ψ lo es.

La primera comprobación que vamos a hacer es sobre las trayectorias de fotones cuando son

lanzados hacia fuera del agujero, o hacia dentro en dirección radial, debido a que tenemos las

expresiones anaĺıticas. También calcularemos numéricamente estas trayectorias con part́ıculas

con masa obteniendo lo mostrado en las figuras 2 y 3.

Figura 2: Trayectorias en dirección radial hacia el origen.

Se observa que las trayectorias de los fotones coinciden con las calculadas anaĺıticamente. Las de

las masas también son coherentes, pues tardan más tiempo que los fotones en recorrer las mismas

distancias radiales. Vemos que para el caso de los fotones cuanto más nos alejamos del radio

gravitacional más se asemejan las trayectorias a la ĺınea r = t, que es la forma que presentaŕıan
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Figura 3: Trayectorias en dirección radial hacia el infinito.

en un espacio plano.

A modo de comprobación del programa vamos a estudiar algunas órbitas eĺıpticas y las

precesiones de los perihelios de estas. En [1], podemos encontrar un cálculo de las precesiones

de los perihelios de órbitas que tiene validez para campos gravitatorios débiles y part́ıculas con

velocidades pequeñas. El ángulo de precesión es el siguiente:

∆φ =
3πr0
L

rad/rev . (15)

Se define L como una función que depende del perihelio (r−) y del afelio (r+) y que tiene unidades

de longitud:

L =
2r+r−
r+ + r−

. (16)

Sin embargo, para generar órbitas en el programa y comprobar que preceden como dice la ecua-

ción (15), hay que inicializar adecuadamente la trayectoria.

Para ello lo que hacemos es elegir tanto el perihelio como el afelio, fijando aśı el valor de

L. Inicialmente colocaremos una part́ıcula con masa en una de estas dos posiciones, puesto que

sabemos que en esos puntos la celeridad radial R es nula y solo nos falta elegir un valor de

Ψ para que la órbita presente el perihelio y afelio deseados. Utilizamos la siguiente expresión

presentada en [1]:

J2 =

1
(1− r0

r+
)
− 1

(1− r0
r−

)

1
r2+

− 1
r2−

. (17)

J es el momento angular que a su vez, hallando cantidades conservadas en las ecuaciones geodési-

cas bajo la aproximación de campos débiles, se puede relacionar con Ψ de la siguiente forma:

J = r2Ψ . (18)
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Aśı, fijado r+ y r−, calculamos J con la ecuación (17) y luego inicializamos la part́ıcula en, por

ejemplo, el perihelio, de forma que el valor inicial de Ψ viene dado por la ecuación (18) y es J/r2−.

Queremos ver que las precesiones que obtenemos se acercan a la expresión de la ecuación

mostrada anteriormente conforme aumentan las distancias al radio gravitacional, es decir, que el

campo es más débil. En la gráfica siguiente se muestra la discrepancia entre los valores obtenidos

con la resolución numérica y los valores dados por la expresión (15), en forma de error relativo,

para varios valores de L:

Figura 4: Comparación entre la resolución numérica y el valor teórico de las precesiones para

distintas distancias.

Efectivamente, la concordancia entre la resolución numérica y el resultado anaĺıtico es mayor

conforme aumentan las distancias ya que la aproximación de campos débiles en esos casos es

mejor. El error relativo mostrado se ha calculado de la siguiente forma:

Error relativo =
|∆φSim −∆φTeo|

∆φTeo

Con este resultado damos por finalizada la comprobación del programa.

Seguidamente estudiaremos el cierre de los conos de luz al disminuir la distancia al radio

gravitacional. Esto quiere decir que cuanto más cerca estamos de r0, menor es el ángulo con el

que podemos lanzar fotones con respecto a la dirección radial para que no acaben en el origen.

Definimos el ángulo α con el que lanzamos los fotones de la forma que muestra la figura 5.

Para cada radio hay un ángulo máximo αMax, para el cual los fotones que se lanzan con

ángulo igual o inferior a este escaparán hacia el infinito, mientras que los fotones lanzados con

un ángulo mayor acabarán en el origen. El objetivo es hallar cuál es el ángulo αMax para dis-

tintos radios.
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Figura 5: Ángulo de lanzamiento de una part́ıcula.

A priori conocemos αMax para dos casos ĺımites. Sabemos que si r → r0 el ángulo máximo

tenderá a 0 puesto que los conos de luz se cierran, y una vez dentro del agujero es imposible

escapar. El otro caso es cuando r → ∞, donde el ángulo máximo tiende a 180º, debido a que

al estar infinitamente lejos del agujero se pueden lanzar fotones en todas las direcciones sin que

estos acaben en el origen. Además conocemos un caso más de forma anaĺıtica que es el de la

esfera de fotones. Como se ha visto antes en la ecuación (13) los fotones describen una órbita

circular si se lanzan en dirección angular, es decir, con un ángulo de 90º. Esto queda ilustrado

en esta figura:

Figura 6: Ejemplo de ángulo ĺımite con el caso de la esfera de fotones.

En ella se puede ver como para un ángulo de 90º el fotón no acaba en el origen y se mantiene

en una orbita circular. Se ve además que este ángulo es el ángulo máximo, debido a que si lo

aumentamos el fotón cae al origen. También se puede ver que si el ángulo es menor el fotón

escapa.
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A continuación hacemos lo mismo para distintos radios. En este caso, al no tener solución

anaĺıtica de los ángulos máximos, para cada uno tenemos que ir probando hasta encontrarlo.

Para ello fijamos el radio para el cual queremos encontrar el ángulo máximo y, una vez hecho

esto, lo lanzamos con ángulo de 90º. Si el fotón cae al origen disminuimos un poco el ángulo y

probamos de nuevo hasta que encontremos el primer ángulo para el cual no cae. Guardaremos

este valor y repetiremos el mismo proceso para otros radios. Para inicializar el fotón con un

ángulo determinado lo haremos de la siguiente forma:

tan(α) =
Ψ

R
. (19)

Este método lo hemos empleado para radios menores a 3
2r0 puesto que sabemos que en estos

casos el ángulo máximo no va a superar los 90º. Para radios mayores el procedimiento es esen-

cialmente el mismo pero empezando a probar con ángulos de 180º en vez de 90º. En este caso

la inicialización del fotón viene dada por esta expresión:

tan(α− π/2) =
−R

Ψ
. (20)

La gráfica que obtenemos es la siguiente:

Figura 7: Ángulo máximo para distintas distancias.

Como vemos, si r → ∞, el ángulo máximo tiende a 180º como esperábamos. Por otro lado,

hab́ıamos dicho que dicho ángulo debeŕıa tender a 0 conforme r → r0 y se ve claramente que la

tendencia es decreciente, pero para valores del orden de 0.001, el ángulo sigue siendo superior

a 60º. Se pueden seguir explorando radios más pequeños y se espera que el ángulo tienda a

0; parece que la gráfica obtenida puede indicar que en algún valor de r muy próximo a r0 se

producirá una disminución del ángulo máximo. Vamos a optar por realizar esta gráfica en otras

coordenadas distintas en las que la tendencia del ángulo máximo hacia 0º sea más suave.
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Parte II: Coordenadas de Eddington-Finkelstein

La métrica de Schwarzschild nos ha permitido explorar trayectorias en el exterior del aguje-

ro negro pero el hecho de que presente una singularidad en el horizonte de sucesos dificulta el

estudio de trayectorias cerca de este. Además la coordenada temporal utilizada anteriormente

no es conveniente para el interior del agujero.

Para eliminar la divergencia en el horizonte de sucesos que aparece en Schwarzschild, se intro-

duce un cambio de coordenadas con el objetivo de que las geodésicas radiales correspondientes

a fotones en dirección al origen sean ĺıneas de -45º, es decir, como en el espacio plano. Aśı se

introduce una nueva coordenada temporal dada por el siguiente cambio:

t̄ = t+ r0 log

∣∣∣∣ rr0 − 1

∣∣∣∣ , (21)

que para el caso de una geodésica radial de un fotón en dirección al origen cumple

t̄ = −r + constante , (22)

obtenida de sustituir en (21) la ecuación (9) con el signo negativo.

Introduciendo esta nueva coordenada podemos reescribir el elemento de ĺınea de Schwarzs-

child de la siguiente forma:

ds2 = −
(
1− r0

r

)
dt̄2 +

(
1 +

r0
r

)
dr2 + 2

r0
r
dt̄ dr + r2(dθ2 + sin2 θ dϕ2) . (23)

Este es el elemento de ĺınea de Schwarzschild en coordenadas de Eddington–Finkelstein. Como

podemos ver la singularidad que antes exist́ıa en r = r0 ha desaparecido, aunque seguimos man-

teniendo la correspondiente a r = 0. Esta última, como ya hemos mencionado, es imposible de

eliminar al tratarse de una singularidad f́ısica.

En este sistema de coordenadas las ecuaciones geodésicas son las siguientes:

dT̄

dτ
+

r20
2r3

T̄ 2 +
(
1 +

r0
r

) r0
r2

T̄ R+

(
1 +

1

2

r0
r

)
r0
r2

R2 − r20 Ψ2 = 0 , (24)

dR

dτ
+

1

2

(
1− r0

r

) r0
r2

T̄ 2 − r20
r3

T̄ R− 1

2

(
1 +

r0
r

) r0
r2

R2 + (r0 − r) Ψ2 = 0 , (25)

dΨ

dτ
+

2

r
Ψ R = 0 . (26)

La notación utilizada es similar a la introducida en las coordenadas de Schwarzschild siendo R,

T̄ y Ψ las derivadas con respecto a τ (un parámetro af́ın cualquiera) de r, t̄ y ϕ respectivamente.

Como hemos mencionado anteriormente siempre podemos elegir θ = π/2.

La ecuación de la ligadura de la cuadrivelocidad, en este caso es la siguiente:(
1− r0

r

)
T̄ 2 − 2r0

r
R T̄ −

(
1 +

r0
r

)
R2 − r2Ψ = m . (27)
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Cálculos Anaĺıticos

Por conveniencia vamos a introducir v, conocida como coordenada nula avanzada, que se

define impĺıcitamente como:

dv = dt̄+ dr . (28)

De esta forma el elemento de ĺınea queda aśı:

ds2 = 2dvdr −
(
1− r0

r

)
dv2 + r2dϕ2 . (29)

Al igual que antes, el caso más sencillo es considerar un fotón. Restringiéndonos a trayectorias

radiales se obtienen las siguientes ecuaciones diferenciales:

dv = 0 , (30)

2dr =
(
1− r0

r

)
dv . (31)

Deshaciendo el cambio de v para recuperar t̄ se tiene:

dt̄ = −dr , (32)(
1− r0

r

)
dt̄ =

(
1 +

r0
r

)
dr . (33)

La primera ecuación cumple que dr/dt̄ < 0 con lo cual se corresponde con la trayectoria de

un fotón en dirección radial hacia el origen. La otra ecuación, por lo tanto, debe corresponderse

con la trayectoria de un fotón en dirección radial hacia el infinito pero analizándola más en deta-

lle se puede llegar a una conclusión interesante: fuera del agujero (r > r0) ambos paréntesis son

positivos y se tiene que dr/dt̄ > 0 lo cual es esperable pues el fotón se aleja de la singularidad,

pero dentro del agujero (r < r0) el paréntesis que acompaña a t̄ es negativo y el que acompaña

a r es positivo por lo que dr/dt̄ < 0. Esto indica que dentro del agujero no existe la posibilidad

de que un fotón se aleje de la singularidad, sino que siempre va a ir disminuyendo su radio hasta

llegar al origen.

Integrando las ecuaciones (32) y (33) obtenemos las trayectorias radiales de un fotón. La

primera de ellas da:

t̄ = −r + constante . (34)

Como vemos recuperamos la ecuación (22) introducida anteriormente. Con la segunda se obtiene

lo siguiente:

t̄ = r + 2r0 log |r − r0|+ constante . (35)

Si deshacemos el cambio de coordenadas dado por la ecuación (21) para recuperar la dependen-

cia con t obtenemos las ecuaciones (9) ya estudiadas en la parte anterior, pero ahora con las

ecuaciones (34) y (35) no hará falta que nos restrinjamos al exterior del agujero.

En la figura 8 vemos que, efectivamente, ahora las geodésicas radiales en dirección al origen

son ĺıneas de 45º. El aspecto de las trayectorias en el exterior del agujero es similar a las del

caso de Schwarzschild asemejándose lejos de r0 a las de un espacio plano. El hecho de que la

nueva coordenada temporal no diverja al aproximarse r a r0 facilitará la exploración en la zona

próxima al radio gravitacional. Observamos que si r < r0 se cumple que toda part́ıcula que se
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Figura 8: Trayectorias radiales en las coordenadas de Eddington-Finkelstein.

encuentre en el interior acabará llegando al origen. Una aclaración que conviene hacer es que en

el interior del agujero las geodésicas que hemos denotado como geodésicas salientes realmente

no lo son porque no se puede escapar del interior del agujero y, por lo tanto, dentro de este todas

las geodésicas seŕıan entrantes. Sin embargo para distinguirlas de las geodésicas que śı que son

entrantes tanto en el exterior como en el interior las seguiremos denominando como geodésicas

salientes.

Con las ecuaciones obtenidas hasta ahora podemos obtener algunos tiempos de colapso.

Imaginemos que lanzamos un fotón desde una posición r1 < r0 y queremos ver cuanto tiempo

tarda en llegar a la singularidad. Para ello calculamos ∆t̄ = t̄(0)− t̄(r1) y bastará con sustituir

r = 0 y r = r1 en las geodésicas (34) y (35). Tenemos dos soluciones posibles, una para cada

ecuación. La ecuación (34) da:

∆t̄ = r1 . (36)

Mientras que la ecuación (35) da:

∆t̄ = 2r0 log

(
r0

r0 − r1

)
− r1 . (37)

Como podemos ver, obtenemos que el fotón tarda tiempos distintos en recorrer la misma dis-

tancia radial. La resolución numérica nos permitirá explorar esto en detalle y darle una inter-

pretación.
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Resolución numérica

Al igual que hemos procedido en el caso de Schwarzschild, fijamos T̄ con la ligadura de la

cuadrivelocidad a partir de las demás variables:

T̄ =

r0
r R±

√
r20
r2
R2 + (1− r0

r )[(1 +
r0
r )R

2 + r2Ψ2 +m]

1− r0
r

. (38)

Como antes, tenemos dos posibles soluciones. Fuera del agujero se puede ver que la corres-

pondiente al signo positivo da un valor de T̄ positivo, mientras que la correspondiente al negativo

da un valor de T̄ negativo. Por lo tanto, como queremos siempre que la evolución de la coordena-

da temporal sea creciente, fuera del agujero tomaremos la solución con el signo positivo al igual

que en el caso de Schwarzschild. Sin embargo, dentro del agujero ambos signos dan soluciones de

T̄ positivo por lo que a priori no podemos descartar ninguna de las dos. Veremos que esto está

relacionado con las dos soluciones que hemos obtenido anaĺıticamente en las ecuaciones (34) y

(35) y con los dos tiempos de colapso de las ecuaciones (36) y (37) para fotones que se mueven

en dirección radial hacia el origen. Al igual que hemos hecho en la parte anterior, inicializamos

arbitrariamente ϕ y t̄ a 0.

Para probar que el programa funciona correctamente vamos a reproducir un par de tra-

yectorias ya obtenidas en el caso de Schwarzschild. Para ello nos colocamos fuera del agujero

y calcularemos numéricamente una trayectoria cualquiera tanto para un fotón como para una

masa. Obtenemos la siguiente gráfica:

Figura 9: Comparación de trayectorias en ambos casos.

Se ve claramente que ambas trayectorias coinciden. Sin embargo, hay que destacar que la

resolución numérica en las coordenadas de Eddington-Finkelstein es más cómoda a la hora de

acercarse al radio gravitacional debido a la existencia de la singularidad en dicho punto en la

métrica de Schwarzschild.
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Para continuar vamos a obtener trayectorias radiales de fotones, al igual que hicimos en el

caso de Schwarzschild, para comprobar los resultados del programa con resultados anaĺıticos

obtenidos en las ecuaciones (34) y (35). En primer lugar vamos a tratar el exterior del agujero.

En la ecuación (38) desestimamos la solución negativa para la inicialización de T̄ y por lo tanto

solo tenemos una posibilidad. Un fotón lanzado en dirección radial hacia el origen debeŕıa seguir

una trayectoria dada por la ecuación (34), mientras que un fotón lanzado desde fuera del agujero

en dirección radial hacia el infinito debeŕıa cumplir la ecuación (35). Las trayectorias radiales

fuera del agujero negro tienen la forma indicada en las figuras 10 y 11.

Figura 10: Trayectorias en dirección radial hacia el origen en coordenadas de Eddington-

Finkelstein.

Figura 11: Trayectorias en dirección radial hacia el infinito en coordenadas de Eddington-

Finkelstein.
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Las trayectorias de los fotones se ajustan perfectamente a las ecuaciones de las geodésicas

radiales (35) y (34) como esperábamos. Por otro lado, las trayectorias de las part́ıculas con masa

son también esperables, puesto que al moverse más lento que los fotones tardan más tiempo en

recorrer las mismas distancias radiales. Con todo esto damos por finalizada la comprobación del

programa.

Aśı mismo un resultado interesante que se puede obtener fácilmente es una comparación

de los tiempos t̄ y t utilizados en las coordenadas de Eddington-Finkelstein y Schwarzschild

respectivamente cuando lanzamos un fotón en dirección radial hacia el origen. El resultado

puede verse en la figura 12.

Figura 12: Comparación del tiempo de Schwarzschild con el de Eddington-Finkelstein.

Figura 13: Comparación del tiempo propio con los de Schwarzschild y Eddington-Finkelstein para

una part́ıcula con masa.
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Se ve que el tiempo de Schwarzschild diverge en el horizonte de sucesos, mientras que el

tiempo de Eddington-Finkelstein no presenta ninguna divergencia y llega al origen.

Análogamente podemos ver que sucede con una part́ıcula con masa. Para una masa, pode-

mos ver una comparativa del tiempo propio con los tiempos de los dos sistemas de coordenadas.

Además, el tiempo propio es particularmente interesante puesto que sabemos que es el que me-

diŕıa un observador comóvil con la masa. Se obtiene lo mostrado en la figura 13.

Los tiempos de Schwarzschild y Eddington-Finkelstein se comportan como ya hemos visto

en el caso del fotón. Lo interesante ahora es ver que el tiempo propio no diverge y, por lo tanto,

un observador comóvil con la masa veŕıa que llega al origen en tiempo finito. Podemos hacer

una analoǵıa con una estrella que colapsa. Mientras el observador en el infinito no ve el colapso

puesto que tarda un tiempo infinito, el observador situado en la superficie de la estrella ve que

este es finito, al igual que un observador que mide t̄.

Ahora vamos a explorar el interior del agujero. Las geodésicas radiales vuelven a estar dadas

por las ecuaciones (35) y (34). En el exterior del agujero la elección de una part́ıcula que se va

a mover en dirección radial se haćıa tomando R > 0 si queremos que vaya hacia el infinito, o

tomando R < 0 si queremos que se dirija a la singularidad. Sin embargo, ahora R no puede

tomar valores positivos. Esto se debe a que en la ecuación (38) si R > 0, en el agujero negro los

dos valores de T̄ son negativos. Sin embargo, si R < 0, ambos valores son positivos. Esto indica

que, en este caso, las geodésicas radiales entrantes y salientes vienen definidas por el valor de

T̄ que elijamos. A partir de ahora, nos referiremos a T̄ como T̄+ si elegimos el signo positivo o

como T̄− si elegimos el negativo. Las trayectorias radiales son de la forma que refleja la figura 14.

Figura 14: Trayectorias en dirección radial dentro del agujero.

Como vemos en la gráfica el hecho de elegir T̄+ para el fotón radial da como resultado la

geodésica (34), mientras que elegir T̄− proporciona la geodésica (35). En el caso de T̄− las masas

tardan menos en llegar que los fotones y los resultado obtenidos parecen indicar que las trayec-
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torias permitidas para una part́ıcula deben estar contenidas entre las geodésicas de los fotones

que se ven en la figura anterior. Vamos a explorar un poco más en detalle estos dos casos puesto

que se obtienen resultados interesantes.

En primer lugar para ambas posibilidades de T̄ estamos lanzando el fotón hacia el interior

del agujero en dirección radial por lo que es de esperar que recorran el mismo camino. A modo

de aclaración, de ahora en adelante, cuando hablemos de camino nos referimos a la trayecto-

ria descrita por las coordenadas radial y angular, excluyendo la dependencia temporal. Con

la resolución numérica se comprueba que recorriendo caminos idénticos los tiempos de colapso

son distintos en función de cómo se elige la celeridad temporal. Para investigar este resultado,

estudiamos trayectorias angulares para ver qué resultados obtenemos con cada una de las ini-

cializaciones de la celeridad temporal.

Lo primero que conviene aclarar es que el ángulo de lanzamiento de los fotones en el interior

del agujero no puede ser cualquiera. Como ya hemos dicho antes un fotón no lo podemos inicia-

lizar en el interior del agujero con R = 1 y Ψ = 0, pues anaĺıticamente vimos que este caso es

imposible. El ángulo máximo con el que podemos lanzar el fotón, vendrá dado por la ecuación

(38). La ráız debe ser positiva, siempre por lo que se tiene que para el caso del fotón con m = 0:

R =
√

r(r0 − r)Ψ . (39)

Definimos el ángulo de la siguiente forma:

tan(β) =
Ψ

R
. (40)

Figura 15: Ángulo de lanzamiento en el interior del agujero.

Introduciendo la ecuación (39) en la (40) se tiene que el ángulo máximo con el que se puede

lanzar un fotón en el interior del agujero es:

tan(βMax) =
1√

r(r0 − r)
. (41)

Para probar esto, elegimos un radio fijo y lanzamos varios fotones, cada uno de ellos con un ángulo

distinto comprendido entre 0 y el dado por la ecuación (41). Realizamos cada lanzamiento dos

veces, una inicializando T̄ a T̄+ y otra inicializándolo a T̄−.

En la figura 16 se ve que cambiar la inicialización de T̄+ a T̄− no afecta al camino de la

part́ıcula. Vamos a ver que, al igual que antes, es el tiempo de colapso lo que vaŕıa.
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Figura 16: Comparación de caminos de T̄+ y T̄− en el interior del agujero.

Figura 17: Distintas trayectorias con T̄+ y T̄− en el interior del agujero.

El resultado que se obtiene en la figura 17 es que para T̄+ el tiempo de colapso es mayor

al aumentar el ángulo como es de esperar. Sin embargo, al hacer lo mismo con T̄− se obtiene

lo contrario; a mayor ángulo, menor tiempo de colapso. También se observa que en el caso del

ángulo máximo con el que se puede lanzar el fotón, para la distancia a la que nos encontramos

(r = 0,8), los tiempos de colapso coinciden tanto si elegimos T̄+ como T̄−. Esto es algo que se

puede ver anaĺıticamente pues el caso del ángulo máximo se corresponde al caso para el que la

ráız vale 0 en la ecuación (38) y por lo tanto elegir un signo u otro es irrelevante.

Dicho esto, y habiendo explorado ambas soluciones, la explicación que le damos a la exis-

tencia de dos posibilidades para la elección de T̄ es la siguiente: del caso radial queda claro que

cada una de las soluciones se corresponde con una de las geodésicas en el interior del agujero.
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La solución T̄+ proporciona los tiempos de colapso dados por la geodésica (34) y que tienen

continuidad con los obtenidos fuera del agujero, dados por esa misma geodésica. Sin embargo

el tiempo T̄− proporciona los resultados de la geodésica (35), que en el exterior del agujero se

corresponde con la de fotones que se dirigen al infinito. Esto es imposible en este caso por estar

en el interior del agujero, y por lo tanto acaban cayendo al origen igualmente, siguiendo los

mismos caminos correspondientes a las de la elección de T̄+. Fuera del agujero, escogiendo el

signo de R, podemos elegir entre part́ıculas que se lanzan hacia el origen o hacia el infinito,

pero dentro del agujero R debe ser negativa necesariamente por lo que la elección de lanzar la

part́ıcula hacia afuera (aunque es imposible que salga del agujero) o hacia adentro, depende de

escoger T̄− o T̄+.

Por último vamos a retomar el problema del cierre de los conos de luz en el exterior del

agujero conforme el radio se acerca al radio gravitacional. En el caso de las geodésicas de Sch-

warzschild obtuvimos la figura 7, pero ahora buscamos obtener una dependencia más suave del

ángulo con el radio conforme nos acercamos a r0. Sin embargo el caso de las geodésicas de

Eddington-Finkelstein da el mismo resultado puesto que las coordenadas radial y angular son

las mismas en ambos sistemas.

No obstante, se puede introducir una nueva coordenada radial para la cual la dependencia

será mucho más suave:

r∗ = r + r0 log

∣∣∣∣ rr0 − 1

∣∣∣∣ . (42)

A esta coordenada radial se la conoce como ”tortoise coordinate”. Al redefinir la coordenada

radial también hay que redefinir la celeridad radial, que en este caso es simplemente derivar la

expresión anterior con respecto a un parámetro af́ın. Como hemos hecho hasta ahora, denotamos

como R∗ a dr∗/dτ :

R∗ =
r

r − r0
R . (43)

Aśı el ángulo lo redefinimos de forma análoga a la ecuación (19):

tan(α∗) =
Ψ

R∗
. (44)

Para introducir los nuevos parámetros, lo único que tenemos que hacer es reemplazar en

los datos obtenidos anteriormente: r por r∗, R por R∗ y α por α∗. De esta forma se obtiene lo

mostrado en la figura 18.

Ahora la dependencia es mucho más suave y vemos cómo los ángulos van de 0º a 180º por

lo que pasamos a analizar los resultados. Lo primero de todo es corroborar que los extremos de

la función son correctos. Comenzamos con r∗. Si en la ecuación (42) r→r0, obtenemos que r∗

diverge a −∞. Por otro lado, si r → ∞ , en la ecuación (42) r∗ diverge a +∞. Para analizar los

casos extremos de α∗ utilizamos las ecuaciones (44), (43) y (19). Combinando estas expresiones

se llega a la siguiente relación entre ángulos:

tan(α)

tan(α∗)
=

r

r − r0
. (45)
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Figura 18: Cierre de los conos de luz en coordenadas de r∗.

Con la ecuación (45) podemos averiguar los valores extremos de α∗. Si r→r0 sabemos que α

tiende a 0 por el cierre de los conos de luz, y, por lo tanto, α∗ tiende a 0 también por la ecuación

anterior. En el caso de que r → ∞, α diverge a ∞ implicando que α∗ lo haga igualmente.

Por lo tanto podemos comprobar que los casos ĺımites se reproducen correctamente en la

gráfica mostrada. Si r → r0, r∗ tiende a −∞ y α∗ tiende a 0, mientras que si r → ∞, r∗ tiende

a ∞ y α∗ tiende a 180º como ocurre en la figura 18.
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Conclusiones

A modo de cierre, vamos a recapitular los resultados más relevantes obtenidos a lo largo del

trabajo.

La métrica de Schwarzschild describe el campo generado por un agujero negro y presenta

una singularidad f́ısica en r = 0 y una debida al sistema de coordenadas en r = r0 que se puede

eliminar utilizando las coordenadas de Eddington-Finkelstein. Las trayectorias radiales de los

fotones se pueden obtener anaĺıticamente en ambos sistemas y vienen dadas por las ecuaciones

(9) en Schwarzschild y por (34) y (35) en Eddington-Finkelstein.

La principal diferencia de ambos sistemas es la coordenada temporal que utilizan. En el caso

de Schwarzschild es el tiempo que mediŕıa un observador en el infinito y presenta una divergencia

conforme las part́ıculas se acercan al horizonte de sucesos. En el caso de Eddington-Finkelstein

esta divergencia no existe y se observan tiempos de colapso finitos. Además para part́ıculas con

masa también es relevante el tiempo propio, el cual mide un observador comóvil con las part́ıcu-

las y que tampoco diverge en el horizonte de sucesos.

Ambos sistemas de coordenadas permiten estudiar el exterior del agujero y en ambos se

observa el cierre de los conos de luz conforme la distancia al horizonte de sucesos disminuye.

En los dos sistemas de coordenadas el cierre de los conos de luz es idéntico y se puede definir

una coordenadas radial nueva que provoca que el cierre para distancias cercanas al horizonte de

sucesos sea mucho más suave.

Por último, el interior del agujero no es adecuado estudiarlo en el sistema de coordenadas

de Schwarzschild. Dentro de este toda part́ıcula acaba llegando a la singularidad y no puede

escapar del agujero. No obstante el tiempo de colapso vaŕıa en función de que las part́ıculas se

intenten lanzar hacia afuera o hacia dentro, aunque los caminos realizadas por estas son iguales.
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Apéndice A. Método de Runge-Kutta de cuarto orden

El método de Runge-Kutta permite resolver numéricamente ecuaciones diferenciales de pri-

mer orden. Las ecuaciones geodésicas son de segundo orden y se pueden escribir introduciendo

las funciones fR, fT y fΨ y las celeridades T, R y Ψ definidas anteriormente:

d2t

dτ2
= fT (r,R, t, T, ϕ,Ψ, τ) , (46)

d2r

dτ2
= fR(r,R, t, T, ϕ,Ψ, τ) , (47)

d2ϕ

dτ2
= fΨ(r,R, t, T, ϕ,Ψ, τ) . (48)

La discretización se hace reduciendo el sistema de 3 ecuaciones diferenciales de segundo orden

a uno de 6 de primer orden de la siguiente forma:

dt

dτ
= T , (49)

dr

dτ
= R , (50)

dϕ

dτ
= Ψ , (51)

dT

dτ
= fT (r,R, t, T, ϕ,Ψ, τ) , (52)

dR

dτ
= fR(r,R, t, T, ϕ,Ψ, τ) , (53)

dΨ

dτ
= fΨ(r,R, t, T, ϕ,Ψ, τ) . (54)

Con las ecuaciones de primer orden, introduciendo de ahora en adelante h como el paso

temporal, se definen unas variables de evolución que son de la siguiente forma:

n1 = h T , (55)

m1 = h R , (56)

d1 = h Ψ , (57)

l1 = h fT (r,R, t, T, ϕ,Ψ, τ) , (58)

j1 = h fR(r,R, t, T, ϕ,Ψ, τ) , (59)

b1 = h fΨ(r,R, t, T, ϕ,Ψ, τ) ; (60)

n2 = h (T +
1

2
l1) , (61)

m2 = h (R+
1

2
j1) , (62)

d2 = h (Ψ +
1

2
b1) , (63)

l2 = h fT (r +
1

2
m1, R+

1

2
j1, t+

1

2
n1, T +

1

2
l1, ϕ+

1

2
d1,Ψ+

1

2
b1, τ +

1

2
h) , (64)
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j2 = h fR(r +
1

2
m1, R+

1

2
j1, t+

1

2
n1, T +

1

2
l1, ϕ+

1

2
d1,Ψ+

1

2
b1, τ +

1

2
h) , (65)

b2 = h fΨ(r +
1

2
m1, R+

1

2
j1, t+

1

2
n1, T +

1

2
l1, ϕ+

1

2
d1,Ψ+

1

2
b1, τ +

1

2
h) ; (66)

n3 = h (T +
1

2
l2) , (67)

m3 = h (R+
1

2
j2) , (68)

d3 = h (Ψ +
1

2
b2) , (69)

l3 = h fT (r +
1

2
m2, R+

1

2
j2, t+

1

2
n2, T +

1

2
l2, ϕ+

1

2
d2,Ψ+

1

2
b2, τ +

1

2
h) , (70)

j3 = h fR(r +
1

2
m2, R+

1

2
j2, t+

1

2
n2, T +

1

2
l2, ϕ+

1

2
d2,Ψ+

1

2
b2, τ +

1

2
h) , (71)

b3 = h fΨ(r +
1

2
m2, R+

1

2
j2, t+

1

2
n2, T +

1

2
l2, ϕ+

1

2
d2,Ψ+

1

2
b2, τ +

1

2
h) ; (72)

n4 = h (T + l3) , (73)

m4 = h (R+ j3) , (74)

d4 = h (Ψ + b3) , (75)

l4 = h fT (r +m3, R+ j3, t+ n3, T + l3, ϕ+ d3,Ψ+ b3, τ + h) , (76)

j4 = h fR(r +m3, R+ j3, t+ n3, T + l3, ϕ+ d3,Ψ+ b3, τ + h) , (77)

b4 = h fΨ(r +m3, R+ j3, t+ n3, T + l3, ϕ+ d3,Ψ+ b3, τ + h) . (78)

Utilizando estas variables de evolución se actualizan t, T , r, R, ϕ, Ψ y τ de la siguiente

forma:

t = t+
1

6
(n1 + 2n2 + 2n3 + n4) , (79)

T = T +
1

6
(l1 + 2l2 + 2l3 + l4) , (80)

r = r +
1

6
(m1 + 2m2 + 2m3 +m4) , (81)

R = R+
1

6
(j1 + 2j2 + 2j3 + j4) , (82)

ϕ = ϕ+
1

6
(d1 + 2d2 + 2d3 + d4) , (83)

Ψ = Ψ+
1

6
(b1 + 2b2 + 2b3 + b4) , (84)

τ = τ + h . (85)

De esta forma este proceso puede iterarse las veces que se desee.
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