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Introducciéon

El objetivo de este trabajo es estudiar trayectorias de particulas bajo la influencia de un
objeto masivo. En concreto, nos centraremos en trayectorias de particulas bajo la influencia gra-
vitatoria de un agujero negro. Estudiaremos cudles son dichas trayectorias tanto en el interior,
como en el exterior del agujero. Para ello emplearemos la métrica de Schwarzschild, que nos per-
mitird estudiar tanto el campo exterior de un objeto masivo, como el generado por un agujero
negro. El trabajo se divide en dos partes, y en cada una utilizaremos un sistema de coordenadas
distinto. A su vez cada una de las partes se divide en dos secciones, la primera en la que nos cen-
traremos en obtener resultados analiticos, y la segunda en la que resolveremos numéricamente las

trayectorias descritas por las ecuaciones geodésicas con un algoritmo de Runge-Kutta de orden 4.

En la primera parte del trabajo estudiaremos algunas soluciones a las ecuaciones geodésicas
de dicha métrica. Esta métrica nos permitira estudiar, entre otras cosas, trayectorias en el exte-
rior de un agujero negro. Seran de gran interés las geodésicas radiales al tratarse del caso mas
simple obtenible analiticamente. En esta parte estudiaremos también el cierre de los conos de

luz a medida que disminuye la distancia al horizonte de sucesos.

En la segunda parte nos centraremos en explorar soluciones en el interior de un agujero negro,
introduciendo para ello las coordenadas de Eddington-Finkelstein. Este sistema de coordenadas
nos permitird explorar trayectorias de particulas en el interior del agujero. Serd interesante
comparar el comportamiento de la coordenada temporal en este sistema con respecto al anterior
para obtener informaciéon de cémo varian los tiempos de colapso en funcién del observador.
Retomaremos, en este caso, el cierre de los conos de luz para poder extraer alguna conclusiéon

’

mas.



Parte I: Métrica de Schwarzschild

La solucién de Schwarzschild es una de las soluciones mas simples de las ecuaciones de
Einstein. Su eleccién viene motivada por la simetria esférica del espacio tiempo que vamos a
considerar pues, segin el teorema de Birkhoff, cualquier solucién con simetria esférica de las
ecuaciones de campo de vacio debe ser asintéticamente plana y estatica. Segin este teorema
la métrica de Schwarzschild describe el campo generado por un agujero negro, y también el
campo exterior de una estrella. Por lo tanto su uso nos va a permitir explorar las ecuaciones
del movimiento de objetos sometidos a la influencia gravitatoria de dichos cuerpos. De aqui en
adelante vamos a considerar el convenio para la signatura de la métrica (4 - - -) y tomaremos
unidades con c=1. Con todo esto el elemento de linea de la métrica de Schwarzschild toma la
siguiente forma:

ds? = — (1 - 7“70) dt? + (1 - %0)71 dr? + r2(d0? + sin? 0 d¢?) . (1)
En ella hemos introducido por conveniencia el radio gravitacional, definido a partir de la masa

M del objeto que origina el campo y de la constante de gravitacién universal G:
ro = 2MG . (2)

En la forma de la métrica, se destaca la existencia de dos singularidades. Una se da en r = 0
y la otra en r = rg. Sin embargo solo la correspondiente a r = 0 es una singularidad fisica,
pues la que aparece en © = 1 se debe al sistema de coordenadas. Esta segunda singularidad
denota un horizonte de eventos por lo que las senales emitidas en radios menores que el radio
gravitacional no pueden escapar del agujero y acabaran colapsando inevitablemente en el origen.
El estudio del interior del agujero no es conveniente en este sistema de coordenadas por lo que a
partir de ahora nos centraremos en estudiar solo la zona exterior y posteriormente utilizaremos

otras coordenadas para explorar el interior del agujero.

Para estudiar las distintas trayectorias que puede describir una particula utilizaremos las
ecuaciones geodésicas. Debido a la simetria esférica del problema podemos fijar el angulo 6 a
7/2 sin perder generalidad y de esta forma nos centramos en un plano espacial formado solo
por la dimensién radial y una angular. Las ecuaciones geodésicas que manejaremos de ahora en
adelante son, por lo tanto, las siguientes:

dT To
24" pRr=
dr + r(r—ro) E=0, (3)
dR  ro(r —10) 9 7o 2 2
ot T2 — R — (r —1g)¥% =0 4
dr + 273 2r(r —rg) (r=70) ’ (4)
av 2
L cRu=0.
dr + T’R 0 (5)

Se ha introducido 7 como un pardmetro afin cualquiera y las variables T, R y ¥ como las deri-
vadas de t, r y ¢ con respecto a 7, que representan las celeridades en las direcciones temporal,

radial y angular respectivamente.

A estas ecuaciones hay que sumarle otra ecuacién de ligadura para la cuadrivelocidad

(1—%0)T2—(1—7;—0>_1R2—r2\112:m, (6)



donde denotamos como m a un pardmetro que vale 0 si la particula tiene masa nula y 1 en caso

contrario.

Calculos analiticos

Lo primero que vamos a hacer es resolver analiticamente algunas trayectorias sencillas. El

caso més simple es el de un fotén, que verifica que ds? = 0.

Lo maés sencillo que podemos plantearnos es el caso de un fotén que se mueve en direccién
radial, obteniendo la siguiente ecuacién diferencial en r y t:

(1 ~ LO) dt? = (1 - @)_1 dr? . (7)

r r
Tomando la raiz y agrupando se obtiene lo siguiente:

ray —1

dt:i<1——0) dr | (8)

r

Vemos que tenemos dos posibles trayectorias. Puesto que en el exterior del agujero, r > ro,
el término (1 — %0) es positivo, de forma que si elegimos en la ecuacién (8) el signo positi-
vo tendremos que dr/dt es positiva, lo que indica que el radio aumenta conforme aumenta el
tiempo. Esto se corresponde con el caso de lanzar un fotén desde fuera del agujero hacia el
infinito en direccién radial. Sin embargo, si tomamos el signo negativo la cantidad dr/dt es
negativa, por lo que en este caso el radio disminuye al aumentar el tiempo, correspondiéndose
asi con una situacion en la que el fotén se lanza desde fuera del agujero hacia dentro radialmente.

Integrando la ecuacion diferencial anterior y manteniendo la posibilidad de elegir el signo
positivo o negativo, en funcion de si el fotén va hacia el infinito o hacia el origen, se obtienen
estas dos geodésicas:

t = +(r 4+ rolog |r — r9|) + constante . 9)

Como se puede ver en la figura 1, las trayectorias de los fotones salientes lejos del horizonte de
sucesos, tienden a una linea t = r correspondiente a la trayectoria de una particula sin masa en el
espacio de Minkowski. También observamos que para los fotones que se dirigen desde el exterior
a la singularidad, un observador situado en el infinito ve que ese tiempo diverge, debido a que
t tiende a infinito conforme r tiende a rg. Esta divergencia es debida al sistema de coordenadas
como ya hemos indicado antes, y veremos mas adelante que se pueden tomar otras coordenadas

donde el tiempo para ese observador no sera asintotico y desaparecerd esta singularidad.

Utilizando la ecuacién (9) podemos obtener un nuevo resultado. Imaginemos ahora el caso
de una estrella que estd colapsando hacia su radio gravitacional y un observador situado en su
superficie (observador 1) que emite senales separadas por un cierto tiempo. Este tiempo serd
distinto medido por un observador en el infinito (observador 2). El observador 1 emite el primer
fotén cuando se encuentra en un radio 71 y el segundo fotén, cuando la estrella se ha contraido
a un radio 19 < r1. La trayectoria de los dos fotones desde r; hasta infinito es la misma, por
lo que el redshift viene dado por el tiempo que le cuesta al fotén ir de r1 a ro medido por un
observador en el infinito. Asi, el redshift es:

At =t(r1) —t(re) =r1 —ro+ 7o log (Tl — r0> ) (10)
r2—To
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Geodésicas radiales de fotones en coordenadas de Schwarzschild

10

o
Geodésicas salientes

Geodésicas entrantes

Figura 1: Trayectorias radiales de fotones en la métrica de Schwarzschild.

Como podemos ver si 71 = ro el redshift es nulo, puesto que la estrella no se ha contraido. Por
el contrario si r9—rg, tiende a infinito. Esto quiere decir que el observador 2 no verd nunca
contraerse por completo a la estrella. Esto es similar a lo discutido en la figura 1, donde se veia

que el tiempo divergia al tender r a ry.

Otro caso analitico que se puede calcular es el de la esfera de fotones, correspondiente a la
Unica Orbita circular al agujero que puede realizar un fotén. Para ello partimos de nuevo del
elemento de linea de la ecuacién (1) y al considerar fotones volvemos a considerar ds? = 0. La
ecuacién diferencial que se obtiene es la siguiente:

d¢ 1 To

T 2 _ 27,2 1 _To
(1 r)dt rdg? - S =~y 1= (11)

Utilizando ahora la ecuacién geodésica (4) e imponiendo dr = 0, se obtiene que

d 2
(;f) S (12)

y sustituyendo esto en la ecuacién anterior se llega a que el radio que tiene la érbita es

3
r=gro- (13)

Por lo tanto, los fotones lanzados desde esa posicion con celeridad radial nula y celeridad angular

no nula describirdn una érbita circular alrededor del agujero.



Resolucién numérica

Debido a la dificultad para obtener resultados analiticos en el caso de fotones en direcciéon no
radial, optamos por utilizar el método de Runge-Kutta a 4° orden para resolver numéricamente
las ecuaciones geodésicas completas.

Las condiciones iniciales de la resolucion numérica vienen dadas al elegir adecuadamente los

valores de r, R, t, ¢ y ¥ y fijar T con la ligadura, que toma la forma siguiente:

2 r3 r
T=x+ R+ wy "oy (14)
(r—rg)? r—ro r—ro

Tenemos dos elecciones posibles del signo de T pero vamos a tomar la positiva. Tomar T con
signo negativo haria que el tiempo disminuyera conforme avanza el tiempo del programa te-
niendo esta eleccién de signo el significado fisico de ir hacia atras en el tiempo. Por eleccion

tomaremos siempre t=0 como origen de tiempos y el d&ngulo inicial lo igualaremos también a 0.

El signo de R dara la direccién de la velocidad de la particula, pudiendo dirigirse esta hacia
el origen si R es negativo o hacia el infinito si es positivo. Asimismo, la velocidad angular viene
dada por ¥, siendo nula si ¥ lo es.

La primera comprobacién que vamos a hacer es sobre las trayectorias de fotones cuando son
lanzados hacia fuera del agujero, o hacia dentro en direccién radial, debido a que tenemos las
expresiones analiticas. También calcularemos numéricamente estas trayectorias con particulas

con masa obteniendo lo mostrado en las figuras 2 y 3.

Trayectorias entrantes

Fotén .
Masa .
Fotdn tedrico

o

Figura 2: Trayectorias en direccion radial hacia el origen.

Se observa que las trayectorias de los fotones coinciden con las calculadas analiticamente. Las de
las masas también son coherentes, pues tardan mas tiempo que los fotones en recorrer las mismas
distancias radiales. Vemos que para el caso de los fotones cuanto mas nos alejamos del radio

gravitacional mas se asemejan las trayectorias a la linea r = t, que es la forma que presentarian



Trayectorias salientes

Foton .
Masa .

Fotdn tedrico

o

Figura 3: Trayectorias en direccion radial hacia el infinito.

en un espacio plano.

A modo de comprobacién del programa vamos a estudiar algunas Orbitas elipticas y las
precesiones de los perihelios de estas. En [1], podemos encontrar un calculo de las precesiones
de los perihelios de drbitas que tiene validez para campos gravitatorios débiles y particulas con

velocidades pequenias. El angulo de precesion es el siguiente:

Ap = 37;7“0 rad/rev . (15)

Se define L como una funcién que depende del perihelio (r_) y del afelio (r4) y que tiene unidades

de longitud:
27“4_7“_

L=—"—.
Ty +r_

(16)

Sin embargo, para generar érbitas en el programa y comprobar que preceden como dice la ecua-

cién (15), hay que inicializar adecuadamente la trayectoria.

Para ello lo que hacemos es elegir tanto el perihelio como el afelio, fijando asi el valor de
L. Inicialmente colocaremos una particula con masa en una de estas dos posiciones, puesto que
sabemos que en esos puntos la celeridad radial R es nula y solo nos falta elegir un valor de
U para que la orbita presente el perihelio y afelio deseados. Utilizamos la siguiente expresion

presentada en [1]:

) (1—1:—3> =
e (17)
T

J es el momento angular que a su vez, hallando cantidades conservadas en las ecuaciones geodési-

cas bajo la aproximacion de campos débiles, se puede relacionar con ¥ de la siguiente forma:

J =7V, (18)



Asi, fijado r4 y r—, calculamos J con la ecuacién (17) y luego inicializamos la particula en, por

ejemplo, el perihelio, de forma que el valor inicial de ¥ viene dado por la ecuacién (18) y es J/r2.

Queremos ver que las precesiones que obtenemos se acercan a la expresiéon de la ecuacién
mostrada anteriormente conforme aumentan las distancias al radio gravitacional, es decir, que el
campo es mas débil. En la grafica siguiente se muestra la discrepancia entre los valores obtenidos
con la resolucién numérica y los valores dados por la expresién (15), en forma de error relativo,
para varios valores de L:

Comparacion de los resultados tedricos con la resolucién numérica
0.5 T T T

o
w
T
[ ]
L

Error relativo

o
[
T
L

0 1x107 2x107 3x107 4x107 5x107 6x107
L(km)

Figura 4: Comparacion entre la resolucion numérica y el valor teorico de las precesiones para

distintas distancias.

Efectivamente, la concordancia entre la resolucién numérica y el resultado analitico es mayor
conforme aumentan las distancias ya que la aproximacion de campos débiles en esos casos es
mejor. El error relativo mostrado se ha calculado de la siguiente forma:

’ASOSim - A@Teo’
ASOTeo

Error relativo =

Con este resultado damos por finalizada la comprobacién del programa.

Seguidamente estudiaremos el cierre de los conos de luz al disminuir la distancia al radio
gravitacional. Esto quiere decir que cuanto més cerca estamos de 1y, menor es el dngulo con el
que podemos lanzar fotones con respecto a la direccién radial para que no acaben en el origen.

Definimos el angulo a con el que lanzamos los fotones de la forma que muestra la figura 5.

Para cada radio hay un angulo maximo ajs.., para el cual los fotones que se lanzan con
angulo igual o inferior a este escaparan hacia el infinito, mientras que los fotones lanzados con
un angulo mayor acabaran en el origen. El objetivo es hallar cudl es el dngulo ajpsq, para dis-
tintos radios.



—

Figura 5: Angulo de lanzamiento de una particula.

A priori conocemos ayrq, para dos casos limites. Sabemos que si 7 — rg el dngulo maximo
tendera a 0 puesto que los conos de luz se cierran, y una vez dentro del agujero es imposible
escapar. El otro caso es cuando r — oo, donde el dngulo mdximo tiende a 180°, debido a que
al estar infinitamente lejos del agujero se pueden lanzar fotones en todas las direcciones sin que
estos acaben en el origen. Ademds conocemos un caso méas de forma analitica que es el de la
esfera de fotones. Como se ha visto antes en la ecuacién (13) los fotones describen una 6rbita
circular si se lanzan en direccién angular, es decir, con un dngulo de 90°. Esto queda ilustrado
en esta figura:

Trayectorias con distintos angulos

3 T T T T T
fo
a=900
2r a=930 i

[r/rol sin(®)

-3 1 1 1 1 1
-3 -2 -1 0 1 2 3

[r/ro]l cos(®)

Figura 6: Ejemplo de dngulo limite con el caso de la esfera de fotones.

En ella se puede ver como para un angulo de 90° el fotén no acaba en el origen y se mantiene
en una orbita circular. Se ve ademas que este angulo es el dngulo méaximo, debido a que si lo
aumentamos el fotén cae al origen. También se puede ver que si el dngulo es menor el fotén
escapa.



A continuacién hacemos lo mismo para distintos radios. En este caso, al no tener solucién
analitica de los dangulos maximos, para cada uno tenemos que ir probando hasta encontrarlo.
Para ello fijamos el radio para el cual queremos encontrar el dngulo maximo y, una vez hecho
esto, lo lanzamos con angulo de 90°. Si el fotén cae al origen disminuimos un poco el dngulo y
probamos de nuevo hasta que encontremos el primer dngulo para el cual no cae. Guardaremos
este valor y repetiremos el mismo proceso para otros radios. Para inicializar el fotén con un
angulo determinado lo haremos de la siguiente forma:

v
tan(a) = —= . 19
(@)= % (19)
Este método lo hemos empleado para radios menores a %ro puesto que sabemos que en estos
casos el angulo maximo no va a superar los 90°. Para radios mayores el procedimiento es esen-
cialmente el mismo pero empezando a probar con dngulos de 180° en vez de 90°. En este caso
la inicializacion del fotén viene dada por esta expresion:
-R

tan(a — w/2) = 7 (20)

La grafica que obtenemos es la siguiente:

Cierre de los conos de luz

180 -

160 - q

120 -

i
4
& s
5100 - K q
L)

=

S g0t |
60 1
a0+ 1

20 q

:
(r/rg)-1

Figura 7: /fngulo mazximo para distintas distancias.

Como vemos, si r — 0o, el dngulo maximo tiende a 180° como esperdbamos. Por otro lado,
habiamos dicho que dicho angulo deberia tender a 0 conforme r — ry y se ve claramente que la
tendencia es decreciente, pero para valores del orden de 0.001, el angulo sigue siendo superior
a 60°. Se pueden seguir explorando radios més pequenos y se espera que el dngulo tienda a
0; parece que la grafica obtenida puede indicar que en algiin valor de r muy proximo a rg se
producird una disminucién del dngulo maximo. Vamos a optar por realizar esta grafica en otras

coordenadas distintas en las que la tendencia del &ngulo mdximo hacia 0° sea mds suave.



Parte II: Coordenadas de Eddington-Finkelstein

La métrica de Schwarzschild nos ha permitido explorar trayectorias en el exterior del aguje-
ro negro pero el hecho de que presente una singularidad en el horizonte de sucesos dificulta el
estudio de trayectorias cerca de este. Ademés la coordenada temporal utilizada anteriormente

no es conveniente para el interior del agujero.

Para eliminar la divergencia en el horizonte de sucesos que aparece en Schwarzschild, se intro-
duce un cambio de coordenadas con el objetivo de que las geodésicas radiales correspondientes
a fotones en direccién al origen sean lineas de -45°2, es decir, como en el espacio plano. Asi se
introduce una nueva coordenada temporal dada por el siguiente cambio:

f=t+rolog|— — 1, (21)
ro
que para el caso de una geodésica radial de un fotén en direccién al origen cumple
t = —r + constante , (22)

obtenida de sustituir en (21) la ecuacién (9) con el signo negativo.

Introduciendo esta nueva coordenada podemos reescribir el elemento de linea de Schwarzs-

child de la siguiente forma:
ds? = — (1 - Q") P + (1 + QO) dr? + 2°2dF dr + r2(d6? + sin® 0 dg?) . (23)
T T T

Este es el elemento de linea de Schwarzschild en coordenadas de Eddington—Finkelstein. Como
podemos ver la singularidad que antes existia en r = rg ha desaparecido, aunque seguimos man-
teniendo la correspondiente a » = 0. Esta iltima, como ya hemos mencionado, es imposible de

eliminar al tratarse de una singularidad fisica.

En este sistema de coordenadas las ecuaciones geodésicas son las siguientes:

dr ¢ - o\ 70 = Lro\ 70 o 9 5o
& g <1 —)—TR 14-0) 0k 292 _g 24
d7+2r3 + +7‘ r2 + +27’ r2 "0 (24)
dR 1 70\ 70,72 r% _ 1 0\ 70 9 9
@t - 1——)—T——TR—7(1 —)—R )2 =0, 25
T +2< r/ r? 73 2 + r/ r2 +(ro =) (25)
av 2
—+ -V R=0. 26
d7'+r (26)

La notacién utilizada es similar a la introducida en las coordenadas de Schwarzschild siendo R,
T y W las derivadas con respecto a 7 (un pardmetro afin cualquiera) de r, # y ¢ respectivamente.

Como hemos mencionado anteriormente siempre podemos elegir 6 = /2.
La ecuacion de la ligadura de la cuadrivelocidad, en este caso es la siguiente:

(1—7;—0)17“2—?}21?—(1+T70>R2—r2\112m. (27)

10



Calculos Analiticos

Por conveniencia vamos a introducir v, conocida como coordenada nula avanzada, que se
define implicitamente como:

dv=dt+dr. (28)

De esta forma el elemento de linea queda asi:
ds® = 2dvdr — (1 — i“) dv? + r2de? . (29)
T

Aligual que antes, el caso maés sencillo es considerar un fotén. Restringiéndonos a trayectorias
radiales se obtienen las siguientes ecuaciones diferenciales:

dv=0, (30)
2 = (1 - T—O) dv . (31)

r

Deshaciendo el cambio de v para recuperar ¢ se tiene:
dt = —dr, (32)
(1-2)at=(1+2)ar. (33)

r r

La primera ecuacién cumple que dr/dt < 0 con lo cual se corresponde con la trayectoria de
un fotén en direccién radial hacia el origen. La otra ecuacién, por lo tanto, debe corresponderse
con la trayectoria de un fotén en direccién radial hacia el infinito pero analizdndola mas en deta-
lle se puede llegar a una conclusién interesante: fuera del agujero (r > r¢) ambos paréntesis son
positivos y se tiene que dr/dt > 0 lo cual es esperable pues el fotén se aleja de la singularidad,
pero dentro del agujero (r < r() el paréntesis que acompana a ¢ es negativo y el que acompana
a r es positivo por lo que dr/dt < 0. Esto indica que dentro del agujero no existe la posibilidad
de que un fotén se aleje de la singularidad, sino que siempre va a ir disminuyendo su radio hasta

llegar al origen.

Integrando las ecuaciones (32) y (33) obtenemos las trayectorias radiales de un fotén. La
primera de ellas da:
t = —r + constante . (34)

Como vemos recuperamos la ecuacién (22) introducida anteriormente. Con la segunda se obtiene
lo siguiente:

t =1+ 2rglog |r — ro| + constante . (35)

Si deshacemos el cambio de coordenadas dado por la ecuacién (21) para recuperar la dependen-
cia con t obtenemos las ecuaciones (9) ya estudiadas en la parte anterior, pero ahora con las
ecuaciones (34) y (35) no hara falta que nos restrinjamos al exterior del agujero.

En la figura 8 vemos que, efectivamente, ahora las geodésicas radiales en direccién al origen
son lineas de 45°. El aspecto de las trayectorias en el exterior del agujero es similar a las del
caso de Schwarzschild asemejandose lejos de 1y a las de un espacio plano. El hecho de que la
nueva coordenada temporal no diverja al aproximarse r a rq facilitara la exploracion en la zona

préxima al radio gravitacional. Observamos que si r < g se cumple que toda particula que se

11



Geodésicas radiales de fotones en coordenadas de Eddington-Finkelstein

10 T T
o
Geodésicas entrantes

Geodésicas salientes

Figura 8: Trayectorias radiales en las coordenadas de Eddington-Finkelstein.

encuentre en el interior acabard llegando al origen. Una aclaracién que conviene hacer es que en
el interior del agujero las geodésicas que hemos denotado como geodésicas salientes realmente
no lo son porque no se puede escapar del interior del agujero y, por lo tanto, dentro de este todas
las geodésicas serian entrantes. Sin embargo para distinguirlas de las geodésicas que si que son
entrantes tanto en el exterior como en el interior las seguiremos denominando como geodésicas

salientes.

Con las ecuaciones obtenidas hasta ahora podemos obtener algunos tiempos de colapso.
Imaginemos que lanzamos un fotén desde una posicion 1 < rg y queremos ver cuanto tiempo
tarda en llegar a la singularidad. Para ello calculamos At = #(0) — ¢(r1) y bastara con sustituir
r =0y r =r en las geodésicas (34) y (35). Tenemos dos soluciones posibles, una para cada
ecuacién. La ecuacion (34) da:

At:Tl . (36)

Mientras que la ecuacién (35) da:

AE = 27’0 log < > -7 . (37)

o —T1

Como podemos ver, obtenemos que el fotén tarda tiempos distintos en recorrer la misma dis-
tancia radial. La resolucién numérica nos permitira explorar esto en detalle y darle una inter-

pretacion.

12



Resolucién numérica

Al igual que hemos procedido en el caso de Schwarzschild, fijamos T' con la ligadura de la
cuadrivelocidad a partir de las demas variables:

 nRL R+ (1 - )14 ©)R2 1202 4 )
T= . (38)

Como antes, tenemos dos posibles soluciones. Fuera del agujero se puede ver que la corres-
pondiente al signo positivo da un valor de T positivo, mientras que la correspondiente al negativo
da un valor de T negativo. Por lo tanto, como queremos siempre que la evolucién de la coordena-
da temporal sea creciente, fuera del agujero tomaremos la solucién con el signo positivo al igual
que en el caso de Schwarzschild. Sin embargo, dentro del agujero ambos signos dan soluciones de
T positivo por lo que a priori no podemos descartar ninguna de las dos. Veremos que esto est4
relacionado con las dos soluciones que hemos obtenido analiticamente en las ecuaciones (34) y
(35) y con los dos tiempos de colapso de las ecuaciones (36) y (37) para fotones que se mueven
en direccién radial hacia el origen. Al igual que hemos hecho en la parte anterior, inicializamos
arbitrariamente ¢ y t a 0.

Para probar que el programa funciona correctamente vamos a reproducir un par de tra-
yectorias ya obtenidas en el caso de Schwarzschild. Para ello nos colocamos fuera del agujero
y calcularemos numéricamente una trayectoria cualquiera tanto para un fotén como para una

masa. Obtenemos la siguiente grafica:

Comparacién con Schwarzschild
7 T T T

Fotén Schwarzschild .
6l Foton Eddington-Finkelstein ] |
Masa Schwarzschild ©@©©
®

s Masa Eddington-Finkelstein o] ©@©©

L ® ]

o ©©©
®®
0@
4t o® i
o o®®
= ®®
e @®

L ®® i

3 ©®
®®
®®
© .
@® ®@
2 ®@®" 0 @@ .
® @ @ =
o2 @ ©
e ®a®c
@ @ o

1
0 1 1 1 L

0 2 4 6 8 10

t

Figura 9: Comparacion de trayectorias en ambos casos.

Se ve claramente que ambas trayectorias coinciden. Sin embargo, hay que destacar que la
resolucién numérica en las coordenadas de Eddington-Finkelstein es mas cémoda a la hora de
acercarse al radio gravitacional debido a la existencia de la singularidad en dicho punto en la
métrica de Schwarzschild.
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Para continuar vamos a obtener trayectorias radiales de fotones, al igual que hicimos en el
caso de Schwarzschild, para comprobar los resultados del programa con resultados analiticos
obtenidos en las ecuaciones (34) y (35). En primer lugar vamos a tratar el exterior del agujero.
En la ecuacién (38) desestimamos la solucién negativa para la inicializacién de Ty por lo tanto
solo tenemos una posibilidad. Un foton lanzado en direccion radial hacia el origen deberia seguir
una trayectoria dada por la ecuacién (34), mientras que un fotén lanzado desde fuera del agujero
en direccién radial hacia el infinito deberia cumplir la ecuacién (35). Las trayectorias radiales
fuera del agujero negro tienen la forma indicada en las figuras 10 y 11.

Trayectorias entrantes

Foton .
Masa .

Fotdn Tedrico

o

0 2 4 6 8 10 12 14

Figura 10: Trayectorias en direccion radial hacia el origen en coordenadas de Eddington-

Finkelstein.
Trayectorias salientes
10 —
Foton .
Masa .
gL  Foton Tedrico

o

Figura 11: Trayectorias en direccion radial hacia el infinito en coordenadas de Eddington-
Finkelstein.
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Las trayectorias de los fotones se ajustan perfectamente a las ecuaciones de las geodésicas
radiales (35) y (34) como esperdbamos. Por otro lado, las trayectorias de las particulas con masa
son también esperables, puesto que al moverse mas lento que los fotones tardan mas tiempo en
recorrer las mismas distancias radiales. Con todo esto damos por finalizada la comprobacién del

programa.

Asi mismo un resultado interesante que se puede obtener facilmente es una comparacién
de los tiempos t y t utilizados en las coordenadas de Eddington-Finkelstein y Schwarzschild
respectivamente cuando lanzamos un fotén en direccion radial hacia el origen. El resultado

puede verse en la figura 12.

Comparacion de tiempos en ambos sistemas de coordenadas

10
1 .
t .
8r ro
6 F
[=]
—
=
4 -
2 F
. | N\ . | .
0 5 10 15 20 25 30

tiempo

Figura 12: Comparacion del tiempo de Schwarzschild con el de Eddington-Finkelstein.

Comparacion de tiempos para una masa

t .
t L)
Tiempo propio .
o
. | NN | .
0 5 10 15 20 25 30

tiempo

Figura 13: Comparacion del tiempo propio con los de Schwarzschild y Eddington-Finkelstein para

una particula con masa.
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Se ve que el tiempo de Schwarzschild diverge en el horizonte de sucesos, mientras que el

tiempo de Eddington-Finkelstein no presenta ninguna divergencia y llega al origen.

Andlogamente podemos ver que sucede con una particula con masa. Para una masa, pode-
mos ver una comparativa del tiempo propio con los tiempos de los dos sistemas de coordenadas.
Ademas, el tiempo propio es particularmente interesante puesto que sabemos que es el que me-
dirfa un observador comévil con la masa. Se obtiene lo mostrado en la figura 13.

Los tiempos de Schwarzschild y Eddington-Finkelstein se comportan como ya hemos visto
en el caso del fotén. Lo interesante ahora es ver que el tiempo propio no diverge y, por lo tanto,
un observador comévil con la masa veria que llega al origen en tiempo finito. Podemos hacer
una analogia con una estrella que colapsa. Mientras el observador en el infinito no ve el colapso
puesto que tarda un tiempo infinito, el observador situado en la superficie de la estrella ve que

este es finito, al igual que un observador que mide .

Ahora vamos a explorar el interior del agujero. Las geodésicas radiales vuelven a estar dadas
por las ecuaciones (35) y (34). En el exterior del agujero la eleccién de una particula que se va
a mover en direccién radial se hacia tomando R > 0 si queremos que vaya hacia el infinito, o
tomando R < 0 si queremos que se dirija a la singularidad. Sin embargo, ahora R no puede
tomar valores positivos. Esto se debe a que en la ecuacién (38) si R > 0, en el agujero negro los
dos valores de T son negativos. Sin embargo, si R < 0, ambos valores son positivos. Esto indica
que, en este caso, las geodésicas radiales entrantes y salientes vienen definidas por el valor de
T que elijamos. A partir de ahora, nos referiremos a T como Ty si elegimos el signo positivo o
como T_ si elegimos el negativo. Las trayectorias radiales son de la forma que refleja la figura 14.

Trayectorias radiales en el interior del agujero
1 T T

Fotén T, .

Fotén T .

0.8 Masa T, .
Masa T. .

Geodésica entrante

Geodésica saliente

0.2

Figura 14: Trayectorias en direccion radial dentro del agujero.

Como vemos en la gréfica el hecho de elegir Ty para el fotén radial da como resultado la
geodésica (34), mientras que elegir T proporciona la geodésica (35). En el caso de T_ las masas
tardan menos en llegar que los fotones y los resultado obtenidos parecen indicar que las trayec-
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torias permitidas para una particula deben estar contenidas entre las geodésicas de los fotones
que se ven en la figura anterior. Vamos a explorar un poco mas en detalle estos dos casos puesto

que se obtienen resultados interesantes.

En primer lugar para ambas posibilidades de T estamos lanzando el fotén hacia el interior
del agujero en direccién radial por lo que es de esperar que recorran el mismo camino. A modo
de aclaracién, de ahora en adelante, cuando hablemos de camino nos referimos a la trayecto-
ria descrita por las coordenadas radial y angular, excluyendo la dependencia temporal. Con
la resolucién numérica se comprueba que recorriendo caminos idénticos los tiempos de colapso
son distintos en funcién de cémo se elige la celeridad temporal. Para investigar este resultado,
estudiamos trayectorias angulares para ver qué resultados obtenemos con cada una de las ini-
cializaciones de la celeridad temporal.

Lo primero que conviene aclarar es que el angulo de lanzamiento de los fotones en el interior
del agujero no puede ser cualquiera. Como ya hemos dicho antes un fotén no lo podemos inicia-
lizar en el interior del agujero con R = 1y ¥ = 0, pues analiticamente vimos que este caso es
imposible. El angulo méximo con el que podemos lanzar el fotén, vendra dado por la ecuacién
(38). La raiz debe ser positiva, siempre por lo que se tiene que para el caso del fotén con m = 0:

R=+/r(ro—r)V. (39)

Definimos el dngulo de la siguiente forma:

tan(8) = (40)

=S

Figura 15: Angulo de lanzamiento en el interior del agujero.

Introduciendo la ecuacién (39) en la (40) se tiene que el dngulo maximo con el que se puede

lanzar un fotén en el interior del agujero es:

tan(Batas) = Wi_r) . (41)

Para probar esto, elegimos un radio fijo y lanzamos varios fotones, cada uno de ellos con un angulo
distinto comprendido entre 0 y el dado por la ecuacién (41). Realizamos cada lanzamiento dos

veces, una inicializando T a Ty y otra inicializdndolo a T_.

En la figura 16 se ve que cambiar la inicializacién de T, a T_ no afecta al camino de la
particula. Vamos a ver que, al igual que antes, es el tiempo de colapso lo que varia.
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Comparacion de caminos con T, y T.

I I I Fotén T, ‘ .
03k Fotén T ]
0.25 - b
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Figura 16: Comparacion de caminos de Ty y T_ en el interior del agujero.
Comparativa de trayectoriascon T, y T.
1 . .
Fotdn T, .
Fotdn T_
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061 B=450 1
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Figura 17: Distintas

trayectorias con Ty y T_ en el interior del agujero.

2.5

El resultado que se obtiene en la figura 17 es que para 7', el tiempo de colapso es mayor

al aumentar el angulo como es de esperar. Sin embargo, al hacer lo mismo con 7T_ se obtiene

lo contrario; a mayor dngulo, menor tiempo de colapso. También se observa que en el caso del

angulo maximo con el que se puede lanzar el fotén, para la distancia a la que nos encontramos

(r = 0,8), los tiempos de colapso coinciden tanto si elegimos Ty como T_. Esto es algo que se

puede ver analiticamente pues el caso del dngulo méximo se corresponde al caso para el que la

raiz vale 0 en la ecuacién (38) y por lo tanto elegir un signo u otro es irrelevante.

Dicho esto, y habiendo explorado ambas soluciones, la explicacién que le damos a la exis-

tencia de dos posibilidades para la eleccién de T es la siguiente: del caso radial queda claro que

cada una de las soluciones se corresponde con una de las geodésicas en el interior del agujero.
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La solucién T proporciona los tiempos de colapso dados por la geodésica (34) y que tienen
continuidad con los obtenidos fuera del agujero, dados por esa misma geodésica. Sin embargo
el tiempo T_ proporciona los resultados de la geodésica (35), que en el exterior del agujero se
corresponde con la de fotones que se dirigen al infinito. Esto es imposible en este caso por estar
en el interior del agujero, y por lo tanto acaban cayendo al origen igualmente, siguiendo los
mismos caminos correspondientes a las de la eleccién de T'. Fuera del agujero, escogiendo el
signo de R, podemos elegir entre particulas que se lanzan hacia el origen o hacia el infinito,
pero dentro del agujero R debe ser negativa necesariamente por lo que la eleccién de lanzar la
particula hacia afuera (aunque es imposible que salga del agujero) o hacia adentro, depende de
escoger T_ o Ty.

Por ultimo vamos a retomar el problema del cierre de los conos de luz en el exterior del
agujero conforme el radio se acerca al radio gravitacional. En el caso de las geodésicas de Sch-
warzschild obtuvimos la figura 7, pero ahora buscamos obtener una dependencia mas suave del
angulo con el radio conforme nos acercamos a rg. Sin embargo el caso de las geodésicas de
Eddington-Finkelstein da el mismo resultado puesto que las coordenadas radial y angular son

las mismas en ambos sistemas.

No obstante, se puede introducir una nueva coordenada radial para la cual la dependencia
serd mucho mas suave:

rv =1+ 1o log
o

T—1’ . (42)

A esta coordenada radial se la conoce como ”tortoise coordinate”. Al redefinir la coordenada
radial también hay que redefinir la celeridad radial, que en este caso es simplemente derivar la
expresién anterior con respecto a un parametro afin. Como hemos hecho hasta ahora, denotamos

como R, a dr,/dr:
r

R, = R. (43)

r—7T0

Asi el dngulo lo redefinimos de forma andloga a la ecuacién (19):

v
tan(aw) = — . 44
() = 5 (44)
Para introducir los nuevos parametros, lo tnico que tenemos que hacer es reemplazar en
los datos obtenidos anteriormente: r por r., R por R, y a por a,. De esta forma se obtiene lo

mostrado en la figura 18.

Ahora la dependencia es mucho mds suave y vemos c¢émo los angulos van de 0° a 180° por
lo que pasamos a analizar los resultados. Lo primero de todo es corroborar que los extremos de
la funcién son correctos. Comenzamos con r,. Si en la ecuacién (42) r—rp, obtenemos que 7
diverge a —oo. Por otro lado, si r — oo , en la ecuacién (42) r, diverge a +o0o. Para analizar los
casos extremos de a, utilizamos las ecuaciones (44), (43) y (19). Combinando estas expresiones
se llega a la siguiente relacion entre angulos:

tan(a) 7

tan(o,) r—r1o (45)
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Cierre de los conos de luz con la coordenada radial r«

180 -

160 - b

140 .

%100 - q

OxMag

80 - q

40| J

I«

Figura 18: Cierre de los conos de luz en coordenadas de 7.

Con la ecuacién (45) podemos averiguar los valores extremos de a. Si 7—7( sabemos que «
tiende a 0 por el cierre de los conos de luz, y, por lo tanto, a, tiende a 0 también por la ecuacién
anterior. En el caso de que r — 0o, a diverge a oo implicando que o, lo haga igualmente.

Por lo tanto podemos comprobar que los casos limites se reproducen correctamente en la

grafica mostrada. Si r — rg, 74 tiende a —oo y ax tiende a 0, mientras que si r — 0o, 7, tiende
a 00y a, tiende a 180° como ocurre en la figura 18.
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Conclusiones

A modo de cierre, vamos a recapitular los resultados més relevantes obtenidos a lo largo del
trabajo.

La métrica de Schwarzschild describe el campo generado por un agujero negro y presenta
una singularidad fisica en » = 0 y una debida al sistema de coordenadas en r = ry que se puede
eliminar utilizando las coordenadas de Eddington-Finkelstein. Las trayectorias radiales de los
fotones se pueden obtener analiticamente en ambos sistemas y vienen dadas por las ecuaciones
(9) en Schwarzschild y por (34) y (35) en Eddington-Finkelstein.

La principal diferencia de ambos sistemas es la coordenada temporal que utilizan. En el caso
de Schwarzschild es el tiempo que mediria un observador en el infinito y presenta una divergencia
conforme las particulas se acercan al horizonte de sucesos. En el caso de Eddington-Finkelstein
esta divergencia no existe y se observan tiempos de colapso finitos. Ademaés para particulas con
masa también es relevante el tiempo propio, el cual mide un observador comévil con las particu-

las y que tampoco diverge en el horizonte de sucesos.

Ambos sistemas de coordenadas permiten estudiar el exterior del agujero y en ambos se
observa el cierre de los conos de luz conforme la distancia al horizonte de sucesos disminuye.
En los dos sistemas de coordenadas el cierre de los conos de luz es idéntico y se puede definir
una coordenadas radial nueva que provoca que el cierre para distancias cercanas al horizonte de

sucesos sea mucho mas suave.

Por 1ltimo, el interior del agujero no es adecuado estudiarlo en el sistema de coordenadas
de Schwarzschild. Dentro de este toda particula acaba llegando a la singularidad y no puede
escapar del agujero. No obstante el tiempo de colapso varia en funcién de que las particulas se

intenten lanzar hacia afuera o hacia dentro, aunque los caminos realizadas por estas son iguales.
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Apéndice A. Método de Runge-Kutta de cuarto orden

El método de Runge-Kutta permite resolver numéricamente ecuaciones diferenciales de pri-

mer orden. Las ecuaciones geodésicas son de segundo orden y se pueden escribir introduciendo

las funciones fr, fr v fv y las celeridades T, R y ¥ definidas anteriormente:

d*t

P = fT(r7R7t7T> (Z)v\IJ?T) )
d?r

W = fR(T,R,t,T,@,\I’,T) )
d2

di':zb = f\I/(r7R7t7T7¢7\I]7T) .

(46)

(47)

(48)

La discretizacion se hace reduciendo el sistema de 3 ecuaciones diferenciales de segundo orden

a uno de 6 de primer orden de la siguiente forma:

dt

@ _r
dr ’
dr
ar
de
v
dr ’
T
% = fT(T, RataTv qba‘lj,T) )
dR
-5 = fR(T,R,t,T,Qb,\I’,T) )
dr
dv
-5 = f\If(T7R7t7T7¢a\1177_) .
dr

(49)

(50)
(51)
(52)
(53)

(54)

Con las ecuaciones de primer orden, introduciendo de ahora en adelante h como el paso

temporal, se definen unas variables de evolucién que son de la siguiente forma:

nlth,
mlth,
di=hv,

li=nh fT(ra R7t7T7 d):\Ij?T) )
jl - h fR(r7R7t7T7¢7\I}7T) )
by =h f\If(TaR7t7T7¢7\Ij?T) ;

1
n2:h(T+§ll),

1.
mQ:h(R+§Jl)a

1
d2:h(\p+§b1),

1 1 1 1 1 1 1
- h St n, T+ - Syt h
lo th(T—I— 2m1,R—|— 2]1,t+ 2711, + 2l1,¢+ 2d1, + 2b1,T+ 2h) ,
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(55)

56
o7

59

(56)
(57)
(58)
(59)
(60)

(61)



. 1 1. 1 1 1 1 1
je="h fr(r+smi, R+ gt + o, T+ Sl ¢+ Sdi, U+ b, 7+ Sh)

2 2 2 2 2 2 2
1 1. 1 1 1 1 1
bg —hfq/(r+§m1,R+ §j1,t+§n1,T+ 511,¢+§d1,‘1’+§b1,7'+§h),

1
n3:h(T+§l2),

1.
mgzh(R+§j2),

1
d3:h(\p—|—§bz),

1 1 1 1 1 1 1
l3 =h fT(T+ 7m27R+ 7j27t+ 7”27T+ 7127¢+ 7d27\II + 7b277—+ 7h) ’

2 2 2 2 2 2 2
. 1 1. 1 1 1 1 1
]3_th(T+§m27R+5327t+§n27T+ §l25¢+§d25\1j+§b257+§h)5

1 1 1 1 1 1 1
= — —j “no, T+ = Zdy, U+ = —h):
bs =h fu(r+ ng,R+ 2]2,t+ 512 + 2l2,¢+ 2d2, + 2b2,7+ 2h) :

n4:h(T+l3),
my =h (R+ j3),
dy =h (U +b3),

l4:hfT(T+m3)R+j37t+n37T+l37¢+d37‘ll+b377-+h’))
j4:hfR(T'—i-mg,R+j3,t+n3,T+l3,(b+d3,\Il+bg,7’+h),
b4:hf\p(’f‘+m3,R+j3,t+n3,T+l3,¢+d3,\I’+b3,7‘+h) .

73
74
75

(
(
(
(
(77
(

)
)
)
76)
)
)

78

Utilizando estas variables de evolucién se actualizan ¢, T, r, R, ¢, ¥ y 7 de la siguiente

forma: )
t=t+ —=(n1+2n2+2n3 +nyq) ,

6
1
T:T+6(Z1+212+2l3+l4),
1
r:r+6(m1+2m2+2m3+m4),
1. . . . .
R:R+6(11+212+233+J4),

1
¢:¢+6(d1+2d2+2d3+d4),

1
xp:xp+6(b1+2b2+2b3+b4),
T=T1+h.

De esta forma este proceso puede iterarse las veces que se desee.
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