
Matemáticas y el juego del guiñote

Sergio Torralba Perdices
Trabajo de fin de grado en Matemáticas

Universidad de Zaragoza

Director del trabajo: Francisco Javier López Lorente
27 de junio de 2022

Prólogo

El juego del guiñote es un juego de cartas, típico de Aragón y sus alrededores, en el que participan
4 jugadores divididos en dos parejas cuyo objetivo es llegar a una puntuación de 101 puntos antes que la
pareja rival. Existen referencias al guiñote en textos de Gustavo Adolfo Béquer y de Pío Baroja en los
siglos XIX y XX, lo que nos hace pensar que es un juego tradicional cuyo conocimiento se ha transmitido
de generación en generación hasta nuestros días.

Hasta la fecha, no se ha realizado ningún estudio como el de este documento sobre el juego del gui-
ñote. Una de las razones principales es que no hay registros de las partidas que se juegan normalmente
y menos aún de las cartas que reciben los jugadores. Pero gracias a la Asociación Aragonesa de Guiñote
(Guiñarte) disponemos de un fichero que contiene un registro de las partidas que se jugaron los dos pri-
meros meses de 2021 en su app.

En este Trabajo Fin de Grado utilizaremos las matemáticas para hacer un análisis del juego utilizando
los datos cedidos. El archivo consta de más de 8 millones de registros. Cada registro corresponde a un
jugador de una partida jugada en los meses de enero y febrero de 2021 en la app de Guiñarte; para formar
el registro de una partida necesitamos los 4 registros de los jugadores. Partiendo de esta base de datos y
utilizando Python y R, formaremos una nueva base depurada y propia con la que haremos el estudio. En
esta base de datos no estará reflejada toda la información presente en los registros, sino que filtraremos
toda la información que sea irrelevante para el estudio.

El trabajo se dividirá en tres partes. La primera parte es la propia creación de la base de datos expli-
cada de forma constructiva y cronológica.

Una vez se tenga esta base de datos, usaremos por un lado el cálculo de probabilidades para ver
la probabilidad de algunos de los sucesos más importantes dentro de este juego y compararemos esos
resultados con los obtenidos en la muestra, tratando de explicar las posibles diferencias que se puedan
dar.

Por otro lado, usaremos técnicas de regresión logística para ser capaces de predecir el resultado de la
partida en función de las cartas de los jugadores y la calidad de estos. Con ello intentaremos responder a la
pregunta de si el guiñote es un juego de azar o en cambio es más importante la destreza de los jugadores.
Para medir esa destreza se realizarán a lo largo del trabajo dos sistemas de puntuación distintos. Además,
se hará un análisis más detallado del modelo más completo que tengamos.

I

II

Summary

This document is an end-of-degree project of the bachelor degree in mathematics in the University
of Zaragoza. This is the first mathematical study of the Guiñote and the general purpose of the project is
to understand how the game works in terms of probability and statistics. It is the first project of this type
done about this game because there is no data regarding the games that are played. It has been possible
for us to do it because Guiñarte (Aragonese Asociation of Guiñote) has given us a file with the informa-
tion of all the games that were played in January and February of 2021 in its app. So now we have an
opportunity to do a mathematical study of the game.

Guiñote is a traditional game of the Spanish region Aragón and its surroundings. It is played by four
people in teams of two with the goal of getting 101 points faster than the other pair. Since it is a Spanish
game, the cards used are the Spanish cards. It is unknown when it was created but there are evidences
that show us it was already played in the 19th century.

The first part of the project is the creation of a data-base which the sofware R is able to work with.
Starting with the data file that Guiñarte gave us we have created a new data-base using Python and R.
This data-base is the item that we will be using for the rest of the project. Notice that we have chosen
only the relevant information that was reflected in the original data so not only have we converted the
original file into a .csv but we have filtered all the irrelevant data for the mathematical study.

It is also needed to develop a punctuation system because in the statistical part of the project we are
going to need it. So we have done two ranking systems. The first one is based on the percentage of won
games while the second one is based on the elo system used in games like chess. Our elo system is a
version of the original because Guiñote is a 2v2 game instead of 1v1, so we have adapted the original
version to our game by computing the elo using the average score of the pairs.

The second part is the probability part. Here we have done the computation of the probabilities, ex-
pectations and variances of the main events that can take place during a game. In this section we show
and explain all the computations that we have done and we compare the results with those we can obtain
from the data-base created in the first part of the project. It is also stated why there are some differences
between what the data-base shows and what we have computed.

The third and most important part of the project is the statistical part. We have a brief introduction to
the logistic regression models. These models are capable of explaining the behaviour of a binary variable
(in our case it is the result of the game) using some explanatory variables.

So in this section our aim is, by using logistic regression techniques, to develop models that are
capable of predicting the outcome of a game based on the events that have occured among it.

We consider two kinds of events:

Players’ score: each player of a game has its own score (elo and percentage of wins). It will
measure tha quality of the players, the higher the score the better the player is.

Events: we consider the events that have taken place in each particular game. These events are
based on the cards that the players have recieved during the game, so it is a random fact.

III

IV

So we have searched for a model that is able to predict the outcome of a match accurately based on
those factors.

We have explained the whole process that we have made in order to create the final models and
there is also an analysis of the complete model where we show the ROC curves and the residuals of the
predictions. These residuals present a problem that we are not able to explain but we show how to solve it.

The last part is the conclusion of the project where we try to see what is the most important thing in
order to win a match (luck or ability). The luck is represented in the models by the events that depend on
the cards each player has been given and the ability is represented by the score each player has.

So, using the complete model, we try to see the efect that each of the events has in the outcome of
the game and we try to see how much difference must be in the punctuation in order to make the same
effect as the random event.

It is also possible to see all the Python programms that were made in the attachment A (Anexo A)
and the R code used to get all the results from the data-base in the attachment B (Anexo B).

If you want to learn or understand the rules of the game, they are explained (in Spainsh) on [7].

Índice general

1. Introducción y objetivos 3
1.1. El guiñote . 3

1.1.1. Historia . 3
1.1.2. El guiñote en la actualidad . 3
1.1.3. Nociones básicas: . 4

1.2. Objetivos . 4
1.3. Estructura del documento . 5

2. Base de datos 7
2.1. Depuración . 7
2.2. Ordenación . 8
2.3. De registros a partidas . 8
2.4. Rankings . 9

2.4.1. Ranking Elo . 9
2.4.2. Implementación en la matriz de datos . 10
2.4.3. Preparativos para los modelos . 10

2.5. Análisis descriptivo de los datos . 11

3. Probabilidades y primeros resultados 13
3.1. Cálculos con los veintes . 13
3.2. Cálculos con las 40 . 16
3.3. Cálculos con as y tres de triunfo . 17

4. Modelos de regresión 19
4.1. Notas sobre regresión logística . 19
4.2. Modelos . 20

4.2.1. Modelos con sucesos . 20
4.2.2. Modelos con sucesos y puntaciones . 21

4.3. Análisis del modelo completo . 23
4.3.1. Curva ROC . 24
4.3.2. Curva ROC del modelo completo . 24
4.3.3. Análisis de los residuos . 24

5. Conclusión 29

1

Capítulo 1

Introducción y objetivos

1.1. El guiñote

El guiñote es un juego de cartas propio de Aragón y algunas zonas limítrofes, como partes de Na-
varra, Soria, La Rioja, Cuenca, Guadalajara, Castellón o Tarragona. El juego tiene dos variantes, la de
dos jugadores o la de cuatro. La primera se suele utilizar para enseñar a jugar porque es la más sencilla y
sirve para aprender el valor de las cartas, los objetivos del juego y a contar las puntuaciones al final. La
segunda versión es la principal; 4 jugadores distribuidos en dos parejas juegan entre ellos con el objetivo
de conseguir 101 puntos antes que la pareja rival. Esta versión es mucho más difícil de dominar porque el
jugador no solo tiene en cuenta las cartas de su mano, sino también las posibles cartas de su compañero
y de sus rivales. Esta versión es mucho más practicada que la versión de dos jugadores porque una vez
que vas aprendiendo a jugar la versión inicial se vuelve muy trivial. Para este juego de cartas se utiliza la
baraja española tradicional compuesta por 40 cartas (sin ochos ni nueves).

1.1.1. Historia

El guiñote es un juego de cartas muy parecido a la brisca o la briscola italiana y aunque las primeras
referencias a él en textos aparecen más tarde, se cree que su origen data de la expansión de la Corona
de Aragón, allá por el siglo XIV. Hay referencias a este juego ya en el siglo XIX, donde Gutavo Adolfo
Béquer lo cita en alguna de sus obras o donde aparece en sentencias del Tribunal Supremo que datan de
1871 y 1874 en las que el guiñote es el motivo de la riña. En el siglo XX, Pío Baroja también nombra el
guiñote en su obra.

El juego ha sido siempre muy popular en la región y ha llegado hasta nuestros días gracias al interés
de las familias por introducir a los jóvenes a un juego tan tradicional y arraigado.

1.1.2. El guiñote en la actualidad

El guiñote es un juego muy extendido por Aragón y es bastante usual que en los bares se esté jugando
una partida de guiñote en alguna mesa, en las piscinas en verano o en las reuniones familiares. Además,
en las fiestas populares es típico que se organice un torneo de guiñote por parejas.

Desde el 2015 existe una asociación, la Asociación Aragonesa de Guiñote o Guiñarte que se encarga
de organizar torneos promocionales y actividades, dispone de una aplicación para móviles y tiene una
página web dónde se puede aprender a jugar desde cero.

Además también dispone de un archivo con documentos relacionados con el guiñote, desde explica-
ciones y referencias en la literatura hasta pequeños cálculos probabilísticos que acercan las matemáticas
a este juego.

3

4 CAPÍTULO 1. INTRODUCCIÓN Y OBJETIVOS

Hasta la fecha no hay ningún estudio matemático del guiñote, más allá de algunos cálculos simples.
Esto es debido a que no hay registros de las partidas que se juegan normalmente. Aunque ahora somos
capaces de realizar el primer estudio del guiñote de este tipo gracias a que disponemos de un registro de
las partidas que se han jugado en la app de Guiñarte.

1.1.3. Nociones básicas:

En el juego del guiñote cada jugador empieza con una mano de 6 cartas repartidas de tres en tres.
Cuando todos los jugadores disponen de sus 6 cartas, la siguiente carta del mazo se descubre, se pone
boca arriba y se pone el mazo encima de ella de forma que se pueda ver la carta descubierta. Cada tirada
se compone de dos fases. Primero los jugadores (en un orden) deben tirar una de las cartas que tienen en
la mano, después quien haya ganado esa tirada se queda las cartas en un mazo aparte. Después el jugador
que ha ganado roba una carta del mazo central seguido por el de su derecha y así hasta que hayan robado
los 4 jugadores. Este proceso se repite 4 veces hasta que el mazo desaparece, en ese momento se hacen
6 tiradas más sin robar cartas hasta que nadie tenga ninguna en la mano. Después se cuentan los puntos
conseguidos en las tiradas ganadas.
Algunas expresiones clave:

Idas y vueltas son las dos partes de la partida, si una pareja llega a 101 un puntos en la primera
parte se termina, en cambio si aún nadie ha llegado se juega una partida de vueltas hasta que una
de las dos parejas consigue llegar.

Buenas y malas: de los 101 un puntos, se suelen llamar malas a los 50 primeros y buenas a los 50
últimos, por ejemplo, decir que hemos conseguido 12 buenas es que has tenido en total 62 puntos.

Triunfo es el palo de cartas que va a mandar sobre el resto a lo largo de la partida y viene dado
por la carta descubierta que se encuentra debajo del mazo central.

Cantar un veinte es mostrar que tienes rey y sota del mismo palo sin ser ese palo triunfo. Se
pueden cantar tras hacer baza y la pareja que lo haga se lleva 20 puntos extra.

Cantar las cuarenta es decir que tienes rey y sota de triunfo y la pareja suma 40 puntos extra.

Las 10 últimas son los 10 puntos extra que se lleva la pareja que ha ganado la última baza.

Puntuaciones: El as vale 11 puntos, seguido por el tres que vale 10, el rey con 4, la sota con 3 y
el caballo con 2.

El total de sucesos y las normas del juego se pueden consultar en [7].

1.2. Objetivos

Al ver por un lado que los jugadores son capaces de tener un estilo de juego o una forma de jugar ya
que la decisión de qué cartas tirar es suya y en cambio por otro lado tener que robar cartas sin saber cuáles
son nos lleva a una de las cuestiones principales del trabajo. Queremos saber qué es más importante a la
hora de decidir el resultado de una partida, las cartas que te tocan (azar) o las cartas que decides jugar y
los momentos en los que decides hacerlo (calidad).

Para la realización de este trabajo, Guiñarte nos cedió una base de datos. Esta base de datos corres-
ponde a las partidas que se jugaron entre enero y febrero de 2021 en su app. Este archivo esta en formato
"json", consta de más de 8 millones de registros, siendo cada registro un string en la que se reflejan los
datos referidos a un jugador en una partida. Por ejemplo están reflejados los identificadores de partida
y jugador, si ha tenido el as o el tres de triunfo, cuántos veintes ha tenido, si ha tenido las cuarenta, si
ha ganado la partida o la cantidad de monedas virtuales que ha ganado o perdido. Se pueden consultar

1.3. ESTRUCTURA DEL DOCUMENTO 5

varios ejemplos de registros en el anexo.

El sofware estadístico R no es capaz de trabajar con un archivo en este formato, por lo tanto otro de
los objetivos es ser capaz de crear una base de datos con la que R pueda trabajar.

Una vez que se tenga la base de datos utilizaremos R para obtener nuestros resultados y conclusiones.

En una parte probabilística, haremos los cálculos de los sucesos más importantes que se pueden
dar a lo largo de una partida y compararemos estos resultados con aquellos obtenidos con nuestra
base de datos.

En una parte estadística, hablaremos de la regresión logística y haremos una serie de modelos que
sean capaces de predecir el resultado de una partida. Estos modelos tendrán en cuenta, aparte de
los distintos sucesos que han ocurrido a lo largo de las partidas, la puntuación de los jugadores que
participan en la partida; estas puntuaciones serán creadas en función del tiempo, del resultado de
la partida y de las partidas que ha jugado el participante hasta la fecha.

1.3. Estructura del documento

Capítulo 2: Desarrollo de la base de datos
En esta primera parte del trabajo se explicará el desarrollo de la base de datos que ha sido utilizada

en el resto del trabajo. A lo largo del capítulo se explicará de forma ordenada y cronológica la manera
de desarrollar la base de datos. Además, utilizando ya la base de datos obtenida, se realizará un análisis
descriptivo de los datos recogidos que se comparará más adelante con los resultados probabilísticos ob-
tenidos.

Capítulo 3: Probabilidades y primeros resultados.
En esta sección se explicarán brevemente los conceptos combinatorios que se han utilizado para los

cálculos de las probabilidades, se expondrán los cálculos probabilísticos de algunos de los sucesos más
importantes en una partida y se compararán con lo obtenido en el análisis descriptivo.

Capítulo 4: Modelos de regresión
Este capítulo constará de una introducción a la regresión logística en la que se explicarán los con-

ceptos básicos para comprender cómo se va a desarrollar en nuestro caso y cuáles son los resultados que
buscamos. Usando los datos obtenidos en el capítulo 2, se realizarán y compararán una serie de modelos
de regresión logística que sean capaces de predecir quién va a ganar.

Capítulo 5: Conclusión
En esta parte final del trabajo se responderá a la pregunta de qué es más importante si el azar o la

calidad de los jugadores. El azar queda reflejado en las cartas que reciben los jugadores a lo largo de la
partida, mientras que la calidad se refleja en las puntuaciones que tienen.

Capítulo 2

Base de datos

En este capítulo estructuraremos y explicaremos la creación de la base de datos utilizada a lo largo
del trabajo. Los programas de Python utilizados en esta capítulo se pueden consultar en el Anexo A.

2.1. Depuración

La base de datos cedida por Guiñarte es un fichero "json"que consta de 8.406.399 de registros. Cada
registro se refiere a un jugador en una partida y en él se reflejan todos los datos correspondientes a la
partida del jugador. Por lo tanto, cada partida está reflejada en 4 registros, uno para cada participante.
Es importante destacar que no todos los registros tienen el mismo número de campos, lo que dificulta el
estudio. De los datos reflejados no nos interesan todos, por eso el primer paso es quitar todo lo que no
nos sirve para el estudio matemático y tener los registros en forma de matriz. Se pueden consultar cómo
son los registros en el Anexo A donde hay unos cuantos registros originales.

Lo primero es ver si el jugador ha sufrido alguna desconexión a lo largo de la partida. Del total de
registros, tenemos un total de 326.517 en los que el jugador se ha desconectado. Estos registros se han
de desechar porque, tras mantener una reunión con el presidente y el informático de Guiñarte, se nos
dijo que cuando un jugador se desconecta una máquina releva al jugador y por lo tanto no nos sirve esta
partida porque el comportamiento no es humano.

Una vez eliminados estos registros, procedemos a crear un fichero en el cada fila corresponda a un
registro original y las columnas sean los datos que nos interesan para el estudio estadístico.

La primera columna es el identificador de la partida, que será el dato que utilizaremos para conectar
los 4 registros de una partida.

La segunda columna será el identificador del jugador, en este momento se desechan 8 registros por
no tener el identificador un formato apto para nuestra matriz.

En la tercera columna está el resultado de la partida, es decir, si el jugador ha ganado (1) o no (0).
Aquí nos encontramos con 47.918 registros desechados por no tener resultado.

En la cuarta columna tenemos reflejado el número de veintes que ha tenido el jugador en las idas
de la partida (de 0 a 3). Desechamos 164 registros por tener 4 veintes, este error se nos dijo que
era porque el jugador se había desconectado a lo largo de la partida y luego había vuelto, lo que
hacía que se contabilizaran los veintes varias veces.

En la quinta columna se refleja si el jugador ha tenido (1) o no (0) las 40 de idas en la partida. Se
desechan 5.108 registros por tener más de un cuarenta.

En la sexta columna, si ha tenido (1) o no (0) el tres de triunfo de idas. Se desechan 17.020 registros
por tener más de un tres de triunfo en la mano.

7

8 CAPÍTULO 2. BASE DE DATOS

En la séptima columna tenemos si el jugador ha tenido (1) o no (0) el as de triunfo en las idas.
16.092 registros son desechadas por tener varios ases de triunfo.

Las columnas octava, novena, décima y undécima son análogas a las columnas cuarta, quinta, sexta
y séptima respectivamente, pero en vez de referirse a las idas se refiere a las vueltas de la partida.
El número de registros desechados son 32, 755, 3.756 y 4.894 respectivamente y por los mismo
motivos.

La duodécima columna de la matriz es la fecha en la que se jugó la partida, como todas las partidas
son de 2021, tenemos la primera cifra que es el mes (1 o 2 dependiendo de si es de enero o de
febrero, la hora, los minutos, segundos...). Nos hemos preocupado especialmente de que tengan
las mismas cifras para así ser capaces en un futuro de ordenar las partidas por fecha simplemente
ordenando de menor a mayor.

La última columna corresponde al número de registro que se refleja en la fila, esta información se
ha utilizado para poder localizar los registros que a lo largo de los siguientes apartados nos hayan
podido dar algún tipo de problema.

Pese a tener datos que reflejan sucesos ocurridos en las vueltas de la partida, no disponemos de informa-
ción suficiente para ser capaces de trabajar con ellas. Por ejemplo, no sabemos cuándo hay o no vueltas en
una partida, ni tampoco las puntuaciones con las que se acaba la parte de idas. Esta falta de información
hace que a la hora de hacer el estudio no tengamos en cuenta los sucesos ocurridos en las vueltas.

2.2. Ordenación

A continuación, hemos abierto la base de datos creada en R para ordenar las partidas por identificador
de partida. El objetivo de este paso es tener las partidas con el mismo identificador juntas, de este modo
será más fácil y rápido juntar los cuatro registros que correspondan a la misma partida en uno solo.

Además de esto, utilizando las funciones unique y match de R renombramos a los jugadores para que
los números sean más pequeños y manejables ya que los identificadores de jugador obtenidos en el paso
anterior eran números de demasiadas cifras.

2.3. De registros a partidas

Volviendo a Python, ahora nuestro objetivo es tener una matriz en la que cada fila se corresponda
a una partida, de este modo obtendremos la base de datos principal del trabajo. Cabe decir que la app
escoge a los jugadores de forma aleatoria, es decir, no hay parejas fijas.

Para ello, lo primero es hacer un programa que al principio descarte aquellas partidas de las que no
disponemos de todos los registros. Puede suceder que haya menos de cuatro registros ya que alguno de
ellos haya sido desechado en la depuración del primer conjunto de datos. Para la nueva base de datos
tendremos las siguientes columnas reflejando la información de una partida completa:

La primera columna es el identificador de partida que comparten los 4 registros que vamos a juntar.

Las siguientes 4 columnas corresponden a los identificadores de los jugadores que participan en la
partida. El programa esta hecho de modo que el jugador del primer registro que coge se coloca en
la segunda columna, su compañero de pareja en la tercera y los otros dos en las dos siguientes. De
este modo tendremos jugador 1, 2, 3 y 4.

Las columnas sexta y séptima muestran cuál ha sido el jugador que ha tenido el tres y el as de
triunfo de idas respectivamente.

2.4. RANKINGS 9

Las siguientes 4 columnas van referidas al número de veintes de idas que tienen los jugadores 1,
2, 3 y 4 respectivamente.

La duodécima columna refleja el jugador que ha tenido las cuarenta. En caso de que no las haya
tenido ningún jugador hay un 0.

Las columnas decimotercera y decimocuarta son análogas a sexta y la séptima respectivamente
pero reflejan el tres y as de triunfo de vueltas, por lo tanto, en estas columnas es posible que haya
ceros porque pueden no haber salido cuando la partida termina.

Las 4 columnas que reflejan el número de veintes que ha tenido cada jugador de vueltas son
análogas a las 4 de las idas, al igual que la columna correspondiente a las 40 de vueltas.

La columna 20 tiene la fecha a la que se jugó la partida. Como hay 4 fechas distintas, siendo
cada una la fecha concreta en la que el jugador entró a la partida con minutos segundos, décimas,
centésimas, etc; se escoge como fecha de la partida la del primer registro de los 4 que se están
manejando a la vez.

Las siguientes 4 columnas son los números de los registros de los que se ha obtenido la fila. De este
modo, se podrían localizar entre los más de 8 millones de registros iniciales los 4 que corresponden
a la partida.

Por último, la columna del final tiene un 1 si ha ganado la pareja 1 (la de los dos primeros jugado-
res) o un 2 si ha ganado la segunda pareja.

Al seguir trabajando con esta base de datos nos dimos cuenta de que había unas pocas partidas en
las que se cantaban 4 o 5 veintes, cuando como mucho debería haber 3. Esto se debe al mismo error
generado por la desconexión y conexión de alguno de los jugadores. Por ejemplo se detectaron partidas
en las que tres jugadores tenían veintes pero uno de ellos tenía dos y por eso había pasado el filtro que
se hizo en la parte de depuración, pues el jugador no superaba el número máximo de veintes pero en el
global de la partida si que sucede esto, así que solucionamos ese error modificando el código de Python.

Una vez eliminadas estas partidas llegamos a la base de datos final formada por 1.742.897 parti-
das que será utilizada para hacer un análisis descriptivo y para comparar los cálculos realizados en el
siguiente capítulo. Pero de cara a los modelos de regresión logística necesitaremos más cosas.

2.4. Rankings

Como queremos saber hasta qué punto la habilidad de un jugador influye en el resultado de un
partida, tenemos que tener una puntación para cada jugador en cada partida que juega. El siguiente paso,
y de cara a hacer los modelos de regresión logística, es programar un sistema de puntuación para poder
evaluar la calidad de los jugadores ya que esta información no estaba en la base de datos que se nos cedió.
En nuestro caso hemos programado dos rankings distintos. Para programarlos se ha ordenado primero
las partidas por fecha mediante la función arrange de R. El primero es un ranking con porcentajes de
partidas ganadas a lo largo del tiempo, aunque en Python no lo hemos programado, hemos añadido a lo
largo del programa las columnas con el número de partidas jugadas y ganadas de cada jugador. Así que
desde R será sencillo hallar los porcentajes. El segundo es un ranking elo, como los del ajedrez, adaptado
a un juego de parejas.

2.4.1. Ranking Elo

El Elo es el método que se utiliza en muchos juegos, siendo el ajedrez uno de los más importantes,
para dar una puntuación a sus jugadores en función de las victorias obtenidas y de la puntuación de los
jugadores a los que se han enfrentado. En él se tiene en cuenta la puntuación de los jugadores que se
enfrentan en una partida y se halla la nueva puntuación de cada uno en función del resultado de la partida

10 CAPÍTULO 2. BASE DE DATOS

y del resultado esperado de la partida. El resultado esperado de la partida es una predicción donde la
diferencia de puntuaciones entre los jugadores el predictor. Fue elaborado por Arpad Elo, un ajedrecista
y profesor de física que vivió en el siglo XX.

Para nuestro juego, tenemos que usar una versión adaptada del Elo porque no tenemos jugadores sino
parejas pero cada jugador tiene su Elo individual. Lo haremos de forma cronológica, es decir, actuali-
zando la puntuación de los participantes en una partida al final de la misma, basándonos en [6]:

La puntuación inicial de todos los jugadores será de 1200 puntos.

Antes de cada partida, se hace el promedio de las puntuaciones de los jugadores de ambas parejas,
P1 y P2.

Calcularemos el resultado esperado para cada pareja E1 y E2. Dado por las siguientes fórmulas:

E1 =
1

1+10
P2−P1

400

E2 =
1

1+10
P1−P2

400

R1 y R2 será el resultado obtenido. Un 1 para la pareja que gane y un 0 para la que pierda.

Las nuevas puntuaciones de cada pareja serán:

P′
1 = P1 +32 · (R1 −E1) P′

2 = P2 +32 · (R2 −E2)

Por último, a la puntuación individual de los jugadores que componen la pareja 1 se les sumará
P′

1−P1
2 y a los de la pareja 2 se les sumará P′

2−P2
2 dando lugar a las puntuaciones que tendrán los

jugadores al terminar la partida.

2.4.2. Implementación en la matriz de datos

Añadiremos las nuevas columnas a la matriz utilizando Python. Creamos una nueva matriz donde las
primeras columnas sean las mismas que ya teníamos y las siguientes sean el número de partidas que ha
jugado, ha ganado y la puntuación Elo del jugador 1; análogamente con los otros tres jugadores.

2.4.3. Preparativos para los modelos

Como los rankings presentan una gran variabilidad cuando los jugadores no han jugado las suficientes
partidas, hemos decidido no usar para estimar los modelos las que haya jugadores que han jugado poco.
Entendemos que un jugador no ha jugado lo suficiente para pasar el corte si ha jugado menos de 200
partidas, porque con 200 partidas hemos comprobado que el porcentaje de partidas ganadas es estable.

En la Tabla 2.1 se muestra un resumen del número de datos que hemos ido manejando a lo largo del
proceso de creación de la base.

Registros iniciales 8.406.399
Registros filtrados 7.984.135
Partidas obtenidas 1.743.222

Partidas finales 1.742.897
Partidas para modelos 739.801

Tabla 2.1: Número de registros y partidas

2.5. ANÁLISIS DESCRIPTIVO DE LOS DATOS 11

2.5. Análisis descriptivo de los datos

En esta sección expondremos los resultados que hemos podido extraer de forma descriptiva de la
base de datos. Notar que en todo momento se hablará de los sucesos en la parte de idas donde se juegan
las 40 cartas de la baraja.

Las cuarenta:
Las cuarenta se cantan en un total de 394.717 partidas, lo que supone un 22.65% de las partidas.

Además en las partidas que se cantan las 40, la pareja que las tiene gana un 87.55% de las veces. Lo que
muestra lo beneficioso que es tenerlas para ganar una partida.

Los veintes:
Puede haber entre 0 y 3 veintes a lo largo de una partida de idas y de media se cantan 0.55 veintes

por partida, es decir, algo más de un veinte cada dos partidas. Además el número de veintes tiene una
desviación típica de aproximadamente 0.68. En la tabla se puede observar en cuántas partidas hay 1, 2 y
3 veintes.

Tres y as de triunfo:
Un 61.39% de las partidas las gana la pareja que tiene el tres, mientras que la pareja que tiene el

as gana el 65.96% de las partidas. El hecho de que casi el doble de veces gane la pareja que tiene el as
nos hace pensar en su gran importancia de cara al resultado de la partida aunque a priori no parezca tan
importante.

Además, en un 48.85% de las partidas el tres y el as les toca a una misma pareja. En estas partidas,
la pareja que tiene tres y as gana el 78.03% de las veces. Si diferenciamos entre que el as y el tres los
tenga el mismo jugador o que un jugador de la pareja tenga el as y otro el tres observamos:

En un 23.26% aproximadamente del total de las partidas el as y el tres de triunfo los tiene el mismo
jugador, en este caso un 79.27% de las partidas se decantan por la pareja con el jugador con as y
tres.

En un 25.59% aproximadamente de las partidas el tres y el as los tienen jugadores distintos de la
misma pareja. En estos casos la victoria se la lleva la pareja con el tres y el as un 76.9% de las
veces.

Los porcentajes de victorias son muy parecidos aunque la diferencia nos hace pensar que es algo más
fácil ganar si es el mismo jugador quien tiene as y tres.

Suceso Número de partidas Porcentajes aproximados
Las cuarenta 394.717 22.65

1 veinte 628.607 36.06
2 veintes 145.398 8.34
3 veintes 12.661 0.72

As y tres pareja 851.376 48.85
As y tres jugador 405.344 23.26

As y tres pareja dist. jug. 446.032 25.59

Tabla 2.2: Número de sucesos y porcentajes

Capítulo 3

Probabilidades y primeros resultados

Nuestra intención en este capítulo es calcular las probabilidades, esperanzas y varianzas de los suce-
sos y variables aleatorias que pueden decantar una partida, como pueden ser cantar veintes, las cuarenta
o tener el as y el tres.

A lo largo del capítulo entenderemos como una mano las 10 cartas que un jugador tiene a lo largo de
una partida y diremos que tendrá un 20 o las 40 a lo largo de la partida si entre esas 10 cartas le coinciden
sota y rey del mismo palo. Después compararemos los resultados obtenidos con el análisis descriptivo
del capítulo anterior.

Conceptos clave:

Cálculo de las probabilidades: Estamos tratando con un juego de cartas, por lo tanto todas las
manos son equiprobables. Si queremos calcular la probabilidad de un suceso S se puede hacer de
la siguiente manera:

P(S) =
casos favorables
casos posibles

El número de subconjuntos de r elementos que se pueden hacer en un conjunto de n elementos
viene dado por el número combinatorio

(n
r

)
. En nuestro caso, las manos son subconjuntos de 10

elementos elegidos entre 40 cartas. Es decir, el número de manos diferentes que puede recibir un
jugador es: (

40
10

)
=

40!
10! · (40−10)!

= 847.660.528 manos posibles

Mediante estos dos conceptos vamos a realizar los cálculos de las probabilidades de los sucesos más
importantes

3.1. Cálculos con los veintes

Para los veintes calcularemos la esperanza del número de veintes por partida, la varianza y las pro-
babilidades de que haya 1, 2 y 3 veintes.

Sin pérdida de generalidad, establecemos que el triunfo es bastos. Sea

Xi j =

{
1 si el jugador i tiene el 20 j
0 en los demás casos

(3.1)

Con i = 1,2,3 y 4 y j = 1,2 y 3 que se corresponden con oros, copas y espadas respectivamente. Empe-
zamos por la esperanza del número de veintes, notar que:

número de veintes =
4

∑
i=1

3

∑
j=1

Xi j

S = se coge el triunfo de muestra del final

13

14 CAPÍTULO 3. PROBABILIDADES Y PRIMEROS RESULTADOS

Luego:

E(número de veintes) = E(
4

∑
i

3

∑
j

Xi j) =
4

∑
i

3

∑
j

E(Xi j) = 12 ·E(Xi j) =

12 ·P(Xi j = 1) = 12 · (P(Xi j = 1|S) ·P(S)+P(Xi j = 1|Sc) ·P(Sc)) =

12 · (
(37

7

)(39
9

) 1
4
+

(37
8

)(39
10

) 3
4
) = 12 · 3

52
=

9
13

Por lo tanto se esperan alrededor de 0.69 veintes por partida. Si lo comparamos con los 0.55 veintes
que se cantan por partida vemos una diferencia bastante significativa.

Esto se debe a que solo se tienen 6 cartas en la mano a la vez y es posible que se tire la sota o el rey
antes que de que te venga la otra. Por lo tanto es de esperar que el número real de veintes que se cantan
sea menor que el que se podrían tener.

Notar que para hacer el cálculo de la esperanza, se condiciona a que se coja o no el triunfo de mues-
tra que está al fondo del mazo. En caso de que se coja tendremos 39 cartas disponibles y 9 restantes en
nuestra mano y en caso de que no se coja serán 39 cartas disponibles y 10 en nuestra mano.

Ahora es el turno de la varianza:

Var(número de veintes) =Var(
4

∑
i

3

∑
j

Xi j) =
4

∑
i

3

∑
j

Var(Xi j)+Término de las covarianzas

Por un lado, calculamos la varianza:

Var(Xi j) = E(X2
i j)−E(Xi j)

2 =
3
52

− (
3
52

)2 =
147

2704

Para calcular el término de las covarianzas hay que calcular las covarianzas en función de i y j:

Cov(Xi j,Xi′ j′) = E(Xi j,Xi′ j′)−E(Xi j)E(Xi′ j′) = P(Xi j = 1,Xi′ j′ = 1)− (
3
52

)2 =

1
4

(35
7

)(39
9

) (28
8

)(30
10

) + 3
4
(

(35
8

)(39
10

) · (1
3

(27
7

)(29
9

) + 2
3

(27
8

)(29
9

)))− (
3
52

)2 =
135

36556
− (

3
52

)2 =

= 0,00036456185

Cov(Xi j,Xi j′) = E(Xi j,Xi j′)−E(Xi j)E(Xi j′) = P(Xi j = 1,Xi j′ = 1)− (
3
52

)2 =

1
4

(35
5

)(39
9

) + 3
4

(35
6

)(39
10

) − (
3
52

)2 =
21

9139
− (

3
52

)2 =−0,00103055796

Cov(Xi j,Xi′ j) = E(Xi j,Xi′ j)−E(Xi j)E(Xi′ j) = P(Xi j = 1,Xi′ j = 1)− (
3
52

)2 =

0− (
3

52
)2 =

−9
2704

Con las covarianzas ya calculadas, hay que tener en cuenta que para cada uno de los 12 Xi j hay 6 Xi′ j′ , 3
Xi′ j y 2 Xi j′ . Por lo tanto el término de las covarianzas es:

3.1. CÁLCULOS CON LOS VEINTES 15

Término de las covarianzas = 12 · (6Cov(Xi j,Xi′ j′)+2Cov(Xi j,Xi j′)+3Cov(Xi j,Xi′ j)) =

−0,118307423

Luego volviendo a la varianza tenemos:

Var(número de veintes) =Var(
4

∑
i

3

∑
j

Xi j) = 12 ·Var(Xi j)+Términos de las covarianzas =

12 · 147
2704

−0,118307423 = 0,5340594409

Para hallar la probabilidad de que haya 1, 2, 3 o ningún veinte a lo largo de la partida (P1, P2, P3 y P0
respectivamente) vamos a hacerlo planteando el siguiente sistema:

P0 +P1 +P2 +P3 = 1
P1 +2 ·P2 +3 ·P3 =

9
13

P1 +4 ·P2 +9 ·P3 = 0,5340594409+(9
13)

2
(3.2)

Tenemos un sistema de 3 ecuaciones con 4 incógnitas, pero P3 no es difícil de calcular, para ello vamos
a diferenciar tres casos distintos: que un jugador tenga 3 veintes P33, que un jugador tenga 2 y otro 1 P32
y que haya tres jugadores con un 20 P31 y razonaremos de la misma forma, condicionando a que se haya
cogido o no la última carta del mazo.

P33 = 4P(el jugador i tenga 3 veintes) = 4(
1
4

(33
3

)(39
9

) + 3
4

(33
4

)(39
10

)) = 2
9139

P32 = 4 ·3P(2veintes jugador i, 1 veinte jugador j) =

12(
1
4

(33
5

)(39
9

) (28
8

)(30
10

) + 3
4
(

(33
6

)(39
10

) · (1
3

(27
7

)(29
9

) + 2
3

(27
8

)(29
10

))) = 18
9139

P31 = 4P(1 veinte para jugadores i,j k) =

4(
1
4

(33
7

)(39
9

) (26
8

)(30
10

) (18
8

)(20
10

) + 3
4
(

(33
8

)(39
10

) · (1
3

(25
7

)(29
9

) (18
8

)(20
10

) + 2
3

(25
8

)(29
10

) · (1
2

(17
7

)(19
9

) + 1
2

(17
8

)(19
10

)))) =
= 0,001055

Luego P3 = 2
9139 + 18

9139 + 0.001055 = 0.00324.

Ahora resolviendo el sistema (3.2) obtenemos que P0 =
302119
650000 , P1 =

91967
162500 y P2 =

97907
650000 .

Resumimos estas probabilidades en la siguiente tabla:

Número de veintes Porcentaje calculado aprox. Porcentaje observado
1 veinte 56.60 36.06
2 veintes 15.06 8.34
3 veintes 0.324 0.72

Tabla 3.1: Comparativa de veintes

16 CAPÍTULO 3. PROBABILIDADES Y PRIMEROS RESULTADOS

Como era de esperar vemos que se cantan menos veintes de los que deberían porque la manera normal
de jugar hace que se prefiera descartar algunos de los palos de la baraja en vez de mantener el rey o la
sota. Pero vemos una clara discrepancia, hay más del doble de partidas de las que debería con 3 veintes
cantados. Esto se debe a que dentro de estas partidas hay algunas en las que se ha contado más veces de
las que se debería alguno de los veintes. Esto se nos dijo que era por la posible desconexión y conexión de
el jugador con el 20. Es el mismo error que nos aparecía en la depuración de datos, pudimos eliminar los
registros con más de 3 veintes y las partidas que en conjunto tenían más de 3 veintes. Pero en las partidas
con menos de tres veintes no es posible diferenciar las que están bien y las que han contabilizado algún
veinte más del que deberían. Pero sabemos que hay partidas en las que se sigue produciendo el error.

3.2. Cálculos con las 40

A la hora de hacer los cálculos tenemos en cuenta que las 40 involucran dos cartas, rey y sota de
triunfo. Si una de estas dos cartas es el triunfo de muestra que está al final del mazo, las cuarenta las can-
tará el jugador que tenga el rey/sota (dependiendo cuál de las dos sea el triunfo de muestra) y el 7. Por
lo tanto razonaremos sin condicionar a que se coja o no el triunfo de muestra porque de una mano de 10
cartas tendremos 2 que serán las 40, independientemente de que sea rey y sota o que el 7 esté involucrado.

Queremos calcular la probabilidad de que haya un jugador que tenga las cuarenta en su mano de toda
la partida (Pc).

Xi =

{
1 si el jugador i tiene las cuarenta
0 si el jugador i no las tiene

(3.3)

Luego tenemos:

Pc = E(
4

∑
i

Xi) =
4

∑
i

P(Xi = 1) = 4 ·P(Xi = 1) =

4 · 2
40

· 1
39

·
(

10
8

)
=

3
13

= 0,2308

Además llamando X = ∑
4
i=1 Xi tenemos que X es el indicador de que algún jugador ha tenido las cua-

renta en la mano, es decir, una variable Bernoulli con probabilidad 3
13 , por lo tanto tiene una esperanza

de 3
13 y una varianza de 30

169 .

Entonces podemos afirmar que las cuarenta estarán en la mano de algún jugador un 23,08% de las
partidas. Comparando esto con los datos de análisis descriptivo, vemos que las cuarenta se cantan en
el 22,65% de las partidas. Esta ligera diferencia se debe a que no siempre que se tienen las cuarenta se
pueden cantar, porque pueden arrastrar y de ese modo hacer que tires el rey o la sota sin haberlas cantado.

Podemos calcular los intervalos de confianza para la probabilidad de las cuarenta con la siguiente
fórmula.

Sea P̂ la probabilidad de un suceso obtenida a partir de la muestra y n el tamaño de la muestra:

IC =

P̂− z α

2

√
P̂(1− P̂)

n
, P̂+ z α

2

√
P̂(1− P̂)

n

 (3.4)

Para un intervalo de confianza al 95% tenemos que z α

2
= 1,96, además P̂ = 0,2265 y n = 1742897

quedando el intervalo de confianza [0,2259,0,2271]. Observamos que 3
13 está bastante por encima del

intervalo, lo que es normal ya que puedes tener las cuarenta en la mano y no cantarlas.

3.3. CÁLCULOS CON AS Y TRES DE TRIUNFO 17

3.3. Cálculos con as y tres de triunfo

Podemos intercambiar el papel del rey y la sota por el del as y el tres y tenemos el mismo razona-
miento que en el apartado anterior, por lo tanto la probabilidad de que algún jugador tenga el as y el tres
en la mano es 3

13 . La esperanza es 3
13 y la varianza 30

169 .
Comparando esto con lo obtenido en análisis descriptivo tenemos que que un jugador tenga as y tres

en una misma partida sucede un 23,25% de las partidas.

Podemos hacer los mismos cálculos para ver la probabilidad de que una pareja tenga as y tres en la
misma partida.

Yi =

{
1 si la pareja i tiene el as y el tres de triunfo
0 si la pareja i no los tiene

(3.5)

Por lo tanto:

P(alguna pareja tenga as y tres de triunfo) = E(
2

∑
i=1

Yi) =
2

∑
i=1

P(Yi = 1) = 2 ·P(Yi = 1) =

2 · 2
40

· 1
39

·
(

20
18

)
=

19
39

= 0,4872

Igual que en el apartado anterior Y = ∑
2
i=1Yi es una Bernoulli con p = 19

39 , por lo tanto, con esperanza
19
39 y varianza 380

1521 .

Además en la base de datos tenemos que en un 48,85% de las partidas el as y el tres los tiene la
misma pareja.

Si calculamos los intervalos de confianza de la misma manera que en el apartado anterior tenemos:

Para as y tres en el mismo jugador tenemos que P̂ = 0,2326, por lo tanto el intervalo de confianza
al 95% tenemos que es: [0,23257,0,2332]. Nuestro P calculado, que es 3

13 = 0,23077, se queda
fuera de él.

Para as y tres en la misma pareja tenemos que P̂ = 0,4885 y el intervalo de confianza nos queda
[0,4877,0,4892]. Siendo P = 9

39 = 0,4872 vemos que se queda un poco por debajo del intervalo.

Que ambas probabilidades se queden fuera del intervalo de confianza se puede deber a la gran cantidad
de datos con la que trabajamos y a que haya algún tipo de sesgo a la hora de de generar aleatoriedad o en
la forma de afrontar las desconexiones de los jugadores. En todo caso, debe notarse que los verdaderos
valores de la probabilidad se quedan fuera del intervalo por muy poco y, de hecho, si se hicieran los
intervalos al 99% de confianza quedarían dentro.

Capítulo 4

Modelos de regresión

4.1. Notas sobre regresión logística

La regresión logística es un tipo de análisis de regresión cuya finalidad es predecir el resultado de
una variable dicotómica en función de varias variables explicativas. Estas variables explicativas pueden
ser cualitativas o cuantitativas. ([1] [4])

La variable que se pretende predecir será de tipo Bernoulli:

Y =

{
1 si el suceso se produce
0 si el suceso no se produce

El objetivo de la regresión logística es estimar P(Y=1), es decir, la probabilidad de que el suceso ocurra.
Introduzcamos dos conceptos previos a la regresión logística:

El Odds de un suceso S viene dado por la razón de la probabilidad de que ocurra el suceso entre la
probabilidad de que no ocurra.

O(S) =
P(S)

1−P(S)

El Odds indica cuánto más probable es que ocurra el suceso S a que no ocurra.
Además también podemos expresar la probabilidad de que ocurra un suceso en función del Odds:

P(S) =
O(S)

1+O(S)

Sean S un suceso y A y B los dos valores que puede tomar una variable, el Odds ratio del suceso S
es la razón de los Odds de S condicionado a A y de S condicionado a B.

OR =
O(S|A)
O(S|B)

=

P(S|A)
1−P(S|A)

P(S|B)
1−P(S|B)

El Odds ratio se interpreta de la siguiente forma:

Si es 1, quiere decir que no hay relación entre el suceso S y la variable que puede tomar los valores
A y B

Si es mayor que 1 indica que la probabilidad de que el suceso S ocurra es mayor bajo la condición
A que bajo la B

Si es menor que 1 indica que la probabilidad de que el suceso S ocurra es mayor bajo la condición
B que bajo la A

19

20 CAPÍTULO 4. MODELOS DE REGRESIÓN

La variable Y puede tomar los valores 0 y 1, por lo tanto no tiene sentido aplicar regresión lineal
porque no podemos aproximar por una recta ya que el valor que estamos buscando es una probabilidad,
es decir, está en el intervalo (0,1) y el resultado de la regresión lineal no tiene por qué estar acotado.

Para solucionar este problema se hace la transformación logística, que consiste en aplicar el logarit-
mo al odds de la probabilidad que estamos buscando y usaremos una combinación lineal de las variables
explicativas para obtener una aproximación de este valor.

Sea P = P(Y = 1|X) y X = X1,X2, ...,Xn las variables explicativas, entonces el modelo de regresión
lineal tendrá la siguiente fórmula

ln
P

1−P
= β0 +β1X1 +β2X2 + ...+βnXn (4.1)

βi son los parámetros desconocidos del modelo. Entonces podemos escribir la ecuación del modelo de
regresión logística de la siguiente manera:

P =
1

1+ e−(β0+β1X1+β2X2+...+βnXn)
(4.2)

4.2. Modelos

En nuestro caso particular tendremos:

El suceso Y será que gane la pareja 1, es decir:

Y =

{
1 si la pareja 1 gana
0 si la pareja 1 pierde

Las variables que corresponden al as (aspareja1) y al tres (trespareja1) serán unas variables bina-
rias que valdrán 1 si la pareja 1 ha tenido el as/tres o 0 si no lo ha tenido.

La variable que representa el efecto de las cuarenta (cuaren) será :

cuaren =


1 si la pareja 1 canta las cuarenta
0 si no aparecen las cuarenta
−1 si la pareja 2 canta las cuarenta

Para tener en cuenta el efecto de los veintes, tenemos una variable que será la diferencia de veintes
cantados.

Para tener en cuenta las puntuaciones de los jugadores tenemos la diferencia entre el promedio de
Elo de las parejas, el mínimo y el máximo de cada pareja y análogo con el sistema de puntación
basado en los porcentajes.

Diremos que un modelo da como ganador a la pareja 1 en una partida si al tener en cuenta los
sucesos que han ocurrido en la partida y trasladarlos al modelo, nos da una probabilidad P > 0,5. Con
esta información veremos qué modelos aciertan más y cuáles son los mejores a priori. En el Anexo C se
pueden consultar todas las salidas de los modelos abajo expuestos

4.2.1. Modelos con sucesos

Nuestro modelo inicial y a partir del que iremos construyendo los demás utiliza como variable expli-
cativa la variable que refleja quién tiene el as de triunfo, la carta más fuerte y valiosa de la partida. .

4.2. MODELOS 21

Modelo inicial (as)

rankale2 = read.csv(file="rankale2f.csv", head=TRUE,sep=",")
GLM.1 <- glm(resbin ~ aspareja1, family=binomial(logit), data=rankale2)

ln
P

1−P
=−0,66+1,32 · aspareja1

En este caso, el modelo acierta un 66% de las veces solamente teniendo en cuenta si la pareja1 tiene el
as o no.

Modelo con as y tres
De forma constructiva añadimos la variable del tres al modelo y nos queda el segundo modelo:

GLM.2<- glm(resbin ~ aspareja1+trespareja1, family=binomial(logit), data=rankale2)

ln
P

1−P
=−1,27+1,45 · aspareja1+1,09 · trespareja1

Este segundo modelo también acierta un 66% de las veces.

Modelo con as, tres y veintes

GLM.20<- glm(resbin ~ aspareja1+trespareja1+difveintes,
family=binomial(logit), data=rankale2)

ln
P

1−P
=−1,30+1,48 · aspareja1+1,12 · trespareja1+0,35 ·difveintes

Con este modelo acertamos un 66,8% de las veces.

Modelo con as, tres, veintes y cuarenta

GLM.3<- glm(resbin ~ aspareja1+trespareja1+difveintes+cuaren,
family=binomial(logit), data=rankale2)

ln
P

1−P
=−1,64+1,85 · aspareja1+1,42 · trespareja1+0,5 ·difveintes+2,52 · cuaren

Al añadir las cuarenta a los modelos, el salto en aciertos es notable ya que acertamos un 73,75%.

4.2.2. Modelos con sucesos y puntaciones

Lo primero que se hizo fue comparar los dos sistemas de puntuación para ver qué impacto tenían
en los modelos. Los modelos que se compararon fueron hechos con el as y uno de los dos sistemas de
puntuación:

El sistema basado en porcentajes de partidas ganadas daba lugar a modelos que acertaban algo
menos de un 66% de las veces. Lo que nos hace compararlos con el modelo inicial con tan solo el
as ya que tenía el mismo porcentaje de acierto. Para corroborarlo, calculamos los estadísticos de
Nagelkerke y Cox-Snell para el modelo inicial y para este modelo con el as y los porcentajes de
partidas ganadas de todos los jugadores y observamos que son muy parecidos y que el añadir los
porcentajes de partidas ganadas no mejoraba el modelo de forma notable, así que los descartamos.

22 CAPÍTULO 4. MODELOS DE REGRESIÓN

Introducir las puntuaciones Elo sí que aportaba información a los modelos y éstos mejoraban, así
que éste es el sistema de puntuación que hemos utilizado a la hora de hacer los modelos.

Tuvimos dos acercamientos distintos:

- Con las medias: esta forma tiene en cuenta la puntuación promedio de los jugadores de cada
pareja. Esto se puede expresar como la diferencia de las puntaciones medias de las parejas
ya que el coeficiente de la puntuación media de la pareja 1 es el mismo que el de la pareja 2
pero de signo contrario.

- Con los máximos y los mínimos de las puntuaciones: el objetivo de este acercamiento era
ver si los coeficientes de los máximos o de los mínimos eran más grandes o más pequeños,
es decir, se quería comprobar si penalizaba tener un integrante de la pareja malo o si bene-
ficiaba mucho tener a alguien muy bueno dentro de la pareja. Tras ver que los coeficientes
de los máximos y los mínimos eran prácticamente iguales, se llegó a la conclusión de que no
merecía la pena diferenciar entre el máximo y el mínimo de las puntuaciones, porque tenían
el mismo efecto dentro del modelo.

Por lo tanto, la variable que represente el efecto de las puntuaciones de las parejas en los modelos será
una variable cuantitativa que refleje la diferencia de las puntuaciones medias de las parejas. En caso de
querer ver los modelos que se hicieron con otras variables o con otros sistemas de puntuación se puede
consultar el Anexo B. Se hicieron también modelos que tenían en cuenta el número de partidas jugadas
y otras variables que resultaron ser no significativas, así que se descartaron.

Para la construcción de estos modelos empezaremos con un modelo que tiene en cuenta la diferencia
de puntuaciones e iremos añadiendo variables de la misma forma que hemos hecho en 4.2.1.

Modelo con diferencia de Elo

GLM.elo<-glm(resbin ~ difelopar, family=binomial(logit), data=rankale2)

ln
P

1−P
= 0,000722+0,0114 ·difelopar

Tenemos que acierta el 62,31%.

Modelo con as y diferencia de Elo

GLM.4<- glm(resbin ~ aspareja1+difelopar, family=binomial(logit), data=rankale2)

ln
P

1−P
=−0,66+1,33 · aspareja1+0,0114 ·difelopar

Con este modelo, conseguimos acertar un 68,16% de las partidas. Esto es más que el modelo que
teníamos con as, tres y veintes.

Modelo con as, tres y diferencia de Elo

GLM.6<- glm(resbin ~ aspareja1+ trespareja1 + difelopar,

family=binomial(logit), data=rankale2)

ln
P

1−P
=−1,27+1,45 · aspareja1+1,10 · trespareja1+0,0115 ·difelopar

4.3. ANÁLISIS DEL MODELO COMPLETO 23

70,35% de las partidas son predichas de manera correcta por este modelo.

Modelo con as, tres, veintes y diferencia de Elo

GLM.7<- glm(resbin ~ aspareja1+ trespareja1 +difveintes + difelopar,
family=binomial(logit), data=rankale2)

ln
P

1−P
=−1,31+1,49 · aspareja1+1,13 · trespareja1+0,35 ·difveintes+0,0115 ·difelopar

Este modelo mejora al anterior, pues acierta en un 70,78% de las partidas.

Modelo completo: as, tres, veintes, cuarenta y diferencia de Elo

GLM.8<- glm(resbin ~ aspareja1+ trespareja1 +difveintes + cuaren + difelopar,
family=binomial(logit), data=rankale2)

ln
P

1−P
=−1,65+1,86·aspareja1+1,43·trespareja1+0,51·difveintes+2,55·cuaren+0,0118·difelopar

Este es el modelo más completo y también el que más porcentaje de aciertos tiene, con éxito a la
hora de predecir el resultado de un 76,58%. Al observar los coeficientes vemos que tener las cuarenta es
lo más importante para ganar, seguido del as y el tres. El coeficiente de la diferencia de puntuaciones no
se puede comparar directamente porque la variable tiene unidades distintas. Esta comparación se realiza
en el capítulo 5.

4.3. Análisis del modelo completo

Como hemos visto en el apartado anterior, el modelo completo tiene el cuenta los cuatro sucesos
más importantes de la partida (qué pareja tiene el as y el tres, cuántos veintes ha cantado cada pareja y si
alguien ha cantado las 40) y la diferencia de las puntuaciones medias de la pareja, es decir, la calidad de
las parejas.

En esta sección analizaremos la calidad del modelo usando herramientas estadísticas, veremos la
curva ROC generada por él y el área debajo de esta curva, veremos también si los errores a la hora de
predecir tienen o no una forma o una distribución concreta.

Recordemos que del apartado anterior hemos obtenido que el modelo presenta la siguiente expresión:

ln
P

1−P
=−1,65+1,86·aspareja1+1,43 ·trespareja1+0,51·difveintes+2,55·cuaren+0,0118·difelopar

(4.3)

A partir de esta expresión podemos despejar la probabilidad P que nos da el modelo en función de las
variables explicativas:

P =
1

1+ e1,65−1,86·aspareja1−1,43·trespareja1−0,51·difveintes−2,55·cuaren−0,0118·difelopar (4.4)

Y como hemos dicho con anterioridad, prediremos una victoria para la pareja 1 cuando esta P resulte ser
mayor que 0.5.

24 CAPÍTULO 4. MODELOS DE REGRESIÓN

4.3.1. Curva ROC

La curva ROC es una herramienta matemática que nos permite valorar la capacidad de explicar
la variable dependiente que tiene un modelo. Un modelo se considera mejor y con más capacidad de
expresar la variable dependiente binaria cuanto mayor sea el área bajo la curva ROC. Vamos a ver una
tabla con el área bajo la curva ROC de los modelos del apartado anterior. En algunos modelos hay el
mismo porcentaje de aciertos pese a haber más variables, pero el área bajo la curva ROC es diferente.

Modelos Área bajo la curva ROC
GLM.1 0.6597
GLM.2 0.7186
GLM.20 0.7291
GLM.3 0.8594

GLM.elo 0.6705
GLM.4 0.7379
GLM.6 0.7713
GLM.7 0.7783
GLM.8 0.8621

Tabla 4.1: Comparativa de áreas bajo la curva

4.3.2. Curva ROC del modelo completo

Figura 4.1: Curva ROC generada por el modelo completo

Además obtenemos que el área bajo la curva es de 0.8621. Teniendo en cuenta que un modelo teóri-
camente perfecto tendría área 1 bajo la curva, este modelo es bastante bueno a priori.

4.3.3. Análisis de los residuos

Ahora vamos a ver qué ocurre con los residuos generados por el modelo. Por un lado, tenemos los
valores esperados de P que nos da el modelo de regresión logística y por otro lado tenemos los residuos
generados, es decir, la diferencia entre el valor observado y el valor obtenido. En un buen modelo de
regresión logística, estos residuos no deben tener ninguna distribución ni deben seguir un patrón. Para

4.3. ANÁLISIS DEL MODELO COMPLETO 25

observar cómo se comportan los residuos, dividimos la muestra en grupos y en cada uno de ellos vemos
la media de los residuos.

Para poder observar los residuos existe la función binnedplot en R que al implementarla a nuestro
modelo obtenemos lo siguiente:

Figura 4.2: Medias de los residuos (150 bins)

Observamos una forma definida en lugar de tener una distribución aleatoria. Por lo tanto, este modelo
no es del todo bueno. Para solucionar este problema, vemos si le ocurre lo mismo al modelo que no tiene
en cuenta las cuarenta:

Figura 4.3: Medias de los residuos modelo sin 40

Observamos que para este modelo los residuos no tienen una distribución concreta, por lo tanto el proble-
ma lo generan las cuarenta, aunque no hemos averiguado la razón por la que sucede esto. Para solucionar
este problema, vamos a hacer a partir del modelo completo dos modelos distintos, uno para partidas sin
las cuarenta y otro para partidas con cuarenta.

26 CAPÍTULO 4. MODELOS DE REGRESIÓN

Modelo con as, tres, veintes y diferencia de Elo, para partidas sin 40

rankalesin40 = read.csv(file="rankalesin40.csv", head=TRUE,sep=",")
GLM.401<- glm(resbin ~ aspareja1+ trespareja1 +difveintes + difelopar,
family=binomial(logit), data=rankalesin40)

ln
P

1−P
=−1,58+1,79 · aspareja1+1,30 · trespareja1+0,49 ·difveintes+0,0117 ·difelopar

Dentro de las partidas en las que no se cantan las cuarenta, el modelo acierta un 73,08% de ellas.
Además, bajo la curva ROC hay un área de 0.8067.

Figura 4.4: Curva ROC del modelo para las partidas sin 40

Modelo con as, tres, veintes, cuarenta y diferencia de Elo, para partidas con las 40

rankale40 = read.csv(file="rankale40.csv", head=TRUE,sep=",")
GLM.402<- glm(resbin ~ aspareja1 + trespareja1 + difveintes + cuaren + difelopar,
family=binomial(logit), data=rankale40)

ln
P

1−P
=−2,24+2,53·aspareja1+1,97·trespareja1+0,61·difveintes+2,91·cuaren+0,012 ·difelopar

En este caso, todas las variables son significativas y el modelo es exitoso prediciendo en el 88,70% de
los casos.

4.3. ANÁLISIS DEL MODELO COMPLETO 27

Ahora veamos la curva ROC del modelo, el área que guarda bajo la curva y si este modelo sigue
presentando algún tipo de distribución en la media de los residuos.

Figura 4.5: Curva ROC del modelo completo en solo las partidas con las 40

Presenta una área bajo la curva de 0.9535, siendo 1 el área de un modelo perfecto, estamos ante un
modelo teóricamente muy bueno.

Figura 4.6: Medias de los residuos del modelo completo en solo partidas con 40

Como podemos observar, no hay ninguna forma definida en este caso, por lo tanto el problema que
nos presentaba este modelo en el conjunto de partidas inicial se soluciona cuando el conjunto de partidas
se reduce a las partidas en las que se han cantado las cuarenta. Además, podemos observar que en los dos
extremos hay muchos puntos, esto se debe a que el modelo predice una P cercana a 1 cuando la pareja 1
tiene las cuarenta y cercana a 0 cuando no las tiene, por lo tanto es esperable que presente muchos puntos
en los extremos.

Cabe destacar que a diferencia de calidad entre los jugadores afecta de la misma manera en ambos
modelos (coeficientes casi iguales).

28 CAPÍTULO 4. MODELOS DE REGRESIÓN

Capítulo 5

Conclusión

Ahora es el momento de abordar la cuestión más importante del trabajo. Tenemos modelos capaces
de predecir el resultado de una partida de una forma bastante razonable, pero aún no hemos dicho nada
de qué es más importante a la hora de decantar el resultado de una partida si el azar o la calidad de los
participantes.

El azar se refleja en las cartas que un jugador recibe, no es algo que el jugador pueda controlar y
no hay ninguna herramienta para controlar las cartas que le tocan a cada jugador quitando el 7 de
triunfo, que se puede cambiar por el triunfo de muestra en algunos casos.

La calidad de los jugadores se mide por la puntuación que tienen y depende de las victorias
que los jugadores hayan obtenido a lo largo del tiempo y de los contrincantes a los que se han
enfrentado.

Ya hemos visto, en el análisis descriptivo de los datos, que la pareja que tiene el as gana un 65,96%
de las veces, es decir, casi el doble de victorias se consiguen teniendo el as que sin él. Lo que nos hace
pensar en la importancia de las cartas, pero debemos indagar más en el tema.

Consideramos la base de datos con la que se han hecho los modelos, en la que no hay jugadores
que estén aprendiendo a jugar, ni jugadores principiantes que pese a saber jugar no lo hacen de manera
consistente y cometen muchos errores. De esta forma nos podemos fijar en los modelos para intentar
resolver esta pregunta.

Nos fijamos en el modelo completo que pese a tener el problema de los residuos lo consideramos
suficientemente bueno. Notar que no se puede comparar el efecto del as o del tres con el efecto de la
diferencia de las puntuaciones de la pareja directamente comparando los coeficientes que tienen en el
modelo porque las variables no son comparables. La variable del tres o del as es un indicador, mientras
que que la variable de la diferencia de Elo es una variable cuantitativa.

Por lo tanto, para comparar y analizar qué es más importante, vamos a ver cuanto aporta al log(Odds)
en la ecuación (4.3) que la pareja 1 tenga por separado: el as, tres, un veinte de ventaja y las cuarenta; y
calcularemos cómo debe ser la diferencia de elo entre las parejas para igualar ese efecto.

Que la pareja 1 tenga el as aporta al log(Odds) 1.86. Para igualar esto tendría que haber una
diferencia de elo de 157.63 puntos. Esta diferencia de elo corresponde al percentil 99.65, es decir,
solo en un 0,35% de las partidas se puede igualar el efecto del as.

El efecto que produce que el tres lo tenga la pareja 1 es de 1,43, que se iguala con una diferencia
de elo de 121.19, que es el percentil 98.22. Luego el efecto del tres se puede igualar en un 1,78%
de las partidas.

29

30 CAPÍTULO 5. CONCLUSIÓN

Un veinte de ventaja tiene un efecto de 0.51 en el modelo, que se puede igualar teniendo una
diferencia de puntuación de 43.22 puntos, que se corresponde con el percentil 77.53, luego se
puede igualar el efecto en más de 1 de cada 5 partidas.

El suceso que en la práctica es más determinante es las cuarenta, en los modelos queda reflejado
aportando 2.55 al log(Odds). La diferencia necesaria es de 216.1 puntos, que corresponde al per-
centil 99.976, lo que nos lleva a decir que solo se puede igualar esta diferencia en el 0,024% de
las partidas.

Suceso Aportación al log(Odds) Diferencia necesaria Porcentaje de partidas donde se da
as 1.86 157.63 0.35

tres 1.43 121.19 1.78
un veinte 0.51 43.22 22.47
cuarenta 2.55 216.1 0.024

Tabla 5.1: Análisis de aportaciones y diferencias

Por lo tanto, vemos que en la mayoría de partidas entre jugadores que no son principiantes, las cartas
generan un efecto que no se puede igualar por calidad. Por lo tanto podemos afirmar que es mucho más
importante tener buenas cartas que ser muy buen jugador o ser una pareja muy fuerte porque el efecto
que esa diferencia de calidad puede generar a lo largo de la partida es fácilmente compensado con las
cartas que se pueden tener.

Utilizando el modelo que solo tiene en cuenta el Elo de las parejas, vamos a ver cómo afecta esa
diferencia de puntuaciones al resultado de una partida y al resultado de un coto (un coto son 5 partidas
al mejor de 3).

Figura 5.1: Probabilidades de ganar partida y coto en función de la diferencia de Elo.

Si bien en una partida la diferencia de Elo no se influye mucho en el resultado, al pasar al coto vemos
que la curva es mucho más pronunciada, lo que indica que el efecto es mayor.

Bibliografía

[1] SIMON J. SHEATHER A modern approach to regression with R, 2009

[2] N. H. BINGHAM, JOHN M. FRY, Regression: Linear Models in Statistics, 2010

[3] PAUL ROBACK AND JULIE LEGLER, Beyond Multiple Linear Regression Applied Generalized Li-
near Models and Multilevel Models in R, 26/1/2021.

[4] TANIA IGLESIAS CABO, Mariano Peralta Horte, Métodos de Bondad de Ajuste en Regresión
Logística, Trabajo Fin de Master, Universidad de Granada, 2013. https://masteres.ugr.es/
moea/pages/tfm-1213/tfm_iglesiascabo_tania/!

[5] RUBÉN FERNÁNDEZ-CASAL, JAVIER ROCA-PARDIÑAS, JULIÁN COSTA Y MANUEL OVIE-
DO, Introducción al Análisis de Datos con R, 2022-05-19 https://rubenfcasal.github.io/
intror/.

[6] NEBITRAMS, Individual Ranking for Doubles Game, 9 de ju-
nio 2017 https://elosportschallenge.wordpress.com/2017/06/09/
individual-ranking-for-doubles-game/.

[7] ASOCIACIÓN ARAGONESA DE GUIÑOTE, GUIÑARTE https://www.xn--guiarte-6za.es/

[8] MARCOS NAVARRO El guiñote, un juego de naipes con arraigo pero poco docu-
mentado, Diario de Teruel, 1/02/2021. https://www.diariodeteruel.es/cultura/
el-guinote-un-juego-de-naipes\-con-gran-arraigo-pero-poco-documentado

31

https://masteres.ugr.es/moea/pages/tfm-1213/tfm_iglesiascabo_tania/!
https://masteres.ugr.es/moea/pages/tfm-1213/tfm_iglesiascabo_tania/!
https://rubenfcasal.github.io/intror/
https://rubenfcasal.github.io/intror/
https://elosportschallenge.wordpress.com/2017/06/09/individual-ranking-for-doubles-game/
https://elosportschallenge.wordpress.com/2017/06/09/individual-ranking-for-doubles-game/
https://www.xn--guiarte-6za.es/
https://www.diariodeteruel.es/cultura/el-guinote-un-juego-de-naipes\-con-gran-arraigo-pero-poco-documentado
https://www.diariodeteruel.es/cultura/el-guinote-un-juego-de-naipes\-con-gran-arraigo-pero-poco-documentado

ANEXO A

June 22, 2022

Registros y programas de python

0.1 Ejemplos de algunos registros:

{“_id”:{“oid” : ”5 f e f a8 f 411009544ed f 4c54c”, ”numeropartida” : 0, ”provider f ull” :
”15210216525688839389 − Facebook”, ”salaid” : ”RO − 73938.63425813447”, ”I P” :
” :: f f f f : 127.0.0.1”, ”v”:0,”amigo”: f alse,”asi”:1,”desconectado”: f alse,” f echa”:”date”:“2021-01-
01T23:00:32.373Z”},“_fecha_trunc”:{“$date”:“2021-01-01T23:00:00Z”},“_id_partida”:“19379.701294196773”,
“_gbits_diario”:0,“_gbits_resultado”:0,“_resultado”:2}

{“_id”:{“oid” : ”5 f e f a8b f 11009544ed f 4b3e0”, ”numeropartida” : 4, ”provider f ull” :
”103113010474297474207892 − Google”, ”salaid” : ”RO − 81679.46254689217”, ”I P” :
” :: f f f f : 127.0.0.1”, ”v”:0,”amigo”: f alse,”desconectado”: f alse,” f echa”:”date”:“2021-01-
01T23:00:31.733Z”},“_fecha_trunc”:{“$date”:“2021-01-01T23:00:00Z”},“_id_partida”:“80898.76997973508”,
“_veinte_i”:1,“_as_i”:1,“_tres_v”:1,“_gbits_diario”:0,“_gbits_resultado”:50,“_resultado”:1}

{“_id”:{“oid” : ”5 f e f a8 f 711009544ed f 4c646”, ”numeropartida” : 1, ”provider f ull” :
”1511611853052296777 − Facebook”, ”salaid” : ”RO − 93847.02847321196”, ”I P” :
” :: f f f f : 127.0.0.1”, ”v”:0,”amigo”: f alse,”desconectado”: f alse,” f echa”:”date”:“2021-01-
01T23:00:16.388Z”},“_fecha_trunc”:{“$date”:“2021-01-01T23:00:00Z”},“_id_partida”:“34127.801012597”
,“_veinte_i”:1,“_gbits_diario”:0,“_gbits_resultado”:0,“_resultado”:2}

{“_id”:{“oid” : ”5 f e f a8 f 911009544ed f 4c6e8”, ”numeropartida” : 4, ”provider f ull” :
”1561966957716959082 − Facebook”, ”salaid” : ”RO − 43826.335528410906”, ”I P” :
” :: f f f f : 127.0.0.1”, ”v”:0,”amigo”: f alse,”desconectado”: f alse,” f echa”:”date”:“2021-01-
01T23:00:18.745Z”},“_fecha_trunc”:{“$date”:“2021-01-01T23:00:00Z”},“_id_partida”:“38040.81437215021”,
“_veinte_i”:1,“_as_i”:1,“_gbits_diario”:0,“_gbits_resultado”:50,“_resultado”:1}

{“_id”:{“oid” : ”5 f e f a8 f c11009544ed f 4c7 f 6”, ”numeropartida” : 0, ”provider f ull” :
”192102259487703693510068 − Google”, ”salaid” : ”RO − 38405.104559136904”, ”I P” :
” :: f f f f : 127.0.0.1”, ”v”:0,”amigo”: f alse,”asi”:1,”desconectado”: f alse,” f echa”:”date”:“2021-01-
01T23:00:10.189Z”},“_fecha_trunc”:{“$date”:“2021-01-01T23:00:00Z”},“_id_partida”:“18096.764101365025’
’,“_gbits_diario”:0,“_gbits_resultado”:0,“_resultado”:1}

I

0.2 Programas de python

Código para pasar de los registros iniciales a la matriz de registros

In []: import numpy as np
import json
from scipy import stats
filas=8406399 #necesito saber el numero de datos exacto
i=0
sinres=0
res4=0
veintei4=0
veintev4=0
cuarentaimal=0
cuarentavmal=0
tresimal=0
tresvmal=0
asimal=0
asvmal=0
contdesctrue=0
contdes=0
contnr=0
contju=0
contid=0
matriz=np.zeros([filas,13])
with open("partidas.json","r") as f:

j=0
l=1
for linea in f:

#
subcadenai = '"_desconectado":'
if linea.find(subcadenai)==-1:

print(linea)
l=l+1
continue

posicion = linea.index(subcadenai)
ESTADO = linea[posicion+16:posicion+20]
if 'tru' in ESTADO:

contdesctrue=contdesctrue+1
l=l+1
continue

###########
subcadena1 = '"_id_partida":"'
filtro1= 'conocido'
if linea.find(subcadena1)==-1:

contid=contid+1

l=l+1
continue

II

posicion = linea.index(subcadena1)
ID = linea[posicion+15:posicion+33]
if filtro1 in ID:

contdes=contdes+1
#print(l)
l=l+1
continue

characters = ' " . , _ q w e r t y u i o p a f d g h j k l ñ z x c v b n m}'
for x in range(len(characters)):

ID = ID.replace(characters[x],"")
if filtro1 in ID:

contdes=contdes+1
#print(l)
l=l+1
continue

ID= int(float(ID))
matriz[i,j]=ID #primera columna, codigo de partida

subcadena2 = '"_provider_full":"'
posicion = linea.index(subcadena2)
jugador = linea[posicion+18:posicion+71]

characters = ' " . , _ s - Twitteralid Facebook Google'
for x in range(len(characters)):

jugador = jugador.replace(characters[x],"")
filtro2= ':'
if filtro2 in jugador:

jugador= linea[posicion+18:posicion+50]
characters = ' : " . , _ s - Twitteralid Facebook Google A PAPPLE f'
for x in range(len(characters)):

jugador = jugador.replace(characters[x],"")
if jugador.isdigit()== False:

contju=contju+1
#print(l)
l=l+1
continue

matriz[i,j+1]=jugador #segunda columna, codigo del jugador

resultado = '"_resultado":'
if linea.find(resultado)== -1:

sinres=sinres+1
l=l+1
continue

else:
posicion = linea.index(resultado)
res = linea[posicion+13:posicion+14]
res= int(float(res))

III

if res==3:
res=2

if res==4:
res4=res4+1
l=l+1
continue

matriz[i,j+2]=res #tercera columna, si gana o pierde el jugador

subcadena3= '_veinte_i'
if subcadena3 in linea:

posicion = linea.index(subcadena3)
veintes = linea[posicion+11:posicion+12]
veintes=int(veintes)
if veintes == 4:

veintei4=veintei4+1
l=l+1
continue

#########
matriz[i,j+3]=veintes #cuarta, si canta veinte o no de idas

subcadena4= '_cuarenta_i'
if subcadena4 in linea:

posicion = linea.index(subcadena4)
cuarenta = linea[posicion+13:posicion+14]
cuarenta=int(cuarenta)
if cuarenta != 1:

cuarentaimal=cuarentaimal+1
l=l+1
continue

matriz[i,j+4]=1 #quinta, cuarenta idas

subcadena5= '_tres_i'
if subcadena5 in linea:

posicion= linea.index(subcadena5)
tres= linea[posicion+9:posicion+10]
tres=int(tres)
if (tres!=1):

tresimal=tresimal+1
l=l+1
continue

matriz[i,j+5]=1 #sexta, tres de triunfo idas

subcadena6= '_as_i'
if subcadena6 in linea:

posicion = linea.index(subcadena6)
ass= linea[posicion+7:posicion+8]
ass=int(ass)
if ass!=1:

IV

asimal=asimal+1
l=l+1
continue

matriz[i,j+6]=1 #sept, as idas

subcadena7= '_veinte_v'
if subcadena7 in linea:

posicion = linea.index(subcadena7)
veintes = linea[posicion+11:posicion+12]
veintes=int(veintes)
if veintes == 4:

veintev4=veintev4+1
l=l+1
continue

######
matriz[i,j+7]=veintes #oct, veinte vueltas

subcadena8= '_cuarenta_v'
if subcadena8 in linea:

posicion = linea.index(subcadena8)
cuarenta = linea[posicion+13:posicion+14]
cuarenta=int(cuarenta)
if cuarenta != 1:

cuarentavmal=cuarentavmal+1
l=l+1
continue

matriz[i,j+8]=1 #novena, cuarenta vueltas

subcadena9= '_tres_v'
if subcadena9 in linea:

posicion = linea.index(subcadena9)
tres = linea[posicion+9:posicion+10]
tres= int(tres)
if tres!=1:

tresvmal=tresvmal+1
l=l+1
continue

matriz[i,j+9]=1 #decima,tres vueltas

subcadena10= '_as_v'
if subcadena10 in linea:

posicion= linea.index(subcadena10)
ass= linea[posicion+7:posicion+8]
ass=int(ass)
if ass!=1:

asvmal=asvmal+1
l=l+1
continue

V

matriz[i,j+10]=1 #undecima, as vueltas

subcadena11 = '_fecha":{"$date":"'
posicion = linea.index(subcadena11)
fecha = linea[posicion+23:posicion+41]
characters = '- T Z " : , . } '
for x in range(len(characters)):

fecha = fecha.replace(characters[x],"")
if len(fecha) == 7:

fecha=fecha+'00000'
if len(fecha) == 8:

fecha=fecha+'0000'
if len(fecha) == 9:

fecha=fecha+'000'
if len(fecha) == 10:

fecha=fecha+'00'
if len(fecha) == 11:

fecha=fecha+'0'

matriz[i,j+11]=fecha #duodecima, refleja una cifra que es la fecha.
#
matriz[i,j+12]=l
i=i+1
#print(l)
l=l+1

#filas=filas-contdes-contnr
matriz=matriz[0:filas-contdes-contnr-contju-contid-res4-contdesctrue
-veintei4-veintev4-cuarentaimal-cuarentavmal-tresimal-tresvmal-asimal
-asvmal-sinres]
print(contdes)
print(res4)
print(contid)
print(contju)
print(res4)
print(sinres,contdesctrue,veintei4,veintev4,cuarentaimal)
print,cuarentavmal,tresimal,tresvmal,asimal,asvmal)

print(matriz) matfinal=matriz[0:-1] la ultima fila de la matriz son todos ceros, la eliminamos
print(matfinal) print(matfinal.shape)

De registros a partidas

In []: import numpy as np
matpar=np.zeros([2500000,25])
ceros=0
j=0
filas=0
for i in range(7984131):

VI

ceros=0

if data[i,0]==data[i+1,0]==data[i+2,0]==data[i+3,0]:
filas=filas+1
matpar[j,0]=data[i,0]
matpar[j,1]=matpar[j,2]=matpar[j,3]=matpar[j,4]=0
if (data[i,2]!=0)and(data[i+1,2]!=0)and(data[i+2,2]!=0)and(data[i+3,2]!=0):

matpar[j,1]=data[i,1]

if data[i+1,2]==data[i,2]:
matpar[j,2]=data[i+1,1]
matpar[j,3]=data[i+2,1]
matpar[j,4]=data[i+3,1]

if data[i+1,2]!=data[i,2]:
matpar[j,3]=data[i+1,1]
if data[i+2,2]==data[i,2]:

matpar[j,2]=data[i+2,1]
matpar[j,4]=data[i+3,1]

if data[i+2,2]!=data[i,2]:
matpar[j,4]=data[i+2,1]
matpar[j,2]=data[i+3,1]

if (data[i,2]==0)or(data[i+1,2]==0)or(data[i+2,2]==0)or(data[i+3,2]==0):
#matpar[j,0]=0
#filas=filas-1
#continue
if data[i,2]==0:

ceros=ceros+1
if data[i+1,2]==0:

ceros=ceros+1
if data[i+2,2]==0:

ceros=ceros+1
if data[i+3,2]==0:

ceros=ceros+1

if ceros!=1:
matpar[j,0]=0
filas=filas-1
continue

if ceros==1:
if data[i,2]!=0:

matpar[j,1]=data[i,1]

VII

if data[i,2]==data[i+1,2]:
matpar[j,2]=data[i+1,1]
matpar[j,3]=data[i+2,1]
matpar[j,4]=data[i+3,1]

if data[i,2]==data[i+2,2]:
matpar[j,2]=data[i+2,1]
matpar[j,3]=data[i+1,1]
matpar[j,4]=data[i+3,1]

if data[i,2]==data[i+3,2]:
matpar[j,2]=data[i+3,1]
matpar[j,3]=data[i+1,1]
matpar[j,4]=data[i+2,1]

if data[i+1,2]==data[i+2,2]:
matpar[j,2]=data[i+3,1]
matpar[j,3]=data[i+1,1]
matpar[j,4]=data[i+2,1]

if data[i+1,2]==data[i+3,2]:
matpar[j,2]=data[i+2,1]
matpar[j,3]=data[i+1,1]
matpar[j,4]=data[i+3,1]

if data[i+2,2]==data[i+3,2]:
matpar[j,2]=data[i+1,1]
matpar[j,3]=data[i+2,1]
matpar[j,4]=data[i+3,1]

if data[i,2]==0:
matpar[j,1]=data[i,1]
if data[i+1,2]==data[i+2,2]:

matpar[j,2]=data[i+3,1]
matpar[j,3]=data[i+1,1]
matpar[j,4]=data[i+2,1]

if data[i+1,2]==data[i+3,2]:
matpar[j,2]=data[i+2,1]
matpar[j,3]=data[i+1,1]
matpar[j,4]=data[i+3,1]

if data[i+2,2]==data[i+3,2]:
matpar[j,2]=data[i+1,1]
matpar[j,3]=data[i+2,1]
matpar[j,4]=data[i+3,1]

#ahora el tresi
if data[i,5]!=0:

if matpar[j,1]==data[i,1]:
matpar[j,5]=1

elif matpar[j,2]==data[i,1]:
matpar[j,5]=2

VIII

elif matpar[j,3]==data[i,1]:
matpar[j,5]=3

else:
matpar[j,5]=4

elif data[i+1,5]!=0:
if matpar[j,1]==data[i+1,1]:

matpar[j,5]=1
elif matpar[j,2]==data[i+1,1]:

matpar[j,5]=2
elif matpar[j,3]==data[i+1,1]:

matpar[j,5]=3
else:

matpar[j,5]=4
elif data[i+2,5]!=0:

if matpar[j,1]==data[i+2,1]:
matpar[j,5]=1

elif matpar[j,2]==data[i+2,1]:
matpar[j,5]=2

elif matpar[j,3]==data[i+2,1]:
matpar[j,5]=3

else:
matpar[j,5]=4

else:
if matpar[j,1]==data[i+3,1]:

matpar[j,5]=1
elif matpar[j,2]==data[i+3,1]:

matpar[j,5]=2
elif matpar[j,3]==data[i+3,1]:

matpar[j,5]=3
else:

matpar[j,5]=4

if data[i,6]!=0:
if matpar[j,1]==data[i,1]:

matpar[j,6]=1
elif matpar[j,2]==data[i,1]:

matpar[j,6]=2
elif matpar[j,3]==data[i,1]:

matpar[j,6]=3
else:

matpar[j,6]=4

elif data[i+1,6]!=0:
if matpar[j,1]==data[i+1,1]:

matpar[j,6]=1

IX

elif matpar[j,2]==data[i+1,1]:
matpar[j,6]=2

elif matpar[j,3]==data[i+1,1]:
matpar[j,6]=3

else:
matpar[j,6]=4

elif data[i+2,6]!=0:
if matpar[j,1]==data[i+2,1]:

matpar[j,6]=1
elif matpar[j,2]==data[i+2,1]:

matpar[j,6]=2
elif matpar[j,3]==data[i+2,1]:

matpar[j,6]=3
else:

matpar[j,6]=4
else:

if matpar[j,1]==data[i+3,1]:
matpar[j,6]=1

elif matpar[j,2]==data[i+3,1]:
matpar[j,6]=2

elif matpar[j,3]==data[i+3,1]:
matpar[j,6]=3

else:
matpar[j,6]=4

#veintes
matpar[j,7]=matpar[j,8]=matpar[j,9]=matpar[j,10]=0

if data[i,3]!=0:
if data[i,1]==matpar[j,1]:

matpar[j,7]=data[i,3]
if data[i,1]==matpar[j,2]:

matpar[j,8]=data[i,3]
if data[i,1]==matpar[j,3]:

matpar[j,9]=data[i,3]
if data[i,1]==matpar[j,4]:

matpar[j,10]=data[i,3]
if data[i+1,3]!=0:

if data[i+1,1]==matpar[j,1]:
matpar[j,7]=data[i+1,3]

if data[i+1,1]==matpar[j,2]:
matpar[j,8]=data[i+1,3]

if data[i+1,1]==matpar[j,3]:
matpar[j,9]=data[i+1,3]

if data[i+1,1]==matpar[j,4]:
matpar[j,10]=data[i+1,3]

if data[i+2,3]!=0:
if data[i+2,1]==matpar[j,1]:

matpar[j,7]=data[i+2,3]

X

if data[i+2,1]==matpar[j,2]:
matpar[j,8]=data[i+2,3]

if data[i+2,1]==matpar[j,3]:
matpar[j,9]=data[i+2,3]

if data[i+2,1]==matpar[j,4]:
matpar[j,10]=data[i+2,3]

if data[i+3,3]!=0:
if data[i+3,1]==matpar[j,1]:

matpar[j,7]=data[i+3,3]
if data[i+3,1]==matpar[j,2]:

matpar[j,8]=data[i+3,3]
if data[i+3,1]==matpar[j,3]:

matpar[j,9]=data[i+3,3]
if data[i+3,1]==matpar[j,4]:

matpar[j,10]=data[i+3,3]
#cuarenta
if data[i,4]!=0:

if data[i,1]==matpar[j,1]:
matpar[j,11]=1

if data[i,1]==matpar[j,2]:
matpar[j,11]=2

if data[i,1]==matpar[j,3]:
matpar[j,11]=3

if data[i,1]==matpar[j,4]:
matpar[j,11]=4

elif data[i+1,4]!=0:
if data[i+1,1]==matpar[j,1]:

matpar[j,11]=1
if data[i+1,1]==matpar[j,2]:

matpar[j,11]=2
if data[i+1,1]==matpar[j,3]:

matpar[j,11]=3
if data[i+1,1]==matpar[j,4]:

matpar[j,11]=4
elif data[i+2,4]!=0:

if data[i+2,1]==matpar[j,1]:
matpar[j,11]=1

if data[i+2,1]==matpar[j,2]:
matpar[j,11]=2

if data[i+2,1]==matpar[j,3]:
matpar[j,11]=3

if data[i+2,1]==matpar[j,4]:
matpar[j,11]=4

elif data[i+3,4]!=0:
if data[i+3,1]==matpar[j,1]:

matpar[j,11]=1
if data[i+3,1]==matpar[j,2]:

matpar[j,11]=2

XI

if data[i+3,1]==matpar[j,3]:
matpar[j,11]=3

if data[i+3,1]==matpar[j,4]:
matpar[j,11]=4

else:
matpar[j,11]=0

#ahora el tresv
matpar[j,12]=0
if data[i,9]!=0:

if matpar[j,1]==data[i,1]:
matpar[j,12]=1

elif matpar[j,2]==data[i,1]:
matpar[j,12]=2

elif matpar[j,3]==data[i,1]:
matpar[j,12]=3

else:
matpar[j,12]=4

elif data[i+1,9]!=0:
if matpar[j,1]==data[i+1,1]:

matpar[j,12]=1
elif matpar[j,2]==data[i+1,1]:

matpar[j,12]=2
elif matpar[j,3]==data[i+1,1]:

matpar[j,12]=3
else:

matpar[j,12]=4
elif data[i+2,9]!=0:

if matpar[j,1]==data[i+2,1]:
matpar[j,12]=1

elif matpar[j,2]==data[i+2,1]:
matpar[j,12]=2

elif matpar[j,3]==data[i+2,1]:
matpar[j,12]=3

else:
matpar[j,12]=4

elif data[i+3,9]!=0:
if matpar[j,1]==data[i+3,1]:

matpar[j,12]=1
elif matpar[j,2]==data[i+3,1]:

matpar[j,12]=2
elif matpar[j,3]==data[i+3,1]:

matpar[j,12]=3
else:

matpar[j,12]=4
else:

XII

matpar[j,12]=0

if data[i,10]!=0:
if matpar[j,1]==data[i,1]:

matpar[j,13]=1
elif matpar[j,2]==data[i,1]:

matpar[j,6]=2
elif matpar[j,3]==data[i,1]:

matpar[j,13]=3
else:

matpar[j,13]=4

elif data[i+1,10]!=0:
if matpar[j,1]==data[i+1,1]:

matpar[j,13]=1
elif matpar[j,2]==data[i+1,1]:

matpar[j,13]=2
elif matpar[j,3]==data[i+1,1]:

matpar[j,13]=3
else:

matpar[j,13]=4
elif data[i+2,10]!=0:

if matpar[j,1]==data[i+2,1]:
matpar[j,13]=1

elif matpar[j,2]==data[i+2,1]:
matpar[j,13]=2

elif matpar[j,3]==data[i+2,1]:
matpar[j,13]=3

else:
matpar[j,13]=4

elif data[i+3,10]!=0:
if matpar[j,1]==data[i+3,1]:

matpar[j,13]=1
elif matpar[j,2]==data[i+3,1]:

matpar[j,13]=2
elif matpar[j,3]==data[i+3,1]:

matpar[j,13]=3
else:

matpar[j,13]=4
else:

matpar[j,13]=0
#veintes
matpar[j,14]=matpar[j,15]=matpar[j,16]=matpar[j,17]=0

if data[i,7]!=0:

XIII

if data[i,1]==matpar[j,1]:
matpar[j,14]=data[i,7]

if data[i,1]==matpar[j,2]:
matpar[j,15]=data[i,7]

if data[i,1]==matpar[j,3]:
matpar[j,16]=data[i,7]

if data[i,1]==matpar[j,4]:
matpar[j,17]=data[i,7]

if data[i+1,7]!=0:
if data[i+1,1]==matpar[j,1]:

matpar[j,14]=data[i+1,7]
if data[i+1,1]==matpar[j,2]:

matpar[j,15]=data[i+1,7]
if data[i+1,1]==matpar[j,3]:

matpar[j,16]=data[i+1,7]
if data[i+1,1]==matpar[j,4]:

matpar[j,17]=data[i+1,7]
if data[i+2,7]!=0:

if data[i+2,1]==matpar[j,1]:
matpar[j,14]=data[i+2,7]

if data[i+2,1]==matpar[j,2]:
matpar[j,15]=data[i+2,7]

if data[i+2,1]==matpar[j,3]:
matpar[j,16]=data[i+2,7]

if data[i+2,1]==matpar[j,4]:
matpar[j,17]=data[i+2,7]

if data[i+3,7]!=0:
if data[i+3,1]==matpar[j,1]:

matpar[j,14]=data[i+3,7]
if data[i+3,1]==matpar[j,2]:

matpar[j,15]=data[i+3,7]
if data[i+3,1]==matpar[j,3]:

matpar[j,16]=data[i+3,7]
if data[i+3,1]==matpar[j,4]:

matpar[j,17]=data[i+3,7]
#cuarenta
if data[i,8]!=0:

if data[i,1]==matpar[j,1]:
matpar[j,18]=1

if data[i,1]==matpar[j,2]:
matpar[j,18]=2

if data[i,1]==matpar[j,3]:
matpar[j,18]=3

if data[i,1]==matpar[j,4]:
matpar[j,18]=4

elif data[i+1,8]!=0:
if data[i+1,1]==matpar[j,1]:

matpar[j,18]=1

XIV

if data[i+1,1]==matpar[j,2]:
matpar[j,18]=2

if data[i+1,1]==matpar[j,3]:
matpar[j,18]=3

if data[i+1,1]==matpar[j,4]:
matpar[j,18]=4

elif data[i+2,8]!=0:
if data[i+2,1]==matpar[j,1]:

matpar[j,18]=1
if data[i+2,1]==matpar[j,2]:

matpar[j,18]=2
if data[i+2,1]==matpar[j,3]:

matpar[j,18]=3
if data[i+2,1]==matpar[j,4]:

matpar[j,18]=4
elif data[i+3,8]!=0:

if data[i+3,1]==matpar[j,1]:
matpar[j,18]=1

if data[i+3,1]==matpar[j,2]:
matpar[j,18]=2

if data[i+3,1]==matpar[j,3]:
matpar[j,18]=3

if data[i+3,1]==matpar[j,4]:
matpar[j,18]=4

else:
matpar[j,18]=0

matpar[j,19]=data[i,11]

matpar[j,20]=data[i,12]
matpar[j,21]=data[i+1,12]
matpar[j,22]=data[i+2,12]
matpar[j,23]=data[i+3,12]

if (data[i,2]==1):
matpar[j,24]=1

if (data[i,2]==2):
matpar[j,24]=2

if (data[i,2]==0):
if data[i+1,2]==data[i+2,2]:

if data[i+1,2]==1:
matpar[j,24]=2

if data[i+1,2]==2:
matpar[j,24]=1

if data[i+1,2]==data[i+3,2]:
if data[i+1,2]==1:

matpar[j,24]=2
if data[i+1,2]==2:

XV

matpar[j,24]=1
if data[i+2,2]==data[i+3,2]:

if data[i+1,2]==1:
matpar[j,24]=1

if data[i+1,2]==2:
matpar[j,24]=2

j=j+1

matpar=matpar[0:filas]
print(matpar)
print(matpar[0,])

Filtro de los veintes

In []: import numpy as np
mat=np.zeros([2500000,25])
veintetoterror=0
for i in range(1743221):

if (data[i,7]+data[i,8]+data[i,9]+data[i,10]<4)and(data[i,14]
+data[i,15]+data[i,16]+data[i,17]<4):

mat[i,]=data[i,]

if (data[i,7]+data[i,8]+data[i,9]+data[i,10]>3)or(data[i,14]+data[i,15]

+data[i,16]+data[i,17]>3):
veintetoterror=veintetoterror+1

print(mat[0:1743222])
print(veintetoterror)

mat=mat[0:1743221]

Código para crear las puntuaciones de los jugadores

In []: import numpy as np
mat=np.zeros([1742897,40])
print(mat.shape)
import numpy as np
numpar=np.zeros([15583,2])
import numpy as np
pargan=np.zeros([15583,2])
import numpy as np
elo=np.zeros([15583,2])

for i in range(15583):
numpar[i,0]=i+1
pargan[i,0]=i+1
elo[i,0]=i+1

XVI

elo[i,1]=1200

for i in range(1742897):
for j in range(25):

mat[i,j]=data[i,j]

for i in range(1742897):
a=int(mat[i,1])-1
b=int(mat[i,2])-1
c=int(mat[i,3])-1
d=int(mat[i,4])-1

numpar[a,1]=numpar[a,1]+1
numpar[b,1]=numpar[b,1]+1
numpar[c,1]=numpar[c,1]+1
numpar[d,1]=numpar[d,1]+1

elo1=(int(elo[a,1])+int(elo[b,1]))/2
elo2=(int(elo[c,1])+int(elo[d,1]))/2

if mat[i,24]==1:
pargan[a,1]=pargan[a,1]+1
pargan[b,1]=pargan[b,1]+1

elo1n=elo1+32*(1-(1/(1+10**((elo2-elo1)/400))))
dif1=elo1n-elo1
elo[a,1]=elo[a,1]+dif1/2
elo[b,1]=elo[b,1]+dif1/2
elo2n=elo2+32*(-(1/(1+10**((elo1-elo2)/400))))
dif2=elo2n-elo2
elo[c,1]=elo[c,1]+dif2/2
elo[d,1]=elo[d,1]+dif2/2

if mat[i,24]==2:
pargan[c,1]=pargan[c,1]+1
pargan[d,1]=pargan[d,1]+1

elo1n=elo1+32*(-(1/(1+10**((elo2-elo1)/400))))
dif1=elo1n-elo1
elo[a,1]=elo[a,1]+dif1/2
elo[b,1]=elo[b,1]+dif1/2
elo2n=elo2+32*(1-(1/(1+10**((elo1-elo2)/400))))
dif2=elo2n-elo2
elo[c,1]=elo[c,1]+dif2/2
elo[d,1]=elo[d,1]+dif2/2

XVII

mat[i,27]=numpar[a,1]
mat[i,28]=pargan[a,1]
mat[i,29]=elo[a,1]

mat[i,30]=numpar[b,1]
mat[i,31]=pargan[b,1]
mat[i,32]=elo[b,1]

mat[i,33]=numpar[c,1]
mat[i,34]=pargan[c,1]
mat[i,35]=elo[c,1]

mat[i,36]=numpar[d,1]
mat[i,37]=pargan[d,1]
mat[i,38]=elo[d,1]

if (mat[i,27]>=200)and(mat[i,30]>=200)and(mat[i,33]>=200)and(mat[i,36]>=200):
mat[i,39]=1

Código para aleatorizar parejas

In []: import numpy as np
mat=np.zeros([739801,39])
print(mat.shape)

for i in range(739801):
if (data[i,1]+data[i,2])%2==0:

mat[i,]=data[i,]
if (data[i,1]+data[i,2])%2!=0:

#los que son iguales
mat[i,0]=data[i,0]
mat[i,19]=data[i,19]
mat[i,20]=data[i,20]
mat[i,21]=data[i,21]
mat[i,22]=data[i,22]
mat[i,23]=data[i,23]

#lo que cambia

mat[i,1]=data[i,3]
mat[i,2]=data[i,4]
mat[i,3]=data[i,1]
mat[i,4]=data[i,2]

if data[i,5]<3:

XVIII

mat[i,5]=data[i,5]+2
if data[i,5]>2:

mat[i,5]=data[i,5]-2

if data[i,6]<3:
mat[i,6]=data[i,6]+2

if data[i,6]>2:
mat[i,6]=data[i,6]-2

mat[i,7]=data[i,9]
mat[i,8]=data[i,10]
mat[i,9]=data[i,7]
mat[i,10]=data[i,8]

if data[i,11]==0:
mat[i,11]=0

if data[i,11]!=0:
if data[i,11]<3:

mat[i,11]=data[i,11]+2
if data[i,11]>2:

mat[i,11]=data[i,11]-2

if data[i,12]==0:
mat[i,12]=0

if data[i,12]!=0:
if data[i,12]<3:

mat[i,12]=data[i,12]+2
if data[i,12]>2:

mat[i,12]=data[i,12]-2

if data[i,13]==0:
mat[i,13]=0

if data[i,13]!=0:
if data[i,13]<3:

mat[i,13]=data[i,13]+2
if data[i,13]>2:

mat[i,13]=data[i,13]-2

mat[i,16]=data[i,14]
mat[i,17]=data[i,15]
mat[i,14]=data[i,16]
mat[i,15]=data[i,17]

if data[i,18]==0:
mat[i,18]=0

if data[i,18]!=0:
if data[i,18]<3:

mat[i,18]=data[i,18]+2

XIX

if data[i,18]>2:
mat[i,18]=data[i,18]-2

if data[i,24]==1:
mat[i,24]=2

if data[i,24]==2:
mat[i,24]=1

mat[i,31]=data[i,25]
mat[i,32]=data[i,26]
mat[i,33]=data[i,27]
mat[i,34]=data[i,28]
mat[i,35]=data[i,29]
mat[i,36]=data[i,30]
mat[i,25]=data[i,31]
mat[i,26]=data[i,32]
mat[i,27]=data[i,33]
mat[i,28]=data[i,34]
mat[i,29]=data[i,35]
mat[i,30]=data[i,36]

mat[i,37]=data[i,37]

if mat[i,24]==1:
mat[i,38]=1

if mat[i,24]==2:
mat[i,38]=0

XX

ANEXO B: Notas de R

En este anexo vamos a mostrar y explicar el código usado en R para trabajar la base de datos.

Preparativos previos:
Antes de pasar de registros a partidas:

colnames(filfechacorta2)<-c("id", "jugador", "resultado", "20i", "40i", "ti", "ci",
"20v", "40v", "tv", "cv","fecha","registro")

nombres=unique(filfechacorta2$jugador)
filfechacorta2$jugador=match(filfechacorta2$jugador,nombres)

arrange(filfechacorta2, id)
show(arrange(filfechacorta2, id))
write.csv(arrange(filfechacorta2, id),row.names = FALSE,"renum1.csv")

Ponemos nombres a las columnas de la matriz de registros creada en Python, renombramos a los jugadores
para tener números más cómodos para manejar y los ordenamos por id de partida para llevarlos a Python y
crear a partir de 4 registros el registro de una partida.

Depuración

colnames(datf)<-c("id", "jugador1", "jugador2","jugador3","jugador4", "tres_i", "as_i",
"veinteg1","veinteg2","veintep1","veintep2", "cuarenta_i","tres_v", "as_v"
,"veinteg1v","veinteg2v","veintep1v","veintep2v" ,"cuarenta_v","fecha","registro1"
,"registro2","registro3","registro4","resultado")
partidaslimpias<- datf[datf$id!=0,]
write.csv(datf, rownames=FALSE,"")
write.csv(partidaslimpias,row.names = FALSE,"partidas.csv")

En el programa de Python sustituimos las filas con errores por ceros, entonces aquí las eliminamos.

Código para el análisis descriptivo

table(partidas$cuarenta_i)#/length(partidas$id)

part40<-partidas[partidas$cuarenta_i!=0,] #aislar las partidas en las que se hayan cantado 40
prop.table(table(part40$resultado,part40$cuarenta_i))#porcentaje de partidas ganadas con las 40
prop.table(table((partidas$cuarenta_i))) #proporcion de partidas en las que se cantan las cuarenta

veinte1<- partidas$veinteg1
veinte2<- partidas$veinteg2
veinte3<- partidas$veintep1
veinte4<- partidas$veintep2

I

matvein <- cbind(veinte1, veinte2, veinte3, veinte4)

numveint<- apply(X=matvein, MARGIN=1, FUN=sum) #es el numero de veintes que se cantan en cada partida
table(numveint)/length(partidas$id)
mean(numveint) # 0.5493073
sd(numveint) #0.676758
max(numveint) #en este punto se detectó el problema de más de 3 veintes en algunas partidas
min(numveint)

table(partidas$as_i,partidas$resultado)/length(partidas$id)*100

tresyas<- function(as,tres){
if (as == 1){

if(tres < 3)
{return(1)}

if (tres > 2)
{return(0)}}

if (as == 2){
if(tres < 3)
{ return(1)}

if(tres > 2)
{return(0)}}

if (as == 3){
if(tres > 2)

{return(2)}
if(tres < 3)

{return(0)}}
if (as == 4){

if(tres > 2)
{return(2)}

if (tres < 3)
{return(0)}}

}
partidas$nueva_columna=mapply(tresyas,partidas$as_i,partidas$tres_i)
table(partidas$nueva_columna)#/length(partidas$id)
partasytres<-partidas[partidas$nueva_columna!=0,]#as y tres en la misma pareja
table(partasytres$resultado,partasytres$nueva_columna)/length(partasytres$id)*100
#78.0345

table(partidas$nueva_columna)/length(partidas$id)*100
tresyasjugador<- function(as,tres){
if(as==tres)
{return(as)}
else
{return(0)}

}
partidas$nueva_columna=mapply(tresyasjugador,partidas$as_i,partidas$tres_i)
table(partidas$nueva_columna)#/length(partidas$id)*100

partasytresjugador<-partidas[partidas$nueva_columna!=0,]
ganadorcontresyas<-function(resultado,ncol){

if(ncol==1){

II

if (resultado==1)
{return(1)}
if (resultado==2)
{return(0)}

}
if(ncol==2){

if (resultado==1)
{return(1)}
if (resultado==2)
{return(0)}

}
if(ncol==3){

if (resultado==1)
{return(0)}
if (resultado==2)
{return(1)}

}
if(ncol==4){

if (resultado==1)
{return(0)}
if (resultado==2)
{return(1)}

}
}

partasytresjugador$nueva_columna2=mapply(ganadorcontresyas,partasytresjugador
$resultado,partasytresjugador$nueva_columna)

table(partasytresjugador$nueva_columna2)/length(partidas$id)*100

tresyasdistju<- function(as,tres){
if (as == 1){

if(tres ==2)
{return(12)}
if (tres != 2)
{return(0)}}

if (as == 2){
if(tres == 1)
{ return(21)}
if(tres !=1)
{return(0)}}

if (as == 3){
if(tres == 4)
{return(34)}
if(tres !=4)
{return(0)}}

if (as == 4){
if(tres ==3)
{return(43)}
if (tres != 3)
{return(0)}}

}
partidas$nueva_columna4=mapply(tresyasdistju,partidas$as_i,partidas$tres_i)

III

table(partidas$nueva_columna4)#/length(partidas$id)*100

partasytresdistju<-partidas[partidas$nueva_columna4!=0,]

victdistju<-function(ncol,resul){
if(ncol<25){

if(resul==1){
return(1)}

if(resul==2){
return(0)

}}
if(ncol>25){

if(resul==1){
return(0)}

if(resul==2){
return(1)

}
}

}
partasytresdistju$nueva_columna=mapply
(victdistju,partasytresdistju$nueva_columna4,partasytresdistju$resultado)

table(partasytresdistju$nueva_columna)/length(partasytresdistju$id)*100

En algunas partes está /length(partidas$id)*100 como comentario ya que si se pone te da el porcentaje de
partidas y si no da el número de partidas.

Puntuaciones
Preparativos

RESULTADOBINARIO<-function(result){
if(result==1)
{return(1)}
if(result==2)
{return(0)}

}
partidas$resbin=mapply(RESULTADOBINARIO,partidas$resultado)
write.csv(arrange(partidas, fecha), row.names = FALSE, "porfecha.csv")

Se pasan los resultados a binario y se ordenan las partidas por fecha para poder asignar en Python las
puntuaciones de los jugadores.

Base de datos para los modelos

colnames(ranking2_0)<-c("id", "jugador1", "jugador2","jugador3","jugador4", "tres_i", "as_i",
"veinteg1","veinteg2","veintep1","veintep2", "cuarenta_i","tres_v", "as_v"
,"veinteg1v","veinteg2v","veintep1v","veintep2v" ,"cuarenta_v","fecha","registro1"
,"registro2","registro3","registro4","resultado","numpar1","pargan1","elo1","numpar2","pargan2"
,"elo2","numpar3","pargan3","elo3","numpar4","pargan4","elo4","valida")

IV

rankbueno<-ranking2[ranking2$valida!=0,]
write.csv(rankbueno, row.names = FALSE, "rankbueno.csv")
rankbueno$resbin=mapply(RESULTADOBINARIO,rankbueno$resultado)
write.csv(rankbueno, row.names = FALSE, "ranknoale2.csv")

En este momento, tras obtener en Python la base de datos con las puntuaciones, eliminamos las partidas no
válidas para los modelos. Las partidas no válidas son aquellas en las que participa algún jugador con menos
de 200 partidas jugadas.
plot(seq(1,500),seq(1,500),type="n",xlim=c(1,500),ylim=c(960,1500),ylab="Prop
ganadas")

numerito=400
esta=rankale[which((rankale$jugador1==numerito)
|(rankale$jugador2==numerito)|(rankale$jugador3==numerito)|(rankale$jugador4==numerito)),]
esta$ratio=(esta$pargan1/esta$numpar1)*(esta$jugador1==numerito)+(esta$pargan2/esta$numpar2)
(esta$jugador2==numerito)+(esta$pargan3/esta$numpar3)(esta$jugador3==numerito)
+(esta$pargan4/esta$numpar4)*(esta$jugador4==numerito)
lines(seq(1,length(esta$ratio)),estar$ratio)

Con este código se comprobó que los porcentajes de partidas ganadas se estabilizaban en 200 partidas jugadas,
por lo tanto se decidió que el filtro debía de ser de 200 partidas.

Este conjunto de datos se lleva a Python y se aleatorizan las parejas.

Nuevos datos para los modelos

elopareja<- function(elo1,elo2){
elotot=(elo1+elo2)/2
return(elotot)

}
rankale2$elopar1=mapply(elopareja,rankale2$elo1,rankale2$elo2)
rankale2$elopar2=mapply(elopareja, rankale2$elo3,rankale2$elo4)
difelo<-function(elo1,elo2){

diferencia=elo1-elo2
return(diferencia)

}
rankale2$difelopar=mapply(difelo, rankale2$elopar1, rankale2$elopar2)
##con los minimos y maximos
rankale2$minelo1=mapply(min, rankale2$elo1,rankale2$elo2)
rankale2$minelo2=mapply(min, rankale2$elo3,rankale2$elo4)
rankale2$maxelo1=mapply(max, rankale2$elo1,rankale2$elo2)
rankale2$maxelo2=mapply(max, rankale2$elo3,rankale2$elo4)

porcentajeganadas<-function(vict,nume){
totpor= (vict/nume)*100
return(totpor)

}
rankale2$porc1=mapply(porcentajeganadas, rankale2$pargan1, rankale2$numpar1)
rankale2$porc2=mapply(porcentajeganadas, rankale2$pargan2, rankale2$numpar2)
rankale2$porc3=mapply(porcentajeganadas, rankale2$pargan3, rankale2$numpar3)
rankale2$porc4=mapply(porcentajeganadas, rankale2$pargan4, rankale2$numpar4)

V

tres1<-function(tresi){
if((tresi==1)|(tresi==2))
{return(1)}
if((tresi==3)|(tresi==4))
{return(0)}

}
as1<-function(asi){

if((asi==1)|(asi==2))
{return(1)}
if((asi==3)|(asi==4))
{return(0)}

}

rankale2$trespareja1=mapply(tres1,rankale2$tres_i)
rankale2$aspareja1=mapply(as1,rankale2$as_i)

cuarentapar<-function(cuaren){
if((cuaren==1)|(cuaren==2))
{return(1)}
if((cuaren==3)|(cuaren==4))
{return(-1)}
if(cuaren==0)
{return(0)}

}
rankale2$cuaren=mapply(cuarentapar, rankale2$cuarenta_i)

difveintes<-function(v1,v2,v3,v4){
difeveinte=v1+v2-v3-v4
return(difeveinte)

}
rankale2$difeveintes= mapply(difveintes, rankale2$veintej1,rankale2$veintej2,rankale2
$veintej3,rankale2$veintej4)

rankale2$minpor1=mapply(min, rankale2$porc1,rankale2$porc2)
rankale2$minpor2=mapply(min, rankale2$porc3,rankale2$porc4)
rankale2$maxpor1=mapply(max, rankale2$porc1, rankale2$porc2)
rankale2$maxpor2=mapply(max, rankale2$porc3, rankale2$porc4)

Con la base de datos ya aleatorizada, introducimos todos los datos y mediciones que consideramos importantes
a la hora de hacer los modelos.

Modelos
En este apartado tenemos todo el código que corresponde a los modelos, en él se pueden ver todos los modelos,
incluso los descartados, además de el estadístico de Cox-Snell y el de Nagelkerke que son los que hemos usado
para ver la capacidad explicativa del modelo y descartar algunos.
##modelo1
#unicamente con el as
GLM.1 <- glm(resbin ~ aspareja1, family=binomial(logit), data=rankale2)
summary(GLM.1)
exp(coef(GLM.1))

CHI1=GLM.1$null.deviance-GLM.1$deviance

VI

Difgrlib1=GLM.1$df.null-GLM.1$df.residual
CHI1#76814.86
Difgrlib1#1

hl1=CHI1/GLM.1$null.deviance
hl1
CS1=1-exp((GLM.1$deviance-GLM.1$null.deviance)/length(rankale2$id))
n1=CS1/(1-(exp(-(GLM.1$null.deviance/length(rankale2$id)))))
#estadisticos de Cox-Snell y Nagelkerke
#entre un 13.14% y un 7.4%
pre1<-predict(object=GLM.1,newdata=rankale2, type='response')
pre1
rankale2$premod1<-ifelse(test= pre1>0.5,yes=1,no=0)
rankale2$acim1=mapply(poracierto, rankale2$resbin, rankale2$premod1)
table(rankale2$acim1)/length(rankale2$id)
#el modelo es capaz de acertar el 0.66% de las partidas

#as y tres
GLM.2<- glm(resbin ~ aspareja1+trespareja1, family=binomial(logit), data=rankale2)
summary(GLM.2)
exp(coef(GLM.2))

CHI2=GLM.2$null.deviance-GLM.2$deviance
CHI2 #123417.4
Difgrlib2=GLM.2$df.null-GLM.2$df.residual
Difgrlib2#2

hl2=CHI2/GLM.2$null.deviance
CS2=1-exp((GLM.2$deviance-GLM.2$null.deviance)/length(rankale2$id))
hl2
n2=CS2/(1-(exp(-(GLM.2$null.deviance/length(rankale2$id)))))
CS2
n2

pre2<-predict(object=GLM.2,newdata=rankale2, type='response')
pre2

rankale2$premod2<-ifelse(test= pre2>0.5,yes=1,no=0)

rankale2$acim2=mapply(poracierto, rankale2$resbin, rankale2$premod2)
table(rankale2$acim2)/length(rankale2$id)

#0.66 de aciertos igual que el anterior
#con el as y el tres, explicamos un 20.49% y un 15.36%

#as tres y veinte
GLM.20<- glm(resbin ~ aspareja1+trespareja1+difeveintes, family=binomial(logit), data=rankale2)
summary(GLM.20)
exp(coef(GLM.20))
Difgrlib20=GLM.20$df.null-GLM.20$df.residual

VII

Difgrlib20#3
CHI20=GLM.20$null.deviance-GLM.20$deviance
CHI20#133173.6

CS20=1-exp((GLM.20$deviance-GLM.20$null.deviance)/length(rankale2$id))
n20=CS20/(1-(exp(-(GLM.20$null.deviance/length(rankale2$id)))))
CS20
n20

pre20<-predict(object=GLM.20,newdata=rankale2, type='response')
rankale2$premod20<-ifelse(test= pre20>0.5,yes=1,no=0)
rankale2$acim20=mapply(poracierto, rankale2$resbin, rankale2$premod20)
table(rankale2$acim20)/length(rankale2$id)
#acierta el 66,8 de las partidas

#as tres y cuarenta +20
GLM.3<- glm(resbin ~ aspareja1+trespareja1+cuaren+difeveintes, family=binomial(logit), data=rankale2)
summary(GLM.3)
exp(coef(GLM.3))

CHI3=GLM.3$null.deviance-GLM.3$deviance
CHI3#257423.9

hl3=CHI3/GLM.3$null.deviance
hl3
CS3=1-exp((GLM.3$deviance-GLM.3$null.deviance)/length(rankale2$id)
n3=CS3/(1-(exp(-(GLM.3$null.deviance/length(rankale2$id)))))
CS3
n3

pre3<-predict(object=GLM.3,newdata=rankale2, type='response')

rankale2$premod3<-ifelse(test= pre3>0.5,yes=1,no=0)

rankale2$acim3=mapply(poracierto, rankale2$resbin, rankale2$premod3)
table(rankale2$acim3)/length(rankale2$id)
##0.73 de aciertos

#elo pareja
GLM.elo<- glm(resbin ~difelopar, family=binomial(logit), data=rankale2)
summary(GLM.elo)
exp(coef(GLM.elo))

CHIelo=GLM.elo$null.deviance-GLM.elo$deviance
CHIelo
hlelo=CHIelo/GLM.elo$null.deviance #
CSelo=1-exp((GLM.elo$deviance-GLM.elo$null.deviance)/length(rankale2$id))

VIII

nelo=CSelo/(1-(exp(-(GLM.elo$null.deviance/length(rankale2$id)))))
CSelo
nelo

preelo<-predict(object=GLM.elo,newdata=rankale2, type='response')

rankale2$premodelo<-ifelse(test= preelo>0.5,yes=1,no=0)

rankale2$acimelo=mapply(poracierto, rankale2$resbin, rankale2$premodelo)
table(rankale2$acimelo)/length(rankale2$id)

as y elos pareja

GLM.4<- glm(resbin ~ aspareja1+difelopar, family=binomial(logit), data=rankale2)
summary(GLM.4)
exp(coef(GLM.4))

CHI4=GLM.4$null.deviance-GLM.4$deviance
CHI4
hl4=CHI4/GLM.4$null.deviance
CS4=1-exp((GLM.4$deviance-GLM.4$null.deviance)/length(rankale2$id))
n4=CS4/(1-(exp(-(GLM.4$null.deviance/length(rankale2$id)))))
CS4
n4

pre4<-predict(object=GLM.4,newdata=rankale2, type='response')
rankale2$premod4<-ifelse(test= pre4>0.5,yes=1,no=0)
rankale2$acim4=mapply(poracierto, rankale2$resbin, rankale2$premod4)
table(rankale2$acim4)/length(rankale2$id)
##0.68 aciertos

as y minimo y maximo
GLM.5<- glm(resbin ~ aspareja1+minelo1+maxelo1+minelo2+maxelo2, family=binomial(logit), data=rankale2)
summary(GLM.5)
exp(coef(GLM.5))
CHI5=GLM.5$null.deviance-GLM.5$deviance
CHI5
hl5=CHI5/GLM.5$null.deviance
CS5=1-exp((GLM.5$deviance-GLM.5$null.deviance)/length(rankale2$id))
n5=CS5/(1-(exp(-(GLM.5$null.deviance/length(rankale2$id)))))
CS5
n5
pre5<-predict(object=GLM.5,newdata=rankale2, type='response')
rankale2$premod5<-ifelse(test= pre5>0.5,yes=1,no=0)
rankale2$acim5=mapply(poracierto, rankale2$resbin, rankale2$premod5)
table(rankale2$acim5)/length(rankale2$id)
#0.68 de aciertos, igual que el anterior, no merece la pena separar el maximo y el minimo

#as tres y elo
GLM.6<- glm(resbin ~ aspareja1+ trespareja1 + difelopar, family=binomial(logit), data=rankale2)

IX

summary(GLM.6)
exp(coef(GLM.6))
CHI6=GLM.6$null.deviance-GLM.6$deviance
CHI6
hl6=CHI6/GLM.6$null.deviance
CS6=1-exp((GLM.6$deviance-GLM.6$null.deviance)/length(rankale2$id))
n6=CS6/(1-(exp(-(GLM.6$null.deviance/length(rankale2$id)))))
CS6
n6
pre6<-predict(object=GLM.6,newdata=rankale2, type='response')
rankale2$premod6<-ifelse(test= pre6>0.5,yes=1,no=0)
rankale2$acim6=mapply(poracierto, rankale2$resbin, rankale2$premod6)
table(rankale2$acim6)/length(rankale2$id)
#0.7035 de acierto

#elo dif as tres y veinte
GLM.7<- glm(resbin ~ aspareja1+trespareja1+difeveintes+
difelopar, family=binomial(logit), data=rankale2)
summary(GLM.7)
exp(coef(GLM.7))
CHI7=GLM.7$null.deviance-GLM.7$deviance
CHI7

hl7=CHI7/GLM.7$null.deviance
hl7
CS7=1-exp((GLM.7$deviance-GLM.7$null.deviance)/length(rankale2$id))
n7=CS7/(1-(exp(-(GLM.7$null.deviance/length(rankale2$id)))))
CS7
n7

pre7<-predict(object=GLM.7,newdata=rankale2, type='response')
rankale2$premod7<-ifelse(test= pre7>0.5,yes=1,no=0)
rankale2$acim7=mapply(poracierto, rankale2$resbin, rankale2$premod7)
table(rankale2$acim7)/length(rankale2$id)
#0.7592136 de aciertos

#curva ROC del modelo
rankale2$probpred7 <- fitted(GLM.7)

plot(roc(rankale2$resbin, rankale2$probpred7,smooth = TRUE))

#elo as tres y cuarenta y 20, modelo final
GLM.8<- glm(resbin ~ aspareja1+trespareja1+difeveintes
+cuaren+difelopar, family=binomial(logit), data=rankale2)
summary(GLM.8)
exp(coef(GLM.8))
CHI8=GLM.8$null.deviance-GLM.8$deviance
CHI8
hl8=CHI8/GLM.8$null.deviance
CS8=1-exp((GLM.8$deviance-GLM.8$null.deviance)/length(rankale2$id))
n8=CS8/(1-(exp(-(GLM.8$null.deviance/length(rankale2$id)))))

X

CS8
n8
pre8<-predict(object=GLM.8,newdata=rankale2, type='response')
rankale2$premod8<-ifelse(test= pre8>0.5,yes=1,no=0)
rankale2$acim8=mapply(poracierto, rankale2$resbin, rankale2$premod8)
table(rankale2$acim8)/length(rankale2$id)
#76.58

rankale2$probpred8 <- fitted(GLM.8)

#curva ROC y area bajo la curva
plot(roc(rankale2$resbin, rankale2$probpred8,smooth = TRUE, print.auc=TRUE))
auc(roc(rankale2$resbin, rankale2$probpred8,smooth = TRUE))

##area bajo la curva de todos los modelos
rankale2$probpred1 <- fitted(GLM.1)
auc(roc(rankale2$resbin, rankale2$probpred1,smooth = FALSE))
rankale2$probpred2 <- fitted(GLM.2)
auc(roc(rankale2$resbin, rankale2$probpred2,smooth = FALSE))
rankale2$probpred3 <- fitted(GLM.3)
auc(roc(rankale2$resbin, rankale2$probpred3,smooth = TRUE))
rankale2$probpred20 <- fitted(GLM.20)
auc(roc(rankale2$resbin, rankale2$probpred20,smooth = TRUE))
rankale2$probpredelo <- fitted(GLM.elo)
auc(roc(rankale2$resbin, rankale2$probpredelo,smooth = TRUE))
rankale2$probpred4 <- fitted(GLM.4)
auc(roc(rankale2$resbin, rankale2$probpred4,smooth = TRUE))
rankale2$probpred6 <- fitted(GLM.6)
auc(roc(rankale2$resbin, rankale2$probpred6,smooth = TRUE))
rankale2$probpred7 <- fitted(GLM.7)
auc(roc(rankale2$resbin, rankale2$probpred7,smooth = TRUE))
rankale2$probpred8 <- fitted(GLM.8)
auc(roc(rankale2$resbin, rankale2$probpred8,smooth = TRUE))

##medias de los residuos de los modelos mas completos
library(arm)
binnedplot(fitted(GLM.8),

residuals(GLM.8, type = "response"),
nclass = 150,
xlab = "Expected Values",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

binnedplot(fitted(GLM.7),
residuals(GLM.7, type = "response"),

XI

nclass = 150,
xlab = "Expected Values",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

##MODELOS DESCARTADOS

as y minimo y maximo porcentajes
GLM.9<- glm(resbin ~ aspareja1+minpor1+minpor2+maxpor1+maxpor2,
family=binomial(logit), data=rankale2)
summary(GLM.9)
exp(coef(GLM.9))
CHI9=GLM.9$null.deviance-GLM.9$deviance
CHI9
hl9=CHI9/GLM.9$null.deviance
CS9=1-exp((GLM.9$deviance-GLM.9$null.deviance)/length(rankale2$id))
n9=CS9/(1-(exp(-(GLM.9$null.deviance/length(rankale2$id)))))
CS9
n9
pre9<-predict(object=GLM.9,newdata=rankale2, type='response')
rankale2$premod9<-ifelse(test= pre9>0.5,yes=1,no=0)
rankale2$acim9=mapply(poracierto, rankale2$resbin, rankale2$premod9)
table(rankale2$acim9)/length(rankale2$id)
#malisimo
#lo mismo que el que solo tiene el as, 0.66

#modelo con porcentaje de victorias minimo y maximo + as
GLM.10<- glm(resbin ~ minpor1+maxpor1+aspareja1, family=binomial(logit), data=rankale2)
summary(GLM.10)
exp(coef(GLM.10))
CHI10=GLM.10$null.deviance-GLM.10$deviance
CHI10
hl10=CHI10/GLM.10$null.deviance
CS10=1-exp((GLM.10$deviance-GLM.10$null.deviance)/length(rankale2$id))

n10=CS10/(1-(exp(-(GLM.10$null.deviance/length(rankale2$id)))))
CS10
n10
pre10<-predict(object=GLM.10,newdata=rankale2, type='response')

rankale2$premod10<-ifelse(test= pre10>0.5,yes=1,no=0)

rankale2$acim10=mapply(poracierto, rankale2$resbin, rankale2$premod10)
table(rankale2$acim10)/length(rankale2$id)
#igual que el del as

##vamos a ver si quitando el tres no perdemos nada de prediccion
GLM.11<- glm(resbin ~ aspareja1+cuaren+minelo1+maxelo1+minelo2+maxelo2,

XII

family=binomial(logit), data=rankale2)
summary(GLM.11)
exp(coef(GLM.11))
CHI11=GLM.11$null.deviance-GLM.11$deviance
CHI11

hl11=CHI11/GLM.11$null.deviance
hl11
CS11=1-exp((GLM.11$deviance-GLM.11$null.deviance)/length(rankale2$id))
n11=CS11/(1-(exp(-(GLM.11$null.deviance/length(rankale2$id)))))
CS11
n11

pre11<-predict(object=GLM.11,newdata=rankale2, type='response')

rankale2$premod11<-ifelse(test= pre11>0.5,yes=1,no=0)

rankale2$acim11=mapply(poracierto, rankale2$resbin, rankale2$premod11)
table(rankale2$acim11)/length(rankale2$id)
quitando el tres en el modelo 6 se falla un 2% mas

reselo<-function(el,elo){
dife=elo-el
return(dife)

}
rankale2$difelo1=mapply(reselo, rankale2$minelo1, rankale2$maxelo1)
rankale2$difelo2=mapply(reselo, rankale2$minelo2, rankale2$maxelo2)

#diferencias de elo en la pareja
GLM.12<- glm(resbin ~ aspareja1+trespareja1+cuaren+difelo1+difelo2,
family=binomial(logit), data=rankale2)
summary(GLM.12)
exp(coef(GLM.12))
CHI12=GLM.12$null.deviance-GLM.12$deviance
CHI12

Difgrlib12=GLM.12$df.null-GLM.12$df.residual

Difgrlib12#2
hl12=CHI12/GLM.12$null.deviance
hl12
CS12=1-exp((GLM.12$deviance-GLM.12$null.deviance)/length(rankale2$id))

n12=CS12/(1-(exp(-(GLM.12$null.deviance/length(rankale2$id)))))
CS12
n12
CHI12

XIII

pre12<-predict(object=GLM.12,newdata=rankale2, type='response')

rankale2$premod12<-ifelse(test= pre12>0.5,yes=1,no=0)

rankale2$acim12=mapply(poracierto, rankale2$resbin, rankale2$premod12)
table(rankale2$acim12)/length(rankale2$id)

#añadimos los numero de partidas, salen no significativos
GLM.13<- glm(resbin ~ aspareja1+trespareja1+cuaren+elopar1+elopar2+numpar1+numpar2
+numpar3+numpar4, family=binomial(logit), data=rankale2)
summary(GLM.13)
exp(coef(GLM.13))
CHI13=GLM.13$null.deviance-GLM.13$deviance
CHI13

hl13=CHI13/GLM.13$null.deviance
hl13
CS13=1-exp((GLM.13$deviance-GLM.13$null.deviance)/length(rankale2$id))
CS13
pre13<-predict(object=GLM.13,newdata=rankale2, type='response')

rankale2$premod13<-ifelse(test= pre13>0.5,yes=1,no=0)

rankale2$acim13=mapply(poracierto, rankale2$resbin, rankale2$premod13)
table(rankale2$acim13)/length(rankale2$id)

#######MODELOS CON MUCHISIMAS MAS VARIABLES
GLM.14<- glm(resbin ~ aspareja1+trespareja1+cuaren+elopar1+elopar2+minpor1+minpor2
+maxpor1+maxpor2, family=binomial(logit), data=rankale2)
summary(GLM.14)
exp(coef(GLM.14))
CHI14=GLM.14$null.deviance-GLM.14$deviance
CHI14
hl14=CHI14/GLM.14$null.deviance
hl14
CS14=1-exp((GLM.14$deviance-GLM.14$null.deviance)/length(rankale2$id))
CS14

pre14<-predict(object=GLM.14,newdata=rankale2, type='response')

rankale2$premod14<-ifelse(test= pre14>0.5,yes=1,no=0)

rankale2$acim14=mapply(poracierto, rankale2$resbin, rankale2$premod14)
table(rankale2$acim14)/length(rankale2$id)
##76.18414%

GLM.15<- glm(resbin ~ aspareja1+trespareja1+cuaren+minelo1+minelo2+maxelo1+maxelo2
+minpor1+minpor2+maxpor1+maxpor2, family=binomial(logit), data=rankale2)
summary(GLM.15)
exp(coef(GLM.15))

XIV

pre15<-predict(object=GLM.15,newdata=rankale2, type='response')

rankale2$premod15<-ifelse(test= pre15>0.5,yes=1,no=0)

rankale2$acim15=mapply(poracierto, rankale2$resbin, rankale2$premod15)
table(rankale2$acim15)/length(rankale2$id)
##76.18697%

GLM.16<- glm(resbin ~ aspareja1+trespareja1+cuaren+minpor1+minpor2+maxpor1+maxpor2,
family=binomial(logit), data=rankale2)
summary(GLM.16)
exp(coef(GLM.16))

pre16<-predict(object=GLM.16,newdata=rankale2, type='response')

rankale2$premod16<-ifelse(test= pre16>0.5,yes=1,no=0)

rankale2$acim16=mapply(poracierto, rankale2$resbin, rankale2$premod16)
table(rankale2$acim16)/length(rankale2$id)

GLM.17<- glm(resbin ~aspareja1+trespareja1+cuaren+minelo1+minelo2+minpor1+minpor2
+maxpor1+maxpor2 , family=binomial(logit), data=rankale2)
summary(GLM.17)
exp(coef(GLM.17))

pre17<-predict(object=GLM.17,newdata=rankale2, type='response')

rankale2$premod17<-ifelse(test= pre17>0.5,yes=1,no=0)

rankale2$acim17=mapply(poracierto, rankale2$resbin, rankale2$premod17)
table(rankale2$acim17)/length(rankale2$id)
###75.24615

GLM.18<- glm(resbin ~aspareja1+trespareja1+cuaren+minelo1+minelo2+porc1+porc2+porc3+porc4 ,
family=binomial(logit), data=rankale2)
summary(GLM.18)
exp(coef(GLM.18))

pre18<-predict(object=GLM.18,newdata=rankale2, type='response')

rankale2$premod18<-ifelse(test= pre18>0.5,yes=1,no=0)

rankale2$acim18=mapply(poracierto, rankale2$resbin, rankale2$premod18)
table(rankale2$acim18)/length(rankale2$id)
#75.1813%

XV

Modelos para solucionar el problema del modelo completo
Presentamos el código que se ha utilizado para dar solución al problema del modelo completo con las cuarenta.
##modelos con solo las partidas con 40
GLM.401<- glm(resbin ~ aspareja1+trespareja1+difveintes+difelopar,
family=binomial(logit), data=rankale40)
summary(GLM.401)
pre401<-predict(object=GLM.401,newdata=rankale40, type='response')

rankale40$premod401<-ifelse(test= pre401>0.5,yes=1,no=0)

rankale40$acim401=mapply(poracierto, rankale40$resbin, rankale40$premod401)
table(rankale40$acim401)/length(rankale40$resbin)
#64.56

GLM.402<- glm(resbin ~ aspareja1+trespareja1+difveintes+cuaren+difelopar,
family=binomial(logit), data=rankale40)
summary(GLM.402)
pre402<-predict(object=GLM.402,newdata=rankale40, type='response')

rankale40$premod402<-ifelse(test= pre402>0.5,yes=1,no=0)

rankale40$acim402=mapply(poracierto, rankale40$resbin, rankale40$premod402)
table(rankale40$acim402)/length(rankale40$resbin)
#88.7

rankale40$probpred402 <- fitted(GLM.402)
plot(roc(rankale40$resbin, rankale40$probpred402,smooth = TRUE, print.auc=TRUE))
auc(roc(rankale40$resbin, rankale40$probpred402,smooth = TRUE))
binnedplot(fitted(GLM.402),

residuals(GLM.402, type = "response"),
nclass = 200,
xlab = "Expected Values",
ylab = "Average residual",
main = "Binned residual plot",
cex.pts = 0.8,
col.pts = 1,
col.int = "gray")

Código para la conclusión

##157.63 para IGUALAR el efecto del as
##121.19 para el del tres
##216.1 cuarenta
diferenciadepareja<-function(elop1,elop2){

if(elop1>elop2+216.1){
return(1)}

if(elop1<elop2+216.1){
return(0)

XVI

}
}
rankale2$dif<-mapply(diferenciadepareja, rankale2$elopar1, rankale2$elopar2)

table(rankale2$dif)/length(rankale2$id)

difmedias<-function(elop1,elop2){
dife=elop1-elop2
return(dife)

}
rankale2$difelo<-mapply(difmedias, rankale2$elopar1, rankale2$elopar2)
mean(rankale2$difelo)
sd(rankale2$difelo)

quantile(x=rankale2$difelo, probs=c(0.9,0.95, 0.99, 0.999, 1))
hist(x =rankale2$difelopar)
quantile(rankale2$difelo, probs=c(0.99976))

Para encontrar las diferencias necesarias simplemente se divide el coeficiente del suceso entre el de la diferencia
de elo.
GLM.elo<- glm(resbin ~difelopar, family=binomial(logit), data=rankale2)

probmodelo<- function (difel){
p=exp(0.000722+ 0.0114*difel)/(1+exp(0.000722+ 0.0114*difel))

return(p)
}

rankale2$p_partida=mapply(probmodelo,rankale2$difelopar)
probbinomneg<-function(p){

prob=pˆ3+3*pˆ3*(1-p)+6*pˆ3*(1-p)ˆ2

return(prob)
}

rankale2$p_coto=mapply(probbinomneg, rankale2$p_partida)
plot(rankale2$difelopar,rankale2$p_partida,main = "Modelo regresión logística",
ylab = "P(resbin=1)",

xlab = "Diferencia de elo")
points(rankale2$difelopar,rankale2$p_coto, col = "red")

Código para elaborar la última gráfica.

XVII

Anexo C: Salidas más importantes de R

En este anexo tenemos las salidas más importantes que nos ha dado R a lo largo del trabajo. En algunos
momentos se puede ver que los jugadores 1 y 3 tienen contabilizados mayor cantidad de sucesos que los otros
dos. Lo que se debe a que el registro entra en la base de datos cuando algún suceso le ocurre al jugador, por
lo tanto los que más sucesos tienen son los primeros jugadores en aparecer, es decir, los primeros de cada
pareja.

También afecta a las parejas, la pareja 1 suele cantar más cuarentas, tener más ases y treses que la 2, pero
esto no es un problema porque porque a la hora de hacer los modelos las parejas estan puestas de forma
aleatoria.
partidas <- read.csv('partidas.csv')

Análisis descriptivo

table(partidas$cuarenta_i)

##
0 1 2 3 4
1348180 279847 39480 67136 8254
table(partidas$cuarenta_i)/length(partidas$id)*100

##
0 1 2 3 4
77.3528212 16.0564279 2.2651941 3.8519775 0.4735793

279847+39480+67136+8254=394717, que es el número de partidas en las que se han cantado las 40, un
22.65% aproximadamente.
veinte1<- partidas$veinteg1
veinte2<- partidas$veinteg2
veinte3<- partidas$veintep1
veinte4<- partidas$veintep2

matvein <- cbind(veinte1, veinte2, veinte3, veinte4)

numveint<- apply(X=matvein, MARGIN=1, FUN=sum) #es el numero de veintes que se cantan en cada partida
table(numveint)

numveint
0 1 2 3
956231 628607 145398 12661
mean(numveint)

[1] 0.5493073
sd(numveint)

[1] 0.676758

I

Datos reflejados en la tabla 2.2
tresyas<- function(as,tres){

if (as == 1){
if(tres < 3)

{return(1)}
if (tres > 2)

{return(0)}}
if (as == 2){

if(tres < 3)
{ return(1)}

if(tres > 2)
{return(0)}}

if (as == 3){
if(tres > 2)

{return(2)}
if(tres < 3)

{return(0)}}
if (as == 4){

if(tres > 2)
{return(2)}

if (tres < 3)
{return(0)}}

}
partidas$nueva_columna2=mapply(tresyas,partidas$as_i,partidas$tres_i)
table(partidas$nueva_columna2)

##
0 1 2
891521 596147 255229

851376 (596147+255229) partidas en las que una misma pareja tiene as y tres.
#tresyasjugador<- function(as,tres){
if(as==tres)
{return(as)}
else
{return(0)}
#}
#partidas$nueva_columna=mapply(tresyasjugador,partidas$as_i,partidas$tres_i)
table(partidas$nueva_columna)

##
0 1 2 3 4
1337553 221472 61999 109694 12179

Ejecutando la función y aplicandola como se muestra, obtenemos que 405344 (221472+61999+109694+12179)
en las que el mismo jugador ha tenido as y tres.
partasytresjugador<-partidas[partidas$nueva_columna!=0,]
ganadorcontresyas<-function(resultado,ncol){

if(ncol==1){
if (resultado==1)
{return(1)}
if (resultado==2)
{return(0)}

}

II

if(ncol==2){
if (resultado==1)
{return(1)}
if (resultado==2)
{return(0)}

}
if(ncol==3){

if (resultado==1)
{return(0)}
if (resultado==2)
{return(1)}

}
if(ncol==4){

if (resultado==1)
{return(0)}
if (resultado==2)
{return(1)}

}
}

partasytresjugador$nueva_columna2=mapply(ganadorcontresyas,partasytresjugador$resultado,partasytresjugador$nueva_columna)

table(partasytresjugador$nueva_columna2)

##
0 1
84020 321324
table(partasytresjugador$nueva_columna2)

##
0 1
84020 321324

Dentro de las partidas en las que un jugador tiene as y tres, vemos que gana su pareja 321324 veces.
tresyasdistju<- function(as,tres){

if (as == 1){
if(tres ==2)
{return(12)}
if (tres != 2)
{return(0)}}

if (as == 2){
if(tres == 1)
{ return(21)}
if(tres !=1)
{return(0)}}

if (as == 3){
if(tres == 4)
{return(34)}
if(tres !=4)
{return(0)}}

if (as == 4){
if(tres ==3)

III

{return(43)}
if (tres != 3)
{return(0)}}

}
partidas$nueva_columna4=mapply(tresyasdistju,partidas$as_i,partidas$tres_i)

table(partidas$nueva_columna4)

##
0 12 21 34 43
1296865 152983 159693 64951 68405

En 152983 partidas el jugador 1 tiene el as y el 2 el tres. En 159693 el jugador 2 el as y el 1 el tres. En 64951
el 3 el as y el 4 el tres. En 68405 el 4 el as y el 3 el tres.

Sumando todas tenemos que hay 446032 partidas que el as y el tres está en la misma pareja pero distinto
jugador.
partasytresdistju<-partidas[partidas$nueva_columna4!=0,]
#victdistju<-function(ncol,resul){
if(ncol<25){
if(resul==1){
return(1)}
if(resul==2){
return(0)
}}
if(ncol>25){
if(resul==1){
return(0)}
if(resul==2){
return(1)
}
}

#}
#partasytresdistju$nueva_columna=mapply(victdistju,partasytresdistju$nueva_columna4,partasytresdistju$resultado)

table(partasytresdistju$nueva_columna)

##
0
446032

343043 victorias para las parejas con as y tres en distintos jugadores frente a 102989 derrotas.

En caso de querer saber los porcentajes en vez de el número de partidas, añadimos /length(partidas$id)*100
detras de la orden table, para que nos de el porcentaje sobre el total de partidas.

Resumenes de los modelos
En orden, todos los modelos presentes en la meoria del trabajo.
rankale2 <- read.csv('rankale2.csv')

GLM.1 <- glm(resbin ~ aspareja1, family=binomial(logit), data=rankale2)
summary(GLM.1)

IV

##
Call:
glm(formula = resbin ~ aspareja1, family = binomial(logit), data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4679 -0.9118 -0.9118 0.9124 1.4686
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.662757 0.003471 -190.9 <2e-16 ***
aspareja1 1.323955 0.004908 269.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 948767 on 739799 degrees of freedom
AIC: 948771
##
Number of Fisher Scoring iterations: 4
exp(coefficients(GLM.1))

(Intercept) aspareja1
0.5154282 3.7582577
GLM.2<- glm(resbin ~ aspareja1+trespareja1, family=binomial(logit), data=rankale2)
summary(GLM.2)

##
Call:
glm(formula = resbin ~ aspareja1 + trespareja1, family = binomial(logit),
data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7405 -1.1024 -0.7044 1.1029 1.7409
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.267368 0.004748 -266.9 <2e-16 ***
aspareja1 1.445189 0.005176 279.2 <2e-16 ***
trespareja1 1.088479 0.005176 210.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 902164 on 739798 degrees of freedom
AIC: 902170
##

V

Number of Fisher Scoring iterations: 4
exp(coef(GLM.2))

(Intercept) aspareja1 trespareja1
0.2815718 4.2426559 2.9697544
GLM.20<- glm(resbin ~ aspareja1+trespareja1+difeveintes, family=binomial(logit), data=rankale2)
summary(GLM.20)

##
Call:
glm(formula = resbin ~ aspareja1 + trespareja1 + difeveintes,
family = binomial(logit), data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2069 -1.1014 -0.5043 1.1019 2.2074
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.304606 0.004808 -271.32 <2e-16 ***
aspareja1 1.484782 0.005244 283.14 <2e-16 ***
trespareja1 1.123068 0.005233 214.62 <2e-16 ***
difeveintes 0.346737 0.003551 97.65 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 892408 on 739797 degrees of freedom
AIC: 892416
##
Number of Fisher Scoring iterations: 4
exp(coef(GLM.20))

(Intercept) aspareja1 trespareja1 difeveintes
0.2712793 4.4140026 3.0742719 1.4144450
GLM.3<- glm(resbin ~ aspareja1+trespareja1+cuaren+difeveintes, family=binomial(logit), data=rankale2)
summary(GLM.3)

##
Call:
glm(formula = resbin ~ aspareja1 + trespareja1 + cuaren + difeveintes,
family = binomial(logit), data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-3.0524 -0.8316 -0.1075 0.8324 3.2114
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.635240 0.005576 -293.2 <2e-16 ***
aspareja1 1.849078 0.006059 305.2 <2e-16 ***

VI

trespareja1 1.419014 0.005979 237.3 <2e-16 ***
cuaren 2.517071 0.008375 300.5 <2e-16 ***
difeveintes 0.499164 0.003977 125.5 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 751742 on 739796 degrees of freedom
AIC: 751752
##
Number of Fisher Scoring iterations: 5
exp(coef(GLM.3))

(Intercept) aspareja1 trespareja1 cuaren difeveintes
0.1949055 6.3539585 4.1330419 12.3922474 1.6473432
GLM.elo<- glm(resbin ~difelopar, family=binomial(logit), data=rankale2)
summary(GLM.elo)

##
Call:
glm(formula = resbin ~ difelopar, family = binomial(logit), data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5637 -1.0961 -0.3773 1.0961 2.4337
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.215e-04 2.436e-03 0.296 0.767
difelopar 1.137e-02 4.638e-05 245.149 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 956730 on 739799 degrees of freedom
AIC: 956734
##
Number of Fisher Scoring iterations: 4
exp(coef(GLM.elo))

(Intercept) difelopar
1.000722 1.011436
GLM.4<- glm(resbin ~ aspareja1+difelopar, family=binomial(logit), data=rankale2)
summary(GLM.4)

##
Call:
glm(formula = resbin ~ aspareja1 + difelopar, family = binomial(logit),
data = rankale2)

VII

##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.7700 -0.9788 -0.2932 0.9788 2.6811
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.648e-01 3.633e-03 -183.0 <2e-16 ***
aspareja1 1.330e+00 5.147e-03 258.5 <2e-16 ***
difelopar 1.143e-02 4.863e-05 235.0 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 886058 on 739798 degrees of freedom
AIC: 886064
##
Number of Fisher Scoring iterations: 4
exp(coef(GLM.4))

(Intercept) aspareja1 difelopar
0.5143597 3.7820860 1.0114932
GLM.6<- glm(resbin ~ aspareja1+ trespareja1 + difelopar, family=binomial(logit), data=rankale2)
summary(GLM.6)

##
Call:
glm(formula = resbin ~ aspareja1 + trespareja1 + difelopar, family = binomial(logit),
data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.7589 -0.9445 -0.2264 0.9445 2.7916
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.273e+00 4.948e-03 -257.3 <2e-16 ***
aspareja1 1.453e+00 5.411e-03 268.4 <2e-16 ***
trespareja1 1.095e+00 5.400e-03 202.8 <2e-16 ***
difelopar 1.148e-02 5.011e-05 229.0 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 842766 on 739797 degrees of freedom
AIC: 842774
##
Number of Fisher Scoring iterations: 4

VIII

exp(coef(GLM.6))

(Intercept) aspareja1 trespareja1 difelopar
0.2799183 4.2740447 2.9892837 1.0115443
GLM.7<- glm(resbin ~ aspareja1+trespareja1+difeveintes+difelopar,
family=binomial(logit), data=rankale2)
summary(GLM.7)

##
Call:
glm(formula = resbin ~ aspareja1 + trespareja1 + difeveintes +
difelopar, family = binomial(logit), data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.7925 -0.9320 -0.2091 0.9313 2.8070
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.311e+00 5.012e-03 -261.68 <2e-16 ***
aspareja1 1.493e+00 5.482e-03 272.38 <2e-16 ***
trespareja1 1.130e+00 5.460e-03 207.05 <2e-16 ***
difeveintes 3.515e-01 3.703e-03 94.94 <2e-16 ***
difelopar 1.150e-02 5.045e-05 228.04 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 833549 on 739796 degrees of freedom
AIC: 833559
##
Number of Fisher Scoring iterations: 4
exp(coef(GLM.7))

(Intercept) aspareja1 trespareja1 difeveintes difelopar
0.2694324 4.4514824 3.0969316 1.4212516 1.0115711
GLM.8<- glm(resbin ~ aspareja1+trespareja1+difeveintes+cuaren+difelopar,
family=binomial(logit), data=rankale2)
summary(GLM.8)

##
Call:
glm(formula = resbin ~ aspareja1 + trespareja1 + difeveintes +
cuaren + difelopar, family = binomial(logit), data = rankale2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-3.3989 -0.7624 -0.0605 0.7623 3.4404
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)

IX

(Intercept) -1.647e+00 5.798e-03 -284.1 <2e-16 ***
aspareja1 1.863e+00 6.322e-03 294.7 <2e-16 ***
trespareja1 1.431e+00 6.224e-03 229.9 <2e-16 ***
difeveintes 5.056e-01 4.142e-03 122.1 <2e-16 ***
cuaren 2.547e+00 8.701e-03 292.7 <2e-16 ***
difelopar 1.177e-02 5.571e-05 211.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1025582 on 739800 degrees of freedom
Residual deviance: 701472 on 739795 degrees of freedom
AIC: 701484
##
Number of Fisher Scoring iterations: 5
exp(coef(GLM.8))

(Intercept) aspareja1 trespareja1 difeveintes cuaren difelopar
0.1925753 6.4457748 4.1825001 1.6580131 12.7660201 1.0118355

Además, para obtener el porcetaje de aciertos en cada modelo, lo hacemos con este código (para el GLM.8, si
se quiere el de otro modelo simplemente se sustituye GLM.8 por el nombre del modelo deseado):
poracierto<-function(res,predic){

if(res==predic)
{return(1)}
if(res!=predic)
{return(0)}

}
pre8<-predict(object=GLM.8,newdata=rankale2, type='response')

rankale2$premod8<-ifelse(test= pre8>0.5,yes=1,no=0)

rankale2$acim8=mapply(poracierto, rankale2$resbin, rankale2$premod8)
table(rankale2$acim8)/length(rankale2$id)

##
0 1
0.2341616 0.7658384

X

	Introducción y objetivos
	El guiñote
	Historia
	El guiñote en la actualidad
	Nociones básicas:

	Objetivos
	Estructura del documento

	Base de datos
	Depuración
	Ordenación
	De registros a partidas
	Rankings
	Ranking Elo
	Implementación en la matriz de datos
	Preparativos para los modelos

	Análisis descriptivo de los datos

	Probabilidades y primeros resultados
	Cálculos con los veintes
	Cálculos con las 40
	Cálculos con as y tres de triunfo

	Modelos de regresión
	Notas sobre regresión logística
	Modelos
	Modelos con sucesos
	Modelos con sucesos y puntaciones

	Análisis del modelo completo
	Curva ROC
	Curva ROC del modelo completo
	Análisis de los residuos

	Conclusión
	Ejemplos de algunos registros:
	Programas de python
	Preparativos previos:
	Antes de pasar de registros a partidas:
	Depuración

	Código para el análisis descriptivo
	Puntuaciones
	Preparativos
	Base de datos para los modelos
	Nuevos datos para los modelos

	Modelos
	Modelos para solucionar el problema del modelo completo

	Código para la conclusión
	Análisis descriptivo
	Resumenes de los modelos

