Abstract: Se presentan y comparan dos técnicas de visualización y reducción de la dimensionalidad: una lineal, componentes principales, y otra no lineal, t-Distributed Stochastic Neighbor Embedding. El Análisis de Componentes Principales se encarga de construir nuevas variables que sintetizan la información de las iniciales manteniendo su variabilidad. La técnica t-SNE proporciona una visualización dando a cada punto del espacio de dimensión alta una ubicación en el espacio de baja dimensión. Esta técnica es una mejora del Stochastic Neighbor Embedding debido a su menor coste de computación y a su solución ante el "crowding problem". Se presentan una serie de visualizaciones de ambas técnicas en dos conjuntos de datos diferentes.