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RESUMEN

En la actualidad, debido a la escasez de enerǵıas fósiles y la variabilidad

de las renovables las fluctuaciones en el precio de la enerǵıa son significativas.

Tradicionalmente, los sistemas computacionales ha priorizado maximizar sus

prestaciones (tiempo de ejecución o throughput), mientras que el ahorro energético

solo se considera una vez garantizadas las prestaciones. Sin embargo, con el incremento

de los precios, limitar el gasto energético es inevitable. En este trabajo fin de grado,

se considera un tipo de aplicación distribuida que genera datos continuamente para

su procesamiento. Para ello, se considera un centro de datos con gran capacidad

computacional y pequeños clústers de capacidad limitada, próximos a las fuentes de

datos. El sistema sigue una estrategia de scheduling completamente distribuido: los

datos generados en la fuente se llevan al clúster de poca capacidad más próximo, si

hay posibilidad de procesar los datos, se ejecutan ah́ı; si no, se transmiten al centro de

datos.

Además, el sistema cuenta con un modelo energético y monitoriza la carga de

trabajo y el coste de la enerǵıa, de manera que si el coste de la enerǵıa es bajo, el

sistema maximiza las prestaciones; en caso contrario, el sistema se reconfigura, para

no superar el coste máximo permitido. A diferencia de las definiciones tradicionales de

los niveles de calidad de servicio, cuando el coste de la enerǵıa exceda lo permitido,

las prestaciones se degradan lo necesario. La degradación viene dada por los requisitos

de la aplicación: reduciendo la precisión del procesamiento o aumentando el tiempo de

ejecución.

Para conseguir esto, primero se analizan los distintos factores (en los niveles de

aplicación, middleware y recursos hardware) que contribuyen al consumo energético.

Después, experimentalmente, se construye un modelo energético para cada clúster. En

ejecución, mediante un algoritmo voraz, el controlador de cada clúster determina cuál

es la configuración energética que maximiza el throughput, garantizando siempre las

restricciones energéticas. Para validar la aproximación, se ha utilizado una aplicación

de análisis de v́ıdeo y se han realizado varios experimentos en una infraestructura

compuesta por dos clústers: uno con raspberry pis y otro, con rol de centro de datos, con

máquinas virtuales. Los experimentos muestran cómo el sistema es capaz de adaptarse

a las restricciones de enerǵıa y consumir menos, disminuyendo el throughput y/o la

precisión de los procesamientos.
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Caṕıtulo 1

Introducción y objetivos

Recientes estimaciones indican que el gasto energético global por computación y

las redes de comunicación podŕıa ser del 20% según [1]. Cada año se desarrollan

nuevas aplicaciones y servicios que demandan una mayor cantidad de capacidad

computacional, aśı como las redes de comunicación y los sistemas de almacenamiento

que estas necesitan. Se estima que los centros de datos pueden ser responsables de hasta

un 3% de la emisión de CO2 [1]. Por otra parte, en la actualidad hay un periodo de

transición en las fuentes de enerǵıa, de unas fuentes provenientes de materiales fósiles

y altamente contaminantes a unas fuentes de enerǵıa limpias y renovables. Además,

hay dos factores que hacen que la transición no sea una cuestión fácil. Por un lado,

debido a los problemas loǵısticos y de inversión en la extracción de las enerǵıas fósiles,

y a la situación geopoĺıtica, la diferencia en el coste de la enerǵıa cuando se priman

las enerǵıas fósiles o las renovables puede ser significativa. De manera que, los periodos

en los que se pueda fundamentar la producción energética en renovables tendrán un

coste energético relevantemente menor que cuando la producción energética se tenga

que apoyar en fuentes fósiles. Por otro lado, en la actualidad no somos eficientes

almacenando la enerǵıa que producimos, por lo tanto, los periodos en los que hay

enerǵıa barata y abundante no se pueden aprovechar para almacenar la enerǵıa que se

produce (y utilizarla cuando su coste se eleve)

Sin duda, el consumo energético de los sistemas computacionales se ha analizado

exhaustivamente en el pasado en todos los ámbitos arquitecturales, desde el hardware

hasta las aplicaciones software: por ejemplo, el consumo energético de los centros de

datos ha sido objeto de estudio [2]. También se ha investigado el consumo energético en

las infraestructuras distribuidas emergentes, como son la computación en la nube [3]

o la más reciente computación perimetral [4] (edge computing en inglés). Además,

existen multitud de estudios que analizan la distribución de tareas por recursos

(scheduling) de manera que el consumo energético se minimice [5]. En el ámbito de

las aplicaciones software, se ha propuesto la utilización de técnicas de computación

1



aproximada con el objetivo de reducir el tiempo de ejecución y, aśı, reducir el consumo

energético [6]. Incluso las administraciones públicas realizan ya acciones destinadas a

impulsar la eficiencia energética en la implementación de aplicaciones informáticas.

Buen ejemplo de ello es el programa de certificación energética para aplicaciones

informáticas desarrollado por el gobierno alemán 1.

Sin embargo, probablemente no se le ha dado la importancia suficiente al estudio

del consumo energético en los sistemas computacionales. Las cuestiones energéticas se

han relegado a un plano claramente secundario,a favor de una mayor atención hacia los

aspectos relacionados con el rendimiento de los sistemas (medido en términos de tiempo

de ejecución y throughput, fundamentalmente). Algunos ejemplos de esto se reflejan en

diversos trabajos [7, 8], en los cuales se intenta reducir el consumo energético de un

centro de datos, minimizando el número de violaciones de la calidad del servicio: por

tanto, la enerǵıa se considera como un aspecto secundario. Por otro lado, también se

observa un tratamiento similar en los planes de estudio de los grados y másteres en

informática: desde el principio, los estudiantes aprenden de qué manera los componentes

de un sistema contribuyen a su rendimiento. Es significativo, quizá, que en los temarios

o en los libros de texto de Ingenieŕıa del Software no aparezca la enerǵıa. Por tanto,

el primer aprendizaje que se recibe sobre la construcción de software no cuenta con

aspectos relacionados con el consumo energético. Seguramente, con la crisis energética

actual todo esto va a tener que cambiar.

En este trabajo fin de grado se plantea construir un sistema distribuido que sea

capaz de adaptarse al contexto energético de forma autónoma durante su ejecución.

Para ello, en primer término, se analiza qué factores contribuyen al consumo energético

en los distintos niveles arquitecturales de los sistemas distribuidos: en el nivel de la

aplicación, en el de la gestión de los recursos y en el del hardware. En el nivel de

aplicación se considera un tipo de aplicación cuya ejecución acepta distintos grados

de precisión, controlable mediante parámetro. En este proyecto se va a utilizar una

aplicación desarrollada por el mismo autor durante las prácticas de iniciación a la

investigación realizadas en el grupo COSMOS. La aplicación, denominada pymemo,

clasifica y detecta objetos en v́ıdeos, utilizando la biblioteca opencv. La precisión en la

aplicación puede variar si en lugar de aplicar la clasificación y la detección a cada frame,

esta primera solo se aplica al primer frame de una subsecuencia de frames consecutivos

que se consideran similares. En la gestión de los recursos, se opta por una estrategia de

scheduling completamente distribuida, en la que cada tarea se ejecuta en los recursos

computacionales cerca de las fuentes de datos (edge), siempre que haya disponibilidad.

1https://produktinfo.blauer-engel.de/uploads/criteriafile/en/DE-UZ%

20215-202001-en-Criteria-2020-02-13.pdf
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Si no la hay, se ejecutará en el centro de datos. Para reducir el consumo energético

en este ámbito se considera reducir la utilización de los recursos, y por consiguiente,

incurriendo probablemente en un tiempo de espera, o bien incurriendo en una menor

precisión. Finalmente, en el ámbito del hardware se considera variar la frecuencia hasta

encontrar una que consiga reducir el consumo energético.

Para comprender de qué manera afectan todos estos factores primero se realiza

un conjunto de experimentos, combinando todos los parámetros que pueden afectar

al consumo energético (parameter sweep). A partir de estos experimentos se crea

un modelo de consumo energético que contempla un amplio abanico de escenarios

y que se utiliza por el sistema en tiempo de ejecución para la toma de decisiones, de

manera que cuando el coste energético aumenta el sistema puede desencadenar distintas

acciones que degradan la precisión o aumentan el tiempo de ejecución. Cuando el coste

energético disminuye, el sistema opta por acciones que contribuyen a minimizar el

tiempo de ejecución. Para realizar estas acciones, el sistema sigue un bucle MAPE-K

(monitorización, análisis, planificación y ejecución) y un algoritmo voraz para encontrar

la configuración que mejor pueda satisfacer los requisitos energéticos o de prestaciones

en cada momento.

Para demostrar el funcionamiento se ha configurado una infraestructura distribuida,

que consta de un clúster perimetral (compuesto de raspberry pi) y un pequeño clúster

a modo de centro de datos. En este último se han instalado kubernetes y openfaas.

En el clúster perimetral se han instalado kubernetes y servidores http. En ambos se

han realizado determinados experimentos en los que puede observarse cómo el sistema

puede adaptarse a los distintos contextos energéticos.

El trabajo se ha realizado en el marco del grupo de investigación COSMOS, en

colaboración con los profesores Maŕıa Canales (Ingenieŕıa Telemática de la Universidad

de Zaragoza), Alejandro Calderón (Arquitectura de Computadores de la Universidad

Carlos III de Madrid) y Gabriel González (Insight Insitute de University College Cork,

Irlanda). Todo el código desarrollado en este proyecto se puede encontrar en 2. Se debe

remarcar que en el repositorio function se encuentra el código de pymemo, el cual no

es parte del trabajo, sino de las prácticas realizadas por el alumno.

El resto de esta memoria se ha estructurado de la siguiente forma: en el Caṕıtulo 2 se

describen brevemente conceptos, técnicas y herramientas utilizadas para la elaboración

de este trabajo. En el Caṕıtulo 3 se propone una arquitectura para el sistema de este

trabajo, y se analizan sus componentes, por otro lado en el Caṕıtulo 4 se presenta

el modelo de consumo energético del sistema, analizando qué factores contribuyen al

consumo energético, con qué métodos y herramientas puede obtenerse el modelo y

2https://github.com/TFG-arejula27
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cómo puede utilizarse el modelo durante la ejecución. Seguidamente, en el Caṕıtulo 5

se presentan unos experimentos para validar la propuesta. Finalmente en el Caṕıtulo

6 se presentan las conclusiones y el trabajo futuro.
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Caṕıtulo 2

Conceptos, Metodoloǵıa y
Tecnoloǵıa

2.1. IoT, Fog and Cloud computing

IoT La Internet de los cosas (Internet of Things, IoT) describe objetos f́ısicos (o

grupos de objetos) con sensores o incluso con capacidad de procesamiento, software,

servicios y otras tecnoloǵıas que se conectan e intercambian datos con otros dispositivos

y sistemas a través de Internet u otras redes de comunicación. En la actualidad,

existen dispositivos capaces de generar grandes cantidades de métricas, las cuales deben

ser transmitidas y procesadas. Este conjunto de dispositivos es muy heterogéneo en

muchos aspectos: conectividad, protocolo, métricas, etc. La información que generan

los dispositivos IoT no es útil como tal, sino que requiere un tratamiento en aplicaciones

IoT, donde a partir del conjunto de datos y un procesamiento se obtiene información

útil.

Para el caso de este trabajo, se considera el uso de sensores como fuentes de

generación continua de datos que tienen que enviarse a los recursos computacionales

para realizar un análisis o procesamiento. Sin duda, la monitorización y el análisis

masivos y continuos permite a los sistemas evaluar la situación en tiempo real y tomar

acciones (como subir la temperatura, activar una bomba de agua) mediante actuadores

o comunicar la situación a un ser humano para que decida qué acción tomar (activar

una alarma, crear un informe, etc.).

Cloud De acuerdo con la definición oficial de cloud computing propuesta por la

entidad NIST, cloud computing 1 es un modelo que permite un acceso adecuado, ubicuo

y bajo a un conjunto de recursos configurables (entendiendo CPU, almacenamiento,

red de comunicación, aplicaciones o servicios como recursos). Esto no es más que un

1https://csrc.nist.gov/publications/detail/sp/800-145/final
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paradigma donde los recursos son abstráıdos y proporcionados por un proveedor, de

tal forma que el usuario no tiene que preocuparse de sus limitaciones ni gestiones,

realizando únicamente un pago por el uso. Este paradigma es totalmente contrario al

tradicional, donde el usuario debe gestionar sus máquinas virtuales y sufragar costes

independientemente de su rendimiento. El sistema Cloud aporta una gran flexibilidad

y dinamismo a los recursos hardware. Un elemento fundamental en el Cloud es la

encapsulación de recursos y aislamiento de estos. Todos los procesos se ejecutan

sobre un conjunto de máquinas f́ısicas. El método de virtualización más tradicional

es realizado mediante máquinas virtuales, éstas simulan una máquina f́ısica sobre

otra, delegando la gestión de recursos a la máquina virtual. Otro método es mediante

contenedores: éstos son una encapsulación de software, el cual comparte recursos con

el sistema operativo anfitrión pero esta completamente aislado del resto de procesos.

Fog computing Los sistemas Cloud están en centros de datos. Sin embargo, con

la proliferación de los sensores, y las redes móviles las fuentes de datos se encuentran

en cualquier ubicación. Por tanto, transmitir todos los datos generados a un centro

de datos en una localización particular no es razonable desde un punto de vista de la

escalabilidad. Además, con las distancias entre las fuentes de datos y los centros de

datos aparecen latencias e incrementos en los tiempos de respuesta. Por todo ello, se

ha planteado la utilización de recursos computacionales que se encuentran cerca de las

fuentes de datos. Pero dichos recursos suelen ser de menor capacidad en comparación

con los recursos de los centros de datos, por lo que para mantener la calidad del servicio

en términos de prestaciones la precisión de los procesamientos tiene que reducirse. Este

modelo crea una relación jerárquica entre los distintos componentes, tanto del Cloud

como del IoT, estableciendo distintos niveles de servicio en cada uno de ellos.

Figura 2.1: Modelo Arquitectural de Fog Computing, extráıdo de [9]
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Este modelo se denomina computación en la niebla o Fog computing [4]. La figura 2.1

muestra un ejemplo de la arquitectura: esta tiene distintos niveles desde los dispositivos

que obtienen los datos (nivel inferior), hasta el Cloud (superior). Se aprecia una

arquitectura jerárquica, donde los niveles inferiores están muy cercanos al usuario o a

las fuentes de datos, convergiendo hacia los niveles superiores. Esta arquitectura añade

una complejidad elevada a nuestro sistema debido a su gran heterogeneidad, por lo que

dificulta su gestión. Además, las soluciones tradicionales centralizadas son dif́ıcilmente

aplicables, por lo que el scheduling se realiza de forma distribuida, estrategia que se ha

adoptado en este trabajo.

2.2. Serverless computing: Kubernetes and

OpenFaaS

Serverless computing, faas Serverless es un nuevo modelo de computación, que

según IBM 2 se define como un modelo de aplicación en el cual los desarrolladores

pueden construir y ejecutar aplicaciones distribuidas sin necesidad de gestionar y

asignar servidores. Durante la ejecución, solo se paga por lo que se consume (se factura

habitualmente por milisegundo o fracción) y no por los ciclos en los que la máquina no

está ejecutando nada. Este nuevo modelo tiene muchas ventajas como la abstracción

de los recursos: aśı, el desarrollador puede centrarse en la aplicación sin preocuparse

de la infraestructura. Además, este modelo facilita el escalado horizontal y la alta

disponibilidad de las aplicaciones mediante la auto replicación de recursos. Todo esto

se da en el entorno denominado Cloud, con proveedores como Amazon Web service o

Microsft Azure.

Dentro de los modelos de serverless se encuentra el modelo de Function as a Service

(FaaS) [10], que consiste en ofrecer la ejecución de código como una función, cuya

invocación se realiza de forma śıncrona o aśıncrona, como reacción a un evento. Muchas

veces estos términos se confunden y se entienden como sinónimos, pero Serverless

es mucho más amplio, haciendo referencia a cualquier tipo de recurso como código,

almacenaje o enrutadores.

Faas puede verse como una combinación del antiguo paradigma de arquitectura

orientada a servicios, donde se trata de abstraer la implementación ofreciendo

una interfaz de servicios y RPC (llamada de procedimientos remotos), donde el

desarrollador utiliza funciones conociendo únicamente su especificación, invocándolas

mediante el protocolo RPC, sin necesidad de conocer en qué servidor se alojan las

funciones ni su implementación.

2https://www.ibm.com/cloud/learn/serverless
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Este nuevo modelo aporta muchas ventajas, como el desacoplamiento de las

funciones, la gestión individual de ellas (ya que modificar una función no implica

perder disponibilidad en las demás), la fácil gestión de versiones, la abstracción de

ellas y la falta de necesidad de gestionar la infraestructura donde se ejecutan. Pero

también tienen ciertos inconvenientes, posiblemente debidos a lo prematuro que es este

paradigma. El código es menos legible (en vez de invocar a una función se hace una

llamada http) y es dif́ıcil crear flujos de invocaciones complejos, teniendo que ser la

mayoŕıa de ellos secuenciales.

kubernetes y OpenFaaS Para poder gestionar los recursos en el Cloud se necesita

un orquestador. Este será el encargado de asignar los contenedor a las distintas

máquina, aśı como de crear, configurar y eliminar los despliegues. En este trabajo se

usará Kubernetes [11]: como se definen en su web, es un orquestador para automatizar

los despliegues, el escalado y la gestión de contenedores en el Cloud. Kubernetes permite

especificar mediante archivos de texto el despliegue de aplicaciones y este se encargará

de que siempre se encuentren en un estado correcto definido: esto significa que estará

continuamente monitorizando el estado de cada aplicación desplegada, y si por ejemplo

una se encuentra en una máquina cáıda, esta automáticamente se lanzará en otra para

estar disponible. Existen muchas implementaciones de kubernetes, siendo la original

k8s. Para este proyecto se ha considerado la alternativa k3s3: esta versión es mucho

más ligera, por lo que permite su ejecución en las raspberries (las cuales no tienen

recursos suficientes para ejecutar la versión original). Además, que consume menos

enerǵıa, manteniendo una coherencia con la propuesta inicial.

Mediante Kubernetes se desplegará OpenFaas [12]: este framework será el que se

utilizará para el despliegue de nuestra aplicación Faas, y se encargará de su despliegue,

disponibilidad, acceso y obtención de métricas. Mediante su aplicación de linea de

comandos se crearán las imágenes de los contenedores las cuales se desplegarán [13],

permitiendo aśı que como desarrolladores se limiten a escribir el código de las funciones

que queramos implementar, delegando las tareas citadas previamente.

2.3. Mediciones de Enerǵıa y Procesadores: Intel y

ARM

Para crear y validar nuestro modelo se han realizado experimentos midiendo

la potencia sobre los distintos niveles del sistema. En los sistemas distribuidos la

hetereogenidad de los componentes es muy alta: los ordenadores que se emplean tienen

3https://k3s.io/
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procesadores con diversas arquitecturas. Las máquinas utilizadas han sido raspberries

con procesadores ARM, mientras que el centro de datos usa un procesador Intel. Por

ello, la forma de medir la potencia es distinta.

Intel Los procesadores Intel modernos 4 cuentan con una funcionalidad denominada

Inter Hardware P-State (HWP), por la que el procesador intenta ajustar la frecuencia

de la CPU y el voltaje para que sean los más adecuados para satisfacer las

prestaciones, a la vez que se consume la menor cantidad de enerǵıa posible. Bajo

el sistema operativo Linux Ubuntu, existen herramientas que permiten controlar el

comportamiento de HWP. En particular, existen 5 poĺıticas que pueden seleccionarse

para modificar el comportamiento de HWP —conservative, ondemand, schedutil,

powersave y performance—, al mismo tiempo que se pueden habilitar o deshabilitar las

frecuencias denominadas turbo. Por ejemplo, en la poĺıtica performance se priman las

prestaciones frente a la enerǵıa, por lo que la CPU se suele fijar a una alta frecuencia;

mientras, que en la poĺıtica powersave se prima el ahorro energético. Por otra parte,

la poĺıtica userspace permite al administrador de la máquina fijar como máximo una

frecuencia dada.

Para medir la potencia utilizada por las máquinas, se ha utilizado la herramienta

powerstat : este programa utiliza datos expuestos por el kernel de Linux en procesadores

Intel. Se han considero correctas las mediciones de enerǵıa por software según el

trabajo [14]. Esta herramienta no solo nos ofrece la potencia en vatios, sino también

otras métricas de gran utilidad como la frecuencia del procesador o los C-state del

procesador.

Para realizar estos experimentos de forma automatizada se creó una herramienta

en Go que permite realizar las mediciones, volcar los resultados en un fichero csv,

configurar la frecuencia del procesador y ejecutar el programa a medir 5.

ARM La herramienta powerstat no recoge métricas en CPUs con arquitectura ARM,

por lo que las mediciones de la potencia hay que realizarlas con un dispositivo hardware.

La medición se hizo interponiendo un mult́ımetro entre la fuente de corriente y la propia

rasberry como se muestran en las figuras 2.2b y 2.2a. De esta forma se ejecutan los

programas y se modifican las frecuencia de forma manual desde un terminal, y las

mediciones se guardarán en ficheros csv, conectando el mult́ımetro a un ordenador

mediante el software para windows del fabricante.

4https://smackerelofopinion.blogspot.com/
5https://github.com/arejula27/measurepymemo
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(a) Lateral (b) Frente

Figura 2.2: Medición con mult́ımetro

2.4. Virtual Box y Vagrant

A la hora de realizar los experimentos se han creado entornos totalmente controlados

y replicables. Vagrant [15] permite definir una infraestructura virtual mediante ficheros

de texto,es decir, un conjunto de máquinas virtuales con sus caracteŕısticas hardware

y su red de interconexión. Desde Vagrant se crearon las máquinas virtuales, se

automatizó la creación del clúster de Kubernetes y se realizó el despliegue de OpenFaas.

Vagrant ofrece una gran variedad de hipervisores: se optó por virtual box, debido a la

familiaridad que se teńıa con dicho software frente a otros, además de encontrar más

documentación sobre él. Esta automatización se aplicó al servidor que simulan el centro

de datos, pero no al clúster de raspberries, ya que como prueba de concepto se trató

de desplegar de forma sencilla y a partir de los recursos disponibles, realizando la

instalación de forma manual.

2.5. Trabajo Relacionado

La gestión del consumo de la enerǵıa en los centros de datos puede dividirse en

tres grupos principalmente: (i) escalado dinámico del rendimiento [16, 17], que en

general tiene que ver con ajustar la frecuencia de los procesadores para ahorrar enerǵıa;

(ii) heuŕısticas reactivas [8, 18] que redistribuyen máquinas virtuales en función de la

utilización de las máquinas f́ısicas, evitando que unas máquinas tenga alta utilización y

otras baja, y (iii) heuŕısticas predictivas [19, 20] que intentan disminuir la utilización de

las máquinas en función de un modelo estad́ıstico de históricos de ejecución, de manera

que se intenta predecir la carga de trabajo y qué utilización va a suponer, para aśı

redistribuir la carga de manera que la utilización sea la misma en todas las máquinas.

En general, todos estos trabajos tratan de reducir la utilización, como en nuestro

trabajo. En este trabajo se consideran todos los factores que pueden contribuir al

10



consumo energético en todos los niveles arquitecturales. El contexto del trabajo es una

aplicación particular que genera datos continuamente que tienen que procesarse. Para

ello, se dispone de un conjunto de máquinas distribuidas y dedicadas para la aplicación.

En ese sentido, es factible obtener un modelo experimentalmente que capture el

comportamiento de todos esos factores, de manera que el modelo pueda explotarse

en tiempo de ejecución. En los trabajos en que se gestiona la enerǵıa ajustando la

frecuencia, existen algunos de ellos en los que se explora la estructura de una tarea [21]

para ajustar la frecuencia en consonancia. En nuestro caso, consideramos la tarea y su

contexto de ejecución para ajustar el gasto energético de la tarea (ajustando su umbral,

threshold en inglés). Sin duda, la diferencia más importante entre nuestro trabajo y el

resto es que nos planteamos un contexto energético en el que el precio de la enerǵıa

puede fluctuar significativamente, de manera que cuando el precio energético comience

a subir, nuestro sistema es capaz de ajustar los parámetros para seguir operando sin

superar los umbrales de consumo energético que el sistema se puede permitir. Reducir

el coste energético implica, necesariamente, aumentar el tiempo de ejecución, reducir

la precisión de las ejecuciones o una combinación de ambos. Las aplicaciones en sus

acuerdos de la calidad del servicio (Service Level Agreement en inglés) podrán establecer

qué degradación es tolerable, el sistema tomará las decisiones adecuadas en función de

ello. Si ninguna configuración energética permite realizar el procesamiento sin superar

el coste energético, nuestro sistema llegará incluso a detenerse.

11
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Caṕıtulo 3

Arquitectura del Sistema

3.1. Pymemo: Aplicación de Vigilancia

Como aplicación para este trabajo se utilizará pymemo. Es importante remarcar

que esta aplicación no es parte del esfuerzo de este trabajo fin de grado, únicamente

hacemos uso de ella para ejemplificar cómo una aplicación puede adaptar su consumo

energético.

Aplicación pymemo La aplicación recibe como entrada un v́ıdeo, como salida

clasifica y detecta los objetos que aparecen en el v́ıdeo. Para ello utiliza deep learning,

OpenCV y Python. La aplicación se llama Pymemo por una razón muy simple: está

implementada en python, y su caracteŕıstica principal es la aproximación mediante

memorización. Es un proyecto FOSS con licencia MIT, es accesible en este repositorio
1.

Su funcionamiento es el siguiente: por cada frame del v́ıdeo (i) clasifica los objetos

en el frame y (ii) detecta movimiento. El reconocimiento de objetos está basado en

una red neuronal convolucional denominada Inception, descrita en [22] y con el código

accesible en este repositorio 2.

Como la fase de clasificación toma la mayoŕıa del tiempo de ejecución, se le añade

una fase de memorización. Tras la ejecución, pymemo muestra el tiempo que ha

necesitado para realizar la clasificación, una etiqueta para cada frame y el método

de clasificación del frame (hit = 0) o memorizado (hit = 1). Al final de la ejecución

muestra un resumen del análisis de todo el v́ıdeo con métricas globales.

1https://github.com/acaldero/pymemo/
2https://github.com/JimmyHHua/opencv_tutorials
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Approximate Computing y memorización

Una de las caracteŕısticas de pymemo es su capacidad de liberar recursos a cambio

de obtener resultados con menor precisión. Esto es fundamental para el proyecto, ya que

permite al sistema liberar recursos y obtener un ahorro energético a nivel de aplicación.

Este ahorro se obtiene mediante computación aproximada y memorización: esto

significa que si en una subsequencia de frames se encuentran frames consecutivos que

son similares el procesamiento de clasificación solo se aplicará al primer elemento de

la subsequencia. La precisión dependerá, por tanto, de qué umbral se considere para

que dos frames dados se consideren similares. Para ilustrar el efecto del threshold en

las prestaciones y en el error que se introduce se realizaron distintos experimentos

cuyos resultados se recogen en la Figura 3.1. Se puede observar cómo al aumentar el

threshold porcentualmente, la mejora en las prestaciones es mayor que el porcentaje

añadido de error. Aśı, con un threshold 50, se incurre en un 12% adicional de error,

pero se mejoran las prestaciones en un 40%.

En este caso particular, no se puede caracterizar el error de forma anaĺıtica: este

depende mucho de los frames que componen el v́ıdeo. No es objeto de este trabajo fin

de grado determinar exactamente cuál puede ser el error. Se utiliza a modo de ejemplo

de ejecución de un tipo de aplicación que puede reducir su precisión para reducir el

tiempo de ejecución.
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Figura 3.1: Porcentaje de mejora de las prestaciones de pymemo y portentaje de error
añadido en pymemo en función del threshold
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3.2. Infraestructura Computacional Distribuida

La infraestructura de este trabajo fin de grado se ha creado siguiendo una

arquitectura de aplicaciones IoT, donde su procesado se ha distribuido tanto en Cloud

como en Edge. Se ha planteado un esquema jerárquico en tres capas, como se muestra

en la figura 3.2: la primera son los sensores IoT, unas cámaras de seguridad que se

limitan a grabar y enviar el v́ıdeo a su capa contigua. La siguiente capa corresponde

al Edge, un clúster de raspberries, que recibirá la petición de tratamiento de v́ıdeo.

Finalmente, en la última capa se encuentra el centro de datos, un clúster formado por

máquinas virtuales donde se considerará que los recursos son infinitos. Cada capa tiene

un único punto de entrada, que denominaremos gestor de peticiones, el cual decide si

la petición se trata en en el propio clúster o es enviada a un nivel superior.

Para simplificar el proyecto, y debido a los recursos disponibles nos centraremos

únicamente en una rama, donde las cámaras son emuladas, el clúster edge esta formada

por tres raspberries que están localizadas en un laboratorio del edificio Ada Byron de

la universidad de Zaragoza. El clúster del centro de datos es un conjunto de máquinas

virtuales en un servidor del mismo laboratorio.

Scheduling Para garantizar la escalabilidad, se escogió una estrategia de scheduling

totalmente distribuida: no existe un estado global del sistema, sino que las peticiones al

llegar a un clúster deciden si se ejecutan en el clúster o continúan al siguiente nivel de la

jerarqúıa. Independientemente de estas decisiones de las aplicaciones, en cada clúster,

existe un componente gestor de recursos que se encarga de facilitar las máquinas y,

además, de gestionar el consumo energético. Toda la gestión del clúster se realiza desde

el gestor de recursos. Este es consciente de todos los recursos de los que dispone, del

estado del entorno (precio de la luz y error máximo permitido), y del estado del propio

clúster (peticiones aceptadas, tiempos de ejecución y gasto energético).

Como consecuencia del scheduling la petición de procesamiento de un v́ıdeo

(metadatos) y el v́ıdeo (dato) pueden seguir dos caminos alternativos, como muestra

la Figura 3.3 siendo estos A1-A2 o B1-B2-B3. El camino A1-A2 se daŕıa cuando hay

disponibilidad el clúster formado por las raspberries, en dicho caso, la petición de IoT

llega el gestor de peticiones de las raspberries (A1) y este aceptando la petición la

ejecutará en la raspberry (A2). En caso de no disponer de recursos suficientes seguirá

el flujo B1-B2-B3, en el cual tras recibir la solicitud de ejecución del IoT (B1) el gestor

de peticiones detectará la imposibilidad, por lo que delegará la petición al gestor de

peticiones del centro de datos (B2). Este a su vez comprobará la disponibilidad de

recursos: en caso de tener suficientes ejecutará la solicitud (B3) y en caso contrario
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esperará hasta tenerla.

Figura 3.2: Diagrama estático - Arquitectura del sistema

Figura 3.3: Diagrama dinámico - Arquitectura del sistema

Despliegue de pymemo La aplicación se desplegó en ambos tipos de clúster pero

de forma distinta: en el clúster con las máquinas virtuales se desplegó con OpenFaas, en
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este caso la modificación sobre pymemo fue mı́nima, simplemente se eliminó la llamada

a la función main, y en el fichero de configuración de la aplicación de linea de comandos

de OpenFaas se indicó cual era la función main, y la generación del contenedor a partir

de una plantilla personalizada con todas las dependencias ya instaladas.

En el clúster formado a partir de raspberries no fue posible desplegar OpenFaas

debido a la gran limitación de recursos computacionales. Una vez identificado el

problema se trato de realizar una aplicación alternativa similar pero más ligera: esta

idea se descartó dada su complejidad. Finalmente se optó por crear un servidor web que

enlace una url con una invocación a pymemo, simulando aśı una aplicación faas. Este

servidor web fue desplegado sobre un deployment de Kubernetes y expuesto por un

servicio NodePort. El despliegue de ambos clústers están disponibles en un repositorio
3 de Github.

Se escogió un despliegue serverless frente a uno más tradicional por la flexibilidad

que permit́ıa. Cada elemento es muy aislado de los demás y su gestión es muy sencilla a

través de orquestadores como Kubernetes. Un ejemplo de esta ventaja es la capacidad

de autoescalar las funciones, mientras que en un despliegue monoĺıtico tendŕıa un

servidor central encargado de diversas funciones, una función serverless únicamente es

un contenedor con una función encapsulada, de esta forma podemos liberar o ocupar

recursos de una forma mucho más precisa.

3.3. Calidad de Servicio para pymemo

Habitualmente, muchos trabajos establecen los parámetros de la calidad de servicio

en torno al tiempo de ejecución de una tarea o al throughput (número de tareas

procesadas por unidad de tiempo). Con la aparición del paradigma de la nube, muchas

veces ambos parámetros se combinan con el coste económico.

En las aplicaciones en las que o para las que se generan datos continuamente y

cuyo procesamiento tiene que hacerse en streaming, se ha propuesto que la calidad de

servicio se mida respecto del throughput [23, 24]. Por tanto, para la definición de la

calidad de servicio de pymemo se va a considerar una aproximación similar. En general,

se pretende maximizar el throughput en pymemo, es decir, se pretende que el número

de pymemos procesados sea máximo, haciendo el menor uso de recursos posible.

En un contexto como el actual, el precio de la enerǵıa puede fluctuar de una manera

impredecible. Por ejemplo, supóngase el caso en el cual se dispone de placas solares

para autoconsumo: cuando se dan condiciones solares adecuadas, se puede alimentar

un clúster de computadores. En ese caso, el coste puede considerarse prácticamente

3https://github.com/arejula27/TFG-deployment
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cero. Sin embargo, si las condiciones para utilizar las placas solares no son adecuadas

y se tuviera que adquirir la enerǵıa a precio de mercado, el precio podŕıa ser muy

elevado. En este contexto, este trabajo fin de grado define la calidad de servicio para

una aplicación del tipo de pymemo. Se pretende, por lo tanto, que la calidad de servicio

pueda definirse de forma diferente en función del contexto energético. Cuando el coste

de la enerǵıa esté próximo a cero, el sistema podrá realizar los cálculos con la mayor

precisión posible, maximizando el throughput y consumiendo toda la enerǵıa necesaria.

Sin embargo, cuando el coste de la enerǵıa sea elevado, el sistema podrá degradar

la precisión de los cálculos e incluso parar completamente la ejecución y apagar las

máquinas si fuera necesario. La Tabla 3.1 recoge estas ideas y propone cuatro escenarios

diferentes. Cuando la enerǵıa sea barata, el sistema podrá operar sin restricciones

energéticas y proporcionar la máxima precisión. Por contra, se proponen tres estrategias

distintas que pueden permitir limitar el consumo energético cuando la enerǵıa sea cara.

La estrategia b) consiste en que el coste económico de la potencia consumida (potencia

instantánea o bien potencia media) no supere un máximo C. La estrategia c) consiste

en que el coste económico de la enerǵıa para ejecutar un pymemo no supere un coste

máximo C, y la estrategia d) consiste en que la potencia consumida no supere un

máximo dado P .

No se pretende, por tanto, minimizar el consumo energético, sino no superar un

máximo de consumo energético y tratar de maximizar el throughput habida cuenta

de las restricciones energéticas. Cuando se introduzcan las restricciones energéticas,

el sistema podrá optar por dos v́ıas para reducir el consumo, que podrán incluso

combinarse: reducir la precisión de los cálculos o introduciendo un tiempo de espera.

Por lo tanto, en términos generales, muy probablemente el throughput podrá verse

impactado, o bien lo hará la calidad de los cálculos. Todos estos escenarios pueden

tener sentido en distintos contextos de escasez energética y proporcionarán al sistema

distintas posibilidades de adaptación, tal y como se discutirá más adelante.

Tabla 3.1: Calidad de Servicio para un contexto fluctuante entre escasez y abundancia
de enerǵıa

Enerǵıa
a coste 0

a) Sin restricciones energéticas
Máxima precisión

Enerǵıa cara

b) El coste económico de la potencia consumida <C
Precisión degradada

c) El coste económico de la enerǵıa para 1 pymemo <C
Precisión degradada

d) La potencia consumida <P
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Caṕıtulo 4

Modelos de Consumo Energéticos

4.1. Factores que Contribuyen al Consumo

Energético Computacional

En el trabajo se han considerado aquellos factores de las distintas capas del sistema

que afectan al consumo energético de un sistema computacional. Cada clúster tiene

unas caracteŕısticas propias e intŕınsecas, por lo que es necesario desarrollar un modelo

espećıfico para cada uno. Además de que los modelos obtenido han sido elaborados

de forma experimental en entornos controlados, ejecutando únicamente la aplicación

pymemo.

A la hora de crear el modelo se deberán especificar los factores de cada capa que

tienen un impacto en el consumo. La forma de hallar dichos factores recae sobre la

formula de la potencia (ecuación 4.1). Esta depende de dos variables, la intensidad y el

voltaje, siendo este último constante en cada máquina y especificado por la fuente de

alimentación. En algunos casos se puede bajar el voltaje de los procesadores, pero no

siempre es una opción recomendable. Lo que śı se puede hacer es reducir la frecuencia

de la CPU y reduciendo aśı la intensidad. Además, para reducir la intensidad también

se puede disminuir la ocupación de la CPU.

P = V ∗ I (4.1)

También es importante remarcar la implicación del tiempo en el sistema, el coste

energético total depende de la potencia y del tiempo total de ejecución (ecuación 4.2).Al

reducir la potencia mediante la disminución de la frecuencia, los tiempos de ejecución

aumentarán, por lo que es fundamental que la disminución de la potencia sea en mayor

proporción que el aumento del tiempo

E = P ∗ t (4.2)

En la Tabla 4.1 se muestran los factores que afectan a la intensidad de la máquina

en las distintas capas.
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Tabla 4.1: Factores que afectan a la intensidad de la máquina en sus distintas capas

Capa Factores
Máquinas f́ısicas Frecuencia CPU
Scheduling / Gestión recursos Ocupación máxima permitida
Aplicación Precisión de los calculos

Máquinas f́ısicas La primera capa corresponde con las propias máquinas f́ısicas. Al

modificar la frecuencia del procesador bajaremos la intensidad de la máquina, por ende

requerirá menor potencia y utilizando menos enerǵıa.

Scheduling / Gestor de recursos En esta capa se limitará el número de máquinas

activas de cada clúster por cuestiones energéticas. Hay que distinguir si el clúster solo

se compone de máquinas f́ısicas (por ejemplo, en este caso el clúster de raspberry pis)

o si el clúster se compone, además, de máquinas virtuales. Cuando múltiples máquinas

virtuales se ejecutan en un servidor f́ısico concurrentemente, reduciendo el número de

máquinas virtuales que coexisten en el mismo servidor f́ısico, se reduce el consumo

energético del servidor f́ısico. El número de máquinas virtuales que coexisten en la

misma máquina f́ısica no solo afecta al consumo energético, sino que además influye

gravemente en el tiempo de ejecución, debido al efecto de la interferencia. Este efecto

se produce por el hecho de que hay recursos en el hardware (como el bus de acceso a

la memoria) que están compartidos por todas las máquinas virtuales. La jerarqúıa de

memoria también puede tener efectos significativos en las prestaciones.

Aplicación El último nivel a tener en cuenta es el de aplicación. Para ello deberemos

contar con una aplicación capaz de modificar su comportamiento, pudiendo aumentar

su ahorro energético a cambio de disminuir su precisión en los cálculos. La idea es aplicar

aproximación para minimizar la cantidad de cómputo requerida por la aplicación, y

de esta forma reducir la intensidad. En este proyecto hemos usado una aplicación

de análisis de v́ıdeos de cámaras de vigilancia, la cual obtiene el ahorro de guardar en

memoria cache resultados precalculados: en este caso el ahorro sufre una gran influencia

por el v́ıdeo que analice, ya que depende de la similitud entre los frames y no solo

depende de la propia aplicación. Para obtener los datos del modelo se realizaron pruebas

modificando el valor del umbral (threshold) en 4 valores: 0,50,10,150, siendo 0 no utilizar

memorización y 150 utilizarla en gran medida, pero con un error aceptable (20% como

muestra la figura 3.1).

El uso del error no influye únicamente en la potencia del sistema, sino que también

reduce los de tiempos de ejecución, disminuyendo aśı el coste energético y aumentando

el número de peticiones por segundo que puede aceptar el sistema. En la gráfica 4.11
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se aprecia como la tendencia es reducir la enerǵıa aumentando el error, y en la gráfica

4.7 se muestra que a mayor error mayor throughput. En la tabla 4.2, se ve claramente

el efecto del error en los tiempos de ejecución.

4.2. Modelo Energético del centro de datos

El modelo energético del centro de datos se obtuvo sobre un servidor localizado en

un laboratorio del edificio Ada Byron de la universidad de Zaragoza. Este ordenador

tiene un procesador Intel(R) Xeon(R) Bronze 3106 CPU 1.70GHz, el cual tiene una

arquitectura x86 64, 16 CPUs, un hilo por núcleo, una memoria RAM con 125 GB

y 9.4 GB de memoria swap. Su rango de frecuencias es de 0.8GHz a 1.70GHz. El

sistema operativo utilizado es 18.04.6 LTS (GNU/Linux 5.3.0-7648-generic). En él se

desplegaron máquinas virtuales mediante la herramienta Vagrant con 3 GB de memoria

cada una y 3 núcleos en el procesador. En las máquinas virtuales se ejecutó Ubuntu

18.04.6 LTS (GNU/Linux 4.15.0-171-generic) como sistema operativo.

Con el conjunto de máquinas virtuales se creó un clúster de Kubernetes, donde se

ejecuta OpenFaas, dando aśı disponibilidad a pymemo en un modelo serverless.

Sobre este clúster virtual se creó el modelo energético para la máquina f́ısica a partir

del método de barrido de parámetros, es decir, se ejecutó pymemo variando todas las

posibles combinaciones de la terna threshold, ocupación y frecuencia, obteniendo aśı sus

métricas asociadas como la potencia y tiempo de ejecución. Para eliminar resultados

espurios el experimento se repitió varias veces.

Los experimentos revelaron los siguientes observaciones. Cuando se disminuye la

frecuencia, se observa que la potencia consumida siempre es menor, por lo que se

producirá un menor gasto energético por segundo, como se observa en las Figuras

4.1, 4.2, 4.3 y 4.4. Además, al disminuir la frecuencia, hay también una tendencia

a que aumente el tiempo de ejecución, por ello el throughput disminuye. Este efecto

puede verse en las Figuras 4.5, 4.6, 4.7 y 4.8. También se observa el fenómeno de la

interferencia en las prestaciones. Cuando se usan máquinas f́ısicas, incrementos en el

número de máquinas f́ısicas utilizadas tiene un impacto proporcional en el throughput.

En este caso, al incrementar el número de máquinas virtuales, en la misma máquina

Threshold Tiempo (s)
0 360.943
50 277.755
100 181.626
150 141.941

Tabla 4.2: Tiempos de ejecución con frecuencia 1,2 GHz y 3 ejecuciones simultaneas
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f́ıscia, el throughput no aumenta en la misma proporción, sino que aumenta menos,

llegando a disminuir en algunos casos, como puede verse en la diferencia de throughput

con 1,6GHz y threshold 0 en las Figuras 4.7 y 4.8. T́ıpicamente, cuando se plantean

modelos teóricos para optimizar el coste energético o las prestaciones, en la mayoŕıa

de ellos se asume que el tiempo de ejecución es una constante y se ignoran los efectos

que tiene la interferencia en las prestaciones.

Otro aspecto importante es que, al variar la frecuencia, el tiempo de ejecución (o

bien el throughput) y la potencia, no vaŕıan en la misma proporción. Por lo tanto, puede

haber casos en los que, por ejemplo, a una menor frecuencia, se tenga un mayor tiempo

de ejecución, pero con un menor consumo energético total. Por ejemplo, en la Figura

4.9, se observa que en la configuración con mayor frecuencia de 1,7GHz y threshold 0,

la ejecución de 2 pymemos en paralelo tiene un coste energético total de 14.367 J y un

throughput 0,0085 pymemos / s. Mientras que si observamos el coste energético total

para la frecuencia 1,6 GHz y threshold 0 es de 12.550 J y el throughput 0.0084 pymemos

/ s, lo que supone un ahorro energético de un 12% y una disminución del throughput

del 1%. Esto es, algunas veces, reduciendo la frecuencia de la CPU, se puede reducir

el consumo energético de la ejecución de la carga de trabajo, incrementando un poco

el tiempo de ejecución (disminuyendo el throughput). Sin embargo, no siempre es aśı

y, además, la tendencia general es que al seguir disminuyendo la frecuencia, se llega

a un punto en el que aumenta mucho más el tiempo de ejecución y, por tanto, ya no

solo no hay ahorro energético, sino que incluso hay un mayor consumo. Por ejemplo,

en ese mismo caso de 2 pymemos en paralelo, si reducimos la frecuencia a 0,9 GHz,

el coste energético es 16.992 J, mucho mayor, y el throughput, mucho menor, 0.0055

pymemos/s.

Este mismo efecto de la variación en el consumo energético al reducir la frecuencia

puede verse en las Figuras 4.9, 4.10, 4.11 y 4.12. En estas figuras se puede apreciar

que una menor frecuencia la tendencia es que se reduzca el consumo energético, pero

con una mayor reducción de la frecuencia, al aumentar el tiempo total de ejecución,

termina por aumentar el gasto total energético.

Por otra parte, es también significativo el impacto que tiene la reducción de la

precisión en la ejecución de pymemo en el tiempo de ejecución, como se aprecia en las

Figuras 4.5, 4.6, 4.7 y 4.8 y, en consecuencia, en el coste energético total de las Figuras

4.9, 4.10, 4.11 y 4.12.

El modelo energético consistirá en un conjunto de elementos formados por un valor

de throughput, la potencia asociada y la configuración que lo garantiza (terna ocupación,

frecuencia, threshold).

22



 0

 20

 40

 60

 80

 100

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Po
te

nc
ia

 (W
)

Frecuencia (GHz)

th-0
th-50

th-100
th-150

Figura 4.1: Evolución de la potencia respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemo
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Figura 4.2: Evolución de la potencia respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo
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Figura 4.3: Evolución de la potencia respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo
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Figura 4.4: Evolución de la potencia respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo
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Figura 4.5: Evolución del throughput respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemo
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Figura 4.6: Evolución del throughput respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo
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Figura 4.7: Evolución del throughput respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo
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Figura 4.8: Evolución del throughput respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo
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Figura 4.9: Evolución de la enerǵıa respecto a la frecuencia y threshold con 2 ejecuciones
paralelas de pymemo
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Figura 4.10: Evolución de la enerǵıa respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo
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Figura 4.11: Evolución de la enerǵıa respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo
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Figura 4.12: Evolución de la enerǵıa respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo
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4.3. Modelo energético edge

El modelo del edge se ha obtenido también mediante el barrido de parámetros.

Dicho barrido se ha realizado en una raspberry pi 3 B+ localizada en el laboratorio del

edificio Ada Byron de la universidad de Zaragoza. Las caracteŕısticas de la máquina

son una CPU Cortex-A53 con cuatro núcleos, un hilo por núcleo, una frecuencia de

0,6 GHz a 1,2 GHz, una memoria RAM de 973Mi y 99Mi de memoria swap. En un

principio se trató de montar un clúster Kubernetes entre varias raspberries y desplegar

ah́ı OpenFaas, pero debido a las pocos recursos de las máquinas fue imposible lograr

desplegar este último. Por ello, se utilizó una única raspberry para medir, en la cual se

ejecuto un servidor http a través el cual se pod́ıa invocar pymemo. Otro problema es la

medición de la potencia. Como se explica en la sección 2.3, las raspberries no permiten

obtener datos de la potencia por software, aśı que hubo que utilizar un mult́ımetro y

hacer el proceso de forma manual.

En un principio se realizaron medidas a la menor frecuencia y sin error, pero debido

a los altos tiempos de ejecución (en torno a la hora) se decidió limitar las frecuencias

a las dos más altas, donde el tiempo de ejecución se redućıa a la mitad. Como se ve en

la gráfica de la figura 4.14, la frecuencia tiene poco impacto en la potencia, pudiendo

considerarse que ambas frecuencias generan la misma potencia. En la gráfica de la

figura 4.13 se aprecia la influencia de la frecuencia en la enerǵıa total de una ejecución

de pymemo, siendo esta menor a 1.1 GHz. En cuanto a las peticiones que ejecuta por

segundo en la raspberry, se ha determinado que en los casos con threshold 0,50 y 100

son mayores con frecuencia igual a 1,1GHz. En cuanto a las peticiones ejecutas por

segundo el mejor valor se obtiene con la configuración 1,1GHz a threshold 100, siendo

la segunda mejor opción la otra frecuencia con el mismo threshold. En el caso de la

frecuencia 1.2 GHz, tiene el mismo throughput para los threshold 20 y 50. La frecuencia

1.1Ghz tiene el mayor throughput pero también el menor.
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4.3.1. Modelo Energético de la Red de Comunicación

Un modelo de consumo energético para la transmisión de datos en la red de

comunicación está descrito en [25]. En él se observa, cómo la transmisión Wireless

desde una raspberry pi, consume entre 1W y 1,4W, mientras que el consumo debido

a la transmisión a través de Ethernet consume entre 0,3W y 0,4W. Sin embargo,

experimentalmente pudimos comprobar cómo para transmitir los v́ıdeos de las raspberry

pis al centro de datos, el sistema tiene que acceder al disco de la raspberry, esto es,

a una tarjeta de memoria. Eso hace que la potencia total necesaria para realizar la

transmisión de un v́ıdeo a través de Ethernet se eleve hasta unos 4W. Es, por tanto,

importante considerar que cuando se toma la decisión de transmitir al siguiente nodo,

se incurre en un coste energético que puede no ser despreciable.

4.4. Algoritmo de búsqueda

El algoritmo escogido fue el algoritmo voraz, este es una búsqueda que obtiene

una solución correcta cumpliendo un conjunto de restricciones preestablecidas. Este

algoritmo nos garantiza encontrar una solución en caso de que exista, pero no garantiza

que sea la óptima. Además, la simplicidad del algoritmo permite no añadir un gran

sobre coste, y con ello un mayor gasto indeseado como otras búsquedas que recorran

todo el espacio de soluciones. Este algoritmo se describe con las instrucciones del

Algoritmo 1.

Data: C
Result: S
Greedy( Conjunto de candidatos C): solución S;
S = ∅;
while C no sea vacio y S no sea solucion do

x = seleccionar(C) ;
C = C - {x};
if x cumple restricciones then

S={x};
end

end
if S ̸= ∅ then

return S;
else

return ”no hay solución”;
end

Algorithm 1: Algoritmo Voraz que busca la configuración energética apropiada

El algoritmo parte de un conjunto de posibles soluciones C y un conjunto final de

soluciones S. A partir de ah́ı, se realizará una iteración sobre el conjunto C, extrayendo
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un elemento cada vez. Si el elemento extráıdo es una solución correcta (cumple las

restricciones), la búsqueda finalizará y dará por solución el último elemento extráıdo

y único elemento de S. En caso de que ningún elemento cumpla las restricciones, el

algoritmo determinará que no existe solución. Se debe remarcar que una vez explorado

un elemento del conjunto C, este se descarta, no pudiendo volver a ser evaluado.

En este proyecto el conjunto de soluciones es una lista de configuraciones del sistema,

ordenada por throughput, de mayor a menor. Cada configuración esta formada por la

terna ocupación, frecuencia y threshold, teniendo asociada además la potencia que

dicha configuración genera en el sistema (nótese que a partir de la potencia y el resto

de parámetros se puede calcular la enerǵıa total necesaria). La búsqueda consiste en

recorrer la lista ordenada de soluciones, hasta que haya una que satisfaga todos los

requisitos: ii) que se satisfagan las restricciones energéticas y ii) que se satisfagan

los requisitos de la aplicación, por ejemplo, en cuanto a la precisión de los cálculos.

Como salida el algoritmo proporciona la configuración del sistema que satisfaciendo

los requisitos de enerǵıa y de la aplicación, ofrezca un mayor throughput. En caso de

que ningún elemento cumpla las restricciones, el algoritmo determinará que no existe

solución.

4.5. Gestor de recursos consciente del gasto

energético

En cada clúster hay un gestor de recursos como se explica en la sección 3.2. Como

gestor de recursos, se encarga de configurar y proporcionar los recursos adecuados

para la carga de trabajo del sistema. Su ciclo de vida, en continua ejecución, sigue un

esquema MAPE-K [26]: monitorización, análisis, planificación y ejecución de la gestión

de recursos para poder ahorrar enerǵıa.

4.5.1. Gestor de recursos

El gestor de recursos es el núcleo de nuestra aplicación como muestra la figura 4.16

guarda el estado tanto del entorno (potencia máxima permitida o error máximo) como

la situación del sistema (througput, ocupación, frecuencia, etc.).

Monitorización La primera fase corresponde a la monitorización, actualizando los

valores de la potencia media de las máquinas, el tiempo medio de ejecución y la

ocupación actual. Los valores se actualizan de forma reactiva, conforme los distintos
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Figura 4.16: Diagrama arquitectural del gateway

receptores env́ıan los datos: por ello, en el bucle MAPE-K se realiza un snapshot del

estado antes de continuar a la siguiente fase, de tal forma que si un valor cambia,

no será tenido en cuenta dicha modificación hasta la siguiente iteración, evitando aśı

inconsistencias.

Análisis y planificación El análisis y la planificación los realizamos de forma

conjunta y es el Algoritmo de búsqueda 1 el encargado de realizalos. Una vez encontrada

una solución, el sistema obtiene la nueva configuración energética asociada a esta.

Ejecución A partir de la decisión tomada se deberán tomar una serie de acciones

configurando el sistema con los parámetros devueltos por la fase anterior.

4.5.2. Receptores

Los componentes encargados de obtener métricas para actualizar el estado son los

receptores, estos se encargaran de analizar el entorno y de comunicarlos al gestor de

recursos los cambios que detecten. Actualmente existen dos receptores para el gestor

de recursos, el que monitoriza la potencia del sistema, creando una abstracción de la

herramienta porwerstat, y el encargado de monitorizar el número de peticiones y tiempo

de ejecución de estas, integrado en el gestor de peticiones. Mientras que el receptor de

potencia obtiene las métricas en periodos regulares, el receptor de peticiones las toma

de forma reactiva.

4.5.3. Gestor de peticiones que llegan al sistema

Las peticiones de ejecución de pymemo llegan a los gestores de peticiones de cada

clúster. Este módulo decide si se acepta una petición en función de la configuración del
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clúster escogida por el gestor de recursos.

El gestor de peticiones es un servidor http donde se reciben las peticiones.

Cuando llega una petición se encola y, en caso de haber disponibilidad, se trata la

primera petición de la cola, pudiendo ser o no la recién llegada. Para tratarla, se

realiza una llamada http al servicio de OpenFaas del clúster local. En caso de no

haber disponibilidad, se env́ıa a un clúster de nivel superior o se espera a que haya

disponibilidad si no hay más niveles. Tras obtener el resultado de la ejecución se

comunican métricas como tiempo de ejecución necesario para la petición y el número

de petición que era. Una vez respondida la petición al cliente el gestor de peticiones

comprobará de nuevo la disponibilidad del sistema y en caso de haber peticiones

encoladas pasarán a ejecutarse, respetando siempre las restricciones.
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Caṕıtulo 5

Validación Experimental

5.1. Configuración de los Experimentos

Los experimentos se han realizado únicamente en el servidor dado que este permite

ejecutar simultáneamente más de un pymemo, de esta forma en los resultados se podrá

ver el efecto de la interferencia. La máquina utilizada ha sido la misma que para realiza

el modelo: un procesador Intel(R) Xeon(R) Bronze 3106 CPU 1.70GHz, el cual tiene

una arquitectura x86 64, 16 CPUs, un hilo por núcleo, una memoria RAM con 125

GB y 9.4 GB de memoria swap. Su rango de frecuencias es de 0.8GHz a 1.70GHz. El

sistema operativo utilizado ha sido 18.04.6 LTS (GNU/Linux 5.3.0-7648-generic). En

él se desplegaron cuatro máquinas virtuales mediante la herramienta Vagrant con 3

GB de memoria cada una y 3 núcleos en el procesador. En las máquinas virtuales se

ejecutó Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-171-generic) como sistema operativo.

Para validar el modelo se diseñaron cuatro experimentos, teniendo todos ellos la

misma entrada: una serie de peticiones de ejecución de pymemo, con un v́ıdeo, a ritmo

regular (primero tres iniciales y luego una nueva cada 40 segundos), en media λ = 0,025

tareas / s. Dos de los experimentos, tuvieron como restricción energética la potencia,

en ellos se empezó en 61 vatios, de tal forma que todas las configuraciones cumplieran

las restricciones, escogiendo aśı la de mayor throughput. Cada 4 minutos la potencia

disminuyó en 3 vatios, hasta llegar que alcanzó un valor suficientemente inferior donde

ninguna configuración seŕıa posible, llevando al sistema a su paralización. Tras pasar

4 minutos a esta potencia mı́nima volveŕıa a subir hasta los 61 vatios al mismo ritmo.

Además, el threshold en cada experimento puede tomar un valor máximo de cero, en

uno de los dos experimentos, y el otro de 150. El tiempo total de cada experimento, en

este caso, es de 52 minutos cada uno.

Los dos experimentos restantes, como restricción energética, tuvieron el coste

energético máximo para la ejecución de un pymemo. En estos casos, el coste máximo

por pymemo de 10000 J, una enerǵıa superior a todos los elementos del modelo.
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Posteriormente, cada cuatro minutos, se decrementando en 1000 J. Además, el threshold

en cada experimento puede tomar un valor máximo de cero, en uno de los dos

experimentos, y el otro de 150. El tiempo total de cada experimento, en este caso,

es de 35 minutos cada uno.

5.2. Experimentos

5.2.1. Restricción threshold 0 y máxima potencia

La Figura 5.1 muestra todas las métricas obtenidas durante este experimento. El

threshold puede valer como máximo cero. El sistema cumplió la restricción del threshold

en todo momento como muestra la Figura 5.1e. Cabe destacar la primera decisión,

donde el sistema decidió disminuir la ocupación máxima a cambio de aumentar la

frecuencia (Figuras 5.1a y 5.1b), mientras que en el resto de casos donde debe disminuir

la potencia siempre disminuyó la frecuencia, utilizando 1,3 GHz, 1,2 GHz y 0,8 GHz,

para finalmente suspender el sistema en el minuto 22, puesto que ninguna configuración

pod́ıa ejecutarse con una menor potencia que la máxima permitida. Tanto la gráfica de

la frecuencia ( Figura 5.1a) como de la ocupación máxima ( Figura 5.1b) son simétricas.

La gráfica de la Figura 5.1d muestra la evolución del throughput, donde se aprecia que

este se mantuvo alto hasta suspender el sistema, momento en el cual tuvo un gran

decremento, a continuación se fue recuperando, aunque el tiempo medio de ejecución

de un pymemo es de alrededor de 7 minutos. Finalmente, la gráfica 5.1c muestra

la evolución de la potencia medida real (morado) y la potencia máxima (verde). Se

observa claramente como el sistema fue disminuyendo su potencia conforme la máxima

disminuyó: es cierto que se nota un retraso en la adaptación. Al final de esta gráfica se

ve cómo decrementó la potencia, esto se debe a que se dejaron de enviar peticiones, y

únicamente se estaban ejecutando las que estaban encoladas hasta acabarse.
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Figura 5.1: Cronograma de evolución del experimento 1 en el tiempo, threshold 0 y
potencia limitada
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5.2.2. Restricción threshold 150 y máxima potencia

La Figura 5.2 muestra todas las métricas obtenidas durante este experimento. En

este experimento se habilitaron todos los valores de threshold disponibles en el modelo:

0, 50, 100 y 150. En la Figura 5.2e se muestra cómo siempre priorizó el máximo

threshold, con excepción del minuto 19, donde este lo decrementó a 100, disminuyendo

al mismo tiempo la ocupación a dos pymemos simultáneos cómo máximo (Figura 5.2b).

En cuanto al throughput, se dio una situación similar al experimento con threshold 0:

se encuentra alto hasta que decayó fuertemente al suspender el sistema y aparecer

largos tiempos de espera. En este caso, al tener un threshold más alto, los tiempos de

ejecución de pymemo fueron menores respecto de un pymemo con threshold cero, por

lo que las peticiones se ejecutan más rápidamente. Esto se observa claramente porque

el threshold vuelve a aumentar poco a poco, habiéndose liberado la cola y volviendo a

ejecutarse bajo demanda.
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Figura 5.2: Cronograma de evolución del experimento 2 en el tiempo, threshold 150 y
potencia limitada
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5.2.3. Restricción threshold 0 y máxima enerǵıa por ejecución
de pymemo

La Figura 5.3 muestra todas las métricas obtenidas durante este experimento. En

la gráfica de la Figura 5.3e se demuestra que el sistema cumplió bien las restricciones

por threshold, al no sobrepasar el valor máximo de cero. Al analizar los resultados se

muestra cómo únicamente se tuvo una configuración hasta que que ninguna fue válida y,

entonces, se suspendió, como muestran las Figuras 5.3a y 5.3b, escogiendo siempre 1,5

Ghz y cinco ejecuciones simultáneas. Esta configuración elegida es la que satisfaciendo

la restricción energética, maximiza el throughput. En la gráfica de la Figura 5.3c se

muestra cómo la enerǵıa por ejecución fue menor que la máxima permitida excepto al

final, donde aumentó la enerǵıa. Esto es debido a que hab́ıa peticiones en ejecución que

hacen que aumente el coste energético (inercia de un sistema reactivo). En cuanto al

throughput, se mantuvo a niveles estables mientras la configuración era constante, pero

este disminuyó al final, al suspenderse el sistema debido a las restricciones energéticas

Figura 5.3d.
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Figura 5.3: Cronograma de evolución del experimento 3 en el tiempo, threshold 0 y
limite en enerǵıa por pymemo
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5.2.4. Restricción threshold 150 y máxima enerǵıa por
ejecución de pymemo

La Figura 5.4 muestra todas las métricas obtenidas durante este experimento.

En este experimento la configuración no se modificó hasta que el sistema tuvo que

suspenderse, como muestran las gráficas de las figuras 5.4e, 5.4b y 5.4a, siendo la

configuración escogida 1,6 GHz, cinco ejecuciones máximas en paralelo y threshold 150.

Como se muestra en la gráfica de la figura 5.4d, el throughput fue constante y máximo

ya que era igual al valor de λ = 0,025. En cuanto a la enerǵıa por ejecución siempre

fu menor como muestra la figura 5.4c, a excepción del final donde se mantuvieron

durante un tiempo las peticiones que ya se hab́ıan aceptado en ejecución. Destacar

que al habilitar ejecuciones con mayor thresholds que en el caso anterior, el sistema se

suspendió diez minutos más tarde a pesar de tener las mismas restricciones energéticas.
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Figura 5.4: Cronograma de evolución del experimento 4 en el tiempo, threshold 150 y
limite en enerǵıa por pymemo
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5.3. Resumen

Como se ha mostrado en todos los experimentos, el modelo se adecúa correctamente

a la situación del entorno. Śı es cierto que suele haber un intervalo de tiempo en todos

los escenarios desde que se toma una decisión hasta que es realmente efectivo debido,

a la inercia del sistema, por lo que al ser un modelo reactivo en la mayoŕıa de casos

hay pequeños momentos donde se incumplen las restricciones hasta que el sistema se

estabiliza de nuevo. Se debe remarcar como diferencia clave que el modelo de la potencia

trata de no sobrepasar el ĺımite de esta, mientras que el de enerǵıa por pymemo utiliza

siempre un máximo en torno a los 61 vatios. Debido a ello, la calidad del servicio para

el primer modelo debeŕıa indicar cuánto es el gasto máximo energético del conjunto del

sistema, pudiendo conocer a priori el gasto económico que supondrá. El otro modelo,

en cambio, minimiza el gasto por ejecución, de tal forma que se podrá obtener el gasto

máximo si conocemos la carga de trabajo.

Una clara diferencia entre los dos modelos es que en el de la potencia la configuración

se va modificando, mientras que en el limitador de enerǵıa al comenzar encuentra la

mejor y no la cambia: esto se debe a que coincide que la configuración más económica

es la que tiene también mayor throughput.
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Caṕıtulo 6

Conclusiones y trabajo futuro

6.1. Conclusiones

Tradicionalmente, los sistemas distribuidos cuentan con modelos y mecanismos para

garantizar la calidad del servicio: sólo se se considera reducir el consumo energético una

vez se haya garantizado las prestaciones acordadas. Sin embargo, con las fluctuaciones

en el precio de la enerǵıa en el contexto actual, en muchos casos el coste económico de

las ejecuciones puede ser inasumible. En este trabajo, se considera en todo momento

un gasto energético máximo que el sistema puede permitirse, de manera que cuando

el gasto sube o debemos tener menos gasto, el sistema se reconfigura para reducir el

consumo, a costa de aumentar el tiempo de ejecución o reducir la precisión de los

procesamientos.

Este sistema considera un tipo de aplicación que está generando datos

continuamente para su procesamiento, utilizando una infraestructura fog / cloud

computing : un centro de datos con una gran capacidad computacional y pequeños

clústers de capacidad limitada, próximos a las fuentes de datos. Para garantizar la

escalabilidad del sistema, el sistema sigue una estrategia de scheduling completamente

distribuido: los datos generados en la fuente se llevan al clúster de poca capacidad más

próximo donde se ejecutan si hay capacidad, de lo contrario, se mueven al siguiente

nivel de la jerarqúıa, con mayor capacidad. Sobre esta estrategia de scheduling, el gestor

de recursos de cada clúster cuenta con un modelo energético que garantiza que el coste

energético no va a superar el máximo permitido. Se proponen como ĺımites energéticos:

limitar la potencia que se puede consumir o limitar el coste máximo energético de

la ejecución de una tarea. El gestor de recursos de cada clúster puede actuar en

cualquier nivel arquitectural: aplicación, middleware o hardware. En el nivel de la

aplicación, se utilizan técnicas de computación aproximada para reducir la precisión

de la ejecución con distinto grado. En el ámbito del middleware se reduce el número

de máquinas activas y en el hardware se gestiona la frecuencia de los procesadores.
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Para poder encontrar la configuración energética adecuada, cada controlador cuenta

con un modelo obtenido experimentalmente por combinación de parámetros (parameter

sweep), y utiliza un algoritmo voraz.

Para validar la aproximación, se ha utilizado una aplicación de análisis de v́ıdeo y se

han realizado varios experimentos en una infraestructura compuesta por dos clústers:

uno con raspberry pis y otro, con rol de centro de datos con máquinas virtuales.

Los experimentos muestran cómo el sistema es capaz de adaptarse a las restricciones

de enerǵıa y consumir menos, disminuyendo el throughput y/o la precisión de los

procesamientos. En unos experimentos se ha limitado la potencia máxima que se puede

utilizar, en otros el gasto energético máximo para una aplicación.

6.2. Trabajo futuro

En el futuro este trabajo se podŕıa mejorar de manera que el propio sistema

aprendiera de la experiencia: por ejemplo, si el consumo energético basal cambiara

por alguna operación del sistema operativo y esto fuera percibido, el sistema puede

actualizar el modelo. Otra mejora podŕıa ser la incorporación de un modelo predictivo

del coste de la enerǵıa, haciendo que el sistema reaccionara con mayor celeridad.
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[31] Tainã Coleman, Henri Casanova, Löıc Pottier, Manav Kaushik, Ewa Deelman,

and Rafael Ferreira da Silva. WfCommons: A framework for enabling scientific

workflow research and development. Future Generation Computer Systems,

128:16–27, March 2022.

[32] Quoc-Viet Pham, Fang Fang, Vu Nguyen Ha, Md. Jalil Piran, Mai Le, Long Bao

Le, Won-Joo Hwang, and Zhiguo Ding. A Survey of Multi-Access Edge Computing

in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art.

IEEE Access, 8:116974–117017, 2020. Conference Name: IEEE Access.

[33] Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash

Jayaraman, Longxiang Gao, Yong Xiang, and Rajiv Ranjan. Fog Computing:

Survey of Trends, Architectures, Requirements, and Research Directions. IEEE

Access, 6:47980–48009, 2018. Conference Name: IEEE Access.

[34] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. Mobile cloud computing

for computation offloading: Issues and challenges. Applied Computing and

Informatics, 14(1):1–16, January 2018.

[35] Geraldo F. Oliveira, Larissa Rozales Gonçalves, Marcelo Brandalero, Antonio
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4.10. Evolución de la enerǵıa respecto a la frecuencia y threshold con 3

ejecuciones paralelas de pymemo . . . . . . . . . . . . . . . . . . . . . . 26
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Anexos A

Cronograma, actividades y
objetivos

A lo largo de este proyecto se han realizado las siguientes actividades:

− Montar una infraestructura edge, incluyendo un clúster formado por raspberries

y un clúster formado por máquinas virtuales en un servidor.

− Diseñar e implementar mecanismos para gestionar el gasto energético en los

distintos niveles como disminuir la frecuencia o aproximación en cálculos.

− Habilitar una red virtual para la transmisión entre los distintos clústers.

− Elaborar un modelo e implementar un sistema inteligente que que se

autoconfigure utilizando los mecanismos de gestión energética implementados.

− Realizar una validación experimental

− Escribir la memoria.

Todas estas actividades se organizaron en el tiempo como muestra la figura A.1

Figura A.1: Cronograma - diagrama de Gaant
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