s Universidad
181 Zaragoza

1542

Trabajo Fin de Grado

Sistema, de ejecucion de funciones serverless en el
continuum de la nube con una gestion del consumo
energético inteligente

Adaptative energy aware system for serverless
function in cloud continnum

Autor

fﬁigo Aréjula Aisa

Directores

Maria Canales Compés

Rafael Tolosona Calasanz

ESCUELA DE INGENIERIA Y ARQUITECTURA
2022

RESUMEN

En la actualidad, debido a la escasez de energias fésiles y la variabilidad
de las renovables las fluctuaciones en el precio de la energia son significativas.
Tradicionalmente, los sistemas computacionales ha priorizado maximizar sus
prestaciones (tiempo de ejecucién o throughput), mientras que el ahorro energético
solo se considera una vez garantizadas las prestaciones. Sin embargo, con el incremento
de los precios, limitar el gasto energético es inevitable. En este trabajo fin de grado,
se considera un tipo de aplicacién distribuida que genera datos continuamente para
su procesamiento. Para ello, se considera un centro de datos con gran capacidad
computacional y pequenos cliusters de capacidad limitada, proximos a las fuentes de
datos. El sistema sigue una estrategia de scheduling completamente distribuido: los
datos generados en la fuente se llevan al clister de poca capacidad maés proximo, si
hay posibilidad de procesar los datos, se ejecutan ahi; si no, se transmiten al centro de
datos.

Ademas, el sistema cuenta con un modelo energético y monitoriza la carga de
trabajo y el coste de la energia, de manera que si el coste de la energia es bajo, el
sistema maximiza las prestaciones; en caso contrario, el sistema se reconfigura, para
no superar el coste maximo permitido. A diferencia de las definiciones tradicionales de
los niveles de calidad de servicio, cuando el coste de la energia exceda lo permitido,
las prestaciones se degradan lo necesario. La degradacion viene dada por los requisitos
de la aplicacién: reduciendo la precision del procesamiento o aumentando el tiempo de
ejecucion.

Para conseguir esto, primero se analizan los distintos factores (en los niveles de
aplicacién, middleware y recursos hardware) que contribuyen al consumo energético.
Después, experimentalmente, se construye un modelo energético para cada clister. En
ejecucion, mediante un algoritmo voraz, el controlador de cada clister determina cual
es la configuracion energética que maximiza el throughput, garantizando siempre las
restricciones energéticas. Para validar la aproximacién, se ha utilizado una aplicacién
de analisis de video y se han realizado varios experimentos en una infraestructura
compuesta por dos clisters: uno con raspberry pis y otro, con rol de centro de datos, con
magquinas virtuales. Los experimentos muestran como el sistema es capaz de adaptarse
a las restricciones de energia y consumir menos, disminuyendo el throughput y/o la

precision de los procesamientos.

IT

Indice

1. Introducciéon y objetivos

2. Conceptos, Metodologia y Tecnologia
2.1. IoT, Fog and Cloud computing
2.2. Serverless computing: Kubernetes and OpenFaaS
2.3. Mediciones de Energia y Procesadores: Intel y ARM
2.4. Virtual Box y Vagrant00
2.5. Trabajo Relacionado

3. Arquitectura del Sistema
3.1. Pymemo: Aplicacién de Vigilancia
3.2. Infraestructura Computacional Distribuida

3.3. Calidad de Servicio para pymemo

4. Modelos de Consumo Energéticos

4.1. Factores que Contribuyen al Consumo Energético Computacional

4.2. Modelo Energético del centro de datos

4.3. Modelo energéticoedgeo
4.3.1. Modelo Energético de la Red de Comunicacion

4.4. Algoritmo de busquedao

4.5. Gestor de recursos consciente del gasto energético
4.5.1. Gestor derecursos
4.5.2. Receptores

4.5.3. Gestor de peticiones que llegan al sistema

5. Validacién Experimental
5.1. Configuracién de los Experimentos
5.2. Experimentos
5.2.1. Restriccién threshold 0 y maxima potencia

5.2.2. Restriccién threshold 150 y maxima potencia

II1

co 3 ot O

10
10

13
13
15
17

19
19
21
27
29
29
30
30
31
31

5.2.3. Restriccion threshold 0 y méxima energia por ejecucion de pymemo 38

5.2.4. Restriccion threshold 150 y maxima energia por ejecucién de

DYMEMO . . o« o v v it e e 40

5.3. Resumen 42

6. Conclusiones y trabajo futuro 43
6.1. Conclusiones 43
6.2. Trabajo futuro 44
Bibliografia 45
Lista de Figuras 51
Anexos 53
A. Cronograma, actividades y objetivos 55

IV

Capitulo 1

Introduccién y objetivos

Recientes estimaciones indican que el gasto energético global por computacién y
las redes de comunicacion podria ser del 20% segun [1]. Cada ano se desarrollan
nuevas aplicaciones y servicios que demandan una mayor cantidad de capacidad
computacional, asi como las redes de comunicacion y los sistemas de almacenamiento
que estas necesitan. Se estima que los centros de datos pueden ser responsables de hasta
un 3% de la emisién de CO2 [1]. Por otra parte, en la actualidad hay un periodo de
transicion en las fuentes de energia, de unas fuentes provenientes de materiales fosiles
y altamente contaminantes a unas fuentes de energia limpias y renovables. Ademas,
hay dos factores que hacen que la transicién no sea una cuestion facil. Por un lado,
debido a los problemas logisticos y de inversion en la extraccién de las energias fosiles,
y a la situacién geopolitica, la diferencia en el coste de la energia cuando se priman
las energias fésiles o las renovables puede ser significativa. De manera que, los periodos
en los que se pueda fundamentar la produccién energética en renovables tendran un
coste energético relevantemente menor que cuando la produccién energética se tenga
que apoyar en fuentes fosiles. Por otro lado, en la actualidad no somos eficientes
almacenando la energia que producimos, por lo tanto, los periodos en los que hay
energia barata y abundante no se pueden aprovechar para almacenar la energia que se
produce (y utilizarla cuando su coste se eleve)

Sin duda, el consumo energético de los sistemas computacionales se ha analizado
exhaustivamente en el pasado en todos los ambitos arquitecturales, desde el hardware
hasta las aplicaciones software: por ejemplo, el consumo energético de los centros de
datos ha sido objeto de estudio [2]. También se ha investigado el consumo energético en
las infraestructuras distribuidas emergentes, como son la computacién en la nube [3]
o la méds reciente computaciéon perimetral [4] (edge computing en inglés). Ademas,
existen multitud de estudios que analizan la distribucion de tareas por recursos
(scheduling) de manera que el consumo energético se minimice [5]. En el dmbito de

las aplicaciones software, se ha propuesto la utilizacién de técnicas de computacién

aproximada con el objetivo de reducir el tiempo de ejecucion y, asi, reducir el consumo
energético [6]. Incluso las administraciones publicas realizan ya acciones destinadas a
impulsar la eficiencia energética en la implementaciéon de aplicaciones informaticas.
Buen ejemplo de ello es el programa de certificacién energética para aplicaciones
informdticas desarrollado por el gobierno alemén !.

Sin embargo, probablemente no se le ha dado la importancia suficiente al estudio
del consumo energético en los sistemas computacionales. Las cuestiones energéticas se
han relegado a un plano claramente secundario,a favor de una mayor atencién hacia los
aspectos relacionados con el rendimiento de los sistemas (medido en términos de tiempo
de ejecucion y throughput, fundamentalmente). Algunos ejemplos de esto se reflejan en
diversos trabajos [7, 8], en los cuales se intenta reducir el consumo energético de un
centro de datos, minimizando el nimero de violaciones de la calidad del servicio: por
tanto, la energia se considera como un aspecto secundario. Por otro lado, también se
observa un tratamiento similar en los planes de estudio de los grados y masteres en
informatica: desde el principio, los estudiantes aprenden de qué manera los componentes
de un sistema contribuyen a su rendimiento. Es significativo, quiza, que en los temarios
o en los libros de texto de Ingenieria del Software no aparezca la energia. Por tanto,
el primer aprendizaje que se recibe sobre la construccion de software no cuenta con
aspectos relacionados con el consumo energético. Seguramente, con la crisis energética
actual todo esto va a tener que cambiar.

En este trabajo fin de grado se plantea construir un sistema distribuido que sea
capaz de adaptarse al contexto energético de forma auténoma durante su ejecucion.
Para ello, en primer término, se analiza qué factores contribuyen al consumo energético
en los distintos niveles arquitecturales de los sistemas distribuidos: en el nivel de la
aplicacion, en el de la gestion de los recursos y en el del hardware. En el nivel de
aplicacion se considera un tipo de aplicacion cuya ejecucién acepta distintos grados
de precision, controlable mediante parametro. En este proyecto se va a utilizar una
aplicacién desarrollada por el mismo autor durante las practicas de iniciacion a la
investigacion realizadas en el grupo COSMOS. La aplicacién, denominada pymemo,
clasifica y detecta objetos en videos, utilizando la biblioteca opencv. La precision en la
aplicacion puede variar si en lugar de aplicar la clasificacion y la deteccién a cada frame,
esta primera solo se aplica al primer frame de una subsecuencia de frames consecutivos
que se consideran similares. En la gestion de los recursos, se opta por una estrategia de
scheduling completamente distribuida, en la que cada tarea se ejecuta en los recursos

computacionales cerca de las fuentes de datos (edge), siempre que haya disponibilidad.

"https://produktinfo.blauer-engel.de/uploads/criteriafile/en/DE-UZ}
20215-202001-en-Criteria-2020-02-13.pdf

https://produktinfo.blauer-engel.de/uploads/criteriafile/en/DE-UZ%20215-202001-en-Criteria-2020-02-13.pdf
https://produktinfo.blauer-engel.de/uploads/criteriafile/en/DE-UZ%20215-202001-en-Criteria-2020-02-13.pdf

Si no la hay, se ejecutara en el centro de datos. Para reducir el consumo energético
en este ambito se considera reducir la utilizacién de los recursos, y por consiguiente,
incurriendo probablemente en un tiempo de espera, o bien incurriendo en una menor
precisién. Finalmente, en el &mbito del hardware se considera variar la frecuencia hasta
encontrar una que consiga reducir el consumo energético.

Para comprender de qué manera afectan todos estos factores primero se realiza
un conjunto de experimentos, combinando todos los parametros que pueden afectar
al consumo energético (parameter sweep). A partir de estos experimentos se crea
un modelo de consumo energético que contempla un amplio abanico de escenarios
y que se utiliza por el sistema en tiempo de ejecucion para la toma de decisiones, de
manera que cuando el coste energético aumenta el sistema puede desencadenar distintas
acciones que degradan la precision o aumentan el tiempo de ejecucién. Cuando el coste
energético disminuye, el sistema opta por acciones que contribuyen a minimizar el
tiempo de ejecucion. Para realizar estas acciones, el sistema sigue un bucle MAPE-K
(monitorizacién, analisis, planificacién y ejecucién) y un algoritmo voraz para encontrar
la configuracion que mejor pueda satisfacer los requisitos energéticos o de prestaciones
en cada momento.

Para demostrar el funcionamiento se ha configurado una infraestructura distribuida,
que consta de un cluster perimetral (compuesto de raspberry pi) y un pequeno clister
a modo de centro de datos. En este ultimo se han instalado kubernetes y openfaas.
En el cluster perimetral se han instalado kubernetes y servidores http. En ambos se
han realizado determinados experimentos en los que puede observarse cémo el sistema
puede adaptarse a los distintos contextos energéticos.

El trabajo se ha realizado en el marco del grupo de investigacion COSMOS, en
colaboracién con los profesores Marfa Canales (Ingenieria Telematica de la Universidad
de Zaragoza), Alejandro Calderén (Arquitectura de Computadores de la Universidad
Carlos III de Madrid) y Gabriel Gonzalez (Insight Insitute de University College Cork,
Irlanda). Todo el cédigo desarrollado en este proyecto se puede encontrar en 2. Se debe
remarcar que en el repositorio function se encuentra el cédigo de pymemo, el cual no
es parte del trabajo, sino de las précticas realizadas por el alumno.

El resto de esta memoria se ha estructurado de la siguiente forma: en el Capitulo 2 se
describen brevemente conceptos, técnicas y herramientas utilizadas para la elaboracién
de este trabajo. En el Capitulo 3 se propone una arquitectura para el sistema de este
trabajo, y se analizan sus componentes, por otro lado en el Capitulo 4 se presenta
el modelo de consumo energético del sistema, analizando qué factores contribuyen al

consumo energético, con qué métodos y herramientas puede obtenerse el modelo y

2https://github.com/TFG-arejula27

https://github.com/TFG-arejula27

cémo puede utilizarse el modelo durante la ejecucién. Seguidamente, en el Capitulo 5
se presentan unos experimentos para validar la propuesta. Finalmente en el Capitulo

6 se presentan las conclusiones y el trabajo futuro.

Capitulo 2

Conceptos, Metodologia y
Tecnologia

2.1. IoT, Fog and Cloud computing

IoT La Internet de los cosas (Internet of Things, 10T) describe objetos fisicos (o
grupos de objetos) con sensores o incluso con capacidad de procesamiento, software,
servicios y otras tecnologias que se conectan e intercambian datos con otros dispositivos
y sistemas a través de Internet u otras redes de comunicacion. En la actualidad,
existen dispositivos capaces de generar grandes cantidades de métricas, las cuales deben
ser transmitidas y procesadas. Este conjunto de dispositivos es muy heterogéneo en
muchos aspectos: conectividad, protocolo, métricas, etc. La informacion que generan
los dispositivos IoT no es util como tal, sino que requiere un tratamiento en aplicaciones
IoT, donde a partir del conjunto de datos y un procesamiento se obtiene informacién

util.

Para el caso de este trabajo, se considera el uso de sensores como fuentes de
generacion continua de datos que tienen que enviarse a los recursos computacionales
para realizar un analisis o procesamiento. Sin duda, la monitorizacion y el analisis
masivos y continuos permite a los sistemas evaluar la situacion en tiempo real y tomar
acciones (como subir la temperatura, activar una bomba de agua) mediante actuadores
o comunicar la situacién a un ser humano para que decida qué accién tomar (activar

una alarma, crear un informe, etc.).

Cloud De acuerdo con la definiciéon oficial de cloud computing propuesta por la
entidad NIST, cloud computing ! es un modelo que permite un acceso adecuado, ubicuo
y bajo a un conjunto de recursos configurables (entendiendo CPU, almacenamiento,

red de comunicacién, aplicaciones o servicios como recursos). Esto no es més que un

"https://csrc.nist.gov/publications/detail/sp/800-145/final

https://csrc.nist.gov/publications/detail/sp/800-145/final

paradigma donde los recursos son abstraidos y proporcionados por un proveedor, de
tal forma que el usuario no tiene que preocuparse de sus limitaciones ni gestiones,
realizando tinicamente un pago por el uso. Este paradigma es totalmente contrario al
tradicional, donde el usuario debe gestionar sus maquinas virtuales y sufragar costes
independientemente de su rendimiento. El sistema Cloud aporta una gran flexibilidad
y dinamismo a los recursos hardware. Un elemento fundamental en el Cloud es la
encapsulacién de recursos y aislamiento de estos. Todos los procesos se ejecutan
sobre un conjunto de maquinas fisicas. El método de virtualizacién maés tradicional
es realizado mediante maquinas virtuales, éstas simulan una maquina fisica sobre
otra, delegando la gestién de recursos a la maquina virtual. Otro método es mediante
contenedores: éstos son una encapsulacion de software, el cual comparte recursos con

el sistema operativo anfitrion pero esta completamente aislado del resto de procesos.

Fog computing Los sistemas Cloud estan en centros de datos. Sin embargo, con
la proliferaciéon de los sensores, y las redes moviles las fuentes de datos se encuentran
en cualquier ubicacion. Por tanto, transmitir todos los datos generados a un centro
de datos en una localizacién particular no es razonable desde un punto de vista de la
escalabilidad. Ademas, con las distancias entre las fuentes de datos y los centros de
datos aparecen latencias e incrementos en los tiempos de respuesta. Por todo ello, se
ha planteado la utilizacion de recursos computacionales que se encuentran cerca de las
fuentes de datos. Pero dichos recursos suelen ser de menor capacidad en comparacion
con los recursos de los centros de datos, por lo que para mantener la calidad del servicio
en términos de prestaciones la precision de los procesamientos tiene que reducirse. Este
modelo crea una relacion jerarquica entre los distintos componentes, tanto del Cloud

como del [oT, estableciendo distintos niveles de servicio en cada uno de ellos.

& H Cloud

g
;’—"\\

EH e

Fog
Layer 2

Fog

e do @ i Be e B e e

fameied @ O g @ o O
!ﬁ_{}ﬁ#ﬁﬁf&ﬁ#ﬁ@ﬁ

Figura 2.1: Modelo Arquitectural de Fog Computing, extraido de [9]

Este modelo se denomina computacion en la niebla o Fog computing [4]. La figura 2.1
muestra un ejemplo de la arquitectura: esta tiene distintos niveles desde los dispositivos
que obtienen los datos (nivel inferior), hasta el Cloud (superior). Se aprecia una
arquitectura jerarquica, donde los niveles inferiores estan muy cercanos al usuario o a
las fuentes de datos, convergiendo hacia los niveles superiores. Esta arquitectura anade
una complejidad elevada a nuestro sistema debido a su gran heterogeneidad, por lo que
dificulta su gestion. Ademas, las soluciones tradicionales centralizadas son dificilmente
aplicables, por lo que el scheduling se realiza de forma distribuida, estrategia que se ha

adoptado en este trabajo.

2.2. Serverless computing: Kubernetes and
OpenFaaS

Serverless computing, faas Serverless es un nuevo modelo de computacion, que
segin IBM 2 se define como un modelo de aplicacién en el cual los desarrolladores
pueden construir y ejecutar aplicaciones distribuidas sin necesidad de gestionar y
asignar servidores. Durante la ejecucion, solo se paga por lo que se consume (se factura
habitualmente por milisegundo o fraccién) y no por los ciclos en los que la maquina no
estd ejecutando nada. Este nuevo modelo tiene muchas ventajas como la abstraccién
de los recursos: asi, el desarrollador puede centrarse en la aplicacién sin preocuparse
de la infraestructura. Ademds, este modelo facilita el escalado horizontal y la alta
disponibilidad de las aplicaciones mediante la auto replicacion de recursos. Todo esto
se da en el entorno denominado Cloud, con proveedores como Amazon Web service o
Microsft Azure.

Dentro de los modelos de serverless se encuentra el modelo de Function as a Service
(FaaS) [10], que consiste en ofrecer la ejecucién de cédigo como una funcién, cuya
invocacion se realiza de forma sincrona o asincrona, como reaccion a un evento. Muchas
veces estos términos se confunden y se entienden como sinénimos, pero Serverless
es mucho més amplio, haciendo referencia a cualquier tipo de recurso como cédigo,
almacenaje o enrutadores.

Faas puede verse como una combinacién del antiguo paradigma de arquitectura
orientada a servicios, donde se trata de abstraer la implementacion ofreciendo
una interfaz de servicios y RPC (llamada de procedimientos remotos), donde el
desarrollador utiliza funciones conociendo tnicamente su especificacion, invocandolas
mediante el protocolo RPC, sin necesidad de conocer en qué servidor se alojan las

funciones ni su implementacion.

’https://www.ibm.com/cloud/learn/serverless

7

https://www.ibm.com/cloud/learn/serverless

Este nuevo modelo aporta muchas ventajas, como el desacoplamiento de las
funciones, la gestion individual de ellas (ya que modificar una funcién no implica
perder disponibilidad en las demads), la facil gestién de versiones, la abstraccién de
ellas y la falta de necesidad de gestionar la infraestructura donde se ejecutan. Pero
también tienen ciertos inconvenientes, posiblemente debidos a lo prematuro que es este
paradigma. El c6digo es menos legible (en vez de invocar a una funcién se hace una
llamada http) y es dificil crear flujos de invocaciones complejos, teniendo que ser la

mayoria de ellos secuenciales.

kubernetes y OpenFaaS Para poder gestionar los recursos en el Cloud se necesita
un orquestador. Este sera el encargado de asignar los contenedor a las distintas
maquina, asi como de crear, configurar y eliminar los despliegues. En este trabajo se
usard Kubernetes [11]: como se definen en su web, es un orquestador para automatizar
los despliegues, el escalado y la gestién de contenedores en el Cloud. Kubernetes permite
especificar mediante archivos de texto el despliegue de aplicaciones y este se encargara
de que siempre se encuentren en un estado correcto definido: esto significa que estara
continuamente monitorizando el estado de cada aplicacién desplegada, y si por ejemplo
una se encuentra en una maquina caida, esta automaticamente se lanzara en otra para
estar disponible. Existen muchas implementaciones de kubernetes, siendo la original
k8s. Para este proyecto se ha considerado la alternativa k3s®: esta versién es mucho
maés ligera, por lo que permite su ejecucién en las raspberries (las cuales no tienen
recursos suficientes para ejecutar la versiéon original). Ademds, que consume menos
energia, manteniendo una coherencia con la propuesta inicial.

Mediante Kubernetes se desplegard OpenFaas [12]: este framework serd el que se
utilizara para el despliegue de nuestra aplicacion Faas, y se encargara de su despliegue,
disponibilidad, acceso y obtencién de métricas. Mediante su aplicaciéon de linea de
comandos se creardn las imagenes de los contenedores las cuales se desplegaran [13],
permitiendo asi que como desarrolladores se limiten a escribir el codigo de las funciones

que queramos implementar, delegando las tareas citadas previamente.

2.3. Mediciones de Energia y Procesadores: Intel y
ARM

Para crear y validar nuestro modelo se han realizado experimentos midiendo
la potencia sobre los distintos niveles del sistema. En los sistemas distribuidos la

hetereogenidad de los componentes es muy alta: los ordenadores que se emplean tienen

3https://k3s.io/

https://k3s.io/

procesadores con diversas arquitecturas. Las maquinas utilizadas han sido raspberries
con procesadores ARM, mientras que el centro de datos usa un procesador Intel. Por

ello, la forma de medir la potencia es distinta.

Intel Los procesadores Intel modernos cuentan con una funcionalidad denominada
Inter Hardware P-State (HWP), por la que el procesador intenta ajustar la frecuencia
de la CPU y el voltaje para que sean los mas adecuados para satisfacer las
prestaciones, a la vez que se consume la menor cantidad de energia posible. Bajo
el sistema operativo Linux Ubuntu, existen herramientas que permiten controlar el
comportamiento de HWP. En particular, existen 5 politicas que pueden seleccionarse
para modificar el comportamiento de HWP —conservative, ondemand, schedutil,
powersave y performance—, al mismo tiempo que se pueden habilitar o deshabilitar las
frecuencias denominadas turbo. Por ejemplo, en la politica performance se priman las
prestaciones frente a la energia, por lo que la CPU se suele fijar a una alta frecuencia;
mientras, que en la politica powersave se prima el ahorro energético. Por otra parte,
la politica userspace permite al administrador de la maquina fijar como maximo una
frecuencia dada.

Para medir la potencia utilizada por las maquinas, se ha utilizado la herramienta
powerstat: este programa utiliza datos expuestos por el kernel de Linux en procesadores
Intel. Se han considero correctas las mediciones de energia por software segin el
trabajo [14]. Esta herramienta no solo nos ofrece la potencia en vatios, sino también
otras métricas de gran utilidad como la frecuencia del procesador o los C-state del
procesador.

Para realizar estos experimentos de forma automatizada se creé una herramienta
en Go que permite realizar las mediciones, volcar los resultados en un fichero csv,

configurar la frecuencia del procesador y ejecutar el programa a medir °.

ARM La herramienta powerstat no recoge métricas en CPUs con arquitectura ARM,
por lo que las mediciones de la potencia hay que realizarlas con un dispositivo hardware.
La medicién se hizo interponiendo un multimetro entre la fuente de corriente y la propia
rasberry como se muestran en las figuras 2.2b y 2.2a. De esta forma se ejecutan los
programas y se modifican las frecuencia de forma manual desde un terminal, y las
mediciones se guardaran en ficheros csv, conectando el multimetro a un ordenador

mediante el software para windows del fabricante.

‘https://smackerelofopinion.blogspot.com/
Shttps://github.com/arejula27/measurepymemo

9

https://smackerelofopinion.blogspot.com/
https://github.com/arejula27/measurepymemo

(a) Lateral

Figura 2.2: Medicién con multimetro

2.4. Virtual Box y Vagrant

A la hora de realizar los experimentos se han creado entornos totalmente controlados
y replicables. Vagrant [15] permite definir una infraestructura virtual mediante ficheros
de texto,es decir, un conjunto de maquinas virtuales con sus caracteristicas hardware
y su red de interconexiéon. Desde Vagrant se crearon las méaquinas virtuales, se
automatizo la creacién del clister de Kubernetes y se realizé el despliegue de OpenFaas.
Vagrant ofrece una gran variedad de hipervisores: se opté por virtual boz, debido a la
familiaridad que se tenia con dicho software frente a otros, ademas de encontrar mas
documentacién sobre él. Esta automatizacion se aplico al servidor que simulan el centro
de datos, pero no al clister de raspberries, ya que como prueba de concepto se tratd
de desplegar de forma sencilla y a partir de los recursos disponibles, realizando la

instalacién de forma manual.

2.5. Trabajo Relacionado

La gestion del consumo de la energia en los centros de datos puede dividirse en
tres grupos principalmente: (i) escalado dindmico del rendimiento [16, 17], que en
general tiene que ver con ajustar la frecuencia de los procesadores para ahorrar energia;
(ii) heuristicas reactivas [8, 18] que redistribuyen méquinas virtuales en funcién de la
utilizacion de las maquinas fisicas, evitando que unas maquinas tenga alta utilizacién y
otras baja, y (iii) heuristicas predictivas [19, 20] que intentan disminuir la utilizaciéon de
las maquinas en funcién de un modelo estadistico de histéricos de ejecucion, de manera
que se intenta predecir la carga de trabajo y qué utilizacién va a suponer, para asi
redistribuir la carga de manera que la utilizacién sea la misma en todas las maquinas.

En general, todos estos trabajos tratan de reducir la utilizacién, como en nuestro

trabajo. En este trabajo se consideran todos los factores que pueden contribuir al

10

consumo energético en todos los niveles arquitecturales. El contexto del trabajo es una
aplicacion particular que genera datos continuamente que tienen que procesarse. Para
ello, se dispone de un conjunto de maquinas distribuidas y dedicadas para la aplicacién.
En ese sentido, es factible obtener un modelo experimentalmente que capture el
comportamiento de todos esos factores, de manera que el modelo pueda explotarse
en tiempo de ejecucién. En los trabajos en que se gestiona la energia ajustando la
frecuencia, existen algunos de ellos en los que se explora la estructura de una tarea [21]
para ajustar la frecuencia en consonancia. En nuestro caso, consideramos la tarea y su
contexto de ejecucién para ajustar el gasto energético de la tarea (ajustando su umbral,
threshold en inglés). Sin duda, la diferencia més importante entre nuestro trabajo y el
resto es que nos planteamos un contexto energético en el que el precio de la energia
puede fluctuar significativamente, de manera que cuando el precio energético comience
a subir, nuestro sistema es capaz de ajustar los parametros para seguir operando sin
superar los umbrales de consumo energético que el sistema se puede permitir. Reducir
el coste energético implica, necesariamente, aumentar el tiempo de ejecuciéon, reducir
la precision de las ejecuciones o una combinacién de ambos. Las aplicaciones en sus
acuerdos de la calidad del servicio (Service Level Agreement en inglés) podran establecer
qué degradacion es tolerable, el sistema tomara las decisiones adecuadas en funcion de
ello. Si ninguna configuracién energética permite realizar el procesamiento sin superar

el coste energético, nuestro sistema llegara incluso a detenerse.

11

12

Capitulo 3

Arquitectura del Sistema

3.1. Pymemo: Aplicacién de Vigilancia

Como aplicacién para este trabajo se utilizard pymemo. Es importante remarcar
que esta aplicacion no es parte del esfuerzo de este trabajo fin de grado, inicamente
hacemos uso de ella para ejemplificar cémo una aplicacién puede adaptar su consumo

energético.

Aplicacion pymemo La aplicacién recibe como entrada un video, como salida
clasifica y detecta los objetos que aparecen en el video. Para ello utiliza deep learning,
OpenCV y Python. La aplicacion se llama Pymemo por una razén muy simple: esta
implementada en python, y su caracteristica principal es la aproximaciéon mediante
memorizacién. Es un proyecto FOSS con licencia MIT, es accesible en este repositorio
1.

Su funcionamiento es el siguiente: por cada frame del video (i) clasifica los objetos
en el frame y (ii) detecta movimiento. El reconocimiento de objetos estd basado en
una red neuronal convolucional denominada Inception, descrita en [22] y con el c6digo

accesible en este repositorio .

Como la fase de clasificacion toma la mayoria del tiempo de ejecucion, se le anade
una fase de memorizacién. Tras la ejecucién, pymemo muestra el tiempo que ha
necesitado para realizar la clasificacion, una etiqueta para cada frame y el método
de clasificacién del frame (hit = 0) o memorizado (hit = 1). Al final de la ejecucién

muestra un resumen del anélisis de todo el video con métricas globales.

https://github.com/acaldero/pymemo/
2https://github.com/JimmyHHua/opencv_tutorials

13

https://github.com/acaldero/pymemo/
https://github.com/JimmyHHua/opencv_tutorials

Approximate Computing y memorizacion

Una de las caracteristicas de pymemo es su capacidad de liberar recursos a cambio
de obtener resultados con menor precision. Esto es fundamental para el proyecto, ya que

permite al sistema liberar recursos y obtener un ahorro energético a nivel de aplicacién.

Este ahorro se obtiene mediante computacién aproximada y memorizacion: esto
significa que si en una subsequencia de frames se encuentran frames consecutivos que
son similares el procesamiento de clasificacién solo se aplicara al primer elemento de
la subsequencia. La precisién dependera, por tanto, de qué umbral se considere para
que dos frames dados se consideren similares. Para ilustrar el efecto del threshold en
las prestaciones y en el error que se introduce se realizaron distintos experimentos
cuyos resultados se recogen en la Figura 3.1. Se puede observar cémo al aumentar el
threshold porcentualmente, la mejora en las prestaciones es mayor que el porcentaje
anadido de error. Asi, con un threshold 50, se incurre en un 12 % adicional de error,
pero se mejoran las prestaciones en un 40 %.

En este caso particular, no se puede caracterizar el error de forma analitica: este
depende mucho de los frames que componen el video. No es objeto de este trabajo fin
de grado determinar exactamente cual puede ser el error. Se utiliza a modo de ejemplo
de ejecucién de un tipo de aplicaciéon que puede reducir su precision para reducir el

tiempo de ejecucion.

100 T T T T T
Perform, p (%) ——
rcentage Error (%) —>—

Percentage

0 I I I I I
0 50 100 150 200 250 300

Threshold

Figura 3.1: Porcentaje de mejora de las prestaciones de pymemo y portentaje de error
anadido en pymemo en funcién del threshold

14

3.2. Infraestructura Computacional Distribuida

La infraestructura de este trabajo fin de grado se ha creado siguiendo una
arquitectura de aplicaciones [oT, donde su procesado se ha distribuido tanto en Cloud
como en Fdge. Se ha planteado un esquema jerarquico en tres capas, como se muestra
en la figura 3.2: la primera son los sensores IoT, unas camaras de seguridad que se
limitan a grabar y enviar el video a su capa contigua. La siguiente capa corresponde
al Fdge, un clister de raspberries, que recibird la peticiéon de tratamiento de video.
Finalmente, en la tltima capa se encuentra el centro de datos, un cluster formado por
maquinas virtuales donde se considerara que los recursos son infinitos. Cada capa tiene
un unico punto de entrada, que denominaremos gestor de peticiones, el cual decide si
la peticién se trata en en el propio clister o es enviada a un nivel superior.

Para simplificar el proyecto, y debido a los recursos disponibles nos centraremos
unicamente en una rama, donde las camaras son emuladas, el clister edge esta formada
por tres raspberries que estan localizadas en un laboratorio del edificio Ada Byron de
la universidad de Zaragoza. El cluster del centro de datos es un conjunto de maquinas

virtuales en un servidor del mismo laboratorio.

Scheduling Para garantizar la escalabilidad, se escogié una estrategia de scheduling
totalmente distribuida: no existe un estado global del sistema, sino que las peticiones al
llegar a un cluster deciden si se ejecutan en el clister o contintian al siguiente nivel de la
jerarquia. Independientemente de estas decisiones de las aplicaciones, en cada clister,
existe un componente gestor de recursos que se encarga de facilitar las maquinas vy,
ademas, de gestionar el consumo energético. Toda la gestion del claster se realiza desde
el gestor de recursos. Este es consciente de todos los recursos de los que dispone, del
estado del entorno (precio de la luz y error maximo permitido), y del estado del propio
clister (peticiones aceptadas, tiempos de ejecucion y gasto energético).

Como consecuencia del scheduling la peticion de procesamiento de un video
(metadatos) y el video (dato) pueden seguir dos caminos alternativos, como muestra
la Figura 3.3 siendo estos A1-A2 o B1-B2-B3. El camino A1-A2 se daria cuando hay
disponibilidad el clister formado por las raspberries, en dicho caso, la peticiéon de IoT
llega el gestor de peticiones de las raspberries (Al) y este aceptando la peticién la
ejecutard en la raspberry (A2). En caso de no disponer de recursos suficientes seguird
el flujo B1-B2-B3, en el cual tras recibir la solicitud de ejecucién del IoT (B1) el gestor
de peticiones detectara la imposibilidad, por lo que delegara la peticion al gestor de
peticiones del centro de datos (B2). Este a su vez comprobard la disponibilidad de

recursos: en caso de tener suficientes ejecutara la solicitud (B3) y en caso contrario

15

esperara hasta tenerla.

Gestor de i Gestorde
peticiones ! : recursos

Gestorde | | Gestorde

Gestor de Gestor de
recursos peticiones peticlones] recursos
L y S y / \ . F 4 /
~— t 4 7 ~ 19 _

4

4
4
4

Figura 3.2: Diagrama estético - Arquitectura del sistema

B2

A1B1

4

Figura 3.3: Diagrama dinamico - Arquitectura del sistema

Despliegue de pymemo La aplicacion se desplegd en ambos tipos de clister pero

de forma distinta: en el clister con las maquinas virtuales se desplegd con OpenFaas, en

16

este caso la modificacion sobre pymemo fue minima, simplemente se eliminé la llamada
a la funcién main, y en el fichero de configuracion de la aplicacion de linea de comandos
de OpenFaas se indicé cual era la funcion main, y la generacién del contenedor a partir
de una plantilla personalizada con todas las dependencias ya instaladas.

En el clister formado a partir de raspberries no fue posible desplegar OpenFaas
debido a la gran limitaciéon de recursos computacionales. Una vez identificado el
problema se trato de realizar una aplicacion alternativa similar pero més ligera: esta
idea se descart6 dada su complejidad. Finalmente se optd por crear un servidor web que
enlace una url con una invocacién a pymemo, simulando asi una aplicacion faas. Este
servidor web fue desplegado sobre un deployment de Kubernetes y expuesto por un
servicio NodePort. El despliegue de ambos clisters estan disponibles en un repositorio
3 de Github.

Se escogio un despliegue serverless frente a uno mas tradicional por la flexibilidad
que permitia. Cada elemento es muy aislado de los demés y su gestion es muy sencilla a
través de orquestadores como Kubernetes. Un ejemplo de esta ventaja es la capacidad
de autoescalar las funciones, mientras que en un despliegue monolitico tendria un
servidor central encargado de diversas funciones, una funcién serverless inicamente es
un contenedor con una funcién encapsulada, de esta forma podemos liberar o ocupar

recursos de una forma mucho mas precisa.

3.3. Calidad de Servicio para pymemo

Habitualmente, muchos trabajos establecen los pardmetros de la calidad de servicio
en torno al tiempo de ejecucién de una tarea o al throughput (nimero de tareas
procesadas por unidad de tiempo). Con la aparicién del paradigma de la nube, muchas
veces ambos parametros se combinan con el coste econémico.

En las aplicaciones en las que o para las que se generan datos continuamente y
cuyo procesamiento tiene que hacerse en streaming, se ha propuesto que la calidad de
servicio se mida respecto del throughput [23, 24]. Por tanto, para la definicién de la
calidad de servicio de pymemo se va a considerar una aproximacion similar. En general,
se pretende maximizar el throughput en pymemo, es decir, se pretende que el ntimero
de pymemos procesados sea maximo, haciendo el menor uso de recursos posible.

En un contexto como el actual, el precio de la energia puede fluctuar de una manera
impredecible. Por ejemplo, supéngase el caso en el cual se dispone de placas solares
para autoconsumo: cuando se dan condiciones solares adecuadas, se puede alimentar

un clister de computadores. En ese caso, el coste puede considerarse practicamente

Shttps://github.com/arejula27/TFG-deployment

17

https://github.com/arejula27/TFG-deployment

cero. Sin embargo, si las condiciones para utilizar las placas solares no son adecuadas
y se tuviera que adquirir la energia a precio de mercado, el precio podria ser muy
elevado. En este contexto, este trabajo fin de grado define la calidad de servicio para
una aplicacién del tipo de pymemo. Se pretende, por lo tanto, que la calidad de servicio
pueda definirse de forma diferente en funcién del contexto energético. Cuando el coste
de la energia esté proximo a cero, el sistema podra realizar los calculos con la mayor
precisién posible, maximizando el throughput y consumiendo toda la energia necesaria.
Sin embargo, cuando el coste de la energia sea elevado, el sistema podra degradar
la precision de los calculos e incluso parar completamente la ejecucion y apagar las
maquinas si fuera necesario. La Tabla 3.1 recoge estas ideas y propone cuatro escenarios
diferentes. Cuando la energia sea barata, el sistema podra operar sin restricciones
energéticas y proporcionar la méaxima precisién. Por contra, se proponen tres estrategias
distintas que pueden permitir limitar el consumo energético cuando la energia sea cara.
La estrategia b) consiste en que el coste econémico de la potencia consumida (potencia
instantanea o bien potencia media) no supere un maximo C. La estrategia c) consiste
en que el coste econémico de la energia para ejecutar un pymemo no supere un coste
méaximo C, y la estrategia d) consiste en que la potencia consumida no supere un
maximo dado P.

No se pretende, por tanto, minimizar el consumo energético, sino no superar un
maximo de consumo energético y tratar de maximizar el throughput habida cuenta
de las restricciones energéticas. Cuando se introduzcan las restricciones energéticas,
el sistema podrd optar por dos vias para reducir el consumo, que podran incluso
combinarse: reducir la precision de los calculos o introduciendo un tiempo de espera.
Por lo tanto, en términos generales, muy probablemente el throughput podra verse
impactado, o bien lo harad la calidad de los cdlculos. Todos estos escenarios pueden
tener sentido en distintos contextos de escasez energética y proporcionaran al sistema

distintas posibilidades de adaptacion, tal y como se discutirda mas adelante.

Tabla 3.1: Calidad de Servicio para un contexto fluctuante entre escasez y abundancia
de energia

Energia a) Sin restricciones energéticas
a coste 0 Maxima precision

b) El coste econémico de la potencia consumida <C
Precision degradada

Energia cara
¢) El coste econémico de la energia para 1 pymemo <C
Precision degradada

d) La potencia consumida <P

18

Capitulo 4

Modelos de Consumo Energéticos

4.1. Factores que Contribuyen al Consumo
Energético Computacional

En el trabajo se han considerado aquellos factores de las distintas capas del sistema
que afectan al consumo energético de un sistema computacional. Cada cluster tiene
unas caracteristicas propias e intrinsecas, por lo que es necesario desarrollar un modelo
especifico para cada uno. Ademas de que los modelos obtenido han sido elaborados
de forma experimental en entornos controlados, ejecutando tinicamente la aplicacion
pymemo.

A la hora de crear el modelo se deberan especificar los factores de cada capa que
tienen un impacto en el consumo. La forma de hallar dichos factores recae sobre la
formula de la potencia (ecuacién 4.1). Esta depende de dos variables, la intensidad y el
voltaje, siendo este tltimo constante en cada maquina y especificado por la fuente de
alimentacion. En algunos casos se puede bajar el voltaje de los procesadores, pero no
siempre es una opcién recomendable. Lo que si se puede hacer es reducir la frecuencia
de la CPU y reduciendo asi la intensidad. Ademas, para reducir la intensidad también

se puede disminuir la ocupacion de la CPU.
P=VxI (4.1)

También es importante remarcar la implicacién del tiempo en el sistema, el coste
energético total depende de la potencia y del tiempo total de ejecucién (ecuacién 4.2).Al
reducir la potencia mediante la disminucion de la frecuencia, los tiempos de ejecucién
aumentaran, por lo que es fundamental que la disminucién de la potencia sea en mayor

proporcion que el aumento del tiempo
E=Pxt (4.2)

En la Tabla 4.1 se muestran los factores que afectan a la intensidad de la maquina

en las distintas capas.

19

Tabla 4.1: Factores que afectan a la intensidad de la maquina en sus distintas capas

Capa Factores

Maquinas fisicas Frecuencia CPU

Scheduling / Gestién recursos | Ocupacién maxima permitida
Aplicacion Precision de los calculos

Maquinas fisicas La primera capa corresponde con las propias maquinas fisicas. Al
modificar la frecuencia del procesador bajaremos la intensidad de la maquina, por ende

requerird menor potencia y utilizando menos energia.

Scheduling / Gestor de recursos En esta capa se limitard el nimero de maquinas
activas de cada cluster por cuestiones energéticas. Hay que distinguir si el clister solo
se compone de maquinas fisicas (por ejemplo, en este caso el clister de raspberry pis)
o si el cluster se compone, ademés, de maquinas virtuales. Cuando multiples maquinas
virtuales se ejecutan en un servidor fisico concurrentemente, reduciendo el nimero de
maquinas virtuales que coexisten en el mismo servidor fisico, se reduce el consumo
energético del servidor fisico. El nimero de maquinas virtuales que coexisten en la
misma maquina fisica no solo afecta al consumo energético, sino que ademés influye
gravemente en el tiempo de ejecucion, debido al efecto de la interferencia. Este efecto
se produce por el hecho de que hay recursos en el hardware (como el bus de acceso a
la memoria) que estan compartidos por todas las maquinas virtuales. La jerarquia de

memoria también puede tener efectos significativos en las prestaciones.

Aplicaciéon El dltimo nivel a tener en cuenta es el de aplicacién. Para ello deberemos
contar con una aplicacién capaz de modificar su comportamiento, pudiendo aumentar
su ahorro energético a cambio de disminuir su precision en los célculos. La idea es aplicar
aproximacién para minimizar la cantidad de cémputo requerida por la aplicacion, y
de esta forma reducir la intensidad. En este proyecto hemos usado una aplicacién
de analisis de videos de camaras de vigilancia, la cual obtiene el ahorro de guardar en
memoria cache resultados precalculados: en este caso el ahorro sufre una gran influencia
por el video que analice, ya que depende de la similitud entre los frames y no solo
depende de la propia aplicacion. Para obtener los datos del modelo se realizaron pruebas
modificando el valor del umbral (threshold) en 4 valores: 0,50,10,150, siendo 0 no utilizar
memorizacién y 150 utilizarla en gran medida, pero con un error aceptable (20 % como
muestra la figura 3.1).

El uso del error no influye inicamente en la potencia del sistema, sino que también
reduce los de tiempos de ejecucién, disminuyendo asi el coste energético y aumentando

el nimero de peticiones por segundo que puede aceptar el sistema. En la grafica 4.11

20

se aprecia como la tendencia es reducir la energia aumentando el error, y en la gréfica
4.7 se muestra que a mayor error mayor throughput. En la tabla 4.2, se ve claramente

el efecto del error en los tiempos de ejecucion.

4.2. Modelo Energético del centro de datos

El modelo energético del centro de datos se obtuvo sobre un servidor localizado en
un laboratorio del edificio Ada Byron de la universidad de Zaragoza. Este ordenador
tiene un procesador Intel(R) Xeon(R) Bronze 3106 CPU 1.70GHz, el cual tiene una
arquitectura x86_64, 16 CPUs, un hilo por nicleo, una memoria RAM con 125 GB
v 9.4 GB de memoria swap. Su rango de frecuencias es de 0.8GHz a 1.70GHz. El
sistema operativo utilizado es 18.04.6 LTS (GNU/Linux 5.3.0-7648-generic). En él se
desplegaron maquinas virtuales mediante la herramienta Vagrant con 3 GB de memoria
cada una y 3 nucleos en el procesador. En las maquinas virtuales se ejecuté Ubuntu
18.04.6 LTS (GNU/Linux 4.15.0-171-generic) como sistema operativo.

Con el conjunto de maquinas virtuales se cred un cluster de Kubernetes, donde se
ejecuta OpenFaas, dando asi disponibilidad a pymemo en un modelo serverless.

Sobre este cluster virtual se cred el modelo energético para la méquina fisica a partir
del método de barrido de parametros, es decir, se ejecuté pymemo variando todas las
posibles combinaciones de la terna threshold, ocupacion y frecuencia, obteniendo asi sus
métricas asociadas como la potencia y tiempo de ejecucién. Para eliminar resultados
espurios el experimento se repitié varias veces.

Los experimentos revelaron los siguientes observaciones. Cuando se disminuye la
frecuencia, se observa que la potencia consumida siempre es menor, por lo que se
producird un menor gasto energético por segundo, como se observa en las Figuras
4.1, 4.2, 4.3 y 4.4. Ademas, al disminuir la frecuencia, hay también una tendencia
a que aumente el tiempo de ejecucion, por ello el throughput disminuye. Este efecto
puede verse en las Figuras 4.5, 4.6, 4.7 y 4.8. También se observa el fenémeno de la
interferencia en las prestaciones. Cuando se usan maquinas fisicas, incrementos en el
nimero de maquinas fisicas utilizadas tiene un impacto proporcional en el throughput.

En este caso, al incrementar el nimero de maquinas virtuales, en la misma maquina

Threshold | Tiempo (s)
0 360.943
50 277.755
100 181.626
150 141.941

Tabla 4.2: Tiempos de ejecucion con frecuencia 1,2 GHz y 3 ejecuciones simultaneas

21

fiscia, el throughput no aumenta en la misma proporcién, sino que aumenta menos,
llegando a disminuir en algunos casos, como puede verse en la diferencia de throughput
con 1,6GHz y threshold 0 en las Figuras 4.7 y 4.8. Tipicamente, cuando se plantean
modelos tedricos para optimizar el coste energético o las prestaciones, en la mayoria
de ellos se asume que el tiempo de ejecucion es una constante y se ignoran los efectos
que tiene la interferencia en las prestaciones.

Otro aspecto importante es que, al variar la frecuencia, el tiempo de ejecucién (o
bien el throughput) y la potencia, no varfan en la misma proporcién. Por lo tanto, puede
haber casos en los que, por ejemplo, a una menor frecuencia, se tenga un mayor tiempo
de ejecucion, pero con un menor consumo energético total. Por ejemplo, en la Figura
4.9, se observa que en la configuracion con mayor frecuencia de 1,7GHz y threshold 0,
la ejecucion de 2 pymemos en paralelo tiene un coste energético total de 14.367 J y un
throughput 0,0085 pymemos / s. Mientras que si observamos el coste energético total
para la frecuencia 1,6 GHz y threshold 0 es de 12.550 J y el throughput 0.0084 pymemos
/ s, lo que supone un ahorro energético de un 12% y una disminucién del throughput
del 1%. Esto es, algunas veces, reduciendo la frecuencia de la CPU, se puede reducir
el consumo energético de la ejecucion de la carga de trabajo, incrementando un poco
el tiempo de ejecucién (disminuyendo el throughput). Sin embargo, no siempre es asi
y, ademas, la tendencia general es que al seguir disminuyendo la frecuencia, se llega
a un punto en el que aumenta mucho mas el tiempo de ejecucién y, por tanto, ya no
solo no hay ahorro energético, sino que incluso hay un mayor consumo. Por ejemplo,
en ese mismo caso de 2 pymemos en paralelo, si reducimos la frecuencia a 0,9 GHz,
el coste energético es 16.992 J, mucho mayor, y el throughput, mucho menor, 0.0055
pymemos /s.

Este mismo efecto de la variacion en el consumo energético al reducir la frecuencia
puede verse en las Figuras 4.9, 4.10, 4.11 y 4.12. En estas figuras se puede apreciar
que una menor frecuencia la tendencia es que se reduzca el consumo energético, pero
con una mayor reduccién de la frecuencia, al aumentar el tiempo total de ejecucién,
termina por aumentar el gasto total energético.

Por otra parte, es también significativo el impacto que tiene la reduccion de la
precisiéon en la ejecucion de pymemo en el tiempo de ejecucion, como se aprecia en las
Figuras 4.5, 4.6, 4.7 y 4.8 y, en consecuencia, en el coste energético total de las Figuras
4.9, 4.10, 4.11 y 4.12.

El modelo energético consistird en un conjunto de elementos formados por un valor
de throughput, la potencia asociada y la configuracién que lo garantiza (terna ocupacion,

frecuencia, threshold).

22

100 T T T T T T T T T T
th-O I

th-50 m—
80 |- th-100 mes |
th-150 M
g 60 -
.°
o
c
g
5 a0t .
20 |- .
0

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.1: Evolucién de la potencia respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemo

100 T T T T T T T T T T
th-0 I
th-50 -
80 th-100 e |
th-150 B
g 60f |
.o
v
c
g
S a0l -
20 —
0

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.2: Evolucién de la potencia respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo

100 T T T T T T T T T T
th-0 -
th-50 I
80 - th-100 W |
th-150 e
g 60f i
8
v
f
o
5 a0} .
20 =
0

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.3: Evolucién de la potencia respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo

23

100 T T T T T T T T T T
th-O I

th-50 m—
80 |- th-100 mes |
th-150 M
g 60 -
.°
o
c
g
5 a0t .
20 |- .
0

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.4: Evolucién de la potencia respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo

0.05 T T T T T T T T T T
th-0 I
th-50 -
0.04 th-100 e |
th-150 B
0.03 .

Throughput

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.5: Evolucién del throughput respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemo

0.05 T T T T T T T T T T
th-0 -
th-50 I
0.04 th-100 W |
th-150 e

Throughput

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.6: Evolucién del throughput respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo

24

T
th-0 —
th-50 —

0.04 - th-100 W _|
th-150 Femam

Throughput

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.7: Evolucion del throughput respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo

0.05 T T T T T T T T T T
th-0
th-50 -
0.04 th-100 e |
th-150 B

Throughput

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.8: Evolucién del throughput respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo

45000 T T T T T T T T T T
th-0 I
40000 [th-50 I
25000 | th-100 me |
th-150 e
30000 .
T 25000 - .
o
S 20000
w

15000

10000

5000

0.80000.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.9: Evolucién de la energia respecto a la frecuencia y threshold con 2 ejecuciones
paralelas de pymemo

25

45000 T T T T T T T T T

T
th-O I

40000 - th-50 M
35000 - th-100 e |

th-150 M
30000 [B
25000

Energia (J)

20000

15000

10000

5000

0.80000.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.10: Evoluciéon de la energia respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo

45000 T T T T T T T T T T
th-0
40000 - th-50 -
th-100 mam
35000 1= th-150 M |
30000 [=

25000

Energia (J)

20000

15000

10000

5000

0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.11: Evoluciéon de la energia respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo

45000 T T T T T T T T T T

th-0 -
40000 - th-50 M
th-100 W

35000 th-150 W

30000
25000

20000

Energia (J)

15000

10000

5000

0.80000.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

Frecuencia (GHz)

Figura 4.12: Evoluciéon de la energia respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo

26

4.3. Modelo energético edge

El modelo del edge se ha obtenido también mediante el barrido de parametros.
Dicho barrido se ha realizado en una raspberry pi 3 B+ localizada en el laboratorio del
edificio Ada Byron de la universidad de Zaragoza. Las caracteristicas de la maquina
son una CPU Cortex-A53 con cuatro nticleos, un hilo por ntcleo, una frecuencia de
0,6 GHz a 1,2 GHz, una memoria RAM de 973Mi y 99Mi de memoria swap. En un
principio se traté de montar un clister Kubernetes entre varias raspberries y desplegar
ahi OpenFaas, pero debido a las pocos recursos de las maquinas fue imposible lograr
desplegar este tltimo. Por ello, se utilizd una tnica raspberry para medir, en la cual se
ejecuto un servidor http a través el cual se podia invocar pymemo. Otro problema es la
medicion de la potencia. Como se explica en la seccién 2.3, las raspberries no permiten
obtener datos de la potencia por software, asi que hubo que utilizar un multimetro y
hacer el proceso de forma manual.

En un principio se realizaron medidas a la menor frecuencia y sin error, pero debido
a los altos tiempos de ejecucién (en torno a la hora) se decidié limitar las frecuencias
a las dos mas altas, donde el tiempo de ejecucion se reducia a la mitad. Como se ve en
la grafica de la figura 4.14, la frecuencia tiene poco impacto en la potencia, pudiendo
considerarse que ambas frecuencias generan la misma potencia. En la grafica de la
figura 4.13 se aprecia la influencia de la frecuencia en la energia total de una ejecucion
de pymemo, siendo esta menor a 1.1 GHz. En cuanto a las peticiones que ejecuta por
segundo en la raspberry, se ha determinado que en los casos con threshold 0,50 y 100
son mayores con frecuencia igual a 1,1GHz. En cuanto a las peticiones ejecutas por
segundo el mejor valor se obtiene con la configuracion 1,1GHz a threshold 100, siendo
la segunda mejor opcion la otra frecuencia con el mismo threshold. En el caso de la
frecuencia 1.2 GHz, tiene el mismo throughput para los threshold 20 y 50. La frecuencia

1.1Ghz tiene el mayor throughput pero también el menor.

27

10000 T T

th-0
th-30

8000

6000

Energia (J)

4000

2000

1.1000 1.2000

Frecuencia (GHz)

Figura 4.13: Evolucion de la energia respecto a la frecuencia y threshold en una
raspberry

4.5

25

Potencia (W)

1.5

1.1000 1.2000

Frecuencia (GHz)

Figura 4.14: Evoluciéon de la energia respecto a la frecuencia y threshold en una
raspberry

0.0014 th-0 -
th-50 M
0.0012 - th-100 M |
th-150 M
0.001 | .
5
o
£ 0.0008
>
o
£ 0.0006
0.0004
0.0002
0

1.1000 1.2000

Frecuencia (GHz)

Figura 4.15: Evolucion de la energia respecto a la frecuencia y threshold en una
raspberry

28

4.3.1. Modelo Energético de la Red de Comunicacion

Un modelo de consumo energético para la transmision de datos en la red de
comunicacién estd descrito en [25]. En él se observa, cémo la transmisién Wireless
desde una raspberry pi, consume entre 1W y 1,4W, mientras que el consumo debido
a la transmisién a través de Ethernet consume entre 0,3W y 0,4W. Sin embargo,
experimentalmente pudimos comprobar como para transmitir los videos de las raspberry
pis al centro de datos, el sistema tiene que acceder al disco de la raspberry, esto es,
a una tarjeta de memoria. Eso hace que la potencia total necesaria para realizar la
transmision de un video a través de Ethernet se eleve hasta unos 4W. Es, por tanto,
importante considerar que cuando se toma la decisién de transmitir al siguiente nodo,

se incurre en un coste energético que puede no ser despreciable.

4.4. Algoritmo de busqueda

El algoritmo escogido fue el algoritmo voraz, este es una busqueda que obtiene
una solucién correcta cumpliendo un conjunto de restricciones preestablecidas. Este
algoritmo nos garantiza encontrar una solucién en caso de que exista, pero no garantiza
que sea la 6ptima. Ademas, la simplicidad del algoritmo permite no anadir un gran
sobre coste, y con ello un mayor gasto indeseado como otras busquedas que recorran
todo el espacio de soluciones. Este algoritmo se describe con las instrucciones del

Algoritmo 1.

Data: C
Result: S
Greedy(Conjunto de candidatos C): solucién S;
S =0
while C no sea vacio y S no sea solucion do
x = seleccionar(C) ;
C=0C-{x}
if z cumple restricciones then
| S={x}

end

end
if S # 0 then
‘ return S;
else
‘ return "no hay solucién”;
end
Algorithm 1: Algoritmo Voraz que busca la configuracion energética apropiada
El algoritmo parte de un conjunto de posibles soluciones C' y un conjunto final de

soluciones S. A partir de ahi, se realizard una iteracién sobre el conjunto C, extrayendo

29

un elemento cada vez. Si el elemento extraido es una solucién correcta (cumple las
restricciones), la busqueda finalizara y dard por solucién el dltimo elemento extraido
y unico elemento de S. En caso de que ningiin elemento cumpla las restricciones, el
algoritmo determinara que no existe solucién. Se debe remarcar que una vez explorado
un elemento del conjunto C| este se descarta, no pudiendo volver a ser evaluado.

En este proyecto el conjunto de soluciones es una lista de configuraciones del sistema,
ordenada por throughput, de mayor a menor. Cada configuracién esta formada por la
terna ocupacion, frecuencia y threshold, teniendo asociada ademds la potencia que
dicha configuracién genera en el sistema (nétese que a partir de la potencia y el resto
de parametros se puede calcular la energia total necesaria). La busqueda consiste en
recorrer la lista ordenada de soluciones, hasta que haya una que satisfaga todos los
requisitos: ii) que se satisfagan las restricciones energéticas y ii) que se satisfagan
los requisitos de la aplicacion, por ejemplo, en cuanto a la precision de los calculos.
Como salida el algoritmo proporciona la configuracion del sistema que satisfaciendo
los requisitos de energia y de la aplicaciéon, ofrezca un mayor throughput. En caso de
que ningun elemento cumpla las restricciones, el algoritmo determinard que no existe

solucidn.

4.5. Gestor de recursos consciente del gasto
energético

En cada clister hay un gestor de recursos como se explica en la secciéon 3.2. Como
gestor de recursos, se encarga de configurar y proporcionar los recursos adecuados
para la carga de trabajo del sistema. Su ciclo de vida, en continua ejecucion, sigue un
esquema MAPE-K [26]: monitorizacién, andlisis, planificacién y ejecucion de la gestién

de recursos para poder ahorrar energia.

4.5.1. Gestor de recursos

El gestor de recursos es el nticleo de nuestra aplicacién como muestra la figura 4.16
guarda el estado tanto del entorno (potencia méxima permitida o error maximo) como

la situacién del sistema (througput, ocupacién, frecuencia, etc.).

Monitorizacion La primera fase corresponde a la monitorizacién, actualizando los
valores de la potencia media de las maquinas, el tiempo medio de ejecucion y la

ocupacién actual. Los valores se actualizan de forma reactiva, conforme los distintos

30

Gestor de
recursos

Gestor de peticiones |----= -
modelo

- oo

Receptor

Figura 4.16: Diagrama arquitectural del gateway

receptores envian los datos: por ello, en el bucle MAPE-K se realiza un snapshot del
estado antes de continuar a la siguiente fase, de tal forma que si un valor cambia,
no serd tenido en cuenta dicha modificacién hasta la siguiente iteracion, evitando asi

inconsistencias.

Analisis y planificacion El andlisis y la planificacion los realizamos de forma
conjunta y es el Algoritmo de biisqueda 1 el encargado de realizalos. Una vez encontrada

una solucién, el sistema obtiene la nueva configuracion energética asociada a esta.

Ejecucion A partir de la decision tomada se deberan tomar una serie de acciones

configurando el sistema con los parametros devueltos por la fase anterior.

4.5.2. Receptores

Los componentes encargados de obtener métricas para actualizar el estado son los
receptores, estos se encargaran de analizar el entorno y de comunicarlos al gestor de
recursos los cambios que detecten. Actualmente existen dos receptores para el gestor
de recursos, el que monitoriza la potencia del sistema, creando una abstraccion de la
herramienta porwerstat, y el encargado de monitorizar el nimero de peticiones y tiempo
de ejecucion de estas, integrado en el gestor de peticiones. Mientras que el receptor de
potencia obtiene las métricas en periodos regulares, el receptor de peticiones las toma

de forma reactiva.

4.5.3. Gestor de peticiones que llegan al sistema

Las peticiones de ejecucion de pymemo llegan a los gestores de peticiones de cada

clister. Este médulo decide si se acepta una peticién en funcién de la configuracion del

31

cluster escogida por el gestor de recursos.

El gestor de peticiones es un servidor http donde se reciben las peticiones.
Cuando llega una peticién se encola y, en caso de haber disponibilidad, se trata la
primera peticién de la cola, pudiendo ser o no la recién llegada. Para tratarla, se
realiza una llamada http al servicio de OpenFaas del cluster local. En caso de no
haber disponibilidad, se envia a un clister de nivel superior o se espera a que haya
disponibilidad si no hay mas niveles. Tras obtener el resultado de la ejecucion se
comunican métricas como tiempo de ejecucion necesario para la peticion y el nimero
de peticion que era. Una vez respondida la peticién al cliente el gestor de peticiones
comprobara de nuevo la disponibilidad del sistema y en caso de haber peticiones

encoladas pasaran a ejecutarse, respetando siempre las restricciones.

32

Capitulo 5

Validacion Experimental

5.1. Configuraciéon de los Experimentos

Los experimentos se han realizado iinicamente en el servidor dado que este permite
ejecutar simultaneamente mas de un pymemo, de esta forma en los resultados se podra
ver el efecto de la interferencia. La maquina utilizada ha sido la misma que para realiza
el modelo: un procesador Intel(R) Xeon(R) Bronze 3106 CPU 1.70GHz, el cual tiene
una arquitectura x86_64, 16 CPUs, un hilo por ntucleo, una memoria RAM con 125
GB y 9.4 GB de memoria swap. Su rango de frecuencias es de 0.8GHz a 1.70GHz. El
sistema operativo utilizado ha sido 18.04.6 LTS (GNU/Linux 5.3.0-7648-generic). En
él se desplegaron cuatro maquinas virtuales mediante la herramienta Vagrant con 3
GB de memoria cada una y 3 nticleos en el procesador. En las maquinas virtuales se
ejecuté Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-171-generic) como sistema operativo.

Para validar el modelo se disenaron cuatro experimentos, teniendo todos ellos la
misma entrada: una serie de peticiones de ejecucién de pymemo, con un video, a ritmo
regular (primero tres iniciales y luego una nueva cada 40 segundos), en media A = 0,025
tareas / s. Dos de los experimentos, tuvieron como restriccién energética la potencia,
en ellos se empezd en 61 vatios, de tal forma que todas las configuraciones cumplieran
las restricciones, escogiendo asi la de mayor throughput. Cada 4 minutos la potencia
disminuyé en 3 vatios, hasta llegar que alcanz6 un valor suficientemente inferior donde
ninguna configuracion seria posible, llevando al sistema a su paralizacién. Tras pasar
4 minutos a esta potencia minima volveria a subir hasta los 61 vatios al mismo ritmo.
Ademas, el threshold en cada experimento puede tomar un valor maximo de cero, en
uno de los dos experimentos, y el otro de 150. El tiempo total de cada experimento, en
este caso, es de 52 minutos cada uno.

Los dos experimentos restantes, como restriccion energética, tuvieron el coste
energético maximo para la ejecucion de un pymemo. En estos casos, el coste maximo

por pymemo de 10000 J, una energia superior a todos los elementos del modelo.

33

Posteriormente, cada cuatro minutos, se decrementando en 1000 J. Ademas, el threshold
en cada experimento puede tomar un valor maximo de cero, en uno de los dos
experimentos, y el otro de 150. El tiempo total de cada experimento, en este caso,

es de 35 minutos cada uno.

5.2. Experimentos

5.2.1. Restriccion threshold 0 y maxima potencia

La Figura 5.1 muestra todas las métricas obtenidas durante este experimento. El
threshold puede valer como maximo cero. El sistema cumpli6 la restriccion del threshold
en todo momento como muestra la Figura 5.1e. Cabe destacar la primera decisién,
donde el sistema decidié disminuir la ocupaciéon méaxima a cambio de aumentar la
frecuencia (Figuras 5.1a y 5.1b), mientras que en el resto de casos donde debe disminuir
la potencia siempre disminuyé la frecuencia, utilizando 1,3 GHz, 1,2 GHz y 0,8 GHz,
para finalmente suspender el sistema en el minuto 22, puesto que ninguna configuracién
podia ejecutarse con una menor potencia que la méaxima permitida. Tanto la gréafica de
la frecuencia (Figura 5.1a) como de la ocupaciéon maxima (Figura 5.1b) son simétricas.
La grafica de la Figura 5.1d muestra la evolucion del throughput, donde se aprecia que
este se mantuvo alto hasta suspender el sistema, momento en el cual tuvo un gran
decremento, a continuacion se fue recuperando, aunque el tiempo medio de ejecucion
de un pymemo es de alrededor de 7 minutos. Finalmente, la grafica 5.1c muestra
la evolucién de la potencia medida real (morado) y la potencia maxima (verde). Se
observa claramente como el sistema fue disminuyendo su potencia conforme la méxima
disminuyé: es cierto que se nota un retraso en la adaptacién. Al final de esta grafica se
ve como decrementé la potencia, esto se debe a que se dejaron de enviar peticiones, y

unicamente se estaban ejecutando las que estaban encoladas hasta acabarse.

34

1.6x108 T T T T T 5 - T T T R
frecuencia (GHz) —+— ocupacion —+—
1.5x10% —H+Z X—H—F B
4 i
1.4x106 - B
~
E 1.3x10°% B 5 3 i
T 1.2x108 |- 1 g
g a
g 1xi08 - 4 ° 2r 1
1x10° - B
1k i
900000 b
800000 L L L 0 ! L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Tiempo de ejecucion (minutos) Tiempo de ejecucion (minutos)
. ., s .
(a) Frecuencia (b) Ocupacién maxima (en pymemos)
70 T T T T T 0.008 T T T T
potencia (W) —+— throughput ——
potencia maximadiy | 0.007 - B
i 0.006 |- B
s 5 0.005 [8
= — Q
© <
] S 0.004 L
53 °
g 1 £
o < 0.003 - 1
] 0.002 - E
] 0.001 |- B
oY 1 1 1 1 1 0 L4+ 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Tiempo de ejecucion (minutos) Tiempo de ejecucién (minutos)
(c) Potencia (W) (d) Throughtput (pymemos / s)
200 T T T T T
threshold —+—
150 - B
o
°
g 100 .
£
50 - q
0 SR
0 10 20 30 40 50 60

Tiempo de ejecucion (minutos)

(e) Threshold

Figura 5.1: Cronograma de evolucién del experimento 1 en el tiempo, threshold 0 y
potencia limitada

35

5.2.2. Restriccion threshold 150 y maxima potencia

La Figura 5.2 muestra todas las métricas obtenidas durante este experimento. En
este experimento se habilitaron todos los valores de threshold disponibles en el modelo:
0, 50, 100 y 150. En la Figura 5.2e se muestra cémo siempre priorizé el maximo
threshold, con excepcién del minuto 19, donde este lo decrementd a 100, disminuyendo
al mismo tiempo la ocupacién a dos pymemos simultdaneos como méaximo (Figura 5.2b).
En cuanto al throughput, se dio una situaciéon similar al experimento con threshold 0:
se encuentra alto hasta que decayd fuertemente al suspender el sistema y aparecer
largos tiempos de espera. En este caso, al tener un threshold més alto, los tiempos de
ejecucion de pymemo fueron menores respecto de un pymemo con threshold cero, por
lo que las peticiones se ejecutan mas rapidamente. Esto se observa claramente porque
el threshold vuelve a aumentar poco a poco, habiéndose liberado la cola y volviendo a

ejecutarse bajo demanda.

36

1.6x10°
1.5x108
1.4x106
1.3x106

1.2x108

frecuencia (GHz)

1.1x10°
1x10°
900000

800000

70

W\
HAAH

T
frecuencia (GHz) —+—

ocupacion

5 (T -+ T R

cupacion —+—

! ! Il ! !
i

20 30 40

Tiempo de ejecucion (minutos)

(a) Frecuencia

50

60

60

50

40

potencia (W)

30

20

T
potencia (W)
potencia maximad)

—

200

20 30 40

Tiempo de ejecucion (minutos)

(c) Potencia

50

60

150

100 -

threshold

50 -

T
threshold —+—

20 30 40

Tiempo de ejecucion (minutos)

(e) Threshold

50

60

throughput

0 10 20 30 40 50 60

Tiempo de ejecuciéon (minutos)

(b) Ocupacién maxima (en pymemos)

0.025 T T T T T

throughput ——
0.015 - B
0.01 - B

0.005 - B

Tiempo de ejecucién (minutos)

(d) Throughput

Figura 5.2: Cronograma de evolucién del experimento 2 en el tiempo, threshold 150 y
potencia limitada

37

5.2.3. Restriccion threshold 0 y maxima energia por ejecucion
de pymemo

La Figura 5.3 muestra todas las métricas obtenidas durante este experimento. En
la grafica de la Figura 5.3e se demuestra que el sistema cumplié bien las restricciones
por threshold, al no sobrepasar el valor maximo de cero. Al analizar los resultados se
muestra como tnicamente se tuvo una configuracién hasta que que ninguna fue valida y,
entonces, se suspendié, como muestran las Figuras 5.3a y 5.3b, escogiendo siempre 1,5
Ghz y cinco ejecuciones simultaneas. Esta configuracion elegida es la que satisfaciendo
la restriccién energética, maximiza el throughput. En la grafica de la Figura 5.3c se
muestra como la energia por ejecucion fue menor que la maxima permitida excepto al
final, donde aumentd la energia. Esto es debido a que habia peticiones en ejecucién que
hacen que aumente el coste energético (inercia de un sistema reactivo). En cuanto al
throughput, se mantuvo a niveles estables mientras la configuracién era constante, pero
este disminuyé al final, al suspenderse el sistema debido a las restricciones energéticas
Figura 5.3d.

38

1.515x10° T T T T T T 5 T
frecuencia (GHz) —+— ocupacion —+—
6 [i
1.51x10 Al i
T 1.505x10° - 4
T c 3L i
g 8
] S
2 1.5X108 F bbb e b B s
g 3
] S 2t E
3
& 1.495x100 B
6 r T
1.49x10° |- b
1.485x10° L L L L L L 0 L L L L —
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Tiempo de ejecucion (minutos) Tiempo de ejecuciéon (minutos)
. .z s .
(a) Frecuencia (b) Ocupacién méxima (en pymemos)
10000 T T T T T 0.014 T T T T T T
energia (J)) —+— ughput —+—
energia maxima (J) —><— 0.012 - i
8000 b
0.01 - 1
_ | i =
S 6000 2 0008 | g
= £
o
E 5 0.006 - 1
T 4000 4 £ -
0.004 - B
2000 B
0.002 - 1
0 L L L L L 0 L L L L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Tiempo de ejecucién (minutos) Tiempo de ejecucién (minutos)
, . .2
(¢) Energia por ejecucién de pymemo (d) Throughput
200 T T T T T T
threshold —+—
150 - B
o
°
g 100 .
<
=]
50 - q
o A~
0 5 10 15 20 25 30 35

Tiempo de ejecucion (minutos)

(e) Threshold

Figura 5.3: Cronograma de evolucion del experimento 3 en el tiempo, threshold 0 y
limite en energia por pymemo

39

5.2.4. Restriccion threshold 150 y maxima energia por
ejecucion de pymemo

La Figura 5.4 muestra todas las métricas obtenidas durante este experimento.
En este experimento la configuracién no se modificé hasta que el sistema tuvo que
suspenderse, como muestran las graficas de las figuras 5.4e, 5.4b y 5.4a, siendo la
configuracion escogida 1,6 GHz, cinco ejecuciones maximas en paralelo y threshold 150.
Como se muestra en la grafica de la figura 5.4d, el throughput fue constante y maximo
ya que era igual al valor de A = 0,025. En cuanto a la energia por ejecucion siempre
fu menor como muestra la figura 5.4c, a excepcién del final donde se mantuvieron
durante un tiempo las peticiones que ya se habian aceptado en ejecucién. Destacar
que al habilitar ejecuciones con mayor thresholds que en el caso anterior, el sistema se

suspendié diez minutos mas tarde a pesar de tener las mismas restricciones energéticas.

40

1.62x10°

T T T T T T T LB s e L T
frecuencia (GHz) —+— ocupacion —+—
1.615x10° - B
1.61x10° - 4
g 6
E 1.605x10° B 5 L i
] 6 S
2 1.6x10° A4+ttt B s
o 3
S 3 L -
o 1.595x10° |- 1
1.59x108 - B
1.585x100 - B
158)(106 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T I‘ -
0 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Tiempo de ejecucion (minutos) Tiempo de ejecuciéon (minutos)
. .z s .
(a) Frecuencia (b) Ocupacién méxima (en pymemos)
14000 T T T T T T T 0.03 T T T T T T T T
energia (J)) —+— throughput ——
| energia maxima (J)) —<— _|
12000 9 0.025 |- i
10000 b
0.02 - B
S 5000 R 2
= £
=) S 0015 g
o o
S 6000 . £
0.01 - 1
4000 i
2000 _ 0.005 - B
0 0 44— 1 1 1 1 1 1 1 1
0 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Tiempo de ejecucién (minutos) Tiempo de ejecucién (minutos)
, . .2
(¢) Energia por ejecucién de pymemo (d) Throughput
200 T T T T T T T T
threshold —+—
1s0 ~++++++++t++t+t+++++t+t+t+++++++t++++++++t++++++++ ~
o
°
g 100 .
£
50 - q
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Tiempo de ejecucion (minutos)

(e) Threshold

Figura 5.4: Cronograma de evolucién del experimento 4 en el tiempo, threshold 150 y
limite en energia por pymemo

41

5.3. Resumen

Como se ha mostrado en todos los experimentos, el modelo se adectia correctamente
a la situacion del entorno. Si es cierto que suele haber un intervalo de tiempo en todos
los escenarios desde que se toma una decision hasta que es realmente efectivo debido,
a la inercia del sistema, por lo que al ser un modelo reactivo en la mayoria de casos
hay pequenios momentos donde se incumplen las restricciones hasta que el sistema se
estabiliza de nuevo. Se debe remarcar como diferencia clave que el modelo de la potencia
trata de no sobrepasar el limite de esta, mientras que el de energia por pymemo utiliza
siempre un maximo en torno a los 61 vatios. Debido a ello, la calidad del servicio para
el primer modelo deberia indicar cuanto es el gasto maximo energético del conjunto del
sistema, pudiendo conocer a priori el gasto econémico que supondra. El otro modelo,
en cambio, minimiza el gasto por ejecucion, de tal forma que se podra obtener el gasto

maximo si conocemos la carga de trabajo.

Una clara diferencia entre los dos modelos es que en el de la potencia la configuracién
se va modificando, mientras que en el limitador de energia al comenzar encuentra la
mejor y no la cambia: esto se debe a que coincide que la configuracién més econémica

es la que tiene también mayor throughput.

42

Capitulo 6

Conclusiones y trabajo futuro

6.1. Conclusiones

Tradicionalmente, los sistemas distribuidos cuentan con modelos y mecanismos para
garantizar la calidad del servicio: sélo se se considera reducir el consumo energético una
vez se haya garantizado las prestaciones acordadas. Sin embargo, con las fluctuaciones
en el precio de la energia en el contexto actual, en muchos casos el coste econémico de
las ejecuciones puede ser inasumible. En este trabajo, se considera en todo momento
un gasto energético maximo que el sistema puede permitirse, de manera que cuando
el gasto sube o debemos tener menos gasto, el sistema se reconfigura para reducir el
consumo, a costa de aumentar el tiempo de ejecucién o reducir la precisién de los
procesamientos.

Este sistema considera un tipo de aplicaciéon que estd generando datos
continuamente para su procesamiento, utilizando una infraestructura fog / cloud
computing: un centro de datos con una gran capacidad computacional y pequenos
clusters de capacidad limitada, préoximos a las fuentes de datos. Para garantizar la
escalabilidad del sistema, el sistema sigue una estrategia de scheduling completamente
distribuido: los datos generados en la fuente se llevan al cluster de poca capacidad mas
proximo donde se ejecutan si hay capacidad, de lo contrario, se mueven al siguiente
nivel de la jerarquia, con mayor capacidad. Sobre esta estrategia de scheduling, el gestor
de recursos de cada clister cuenta con un modelo energético que garantiza que el coste
energético no va a superar el maximo permitido. Se proponen como limites energéticos:
limitar la potencia que se puede consumir o limitar el coste maximo energético de
la ejecucién de una tarea. El gestor de recursos de cada clister puede actuar en
cualquier nivel arquitectural: aplicacion, middleware o hardware. En el nivel de la
aplicacién, se utilizan técnicas de computacién aproximada para reducir la precision
de la ejecucion con distinto grado. En el ambito del middleware se reduce el ntimero

de maquinas activas y en el hardware se gestiona la frecuencia de los procesadores.

43

Para poder encontrar la configuracién energética adecuada, cada controlador cuenta
con un modelo obtenido experimentalmente por combinacién de parametros (parameter
sweep), y utiliza un algoritmo voraz.

Para validar la aproximacion, se ha utilizado una aplicaciéon de anélisis de video y se
han realizado varios experimentos en una infraestructura compuesta por dos clusters:
uno con raspberry pis y otro, con rol de centro de datos con maquinas virtuales.
Los experimentos muestran cémo el sistema es capaz de adaptarse a las restricciones
de energia y consumir menos, disminuyendo el throughput y/o la precisién de los
procesamientos. En unos experimentos se ha limitado la potencia méaxima que se puede

utilizar, en otros el gasto energético maximo para una aplicacion.

6.2. Trabajo futuro

En el futuro este trabajo se podria mejorar de manera que el propio sistema
aprendiera de la experiencia: por ejemplo, si el consumo energético basal cambiara
por alguna operacién del sistema operativo y esto fuera percibido, el sistema puede
actualizar el modelo. Otra mejora podria ser la incorporacién de un modelo predictivo

del coste de la energia, haciendo que el sistema reaccionara con mayor celeridad.

44

Bibliografia

1]

Alcides Fonseca, Rick Kazman, and Patricia Lago. A Manifesto for Energy-Aware
Software. IEEE Software, 36(6):79-82, November 2019. Conference Name: IEEE

Software.

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. Data Center Energy
Consumption Modeling: A Survey. IEEE Communications Surveys & Tutorials,
18(1):732-794, 2016. Conference Name: IEEE Communications Surveys &

Tutorials.

Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya.
A taxonomy and survey of energy-efficient data centers and cloud computing

systems. Advances in computers, 82:47-111, 2011.

Congfeng Jiang, Tiantian Fan, Honghao Gao, Weisong Shi, Liangkai Liu,
Christophe Cerin, and Jian Wan. Energy aware edge computing: A survey.

Computer Communications, 151:556-580, 2020.

Hancong Duan, Chao Chen, Geyong Min, and Yu Wu. Energy-aware scheduling
of virtual machines in heterogeneous cloud computing systems. Future Generation
Computer Systems, 74:142-150, 2017.

Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. Approximate computing: A
survey. [EEE Design & Test, 33(1):8-22, 2015.

Rahul Yadav, Weizhe Zhang, Omprakash Kaiwartya, Prabhat Ranjan Singh,
Ibrahim A Elgendy, and Yu-Chu Tian. Adaptive energy-aware algorithms for
minimizing energy consumption and sla violation in cloud computing. IFEFE

Access, 6:55923-55936, 2018.

Zhou Zhou, Jemal Abawajy, Morshed Chowdhury, Zhigang Hu, Keqin Li,
Hongbing Cheng, Abdulhameed A Alelaiwi, and Fangmin Li. Minimizing
sla violation and power consumption in cloud data centers using adaptive

energy-aware algorithms. Future Generation Computer Systems, 86:836—-850, 2018.

45

[9]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo
Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer
Rana. The Internet of Things, Fog and Cloud continuum: Integration and
challenges. Internet of Things, 3-4:134-155, October 2018.

By:IBM Cloud Education. Faas.

Kubernetes documentation.

OpenFaaS Authors. Introduction.

OpenFaaS Authors. Your first openfaas function with python§.

Yannick Becker and Stefan Naumann. Software based estimation of software
induced energy dissipation with powerstat. From Science to Society: The Bridge

provided by Environmental Informatics, pages 69-73, 2017.
Vagrant.

Giorgio C Buttazzo. Scalable applications for energy-aware processors. In

International workshop on embedded software, pages 153-165. Springer, 2002.

Chia-Ming Wu, Ruay-Shiung Chang, and Hsin-Yu Chan. A green energy-efficient
scheduling algorithm using the dvfs technique for cloud datacenters. Future
Generation Computer Systems, 37:141-147, 2014.

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Modeling and
simulation of scalable cloud computing environments and the cloudsim
toolkit: Challenges and opportunities. In 2009 international conference on high

performance computing € simulation, pages 1-11. IEEE, 2009.

Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers. Concurrency and Computation: Practice
and Ezperience, 24(13):1397-1420, 2012.

Zhou Zhou, Zhigang Hu, and Keqin Li. Virtual machine placement algorithm for
both energy-awareness and sla violation reduction in cloud data centers. Scientific
Programming, 2016, 2016.

Jacob R Lorch and Alan Jay Smith. Improving dynamic voltage scaling algorithms
with pace. ACM SIGMETRICS Performance Evaluation Review, 29(1):50-61,
2001.

46

[22]

[23]

[24]

[25]

[26]

28]

[29]

[30]

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer

wsion and pattern recognition, pages 1-9, 2015.

Rafael Tolosana-Calasanz, Javier Diaz Montes, Omer F. Rana, and Manish
Parashar. Feedback-control & queueing theory-based resource management for
streaming applications. IEEE Trans. Parallel Distributed Syst., 28(4):1061-1075,
2017.

Rafael Tolosana-Calasanz, José Angel Banares, Congduc Pham, and Omer F.
Rana. Resource management for bursty streams on multi-tenancy cloud
environments. Future Gener. Comput. Syst., 55:444-459, 2016.

Fabian Kaup, Philip Gottschling, and David Hausheer. Powerpi: Measuring and
modeling the power consumption of the raspberry pi. In 39th Annual IEEFE
Conference on Local Computer Networks, pages 236-243. IEEE, 2014.

Manish Parashar and Salim Hariri. Autonomic computing: An overview.
In International workshop on wunconventional programming paradigms, pages
257-269. Springer, 2004.

Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian Becker,
Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmiiller, Madhusanka Liyanage,
Setareh Maghsudi, Nitinder Mohan, Jorg Ott, Jan S. Rellermeyer, Stefan Schulte,
Henning Schulzrinne, Giirkan Solmaz, Sasu Tarkoma, Blesson Varghese, and Lars
Wolf. Roadmap for edge Al: a Dagstuhl perspective. ACM SIGCOMM Computer
Communication Review, 52(1):28-33, March 2022.

Jeretta Horn Nord, Alex Koohang, and Joanna Paliszkiewicz. The Internet of
Things: Review and theoretical framework. Fxpert Systems with Applications,
133:97-108, November 2019.

Praveen Kumar Reddy Maddikunta, Quoc-Viet Pham, Prabadevi B, N Deepa,
Kapal Dev, Thippa Reddy Gadekallu, Rukhsana Ruby, and Madhusanka Liyanage.
Industry 5.0: A survey on enabling technologies and potential applications. Journal
of Industrial Information Integration, 26:100257, March 2022.

Le Liang, Hao Ye, and Geoffrey Ye Li. Toward Intelligent Vehicular Networks:
A Machine Learning Framework. IEEE Internet of Things Journal, 6(1):124-135,
February 2019. Conference Name: IEEE Internet of Things Journal.

47

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Taina Coleman, Henri Casanova, Loic Pottier, Manav Kaushik, Ewa Deelman,
and Rafael Ferreira da Silva. WfCommons: A framework for enabling scientific
workflow research and development. Future Generation Computer Systems,
128:16-27, March 2022.

Quoc-Viet Pham, Fang Fang, Vu Nguyen Ha, Md. Jalil Piran, Mai Le, Long Bao
Le, Won-Joo Hwang, and Zhiguo Ding. A Survey of Multi-Access Edge Computing
in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art.
IEEFE Access, 8:116974-117017, 2020. Conference Name: IEEE Access.

Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash
Jayaraman, Longxiang Gao, Yong Xiang, and Rajiv Ranjan. Fog Computing:
Survey of Trends, Architectures, Requirements, and Research Directions. I[FEE
Access, 6:47980-48009, 2018. Conference Name: IEEE Access.

Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. Mobile cloud computing
for computation offloading: Issues and challenges. Applied Computing and
Informatics, 14(1):1-16, January 2018.

Geraldo F. Oliveira, Larissa Rozales Gongcalves, Marcelo Brandalero, Antonio
Carlos S. Beck, and Luigi Carro. Employing classification-based algorithms for
general-purpose approximate computing. In Proceedings of the 55th Annual Design

Automation Conference, pages 1-6, San Francisco California, June 2018. ACM.

Employing Classification-based Algorithms for General-Purpose Approximate
Computing. pages 1-6, June 2018.

Roberto Minerva, Abyi Biru, and Domenico Rotondi. Towards a definition of the

internet of things (iot). IEEE Internet Initiative, 1(1):1-86, 2015.

Cesare Pautasso and Gustavo Alonso. Parallel computing patterns for Grid
workflows. pages 1-10, June 2006. ISSN: 2151-1381.

loana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander
Slominski, et al. Serverless computing: Current trends and open problems. In

Research advances in cloud computing, pages 1-20. Springer, 2017.

Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo
Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer
Rana. The Internet of Things, Fog and Cloud continuum: Integration and
challenges. Internet of Things, 3-4:134—155, October 2018.

48

[41] By: IBM Cloud Education. Serverless.

49

50

Lista de Figuras

2.1.
2.2.

3.1.

3.2.
3.3.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11

Modelo Arquitectural de Fog Computing, extraidode [9] 6

Medicion con multimetro 10

Porcentaje de mejora de las prestaciones de pymemo y portentaje de

error anadido en pymemo en funcién del threshold 14
Diagrama estatico - Arquitectura del sistema 16
Diagrama dinamico - Arquitectura del sistema 16

Evolucién de la potencia respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemo 23
Evolucién de la potencia respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemo 23
Evolucién de la potencia respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemoo 23
Evolucién de la potencia respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo 24
Evolucién del throughput respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemo 24
Evolucién del throughput respecto a la frecuencia y threshold con 3
ejecuciones paralelas de pymemoo 24
Evolucién del throughput respecto a la frecuencia y threshold con 4
ejecuciones paralelas de pymemo 25
Evolucion del throughput respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemoo 25
Evolucién de la energia respecto a la frecuencia y threshold con 2
ejecuciones paralelas de pymemoo 25
Evolucién de la energia respecto a la frecuencia y threshold con 3

ejecuciones paralelas de pymemo 26

. Evolucién de la energia respecto a la frecuencia y threshold con 4

ejecuciones paralelas de pymemo 26

4.12. Evolucién de la energia respecto a la frecuencia y threshold con 5
ejecuciones paralelas de pymemo
4.13. Evolucion de la energia respecto a la frecuencia y threshold en una
raspberry
4.14. Evolucion de la energia respecto a la frecuencia y threshold en una
raspberry ... oL
4.15. Evolucién de la energia respecto a la frecuencia y threshold en una
raspberry ...

4.16. Diagrama arquitectural del gateway

5.1. Cronograma de evolucion del experimento 1 en el tiempo, threshold 0 y
potencia limitada L
5.2. Cronograma de evolucién del experimento 2 en el tiempo, threshold 150
y potencia limitada oo
5.3. Cronograma de evolucion del experimento 3 en el tiempo, threshold 0y
limite en energia por pymemo
5.4. Cronograma de evoluciéon del experimento 4 en el tiempo, threshold 150

y limite en energia por pymemo

A.1. Cronograma - diagrama de Gaant

52

Anexos

53

Anexos A

Cronograma, actividades y

objetivos

A lo largo de este proyecto se han realizado las siguientes actividades:

— Montar una infraestructura edge, incluyendo un clister formado por raspberries

y un cluster formado por maquinas virtuales en un servidor.

— Disenar e implementar mecanismos para gestionar el gasto energético en los

distintos niveles como disminuir la frecuencia o aproximacion en calculos.

— Habilitar una red virtual para la transmision entre los distintos clusters.

— Elaborar un modelo e implementar un sistema inteligente que que se

autoconfigure utilizando los mecanismos de gestion energética implementados.

— Realizar una validacién experimental

— FEscribir la memoria.

Todas estas actividades se organizaron en

el tiempo como muestra la figura A.1

FEBERERO

MARZO

ABRIL

YO

JUNIO

TOTAL

ACTIVIDADES

S1

s2

S3

sS4

S6

S6

ST

s8

59

S10

§11

s12

$13

S14

S15

S16

s17

s18

Al - infrastructure

10

10

10

10

5

A3 - network

10

5

A4 - Al

15

15

A5 -

10

10

10

10

15

15

10

10

|AB - writing

40

TOTAL

10

20

10

15|

15|

20|

Figura A.1: Cronograma - diagrama de Gaant

95

	Introducción y objetivos
	Conceptos, Metodología y Tecnología
	IoT, Fog and Cloud computing
	Serverless computing: Kubernetes and OpenFaaS
	Mediciones de Energía y Procesadores: Intel y ARM
	Virtual Box y Vagrant
	Trabajo Relacionado

	Arquitectura del Sistema
	Pymemo: Aplicación de Vigilancia
	Infraestructura Computacional Distribuida
	Calidad de Servicio para pymemo

	Modelos de Consumo Energéticos
	Factores que Contribuyen al Consumo Energético Computacional
	Modelo Energético del centro de datos
	Modelo energético edge
	Modelo Energético de la Red de Comunicación

	Algoritmo de búsqueda
	Gestor de recursos consciente del gasto energético
	Gestor de recursos
	Receptores
	Gestor de peticiones que llegan al sistema

	Validación Experimental
	Configuración de los Experimentos
	Experimentos
	Restricción threshold 0 y máxima potencia
	Restricción threshold 150 y máxima potencia
	Restricción threshold 0 y máxima energía por ejecución de pymemo
	Restricción threshold 150 y máxima energía por ejecución de pymemo

	Resumen

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Bibliografía
	Lista de Figuras
	Anexos
	Cronograma, actividades y objetivos

