Universidad

Y
i Zaragoza

1542

Trabajo de Fin de Grado

Prevalencia de tipos de ASEPs en malware

de Windows

Prevalence of Types of ASEPs in Windows Malware

Autor

Carlos Borau Gonzalez

Director

Ricardo Julio Rodriguez Fernandez

ESCUELA DE INGENIERIA Y ARQUITECTURA
2022

MASTER

W
Q
=
U
N
O
S
c
T
W
Q
=
W
W
Q
7]
S
<
<
=

Ingenieria y Arquitectura

.iil Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe remitirse a seceina@unizar.es dentro del plazo de depdsito)

D./D2. Carlos Borau Gonzalez

en aplicacién de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de
11 de septiembre de 2014, del Consejo de Gobierno, por el que se
aprueba el Reglamento de los TFGy TFM de la Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de Estudios de la titulacién de
Grado en Ingenieria Informatica B (Titulo del Trabajo)

Prevalencia de tipos de ASEPs en malware de Windows

es de mi autoria y es original, no habiéndose utilizado fuente sin ser

citada debidamente.

Zaragoza a 22 de Junio de 2022

Fdo: Carlos Borau Gonzélez

Carlos Borau Gonzalez: Prevalencia de tipos de ASEPs en malware de Windows,
Trabajo de Fin de Grado de Ingenierfa Informatica, (©) 2022. Cédigo desarrollado
licenciado bajo GNU GPLv3. Iconos de terceros utilizados en las figuras: Internet
“icono gratis”de Pixel perfect de flaticon. Figuras creadas mediante las herramientas

disponibles en creately.com y diagrams.net.

@050 [FEVE

https://www.flaticon.es/
https://app.creately.com/
https://app.diagrams.net/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.gnu.org/licenses/quick-guide-gplv3.html

AGRADECIMIENTOS

A Ricardo, por ofrecerme la oportunidad de realizar un trabajo que me ha
permitido desarrollarme como informatico y del que puedo sentirme orgulloso. A mi
familia, por creer siempre en mi, compartir mis logros y ayudarme a levantarme tras
mis tropiezos. A mis amigos, por darme animos y por su apoyo incondicional. A todos
los que me han acompanado en este viaje, a los que hoy estan a mi lado y, en especial,

a aquellos cuyo recuerdo me sigue dando fuerzas.

Para todos ellos, s6lo tengo palabras de agradecimiento.

RESUMEN

Los puntos de inicio automatico de ejecucién (Auto Start Execution Points, ASEPs)
son aquellos lugares del sistema operativo que permiten a un programa ejecutarse de
forma automatica sin la necesidad de que haya una interaccién explicita con el usuario.
En el 4&mbito de la ciberseguridad, es comtn que el malware (software malicioso) haga
uso de estos elementos para garantizar su persistencia en un sistema comprometido

durante el mayor tiempo posible.

Este proyecto se centra en disenar un flujo de trabajo que permita estudiar
la prevalencia de los ASEPs en malware de Windows a través de un sistema
automatizado, capaz de obtener y procesar muestras de malware de diferentes fuentes,
asi como de coordinar diferentes maquinas encargadas de analizar dinamicamente su
comportamiento para, posteriormente, categorizarlas en funciéon de los resultados de

dicho anéalisis.

Una vez finalizada la fase de experimentacion del trabajo, se ha podido comprobar
que el sistema de andlisis desarrollado es capaz de llevar a cabo, de forma exitosa,
el andlisis y clasificacion de la gran mayoria de muestras introducidas en el pipeline
de andlisis, ofreciendo un reporte detallado de los resultados de este proceso. Por
otro lado, se ha podido constatar que el sistema disenado ha logrado detectar en
multiples muestras el uso de diferentes tipos de ASEPs y, posteriormente, clasificarlos
acertadamente. Durante el desarrollo del proyecto han surgido una serie de dificultades
que han limitado el alcance original del estudio y para las cuales se ofrece un analisis

de su impacto, asi como diversas propuestas para solucionarlas.

ABSTRACT

Auto-start execution points (ASEPs) are those places in an operating system
that allow a program to be executed automatically without explicit need for user
interaction. In the field of cybersecurity, it is common for malware (malicious software)
to make use of these elements to ensure their persistence in a compromised system for

as long as possible.

This project’s focus is the development of a workflow that allows studying the
prevalence of ASEPS types in Windows malware through an automated system,
capable of obtaining and processing malware samples from various sources, as well as
coordinating different machines responsible for dynamically analyzing their behavior

to subsequently categorize them.

Once the experimentation phase has been completed, it has been possible to verify
that the analysis system developed is capable of successfully performing the analysis
and categorization of the vast majority of samples fed to the analysis pipeline, providing
a detailed report about the analysis results. In addition, it has been possible to verify
that the designed system has managed to detect, and subsequently accurately classify
the use of different types of ASEPs in various samples. During the development of this
project a series of difficulties have arisen that have limited the original scope of the
study. An analysis of the impact of each of these difficulties is provided, as well as some

approaches on how to address them.

Indice General

1. Introduccion y objetivos
1.1, Motivacion
1.2. Objetivos, metodologia y alcance

1.3. Estructura del documento

2. Conceptos previos
2.1. Analisisde malware
2.2. Sistemas de andlisis
2.3. Técnicas de andlisis de software
2.4. Puntos de Autoinicio de Ejecucién (ASEPs)

3. Diseno del sistema de analisis
3.1. Workflow de andlisis de malware
3.1.1. Obtencién de muestras - Digester
3.1.2. Generacién de trazas de ejecucion - Analyzer
3.1.3. Categorizacion de la Muestra - Labeler
3.2. Sistema de analisis completoo
3.2.1. Componentes adicionales

3.2.2. Estructura final

4. Experimentacion y resultados
4.1. Pruebas de concepto (POCs)
4.2. Arquitectura del despliegue
4.3. Resultados obtenidos y limitaciones

4.3.1. Analisis de los resultados L.
5. Trabajo relacionado

6. Conclusiones y trabajo a futuro
6.1. Conclusiones principales L
6.2. Trabajo futuro

RO — o

=~ ke e W W

Bibliografia

A. Dedicacién

27

31

Indice de Figuras

3.1. Workflow de analisis de malware disefiado 8
3.2. Estructura del sistema de andlisis 14
4.1. Arquitectura ideada para la experimentacién 16

A.1. Diagrama de Gannt 32

Indice de Tablas

3.1. Repositorios web de malware estudiados

3.2. Herramientas de generacién de trazas de ejecucion de APIs estudiadas .

A.1. Tabla de Horas Dedicadas al Proyecto

11

Capitulo 1

Introduccién y objetivos

Este capitulo introduce la motivacién, objetivos, metodologia y alcance del proyecto

desarrollado, asi como una breve descripcién de la estructura del mismo en adelante.

1.1. Motivacion

La seguridad informatica es una disciplina que cada ano adquiere mayor relevancia,
tanto para las empresas como para los particulares [8]. De igual forma, las amenazas
informaticas no dejan de crecer y volverse mas complejas, y con ellas aumenta el
riesgo de que las infraestructuras informéticas y los datos que contienen se vean
comprometidos. Es en este contexto en el que se busca realizar estudios que permitan
identificar los métodos més cominmente empleados por el malware para infectar y
persistir en un sistema, para asi poder idear diversas estrategias de defensa contra

nuevas amenazas [23].

De los diversos mecanismos que emplea el malware, los puntos de autoinicio de
ejecucion (ASEPs; del inglés) [27] son particularmente interesantes, pues permiten
que programas se ejecuten sin la necesidad de que un usuario interactie con ellos
explicitamente, y, por el momento, no se han realizado estudios a cerca de la prevalencia
de estos mecanismos en muestras de malware contemporaneas. Asi pues, con este
trabajo se pretende dar un primer paso en este campo proporcionando un sistema

de codigo abierto con el que realizar anélisis de forma rapida, distribuida y modular.

1.2. Objetivos, metodologia y alcance

El objetivo de este proyecto es el de estudiar la prevalencia de los ASEPs
en malware de sistemas operativos Windows. Para realizar este estudio se
ha disenado un workflow de analisis de malware que permite ejecutar muestras de

malware en un entorno controlado para extraer sus trazas de ejecucion. Estas trazas

se analizan posteriormente en busca de una serie de patrones de comportamiento con
los que discernir si se utiliza algin tipo de ASEP en particular, segiin la taxonomia
definida en la literatura [30]. Estos patrones de comportamiento se han obtenido a
partir de una serie de trazas de ejecucién sintéticas, creadas mediante una serie de

pruebas de concepto desarrolladas para tal fin.

Para llevar a cabo la experimentacion, se ha disenado un sistema con diferentes
componentes que permiten distribuir entre varias maquinas las tareas del workflow
de analisis. Este sistema, que incorpora herramientas de analisis tanto dinamico
como estatico, integra la capacidad de obtener muestras de repositorios web asi como
del almacenamiento local, la generacién de trazas de ejecucion de estas muestras,
y su clasificacion en funcién de dichas trazas. Asi pues, el sistema resultante puede
emplearse para llevar a cabo distintos tipos de andlisis sobre multiples muestras de
malware, obtenidas de diferentes repositorios y empleando diferentes soluciones de

analisis simplemente modificando los componentes de manera apropiada.

El alcance del proyecto se ha visto reducido debido a una serie de limitaciones
surgidas de la utilizacién de la herramienta escogida para el andlisis y generacion de
trazas, por lo que no se ha podido realizar un estudio tan completo y riguroso como
se planted en un principio. Por otro lado, los esfuerzos se han centrado mas en el
desarrollo modular y distribuido del sistema de andlisis, para asi permitir que en un
futuro se continte este estudio de la forma més agil y eficiente posible, permitiendo

incluso cambiar las herramientas utilizadas sin mayor dificultad.

1.3. Estructura del documento

Este documento se encuentra dividido en 6 capitulos y un anexo. En el Capitulo 2
se definen una serie de conceptos fundamentales para la correcta comprension del resto
del documento. El Capitulo 3 trata el proceso del diseno del sistema de analisis,
las distintas componentes de éste y las soluciones escogidas para cada tarea. En el
Capitulo 4 se detalla la fase de experimentacién, las pruebas de concepto realizadas,
asi como la arquitectura del despliegue utilizada y los resultados obtenidos. En el
Capitulo 5 se hace mencién de diversos proyectos relacionados con las herramientas
empleadas para este trabajo. Por ltimo, el Capitulo 6 expone las conclusiones del
trabajo y menciona aspectos a mejorar y desarrollar a futuro para continuar con el
estudio. Al final del documento, el Apéndice A presenta un desglose de las horas

dedicadas a las distintas fases del proyecto.

Capitulo 2

Conceptos previos

En este capitulo se introducen varios conceptos y definiciones necesarios para la
comprension del trabajo desarrollado, las herramientas empleadas en el mismo y los
resultados y limitaciones de la experimentacion que se ha llevado a cabo. Entre estos
conceptos caben destacar aquellos relacionados con el andlisis de malware, los diversos
sistemas de analisis que se han estudiado como candidatos para incorporarse al workflow
de anadlisis, y por ultimo los multiples tipos de ASEPs y su clasificacién segin la

literatura.

2.1. Analisis de malware

El anédlisis de malware es un proceso por el cual se obtiene toda la informacién
relevante a cerca de una muestra de cédigo (tipo de archivo, librerfas utilizadas,
comportamiento en ejecucién, firma digital, etcétera) para asi determinar si se trata de
software danino o benigno [35]. A lo largo de las tltimas décadas se han desarrollado
multiples métodos cada vez mas innovadores y agiles para llevar a cabo esta tarea,

aunque todos pueden clasificarse bajo dos grandes categorias de andlisis [25]:

= Analisis estatico. Este tipo de andlisis se centra en extraer informaciéon de
una muestra sin ejecutar el coédigo que contiene. Este tipo de aproximacion,
aunque rapida y simple, puede no ser suficiente para categorizar una muestra
como maliciosa, especialmente si se trata de malware relativamente actual y cuya

firma aun no ha sido registrada.

= Analisis dinamico. Las técnicas que se engloban en esta categoria de analisis
son muy variadas, aunque todas presentan un rasgo comun: el estudio del
comportamiento del cédigo durante su ejecucion. Esto incluye no sélo la propia
ejecucion de la aplicacion, sino también el trafico de red, contenidos de memoria

y cualquier otra interaccion con la API del sistema operativo.

Ya que este tipo de analisis implica la ejecucion del cédigo, es necesario que se
realice en un entorno aislado y controlado. Estos tipos de entornos se denominan
sandbox [11] y permiten la monitorizacién de la ejecucién de la muestra analizada,

realizandose normalmente en una maquina virtual en lugar de una maquina fisica.

2.2. Sistemas de analisis

Para el desarrollo de este proyecto se va a entender un Sistema de Anélisis (de
Malware) como una estructura de componentes software que llevan a cabo una serie
de tareas (automatizadas en la medida de lo posible) con el fin de, dado un conjunto
de muestras de malware, llevar a cabo un estudio a cerca de sus caracteristicas y
comportamiento para emitir un veredicto acerca de su naturaleza una vez finalizado.
Las diversas componentes de este sistema pueden estar implementadas con tecnologias

diferentes, pero deben de ser capaces de interactuar entre si sin problemas.

Una de las partes mas relevantes de este proyecto ha sido el desarrollo de este sistema
de analisis y clasificacion de muestras de malware. El diseno, ajuste y experimentacion

con este sistema se detalla en profundidad en el Capitulo 3 y el Capitulo 4.

2.3. Técnicas de analisis de software

Los sistemas de analisis de malware pueden emplear distintas técnicas para analizar
muestras y posteriormente ofrecer un reporte de los resultados. Una de las técnicas que
suelen emplear la mayoria de sistemas de testeo de software es el Analisis de caja
negra [3]. Esta técnica consiste en comprobar la funcionalidad de un cédigo sin tener
en cuenta su estructura interna o detalles de implementacién, inicamente centrando el

foco del analisis en las entradas y salidas del sistema.

2.4. Puntos de Autoinicio de Ejecucién (ASEPs)

El principal objetivo de estudio de este proyecto son los Puntos de Autoinicio
de Ejecucién (ASEPs, por sus siglas en inglés), definidos como el conjunto de
mecanismos en un sistema operativo que un programa puede utilizar para habilitar la
ejecucion automatica de cédigo, sin que exista una invocacién explicita previa de un

usuario [31] [27].

Recientemente se ha propuesto una taxonomia de estos mecanismos [30)],

agrupandolos en cuatro categorias principales (mecanismos de persistencia del

4

sistema, abuso del cargador de programas, abuso de aplicaciones y abuso del
comportamiento del sistema) en funcién de los métodos abusados por el malware para
persistir en el sistema. La mayoria de estos mecanismos dependen del Registro de
Windows.

El Registro de Windows es una base de datos jerarquica central que almacena datos
criticos para la configuracién del sistema, aplicaciones y dispositivos hardware [1]. Esta
estructura se compone de “colmenas”, cada una de las cuales tiene una clave raiz de la
que nacen el resto de las claves de forma similar a un arbol. Dependiendo del ambito
de la configuracién que almacena una clave, ésta se encontrara bajo una de las 5 claves

raiz predefinidas:

» HKEY CURRENT USER (HKCU): Contiene la informacién asociada al
perfil del usuario que ha iniciado sesién en la maquina. Puede ser modificada con
los permisos de un usuario estandar. Esta colmena serd la preferente a modificar

para el malware que se ejecuta sin permisos de administracion.

» HKEY USERS (HKU): Contiene todos los perfiles de usuarios cargados
actualmente en el equipo. Requiere permisos de administrador para ser

modificada.

» HKEY LOCAL_MACHINE (HKLM): Contiene informacién relativa al
sistema completo. Es necesario tener permisos de administrador para modificar
las claves y valores de esta colmena. Muchos de los ASEPs basados en Registro

de Windows modifican o crean claves bajo esta raiz.

» HKEY_CLASSES_ROOT (HKCR): Contiene las correspondencias entre
extensiones de ficheros y el programa a utilizar para abrirlos. Requiere permisos
de administrador para ser modificada. Un tipo de ASEP particular (Extension

Hijacking) hace uso de esta colmena para lograr persistencia.

» HKEY CURRENT_CONFIG (HKCC): Contiene informaciéon acerca del
perfil hardware que el equipo utiliza al arrancar el sistema. Requiere permisos de

administrador para ser modificada.

Por otro lado también se pueden encontrar ASEPs que dependen de rutas especificas
del sistema de ficheros (principalmente carpetas del sistema o configuracién particular
de cada usuario). De forma similar a las claves del registro, dependiendo del dmbito
de configuracién seran necesarios (o no) privilegios de administraciéon para emplear los

mecanismos necesarios para asegurar la persistencia explotando estos ASEPs.

Capitulo 3

Diseno del sistema de analisis

En este capitulo se detalla el proceso de diseno del sistema de analisis de malware
desarrollado y utilizado para la posterior experimentacién, el workflow a partir del cual
se ha realizado el diseno, las tareas en las que se divide y las componentes disenadas
para desempenar cada una de estas tareas, y las herramientas escogidas para estas

componentes.

3.1. Workflow de analisis de malware

Previamente al diseno del sistema completo de analisis de malware, se ha ideado un
workflow genérico de andlisis de malware. Para realizar la division en las tareas clave
del workflow de andlisis se ha partido de una situacién inicial y se han considerado los

procesos necesarios para llegar a un resultado final deseado.

Situacion Inicial: No hay muestras con las que trabajar.

Tarea 1: Obtener y procesar muestras de malware.

Tarea 2: Analizar el comportamiento de las muestras obtenidas y generar sus

trazas de ejecucion.

Tarea 3: Clasificar las muestras analizadas en funcién de las trazas de ejecucién

generadas.

Resultado Final: Muestras analizadas y categorizadas.

Asi pues, de la division del workflow han surgido tres tareas principales: Obtencion
de muestras, Generacion de trazas de ejecucion y Categorizacion de muestras. El diseno
del workflow realizado se muestra en la Figura 3.1. Esta figura recoge los distintos
aspectos expuestos en los siguientes apartados de forma general, sin especificar qué

tipo de tecnologia/herramienta se ha escogido para llevar a cabo cada tarea. Al ser

7

un workflow modular, cualquiera de las tecnologias deberia poder sustituirse por otra
que fuera capaz de desempenar la misma tarea, sin afectar al resto de la cadena. A

continuacion, se detalla el funcionamiento de cada una de estas tareas.

() -
\ l Malware Processed Sample Dynamic Sample
V Malware Analysis Labeling

Samples Dynamic Log Behavioral Result

Internet Sample N Analysi Log Parsing
ﬁ ‘ nalysis
Digester D and Sample @
Local Storage ' Labeling

VM Instances
— —

—

R

i
|

Figura 3.1: Workflow de andlisis de malware diseniado

3.1.1. Obtencion de muestras - Digester

La primera tarea que debe desempenarse es la obtencion de muestras de malware
para su posterior andlisis y clasificacién. El componente que desempena esta tarea se
ha denominado Digester. El Digester se encarga de la ingesta y procesamiento de
muestras de malware para ponerlas a disposicion de la siguiente tarea del workflow.
Cada muestra procesada se anade a una cola, a la que se accede en exclusién mutua,

para ser posteriormente extraida cuando sea analizada.

Se ha considerado que el Digester debe ser capaz de aceptar muestras introducidas
manualmente por un usuario en la cadena de analisis, pero también debe ser capaz de
obtener muestras automaticamente. Es por esto que se ha disenado este componente

para poder procesar muestras de dos origenes diferentes, como se explica a continuacién:

Muestras introducidas desde el almacenamiento local

Las muestras procedentes del almacenamiento local son aquellas que un usuario
introduce en la cadena de andlisis manualmente. Para procesarlas se requieren los

siguientes pasos:

= Deteccion de la muestra: En tiempo de ejecucién se deben de poder detectar
nuevas muestras anadidas por un usuario. Para ello se ha programado un proceso
“fisgon” que, periédicamente y durante la ejecucion del sistema de andlisis, se
dedica a consultar un directorio determinado en el que se espera que el usuario

deposite muestras a analizar.

s Comprobacion de validez: Para que una muestra se considere valida para analizar

debe de cumplir una serie de requisitos, entre los cuales destaca el tipo de archivo
(.exe, dll ...).

» Cdlculo de la firma: Para identificar una muestra de malware inequivocamente se
procede a calcular su firma SHA256 y renombrarla con este valor. Esto permite
descartar muestras ya analizadas, asi como organizar los resultados finales de

forma precisa.

» FEncolado de la muestra: Si la muestra introducida no se encuentra entre las ya
analizadas, se procede a encolarla en una cola de muestras disponibles para su

analisis posterior.

Muestras descargadas de repositorios web

Existen multiples repositorios online de los cuales se pueden descargar muestras de
malware. Estos repositorios pueden ser abiertos o de pago y requerir o no identificacion,
entre otras caracteristicas. Implementar la interaccién con un repositorio web de
malware permite la descarga de conjuntos relativamente grandes de muestras de
malware, que ademas normalmente se encuentran ya clasificadas por tipo de archivo y

con su firma SHA256 digital calculada.

A la hora de escoger un repositorio del que descargar muestras para el estudio
se ha buscado un repositorio abierto, que ofrezca una API documentada con la que
descargar facilmente muestras y, sobre todo, que ofrezca una cantidad significativa de
muestras de malware reciente peridédicamente. De igual manera, otras caracteristicas
clave a la hora de agilizar el proceso de adquisicion de muestras han sido: la capacidad
de filtrar muestras por diferentes caracteristicas (extension, firma digital, fecha de
publicacién en el repositorio, etcétera) y la existencia (o no) de un limite a la descarga

de muestras en un determinado periodo de tiempo.

La Tabla 3.1 lista los diversos repositorios que se han valorado como alternativas
de las que obtener las muestras a analizar, asi como las principales caracteristicas.
Estas caracteristicas se han utilizado para elegir el repositorio mas adecuado para el

estudio.

Requiere Presenta Ofrece filtrado Limite de Muestras Histérico de

S D
epositorio identificacién API de muestras descargas recientes muestras Sl
VirusShare [31] St No St St St St No
Hybrid-Analysis [10] St St Si S{ St Si No
VirusTotal [33] St St St St it St No
VirusSign [32] Si No No St St De Pago No
MalwareBazaar [22] No Si Si Recomendado S{ Si No
Tabla 3.1: Repositorios web de malware estudiados
De entre los repositorios listados, se ha escogido MalwareBazaar [22] puesto que

se trata de un repositorio abierto de malware que presenta una API extensamente
documentada, permite filtrado de muestras de malware y proporciona la capacidad de

descargar grandes paquetes de muestras tanto recientes como del histoérico.

Se ha anadido al Digester la capacidad de descargar muestras de MalwareBazaar a
través de su API. En este caso, procesar estas muestras sélo requiere la consulta a la
API de una lista de firmas SHA256 de las tltimas muestras anadidas y descargar las

muestras cuyas firmas no estén en la lista de muestras analizadas.

3.1.2. Generacion de trazas de ejecucion - Analyzer

Una vez se dispone de un conjunto de muestras de malware, la siguiente tarea es
analizarlas para obtener sus trazas de ejecucion. Para esta tarea se ha desarrollado el
componente Analyzer. El Analyzer debe ser capaz de, dada una muestra de malware,
ejecutar un analisis dindmico de la misma y proporcionar un fichero log con la traza

de ejecucion de la muestra una vez finalizado.

Al trabajar con muestras de malware, este andlisis ha de realizarse en un entorno
controlado y aislado, para evitar asi que el codigo malicioso afecte a la maquina en la
que corre el sistema de andlisis [23]. Por esto, para este componente del workflow se
busca utilizar una herramienta libre de andlisis tipo sandbox [14]. Esta herramienta
debe de permitir crear instancias virtuales de méquinas con una versiéon moderna de
Windows (Windows 7 o 10 preferiblemente) en las que ejecutar la muestra a analizar.
Otra caracteristica clave es el Tipo de API hook que implementa, es decir, al método
que emplea la herramienta para registrar las llamadas a la API realizadas por el
software analizado. Dependiendo de si el método permite recopilar informacién a nivel
de usuario, de nucleo, o de ambos se obtendran resultados més o menos precisos [20].
Por otro lado también se ha de tener en cuenta los requisitos hardware y dependencias

software que presenta la solucion, asi como los resultados que ofrece a cambio.

10

La Tabla 3.2 lista las diferentes herramientas de generacion de trazas de ejecucion
que se han considerado como candidatas para utilizar en el sistema de andlisis, junto a
una breve descripcion, sus cualidades mas remarcables y las caracteristicas relevantes

antes mencionadas.

) Ultima Versién L) S.0s Invitados Tipo de API A q
Herramienta Descripcion Requisitos Precio
a e P Cualidades Remarcables Soportados Trosalle q
o - Adaptado para soportar la mayoria
Herramienta lider de andlisis de . I . "
I 5 de soluciones de virtualizacién.
malware dindmico automatizado. Soporte para anl distribuido
Desarrollada en Python. Permite 77 0 On C entacion de Windows 7 x64, Python 2.7 y librerfas asociadas.
Cuckoo Sandbox [12] 2.0.7 (2019) realizar trazado de llamadas : . . Ubuntu 18.04 Usuario Volatility para volcados de Gratuito
° 2 instalacién y casos de uso. Permite A
realizadas por procesos asf como - : x32/x64 memoria. Postgresql u otro SGBD.
. P utilizar maquinas fisi
volcados de memoria y tréfico de
o para el andlisis
red. méquinas virtuales.
- Mejora de rendimient: apacidad
, Rediseno de cuckoo sandbox basado cjora de rendimiento v capacida .
Cuckoo Sandbox 3 [13] n/d asi como nuevas funcionalidades n/d Usuario n/d n/d
en Python 3. L, h
b respecto a la version en Python 2.7
Herramienta de caja negra para el B . £1: -
o © Caja negra b Permite realizar el anlisis del Windows 7-8 Intel CPU con soporte para
andlisis de binarios a través de . .)
o i P i malware sin la necesidad de instalar Vs virtualizacién (VT-x) y Extended
Drakvuf [26] 0.8 (2022) it do amadas realimdae op SOftware adicional en las méquinas ‘;(“‘“‘“l»‘ Page Tables (EPT). Cratuito
e o virtuales, reduciendo asi la Linux 2.6.x-5.x e Xen 4.16.
P * 10 voleados de posibilidad de deteccion. x32/x64 Python 3.
memoria y trafico de red. !
Permite realizar el andlisis del Intel CPU con soporte para
malware sin la necesidad de instalar virtualizacion (VT-x) y Extended
Herramienta de caja negra para el software adicional en las maquinas Page Tables (EPT). Mdquina
andlisis de malware automatizado virtuales, reduciendo asf la anfitriona con procesador de al
sin agente con el motor de Drakvuf — posibilidad de deteccién. Ofrece Windows 7 x64. Usuari menos 2 micleos, 5GB RAM y con
Drakvuf Sandbox [21] 0.18.1 (2021) por debajo. Permite realizar una interfaz web amigable asi como “,,‘“l“‘“ l'“" ot ;{“‘“‘Olv‘ GRUB como gestor de arranque: Gratuito
trazado de llamadas realizadas por una interfaz de linea de comandos mdows 10X eme Debian 10 Buster / Ubuntu 18.04
procesos asi como voleados de que permite automatizar el proceso Bionic / Ubuntu 20.04 Focal.
memoria y trafico de red. de andlisis de malware. Ofrece un Virtualizacion anidada mediante:
instalador para guiar el proceso de Xen / VMware Workstation Player
instalacién. / KVM
Permite inspeccionar una maquina
virtual gemu en ejecucion, su
Entorno de pruebas basado en e en ejecuct
¢ Python enfocado a la mermotia, eglstros e Arquitectura de las méquinas
Qemu y Python ¢ Hocads instrumentalizar su ejecucién Cualquier Windows irtualess x86 586.6
PyREbox [18] (2019) mgenieria mversa de matware. mediante scripts. Cuenta con un x32/x64 soportado n/d) s O A Cratuito
N Permite realizar trazado de . 5 e Sistema operativo de la maquina
r . Shell con comandos propios. por volatility " !
llamadas realizadas por procesos asi o - host: Fedora/CentOS/Debian
N Todavia se encuentra en desarrollo
como volcados de memoria. N .
por lo que aspectos como la
eficiencia tienen margen de mejora.
Permite realizar clasificaciones de
malware por familias a partir de
. reglas Yara de deteccién de firmas
Entorno de pruebas derivado de . .
N de comportamiento. Tiene la
cuckoo orientado al . . B
lesempaquetado y extraccion de la ¢Apacidad de evitar téenicas de
configuracién del malware a sorteado que utiliza el malware Python 3. KVM como hipervisor.
ara ar la i6 Vi rs 7 x64 Sistema operativo de la maquina .
Cape [11] 2 (2022) analizar en entornos Windows para detectar la cjecucién en un Windows 7 x64, Usuario P D N U s Gratuito
o e entorno virtualizado y 1o desplegar — Windows 10 x64 ost: sistema nativo GNU/ Linux
. 8 . su auténtico potencial, ocultando (preferible Ubuntu 20.04 LTS)
de llamadas realizadas por procesos ! P -
. : asi sus capacidades malici al
asi como volcados de memoria y . . o P
o analisis. Permite utilizar maquinas
trdfico de red. . N .
fisicas como “guests” para el
andlisis en vez de maquinas
virtuals
Framework de andlisis de software Realiza la traza de llamadas a la
malicioso que hace uso de las API de Windows x32 desplegandose N o
oo e virtualiocion ‘ ’ N) Xen como hipervisor. Ejecucién
Ether [2 0.1 (2009 extensiones de virtualizacién de al mismo nivel que el hipervisor, lo Windows XP Service - § e y Gratui
er [2] -1 (2009) I) ; ;) . Usuario baremetal sobre un procesador Intel = Gratuito
ntel para permanecer transparente que permite monitorizar la maquina Pack 2 - o PR
s i i . . x64 con la extension VT activada.
a este. Permite realizar trazado de virtual sin contar con una presencia
llamadas realizadas por procesos considerable en la misma.
Herramienta de analisis de -
. o Monitoriza cambios de estado a
comportamiento de aplicaciones ; ;
; ’ nivel de kernel. Proporciona un .
para la familia de Sistemas mecanismo para excluir ruido que n4oWs 2000, Parche de servicio en el sistema
CaptureBAT [27)] Muerto operativos WIn32. Permite realizar SO p 1 Windows XP, Kernel o Gratuito
. se da en un sistema en espera. . IS operativo en el que se ejecuta.
trazado de llamadas realizadas por . . Windows Vista
. Herramienta que se ejecuta en el
procesos asi como volcados de)
o entorno virtualizado.
tréfico de red.
Permite una configuracion
Herramienta de generado de trazas avanzada mediante la inclusién o
de llamadas a API avanzada exclusién de DLL y APT a Windows 2003
Malpimp [21] 2.0 (2013) diseiada para automatizar el monitorizar. Al ser una herramienta “‘v‘,‘ le- <P Usuario No tiene Gratuito
proceso de ingenierfa inversa de de linea de comandos ejecutada en mdows
malware. el entorno virtualizado permite la
automatizacion mediante scripts.
Herramienta disefiada para analizar e o .
! Capaz de analizar cualquier tipo de -
el comportamiento de los procesos, ’ et 1po Windows 2000,
B A fichero ejecutable, no sélo binarios. -
los cambios que estos realizan en el Puede ser cjecutado de forma Windows XP,
Buster Sandbosx [0] 1.92 sistema y determinar si se trata de e ae e o Windows Vista, Usuario Instalacién previa de Sandboxie Gratuito
automatica desde linea de

malware. Permite realizar trazado
de llamadas realizadas por procesos
asi como volcados de tréfico de red.

comandos. Herramienta que se
ejecuta en el entorno virtualizado.

Windows 7,
Windows 8

Tabla 3.2: Herramientas de generacién de trazas de ejecucion de APIs estudiadas

11

Tras valorar todas las opciones se ha optado por Drakvuf Sandbox [21], un
sistema de andlisis de malware de caja negra [3] que utiliza el motor de Drakvuf

[20] internamente. Las principales ventajas que ofrece esta solucién son las siguientes:

= Baja probabilidad de que el malware detecte que esté siendo analizado, puesto

que Drakvuf no instala software adicional en las instancias virtuales.

» Interfaz disponible que permite automatizar el proceso de andlisis a través de

linea de comandos o mediante la creacién de tareas de andlisis con Python.

= Generacion de un log que contiene las llamadas realizadas a la API de Windows
por todos los procesos del sistema durante el analisis con los argumentos de estas

llamadas y si las llamadas han tenido éxito.

El Analyzer ha sido programado para que sea capaz de interactuar con una instancia
de Drakvuf Sandbox instalada, enviando muestras a analizar y obteniendo los logs
generados como resultado. Los logs obtenidos se encolan en una cola FIFO para ser

posteriormente empleados en la categorizacion de la muestra.

3.1.3. Categorizaciéon de la Muestra - Labeler

Tras haber obtenido las trazas de ejecucion de una muestra, hay que analizarlas
en busca de unos patrones de comportamiento determinados con los que categorizar
la muestra. Esta es la funciéon del Labeler. Este componente se encarga de, dada una
traza de ejecucion, realizar un anélisis de la misma a través de expresiones regulares
y patrones predefinidos para encontrar evidencias de un comportamiento que permita

clasificar la muestra.

Se ha escogido implementar la funcionalidad de este componente a través de
expresiones regulares por simplicidad y velocidad a la hora de analizar las trazas. Otras
soluciones para este componente se mencionan en el Capitulo 5, asi como posibilidades

de desarrollo a futuro en el Capitulo 6.

3.2. Sistema de analisis completo

Para el diseno del sistema de analisis completo se han tenido en cuenta diferentes

aspectos que no se abordaron durante el diseno del workflow de analisis:

s Distribucion de Carga de Trabajo: Para acelerar el proceso de anadlisis es
conveniente disponer de multiples maquinas en las que se haya instalado la

solucion de andlisis o clasificacion escogida.

12

s Almacenamiento de resultados: Una vez se han obtenido los resultados de la
clasificacion, es de interés almacenar de forma comprimida tanto la muestra

analizada como los logs generados y los resultados de la clasificacion.

s Coordinacion de las componentes: Para facilitar la interaccién entre las diferentes
componentes del sistema se ha creado una tultima componente que actiia como

pieza central del mismo.

3.2.1. Componentes adicionales

A partir de las consideraciones anteriores se han desarrollado las siguientes

componentes para el sistema completo:

= Master: Es la componente encargada de permitir a maquinas workers registrarse
durante la ejecucion del sistema para servir peticiones de analisis o clasificacion.
Es capaz de monitorizar su estado a través de latidos y reaccionar ante una caida

de un worker.

= AnalysisWorker: Esta componente ofrece la funcionalidad del Analyzer en
remoto a través de RPC. Se ejecuta en una maquina a parte con una instancia

de la solucion de analisis escogida instalada.

= LabelingWorker: Esta componente ofrece la funcionalidad del Labeler en
remoto a través de RPC. Se ejecuta en una maquina a parte con una instancia

de la solucion de clasificacion escogida instalada.

= Storer: Esta componente se encarga de almacenar las muestras analizadas
junto con los logs generados y los resultados de la clasificacién en un archivo

comprimido.

= Orchestrator: Se trata de la pieza central del sistema, su funcién es la de
gestionar y coordinar el proceso de analisis haciendo uso de las diferentes
componentes. Puede configurarse para realizar el andlisis y/o la clasificacién de
muestras de en local o remoto. Cuenta con un pool de procesos de analisis y
clasificacién que, de estar configurado como local realizan las tareas de analisis
y clasificacion, y en caso de estar configurados en modo remoto delegan estas

tareas en los respectivos workers a los que estan conectados.

13

3.2.2.

Estructura final

El cédigo del sistema completo, desarrollado en su totalidad en Python, se puede

encontrar publicamente accesible y mediante licencia GNU GPLv3, en GitHub [1].

La Figura 3.2 resume la estructura final del sistema de analisis desarrollado para la

experimentacion.
Maquina Master Analysis Workers
Local I W | (7
Storage Master
b cacacacasanancnes \ Analysis| |||
[\ __ S .:-,\| Worker | 1Analyzer]
\ /| a— L PN
Internet ‘ ol (7
Storer
- Il .
Labeling I

......................

Labeling Workers

Figura 3.2: Estructura del sistema de analisis

14

Capitulo 4

Experimentacion y resultados

En este capitulo se trata la fase de experimentacion del proyecto. En concreto se ha
empleado el sistema de analisis de malware desarrollado para realizar un estudio sobre
la prevalencia de ASEPs en malware de Windows obtenido de un repositorio online
de malware. En primer lugar se describen las pruebas de concepto implementadas
para conocer los patrones de comportamiento a buscar. Después, se comenta la
arquitectura del despliegue utilizada. Por ultimo, se discuten los resultados obtenidos

y las limitaciones encontradas.

4.1. Pruebas de concepto (POCs)

Antes de comenzar con la experimentacién sobre malware real, ha sido necesario
ajustar el Labeler para asegurarse que detecta los patrones de comportamiento
deseados en las trazas que se generan en el Analyzer. Para realizar este ajuste, se han
desarrollado una serie de aplicaciones POCs para cada tipo de ASEP que se busca
detectar, analizandolas previamente para obtener sus respectivas trazas de ejecucién

de las que extraer los patrones de comportamiento a detectar para cada tipo de ASEP.

El desarrollo de estas POCs ha requerido una fase de estudio de la API de
Windows, asi como de la estructura del Registro de Windows y de las rutas del sistema
de ficheros empleadas por dicho sistema operativo. El cédigo fuente de las POCs
en C++4, asi como los ejecutables compilados y las trazas de ejecucion generadas,

se pueden encontrar también en GitHub [5], ptiblicamente accesibles y mediante la
licencia GNU GPLv3.

Cabe destacar que la mayoria de los ejecutables generados requieren de privilegios
de administrador para ejecutarse de forma correcta debido a los mecanismos empleados.

Sin embargo, al intentar analizar estos ejecutables se ha podido constatar que la

15

solucién escogida para el proceso de andlisis dindmico (la herramienta Drakvuf, véase
la Subseccién 3.1.2) no es capaz de analizar muestras que requieren de elevacién de
privilegios para ejecutarse. Este problema va a limitar inevitablemente los resultados

del anélisis.

4.2. Arquitectura del despliegue

Para el despliegue del sistema de andlisis se ha disenado una arquitectura que
aprovecha su capacidad para ejecutar las tareas de analisis y clasificacion de manera
distribuida. Esta arquitectura puede apreciarse en la Figura 4.1. A la hora de realizar
la experimentacién, sin embargo, sélo se ha dispuesto de una maquina para desplegar
el sistema de andlisis debido a la falta de recursos con los que trabajar. No obstante,
puntualmente se ha empleado una segunda maquina para comprobar la capacidad de

funcionamiento distribuido del sistema.

Malware i Dynamic
Sample .
T Analysis

Sample Digester
and Result Storage

Master

Labeling
Result

Log Parsing
and Labeling

g Parsing Workers

Figura 4.1: Arquitectura ideada para la experimentacién

Cabe destacar que con las soluciones de analisis y clasificacién escogidas no habria
sido necesario disponer de “Labeling Workers”, ya que el procesado de las trazas de
ejecucion mediante expresiones regulares es suficientemente rapido para no suponer
una merma considerable del rendimiento de realizarse de forma local al Master. Por
otro lado, si hubiera sido interesante disponer de un numero suficiente de “Analysis
Workers”, ya que por cada muestra se emplean unos 6 minutos aproximadamente en

su analisis y generacién de trazas de ejecucion.

16

4.3. Resultados obtenidos y limitaciones

Una vez se ha ajustado el Labeler a partir de las pruebas de concepto y se
ha desplegado el sistema de analisis con la arquitectura permitida, se ha procedido
a descargar periédicamente muestras de malware con las que alimentar la cadena
de anélisis del repositorio MalwareBazaar (véase la seccién Seccién 3.1.1). Se ha
comprobado que el sistema de anélisis disenado es capaz de permanecer durante dias
continuados analizando muestras sin generar ningun error ni colgarse. Al superar
las 2500 muestras analizadas se ha detenido el sistema para realizar una valoracién
del rendimiento y calidad de los andlisis y clasificaciones realizados, detallados en la

Figura 4.2. En concreto:

= Se han analizado un total de 2514 muestras de malware, a un ritmo de entre 5 y
6 muestras por hora. El 95,67 % (2405) de estas muestras se ha podido analizar

correctamente.

= Del total de muestras analizadas, el 1,63 % (41) no han producido alguno de los
logs necesarios para llevar a cabo la clasificacién. Estos casos se consideran como

fallos del sistema de analisis.

= Del total de muestras analizadas, el 0,16 % (4) no han podido ser analizadas por
presentar un formato incorrecto de ejecutable. Estos casos no se consideran como

fallos del sistema.

» E125% (63) de las muestras generadas requerian de privilegios de administracion
para poder ejecutarse. Como se ha expuesto anteriormente, Drakvuf Sandbox por
defecto es incapaz de analizar este tipo de muestras. Estos casos se consideran

una limitacién del sistema de andlisis.

= Del conjunto de muestras analizadas correctamente, el 0,62 % (15) de estas han
sido clasificadas como uso positivo en ASEPs. Se ha podido confirmar que 7 de
estas hacen uso de las “Run Keys”, un tipo de ASEP bajo la categoria de “System
Persistence Mechanisms” que crea una clave en el Registro de Windows. Otras 5
emplean el método de “Startup Folder”, un tipo de ASEP bajo la misma categoria
que consiste en anadir un ejecutable, o enlace al mismo en la ruta de la carpeta
de Inicio de un usuario. Las 3 restantes utilizan el método “COM Hijacking”,
englobado en la categoria “Program Loader Abuse”, que consiste en acceder a
una clave del registro existente y modificar alguno de sus valores. Con esto se
puede concluir que el sistema es capaz de detectar tanto ASEPs que dependen

del Registro de Windows como de rutas especificas del sistema de ficheros.

17

Analisis
llidos Otros

Logs no
generados

Elevacion de

privilegios
> Format
Anali incorrecto
completados
(a) Anélisis completados/fallidos (b) Motivos de fallo

Positivos
COM Hijacking

Run Keys

Negativos

(c) Uso de ASEPs positivo/negativo (d) Distribucién de ASEPs en los positivos

Figura 4.2: Graficas de distribucién de los resultados de la experimentacion

4.3.1. Analisis de los resultados

Si bien se ha podido constatar que el sistema es capaz de detectar la utilizacién de
ASEPs en muestras de malware, el bajo nimero de positivos es un posible indicativo
de una carencia en el proceso de andlisis y generacion de trazas de ejecucion, aunque

también puede deberse a la presencia de malware evasivo [7].

Con esta hipdtesis se ha procedido a examinar varias de las trazas generadas y
catalogadas como negativas en presencia de uso de ASEPs y se han realizado los

siguientes hallazgos:

» Los argumentos de las funciones no siempre se pasan por valor. Es decir,
no siempre aparece el valor del argumento con el que se invoca a una funcién en
la traza de ejecucion, sino que a veces aparece la direccion de memoria en la que

se almacena este valor (o sea, se pasa un puntero a una variable).

» Las funciones que trabajan con el Registro de Windows no siempre
emplean rutas completas o absolutas. Se ha descubierto que a veces estas
funciones parten de una clave ya abierta desde la que acceden a otra mas baja

en esa jerarquia.

18

Estos dos factores no se manifestaron en las trazas de las pruebas de concepto, con
lo que no se tuvieron en cuenta a la hora de ajustar el Labeler. Este hecho combinado
a la limitacién de la herramienta para analizar muestras que requieren elevacion de
privilegios para ejecutarse podria explicar la baja tasa de positivos obtenidos. Por
otro lado, se ha de tener en cuenta también que en ningiin momento se ha contado
con muestras etiquetadas previo anélisis del sistema (es decir, no puede saberse si las

muestras que se han clasificado como negativos emplean o no algin tipo de ASEP).

19

20

Capitulo 5

Trabajo relacionado

En este capitulo se mencionan distintos trabajos y estudios relacionados con el tema
principal del proyecto y/o con las herramientas y soluciones empleadas en el sistema
de analisis desarrollado. También se contextualizan las contribuciones aportadas con

este proyecto al a&mbito de investigacion relacionado con el tema desarrollado.

El sistema de anélisis desarrollado realiza el anélisis de las trazas de comportamiento
de las muestras, pudiendo correlar eventos dentro de un mismo log a través de
expresiones regulares simples definidas por el usuario. En [29] se propone una solucién
de analisis de logs que emplea aprendizaje automatico para realizar la correlacién de
eventos en el fichero log analizado. Esta aproximacién es de gran interés si se tiene
en cuenta la dificultad que puede llegar a suponer para una maquina comprender y
aprender de una gramatica compleja y cambiante, como puede ser la que presentan la

mayoria de ficheros de log.

En [10] se ofrece una propuesta diferente, cuya aproximacién es mas til cuando se
han de correlar eventos descritos en diferentes logs. Asi pues, esta soluciéon se centra
en la recoleccién, andlisis y correlacion entre logs permitiendo al usuario definir los
patrones de comportamiento a buscar y las acciones a seguir en caso de detectarse

dichos patrones.

Drakvuf Sandbox es la pieza central del sistema de andlisis desarrollado,
permitiendo realizar analisis dinamicos de muestras de malware y generar las trazas de
ejecucion correspondientes. En [19] se estudia una de las caracteristicas més relevantes
de Drakvuf: su capacidad para reducir su presencia en la maquina virtual en la que
se ejecutan las muestras a analizar. También se ofrece un estudio de la capacidad de

Drakvuf para aumentar los recursos destinados al proceso de anélisis.

21

Relacionado con una de las caracteristicas objeto del estudio anterior, en [9] se
emplea Drakvuf para detectar malware evasivo, es decir, muestras de cédigo malicioso
que emplean diferentes métodos con el fin de no ser detectados por herramientas de
andlisis y /o proteccion en el sistema en el que se ejecutan. Este estudio posee una gran
importancia respecto a la experimentacién realizada en este proyecto, dado que el

malware evasivo puede afectar significativamente a los resultados del estudio realizado.

En [15] se realiza una comparativa de distintas herramientas de analisis para el
diseno de un sistema de andlisis de malware empleando técnicas de introspeccion en
maquinas virtuales, entre las que se encuentra Drakfuf. De forma similar, en [17] se
realiza otra comparativa entre Drakvuf Sandbox y Cuckoo Sandbox, centrandose en

las caracteristicas y prestaciones de estas dos herramientas.

Pocos estudios se han realizado acerca de los puntos de autoinicio de ejecucion
desde que se definieran en 2004. En [31] se definen por primera vez estos mecanismos
y se estudia el ciclo de vida del spyware (tipo de malware que recopila y transmite
informacién de una maquina sin el conocimiento del usuario) en una méquina
comprometida, monitorizando el uso de ASEPs para persistir en el sistema y continuar
espiando a sus usuarios. Por otro lado, en [30] se propone por primera vez una
taxonomia de los ASEPs en Windows. Es en esta taxonomia en la que se ha basado el

desarrollo del componente Labeler del sistema de analisis disenado.

Hasta ahora no se habia realizado un estudio de la prevalencia de los ASEPs en
malware de Windows, por lo que el proyecto desarrollado es un primer paso para
conocer la verdadera extension de la utilizacién de estos mecanismos en el malware

moderno de sistemas operativos Windows.

22

Capitulo 6

Conclusiones y trabajo a futuro

En este capitulo se exponen las conclusiones extraidas del desarrollo del proyecto
y la experimentacién, asi como posibles lineas de trabajo e investigacion a futuro que

permitan mejorar y emplear el sistema de anélisis desarrollado.

6.1. Conclusiones principales

En este trabajo se ha desarrollado un sistema de andlisis de muestras de
software modular, con capacidad para distribucién de tareas entre multiples
maquinas y monitorizacién de las mismas. La modularidad de este sistema permite
cambiar facilmente la implementacion de cualquiera de las componentes gestionadas
directamente por el Orchestrator (Digester, Analyzer, Labeler, Storer) sin necesidad
de modificar ninguna otra componente del sistema. A su vez, la estructura del sistema
permite utilizarlo para multitud de andlisis dindmicos diferentes, y clasificar muestras
segun distintos criterios, simplemente ajustando los componentes correspondientes
(Analyzer y Labeler, respectivamente). Se puede cambiar de igual manera la fuente
de la que se obtienen las muestras (ajustando el Digester), o el método que se utiliza
para almacenar los resultados (cambiando el Storer). Esta versatilidad permite que el
sistema disenado se pueda utilizar en cualquier estudio de andlisis y clasificacion de

muestras de software en funcién del comportamiento de las mismas.

En lo referente al estudio acerca de la prevalencia de los ASEPs en malware de
Windows, las limitaciones y problemas encontrados durante la fase de experimentacién
han limitado el alcance del mismo, no pudiendo llevarse a cabo de manera exhaustiva
como se habia planeado en un principio. Sin embargo, se ha constatado la detectabilidad
de estos mecanismos a través de las trazas de ejecucién generadas por una herramienta

de andlisis dindmico (concretamente, mediante Drakvuf Sandbox).

23

6.2. Trabajo futuro

A continuacién se introducen una serie de ideas sobre las que se podria trabajar

para expandir las capacidades del sistema desarrollado y mejorarlo.

Resiliencia
Si bien es cierto que el sistema de andlisis desarrollado es capaz de registrar
workers en tiempo de ejecucién, monitorizar su estado y responder ante la
pérdida de conexién con una de estas maquinas, no se ha llegado a implementar
un mecanismo para soportar caidas de la maquina Master. Para ello, debe de
programarse una funcionalidad en el méaster que permita el registro de una
méaquina (o conjunto de maquinas) como réplica del master, manteniendo en
todo momento la coherencia entre estas y, en caso de caer el master, una de las
réplicas ocupe el lugar de este (mediante el algoritmo de eleccién de lider que se

considere oportuno), tomando el control de los workers activos.

Traduccion de punteros
Como se ha expuesto anteriormente en la Subseccion 4.3.1, una de las
limitaciones encontradas ha sido la presencia de punteros en las llamadas a la
API en lugar del valor del argumento. Para solventar este problema es necesario
contar con un volcado de la memoria virtual del proceso que ha realizado la
llamada, para asi traducir la direccion a la que apunta el puntero a un valor con
el que se pueda trabajar en el proceso de clasificaciéon. A pesar de que Drakvuf
Sandbox proporciona un mecanismo de volcado de memoria, éste presenta una
serie de errores que a dia de hoy hacen poco fiable su utilizacién para este fin, e

incluso directamente imposible.

Motor de andlisis para la clasificacién
Para la tarea de clasificacion se han empleado expresiones regulares sobre las
trazas de ejecucién generadas por el proceso de analisis. Este método, pese a ser
rapido y relativamente facil de programar, puede no ser lo suficientemente preciso
para llevar a cabo una clasificacién de calidad. Por esto, una de las posibles
mejoras a llevar a cabo consiste en implementar un motor de analisis con el que
analizar las trazas de ejecucion y buscar correlaciones entre llamadas, teniendo en
cuenta los valores devueltos por las llamadas al sistema y los diferentes procesos
que participan de los comportamientos analizados. Con esta aproximacion se

puede superar la segunda limitacion mencionada en la Subsecciéon 4.3.1.

24

Estudio exhaustivo de prevalencia de ASEPs
Una vez superadas las limitaciones encontradas, es de interés volver a realizar este
estudio de prevalencia de ASEPs con un despliegue mas ambicioso: utilizando
multiples maquinas para los procesos de analisis y clasificacion, se puede
aumentar la tasa de muestras procesadas y realizar un estudio con miles de
muestras para estudiar la verdadera distribucion de los puntos de autoinicio de
ejecucion en el malware actual de Windows. Este estudio ademaés puede realizarse
de manera longitudinal para observar la evolucién de las técnicas ASEPs usadas

a lo largo del tiempo.

25

26

Bibliografia

A. Allievi y col. Windows Internals, Part 2. Developer Reference. Pearson
Education, 2021. 1SBN: 9780135462409.

Monirul Sharif & Wenke Lee Artem Dinaburg Paul Royal. Ether - Malware
Analysis via Hardware Virtualization Extensions. https : / /ether . gtisc .
gatech.edu/index.html. Accedido en 17-06-2022.

Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Software
and Systems. USA: John Wiley amp; Sons, Inc., 1995. 1SBN: 0471120944. DOTI:
10.5555/202699.

Carlos Borau Gonzélez. Malware Analysis Workflow. https://github . com/
778280/Malware_Analysis_Workflow. Accedido en 17-06-2022.

Carlos Borau Gonzdlez. Windows ASEPs POCs C++. https://github.com/
778280/Win-ASEPs_Cpp/. Accedido en 17-06-2022.

Buster. Buster Sandboz - A designed to analyze the behaviour of processes and the
changes made to system. http://bsa.isoftware.nl/. Accedido en 17-06-2022.

D’Elia, Daniele Cono & Coppa, Emilio & Palmaro, Federico & Cavallaro,
Lorenzo. “On the Dissection of Evasive Malware”. En: IEEE Transactions on
Information Forensics and Security 15 (2020), pags. 2750-2765. por: 10.1109/
TIFS.2020.2976559.

Kenning Arlitsch & Adam Edelman. “Staying Safe: Cyber Security for People and
Organizations”. En: Journal of Library Administration 54.1 (2014), pags. 46-56.
DOI: 10.1080/01930826.2014.893116.

David Ekenstein Gustaf & Norrestam. “Classifying evasive malware”. Tesis doct.
Master’s thesis, Lund University, 2017.

Manage Engine. Best log management for enhanced visibility into your network.
https://www . manageengine . com/products/eventlog/log-management -
solution.html. Accedido en 20-06-2022.

Cuckoo Foundation. CapeSandboxr - An Open Source software for automating
analysis of suspicious files. https://capev2.readthedocs.io/en/latest/
index.html. Accedido en 17-06-2022.

Cuckoo Foundation. Cuckoo Sandbox - An open source software for automating
analysis of suspicious files. https://cuckoo.sh/docs/. Accedido en 17-06-2022.

Cuckoo Foundation. Cuckoo Sandbox 3 - A full rewrite of Cuckoo in Python 3.
https://hatching.io/cuckoo/. Accedido en 17-06-2022.

27

https://ether.gtisc.gatech.edu/index.html
https://ether.gtisc.gatech.edu/index.html
https://doi.org/10.5555/202699
https://github.com/778280/Malware_Analysis_Workflow
https://github.com/778280/Malware_Analysis_Workflow
https://github.com/778280/Win-ASEPs_Cpp/
https://github.com/778280/Win-ASEPs_Cpp/
http://bsa.isoftware.nl/
https://doi.org/10.1109/TIFS.2020.2976559
https://doi.org/10.1109/TIFS.2020.2976559
https://doi.org/10.1080/01930826.2014.893116
https://www.manageengine.com/products/eventlog/log-management-solution.html
https://www.manageengine.com/products/eventlog/log-management-solution.html
https://capev2.readthedocs.io/en/latest/index.html
https://capev2.readthedocs.io/en/latest/index.html
https://cuckoo.sh/docs/
https://hatching.io/cuckoo/

[18]

[19]

[20]

[26]

[27]

Anup Greamo Chris & Ghosh. “Sandboxing and Virtualization: Modern Tools
for Combating Malware”. En: IEEE Security & Privacy 9.2 (2011), pags. 79-82.
DOI: 10.1109/MSP.2011. 36.

Anssi Matti Helin. “Virtual machine introspection in malware analysis”. English.
Master’s thesis. Aalto University. School of Science, 2016, pags. 58 + 6.

Hybrid-Analysis - Online Malware Analysis Service and Repository. https://
www.hybrid-analysis.com/. Accedido en 17-06-2022.

Ilic, Slavisa & Gnjatovi¢, Milan & Popovic, Brankica & Macek, Nemanja. “A
pilot comparative analysis of the Cuckoo and Drakvuf sandboxes: An end-user
perspective”. En: Vojnotehnicki glasnik 70 (abr. de 2022), péags. 372-392. DOL:
10.5937/vojtehg70-36196.

Cisco Talos Security Intelligence y Research Group. PyRFEbox - A Python
scriptable Reverse Engineering sandbox. https://pyrebox . readthedocs.io/
en/latest/. Accedido en 17-06-2022.

Lengyel, Tamas K. & Maresca, Steve & Payne, Bryan D. & Webster, George D.
& Vogl, Sebastian & Kiayias, Aggelos. “Scalability, Fidelity and Stealth in the
DRAKVUF Dynamic Malware Analysis System”. En: Proceedings of the 30th
Annual Computer Security Applications Conference. ACSAC ’14. New Orleans,
Louisiana, USA: Association for Computing Machinery, 2014, pédgs. 386-395.
ISBN: 9781450330053. DOI: 10.1145/2664243.2664252.

Matthew Nunes & Pete Burnap & Omer Rana & Philipp Reinecke & Kaelon
Lloyd. “Getting to the root of the problem: A detailed comparison of kernel
and user level data for dynamic malware analysis”. En: Journal of Information
Security and Applications 48 (2019), pag. 102365. 1SSN: 2214-2126. DOI: 10.1016/
j.jisa.2019.102365.

Malpimp - An advanced API tracing tool and designed to automate the reverse
engineering process. https://securityxploded.com/malpimp . php. Accedido
en 17-06-2022.

Malware Bazaar - Online Malware Repository. https://bazaar . abuse.ch/.
Accedido en 17-06-2022.

Anoop Mohanta Abhijit & Saldanha. Malware Analysis and Detection
Engineering: A Comprehensive Approach to Detect and Analyze Modern Malware.
2020. 1SBN: 978-1-4842-6192-7. DOI: 10.1007/978-1-4842-6193-4.

CERT Polska. Drakvuf - An automated black-boxr malware analysis system with
DRAKVUF engine under the hood. https://drakvuf-sandbox.readthedocs.
io/en/latest/. Accedido en 17-06-2022.

The Honeynet Project. Capture BAT - A behavioral analysis tool of applications
for the Win32 operating system family. https://www.honeynet.org/projects/
old/capture-bat/. Accedido en 17-06-2022.

The Honeynet Project. Drakvuf - A virtualization based agentless black-box binary
analysis system. https://drakvuf.com/. Accedido en 17-06-2022.

Mark E Russinovich y Aaron Margosis. Troubleshooting with the Windows
Sysinternals Tools. Microsoft Press, 2016.

28

https://doi.org/10.1109/MSP.2011.36
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://doi.org/10.5937/vojtehg70-36196
https://pyrebox.readthedocs.io/en/latest/
https://pyrebox.readthedocs.io/en/latest/
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1016/j.jisa.2019.102365
https://doi.org/10.1016/j.jisa.2019.102365
https://securityxploded.com/malpimp.php
https://bazaar.abuse.ch/
https://doi.org/10.1007/978-1-4842-6193-4
https://drakvuf-sandbox.readthedocs.io/en/latest/
https://drakvuf-sandbox.readthedocs.io/en/latest/
https://www.honeynet.org/projects/old/capture-bat/
https://www.honeynet.org/projects/old/capture-bat/
https://drakvuf.com/

[35]

Abhijit Mohanta & Anoop Saldanha. Malware Analysis € Detection Engineering.
Apress, 2020. DOI: 10.1007/978-1-4842-6193-4,

Florian Skopik, Max Landauer y Markus Wurzenberger. “Online Log Data
Analysis With Efficient Machine Learning: A Review”. En: IEEE Security €&
Privacy 01 (2021), pags. 2-12.

Daniel Uroz y Ricardo J. Rodriguez. “Characteristics and detectability of
Windows auto-start extensibility points in memory forensics”. En: Digital
Investigation 28 (2019), S95-S104. 1SSN: 1742-2876. pDOI: 10 . 1016/ j . diin .
2019.01.026.

VirusShare - Online Malware Repository. https://virusshare.com/. Accedido
en 17-06-2022.

VirusSign - Online Malware Repository. https://virussign.com/. Accedido en
17-06-2022.

VirusTotal - Online Malware, Url, IP and Domain Analysis Service and
Repository. https://www.virustotal . com/gui/home /upload. Accedido en
17-06-2022.

Wang, Yi-Min and Roussev, Roussi and Verbowski, Chad and Johnson, Aaron
and Wu, Ming-Wei and Huang, Yennun and Kuo, Sy-Yen. “Gatekeeper:
Monitoring Auto-Start Extensibility Points (ASEPs) for Spyware Management”.
En: Proceedings of the 18th USENIX Conference on System Administration. LISA
'04. Atlanta, GA: USENIX Association, 2004, pags. 33-46.

Yong Wong, Miuyin & Landen, Matthew & Antonakakis, Manos & Blough,
Douglas M. & Redmiles, Elissa M. & Ahamad, Mustaque. “An Inside Look into
the Practice of Malware Analysis”. En: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’21. Virtual Event,
Republic of Korea: Association for Computing Machinery, 2021, pags. 3053-3069.
ISBN: 9781450384544. DOI: 10.1145/3460120.3484759.

29

https://doi.org/10.1007/978-1-4842-6193-4
https://doi.org/10.1016/j.diin.2019.01.026
https://doi.org/10.1016/j.diin.2019.01.026
https://virusshare.com/
https://virussign.com/
https://www.virustotal.com/gui/home/upload
https://doi.org/10.1145/3460120.3484759

30

Apéndice A

Dedicacion

En este apéndice se realiza un desglose en fases de las horas totales invertidas en
el desarrollo del proyecto a lo largo de los tltimos meses, que aparece reflejado en la
Tabla A.1. También se detalla la distribucion de cada una de estas fases entre febrero
y julio en la Figura A.1. Cabe destacar que en multiples ocasiones se han solapado

varias fases o estas se han llevado a cabo de forma interrumpida.

= [nvestigacion: En esta fase se incluye el estudio de la literatura citada a lo largo
del documento, asi como de las herramientas consideradas como candidatas para
la implementacién de las diferentes componentes del sistema de analisis. Se han

dedicado un total de 28 horas para esta fase.

s Instalacion de Herramientas: Esta fase engloba las horas dedicadas a la
instalacion de la solucién de andlisis dindmico (Drakvuf Sandbox), correccién
de problemas en la instalacién e intercambio de comunicaciones con los
desarrolladores de la herramienta (llegando a abrir varios issues en GitHub).

Se han dedicado un total de 42 horas para esta fase.

» Diseno de Pruebas de Concepto: Esta fase se corresponde con la familiarizacién
con la API de Windows y el diseno y testeo de las pruebas de concepto utilizadas
para obtener las trazas de ejecucion sintéticas con las que comparar las de la fase

de experimentacion. Se han dedicado un total de 55 horas para esta fase.

» Diseno y Depuracion del Sistema de Andlisis: Esta fase comprende el diseno
y desarrollo de las diferentes componentes del sistema de andlisis desarrollado
para realizar el estudio. También el estudio de las APIs de las herramientas
empleadas para integrarlas con las correspondientes componentes del sistema. Se

han dedicado un total de 100 horas para esta fase.

s Fzrperimentacion: Durante esta fase se han realizado las pruebas de analisis y

clasificacion de muestras de malware de repositorios web con el sistema de analisis

31

desarrollado. También se ha llevado a cabo un analisis de los resultados obtenidos,
asi como de las limitaciones encontradas durante las pruebas. Se han dedicado

un total de 90 horas para esta fase.

» Redaccion: En esta fase se cuentan las horas empleadas en la redaccion de este

documento. Se han dedicado un total de 61 horas para esta fase.

= Reuniones: Aqui se recogen las horas empleadas en las reuniones realizadas a lo
largo de los ultimos 5 meses. Han sido un total de 18 reuniones, la mayoria de

20 minutos de duracién. El total de horas empleadas en reuniones asciende a 7

horas.
Tabla de Horas Dedicadas al Proyecto

Fase | Horas Dedicadas
Investigacién 28 horas
Instalacién de Herramientas 42 horas
Diseno de Pruebas de Concepto 55 horas
Diseno y Depuracién del Sistema de Anélisis || 100 horas
Experimentaciéon 90 horas
Redaccion 61 horas
Reuniones 7 horas

‘ Total H 383 horas

Tabla A.1: Tabla de Horas Dedicadas al Proyecto

.. Fecha d Fecha d
fetividad e-c : a-] Chn Febrere Em Mavo m
inicio ily]

Investigacion 15-02-2022 12-03-2022
Instalacidn de herramientas 15-03-2022 20-04-2022
Disefic de pruebas de concepto 30-03-2022 01-06-2022

Disefic y depuracién del sistema de

- 25-04-2022 10-06-2022
analisis

Experimentacion 20-05-2022 20-06-2022
Redaccion 06-06-2022 22-06-2022
Reuniones 15-02-2022 22-06-2022

Figura A.1: Diagrama de Gannt

32

	Introducción y objetivos
	Motivación
	Objetivos, metodología y alcance
	Estructura del documento

	Conceptos previos
	Análisis de malware
	Sistemas de análisis
	Técnicas de análisis de software
	Puntos de Autoinicio de Ejecución (ASEPs)

	Diseño del sistema de análisis
	Workflow de análisis de malware
	Obtención de muestras - Digester
	Generación de trazas de ejecución - Analyzer
	Categorización de la Muestra - Labeler

	Sistema de análisis completo
	Componentes adicionales
	Estructura final

	Experimentación y resultados
	Pruebas de concepto (POCs)
	Arquitectura del despliegue
	Resultados obtenidos y limitaciones
	Análisis de los resultados

	Trabajo relacionado
	Conclusiones y trabajo a futuro
	Conclusiones principales
	Trabajo futuro

	Bibliografía
	Dedicación

