
Trabajo de Fin de Grado

Prevalencia de tipos de ASEPs en malware

de Windows

Prevalence of Types of ASEPs in Windows Malware

Autor

Carlos Borau González

Director

Ricardo Julio Rodŕıguez Fernández

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2022

DECLARACIÓN DE
AUTORÍA Y ORIGINALIDAD

TR
A
B
A
JO
S
D
E
FI
N
 D
E
G
R
A
D
O
 /
 F
IN
 D
E
M
Á
ST
ER

(Este documento debe remitirse a seceina@unizar.es dentro del plazo de depósito)

D./Dª. ,

en aplicación de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de

11 de septiembre de 2014, del Consejo de Gobierno, por el que se

aprueba el Reglamento de los TFG y TFM de la Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de Estudios de la titulación de

(Título del Trabajo)

es de mi autoría y es original, no habiéndose utilizado fuente sin ser

citada debidamente.

Zaragoza,

Fdo:

Carlos Borau González

Grado en Ingeniería Informática

Prevalencia de tipos de ASEPs en malware de Windows

a 22 de Junio de 2022

Carlos Borau González

Carlos Borau González: Prevalencia de tipos de ASEPs en malware de Windows,

Trabajo de Fin de Grado de Ingenieŕıa Informática, © 2022. Código desarrollado

licenciado bajo GNU GPLv3. Iconos de terceros utilizados en las figuras: Internet

“icono gratis”de Pixel perfect de flaticon. Figuras creadas mediante las herramientas

disponibles en creately.com y diagrams.net.

https://www.flaticon.es/
https://app.creately.com/
https://app.diagrams.net/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.gnu.org/licenses/quick-guide-gplv3.html

AGRADECIMIENTOS

A Ricardo, por ofrecerme la oportunidad de realizar un trabajo que me ha

permitido desarrollarme como informático y del que puedo sentirme orgulloso. A mi

familia, por creer siempre en mı́, compartir mis logros y ayudarme a levantarme tras

mis tropiezos. A mis amigos, por darme ánimos y por su apoyo incondicional. A todos

los que me han acompañado en este viaje, a los que hoy están a mi lado y, en especial,

a aquellos cuyo recuerdo me sigue dando fuerzas.

Para todos ellos, sólo tengo palabras de agradecimiento.

RESUMEN

Los puntos de inicio automático de ejecución (Auto Start Execution Points, ASEPs)

son aquellos lugares del sistema operativo que permiten a un programa ejecutarse de

forma automática sin la necesidad de que haya una interacción expĺıcita con el usuario.

En el ámbito de la ciberseguridad, es común que el malware (software malicioso) haga

uso de estos elementos para garantizar su persistencia en un sistema comprometido

durante el mayor tiempo posible.

Este proyecto se centra en diseñar un flujo de trabajo que permita estudiar

la prevalencia de los ASEPs en malware de Windows a través de un sistema

automatizado, capaz de obtener y procesar muestras de malware de diferentes fuentes,

aśı como de coordinar diferentes máquinas encargadas de analizar dinámicamente su

comportamiento para, posteriormente, categorizarlas en función de los resultados de

dicho análisis.

Una vez finalizada la fase de experimentación del trabajo, se ha podido comprobar

que el sistema de análisis desarrollado es capaz de llevar a cabo, de forma exitosa,

el análisis y clasificación de la gran mayoŕıa de muestras introducidas en el pipeline

de análisis, ofreciendo un reporte detallado de los resultados de este proceso. Por

otro lado, se ha podido constatar que el sistema diseñado ha logrado detectar en

múltiples muestras el uso de diferentes tipos de ASEPs y, posteriormente, clasificarlos

acertadamente. Durante el desarrollo del proyecto han surgido una serie de dificultades

que han limitado el alcance original del estudio y para las cuales se ofrece un análisis

de su impacto, aśı como diversas propuestas para solucionarlas.

ABSTRACT

Auto-start execution points (ASEPs) are those places in an operating system

that allow a program to be executed automatically without explicit need for user

interaction. In the field of cybersecurity, it is common for malware (malicious software)

to make use of these elements to ensure their persistence in a compromised system for

as long as possible.

This project’s focus is the development of a workflow that allows studying the

prevalence of ASEPS types in Windows malware through an automated system,

capable of obtaining and processing malware samples from various sources, as well as

coordinating different machines responsible for dynamically analyzing their behavior

to subsequently categorize them.

Once the experimentation phase has been completed, it has been possible to verify

that the analysis system developed is capable of successfully performing the analysis

and categorization of the vast majority of samples fed to the analysis pipeline, providing

a detailed report about the analysis results. In addition, it has been possible to verify

that the designed system has managed to detect, and subsequently accurately classify

the use of different types of ASEPs in various samples. During the development of this

project a series of difficulties have arisen that have limited the original scope of the

study. An analysis of the impact of each of these difficulties is provided, as well as some

approaches on how to address them.

Índice General

1. Introducción y objetivos 1

1.1. Motivación . 1

1.2. Objetivos, metodoloǵıa y alcance . 1

1.3. Estructura del documento . 2

2. Conceptos previos 3

2.1. Análisis de malware . 3

2.2. Sistemas de análisis . 4

2.3. Técnicas de análisis de software . 4

2.4. Puntos de Autoinicio de Ejecución (ASEPs) 4

3. Diseño del sistema de análisis 7

3.1. Workflow de análisis de malware . 7

3.1.1. Obtención de muestras - Digester 8

3.1.2. Generación de trazas de ejecución - Analyzer 10

3.1.3. Categorización de la Muestra - Labeler 12

3.2. Sistema de análisis completo . 12

3.2.1. Componentes adicionales . 13

3.2.2. Estructura final . 14

4. Experimentación y resultados 15

4.1. Pruebas de concepto (POCs) . 15

4.2. Arquitectura del despliegue . 16

4.3. Resultados obtenidos y limitaciones . 17

4.3.1. Análisis de los resultados . 18

5. Trabajo relacionado 21

6. Conclusiones y trabajo a futuro 23

6.1. Conclusiones principales . 23

6.2. Trabajo futuro . 24

Bibliograf́ıa 27

A. Dedicación 31

Índice de Figuras

3.1. Workflow de análisis de malware diseñado 8

3.2. Estructura del sistema de análisis . 14

4.1. Arquitectura ideada para la experimentación 16

A.1. Diagrama de Gannt . 32

Índice de Tablas

3.1. Repositorios web de malware estudiados 10

3.2. Herramientas de generación de trazas de ejecución de APIs estudiadas . 11

A.1. Tabla de Horas Dedicadas al Proyecto 32

Caṕıtulo 1

Introducción y objetivos

Este caṕıtulo introduce la motivación, objetivos, metodoloǵıa y alcance del proyecto

desarrollado, aśı como una breve descripción de la estructura del mismo en adelante.

1.1. Motivación

La seguridad informática es una disciplina que cada año adquiere mayor relevancia,

tanto para las empresas como para los particulares [8]. De igual forma, las amenazas

informáticas no dejan de crecer y volverse más complejas, y con ellas aumenta el

riesgo de que las infraestructuras informáticas y los datos que contienen se vean

comprometidos. Es en este contexto en el que se busca realizar estudios que permitan

identificar los métodos más comúnmente empleados por el malware para infectar y

persistir en un sistema, para aśı poder idear diversas estrategias de defensa contra

nuevas amenazas [23].

De los diversos mecanismos que emplea el malware, los puntos de autoinicio de

ejecución (ASEPs, del inglés) [27] son particularmente interesantes, pues permiten

que programas se ejecuten sin la necesidad de que un usuario interactúe con ellos

expĺıcitamente, y, por el momento, no se han realizado estudios a cerca de la prevalencia

de estos mecanismos en muestras de malware contemporáneas. Aśı pues, con este

trabajo se pretende dar un primer paso en este campo proporcionando un sistema

de código abierto con el que realizar análisis de forma rápida, distribuida y modular.

1.2. Objetivos, metodoloǵıa y alcance

El objetivo de este proyecto es el de estudiar la prevalencia de los ASEPs

en malware de sistemas operativos Windows. Para realizar este estudio se

ha diseñado un workflow de análisis de malware que permite ejecutar muestras de

malware en un entorno controlado para extraer sus trazas de ejecución. Estas trazas

1

se analizan posteriormente en busca de una serie de patrones de comportamiento con

los que discernir si se utiliza algún tipo de ASEP en particular, según la taxonomı́a

definida en la literatura [30]. Estos patrones de comportamiento se han obtenido a

partir de una serie de trazas de ejecución sintéticas, creadas mediante una serie de

pruebas de concepto desarrolladas para tal fin.

Para llevar a cabo la experimentación, se ha diseñado un sistema con diferentes

componentes que permiten distribuir entre varias máquinas las tareas del workflow

de análisis. Este sistema, que incorpora herramientas de análisis tanto dinámico

como estático, integra la capacidad de obtener muestras de repositorios web aśı como

del almacenamiento local, la generación de trazas de ejecución de estas muestras,

y su clasificación en función de dichas trazas. Aśı pues, el sistema resultante puede

emplearse para llevar a cabo distintos tipos de análisis sobre múltiples muestras de

malware, obtenidas de diferentes repositorios y empleando diferentes soluciones de

análisis simplemente modificando los componentes de manera apropiada.

El alcance del proyecto se ha visto reducido debido a una serie de limitaciones

surgidas de la utilización de la herramienta escogida para el análisis y generación de

trazas, por lo que no se ha podido realizar un estudio tan completo y riguroso como

se planteó en un principio. Por otro lado, los esfuerzos se han centrado más en el

desarrollo modular y distribuido del sistema de análisis, para aśı permitir que en un

futuro se continúe este estudio de la forma más ágil y eficiente posible, permitiendo

incluso cambiar las herramientas utilizadas sin mayor dificultad.

1.3. Estructura del documento

Este documento se encuentra dividido en 6 caṕıtulos y un anexo. En el Caṕıtulo 2

se definen una serie de conceptos fundamentales para la correcta comprensión del resto

del documento. El Caṕıtulo 3 trata el proceso del diseño del sistema de análisis,

las distintas componentes de éste y las soluciones escogidas para cada tarea. En el

Caṕıtulo 4 se detalla la fase de experimentación, las pruebas de concepto realizadas,

aśı como la arquitectura del despliegue utilizada y los resultados obtenidos. En el

Caṕıtulo 5 se hace mención de diversos proyectos relacionados con las herramientas

empleadas para este trabajo. Por último, el Caṕıtulo 6 expone las conclusiones del

trabajo y menciona aspectos a mejorar y desarrollar a futuro para continuar con el

estudio. Al final del documento, el Apéndice A presenta un desglose de las horas

dedicadas a las distintas fases del proyecto.

2

Caṕıtulo 2

Conceptos previos

En este caṕıtulo se introducen varios conceptos y definiciones necesarios para la

comprensión del trabajo desarrollado, las herramientas empleadas en el mismo y los

resultados y limitaciones de la experimentación que se ha llevado a cabo. Entre estos

conceptos caben destacar aquellos relacionados con el análisis de malware, los diversos

sistemas de análisis que se han estudiado como candidatos para incorporarse al workflow

de análisis, y por último los múltiples tipos de ASEPs y su clasificación según la

literatura.

2.1. Análisis de malware

El análisis de malware es un proceso por el cual se obtiene toda la información

relevante a cerca de una muestra de código (tipo de archivo, libreŕıas utilizadas,

comportamiento en ejecución, firma digital, etcétera) para aśı determinar si se trata de

software dañino o benigno [35]. A lo largo de las últimas décadas se han desarrollado

múltiples métodos cada vez más innovadores y ágiles para llevar a cabo esta tarea,

aunque todos pueden clasificarse bajo dos grandes categoŕıas de análisis [28]:

Análisis estático. Este tipo de análisis se centra en extraer información de

una muestra sin ejecutar el código que contiene. Este tipo de aproximación,

aunque rápida y simple, puede no ser suficiente para categorizar una muestra

como maliciosa, especialmente si se trata de malware relativamente actual y cuya

firma aún no ha sido registrada.

Análisis dinámico. Las técnicas que se engloban en esta categoŕıa de análisis

son muy variadas, aunque todas presentan un rasgo común: el estudio del

comportamiento del código durante su ejecución. Esto incluye no sólo la propia

ejecución de la aplicación, sino también el tráfico de red, contenidos de memoria

y cualquier otra interacción con la API del sistema operativo.

3

Ya que este tipo de análisis implica la ejecución del código, es necesario que se

realice en un entorno aislado y controlado. Estos tipos de entornos se denominan

sandbox [14] y permiten la monitorización de la ejecución de la muestra analizada,

realizándose normalmente en una máquina virtual en lugar de una máquina f́ısica.

2.2. Sistemas de análisis

Para el desarrollo de este proyecto se va a entender un Sistema de Análisis (de

Malware) como una estructura de componentes software que llevan a cabo una serie

de tareas (automatizadas en la medida de lo posible) con el fin de, dado un conjunto

de muestras de malware, llevar a cabo un estudio a cerca de sus caracteŕısticas y

comportamiento para emitir un veredicto acerca de su naturaleza una vez finalizado.

Las diversas componentes de este sistema pueden estar implementadas con tecnoloǵıas

diferentes, pero deben de ser capaces de interactuar entre śı sin problemas.

Una de las partes más relevantes de este proyecto ha sido el desarrollo de este sistema

de análisis y clasificación de muestras de malware. El diseño, ajuste y experimentación

con este sistema se detalla en profundidad en el Caṕıtulo 3 y el Caṕıtulo 4.

2.3. Técnicas de análisis de software

Los sistemas de análisis de malware pueden emplear distintas técnicas para analizar

muestras y posteriormente ofrecer un reporte de los resultados. Una de las técnicas que

suelen emplear la mayoŕıa de sistemas de testeo de software es el Análisis de caja

negra [3]. Esta técnica consiste en comprobar la funcionalidad de un código sin tener

en cuenta su estructura interna o detalles de implementación, únicamente centrando el

foco del análisis en las entradas y salidas del sistema.

2.4. Puntos de Autoinicio de Ejecución (ASEPs)

El principal objetivo de estudio de este proyecto son los Puntos de Autoinicio

de Ejecución (ASEPs, por sus siglas en inglés), definidos como el conjunto de

mecanismos en un sistema operativo que un programa puede utilizar para habilitar la

ejecución automática de código, sin que exista una invocación expĺıcita previa de un

usuario [34] [27].

Recientemente se ha propuesto una taxonomı́a de estos mecanismos [30],

agrupándolos en cuatro categoŕıas principales (mecanismos de persistencia del

4

sistema, abuso del cargador de programas, abuso de aplicaciones y abuso del

comportamiento del sistema) en función de los métodos abusados por el malware para

persistir en el sistema. La mayoŕıa de estos mecanismos dependen del Registro de

Windows.

El Registro de Windows es una base de datos jerárquica central que almacena datos

cŕıticos para la configuración del sistema, aplicaciones y dispositivos hardware [1]. Esta

estructura se compone de “colmenas”, cada una de las cuales tiene una clave ráız de la

que nacen el resto de las claves de forma similar a un árbol. Dependiendo del ámbito

de la configuración que almacena una clave, ésta se encontrará bajo una de las 5 claves

ráız predefinidas:

HKEY CURRENT USER (HKCU): Contiene la información asociada al

perfil del usuario que ha iniciado sesión en la máquina. Puede ser modificada con

los permisos de un usuario estándar. Esta colmena será la preferente a modificar

para el malware que se ejecuta sin permisos de administración.

HKEY USERS (HKU): Contiene todos los perfiles de usuarios cargados

actualmente en el equipo. Requiere permisos de administrador para ser

modificada.

HKEY LOCAL MACHINE (HKLM): Contiene información relativa al

sistema completo. Es necesario tener permisos de administrador para modificar

las claves y valores de esta colmena. Muchos de los ASEPs basados en Registro

de Windows modifican o crean claves bajo esta ráız.

HKEY CLASSES ROOT (HKCR): Contiene las correspondencias entre

extensiones de ficheros y el programa a utilizar para abrirlos. Requiere permisos

de administrador para ser modificada. Un tipo de ASEP particular (Extension

Hijacking) hace uso de esta colmena para lograr persistencia.

HKEY CURRENT CONFIG (HKCC): Contiene información acerca del

perfil hardware que el equipo utiliza al arrancar el sistema. Requiere permisos de

administrador para ser modificada.

Por otro lado también se pueden encontrar ASEPs que dependen de rutas espećıficas

del sistema de ficheros (principalmente carpetas del sistema o configuración particular

de cada usuario). De forma similar a las claves del registro, dependiendo del ámbito

de configuración serán necesarios (o no) privilegios de administración para emplear los

mecanismos necesarios para asegurar la persistencia explotando estos ASEPs.

5

6

Caṕıtulo 3

Diseño del sistema de análisis

En este caṕıtulo se detalla el proceso de diseño del sistema de análisis de malware

desarrollado y utilizado para la posterior experimentación, el workflow a partir del cual

se ha realizado el diseño, las tareas en las que se divide y las componentes diseñadas

para desempeñar cada una de estas tareas, y las herramientas escogidas para estas

componentes.

3.1. Workflow de análisis de malware

Previamente al diseño del sistema completo de análisis de malware, se ha ideado un

workflow genérico de análisis de malware. Para realizar la división en las tareas clave

del workflow de análisis se ha partido de una situación inicial y se han considerado los

procesos necesarios para llegar a un resultado final deseado.

Situación Inicial : No hay muestras con las que trabajar.

Tarea 1 : Obtener y procesar muestras de malware.

Tarea 2 : Analizar el comportamiento de las muestras obtenidas y generar sus

trazas de ejecución.

Tarea 3 : Clasificar las muestras analizadas en función de las trazas de ejecución

generadas.

Resultado Final : Muestras analizadas y categorizadas.

Aśı pues, de la división del workflow han surgido tres tareas principales: Obtención

de muestras, Generación de trazas de ejecución y Categorización de muestras. El diseño

del workflow realizado se muestra en la Figura 3.1. Esta figura recoge los distintos

aspectos expuestos en los siguientes apartados de forma general, sin especificar qué

tipo de tecnoloǵıa/herramienta se ha escogido para llevar a cabo cada tarea. Al ser

7

un workflow modular, cualquiera de las tecnoloǵıas debeŕıa poder sustituirse por otra

que fuera capaz de desempeñar la misma tarea, sin afectar al resto de la cadena. A

continuación, se detalla el funcionamiento de cada una de estas tareas.

Figura 3.1: Workflow de análisis de malware diseñado

3.1.1. Obtención de muestras - Digester

La primera tarea que debe desempeñarse es la obtención de muestras de malware

para su posterior análisis y clasificación. El componente que desempeña esta tarea se

ha denominado Digester. El Digester se encarga de la ingesta y procesamiento de

muestras de malware para ponerlas a disposición de la siguiente tarea del workflow.

Cada muestra procesada se añade a una cola, a la que se accede en exclusión mutua,

para ser posteriormente extráıda cuando sea analizada.

Se ha considerado que el Digester debe ser capaz de aceptar muestras introducidas

manualmente por un usuario en la cadena de análisis, pero también debe ser capaz de

obtener muestras automáticamente. Es por esto que se ha diseñado este componente

para poder procesar muestras de dos oŕıgenes diferentes, como se explica a continuación:

Muestras introducidas desde el almacenamiento local

Las muestras procedentes del almacenamiento local son aquellas que un usuario

introduce en la cadena de análisis manualmente. Para procesarlas se requieren los

siguientes pasos:

Detección de la muestra: En tiempo de ejecución se deben de poder detectar

nuevas muestras añadidas por un usuario. Para ello se ha programado un proceso

“fisgón” que, periódicamente y durante la ejecución del sistema de análisis, se

dedica a consultar un directorio determinado en el que se espera que el usuario

deposite muestras a analizar.

8

Comprobación de validez : Para que una muestra se considere válida para analizar

debe de cumplir una serie de requisitos, entre los cuales destaca el tipo de archivo

(.exe, .dll ...).

Cálculo de la firma: Para identificar una muestra de malware ineqúıvocamente se

procede a calcular su firma SHA256 y renombrarla con este valor. Esto permite

descartar muestras ya analizadas, aśı como organizar los resultados finales de

forma precisa.

Encolado de la muestra: Si la muestra introducida no se encuentra entre las ya

analizadas, se procede a encolarla en una cola de muestras disponibles para su

análisis posterior.

Muestras descargadas de repositorios web

Existen múltiples repositorios online de los cuales se pueden descargar muestras de

malware. Estos repositorios pueden ser abiertos o de pago y requerir o no identificación,

entre otras caracteŕısticas. Implementar la interacción con un repositorio web de

malware permite la descarga de conjuntos relativamente grandes de muestras de

malware, que además normalmente se encuentran ya clasificadas por tipo de archivo y

con su firma SHA256 digital calculada.

A la hora de escoger un repositorio del que descargar muestras para el estudio

se ha buscado un repositorio abierto, que ofrezca una API documentada con la que

descargar fácilmente muestras y, sobre todo, que ofrezca una cantidad significativa de

muestras de malware reciente periódicamente. De igual manera, otras caracteŕısticas

clave a la hora de agilizar el proceso de adquisición de muestras han sido: la capacidad

de filtrar muestras por diferentes caracteŕısticas (extensión, firma digital, fecha de

publicación en el repositorio, etcétera) y la existencia (o no) de un ĺımite a la descarga

de muestras en un determinado periodo de tiempo.

La Tabla 3.1 lista los diversos repositorios que se han valorado como alternativas

de las que obtener las muestras a analizar, aśı como las principales caracteŕısticas.

Estas caracteŕısticas se han utilizado para elegir el repositorio más adecuado para el

estudio.

9

Repositorio
Requiere

identificación
Presenta

API
Ofrece filtrado
de muestras

Ĺımite de
descargas

Muestras
recientes

Histórico de
muestras

De pago

VirusShare [31] Śı No Śı Śı Śı Śı No
Hybrid-Analysis [16] Śı Śı Śı Śı Śı Śı No

VirusTotal [33] Śı Śı Śı Śı Śı Śı No
VirusSign [32] Śı No No Śı Śı De Pago No

MalwareBazaar [22] No Śı Śı Recomendado Śı Śı No

Tabla 3.1: Repositorios web de malware estudiados

De entre los repositorios listados, se ha escogido MalwareBazaar [22] puesto que

se trata de un repositorio abierto de malware que presenta una API extensamente

documentada, permite filtrado de muestras de malware y proporciona la capacidad de

descargar grandes paquetes de muestras tanto recientes como del histórico.

Se ha añadido al Digester la capacidad de descargar muestras de MalwareBazaar a

través de su API. En este caso, procesar estas muestras sólo requiere la consulta a la

API de una lista de firmas SHA256 de las últimas muestras añadidas y descargar las

muestras cuyas firmas no estén en la lista de muestras analizadas.

3.1.2. Generación de trazas de ejecución - Analyzer

Una vez se dispone de un conjunto de muestras de malware, la siguiente tarea es

analizarlas para obtener sus trazas de ejecución. Para esta tarea se ha desarrollado el

componente Analyzer. El Analyzer debe ser capaz de, dada una muestra de malware,

ejecutar un análisis dinámico de la misma y proporcionar un fichero log con la traza

de ejecución de la muestra una vez finalizado.

Al trabajar con muestras de malware, este análisis ha de realizarse en un entorno

controlado y aislado, para evitar aśı que el código malicioso afecte a la máquina en la

que corre el sistema de análisis [23]. Por esto, para este componente del workflow se

busca utilizar una herramienta libre de análisis tipo sandbox [14]. Esta herramienta

debe de permitir crear instancias virtuales de máquinas con una versión moderna de

Windows (Windows 7 o 10 preferiblemente) en las que ejecutar la muestra a analizar.

Otra caracteŕıstica clave es el Tipo de API hook que implementa, es decir, al método

que emplea la herramienta para registrar las llamadas a la API realizadas por el

software analizado. Dependiendo de si el método permite recopilar información a nivel

de usuario, de núcleo, o de ambos se obtendrán resultados más o menos precisos [20].

Por otro lado también se ha de tener en cuenta los requisitos hardware y dependencias

software que presenta la solución, aśı como los resultados que ofrece a cambio.

10

La Tabla 3.2 lista las diferentes herramientas de generación de trazas de ejecución

que se han considerado como candidatas para utilizar en el sistema de análisis, junto a

una breve descripción, sus cualidades más remarcables y las caracteŕısticas relevantes

antes mencionadas.

Herramienta Última Versión
Disponible

Descripción Cualidades Remarcables
S.Os Invitados
Soportados

Tipo de API
hook

Requisitos Precio

Cuckoo Sandbox [12] 2.0.7 (2019)

Herramienta ĺıder de análisis de
malware dinámico automatizado.
Desarrollada en Python. Permite

realizar trazado de llamadas
realizadas por procesos aśı como
volcados de memoria y tráfico de

red.

Adaptado para soportar la mayoŕıa
de soluciones de virtualización.
Soporte para análisis distribuido.

Extensa documentación de
instalación y casos de uso. Permite

utilizar máquinas f́ısicas como
“guests” para el análisis en vez de

máquinas virtuales.

Windows 7 x64,
Ubuntu 18.04

x32/x64
Usuario

Python 2.7 y libreŕıas asociadas.
Volatility para volcados de

memoria. Postgresql u otro SGBD.
Gratuito

Cuckoo Sandbox 3 [13] n/d
Rediseño de cuckoo sandbox basado

en Python 3.

Mejora de rendimiento y capacidad
aśı como nuevas funcionalidades

respecto a la versión en Python 2.7
n/d Usuario n/d n/d

Drakvuf [26] 0.8 (2022)

Herramienta de caja negra para el
análisis de binarios a través de
virtualización. Permite realizar

trazado de llamadas realizadas por
procesos aśı como volcados de
memoria y tráfico de red.

Permite realizar el análisis del
malware sin la necesidad de instalar
software adicional en las máquinas

virtuales, reduciendo aśı la
posibilidad de detección.

Windows 7-8
x32/x64,

Windows 10 x64,
Linux 2.6.x-5.x

x32/x64

Usuario y
Kernel

Intel CPU con soporte para
virtualización (VT-x) y Extended

Page Tables (EPT).
Xen 4.16.
Python 3.

Gratuito

Drakvuf Sandbox [24] 0.18.1 (2021)

Herramienta de caja negra para el
análisis de malware automatizado
sin agente con el motor de Drakvuf

por debajo. Permite realizar
trazado de llamadas realizadas por

procesos aśı como volcados de
memoria y tráfico de red.

Permite realizar el análisis del
malware sin la necesidad de instalar
software adicional en las máquinas

virtuales, reduciendo aśı la
posibilidad de detección. Ofrece

una interfaz web amigable aśı como
una interfaz de ĺınea de comandos
que permite automatizar el proceso
de análisis de malware. Ofrece un
instalador para guiar el proceso de

instalación.

Windows 7 x64,
Windows 10 x64

Usuario y
Kernel

Intel CPU con soporte para
virtualización (VT-x) y Extended
Page Tables (EPT). Máquina
anfitriona con procesador de al

menos 2 núcleos, 5GB RAM y con
GRUB como gestor de arranque:
Debian 10 Buster / Ubuntu 18.04
Bionic / Ubuntu 20.04 Focal.

Virtualización anidada mediante:
Xen / VMware Workstation Player

/ KVM

Gratuito

PyREbox [18] (2019)

Entorno de pruebas basado en
Qemu y Python enfocado a la
ingenieŕıa inversa de malware.
Permite realizar trazado de

llamadas realizadas por procesos aśı
como volcados de memoria.

Permite inspeccionar una máquina
virtual qemu en ejecución, su

memoria, registros e
instrumentalizar su ejecución

mediante scripts. Cuenta con un
Shell con comandos propios.

Todav́ıa se encuentra en desarrollo
por lo que aspectos como la

eficiencia tienen margen de mejora.

Cualquier Windows
x32/x64 soportado

por volatility
n/d

Arquitectura de las máquinas
virtuales: x86 / x86 64.

Sistema operativo de la máquina
host: Fedora/CentOS/Debian

Gratuito

Cape [11] 2 (2022)

Entorno de pruebas derivado de
cuckoo orientado al

desempaquetado y extracción de la
configuración del malware a
analizar en entornos Windows

aislados. Permite realizar trazado
de llamadas realizadas por procesos
aśı como volcados de memoria y

tráfico de red.

Permite realizar clasificaciones de
malware por familias a partir de
reglas Yara de detección de firmas

de comportamiento. Tiene la
capacidad de evitar técnicas de
sorteado que utiliza el malware
para detectar la ejecución en un

entorno virtualizado y no desplegar
su auténtico potencial, ocultando
aśı sus capacidades maliciosas al
análisis. Permite utilizar máquinas

f́ısicas como “guests” para el
análisis en vez de máquinas

virtuales.

Windows 7 x64,
Windows 10 x64

Usuario

Python 3. KVM como hipervisor.
Sistema operativo de la máquina
host: sistema nativo GNU/Linux
(preferible Ubuntu 20.04 LTS)

Gratuito

Ether [2] 0.1 (2009)

Framework de análisis de software
malicioso que hace uso de las

extensiones de virtualización de
Intel para permanecer transparente
a este. Permite realizar trazado de
llamadas realizadas por procesos

Realiza la traza de llamadas a la
API de Windows x32 desplegándose
al mismo nivel que el hipervisor, lo
que permite monitorizar la máquina
virtual sin contar con una presencia

considerable en la misma.

Windows XP Service
Pack 2

Usuario
Xen como hipervisor. Ejecución

baremetal sobre un procesador Intel
x64 con la extensión VT activada.

Gratuito

CaptureBAT [25] Muerto

Herramienta de análisis de
comportamiento de aplicaciones

para la familia de Sistemas
operativos WIn32. Permite realizar
trazado de llamadas realizadas por

procesos aśı como volcados de
tráfico de red.

Monitoriza cambios de estado a
nivel de kernel. Proporciona un

mecanismo para excluir ruido que
se da en un sistema en espera.
Herramienta que se ejecuta en el

entorno virtualizado.

Windows 2000,
Windows XP,
Windows Vista

Kernel
Parche de servicio en el sistema
operativo en el que se ejecuta.

Gratuito

Malpimp [21] 2.0 (2013)

Herramienta de generado de trazas
de llamadas a API avanzada
diseñada para automatizar el

proceso de ingenieŕıa inversa de
malware.

Permite una configuración
avanzada mediante la inclusión o

exclusión de DLL y API a
monitorizar. Al ser una herramienta
de ĺınea de comandos ejecutada en
el entorno virtualizado permite la
automatización mediante scripts.

Windows 2003,
Windows XP

Usuario No tiene Gratuito

Buster Sandbox [6] 1.92

Herramienta diseñada para analizar
el comportamiento de los procesos,
los cambios que estos realizan en el
sistema y determinar si se trata de
malware. Permite realizar trazado
de llamadas realizadas por procesos
aśı como volcados de tráfico de red.

Capaz de analizar cualquier tipo de
fichero ejecutable, no sólo binarios.

Puede ser ejecutado de forma
automática desde ĺınea de

comandos. Herramienta que se
ejecuta en el entorno virtualizado.

Windows 2000,
Windows XP,
Windows Vista,
Windows 7,
Windows 8

Usuario Instalación previa de Sandboxie Gratuito

Tabla 3.2: Herramientas de generación de trazas de ejecución de APIs estudiadas

11

Tras valorar todas las opciones se ha optado por Drakvuf Sandbox [24], un

sistema de análisis de malware de caja negra [3] que utiliza el motor de Drakvuf

[26] internamente. Las principales ventajas que ofrece esta solución son las siguientes:

Baja probabilidad de que el malware detecte que está siendo analizado, puesto

que Drakvuf no instala software adicional en las instancias virtuales.

Interfaz disponible que permite automatizar el proceso de análisis a través de

ĺınea de comandos o mediante la creación de tareas de análisis con Python.

Generación de un log que contiene las llamadas realizadas a la API de Windows

por todos los procesos del sistema durante el análisis con los argumentos de estas

llamadas y si las llamadas han tenido éxito.

El Analyzer ha sido programado para que sea capaz de interactuar con una instancia

de Drakvuf Sandbox instalada, enviando muestras a analizar y obteniendo los logs

generados como resultado. Los logs obtenidos se encolan en una cola FIFO para ser

posteriormente empleados en la categorización de la muestra.

3.1.3. Categorización de la Muestra - Labeler

Tras haber obtenido las trazas de ejecución de una muestra, hay que analizarlas

en busca de unos patrones de comportamiento determinados con los que categorizar

la muestra. Esta es la función del Labeler. Este componente se encarga de, dada una

traza de ejecución, realizar un análisis de la misma a través de expresiones regulares

y patrones predefinidos para encontrar evidencias de un comportamiento que permita

clasificar la muestra.

Se ha escogido implementar la funcionalidad de este componente a través de

expresiones regulares por simplicidad y velocidad a la hora de analizar las trazas. Otras

soluciones para este componente se mencionan en elCaṕıtulo 5, aśı como posibilidades

de desarrollo a futuro en el Caṕıtulo 6.

3.2. Sistema de análisis completo

Para el diseño del sistema de análisis completo se han tenido en cuenta diferentes

aspectos que no se abordaron durante el diseño del workflow de análisis:

Distribución de Carga de Trabajo: Para acelerar el proceso de análisis es

conveniente disponer de múltiples máquinas en las que se haya instalado la

solución de análisis o clasificación escogida.

12

Almacenamiento de resultados : Una vez se han obtenido los resultados de la

clasificación, es de interés almacenar de forma comprimida tanto la muestra

analizada como los logs generados y los resultados de la clasificación.

Coordinación de las componentes : Para facilitar la interacción entre las diferentes

componentes del sistema se ha creado una última componente que actúa como

pieza central del mismo.

3.2.1. Componentes adicionales

A partir de las consideraciones anteriores se han desarrollado las siguientes

componentes para el sistema completo:

Master: Es la componente encargada de permitir a máquinas workers registrarse

durante la ejecución del sistema para servir peticiones de análisis o clasificación.

Es capaz de monitorizar su estado a través de latidos y reaccionar ante una cáıda

de un worker.

AnalysisWorker: Esta componente ofrece la funcionalidad del Analyzer en

remoto a través de RPC. Se ejecuta en una máquina a parte con una instancia

de la solución de análisis escogida instalada.

LabelingWorker: Esta componente ofrece la funcionalidad del Labeler en

remoto a través de RPC. Se ejecuta en una máquina a parte con una instancia

de la solución de clasificación escogida instalada.

Storer: Esta componente se encarga de almacenar las muestras analizadas

junto con los logs generados y los resultados de la clasificación en un archivo

comprimido.

Orchestrator: Se trata de la pieza central del sistema, su función es la de

gestionar y coordinar el proceso de análisis haciendo uso de las diferentes

componentes. Puede configurarse para realizar el análisis y/o la clasificación de

muestras de en local o remoto. Cuenta con un pool de procesos de análisis y

clasificación que, de estar configurado como local realizan las tareas de análisis

y clasificación, y en caso de estar configurados en modo remoto delegan estas

tareas en los respectivos workers a los que están conectados.

13

3.2.2. Estructura final

El código del sistema completo, desarrollado en su totalidad en Python, se puede

encontrar públicamente accesible y mediante licencia GNU GPLv3, en GitHub [4].

La Figura 3.2 resume la estructura final del sistema de análisis desarrollado para la

experimentación.

Figura 3.2: Estructura del sistema de análisis

14

Caṕıtulo 4

Experimentación y resultados

En este caṕıtulo se trata la fase de experimentación del proyecto. En concreto se ha

empleado el sistema de análisis de malware desarrollado para realizar un estudio sobre

la prevalencia de ASEPs en malware de Windows obtenido de un repositorio online

de malware. En primer lugar se describen las pruebas de concepto implementadas

para conocer los patrones de comportamiento a buscar. Después, se comenta la

arquitectura del despliegue utilizada. Por último, se discuten los resultados obtenidos

y las limitaciones encontradas.

4.1. Pruebas de concepto (POCs)

Antes de comenzar con la experimentación sobre malware real, ha sido necesario

ajustar el Labeler para asegurarse que detecta los patrones de comportamiento

deseados en las trazas que se generan en el Analyzer. Para realizar este ajuste, se han

desarrollado una serie de aplicaciones POCs para cada tipo de ASEP que se busca

detectar, analizándolas previamente para obtener sus respectivas trazas de ejecución

de las que extraer los patrones de comportamiento a detectar para cada tipo de ASEP.

El desarrollo de estas POCs ha requerido una fase de estudio de la API de

Windows, aśı como de la estructura del Registro de Windows y de las rutas del sistema

de ficheros empleadas por dicho sistema operativo. El código fuente de las POCs

en C++, aśı como los ejecutables compilados y las trazas de ejecución generadas,

se pueden encontrar también en GitHub [5], públicamente accesibles y mediante la

licencia GNU GPLv3.

Cabe destacar que la mayoŕıa de los ejecutables generados requieren de privilegios

de administrador para ejecutarse de forma correcta debido a los mecanismos empleados.

Sin embargo, al intentar analizar estos ejecutables se ha podido constatar que la

15

solución escogida para el proceso de análisis dinámico (la herramienta Drakvuf, véase

la Subsección 3.1.2) no es capaz de analizar muestras que requieren de elevación de

privilegios para ejecutarse. Este problema va a limitar inevitablemente los resultados

del análisis.

4.2. Arquitectura del despliegue

Para el despliegue del sistema de análisis se ha diseñado una arquitectura que

aprovecha su capacidad para ejecutar las tareas de análisis y clasificación de manera

distribuida. Esta arquitectura puede apreciarse en la Figura 4.1. A la hora de realizar

la experimentación, sin embargo, sólo se ha dispuesto de una máquina para desplegar

el sistema de análisis debido a la falta de recursos con los que trabajar. No obstante,

puntualmente se ha empleado una segunda máquina para comprobar la capacidad de

funcionamiento distribuido del sistema.

Figura 4.1: Arquitectura ideada para la experimentación

Cabe destacar que con las soluciones de análisis y clasificación escogidas no habŕıa

sido necesario disponer de “Labeling Workers”, ya que el procesado de las trazas de

ejecución mediante expresiones regulares es suficientemente rápido para no suponer

una merma considerable del rendimiento de realizarse de forma local al Master. Por

otro lado, śı hubiera sido interesante disponer de un número suficiente de “Analysis

Workers”, ya que por cada muestra se emplean unos 6 minutos aproximadamente en

su análisis y generación de trazas de ejecución.

16

4.3. Resultados obtenidos y limitaciones

Una vez se ha ajustado el Labeler a partir de las pruebas de concepto y se

ha desplegado el sistema de análisis con la arquitectura permitida, se ha procedido

a descargar periódicamente muestras de malware con las que alimentar la cadena

de análisis del repositorio MalwareBazaar (véase la sección Sección 3.1.1). Se ha

comprobado que el sistema de análisis diseñado es capaz de permanecer durante d́ıas

continuados analizando muestras sin generar ningún error ni colgarse. Al superar

las 2500 muestras analizadas se ha detenido el sistema para realizar una valoración

del rendimiento y calidad de los análisis y clasificaciones realizados, detallados en la

Figura 4.2. En concreto:

Se han analizado un total de 2514 muestras de malware, a un ritmo de entre 5 y

6 muestras por hora. El 95,67% (2405) de estas muestras se ha podido analizar

correctamente.

Del total de muestras analizadas, el 1,63% (41) no han producido alguno de los

logs necesarios para llevar a cabo la clasificación. Estos casos se consideran como

fallos del sistema de análisis.

Del total de muestras analizadas, el 0,16% (4) no han podido ser analizadas por

presentar un formato incorrecto de ejecutable. Estos casos no se consideran como

fallos del sistema.

El 2,5% (63) de las muestras generadas requeŕıan de privilegios de administración

para poder ejecutarse. Como se ha expuesto anteriormente, Drakvuf Sandbox por

defecto es incapaz de analizar este tipo de muestras. Estos casos se consideran

una limitación del sistema de análisis.

Del conjunto de muestras analizadas correctamente, el 0,62% (15) de estas han

sido clasificadas como uso positivo en ASEPs. Se ha podido confirmar que 7 de

estas hacen uso de las “Run Keys”, un tipo de ASEP bajo la categoŕıa de “System

Persistence Mechanisms”que crea una clave en el Registro de Windows. Otras 5

emplean el método de “Startup Folder”, un tipo de ASEP bajo la misma categoŕıa

que consiste en añadir un ejecutable, o enlace al mismo en la ruta de la carpeta

de Inicio de un usuario. Las 3 restantes utilizan el método “COM Hijacking”,

englobado en la categoŕıa “Program Loader Abuse”, que consiste en acceder a

una clave del registro existente y modificar alguno de sus valores. Con esto se

puede concluir que el sistema es capaz de detectar tanto ASEPs que dependen

del Registro de Windows como de rutas espećıficas del sistema de ficheros.

17

(a) Análisis completados/fallidos (b) Motivos de fallo

(c) Uso de ASEPs positivo/negativo (d) Distribución de ASEPs en los positivos

Figura 4.2: Gráficas de distribución de los resultados de la experimentación

4.3.1. Análisis de los resultados

Si bien se ha podido constatar que el sistema es capaz de detectar la utilización de

ASEPs en muestras de malware, el bajo número de positivos es un posible indicativo

de una carencia en el proceso de análisis y generación de trazas de ejecución, aunque

también puede deberse a la presencia de malware evasivo [7].

Con esta hipótesis se ha procedido a examinar varias de las trazas generadas y

catalogadas como negativas en presencia de uso de ASEPs y se han realizado los

siguientes hallazgos:

Los argumentos de las funciones no siempre se pasan por valor. Es decir,

no siempre aparece el valor del argumento con el que se invoca a una función en

la traza de ejecución, sino que a veces aparece la dirección de memoria en la que

se almacena este valor (o sea, se pasa un puntero a una variable).

Las funciones que trabajan con el Registro de Windows no siempre

emplean rutas completas o absolutas. Se ha descubierto que a veces estas

funciones parten de una clave ya abierta desde la que acceden a otra más baja

en esa jerarqúıa.

18

Estos dos factores no se manifestaron en las trazas de las pruebas de concepto, con

lo que no se tuvieron en cuenta a la hora de ajustar el Labeler. Este hecho combinado

a la limitación de la herramienta para analizar muestras que requieren elevación de

privilegios para ejecutarse podŕıa explicar la baja tasa de positivos obtenidos. Por

otro lado, se ha de tener en cuenta también que en ningún momento se ha contado

con muestras etiquetadas previo análisis del sistema (es decir, no puede saberse si las

muestras que se han clasificado como negativos emplean o no algún tipo de ASEP).

19

20

Caṕıtulo 5

Trabajo relacionado

En este caṕıtulo se mencionan distintos trabajos y estudios relacionados con el tema

principal del proyecto y/o con las herramientas y soluciones empleadas en el sistema

de análisis desarrollado. También se contextualizan las contribuciones aportadas con

este proyecto al ámbito de investigación relacionado con el tema desarrollado.

El sistema de análisis desarrollado realiza el análisis de las trazas de comportamiento

de las muestras, pudiendo correlar eventos dentro de un mismo log a través de

expresiones regulares simples definidas por el usuario. En [29] se propone una solución

de análisis de logs que emplea aprendizaje automático para realizar la correlación de

eventos en el fichero log analizado. Esta aproximación es de gran interés si se tiene

en cuenta la dificultad que puede llegar a suponer para una máquina comprender y

aprender de una gramática compleja y cambiante, como puede ser la que presentan la

mayoŕıa de ficheros de log.

En [10] se ofrece una propuesta diferente, cuya aproximación es más útil cuando se

han de correlar eventos descritos en diferentes logs. Aśı pues, esta solución se centra

en la recolección, análisis y correlación entre logs permitiendo al usuario definir los

patrones de comportamiento a buscar y las acciones a seguir en caso de detectarse

dichos patrones.

Drakvuf Sandbox es la pieza central del sistema de análisis desarrollado,

permitiendo realizar análisis dinámicos de muestras de malware y generar las trazas de

ejecución correspondientes. En [19] se estudia una de las caracteŕısticas más relevantes

de Drakvuf: su capacidad para reducir su presencia en la máquina virtual en la que

se ejecutan las muestras a analizar. También se ofrece un estudio de la capacidad de

Drakvuf para aumentar los recursos destinados al proceso de análisis.

21

Relacionado con una de las caracteŕısticas objeto del estudio anterior, en [9] se

emplea Drakvuf para detectar malware evasivo, es decir, muestras de código malicioso

que emplean diferentes métodos con el fin de no ser detectados por herramientas de

análisis y/o protección en el sistema en el que se ejecutan. Este estudio posee una gran

importancia respecto a la experimentación realizada en este proyecto, dado que el

malware evasivo puede afectar significativamente a los resultados del estudio realizado.

En [15] se realiza una comparativa de distintas herramientas de análisis para el

diseño de un sistema de análisis de malware empleando técnicas de introspección en

máquinas virtuales, entre las que se encuentra Drakfuf. De forma similar, en [17] se

realiza otra comparativa entre Drakvuf Sandbox y Cuckoo Sandbox, centrándose en

las caracteŕısticas y prestaciones de estas dos herramientas.

Pocos estudios se han realizado acerca de los puntos de autoinicio de ejecución

desde que se definieran en 2004. En [34] se definen por primera vez estos mecanismos

y se estudia el ciclo de vida del spyware (tipo de malware que recopila y transmite

información de una máquina sin el conocimiento del usuario) en una máquina

comprometida, monitorizando el uso de ASEPs para persistir en el sistema y continuar

espiando a sus usuarios. Por otro lado, en [30] se propone por primera vez una

taxonomı́a de los ASEPs en Windows. Es en esta taxonomı́a en la que se ha basado el

desarrollo del componente Labeler del sistema de análisis diseñado.

Hasta ahora no se hab́ıa realizado un estudio de la prevalencia de los ASEPs en

malware de Windows, por lo que el proyecto desarrollado es un primer paso para

conocer la verdadera extensión de la utilización de estos mecanismos en el malware

moderno de sistemas operativos Windows.

22

Caṕıtulo 6

Conclusiones y trabajo a futuro

En este caṕıtulo se exponen las conclusiones extráıdas del desarrollo del proyecto

y la experimentación, aśı como posibles ĺıneas de trabajo e investigación a futuro que

permitan mejorar y emplear el sistema de análisis desarrollado.

6.1. Conclusiones principales

En este trabajo se ha desarrollado un sistema de análisis de muestras de

software modular, con capacidad para distribución de tareas entre múltiples

máquinas y monitorización de las mismas. La modularidad de este sistema permite

cambiar fácilmente la implementación de cualquiera de las componentes gestionadas

directamente por el Orchestrator (Digester, Analyzer, Labeler, Storer) sin necesidad

de modificar ninguna otra componente del sistema. A su vez, la estructura del sistema

permite utilizarlo para multitud de análisis dinámicos diferentes, y clasificar muestras

según distintos criterios, simplemente ajustando los componentes correspondientes

(Analyzer y Labeler, respectivamente). Se puede cambiar de igual manera la fuente

de la que se obtienen las muestras (ajustando el Digester), o el método que se utiliza

para almacenar los resultados (cambiando el Storer). Esta versatilidad permite que el

sistema diseñado se pueda utilizar en cualquier estudio de análisis y clasificación de

muestras de software en función del comportamiento de las mismas.

En lo referente al estudio acerca de la prevalencia de los ASEPs en malware de

Windows, las limitaciones y problemas encontrados durante la fase de experimentación

han limitado el alcance del mismo, no pudiendo llevarse a cabo de manera exhaustiva

como se hab́ıa planeado en un principio. Sin embargo, se ha constatado la detectabilidad

de estos mecanismos a través de las trazas de ejecución generadas por una herramienta

de análisis dinámico (concretamente, mediante Drakvuf Sandbox).

23

6.2. Trabajo futuro

A continuación se introducen una serie de ideas sobre las que se podŕıa trabajar

para expandir las capacidades del sistema desarrollado y mejorarlo.

Resiliencia

Si bien es cierto que el sistema de análisis desarrollado es capaz de registrar

workers en tiempo de ejecución, monitorizar su estado y responder ante la

pérdida de conexión con una de estas máquinas, no se ha llegado a implementar

un mecanismo para soportar cáıdas de la máquina Master. Para ello, debe de

programarse una funcionalidad en el máster que permita el registro de una

máquina (o conjunto de máquinas) como réplica del máster, manteniendo en

todo momento la coherencia entre estas y, en caso de caer el máster, una de las

réplicas ocupe el lugar de este (mediante el algoritmo de elección de ĺıder que se

considere oportuno), tomando el control de los workers activos.

Traducción de punteros

Como se ha expuesto anteriormente en la Subsección 4.3.1, una de las

limitaciones encontradas ha sido la presencia de punteros en las llamadas a la

API en lugar del valor del argumento. Para solventar este problema es necesario

contar con un volcado de la memoria virtual del proceso que ha realizado la

llamada, para aśı traducir la dirección a la que apunta el puntero a un valor con

el que se pueda trabajar en el proceso de clasificación. A pesar de que Drakvuf

Sandbox proporciona un mecanismo de volcado de memoria, éste presenta una

serie de errores que a d́ıa de hoy hacen poco fiable su utilización para este fin, e

incluso directamente imposible.

Motor de análisis para la clasificación

Para la tarea de clasificación se han empleado expresiones regulares sobre las

trazas de ejecución generadas por el proceso de análisis. Este método, pese a ser

rápido y relativamente fácil de programar, puede no ser lo suficientemente preciso

para llevar a cabo una clasificación de calidad. Por esto, una de las posibles

mejoras a llevar a cabo consiste en implementar un motor de análisis con el que

analizar las trazas de ejecución y buscar correlaciones entre llamadas, teniendo en

cuenta los valores devueltos por las llamadas al sistema y los diferentes procesos

que participan de los comportamientos analizados. Con esta aproximación se

puede superar la segunda limitación mencionada en la Subsección 4.3.1.

24

Estudio exhaustivo de prevalencia de ASEPs

Una vez superadas las limitaciones encontradas, es de interés volver a realizar este

estudio de prevalencia de ASEPs con un despliegue más ambicioso: utilizando

múltiples máquinas para los procesos de análisis y clasificación, se puede

aumentar la tasa de muestras procesadas y realizar un estudio con miles de

muestras para estudiar la verdadera distribución de los puntos de autoinicio de

ejecución en el malware actual de Windows. Este estudio además puede realizarse

de manera longitudinal para observar la evolución de las técnicas ASEPs usadas

a lo largo del tiempo.

25

26

Bibliograf́ıa

[1] A. Allievi y col. Windows Internals, Part 2. Developer Reference. Pearson
Education, 2021. isbn: 9780135462409.

[2] Monirul Sharif & Wenke Lee Artem Dinaburg Paul Royal. Ether - Malware
Analysis via Hardware Virtualization Extensions. https : / / ether . gtisc .

gatech.edu/index.html. Accedido en 17-06-2022.

[3] Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Software
and Systems. USA: John Wiley amp; Sons, Inc., 1995. isbn: 0471120944. doi:
10.5555/202699.

[4] Carlos Borau González. Malware Analysis Workflow. https://github.com/
778280/Malware_Analysis_Workflow. Accedido en 17-06-2022.

[5] Carlos Borau González. Windows ASEPs POCs C++. https://github.com/
778280/Win-ASEPs_Cpp/. Accedido en 17-06-2022.

[6] Buster. Buster Sandbox - A designed to analyze the behaviour of processes and the
changes made to system. http://bsa.isoftware.nl/. Accedido en 17-06-2022.

[7] D’Elia, Daniele Cono & Coppa, Emilio & Palmaro, Federico & Cavallaro,
Lorenzo. “On the Dissection of Evasive Malware”. En: IEEE Transactions on
Information Forensics and Security 15 (2020), págs. 2750-2765. doi: 10.1109/
TIFS.2020.2976559.

[8] Kenning Arlitsch & Adam Edelman. “Staying Safe: Cyber Security for People and
Organizations”. En: Journal of Library Administration 54.1 (2014), págs. 46-56.
doi: 10.1080/01930826.2014.893116.

[9] David Ekenstein Gustaf & Norrestam. “Classifying evasive malware”. Tesis doct.
Master’s thesis, Lund University, 2017.

[10] Manage Engine. Best log management for enhanced visibility into your network.
https://www.manageengine.com/products/eventlog/log- management-

solution.html. Accedido en 20-06-2022.

[11] Cuckoo Foundation. CapeSandbox - An Open Source software for automating
analysis of suspicious files. https://capev2.readthedocs.io/en/latest/
index.html. Accedido en 17-06-2022.

[12] Cuckoo Foundation. Cuckoo Sandbox - An open source software for automating
analysis of suspicious files. https://cuckoo.sh/docs/. Accedido en 17-06-2022.

[13] Cuckoo Foundation. Cuckoo Sandbox 3 - A full rewrite of Cuckoo in Python 3.
https://hatching.io/cuckoo/. Accedido en 17-06-2022.

27

https://ether.gtisc.gatech.edu/index.html
https://ether.gtisc.gatech.edu/index.html
https://doi.org/10.5555/202699
https://github.com/778280/Malware_Analysis_Workflow
https://github.com/778280/Malware_Analysis_Workflow
https://github.com/778280/Win-ASEPs_Cpp/
https://github.com/778280/Win-ASEPs_Cpp/
http://bsa.isoftware.nl/
https://doi.org/10.1109/TIFS.2020.2976559
https://doi.org/10.1109/TIFS.2020.2976559
https://doi.org/10.1080/01930826.2014.893116
https://www.manageengine.com/products/eventlog/log-management-solution.html
https://www.manageengine.com/products/eventlog/log-management-solution.html
https://capev2.readthedocs.io/en/latest/index.html
https://capev2.readthedocs.io/en/latest/index.html
https://cuckoo.sh/docs/
https://hatching.io/cuckoo/

[14] Anup Greamo Chris & Ghosh. “Sandboxing and Virtualization: Modern Tools
for Combating Malware”. En: IEEE Security & Privacy 9.2 (2011), págs. 79-82.
doi: 10.1109/MSP.2011.36.

[15] Anssi Matti Helin. “Virtual machine introspection in malware analysis”. English.
Master’s thesis. Aalto University. School of Science, 2016, págs. 58 + 6.

[16] Hybrid-Analysis - Online Malware Analysis Service and Repository. https://
www.hybrid-analysis.com/. Accedido en 17-06-2022.

[17] Ilic, Slavisa & Gnjatović, Milan & Popovic, Brankica & Maček, Nemanja. “A
pilot comparative analysis of the Cuckoo and Drakvuf sandboxes: An end-user
perspective”. En: Vojnotehnicki glasnik 70 (abr. de 2022), págs. 372-392. doi:
10.5937/vojtehg70-36196.

[18] Cisco Talos Security Intelligence y Research Group. PyREbox - A Python
scriptable Reverse Engineering sandbox. https://pyrebox.readthedocs.io/
en/latest/. Accedido en 17-06-2022.

[19] Lengyel, Tamas K. & Maresca, Steve & Payne, Bryan D. & Webster, George D.
& Vogl, Sebastian & Kiayias, Aggelos. “Scalability, Fidelity and Stealth in the
DRAKVUF Dynamic Malware Analysis System”. En: Proceedings of the 30th
Annual Computer Security Applications Conference. ACSAC ’14. New Orleans,
Louisiana, USA: Association for Computing Machinery, 2014, págs. 386-395.
isbn: 9781450330053. doi: 10.1145/2664243.2664252.

[20] Matthew Nunes & Pete Burnap & Omer Rana & Philipp Reinecke & Kaelon
Lloyd. “Getting to the root of the problem: A detailed comparison of kernel
and user level data for dynamic malware analysis”. En: Journal of Information
Security and Applications 48 (2019), pág. 102365. issn: 2214-2126. doi: 10.1016/
j.jisa.2019.102365.

[21] Malpimp - An advanced API tracing tool and designed to automate the reverse
engineering process. https://securityxploded.com/malpimp.php. Accedido
en 17-06-2022.

[22] Malware Bazaar - Online Malware Repository. https://bazaar.abuse.ch/.
Accedido en 17-06-2022.

[23] Anoop Mohanta Abhijit & Saldanha. Malware Analysis and Detection
Engineering: A Comprehensive Approach to Detect and Analyze Modern Malware.
2020. isbn: 978-1-4842-6192-7. doi: 10.1007/978-1-4842-6193-4.

[24] CERT Polska. Drakvuf - An automated black-box malware analysis system with
DRAKVUF engine under the hood. https://drakvuf-sandbox.readthedocs.
io/en/latest/. Accedido en 17-06-2022.

[25] The Honeynet Project. CaptureBAT - A behavioral analysis tool of applications
for the Win32 operating system family. https://www.honeynet.org/projects/
old/capture-bat/. Accedido en 17-06-2022.

[26] The Honeynet Project. Drakvuf - A virtualization based agentless black-box binary
analysis system. https://drakvuf.com/. Accedido en 17-06-2022.

[27] Mark E Russinovich y Aaron Margosis. Troubleshooting with the Windows
Sysinternals Tools. Microsoft Press, 2016.

28

https://doi.org/10.1109/MSP.2011.36
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://doi.org/10.5937/vojtehg70-36196
https://pyrebox.readthedocs.io/en/latest/
https://pyrebox.readthedocs.io/en/latest/
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1016/j.jisa.2019.102365
https://doi.org/10.1016/j.jisa.2019.102365
https://securityxploded.com/malpimp.php
https://bazaar.abuse.ch/
https://doi.org/10.1007/978-1-4842-6193-4
https://drakvuf-sandbox.readthedocs.io/en/latest/
https://drakvuf-sandbox.readthedocs.io/en/latest/
https://www.honeynet.org/projects/old/capture-bat/
https://www.honeynet.org/projects/old/capture-bat/
https://drakvuf.com/

[28] Abhijit Mohanta & Anoop Saldanha.Malware Analysis & Detection Engineering.
Apress, 2020. doi: 10.1007/978-1-4842-6193-4.

[29] Florian Skopik, Max Landauer y Markus Wurzenberger. “Online Log Data
Analysis With Efficient Machine Learning: A Review”. En: IEEE Security &
Privacy 01 (2021), págs. 2-12.

[30] Daniel Uroz y Ricardo J. Rodŕıguez. “Characteristics and detectability of
Windows auto-start extensibility points in memory forensics”. En: Digital
Investigation 28 (2019), S95-S104. issn: 1742-2876. doi: 10.1016/j.diin.
2019.01.026.

[31] VirusShare - Online Malware Repository. https://virusshare.com/. Accedido
en 17-06-2022.

[32] VirusSign - Online Malware Repository. https://virussign.com/. Accedido en
17-06-2022.

[33] VirusTotal - Online Malware, Url, IP and Domain Analysis Service and
Repository. https://www.virustotal.com/gui/home/upload. Accedido en
17-06-2022.

[34] Wang, Yi-Min and Roussev, Roussi and Verbowski, Chad and Johnson, Aaron
and Wu, Ming-Wei and Huang, Yennun and Kuo, Sy-Yen. “Gatekeeper:
Monitoring Auto-Start Extensibility Points (ASEPs) for Spyware Management”.
En: Proceedings of the 18th USENIX Conference on System Administration. LISA
’04. Atlanta, GA: USENIX Association, 2004, págs. 33-46.

[35] Yong Wong, Miuyin & Landen, Matthew & Antonakakis, Manos & Blough,
Douglas M. & Redmiles, Elissa M. & Ahamad, Mustaque. “An Inside Look into
the Practice of Malware Analysis”. En: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’21. Virtual Event,
Republic of Korea: Association for Computing Machinery, 2021, págs. 3053-3069.
isbn: 9781450384544. doi: 10.1145/3460120.3484759.

29

https://doi.org/10.1007/978-1-4842-6193-4
https://doi.org/10.1016/j.diin.2019.01.026
https://doi.org/10.1016/j.diin.2019.01.026
https://virusshare.com/
https://virussign.com/
https://www.virustotal.com/gui/home/upload
https://doi.org/10.1145/3460120.3484759

30

Apéndice A

Dedicación

En este apéndice se realiza un desglose en fases de las horas totales invertidas en

el desarrollo del proyecto a lo largo de los últimos meses, que aparece reflejado en la

Tabla A.1. También se detalla la distribución de cada una de estas fases entre febrero

y julio en la Figura A.1. Cabe destacar que en múltiples ocasiones se han solapado

varias fases o estas se han llevado a cabo de forma interrumpida.

Investigación: En esta fase se incluye el estudio de la literatura citada a lo largo

del documento, aśı como de las herramientas consideradas como candidatas para

la implementación de las diferentes componentes del sistema de análisis. Se han

dedicado un total de 28 horas para esta fase.

Instalación de Herramientas : Esta fase engloba las horas dedicadas a la

instalación de la solución de análisis dinámico (Drakvuf Sandbox), corrección

de problemas en la instalación e intercambio de comunicaciones con los

desarrolladores de la herramienta (llegando a abrir varios issues en GitHub).

Se han dedicado un total de 42 horas para esta fase.

Diseño de Pruebas de Concepto: Esta fase se corresponde con la familiarización

con la API de Windows y el diseño y testeo de las pruebas de concepto utilizadas

para obtener las trazas de ejecución sintéticas con las que comparar las de la fase

de experimentación. Se han dedicado un total de 55 horas para esta fase.

Diseño y Depuración del Sistema de Análisis : Esta fase comprende el diseño

y desarrollo de las diferentes componentes del sistema de análisis desarrollado

para realizar el estudio. También el estudio de las APIs de las herramientas

empleadas para integrarlas con las correspondientes componentes del sistema. Se

han dedicado un total de 100 horas para esta fase.

Experimentación: Durante esta fase se han realizado las pruebas de análisis y

clasificación de muestras de malware de repositorios web con el sistema de análisis

31

desarrollado. También se ha llevado a cabo un análisis de los resultados obtenidos,

aśı como de las limitaciones encontradas durante las pruebas. Se han dedicado

un total de 90 horas para esta fase.

Redacción: En esta fase se cuentan las horas empleadas en la redacción de este

documento. Se han dedicado un total de 61 horas para esta fase.

Reuniones : Aqúı se recogen las horas empleadas en las reuniones realizadas a lo

largo de los últimos 5 meses. Han sido un total de 18 reuniones, la mayoŕıa de

20 minutos de duración. El total de horas empleadas en reuniones asciende a 7

horas.

Tabla de Horas Dedicadas al Proyecto
Fase Horas Dedicadas

Investigación 28 horas
Instalación de Herramientas 42 horas
Diseño de Pruebas de Concepto 55 horas
Diseño y Depuración del Sistema de Análisis 100 horas
Experimentación 90 horas
Redacción 61 horas
Reuniones 7 horas

Total 383 horas

Tabla A.1: Tabla de Horas Dedicadas al Proyecto

Figura A.1: Diagrama de Gannt

32

	Introducción y objetivos
	Motivación
	Objetivos, metodología y alcance
	Estructura del documento

	Conceptos previos
	Análisis de malware
	Sistemas de análisis
	Técnicas de análisis de software
	Puntos de Autoinicio de Ejecución (ASEPs)

	Diseño del sistema de análisis
	Workflow de análisis de malware
	Obtención de muestras - Digester
	Generación de trazas de ejecución - Analyzer
	Categorización de la Muestra - Labeler

	Sistema de análisis completo
	Componentes adicionales
	Estructura final

	Experimentación y resultados
	Pruebas de concepto (POCs)
	Arquitectura del despliegue
	Resultados obtenidos y limitaciones
	Análisis de los resultados

	Trabajo relacionado
	Conclusiones y trabajo a futuro
	Conclusiones principales
	Trabajo futuro

	Bibliografía
	Dedicación

