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Abstract

The Fourier Transform has become a powerful analytical tool in several fields of science and applied
disciplines. Since its beginnings with the heat equation, the importance of Fourier Analysis has reached
areas such as signal processing, quantum mechanics or partial differential equations, solving many pro-
blems in classical mathematical physics.

In general terms, Fourier Analysis studies how general functions can be decomposed into trigonometric
functions; it searches general conditions to ensure its existence and provides convergence results.

Particularly, if our function f : R �! C is 1-periodic, Fourier Analysis studies if it is possible to write
it as a discrete sum of trigonometric functions:

•

Â
n=�•

f̂ (n)e2pint , t 2 R

This famous series is called the “Fourier series”, where each term is composed by the n-th Fourier
coefficient, f̂ (n)2C, and the function e

2pint , commonly called the n-th “frequency”. With this objective
in mind, a wide area of study is opened describing function conditions, coefficients properties, relations
between spaces or convergence results.

Specifically, if we choose a function f that is continuous and piecewise C (1, we achieve the best situation
possible:

f (t) =
•

Â
n=�•

f̂ (n)e2pint , t 2 R

At this point, the next question is, how do we compute those Fourier coefficients? Theory gives us a
clear answer in terms of f :

f̂ (n) =
Z 1/2

�1/2
f (t)e�2pint

dt, n 2 Z

Nevertheless, in practice we rarely know the expression of f . Instead of that, a discrete set of values
f (t0), . . . , f (tn) are provided. Consequently, the question changes to, is there any way to compute the
Fourier coefficients only with those values?

This project will answer that question. Going through the Fourier Transform we will derive, step by step,
a method to obtain approximations of the Fourier coefficients given a certain discrete set of values of f .
Moreover, we will bring this method to practice efficiently with one of the most important algorithms
in the last century, the Fast Fourier Transform (FFT). We will chop this algorithm developing core
understanding of each section that composes it. In more detail:

The first chapter will introduce the Discrete Fourier Transform right from the start. This context will
provide a system

N�1

Â
n=0

ane
2pin

k

N = fk, k = 0, . . . ,N �1

where, given a set of N values of f , [ f0, · · · , fN�1], its solution [a0, · · · ,aN�1] will be certain N approxi-
mated Fourier coefficients.
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IV Abstract

We will prove that this system has a solution, and we will describe it explicitly with the following
product:

2

666664

a0
a1
a2
...

aN�1

3

777775
=

1
N

2

666664

1 1 1 · · · 1
1 w w2 · · · wN�1

1 w2 w4 · · · w2N�2

...
...

...
. . .

...
1 wN�1 w2N�2 · · · w(N�1)(N�1)

3

777775

2

666664

f0
f1
f2
...

fN�1

3

777775
, w := e

�2pi/N (1)

Moreover, we will ensure that the approximations are good enough for the most common families of
functions, and we will study how the method is fixed if the number of values of f is even or if the
functions have different periods.

The second chapter will develop the Fast Fourier Transform algorithm itself. Keeping in mind the ob-
jetive of computing the previous product (1) and writing the matrix as FN = 1

N

⇥
w i j
⇤

0i, j<N
, we will

derive the following factorization for that matrix when the number of values of f is N = 2m:

FN =
1

2m
Q2mQ

(2)
2m�1Q

(4)
2m�2 · · ·Q

(2m�1)
2 B2m

And in general, when N = P1 · · ·Pm:

FN =
1

P1 · · ·Pm

·QP1···Pm�1,Pm
·Q(Pm)

P1···Pm�2,Pm�1
· · ·Q(P3···Pm)

P1,P2
·Q(P2···Pm)

1,P1
·SP1,P2,...,Pm�1,Pm

In fact, these factorizations and the properties of the matrix involved will derive the general scheme of
the FFT algorithm. We will study each part of the algorithm in detail.

Finally, the appendix will contain a brief collection of Fourier Analysis results, gathering the essential
ones that will be needed in the first chapter.
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Capítulo 1

La transformada de Fourier discreta

1.1. Introducción

En este capítulo desarrollaremos un método para obtener coeficientes de Fourier aproximados de ciertos
tipos de funciones. Con el objetivo de hallar dichos coeficientes, plantearemos el problema en términos
del análisis de Fourier, introduciremos el concepto de la transformada de Fourier discreta y daremos
contexto teórico al camino elegido para calcularlos. Además, justificaremos (como cabe esperar de
cualquier método) la convergencia de la aproximación a los coeficientes de Fourier deseados. Por otro
lado también abordaremos algunas generalizaciones del método relativas al número de elementos del
muestreo o al periodo de las funciones, para cubrir así las posibles situaciones que se puedan dar en la
práctica.

Con todo este desarrollo trataremos de despejar el origen del producto matriz-vector que inicia el pos-
terior capítulo sobre el algoritmo FFT, ayudando así a una mejor comprensión del significado de los
elementos que lo conforman.

1.2. Idea principal

Sea f : R�!C una función 1-periódica, continua y C
(1 a trozos. Sean { f̂ (n)}n2Z sus correspondientes

coeficientes de Fourier (Def. 9). En particular, por el teorema (A.2) sabemos que su serie de Fourier
(Def. 9) cumple que

f (t) =
•

Â
n=�•

f̂ (n)e2pint , uniformemente en R. (1.1)

Que expresado en términos de sumas parciales (Def. 9) significa que

SM f (t) =
M

Â
n=�M

f̂ (n)e2pint

converge uniformemente a f (t) 8t 2 R.

Es decir, 8e > 0 podemos encontrar un M 2 N lo suficientemente grande tal que:

| f (t)�SM f (t)|< e 8t 2 R

Por ello, con un M relativamente grande podemos asumir que SM f (t) ⇡ f (t) 8t 2 R. No obstante, a
partir de ahora, nos fijaremos únicamente en el intervalo [0,1]; ya que al ser periódica, reúne toda la
información de la función. De hecho, cabe mencionar que en la práctica tendremos una función definida
en un intervalo y la extenderemos periódicamente para poder usar los resultados anteriores del análisis
de Fourier.

1



2 Capítulo 1. La transformada de Fourier discreta

Como bien es sabido en la práctica, generalmente no se conoce la expresión explícita de la función f ,
sino que lo único que se puede hacer es manejar un muestreo de la función. Con esta restricción, ¿es
posible hallar una aproximación de f̂ (n) conocidos únicamente los valor de f en un mallado de puntos?
Supongamos que tenemos un muestreo de f de 2M+1 puntos equidistribuidos en el intervalo [0,1]:

f (
k

2M+1
), k = 0, . . . ,2M

Entonces, usando las propias definiciones de las sumas parciales

M

Â
n=�M

f̂ (n)e2pin
k

2M+1 = SM f (
k

2M+1
), k = 0, . . . ,2M (1.2)

y la aproximación SM f (t)⇡ f (t) 8t 2 [0,1], podemos crear el siguiente sistema:

M

Â
n=�M

f̂
⇤(n)e2pin

k

2M+1 = f (
k

2M+1
), k = 0, . . . ,2M (1.3)

Observación. Notemos que las incógnitas f̂ (n) se han cambiado por an, debido a que al sustituir por la
aproximación, el sistema ya no será el mismo.

La elección de este sistema no es casual, ya que se hace esperando que la convergencia de las series de
Fourier se traslade a la solución, si existe, del sistema. Es decir, esperando que las incógnitas f̂

⇤(n), n =
�M, . . . ,M también se aproximen a los coeficientes de Fourier f̂ (n), n = �M, . . . ,M. Si esto fuera
así, dado el muestreo adecuado de f este sistema obtendría una aproximación de los correspondientes
coeficientes de Fourier, respondiendo así a la pregunta planteada.

En las posteriores secciones veremos que efectivamente este sistema tiene solución y que converge a di-
chos coeficientes. No obstante, para lograr ese objetivo, empezaremos hallando la solución del siguiente
sistema:

bk =
N�1

Â
n=0

cne
2pin

k

N k = 0, . . . ,N �1, [b0, . . . ,bN�1]
T 2 CN

[c0, . . . ,cN�1]
T 2 CN

1.3. Existencia y solución explícita

Definamos primeramente la siguiente familia de vectores:

wk =
h
tk·0,tk·1, . . . ,tk·N�1

iT

, k = 0, . . . ,N �1

Siendo t = e
2pi/N . Nótese que tenemos una familia de vectores {wk}N�1

k=0 ⇢ CN cuyas componentes son
raíces N-ésimas de la unidad. Más aún, podemos formar una base ortonormal con ella:

Lema 1.1. Sean l,m índices en 0, . . . ,N �1. Entonces,

hwl,wmi= Ndl,m

Por tanto, la familia { wkp
N
}N�1

k=0 es una base ortonormal en CN
.

Demostración. Dados l,m y sabiendo que t̄ = t�1 tenemos que

hwl,wmi=
N�1

Â
n=0

tnlt�nm =
N�1

Â
n=0

⇣
t l�m

⌘n

=

(
N si l = m

1�r
N

1�r
, r = t l�m si l 6= m

Y como r es una raíz N-ésima, tenemos que r
N = 1, obteniendo así el resultado. La base normalizada

completaría el lema.
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Por ello, dado un elemento b 2 CN tenemos una descomposición única en esa base:

b =
N�1

Â
n=0

an

wnp
N
, donde an = hb, wnp

N
i, n = 0, . . . ,N �1

Reescrito de otra forma:

b =
1
N

N�1

Â
n=0

cnwn, donde cn = hb,wni, n = 0, . . . ,N �1

En otros términos, hemos probado el siguiente resultado:

Teorema 1.2. Sean b = [b0, . . . ,bN�1]
T

, c = [c0, . . . ,cN�1]
T 2 CN

. Entonces el sistema de ecuaciones

bk =
N�1

Â
n=0

cne
2pin

k

N =
N�1

Â
n=0

cn(wn)k k = 0, . . . ,N �1

Tiene solución y queda determinada por

cn =
1
N
hb,wni=

1
N

N�1

Â
k=0

bke
�2pin

k

N n = 0, . . . ,N �1

Usando los resultados elementales de bases de álgebra lineal hemos hallado la solución explícita del
sistema. De hecho, en términos matriciales, hemos obtenido la matriz inversa del sistema. Denotando
w := t̄ = e

�2pi/N , la solución queda expresada matricialmente de la siguiente forma:

c = FNb

Donde

FN =
1
N

⇥
w i j
⇤

0i, j<N
=

1
N

2

666664

1 1 1 · · · 1
1 w w2 · · · wN�1

1 w2 w4 · · · w2N�2

...
...

...
. . .

...
1 wN�1 w2N�2 · · · w(N�1)(N�1)

3

777775
(1.4)

Cómo realizar el producto FNb será el motivo del desarrollo del posterior capítulo. Esta disposición
concreta de la matriz y, las raíces N-ésimas de la unidad y su estructura de grupo tendrán un papel
crucial.

1.4. La transformada discreta de Fourier

Si nos fijamos en la formulación del sistema (1.3) que habíamos planteado en el inicio del capítulo, y
la comparamos con la del sistema del teorema (1.2), podemos apreciar diferencias en los índices del
sumatorio: el primero recorre índices positivos 0, . . .N � 1 y el otro los recorre de manera simétrica
�M, . . .M. Con la transformada discreta veremos que ambos sistemas representan el mismo problema,
y que por tanto, el sistema (1.3) en el que estamos interesados tiene solución.

Definición 1. Diremos que una sucesión de números complejos a = {an}n2Z es N-periódica si

an+N = an 8n 2 Z

Observación. De manera más general, podemos ver una sucesión periódica como una aplicación:

a : Z/NZ�! C

Por lo que realmente sólo necesitamos un conjunto de representantes módulo N para determinar la
sucesión N-periódica.
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En particular, notemos que podemos extender periódicamente los elementos que conforman nuestro
problema de forma natural:

Lema 1.3. Las sucesiones { f ( k

N
)}k2Z, {e

�2pin
k

N }k2Z (8n2Z) y {e
�2pin

k

N }n2Z (8k2Z) son N-periódicas.

Demostración. Basta recurrir a la extensión periódica de f para ver que la primera lo es. Por la otra
parte, la sucesión de las raíces de la unidad es trivialmente N-periódica.

Con las sucesiones periódicas presentadas, la transformada discreta se define de la siguiente forma:

Definición 2. Sea b = {bk}k2Z una sucesión N-periódica, llamamos transformada de Fourier discreta N

de b a la sucesión N-periódica c = {cn}n2Z generada por la solución del sistema:

bk =
1
N

N�1

Â
n=0

cne
2pin

k

N ,k = 0, . . . ,N �1 (1.5)

Notemos que el sistema tiene solución única por el teorema (1.2). Y efectivamente, dicha solución es
N-periódica:

cn+N =
1
N

N�1

Â
k=0

bke
�2pi(n+N) k

N =
1
N

N�1

Â
k=0

bke
�2pin

k

N = cn, 8n 2 Z

Más aún, con la existencia y unicidad de la solución se tiene el siguiente teorema:

Teorema 1.4. La transformada de Fourier discreta es una biyección en el conjunto de las sucesiones

complejas N-periódicas.

Observación. Nótese que podríamos haber construido la definición con cualquier otro conjunto de
representantes módulo N de las sucesiones b y c. En particular, si N = 2M + 1 el sistema se puede
reescribir como:

bk =
1

2M+1

2M

Â
n=0

cne
2pin

k

2M+1 =
1

2M+1

 
M

Â
n=0

cne
2pin

k

2M+1 +
2M

Â
n=M+1

cne
2pin

k

2M+1

!

=
1

2M+1

 
M

Â
n=0

cne
2pin

k

2M+1 +
�1

Â
n=�M

cne
2pin

k

2M+1

!
=

1
2M+1

M

Â
n=�M

cne
2pin

k

2M+1

Este hecho prueba que los sistemas (1.3) y (1.5) representan el mismo problema y que por tanto el
sistema (1.3) inicial tiene solución única, como habíamos mencionado al inicio de la sección. No obs-
tante, nótese que aunque ambos sistemas representen la misma transformada discreta, las matrices de
los sistemas serán diferentes (se diferenciarán en una permutación de columnas).

Cabe mencionar que el algoritmo FFT usa la formulación del sistema (1.5) para calcular la transformada
discreta. Por este motivo, al usar dicha formulación, en la salida del algoritmo se devuelve el vector con
los “coeficientes” negativos seguidos de los negativos.

[c0,c1, . . . ,cM,cM+1, . . . ,c2M] = [c0,c1, . . . ,cM,c�M, . . . ,c�1]

En resumen, hemos obtenido explícitamente la solución del sistema (1.3) que nos interesaba, recurriendo
a un sistema equivalente (1.5).

Al mismo tiempo y con la vista puesta en la siguiente sección, con este nuevo contexto podemos rein-
terpretar los sistemas (1.2) y (1.3) que aparecieron al final del desarrollo de la sección (1.2):

Proposición 1.5. Sean SM la sucesión 2M + 1-periódica generada por
⇥
SM f ( 0

2M+1), . . . ,SM f ( 2M

2M+1)
⇤

y f̂M la sucesión 2M+1-periódica generada por
⇥

f̂ (�M), . . . , f̂ (M)
⇤
, las sucesiones relativas al siste-

ma (1.2). Entonces,

f̂M es la transformada de Fourier discreta de SM
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Proposición 1.6. Sean fM la sucesión 2M+1-periódica generada por
⇥

f
� 0

2M+1
�
, . . . , f

� 2M

2M+1
�⇤

y f̂
⇤
M

la sucesión 2M + 1-periódica generada por
⇥

f̂
⇤(�M), . . . , f̂

⇤(M)
⇤
, las sucesiones relativas al sistema

(1.3). Entonces,

f̂
⇤
M

es la transformada de Fourier discreta de fM

1.5. Convergencia de la transformada discreta

Abordada la existencia de la solución del sistema (1.3), nos faltará ver que esta solución se aproxima
a los coeficientes de Fourier correspondientes, para completar así el objetivo planteado al final de la
sección (1.2).

Más detalladamente, veremos cómo la convergencia de las series de Fourier juega un papel crucial para
obtener la convergencia de la transformada discreta de fM a la correspondiente sucesión periódica de
coeficientes de Fourier f̂M.

Proposición 1.7. Sea f :R�!C, 1-periódica, continua y de clase C
(1

a trozos. Entonces, 8e > 0 existe

un M 2 N lo suficientemente grande tal que:

k f̂
⇤
M
� f̂Mk• < e

Siendo f̂
⇤
M

y f̂M las correspondientes transformadas de Fourier discretas de fM y SM (definidas en las

proposiciones (1.5) y (1.6)).

Demostración. Sea e > 0. Por el teorema (A.2) existe un M 2 N lo suficientemente grande tal que:

| f (t)�SM f (t)|< e 8t 2 R

En particular trasladado a sucesiones:

|( fM)k � (SM)k|=
���� f (

k

2M+1
)�SM f (

k

2M+1
)

����< e 8k 2 Z

Si restamos ambas transformadas y aplicamos la desigualdad triangular a cada componente n= 0, . . . ,2M

tenemos que:

|( f̂
⇤
M
)n � ( f̂M)n|

1
2M+1

2M

Â
k=0

|( fM)k � (SM)k|
1

2M+1
(2M+1)e = e

Y finalmente, aplicando supremos tenemos el resultado.

Nótese que cuanto más grande sea M, además de obtener más coeficientes, se calcularán con mejor
aproximación; ya que cuantos más puntos se toman, más completa es la serie truncada y por tanto más
certera es la aproximación SM f (t) ⇡ f (t). Además, nótese que para obtener 2M + 1 coeficientes de
Fourier (aproximados) necesitamos 2M+1 muestras equiespaciadas de la función.

No obstante, ¿podemos extender el resultado para otras familias de funciones? En términos prácticos,
es difícil encontrarse con casos totalmente continuos. De hecho, solo hay que pensar en una simple
melodía; cada cambio de nota crea una discontinuidad. O mismamente si la extensión periódica de la
señal que queramos procesar no sea continua.

Por tanto, ¿podemos garantizar igualmente una convergencia para funciones con salto? Veamos que
aunque la convergencia de las sumas parciales deje de ser uniforme para estas funciones, los 2M + 1
coeficientes de Fourier obtenidos con la transformada discreta se acercan igualmente a los 2M + 1
coeficientes de Fourier reales.
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Teorema 1.8. Sea f : R �! C, 1-periódica y de clase C
(1

a trozos salvo en 0 (y por consiguiente en

k 2 Z). Entonces, 8e > 0 existe un M 2 N lo suficientemente grande tal que:

k f̂
⇤
M
� f̂Mk• < e

Demostración. Sea e > 0 y d := e
6·c , donde c la constante dependiente del salto del corolario (A.9).

Notemos que por el teorema (A.4), existe un N1 2 N lo suficientemente grande tal que:

sup{| f (t)�SN1 f (t)| : t /2 (�d ,d )}< e
2

(1.6)

Por otro lado, por el corolario (A.9) también tenemos que existe un N2 2 N lo suficientemente grande
tal que:

sup{| f (t)�SN2 f (t)| : t 2 (�d ,d )} c (1.7)

Tomemos ahora M := máx{N1,N2,N3}, donde N3 2 N es el menor natural cumpliendo que 1
2N3+1  d .

Restando ambas transformadas y aplicando la desigualdad triangular a cada componente n = 0, . . . ,2M

tenemos que:

|( f̂
⇤
M
)n � ( f̂M)n|

1
2M+1

2M

Â
k=0

|( fM)k � (SM)k|=
1

2M+1

2M

Â
k=0

���� f (
k

2M+1
)�SM f (

k

2M+1
)

����

Nótese que por la periodicidad de f y SM f podemos cambiar los índices del sumatorio:

1
2M+1

2M

Â
k=0

���� f (
k

2M+1
)�SM f (

k

2M+1
)

����=
1

2M+1

M

Â
k=�M

���� f (
k

2M+1
)�SM f (

k

2M+1
)

����

=
1

2M+1

2

4 Â
|k|

2M+1<d

���� f (
k

2M+1
)�SM f (

k

2M+1
)

����+ Â
|k|

2M+1�d

���� f (
k

2M+1
)�SM f (

k

2M+1
)

����

3

5

Y usando las cotas anteriores (1.6) y (1.7) tenemos que:

 1
2M+1

(2(2M+1)d +1) · c+ 1
2M+1

· (2M+1) · e
2
 3 ·d · c+ e

2
= e

Finalmente, tomando supremos se tiene el resultado.

Nótese que el resultado general para cualquier función con n discontinuidades en t1 . . . tn tendría una
demostración análoga a la anterior tomando d1, . . . ,dn con sus respectivas constantes c1, . . . ,cn y eli-
giendo el máximo de los Mdi

para que se cumpliera la cota de la proposición (A.9) en todos los entornos
(ti �di, ti +d ). La acotación fuera de ellos estaría asegurada igualmente por el teorema (A.4).

1.6. Muestreo par. Suma parcial desviada

No obstante, hay un pequeño detalle que ha pasado desapercibido: hemos desarrollado todo el estudio
con un muestreo impar de f . Notemos que hemos hallado un método para obtener buenas aproxima-
ciones de los 2M + 1 coeficientes de Fourier de la suma parcial SM f (t) = ÂM

n=�M
f̂ (n)e2pint con un

muestreo equiespaciado de f de tamaño 2M+1.

Como en la práctica los valores de ese muestreo es la única información conocida y, no tendremos
control sobre su paridad, tiene sentido adaptar el problema para dar cabida a los muestreos pares. De
hecho en un futuro tendrá relativa importancia, ya que el algoritmo que desarrollaremos en el siguiente
capítulo alcanza su mayor eficiencia cuando el muestreo es de tamaño N = 2m. Las sumas parciales
desviadas solucionarán esta situación.
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Definición 3. Sea M 2 N y f : R �! C, una función 1-periódica, continua y de clase C
(1 a trozos.

Llamaremos suma parcial desviada a:

S
⇤
M

f (t) =
M

Â
n=�(M�1)

f̂ (n)e2pint , t 2 R

Notemos que, por el lema de Riemann-Lebesgue (A.1), la suma parcial desviada se “acerca” a la suma
parcial que ya habíamos definido:

|SM f (t)�S
⇤
M

f (t)|= | f̂ (�M)| M!•���! 0

Análogamente, con el propio sistema de sumas parciales desviadas

M

Â
n=�(M�1)

f̂ (n)e2pin
k

2M = SM f (
k

2M
), k = 0, . . . ,2M (1.8)

y la aproximación S
⇤
M

f (t)⇡ f (t) 8t 2 [0,1], también podemos plantear el sistema análogo a (1.3), ahora
con un número par de ecuaciones:

M

Â
n=�(M�1)

f̂
⇤(n)e2pin

k

2M = f (
k

2M
), k = 0, . . . ,2M�1 (1.9)

Del mismo modo, ambos sistemas encajan en el contexto de la transformada discreta:

Proposición 1.9. Sean SM la sucesión 2M-periódica generada por
⇥
S
⇤
M

f ( 0
2M

), . . . ,S⇤
M

f (2M�1
2M

)
⇤

y f̂M

la sucesión 2M-periódica generada por
⇥

f̂ (�(M�1)), . . . , f̂ (M)
⇤
, las sucesiones relativas al siste-

ma (1.8). Entonces,

f̂M es la transformada de Fourier discreta de SM

Proposición 1.10. Sean fM la sucesión 2M-periódica generada por
⇥

f
� 0

2M

�
, . . . , f

� 2M�1
2M

�⇤
y f̂

⇤
M

la

sucesión 2M-periódica generada por
⇥

f̂
⇤(�(M�1)), . . . , f̂

⇤(M)
⇤
, las sucesiones relativas al sistema

(1.9). Entonces,

f̂
⇤
M

es la transformada de Fourier discreta de fM

Notemos que los resultados de convergencia obtenidos en la sección (1.5) también se mantendrán en el
problema definido con las sumas parciales desviadas.

Con esta formulación el vector solución del sistema (1.5) será:

[c0, . . . ,cM,cM+1, . . . ,c2M�1] = [c0, . . . ,cM,c�M+1, . . . ,c�1]

Observación. Cabe mencionar que podríamos haber definido la suma parcial desviada como

S
⇤
M

f (t) =
M�1

Â
n=�M

f̂ (n)e2pint , t 2 R

y haber realizado el mismo desarrollo. No obstante, notemos que ambos sistemas darían el mismo
resultado, ya que ambos representan el sistema de la misma transformada de Fourier discreta:

f (
k

2M
) =

M

Â
n=�(M�1)

ane
2pin

k

2M =
M�1

Â
n=�(M�1)

ane
2pin

k

2M +aMe
2piM

k

2M

=
M�1

Â
n=�(M�1)

ane
2pin

k

2M +a�Me
2pi(�M) k

2M =
M�1

Â
n=�M

ane
2pin

k

2M , k = 0, . . . ,2M�1

Concordando con la biyección obtenida en el teorema (1.4).
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1.7. Funciones de cualquier periodo

Durante el desarrollo de todo el capítulo hemos planteado el problema con funciones de periodo 1.
Veamos como podemos generalizarlo a funciones de cualquier periodo.

Sea f : R �! C, L-periódica, continua y de clase C
(1 a trozos. Del mismo modo, por el teorema (A.2)

tenemos que

f (t) =
•

Â
n=�•

f̂ (n)e2pi
n

L
t , uniformemente en [0,L]

Y con la misma idea, tomando un muestreo equiespaciado de f en el intervalo [0,L] y las aproximaciones
con sumas parciales obtenemos el sistema:

M

Â
n=�M

f̂
⇤(n)e2pi

n

L

kL

2M+1 =
M

Â
n=�M

f̂
⇤(n)e2pin

k

2M+1 = f (
kL

2M+1
), k = 0, . . . ,2M

Si nos fijamos en el sistema generado por la segunda igualdad, es exactamente el mismo obtenido con
las funciones de periodo 1. Únicamente aparece el periodo en el muestreo de la función, que no afecta
a la resolución del sistema. Por tanto, la matriz del sistema a resolver será siempre la misma para
cualquier periodo. De hecho, para el vector del muestreo únicamente importará que sea equiespaciado
en el intervalo.



Capítulo 2

La transformada rápida de Fourier (FFT)

2.1. Introducción

En este capítulo presentaremos el conocido algoritmo de la Transformada Rápida de Fourier (FFT), el
cual calcula los coeficientes de la transformada discreta de Fourier (Def. 2):

f̂
⇤
n
=

1
N

N�1

Â
k=0

fkwkn, 0  n < N, w := e
�2pi/N

Para el estudio del algoritmo, expresaremos el sistema con notación matricial:

f̂
⇤ = FN f (2.1)

En esta ecuación f = [ f0, . . . , fN�1]T 2CN reúne el conjunto ordenado de los valores de un muestreo de
una cierta función f . Dicho vector será parte de la entrada del algoritmo FFT, mientras que la salida será
el vector f̂

⇤ = [ f̂ ⇤0 , . . . , f̂
⇤
N�1]

T 2 CN , que reúne los coeficientes de la Transformada Discreta de Fourier
de f . Recordemos que la matriz FN está definida de la siguiente forma:

FN =
1
N

⇥
w i j
⇤

0i, j<N
=

1
N

2

666664

1 1 1 · · · 1
1 w w2 · · · wN�1

1 w2 w4 · · · w2N�2

...
...

...
. . .

...
1 wN�1 w2N�2 · · · w(N�1)(N�1)

3

777775

Para analizar el comportamiento asintótico del algoritmo, tanto en tiempo como en espacio, supondre-
mos simplemente que cualquier operación de suma o multiplicación de números complejos se realiza en
una unidad de tiempo. Del mismo modo, supondremos que el almacenamiento de un número complejo
en la memoria del ordenador requiere una unidad de espacio. Con estas decisiones, la elección natural
para el tamaño de un ejemplar de entrada de este problema será N, el número de componentes del vector
de entrada f .

El cálculo del tiempo usado por el algoritmo se reducirá a “contar” el número de operaciones aritméti-
cas complejas, expresándolo como una función de N. Más precisamente, puesto que sólo nos interesará
el comportamiento asintótico, expresaremos estos costes como el orden O(t(N)) de una cierta función
t(n).

Definición 4. Dada una función t : N�! R+, el orden de t(N) es el conjunto:

O(t(N)) = { f : N�! R+|9c 2 R+, n0 2 N tales que 8n � n0 f (n) c · t(n)}

9
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Obviamente, el algoritmo que realiza directamente el producto matricial dado en la ecuación (2.1) tiene
un coste del orden de N

2 operaciones complejas, además de utilizar O(N2) espacio si tenemos precal-
culada y almacenada la matriz FN en memoria. No obstante, atendiendo a la estructura polinómica en
función de w de las componentes de c

f̂
⇤
n
=

1
N

⇥
f0 + f1wn + f2(wn)2 + · · ·+ fN�1(wn)N�1⇤

podríamos recurrir al conocido algoritmo de Horner para la evaluación de polinomios, calculando las
potencias de w dentro del algoritmo. Con esto, evitaríamos el almacenamiento en memoria de la matriz
FN , reduciendo el coste en espacio a O(N), aunque manteniendo el coste en tiempo en O(N2).

A pesar del coste cuadrático, este fue el método generalmente aceptado para el cálculo de la transforma-
da de Fourier discreta hasta la aparición del algoritmo presentado por James W. Cooley y John W. Tukey
en 1965. Dicho algoritmo presentó una nueva y eficiente manera de calcular la transformada discreta de
Fourier reduciendo el número de operaciones complejas al orden de

N · {(P1 �1)+(P2 �1)+ · · ·+(Pm �1)}

donde N = P1 · · ·Pm es una descomposición de N, no necesariamente en factores primos. De hecho,
el ahorro más dramático se produce en el caso N = 2m, rebajando el coste hasta el orden de Nlog2N

operaciones complejas, frente a las N
2 de Horner. Esta reducción supuso un punto de inflexión en el

uso práctico de la transformada de Fourier discreta. En las siguientes secciones fundamentaremos y
presentaremos las piezas que conforman dicho algoritmo.

2.2. La identidad cremallera FP·Q

En el capítulo anterior hemos anunciado que la estructura de la matriz FN y el hecho de que sus com-
ponentes sean las raíces N-ésimas de la unidad juegan un papel fundamental en el algoritmo de la
Transformada Rápida de Fourier (FFT). En esta sección concretaremos esta afirmación.

Más precisamente, dada una factorización N = P ·Q, obtendremos la “identidad cremallera” (zipper

identity) de FN . Esta identidad permitirá expresar dicha matriz como producto de tres: una matriz for-
mada por bloques diagonales de tamaño P, una matriz diagonal por bloques formada por Q bloques
idénticos a FP y, una matriz de permutación. Esencialmente, la identidad vendrá desencadenada como
resultado de hacer uso de cierta permutación sP,Q 2 SN , del grupo simétrico de N elementos, y de las
propiedades de grupo de las raíces N-ésimas de la unidad.

Para expresar esta identidad de forma compacta, y generalizarla cuando la factorización de N conste de
más factores, comenzaremos introduciendo la siguiente notación exponencial para matrices.

Definición 5. Dada una matriz cuadrada A 2CN⇥N , para todo entero n > 0 definimos la matriz A
(n) del

siguiente modo, donde 0 denota las matrices de tamaño adecuado cuyos elementos son todos nulos:

A
(1) := A ; A

(n+1) :=


A
(n) 0
0 A

�

Es decir:

A
(1) := A, A

(2) :=


A 0
0 A

�
, A

(3) :=

2

4
A 0 0
0 A 0
0 0 A

3

5 , . . .

Para cualesquiera p,q 2N y matrices A,B 2CN⇥N , es inmediato comprobar las siguientes propiedades:
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1.
⇥
A
(p)
⇤(q)

= A
(pq)

2. [AB](p) = A
(p)

B
(p)

3. [aA](p) = aA
(p), a 2 C

En el siguiente lema resaltaremos la primera de las piezas fundamentales que forman la base del algo-
ritmo.

Lema 2.1. Sea w := e
�2pi/N

raíz N-ésima de la unidad. Entonces, para cualquier factorización N =
P ·Q, t := wQ

es raíz P-ésima de la unidad.

Por otro lado, notemos que por el Teorema de la división entera, para todo índice n tal que 0  n < N =
P ·Q, existirán únicos p1,q1 cumpliendo que:

n = p1 +q1P, 0  p1 < P 0  q1 < Q

Del mismo modo, intercambiando los papeles de P y Q, también existirán únicos q2, p2 tal que:

n = q2 + p2Q, 0  q2 < Q 0  p2 < P

Con estas apreciaciones, podemos definir la segunda de las piezas del algoritmo, la permutación sP,Q:

Definición 6. Sea N = P ·Q. Denotamos como sP,Q 2 SN a la permutación dada por:

sP,Q(p+qP) = q+ pQ, p 2 {0, . . . ,P�1} q 2 {0, . . . ,Q�1}

En particular, usaremos esta permutación actuando sobre vectores y sobre matrices:

Definición 7. Sea s 2 SN .

Dado un vector a = (ai)0i<N 2CN , denotamos como s(a) al vector resultante al aplicar s sobre
sus componentes:

s(a) :=
⇥
as(i)

⇤
0i<N

Dada una matriz A = [Ai j]0i, j<N
2CN⇥N , denotamos como s(A) a la matriz resultante al aplicar

s sobre sus columnas:
s(A) :=

⇥
Ais( j)

⇤
0i, j<N

Definición 8. Dada una permutación s 2 SN , denotamos como Ss 2 CN⇥N a la matriz de permutación
asociada a s :

Ss =

2

64

es(0)
...

es(N�1)

3

75 , ei = [0, . . . ,
i)
1, . . . ,0] 2 CN

Las matrices de permutación cumplen las siguientes propiedades:

Proposición 2.2. Sea a 2 CN
y A 2 CN⇥N

. Dada una permutación s 2 SN
se tiene que:

s(a) = Ss a s(A) = AS
T

s S
T

s = S
�1
s

Y con ellas es inmediato probar el siguiente lema:

Lema 2.3. Sea x 2 CN
, A 2 CN⇥N

y s 2 SN. Entonces:

Ax = s(A)s(x)
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Este hecho nos permitirá reordenar la matriz FN y el vector f sin modificar el resultado del producto
FN f :

FP·Q f = sP,Q(FP·Q)sP,Q( f )

Por una parte, la aplicación de sP,Q sobre un vector f queda determinada por su matriz de permutación
SsP,Q . Como en todo el capítulo haremos uso de la misma permutación, a partir de ahora denotaremos
por SP,Q a la matriz de permutación SsP,Q . Así tenemos que:

sP,Q( f ) = SP,Q f

Por la otra parte, tenemos a sP,Q(FN), que está definido como:

sP,Q(FN) =
h
(FN)isP,Q( j)

i

0i, j<N

=
1
N

h
w i·sP,Q( j)

i

0i, j<N

No obstante, por motivos posteriores es interesante dividirla en submatrices de tamaño P⇥P:

sP,Q(FN) =
1

P ·Q

2

6664

B0,0 B0,1 · · · B0,Q�1
B1,0 B1,1 · · · B1,Q�1
...

...
...

BQ�1,0 BQ�1,1 · · · BQ�1,Q�1

3

7775

Donde cada submatriz queda descrita del siguiente modo:

Br,s =
h
w(i+r·P)·sP,Q( j+s·P)

i

0i, j<P

=
h
w(i+r·P)·(s+ j·Q)

i

0i, j<P

Proposición 2.4. Sea Br,s , 0  r,s < Q, la matriz definida anteriormente. Entonces:

Br,s = P ·Wr,s ·FP siendo Wr,s = wrsP

2

6664

1
ws

. . .

w(P�1)s

3

7775

Demostración. Sean r,s índices fijos tal que 0  r,s < Q. Recurriendo a la propia definición y operando:

Br,s =
h
w(i+rP)·(s+ jQ)

i

0i, j<P

=
⇥
w is ·wrsP ·w i jQ ·w jrPQ

⇤
0i, j<P

Denotando como t := wQ, sabiendo que wP·Q = wN = 1 por ser w raíz N-ésima de la unidad, y que
wrsP es constante, obtenemos:

= wrsP ·
⇥
w is · t i j · (1) jr

⇤
0i, j<P

= wrsP ·
⇥
w is · t i j

⇤
0i, j<P

Como w is solo depende de i podemos sacarlo de la matriz como producto por una matriz diagonal:

= wrsP

2

6664

1
ws

. . .
w(P�1)s

3

7775
⇥
t i j
⇤

0i, j<P
=Wr,s ·

⇥
t i j
⇤

0i, j<P

Y finalmente, como por el lema (2.1) t es raíz P-ésima de la unidad se tiene que
⇥
t i j
⇤

0i, j<P
= P ·FP,

se obtiene el resultado buscado:
Br,s =Wr,s ·P ·FP
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De este modo, con cada bloque de la matriz sP,Q(FN) factorizado y la ayuda de la notación dada en la
definición (5), ya podemos expresar la identidad cremallera:

Teorema 2.5. (Identidad cremallera). Dada una factorización N = P ·Q, se tiene la siguiente identidad:

FP·Q =
1
Q

QP,QF
(Q)
P

SP,Q donde QP,Q :=

2

6664

W0,0 W0,1 · · · W0,Q�1
W1,0 W1,1 · · · W1,Q�1
.
.
.

.

.

.
.
.
.

WQ�1,0 WQ�1,1 · · · WQ�1,Q�1

3

7775

Demostración. Con la factorización para cada Br,s y la notación exponencial es inmediato ver que:

sP,Q(FP·Q) =
1

P ·QQP,Q ·P ·F(Q)
P

=
1
Q

QP,QF
(Q)
P

Así mismo, conocemos que s( f ) está descrito por su matriz de permutación:

sP,Q( f ) = SP,Q

Por lo que uniendo ambas expresiones junto con el lema (2.3) tenemos que:

FP·Q f = sP,Q(FP·Q)sP,Q( f ) =
1
Q

QP,QF
(Q)
P

SP,Q f

Como esta igualdad es cierta para cualquier f 2 CN , tenemos finalmente el resultado:

FP·Q =
1
Q

QP,QF
(Q)
P

SP,Q

Ejemplo. Tomemos el caso N = 6, con los factores P = 2 y Q = 3. Como hemos podido ver, la per-
mutación sP,Q juega un papel crucial para hallar la identidad cremallera. Primeramente, calculemos
explícitamente la permutación s2,3:

s2,3(p+2 ·q) = (q+3 · p)

0 = 0+2 ·0 (p,q) = (0,0) �! 0+3 ·0 = 0
1 = 1+2 ·0 (p,q) = (1,0) �! 0+3 ·1 = 3
2 = 0+2 ·1 (p,q) = (0,1) �! 1+3 ·0 = 1
3 = 1+2 ·1 (p,q) = (1,1) �! 1+3 ·1 = 4
4 = 0+2 ·2 (p,q) = (0,2) �! 2+3 ·0 = 2
5 = 1+2 ·2 (p,q) = (1,2) �! 2+3 ·1 = 5

Con la permutación descrita, podemos ver fácilmente la acción de s2,3 sobre el vector f :

s2,3( f ) =
⇥

fs(i)

⇤
0i<6 = [ f0, f3, f1, f4, f2, f5]

T = S2,3 f

Así mismo, también podemos expresar la acción de la permutación sobre la matriz F2·3:

s2,3(F2·3) =
h
(F6)is(2,3)( j)

i

0i, j<6
=

1
6

2

66666664

1 1 1 1 1 1
1 w3 w w4 w2 w5

1 w6 w2 w8 w4 w10

1 w9 w3 w12 w6 w15

1 w12 w4 w16 w8 w20

1 w15 w5 w20 w10 w25

3

77777775
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Y teniendo en cuenta que t := w3 es una raíz 2-ésima de la unidad y que genera un subgrupo de orden
2, es fácil ver la factorización:

s2,3(F2·3) =
1
3

2

66666664

1 1 1
1 w w2

1 w2 w4

1 w3 w6

1 w4 w8

1 w5 w10

3

77777775

2

4
F2 02 02
02 F2 02
02 02 F2

3

5=
1
3
·Q2,3 ·F(3)

2

Finalmente uniendo ambas expresiones se tiene la identidad obtenida en la sección:

F2·3 f = s2,3(F2·3)s2,3( f ) =
1
3

Q2,3F
(3)
2 S2,3 f

La elección de esta permutación no es casual, en este caso particular se puede ver bien que s2,3 reordena
la matriz por bloques de columnas cuyos índices pertenecen a la misma clase de equivalencia módu-
lo 3. Esto es lo que permite que aparezca t := w3 y que obtengamos la sencilla factorización de la
proposición (2.4):

Br,s =
h
w(i+2·r)·(s+3· j)

i

0i, j<2
=


w2rs w2rs

ws ·w2rs ws ·w2rs ·w3

�
= w2rs


1 0
0 ws

�
1 0
0 t

�
=Wr,s ·2 ·F2

2.3. Factorización de FN en el caso N = 2m

Si se dispone de una factorización de N = P1 · · ·Pm con más de dos factores, el siguiente paso natu-
ral sería aplicar recursivamente la identidad cremallera hasta llegar a un caso trivial. A continuación
abordaremos esta tarea en el caso más simple, cuando todos los factores sean 2.

Comenzaremos particularizando la identidad cremallera obtenida en la sección anterior al caso N =
2 ·M, M � 1. Como en esta sección tomaremos P=M y Q= 2, escribiremos Q2M :=QM,2 y S2M := SM,2
para simplificar la notación. Así, la identidad cremallera se reescribe como:

F2M =
1
2

Q2M


FM 0M

0M FM

�
S2M =

1
2

Q2MF
(2)
M

S2M (2.2)

Por otro lado, teniendo en cuenta que wM = �1, ya que (wM)2 = wN = 1 y w 6= 1, la matriz Q2M

también se reescribe de la siguiente forma más simple:

Q2M :=

2

6666666666664

1 1
1 w

. . . . . .
1 wM�1

1 �1
1 �w

. . . . . .
1 �wM�1

3

7777777777775

(2.3)

Nótese que la identidad (2.2) relaciona FN con FN/2. Por lo que, si nuestro N inicial se factoriza como
N = 2m, podremos aplicar esta relación que nos aporta la identidad cremallera recursivamente hasta
llegar al caso trivial F1 = [1]. Dicha recursión es la que nos lleva a la factorización de F2m .
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Teorema 2.6. Sea N = 2m
, m = 1,2, . . . . Entonces:

F2m =
1

2m
Q2mQ

(2)
2m�1Q

(4)
2m�2 · · ·Q

(2m�1)
2 B2m , donde B2m := S

(2m�1)
2 S

(2m�2)
4 . . .S(2)

2m�1S2m

Demostración. Aplicando la identidad cremallera m veces con Q = 2 y P = 2k, k = m� 1, . . . ,0, y
usando las propiedades de la notación exponencial (5) tenemos que:

F2m =
1
2

Q2mF
(2)
2m�1S2m

=
1
2

Q2m


1
2

Q2m�1F
(2)
2m�2S2m�1

�(2)
S2m

=
1
4

Q2mQ
(2)
2m�1F

(4)
2m�2S

(2)
2m�1S2m

= · · ·= 1
2m

Q2mQ
(2)
2m�1Q

(4)
2m�2 . . .F

(2m)
1 S

(2m�1)
2 S

(2m�2)
4 . . .S(2)

2m�1S2m

Finalmente, teniendo en cuenta que
F
(2m)
1 = [1](2

m) = I2m

y reuniendo todas las matrices de permutación en

B2m := S
(2m�1)
2 S

(2m�2)
4 . . .S(2)

2m�1S2m

Obtenemos el resultado:
F2m =

1
2m

Q2mQ
(2)
2m�1 . . .Q

(2m�1)
2 B2m

Notemos que las matrices S
(2k)
2m�k

, k = 1, . . . ,m�1 son matrices de permutación. Por ello, como el produc-
to de matrices de permutación es también una matriz de permutación, B2m será igualmente una matriz de
permutación. Que hayamos definido la matriz B2m no es casual; en la siguiente sección describiremos
la permutación que representa.

2.3.1. Acción de B2m

Como hemos definido en la sección anterior, la matriz de permutación B2m está formada por un producto
de matrices de permutación. Por ello, el guión que seguiremos para conocer su acción sobre un vector
será describir las acciones de cada una de las matrices de permutación que la conforman, y hallar la
acción global componiéndolas ordenadamente.

Antes de comenzar con ello, notemos que las matrices involucradas son del tipo S
(2k)
2m�k

, donde donde
k es un entero tal que 0  k < m. Es decir, matrices diagonales por bloques formadas por 2k matrices
S2m�k de tamaño 2m�k ⇥2m�k. Recordemos que estas matrices S2m�k := S2m�k�1,2 vienen expresadas por
la permutación:

s2m�k�1,2(p+q ·2m�k�1) = q+ p ·2, 0  p < 2m�k�1 0  q < 2

A su vez, nótese que si dividimos el vector en 2k bloques de tamaño 2m�k, las matrices S2m�k que
conforman S

(2k)
2m�k

actuarán idénticamente sobre cada uno de estos bloques. Con ello, si indexamos los
índices en 2k bloques (es decir n = n

0+ r · 2m�k, 0  r < 2k), es sencillo ver que podemos expresar la
permutación asociada a la matriz S

(2k)
2m�k

en términos de s2m�k�1,2:

s (2k)
2m�k�1,2(n) = s (2k)

2m�k�1,2(p+q ·2m�k�1 + r ·2m�k) = s2m�k�1,2(p+q ·2m�k�1)+ r ·2m�k,

0  p < 2m�k�1 0  r < 2k 0  q < 2
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Proposición 2.7. Sea x 2 CN
y S

(2k)
2m�k

la matriz de permutación asociada a s (2k)
2m�k�1,2. Entonces:

(S(2k)
2m�k

x)
p+q·2m�k�1+r·2m�k = x

q+p·2+r·2m�k , 0  p < 2m�k�1
q = 0,1 0  r < 2k

Es decir, la acción de la permutación s (2k)
2m�k�1,2 sobre las componentes del vector x mueve la componente

de índice q+ p · 2+ r · 2m�k
a la componente de índice p+ q · 2m�k�1 + r · 2m�k

. Denotaremos dicho

movimiento con la siguiente notación:

sk

h
q+ p ·2+ r ·2m�k

i
= p+q ·2m�k�1 + r ·2m�k

Demostración. Recurriendo a la definición (7) de la acción de una permutación sobre un vector, a la
primera de las propiedades de la proposición (2.2) y a la descripción de la permutación s (2k)

2m�k�1,2 dada,
se tiene el resultado:

(S(2k)
2m�k

x)
p+q·2m�k�1+r·2m�k = xs2k

2m�1 ,2
(p+q·2m�k�1+r·2m�k)

= xs2m�1 ,2(p+q·2m�k�1)+r·2m�k = x
q+p·2+r·2m�k

Observación. Nótese que si k = 0 se tiene que la permutación resultante, asociada a S2m , es s2m�1,2:

s (1)
2m�1,2(p+q ·2m�1 + r ·2) = q+ p ·2+ r ·2m, 0  p < 2m�1 0  q < 2 0  r < 1

s2m�1,2(p+q ·2m�1) = q+ r ·2, 0  p < 2m�1 0  q < 2

Por lo que el movimiento asociado a S2m queda expresado como:

s0 [q+ p ·2] = p+q ·2m�1, 0  p < 2m�1
q = 0,1 (2.4)

Por otro lado, si k = m�1 se tiene que la permutación resultante es la identidad:

s (2m�1)
1,2 (p+q ·1+ r ·2) = q+ p ·2+ r ·2, 0  p < 1 0  q < 2 0  r < 2m�1

s (2m�1)
1,2 (q+ r ·2) = q+ r ·2, 0  q < 2 0  r < 2m�1

Es decir, esta acción no mueve ninguna componente. En particular se tiene que:

S
(2m�1)
2 = I2m (2.5)

Para llegar a nuestro objetivo y poder componer todas las matrices necesitaremos el siguiente resultado,
que también es consecuencia del Teorema de la división entera:

Proposición 2.8. (Expresión binaria). Para todo entero n tal que 0  n < N = 2k
existen únicos {bi}k�1

i=0
cumpliendo:

n = b0 +b1 ·2+b2 ·22 + · · ·+bk�2 ·2k�2 +bk�1 ·2k�1 := (bk�1bk�2 · · ·b1b0)2)

Lema 2.9. Sea N = 2m
y k un entero tal que 0  k < m�1. La acción de la permutación asociada a la

matriz S
(2k)
2m�k

·S(2k�1)
2m�k+1 · · ·S2m está descrita por el siguiente movimiento:

rk[(bm�1 · · ·b0)2)] = (bm�1 · · ·bk+1)2) + (bk · · ·b0)2) ·2m�k�1

Donde n = (bm�1 · · ·b0)2) es la expresión binaria de cada índice 0  n < 2m
.



La transformada rápida de Fourier 17

Demostración. En primer lugar, fijemos un índice con expresión binaria n = (bm�1 · · ·b0)2), definida en
la proposición anterior (2.8). Probemos el lema por inducción:

k = 0. Se reduce a expresar el movimiento de S2m , reescribiendo la expresión binaria:

r0
⇥
(bm�1 · · ·b0)2)

⇤
= s0

⇥
(bm�1 · · ·b0)2)

⇤
= s0

⇥
(b0)2) + (bm�1 · · ·b1)2) ·2

⇤

Notando que 0  b0 < 2 y que 0  (bm�1 · · ·b1)2) < 2m�1 y usando la expresión (2.4) del movi-
miento s0 se tiene el resultado:

s0
⇥
(b0)2) + (bm�1 · · ·b1)2) ·2

⇤
= (bm�1 · · ·b1)2) + (b0)2) ·2m�1

0 < k < m�1. Supongamos que es cierto para k�1. Entonces:

rk

⇥
(bm�1 · · ·b0)2)

⇤
= sk

⇥
rk�1

⇥
(bm�1 · · ·b0)2)

⇤⇤
= sk

h
(bm�1 · · ·bk)2) + (b0 · · ·bk�1)2) ·2m�k

i

= sk

h
(bk)2) + (bm�1 · · ·bk+1)2) ·2+(b0 · · ·bk�1)2) ·2m�k

i

Notando que 0  bk < 2, 0  (bm�1 · · ·bk+1)2) < 2m�k�1 y 0  (b0 · · ·bk�1)2) < 2k, y usando la
expresión del movimiento sk obtenido en la proposición (2.7) se tiene la inducción:

= (bm�1 · · ·bk+1)2) + (bk)2) ·2m�k�1 +(b0 · · ·bk�1)2) ·2m�k

= (bm�1 · · ·bk+1)2) +
⇥
(bk)2) + (b0 · · ·bk�1)2) ·2

⇤
·2m�k�1 = (bm�1 · · ·bk+1)2) + (b0 · · ·bk)2) ·2m�k�1

Teorema 2.10. Sea B2m := S
(2m�1)
2 S

(2m�2)
4 . . .S(2)

2m�1S2m y f 2 C2m

. Entonces se tiene que:

(B2m f )(b0b1···bm�2bm�1)2 = f(bm�1bm�2···b1b0)2

Es decir, la acción de la permutación asociada a B2m sobre las componentes del vector f mueve la

componente de índice (bm�1bm�2 · · ·b1b0)2) a la componente de índice (b0b1 · · ·bm�2bm�1)2) :

rm�1
⇥
(bm�1bm�2 · · ·b1b0)2)

⇤
= (b0b1 · · ·bm�2bm�1)2)

Demostración. Sea n un índice con expresión binaria n = (bm�1 · · ·b0)2). Notemos que por la observa-
ción (2.5) se tiene que:

B2m = S
(2m�1)
2 S

(2m�2)
4 . . .S(2)

2m�1S2m = S
(2m�2)
4 . . .S(2)

2m�1S2m

Que en términos de movimientos se traslada a la siguiente igualdad:

rm�1
⇥
(bm�1bm�2 · · ·b1b0)2)

⇤
= rm�2

⇥
(bm�1bm�2 · · ·b1b0)2)

⇤

Y gracias al lema anterior (2.9) se tiene el resultado:

rm�2
⇥
(bm�1bm�2 · · ·b1b0)2)

⇤
= (bm�1)2) + (b0 · · ·bm�2)2) ·2 = (b0 · · ·bm�1)2)

Observación. Nótese que la permutación representada por B2m es una transposición:

r
2
m�1

⇥
(bm�1 · · ·b0)2)

⇤
= rm�1

⇥
(b0 · · ·bm�1)2)

⇤
= (bm�1 · · ·b0)2)

En la literatura, este movimiento de componentes recibe el nombre de “bit reversal permutation”.
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2.3.2. Algoritmo de Bracewell-Buneman

En esta sección deduciremos uno de los múltiples algoritmos existentes para calcular el “bit revesal"

de los índices 0  i < N = 2m. Este algoritmo tomará como entrada un entero m � 0, para devolver el
vector r de tamaño 2m cuya componente i-ésima contiene la representación binaria de m bits invertida
de i = (bm�1 · · ·b0)2), es decir:

r = [ri]0i<2m , donde ri = rm�1[i] = rm�1[(bm�1 · · ·b0)2)]

Observación. Nótese que aunque las expresiones (0bm�1bm�2 · · ·b1b0)2 y (bm�1bm�2 · · ·b1b0)2 repre-
sentan el mismo número, con m+1 y m bits respectivamente, en general se tiene que:

rm[(0bm�1bm�2 · · ·b1b0)2] 6= rm�1[(bm�1bm�2 · · ·b1b0)2]

Sin embargo, se cumple la siguiente relación:

rm[bmbm�1 · · ·b1b0)2] = (b0b1 · · ·bm�1bm)2

= 2 · (b0b1 · · ·bm�1)2 +bm

= 2 · rm�1[(bm�1 · · ·b1b0)2]+bm

Que expresado de forma compacta:

rm[n] =

(
2 · rm�1[n] si n = 0,1, . . . ,2m�1 �1
2 · rm�1[n�2m�1]+1 si n = 2m�1,2m�1 +1, . . . ,2m �1

Esta expresión será la célula que usará el algoritmo. De manera ilustrativa, el proceso iterativo se puede
ver en la siguiente tabla:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r0[n] 0 1
r1[n] 0 2 1 3
r2[n] 0 4 2 6 1 5 3 7
r3[n] 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

La mitad izquierda de la fila m se obtiene doblando los valores de la fila anterior m� 1, y la mitad
derecha, sumando uno a los elementos de la mitad izquierda obtenida.

Con ello, el algoritmo de Bracewell-Buneman es el siguiente:

Algoritmo 1: Algoritmo de Bracewell-Buneman

Entrada: Entero m > 0 (número de bits)
Salida : El vector r: r[i] = rm�1[i], 0  i < 2m

1 r[0] := 0 ; M := 1
2 for i = 0,1, . . . ,m�1 do

3 for k = 0,1, . . . ,M�1 do

4 r[k] := 2 · r[k]
5 r[k+M] := r[k]+1

6 M := 2M

Dado que el número de operaciones que se realizan en el bucle interno (líneas 4-5) es constante y que
M = 2i en cada iteración del bucle externo (líneas 2-6), el coste en tiempo de este algoritmo es del orden
de Âm�1

i=0 2i = 2m �1. Así, si suponemos que N = 2m, entonces el coste es O(N).

No obstante, notemos que al tratarse de una transposición, realmente no es necesario calcular todos
los índices rm�1[n], 0  n < N, ya que n se intercambia con rm�1[n] y rm�1[n] con n. Con un estudio
de este hecho, se puede modificar el algoritmo para calcular solamente los pares (rm�1[n],n) tales que
rm�1[n]> n, reduciendo el coste en tiempo y con un coste en espacio de a lo sumo

p
2N.
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2.3.3. Descripción del algoritmo en el caso N = 2m

Con todo el desarrollo realizado y los resultados obtenidos, ya nos encontramos en situación para pre-
sentar el esquema del algoritmo de la Transformada Rápida de Fourier (FFT), cuando N = 2m. Dicho
algoritmo tomará como entrada el valor m y un vector f 2 C, para devolver el vector resultante del
producto FN f .

El cálculo del producto se basa en la factorización obtenida en el teorema (2.6), realizando los productos
de derecha a izquierda:

1
2m

Q2mQ
(2)
2m�1 . . .Q

(2m�1)
2 B2m f = FN f (2.6)

Antes de presentar el algoritmo completo, desgranaremos y detallaremos los trozos del algoritmo que
calculan estos productos.

Como hemos visto en el teorema (2.10), la matriz B2m actúa sobre el vector f moviendo su componente
de índice n = (bm�1bm�2 · · ·b1b0)2 a la componente de índice r[n] = (b0b1 · · ·bm�2bm�1)2. Así, con el
“bit reversal" de cada índice precalculado (Alg. (1)) podemos realizar el producto B2m f intercambiando
pares de componentes de f , por ser una transposición (Obs. (2.3.1)).

Algoritmo 2: Cálculo de B2m f

Entrada: Entero m > 0 y f 2 CN , N = 2m

Salida : El vector permutado B2m f

1 Alg. (1) “bit reversal” ! r

2 for n = 1,2, . . . ,N �2 do

3 if r[n]> n then

4 h fn, fr[n]i := h fr[n], fni

Notemos que es innecesario intercambiar las componentes 0, N � 1-ésimas debido a que r[0] = 0 y
r[N �1] = N �1.

Como ya hemos visto, el cálculo del “bit reversal"(línea 1) tiene un coste en tiempo de O(N). Igual-
mente, el bucle del algortimo (líneas 2-4) tiene un coste O(N). Por tanto, el coste en tiempo de este
algoritmo es O(N).
Por el otro lado tenemos las matrices de la forma Q

(K)
2M

, matrices diagonales por bloques donde cada blo-
que es la matriz Q2M, cuya expresión simplificamos en la ecuación (2.3). Aprovechando esa repetición
en los bloques, el siguiente trozo de algoritmo calcula de forma inteligente el producto Q

(K)
2M

f :

Algoritmo 3: Cálculo de Q
(K)
2M

f

Entrada: Enteros M,K > 0 y f 2 C2MK

Salida : El vector Q
(K)
2M

f

1 w := e
�pi/M

2 for l = 0,1, . . . ,M�1 do

3 for k = 0,1, . . . ,K �1 do

4


fk ·2M+l

fk·2M+l+M

�
:=


1 wl

1 �wl

�
fk·2M+l

fk·2M+l+M

�

Como el número de operaciones del bucle interno (líneas 3-4) es constante y, por otro lado, M y K
son valores también constantes, el coste en tiempo de este algoritmo es O(MK) (sin tener en cuenta el
cálculo de las potencias de w).

Finalmente, uniendo el algoritmo (2) y añadiendo un bucle para las matrices Q, obtenemos el algoritmo
completo que realiza todos los productos matriciales de la factorización (2.6):
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Algoritmo 4: Algoritmo FFT cuando N = 2m

Entrada: Entero m > 0 y f 2 CN

Salida : El vector F2m f

1 f := B2m f (Alg. 2)
2 for µ = 1,2, . . . ,m do

3 w := e
�2pi/2µ ; U := 1

4 for l = 0,1, . . . ,2µ�1 �1 do

5 for k = 0,1, . . . ,2m�µ �1 do

6 g := fk·2µ+l
7 fk·2µ+l := g+U · fk·2µ+l+2µ�1

8 fk·2µ+l+2µ�1 := g�U · fk·2µ+l+2µ�1

9 U := wU

10 for k = 0,1, . . . ,N �1 do

11 fk := fk/2m

Por un lado, nótese que el bucle interno (líneas 3-9) se corresponde al algoritmo (3) con M = 2µ�1 y
K = 2m�µ como valores de entrada. Como hemos visto, el coste en tiempo de dicho bucle es O(MK) =

O(2m�1), es decir, O(N). No es de extrañar que este coste no dependa de m, ya que las matrices Q
(K)
2M

del producto (2.6) cumplen que 2MK = N. Así, como este coste es constante en cada iteración del bucle
externo (líneas 2-9), el coste en tiempo del bucle es O(mN), m = log2 N.

Por otro lado, es sabido ya que el coste en tiempo del cálculo de B2m f (línea 1) es O(N), calculado
previamente en el estudio del algoritmo (2). El bucle final (líneas 10-11) también tiene coste O(N).

Con este estudio, el coste en tiempo del algoritmo FFT cuando N = 2m es O(N log2 N). Cabe mencionar
que el coste en espacio es O(N), al estar únicamente almacenado el vector f 2 CN y el vector “bit
reversal” r 2 ZN involucrado en el cálculo de B2m f (línea 1).

2.4. Factorización de FN en el caso N = P1 · · ·PN

En esta última sección generalizaremos la factorización de la matriz F para cualquier factorización
N = P1 ·P2 · · ·Pm. Del mismo modo que en el caso N = 2m, aplicaremos recursivamente la identidad cre-
mallera con los factores de la descomposición de N, relacionando FP1···PN

con FP1···PN�1 y sucesivamente,
reduciendo los factores hasta llegar al caso trivial F1 = [1]. Esta factorización se recoge en el siguiente
resultado:

Teorema 2.11. Sea N = P1 · · ·Pm. Entonces:

FN =
1

P1 · · ·Pm

·QP1···Pm�1,Pm
·Q(Pm)

P1···Pm�2,Pm�1
· · ·Q(P3···Pm)

P1,P2
·Q(P2···Pm)

1,P1
·SP1,P2,...,Pm�1,Pm

donde SP1,P2,...,Pm�1,Pm
:= S

(P3···Pm)
P1,P2

·S(P4···Pm)
P1P2,P3

· · ·S(Pm)
P1···Pm�2,Pm�1

·SP1···Pm�1,Pm

Demostración. La demostración seguirá el mismo esquema usado en la factorización del caso N = 2m

2.6. Aplicaremos la identidad cremallera tomando P = P1 · · ·Pk�1, Q = Pk, k = m, . . . ,1, hasta llegar al
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caso trivial F1 = 1.

FP1···Pm
=

1
Pm

·QP1···Pm�1,Pm
F
(Pm)
P1···Pm�1

SP1···Pm�1,Pm

=
1

Pm�1Pm

·QP1···Pm�1,Pm
·
h
QP1···Pm�2,Pm�1 ·F

(Pm�1)
P1···Pm�2

·SP1···Pm�2,Pm�1

i(Pm)
·SP1···Pm�1,Pm

=
1

Pm�1Pm

·QP1···Pm�1,Pm
·Q(Pm)

P1···Pm�2,Pm�1
·F(Pm�1·Pm)

P1···Pm�2
·S(Pm)

P1···Pm�2,Pm�1
·SP1···Pm�1,Pm

...

=
1

P1 · · ·Pm

·QP1···Pm�1,Pm
· · ·Q(P3···Pm)

P1,P2
·Q(P2···Pm)

1,P1
·F(P1···Pm)

1 ·S(P2···Pm)
1,P1

·S(P3···Pm)
P1,P2

· · ·SP1···Pm�1,Pm

Teniendo en cuenta que:

F
(P1···Pm)
1 = [1](P1···Pm) = IP1···Pm

s1,P1(q) = q, 0  q < P1 =) S
(P2···Pm)
1,P1

= IP1···Pm

Y reuniendo en SP1,...,Pm
todas las matrices de permutación generadas:

SP1,...,Pm
:= S

(P3···Pm)
P1,P2

·S(P4···Pm)
P1P2,P3

· · ·S(Pm)
P1···Pm�2,Pm�1

·SP1···Pm�1,Pm

Se tiene el resultado:

FP1···Pm
=

1
P1 · · ·Pm

·QP1···Pm�1,Pm
·Q(Pm)

P1···Pm�2,Pm�1
· · ·Q(P3···Pm)

P1,P2
·Q(P2···Pm)

1,P1
·SP1,...,Pm

Nótese que esta factorización será diferente según los divisores que consideremos en la descomposición
de N y del orden en el que los tomemos. Como cabe esperar, la factorización coincidirá con la obtenida
en (2.6) cuando todos los factores sean Pk = 2.

2.4.1. Acción de SP1,...,Pm

Análogamente a la sección (2.3.1), describiremos cada uno de los movimientos de las matrices que con-
forman la matriz de permutación SP1,...,Pm

para posteriormente componerlos y hallar el movimiento de
las componentes que realiza el producto total. Dichos movimientos, expresados con la misma notación
que en la sección (2.3.1), están reunidos en los siguientes resultados:

Proposición 2.12. La acción representada por la matriz SP1···Pm�1,Pm
está descrita por el movimiento:

sPm
[q+ p ·Pm] = p+q · (P1 · · ·Pm�1), 0  p < (P1 · · ·Pm�1) 0  q < Pm

Es decir, al actuar sobre un vector, SP1···Pm�1,Pm
mueve la componente de índice q+ p ·Pm a la componente

de índice p+q · (P1 · · ·Pm�1).

Proposición 2.13. Sea k un entero tal que 2  k < m. La acción de la matriz S
(Pk+1···Pm)
P1···Pk�1,Pk

, está descrita

por el movimiento:

sPk
[q+ p ·Pk + r · (P1 · · ·Pk)] = p+q · (P1 · · ·Pk�1)+ r · (P1 · · ·Pk),

donde 0  p < (P1 · · ·Pk�1) 0  q < Pk 0  r < Pk+1 · · ·Pm

Es decir, al actuar sobre un vector, S
(Pk+1···Pm)
P1···Pk�1,Pk

mueve la componente de índice q+ p ·Pk + r · (P1 · · ·Pk) a

la componente de índice p+q · (P1 · · ·Pk�1)+ r · (P1 · · ·Pk).
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De manera análoga al resultado (2.8), necesitaremos una descomposición de los índices particular para
poder deducir el movimiento de SP1,...,Pm

:

Proposición 2.14. Sea N = P1 · · ·Pm. Entonces, para todo entero n tal que 0  n < N existen únicos

{pi}m

i=1 cumpliendo:

n =
m

Â
i=1

pi

 
m

’
j>i

Pj

!
= pm + pm�1 ·Pm + pm�2 ·Pm�1 ·Pm + · · ·+ p1 · (P2 · · ·Pm)

donde 0  pi < Pi, 1  i  m

De este modo, con los movimientos y la descomposición de índices, ya podemos describir el movimiento
de SP1,...,PN

:

Teorema 2.15. La acción de la matriz SP1,··· ,Pm
está descrita por el movimiento:

s

"
m

Â
i=1

pi

 
m

’
j>i

Pj

!#
=

m

Â
i=1

pm+1�i

 
m

’
j>i

Pm+1� j

!
, 0  pi < Pi, 1  i  m

Es decir, al actuar sobre un vector, SP1,...,PN
mueve la componente de índice:

n = pm + pm�1 ·Pm + pm�2 ·Pm�1 ·Pm + · · ·+ p1 · (P2 · · ·Pm)

a la componente de índice:

s[n] = p1 + p2 ·P1 + p3 ·P1 ·P2 + · · ·+ pm · (Pm�1 · · ·P1)

Demostración. Basta aplicar ordenadamente los movimientos involucrados, descritos en las proposi-
ciones (2.12) y (2.13), para obtener el resultado.

Notemos que en general, no podemos asegurar que SP1,...,PN
sea una transposición como lo era S2m . Por

ello, a la hora de mover las componentes, ya no se tratarán de intercambios entre pares de componentes.

2.4.2. Descripción del algoritmo en el caso N = P1 · · ·Pm

Finalmente, en esta sección presentaremos el esquema del algoritmo de la Transformada Rápida de
Fourier (FFT) en el caso general, cuando N = P1 · · ·Pm. Dicho algoritmo tomará como entrada la facto-
rización N = P1 · · ·Pm y un vector f 2 C, para devolver el vector resultante del producto FN f .

Análogamente a la descripción del caso N = 2m en la sección (2.3.3), el cálculo del vector se basa en la
factorización obtenida en el teorema (2.11), realizando los productos de derecha a izquierda:

1
P1 · · ·Pm

·QP1···Pm�1,Pm
· · ·Q(P3···Pm)

P1,P2
·Q(P2···Pm)

1,P1
·SP1,P2,...,Pm�1,Pm

f

Como hemos visto en la sección anterior (2.4.1), particularmente en el teorema (2.15), la matriz SP1,...,Pm

actúa sobre el vector f moviendo su componente de índice:

n = pm + pm�1 ·Pm + pm�2 ·Pm�1 ·Pm + · · ·+ p1 · (P2 · · ·Pm)

a la componente de índice:

s[n] = p1 + p2 ·P1 + p3 ·P1 ·P2 + · · ·+ pm · (Pm�1 · · ·P1)

De este modo, podemos realizar el producto SP1,...,Pm
f calculando el movimiento de cada índice (con el

algoritmo de la división) y recurriendo a un vector auxiliar para reordenar las componentes:
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Algoritmo 5: Cálculo de SP1,...,Pm
f

Entrada: m > 0, P1, . . . ,Pm � 2 y
f 2 CN , con N = P1 · · ·Pm

Salida : El vector SP1,...,Pm
f

1 for n = 0,1, . . . ,N �1 do

2 s := 0 ; d := n

3 for µ = m,m�1, . . . ,1 do

4 q := bd/Pµc
5 p := d �Pµ ·q
6 r := p+Pµ · r
7 d := q

8 g[s] := f [n]

9 for n = 0,1, . . . ,N �1 do

10 f [n] := g[n]

Notemos que el número de operaciones que se realizan en el bucle interno (líneas 3-7) es constante y
que en cada iteración del bucle externo (líneas 1-8) únicamente se realizan asignaciones, por lo que el
coste en tiempo del bucle es del orden de mN, el número de iteraciones realizadas. Trivialmente, el coste
en tiempo del último bucle (líneas 9-10) es O(N). Por tanto, el coste en tiempo del algoritmo completo
es O(mN).

El algoritmo requiere en espacio a los m factores P1, . . . ,Pm, al vector f y al vector auxiliar g, estos dos
últimos de tamaño N. Nótese que m  N, ya que el número de factores que descomponen un número es
menor que dicho número. Por tanto el coste en espacio del algoritmo es O(máx{m,N}) = O(N).

Análogamente, nos faltará ver los productos de las matrices Q
Pk+1···Pm

P1···Pk�1,Pk
. Este algoritmo sigue la misma

idea que el algoritmo (3) del caso N = 2m:

Algoritmo 6: Cálculo de Q
(K)
M,P f

Entrada: Enteros M,P,K > 0 y f 2 CMPK

Salida : El vector Q
(K)
M,P f

1 for l = 0,1, . . . ,M�1 do

2 for k = 0,1, . . . ,K �1 do

3

2

6664

fl+kMP

fl+M+kMP

...
l+(P�1)M+kMP

3

7775
:= Wl ,M,P

2

6664

fl+kMP

fl+M+kMP

...
fl+(P�1)M+kMP

3

7775

Donde

Wl ,M,P :=

2

6664

1 wl w2l · · · w(P�1)l

1 wl+M w2(l+M) · · · w(P�1)(l+M)

...
...

...
...

1 wl+(P�1)M w2[l+(P�1)M] · · · w(P�1)[l+(P�1)M]

3

7775
, w := e

�2pi/MP

Notemos que el producto matricial de la línea 3 del algoritmo anterior requiere P�1 sumas y solamente
P�1 productos de números complejos para actualizar cada una de las P componentes del vector, ya que
todos los elementos de la primera columna de Wl ,M,P son 1. De este modo, sin tener en cuenta el cálculo
de las potencias de w , como el número de operaciones es constante en cada iteración del bucle interno,
y los valores M,K también son constantes, el coste en tiempo del algoritmo es O(MK(P�1)P).
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Juntando ambos algoritmos y añadiendo un bucle para calcular todos los productos de las matrices
Q

Pk+1···Pm

P1···Pk�1,Pk
, el algoritmo general completo es el siguiente:

Algoritmo 7: Algoritmo FFT cuando N = P1 · · ·Pm

Entrada: m > 0, P1, . . . ,Pm � 0 y f 2 CN ,
con N = P1 · · ·Pm

Salida : El vector FN f

1 f := SP1,...,Pm
f (Alg. 5)

2 M := 1 ; P := 1 ; K := N

3 for µ = 1,2, . . . ,m do

4 P := Pµ ; K := K/P

5 w := e
�2pi/MP

6 W := 1 ; V := wM

7 g := copy( f )
8 for l = 0,1, . . . ,M�1 do

9 L :=W

10 for k = 0,1, . . . ,K �1 do

11 for i = 0, . . . ,P�1 do

12 u := gl+kMP ; P := L
13 for j = 1, . . . ,P�1 do

14 u := u+P ·gl+ jM+kMP

15 P := P ·L
16 fl+iM+kMP := u

17 L := L ·V

18 W :=W ·w
19 M := M ·P
20 for l = 0,1, . . . ,N �1 do

21 fk := fk/N

Notemos que el bucle interno (líneas 8-18) se corresponde al algoritmo (6) con M =P1 · · ·Pµ�1, P=Pµ y
K = Pµ+1 · · ·Pm como valores de entrada; salvo el caso particular µ = 1, donde toma los valores M = 1,
P = P1 y K = P2 · · ·Pm. Por lo ya analizado, el coste en tiempo de dichas líneas es O(MK(P� 1)P).
Aprovechando que para estos valores de M,P,K se cumple que MPK = N, lo podemos reescribir como
O(N(Pµ � 1)). Conocido el coste del bucle interno para cada iteración del bucle externo (líneas 3-19),
el coste en tiempo del bucle es O

⇣
N ·Âm

µ=1(Pµ �1)
⌘

. Por otra parte, gracias al estudio previo, también
conocemos que el coste en tiempo del cálculo de SP1,...,Pm

f (línea 1) es O(mN). Finalmente, el último
bucle (líneas 20-21) tiene coste O(N).

Con esto y teniendo en cuenta la siguiente desigualdad
m

Â
µ=1

(Pµ �1)� m (ya que P1, . . . ,Pm � 2)

el coste en tiempo del algoritmo FFT cuando N = P1 · · ·Pm, es el anunciado al inicio del capítulo:

O(N · {(P1 �1)+(P2 �1)+ · · ·+(Pm �1)})
Para acabar, hemos visto que el cálculo de SP1,...,Pm

f tiene un coste en espacio O(N) y en el resto
del algoritmo únicamente requieren espacio la copia de f en en vector g, del mismo tamaño N, y las
variables definidas. Por tanto, el coste en espacio del algoritmo es O(N).
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Apéndice A

La transformada de Fourier

En este apéndice presentamos una colección de resultados de Análisis de Fourier. Únicamente se reco-
gen los resultados necesarios para el estudio y desarrollo de la transformada discreta de Fourier realiza-
dos en el primer capítulo (1). El contexto y desarrollo de este área se ha estudiado en mayor profundidad
en la asignatura Ánalisis de Fourier del Grado de Matemáticas.

A partir de ahora asumiremos que f : R!C es una función 2L-periódica. No obstante, cabe mencionar
que en el capítulo de la transformada discreta se toman por comodidad funciones 1-periódicas.

Definición 9. Sea f 2 L
1([�L,L]).

a) Llamaremos coeficiente de Fourier n-ésimo de f a

f̂ (n) =
1

2L

Z
L

�L

f (t)e�in
p
L

t
dt, n 2 Z

b) Llamaremos serie de Fourier de f a la serie

•

Â
n=�•

f̂ (n)ein
p
L

t

c) Dado N 2 N[{0}, llamaremos suma parcial N-ésima de la serie de Fourier a

SN f (t) =
N

Â
n=�N

f̂ (n)ei
p
L

t , t 2 R

Nótese que los coeficientes de Fourier están bien definidos porque f 2 L
1([�L,L]). Más aún, cumplirán

la siguiente propiedad:

Teorema A.1. (Lema de Riemann-Lebesgue). Sea f 2 L
1([�L,L]). Entonces, { f̂ (n)}n2Z 2 c0(Z). Es

decir,

lı́m
|n|!•

f̂ (n) = 0

En cambio, no podemos asegurar la convergencia de la serie de Fourier en general. No obstante, sí que
tendremos convergencia para las familias de funciones de interés en el capítulo (1).

Teorema A.2. Sea f una función continua y de clase C
(1

a trozos en [�L,L]. Entonces, SN f converge

uniformemente a f en R.

Lema A.3. Sea f 2 L
1([�p,p]), [a,b] un intervalo y f 2 C (1([a,b]). Entonces,

lı́m
l!•

Z
b

a

f (x� t)f(t)sin(l t)dt = 0, uniformemente en x 2 R

26
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Teorema A.4. (Convergencia uniforme local). Sea f 2 L
1([�L,L]) y [a,b] un intervalo tal que f es

continua y de clase C (1
a trozos en él. Entonces, 8d > 0 tal que a+d < b�d ,

SN f (t)
N!•���! f (t) uniformemente, t 2 [a+d ,b�d ]

Demostración. Demostraremos el resultado para L = p . Supongamos que la longitud de [a,b] es menor
que 2p , ya que en otro caso, por el teorema anterior, la serie de Fourier converge uniformemente en
todo R. Para demostrar el resultado nos apoyaremos en una función F 2 C y de clase C (1 a trozos en
[�p,p], tal que

F(x) = f (x), x 2 [a,b]

Por ejemplo, la función extendida que une los valores f (b+ k · 2p) y f (a+(k+ 1) · 2p), k 2 Z, con
líneas rectas. Es claro que dicha función es continua y de clase C (1 a trozos.
Denotemos como G(x) = f (x)�F(x) a la diferencia. Es claro que esta función es L

1([�p,p]), cum-
pliendo que G(x) = 0 si x 2 [a,b]. Entonces se tiene que:

SN f = SNF +SNG

Como por el teorema (A.2) SNF converge uniformemente a F , tenemos que SNF converge uniforme-
mente a f en [a,b]. Solo nos faltará ver que SNG converge a 0 uniformemente en [a+ d ,b� d ] para
tener el resultado. Fijemos entonces un d > 0 y tomemos x 2 [a+ d ,b� d ]. Reescribimos la suma
parcial como:

SNG(x) =
1

2p

Z p

�p
G(x� t)

sin(N + 1
2)t

sin t

2
dt

Si �d � t � d =) a � x�d � x� t � x+d � b, entonces G(x� t) = 0. Luego,

SNG(x) =
1

2p

Z �d

�p
G(x� t)

sin(N + 1
2)t

sin t

2
dt +

1
2p

Z p

d
G(x� t)

sin(N + 1
2)t

sin t

2
dt

Basta aplicar el lema anterior a las funciones G 2 L
1([�p,p]) y f(t) = 1

sin t/2 , que es de clase C (1 en los
intervalos [�p,�d ] y [d ,p].

Teorema A.5. Sea f 2 L
1([�L,L]) y t0 2 R un punto tal que f es derivable tanto a izquierda como a

derecha de t0. Entonces,

lı́m
N!•

SN f (t0) =
f (t+0 )� f (t�0 )

2

Donde f (t+0 ) y f (t�0 ) denotan los respectivos límites laterales de f en t0.

Lema A.6. Sea aN = L

2(N+1) ,N 2 N. Entonces,

lı́m
n!•

SN(yt0)(aN) =
2
p

Z p

0

sinx

x
dx ⌘ g

Donde yt0 es la función 2L-periódica generada por

yt0(x) :=

(
�1 si x 2 [t0 �L, t0)

1 si x 2 [t0, t0 +L)
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Teorema A.7. (Fenómeno de Gibbs). Sea f 2 L
1([�L,L]) y t0 2R un punto tal que f es derivable tanto

a izquierda como a derecha de t0. Además, supongamos que la diferencia entre los límites laterales es

positiva, f (t+0 )� f (t�0 ) := 2A > 0. Entonces,

lı́m
N!•

SN f (t0 +
L

2(N +1)
) = f (t+0 )+A(g �1)

lı́m
N!•

SN f (t0 �
L

2(N +1)
) = f (t�0 )�A(g �1)

De forma más general, si {tN}•
N=0 es una sucesión que converge a t0 cuando N ! •, entonces:

lı́msup
N!•

SN f (tN) f (t+0 )+A(g �1)

lı́minf
N!•

SN f (tN)� f (t�0 )�A(g �1)

Demostración. Consideremos la función h = f �g = f �Ayt0 . El punto t0 es un punto de continuidad
para h, ya que

h(t+0 )�h(t�0 ) = f (t+0 )� f (t�0 )� (g(t+0 )�g(t�0 )) = 2A�2A = 0

Además, h tiene derivadas laterales en t0 y

h(t0) =
h(t+0 )+h(t�0 )

2
=

f (t+0 )+ f (t�0 )

2

Entonces, si vemos (con aN = L

2(N+1) ) que

lı́m
N!•

SN(h)(t0 +aN) = h(t0) (A.1)

habremos demostrado el resultado, pues

lı́m
N!•

SN( f )(t0 +aN) = lı́m
N!•

SN(h)(t0 +aN)+ lı́m
N!•

SN(g)(t0 +aN) = h(t0)+Ag

La función h es continua y de clase C (1 a trozos en (t0 � d , t0 + d ). Por tanto, se da convergencia
uniforme de la serie de Fourier en cualquier subintervalo cerrado. En particular, dado e > 0 podemos
encontrar un n1 2 N tal que

|SN(h)(y)�h(y)|< e
2
, 8y 2


t0 �

d
2
, t0 +

d
2

�
, 8n � n1

Por otro lado, por la continuidad de h, podemos elegir n2 2 N tal que |aN |< d/2 y que

|h(t0 +aN)�h(t0)|<
e
2

8n � n2

Entonces, si n � n0 = máx{n1,n2}, se tiene que

|SN(h)(t0 +aN)�h(t0)| |SN(h)(t0 +aN)�h(t0)+aN |+ |h(t0 +aN)�h(t0)|<
e
2
+

e
2
= e

Demostrando así (A.1), y con ello el teorema.

Corolario A.8. Sea f 2 L
1([�L,L]) tal que f posee una discontinuidad de salto en t0 2 R. Además,

supongamos que f es de clase C (1
en un entorno (t0 � e, t0 + e) \ {t0}. Entonces SN f no converge

uniformemente a f en (t0 �d , t0 +d )\{t0} 8d tal que 0 < d < e .
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Demostración. Supongamos que SN f converge uniformemente (t0�d , t0+d )\{t0} 8d tal que 0 < d <
e . En particular, 8e1 > 0 existe un N1 2 N tal que para todo N > N1 se tiene que

|SN f (t)� f (t)|< e1, 8t 2 (t0 �d , t0 +d )\{t0} (A.2)

Por otro lado, por el teorema anterior se tiene que:

lı́m
N!•

|SN f (t0 ±
L

2(N +1)
)� f (t0 ±

L

2(N +1)
)|= A(g �1)

Con ello, basta tomar un e1 < A(g �1) para obtener la contradicción. Por un lado, existe un N2 2 N tal
que |aN |< d , 8N � N2. Y por otro lado, existe un N3 2 N y e2 > 0 tal que

A(g �1)� e2 < |SN f (t0 ±
L

2(N +1)
)� f (t0 ±

L

2(N +1)
)|< A(g �1)+ e2, 8N � N3

con e2 cumpliendo que e1 < A(g � 1)� e2. Así, tomando un N � N0, donde N0 = máx{N1,N2,N3},
tendríamos que t0 ± L

2(N+1) 2 (t0 �d , t0 +d )\{t0} y que

e1 < A(g �1)� e2 < |SN f (t0 ±
L

2(N +1)
)� f (t0 ±

L

2(N +1)
)|

Que se contradice con (A.2), probando el resultado.

Corolario A.9. Sea f un función C (1
a trozos salvo en t0 2 R. Entonces, para todo d > 0 existe un

N 2 N suficientemente grande tal que:

sup{| f (t)�SN f (t)| : t 2 (�d ,d )}  c(A)

Donde c(A) es una constante dependiente del salto A := f (t+0 )� f (t�0 )
2 .
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