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Abstract

The Fourier Transform has become a powerful analytical tool in several fields of science and applied
disciplines. Since its beginnings with the heat equation, the importance of Fourier Analysis has reached
areas such as signal processing, quantum mechanics or partial differential equations, solving many pro-
blems in classical mathematical physics.

In general terms, Fourier Analysis studies how general functions can be decomposed into trigonometric
functions; it searches general conditions to ensure its existence and provides convergence results.

Particularly, if our function f : R — C is 1-periodic, Fourier Analysis studies if it is possible to write
it as a discrete sum of trigonometric functions:

Z f"(n)eZn:int, teR

n—=—oo

This famous series is called the “Fourier series”, where each term is composed by the n-th Fourier
coefficient, f(n) € C, and the function **", commonly called the n-th “frequency”. With this objective
in mind, a wide area of study is opened describing function conditions, coefficients properties, relations
between spaces or convergence results.

Specifically, if we choose a function £ that is continuous and piecewise ¢!, we achieve the best situation
possible:

f)= Y Fmé . teR

At this point, the next question is, how do we compute those Fourier coefficients? Theory gives us a
clear answer in terms of f:
R 1/2 ,
f(n) = / f()e ™ Mdt, nel
~1/2
Nevertheless, in practice we rarely know the expression of f. Instead of that, a discrete set of values

f(t),..., f(t,) are provided. Consequently, the question changes to, is there any way to compute the
Fourier coefficients only with those values?

This project will answer that question. Going through the Fourier Transform we will derive, step by step,
a method to obtain approximations of the Fourier coefficients given a certain discrete set of values of f.
Moreover, we will bring this method to practice efficiently with one of the most important algorithms
in the last century, the Fast Fourier Transform (FFT). We will chop this algorithm developing core
understanding of each section that composes it. In more detail:

The first chapter will introduce the Discrete Fourier Transform right from the start. This context will
provide a system

N—1 .
Y ae™ v =fi, k=0,....N—1
n=0

where, given a set of N values of f, [fo,- -, fy—1], its solution [ag, - - ,ay_1] will be certain N approxi-
mated Fourier coefficients.
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We will prove that this system has a solution, and we will describe it explicitly with the following
product:

ap 1 1 1 1 fo
a 1 o 0> - V! fi
N ?
a1 1 oV @2 NN

Moreover, we will ensure that the approximations are good enough for the most common families of
functions, and we will study how the method is fixed if the number of values of f is even or if the
functions have different periods.

The second chapter will develop the Fast Fourier Transform algorithm itself. Keeping in mind the ob-

jetive of computing the previous product (1) and writing the matrix as Fy = % [(x)ij ] 0<ijene W will

derive the following factorization for that matrix when the number of values of f is N =2":

1 m—1
Fy = 2, Q@ Q) Q) /By

And in general, when N = P; - - - P,;:

B 1
PP,

(Pm) (Psz) (Psz)
FN .QPI"'Pm—laPm .QP1>-~P,,1,2,P,,1,1 .”QP17P2 .Ql,Pl .SPI-,PZ:---aPm—l:Pm

In fact, these factorizations and the properties of the matrix involved will derive the general scheme of
the FFT algorithm. We will study each part of the algorithm in detail.

Finally, the appendix will contain a brief collection of Fourier Analysis results, gathering the essential
ones that will be needed in the first chapter.
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Capitulo 1

La transformada de Fourier discreta

1.1. Introduccion

En este capitulo desarrollaremos un método para obtener coeficientes de Fourier aproximados de ciertos
tipos de funciones. Con el objetivo de hallar dichos coeficientes, plantearemos el problema en términos
del andlisis de Fourier, introduciremos el concepto de la transformada de Fourier discreta y daremos
contexto tedrico al camino elegido para calcularlos. Ademas, justificaremos (como cabe esperar de
cualquier método) la convergencia de la aproximacién a los coeficientes de Fourier deseados. Por otro
lado también abordaremos algunas generalizaciones del método relativas al nimero de elementos del
muestreo o al periodo de las funciones, para cubrir asi las posibles situaciones que se puedan dar en la
préctica.

Con todo este desarrollo trataremos de despejar el origen del producto matriz-vector que inicia el pos-
terior capitulo sobre el algoritmo FFT, ayudando asi a una mejor comprension del significado de los
elementos que lo conforman.

1.2. Idea principal

Sea f : R — C una funcién 1-periédica, continua y C(! a trozos. Sean { f (n) }nez sus correspondientes
coeficientes de Fourier (Def. 9). En particular, por el teorema (A.2) sabemos que su serie de Fourier
(Def. 9) cumple que

f)="Y f(n)e*™™ uniformemente en R. (1.1)

n=—oo

Que expresado en términos de sumas parciales (Def. 9) significa que

M

Suf(t) = f(n)e2mmt
M

converge uniformemente a (1) Vt € R.

Es decir, Ve > 0 podemos encontrar un M € N lo suficientemente grande tal que:

|f(1) = Suf(t)| <& VteR

Por ello, con un M relativamente grande podemos asumir que Sy f(f) ~ f(t) V¢t € R. No obstante, a
partir de ahora, nos fijaremos tGnicamente en el intervalo [0, 1]; ya que al ser periddica, redne toda la
informacidn de la funcién. De hecho, cabe mencionar que en la prictica tendremos una funcién definida
en un intervalo y la extenderemos periédicamente para poder usar los resultados anteriores del andlisis
de Fourier.
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Como bien es sabido en la préctica, generalmente no se conoce la expresion explicita de la funcién f,
sino que lo unico que se puede hacer es manejar un muestreo de la funcién. Con esta restriccion, (es
posible hallar una aproximacién de f (n) conocidos tnicamente los valor de f en un mallado de puntos?
Supongamos que tenemos un muestreo de f de 2M + 1 puntos equidistribuidos en el intervalo [0, 1]:

k
=0,....,2M
fg) k=00

Entonces, usando las propias definiciones de las sumas parciales

k
), k=0,...2M (1.2)

7 Zﬂin%:S

n

2 ‘.' Ms

y la aproximacion Sy f () f (t) Vt € [0,1], podemos crear el siguiente sistema:

k
), k=0,...2M (1.3)

27”"21\4 T —
L Pt = )

Observacion. Notemos que las incégnitas f(n) se han cambiado por a,, debido a que al sustituir por la
aproximacion, el sistema ya no serd el mismo. O

La eleccién de este sistema no es casual, ya que se hace esperando que la convergencia de las series de
Fourier se traslade a la solucién, si existe, del sistema. Es decir, esperando que las incégnitas f* (n),n=
—M,...,M también se aproximen a los coeficientes de Fourier f(n), n = —M,...,M. Si esto fuera
asi, dado el muestreo adecuado de f este sistema obtendria una aproximacion de los correspondientes
coeficientes de Fourier, respondiendo asf a la pregunta planteada.

En las posteriores secciones veremos que efectivamente este sistema tiene solucién y que converge a di-
chos coeficientes. No obstante, para lograr ese objetivo, empezaremos hallando la solucién del siguiente
sistema:

N-1 ,
bkzzcnezmn% k=0,....N—1, [bo,,,_,bN,l]Te(CN

n=0
[Co, R ,CNfl]T S CN
1.3. Existencia y solucion explicita
Definamos primeramente la siguiente familia de vectores:
k0 k-1 kN-1]7
wk:[T',T',...,T'_ , k=0 -1

Siendo T = ¢*™/N Nétese que tenemos una familia de vectores {wy }N C CN cuyas componentes son

raices N-ésimas de la unidad. Mds atn, podemos formar una base ortonormal con ella:

Lema 1.1. Sean [,m indices en 0,...,N — 1. Entonces,
(Wi, W) = N6
Por tanto, la familia { } ! es una base ortonormal en CV,

Demostracion. Dados [,m y sabiendo que 7 = 7! tenemos que

N—1 n N : _
si l=m
—nm __ [—m _
0w, ) ZT tos Z()<T ) B l#m
n= 1—r > -

Y como r es una raiz N-ésima, tenemos que ¥ = 1, obteniendo asf el resultado. La base normalizada
completaria el lema. O
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Por ello, dado un elemento b € CY tenemos una descomposicién tinica en esa base:

N—1
Wn
b= a,——, donde a, = {(b,—), n=0,....N—1
LN =N

Reescrito de otra forma:

lel
b=— Z CnWy, donde ¢, = (b,w,), n=0,...,N—1
Nn:O

En otros términos, hemos probado el siguiente resultado:

Teorema 1.2. Sean b = by, ... ,bN_l]T , ¢ =|co,... ,CN_l}T € CV. Entonces el sistema de ecuaciones

N-1 N-1
by = Z c,,ezmnﬁkf = Z cn(wn)k k=0,...,N—1
n=0 n=0

Tiene solucion y queda determinada por

1 IS
Cn = N(b,wn> = ngbbke Ty n=0,...,.N—1
Usando los resultados elementales de bases de dlgebra lineal hemos hallado la solucién explicita del
sistema. De hecho, en términos matriciales, hemos obtenido la matriz inversa del sistema. Denotando
o :=T=e /N lasolucién queda expresada matricialmente de la siguiente forma:

c=Fyb
Donde ) _
1 ;) (32 - wl\l,_l
Fv = % (@) ocsjon = % o o w21f*2 (1.4)
i wl‘}*l (021.\’*2 w(Nflz)(Nfl)

Cémo realizar el producto Fyb serd el motivo del desarrollo del posterior capitulo. Esta disposicion
concreta de la matriz y, las raices N-ésimas de la unidad y su estructura de grupo tendrdn un papel
crucial.

1.4. La transformada discreta de Fourier

Si nos fijamos en la formulacién del sistema (1.3) que habiamos planteado en el inicio del capitulo, y
la comparamos con la del sistema del teorema (1.2), podemos apreciar diferencias en los indices del
sumatorio: el primero recorre indices positivos 0,...N — 1 y el otro los recorre de manera simétrica
—M,...M. Con la transformada discreta veremos que ambos sistemas representan el mismo problema,
y que por tanto, el sistema (1.3) en el que estamos interesados tiene solucion.

Definicién 1. Diremos que una sucesion de ndimeros complejos a = {a, },c7 es N-periddica si
apiN=a, Ynez
Observacion. De manera mds general, podemos ver una sucesion periédica como una aplicacion:
a:Z/NZ — C

Por lo que realmente s6lo necesitamos un conjunto de representantes modulo N para determinar la
sucesion N-periddica. O
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En particular, notemos que podemos extender periddicamente los elementos que conforman nuestro
problema de forma natural:

Lema 1.3. Las sucesiones { f (%) }kez. {672”"”% ez (VneZ)y {efzm.”% tnez (Vk € Z) son N-periddicas.

Demostracion. Basta recurrir a la extension periddica de f para ver que la primera lo es. Por la otra
parte, la sucesion de las raices de la unidad es trivialmente N-periddica. 0

Con las sucesiones periddicas presentadas, la transformada discreta se define de la siguiente forma:

Definicion 2. Sea b = {by } ez una sucesion N-periddica, llamamos transformada de Fourier discreta N
de b a la sucesion N-periddica ¢ = {c, } ez generada por la solucién del sistema:
1 N—1 "
br=—Y ¢,&™V k=0,...,N—1 (1.5)
N ) 7 )
n=0
Notemos que el sistema tiene solucién tnica por el teorema (1.2). Y efectivamente, dicha solucién es
N-periddica:
1 N—1 ) . 1 N—1 ok
CniN = — bke—an(n+N)ﬁ — bke—ZmnN = Cp, Vnez
N = N =
Mis aun, con la existencia y unicidad de la solucién se tiene el siguiente teorema:

Teorema 1.4. La transformada de Fourier discreta es una biyeccion en el conjunto de las sucesiones
complejas N-periddicas.

Observacion. Noétese que podriamos haber construido la definicién con cualquier otro conjunto de
representantes médulo N de las sucesiones b y c. En particular, si N = 2M + 1 el sistema se puede
reescribir como:

1 m D inak 1 f D inak QZM Srink
by = —— cpe MM = —— cpe MM 4 cpe” MM amT
2M +1 =0 2M +1 n=0 n=M+1
1 f 27in gk + i 27in gk 1 f 27Tin gk
= — cpé 2M+1 (14 2M+1 = — cpé 2M+1
M+1\ = ey 2M+1, &=,

Este hecho prueba que los sistemas (1.3) y (1.5) representan el mismo problema y que por tanto el
sistema (1.3) inicial tiene solucidn tnica, como habiamos mencionado al inicio de la seccion. No obs-
tante, ndtese que aunque ambos sistemas representen la misma transformada discreta, las matrices de
los sistemas serdn diferentes (se diferenciardn en una permutacion de columnas).

Cabe mencionar que el algoritmo FFT usa la formulacién del sistema (1.5) para calcular la transformada
discreta. Por este motivo, al usar dicha formulacidn, en la salida del algoritmo se devuelve el vector con
los “coeficientes” negativos seguidos de los negativos.

[CO)Clv'"7CM7CM+17”~702M] = [C07Clv‘"7CM70—M7°"7C—1]
O

En resumen, hemos obtenido explicitamente la solucién del sistema (1.3) que nos interesaba, recurriendo
a un sistema equivalente (1.5).

Al mismo tiempo y con la vista puesta en la siguiente seccién, con este nuevo contexto podemos rein-
terpretar los sistemas (1.2) y (1.3) que aparecieron al final del desarrollo de la seccién (1.2):

Proposicion 1.5. Sean Sy la sucesion 2M + 1-periddica generada por [SMf(%), ... ,SMf(%)]

y fu la sucesion 2M + 1-periddica generada por [f(—M), .. ,f(M)], las sucesiones relativas al siste-
ma (1.2). Entonces,
fu es la transformada de Fourier discreta de Sy
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Proposicion 1.6. Sean fiy la sucesion 2M + 1-periddica generada por [f (ﬁ“) yeoosf (%)} y fj}
la sucesion 2M + 1-periddica generada por [ F(=M),....f*(M )], las sucesiones relativas al sistema

(1.3). Entonces,
fjﬁ, es la transformada de Fourier discreta de fy

1.5. Convergencia de la transformada discreta

Abordada la existencia de la solucién del sistema (1.3), nos faltard ver que esta solucién se aproxima
a los coeficientes de Fourier correspondientes, para completar asi el objetivo planteado al final de la
seccién (1.2).

Mais detalladamente, veremos cdmo la convergencia de las series de Fourier juega un papel crucial para
obtener la convergencia de la transformada discreta de fj; a la correspondiente sucesion periddica de
coeficientes de Fourier f;.

Proposicién 1.7. Sea f : R —» C, 1-periédica, continua y de clase CV' a trozos. Entonces, Ve > 0 existe
un M € N lo suficientemente grande tal que:

13t = Fullw < €

Siendo fjﬁ, y fu las correspondientes transformadas de Fourier discretas de fy y Sy (definidas en las
proposiciones (1.5) y (1.6)).

Demostracion. Sea € > 0. Por el teorema (A.2) existe un M € N lo suficientemente grande tal que:
|f(t)=Smf(t)|<e VteR

En particular trasladado a sucesiones:

k k
—(S = ) VkeZ
| () — (Sm )il f(2M+1) Mf(2M+1) <€ Vke

Sirestamos ambas transformadas y aplicamos la desigualdad triangular a cada componente n =0, ...,2M
tenemos que:

. . 1 2M

v )n — <— — (Sm)e] < 2M+1)e=¢

(Fin = Ghodl < 53777 2 1= (el < 7 (M +1)

Y finalmente, aplicando supremos tenemos el resultado. O

Nétese que cuanto mds grande sea M, ademds de obtener mds coeficientes, se calculardn con mejor
aproximacion; ya que cuantos mas puntos se toman, mas completa es la serie truncada y por tanto mas
certera es la aproximacion Sy f(f) ~ f(t). Ademds, nétese que para obtener 2M + 1 coeficientes de
Fourier (aproximados) necesitamos 2M + 1 muestras equiespaciadas de la funcién.

No obstante, ;podemos extender el resultado para otras familias de funciones? En términos practicos,
es dificil encontrarse con casos totalmente continuos. De hecho, solo hay que pensar en una simple
melodia; cada cambio de nota crea una discontinuidad. O mismamente si la extensién periddica de la
sefial que queramos procesar no sea continua.

Por tanto, ;podemos garantizar igualmente una convergencia para funciones con salto? Veamos que
aunque la convergencia de las sumas parciales deje de ser uniforme para estas funciones, los 2M + 1
coeficientes de Fourier obtenidos con la transformada discreta se acercan igualmente a los 2M + 1
coeficientes de Fourier reales.
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Teorema 1.8. Sea f : R — C, 1-periddica y de clase C\! a trozos salvo en 0 (y por consiguiente en
k € 7). Entonces, V€ > 0 existe un M € N lo suficientemente grande tal que:

13— Fulle < €

Demostracion. Seae >0y 0 := &, donde ¢ la constante dependiente del salto del corolario (A.9).

Notemos que por el teorema (A.4), existe un N; € N lo suficientemente grande tal que:

sup{|f(t) =Sy, f(t)] :1 & (~5,8)} <§ (1.6)

Por otro lado, por el corolario (A.9) también tenemos que existe un N, € N lo suficientemente grande
tal que:

sup{|f(t) = Sn,f (1) :1 € (=6,8)} <c (1.7)
Tomemos ahora M := max{N;,N,,N3}, donde N3 € N es el menor natural cumpliendo que ﬁ < 9.

Restando ambas transformadas y aplicando la desigualdad triangular a cada componente n =0,...,2M
tenemos que:

1 2M 1 2M

Ui = il < 5575 2 = Skl = 57 X |G :

2M+1)_SMf(2M+1)’

I

Nétese que por la periodicidad de f'y Sy f podemos cambiar los indices del sumatorio:

A= s ) [ o L
2M+1 4= 21 M a1 T oM = | a1 T o
1 k k k k
= -S -S
2M +1 WZ USRS Mf(2M+1>'Jr WZ ’f(2M+1> Mf(ZM—H)’
| 3377 <6 31 >0
Y usando las cotas anteriores (1.6) y (1.7) tenemos que:
< 22eM+1)8+1)-c+ oM+1)-E<3.5.c45=¢
= 2Mt1 ‘oMt 2 =770 T
Finalmente, tomando supremos se tiene el resultado. 0

Noétese que el resultado general para cualquier funcién con n discontinuidades en ¢, ...f, tendria una
demostracion andloga a la anterior tomando 8y, ...,J, con sus respectivas constantes ci,...,c, y eli-
giendo el maximo de los M, para que se cumpliera la cota de la proposicion (A.9) en todos los entornos
(t; — 8;,t; + &). La acotacioén fuera de ellos estaria asegurada igualmente por el teorema (A.4).

1.6. Muestreo par. Suma parcial desviada

No obstante, hay un pequeio detalle que ha pasado desapercibido: hemos desarrollado todo el estudio
con un muestreo impar de f. Notemos que hemos hallado un método para obtener buenas aproxima-
ciones de los 2M + 1 coeficientes de Fourier de la suma parcial Sy f(1) = Y2, 7(n)e*™™ con un
muestreo equiespaciado de f de tamafio 2M + 1.

Como en la préictica los valores de ese muestreo es la Unica informacién conocida y, no tendremos
control sobre su paridad, tiene sentido adaptar el problema para dar cabida a los muestreos pares. De
hecho en un futuro tendré relativa importancia, ya que el algoritmo que desarrollaremos en el siguiente
capitulo alcanza su mayor eficiencia cuando el muestreo es de tamafio N = 2. Las sumas parciales
desviadas solucionardn esta situacion.
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Definicién 3. Sea M € Ny f: R — C, una funcién I-periédica, continua y de clase C! a trozos.
Llamaremos suma parcial desviada a:

M
Suf) = Z f(n)e™ . teR
n=—(M-1)

Notemos que, por el lema de Riemann-Lebesgue (A.1), la suma parcial desviada se “acerca” a la suma
parcial que ya habfamos definido:

M—o0

[Swf (1) =Sy f (1) = [F(=M)| =0
Andlogamente, con el propio sistema de sumas parciales desviadas

k

o) k=0..2M (1.8)

M ~
Z f( ) 27‘L’m2M _SMf(
1)

y la aproximacién Sy, f(t) =~ f(t) Vt € [0, 1], también podemos plantear el sistema andlogo a (1.3), ahora
con un ndmero par de ecuaciones:

Y Frmetrw=f(-=), k=0,...2M—1 (1.9)

n=—(M-1)
Del mismo modo, ambos sistemas encajan en el contexto de la transformada discreta:
Proposicion 1.9. Sean Sy la sucesién 2M-periédica generada por [Sy,f (%) SSuf (2M 1)} y fu
la sucesion 2M-periédica generada por [f(—(M— 1)),...,f(M)], las sucesiones relativas al siste-

ma (1.8). Entonces,
Jfu es la transformada de Fourier discreta de Sy

Proposicion 1.10. Sean fy; la sucesion 2M-peridédica generada por [ f ( ) o f (2M 1)] y f;ﬁ, la
sucesion 2M-periddica generada por [f*(—(M —1)),...,f*(M)], las sucesiones relativas al sistema
(1.9). Entonces,

fjﬁ, es la transformada de Fourier discreta de fy

Notemos que los resultados de convergencia obtenidos en la seccion (1.5) también se mantendran en el
problema definido con las sumas parciales desviadas.

Con esta formulacion el vector solucidn del sistema (1.5) sera:
[CO)' - CMHCM A1 - - 7C2M71] = [C07" S CM>C—M+15- - 7C*1]
Observacién. Cabe mencionar que podriamos haber definido la suma parcial desviada como
SMf Z f 27l'mt te R
n=—M

y haber realizado el mismo desarrollo. No obstante, notemos que ambos sistemas darian el mismo
resultado, ya que ambos representan el sistema de la misma transformada de Fourier discreta:

k M M—1

) _ Z anelmrzZM — Z aneZngM +aM62nzM2M

f(
M n=—(M-1) n=—(M-1)

M—1 . M-
= Y e M 4 gyt T M) m = Z 2Tk =0,... 2M—1
M-1) “u

Concordando con la biyeccién obtenida en el teorema (1.4). ]
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1.7. Funciones de cualquier periodo

Durante el desarrollo de todo el capitulo hemos planteado el problema con funciones de periodo 1.
Veamos como podemos generalizarlo a funciones de cualquier periodo.

Sea f : R —» C, L-peri6dica, continua y de clase C(! a trozos. Del mismo modo, por el teorema (A.2)
tenemos que
f="Y% f(n)e*™ 1" uniformemente en [0, L]
n——oo
Y con la misma idea, tomando un muestreo equiespaciado de f en el intervalo [0, L] y las aproximaciones
con sumas parciales obtenemos el sistema:

M A :n kL

Z f*(l’l)ezmzm — f f*(n)ezmnﬁ%l :f( kL
n=—M n=—M 2M+ 1

), k=0,....2M

Si nos fijamos en el sistema generado por la segunda igualdad, es exactamente el mismo obtenido con
las funciones de periodo 1. Unicamente aparece el periodo en el muestreo de la funcién, que no afecta
a la resolucién del sistema. Por tanto, la matriz del sistema a resolver serd siempre la misma para
cualquier periodo. De hecho, para el vector del muestreo inicamente importard que sea equiespaciado
en el intervalo.



Capitulo 2

La transformada rapida de Fourier (FFT)

2.1. Introduccion

En este capitulo presentaremos el conocido algoritmo de la Transformada Rdpida de Fourier (FFT), el
cual calcula los coeficientes de la transformada discreta de Fourier (Def. 2):

. 1 N—1 )
==Y fio", 0<n<N, o:= e 2N
N =

Para el estudio del algoritmo, expresaremos el sistema con notacién matricial:

fr=Fnf 2.1)
En esta ecuacion f = [fy, ..., fv_1]7 € CN retine el conjunto ordenado de los valores de un muestreo de
una cierta funcién f. Dicho vector serd parte de la entrada del algoritmo FFT, mientras que la salida serd
el vector f* = [fy,..., f,’{,_]]T € CV, que retine los coeficientes de la Transformada Discreta de Fourier

de f. Recordemos que la matriz Fy estd definida de la siguiente forma:

1 1 1 1
o o> V-1
1 . 1 2 4 2N—2
_ - _ = w 0] w
Fnv= [0 ozt jen = N
1 wl\./—l wzfv-z w(N—l.)(N—l)

Para analizar el comportamiento asintético del algoritmo, tanto en tiempo como en espacio, supondre-
mos simplemente que cualquier operacién de suma o multiplicacién de nlimeros complejos se realiza en
una unidad de tiempo. Del mismo modo, supondremos que el almacenamiento de un nimero complejo
en la memoria del ordenador requiere una unidad de espacio. Con estas decisiones, la eleccion natural
para el tamafo de un ejemplar de entrada de este problema serd N, el nlimero de componentes del vector
de entrada f.

El cédlculo del tiempo usado por el algoritmo se reducird a “contar” el nimero de operaciones aritméti-
cas complejas, expresandolo como una funcién de N. Mas precisamente, puesto que s6lo nos interesara
el comportamiento asintético, expresaremos estos costes como el orden O(¢(N)) de una cierta funcién

t(n).
Definicion 4. Dada una funcién ¢z : N — R, el orden de #(N) es el conjunto:
O(t(N))={f:N—R"|3c e R", np € N tales que Yn >ny f(n)<c-t(n)}

9
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Obviamente, el algoritmo que realiza directamente el producto matricial dado en la ecuacién (2.1) tiene
un coste del orden de N? operaciones complejas, ademds de utilizar O(N?) espacio si tenemos precal-
culada y almacenada la matriz Fy en memoria. No obstante, atendiendo a la estructura polindmica en
funcién de @ de las componentes de ¢

fi = % [fot fio"+ fo(@") + -+ fy—1 (@) ']

podriamos recurrir al conocido algoritmo de Horner para la evaluacién de polinomios, calculando las
potencias de @ dentro del algoritmo. Con esto, evitariamos el almacenamiento en memoria de la matriz
Fy, reduciendo el coste en espacio a O(N), aunque manteniendo el coste en tiempo en O(N?).

A pesar del coste cuadritico, este fue el método generalmente aceptado para el calculo de la transforma-
da de Fourier discreta hasta la aparicién del algoritmo presentado por James W. Cooley y John W. Tukey
en 1965. Dicho algoritmo presentd una nueva y eficiente manera de calcular la transformada discreta de
Fourier reduciendo el nimero de operaciones complejas al orden de

NAP-D+Po—1)+--+(P,— 1)}

donde N = P, --- P, es una descomposicion de N, no necesariamente en factores primos. De hecho,
el ahorro mas dramadtico se produce en el caso N = 2™, rebajando el coste hasta el orden de Nlog,N
operaciones complejas, frente a las N2 de Horner. Esta reduccién supuso un punto de inflexién en el
uso préctico de la transformada de Fourier discreta. En las siguientes secciones fundamentaremos y
presentaremos las piezas que conforman dicho algoritmo.

2.2. Laidentidad cremallera Fp.g

En el capitulo anterior hemos anunciado que la estructura de la matriz Fy y el hecho de que sus com-
ponentes sean las raices N-ésimas de la unidad juegan un papel fundamental en el algoritmo de la
Transformada Répida de Fourier (FFT). En esta seccién concretaremos esta afirmacion.

Mas precisamente, dada una factorizaciéon N = P - Q, obtendremos la “identidad cremallera” (zipper
identity) de Fy. Esta identidad permitird expresar dicha matriz como producto de tres: una matriz for-
mada por bloques diagonales de tamafio P, una matriz diagonal por bloques formada por Q bloques
idénticos a Fp y, una matriz de permutacién. Esencialmente, la identidad vendrd desencadenada como
resultado de hacer uso de cierta permutacion opg € Xy, del grupo simétrico de N elementos, y de las
propiedades de grupo de las raices N-ésimas de la unidad.

Para expresar esta identidad de forma compacta, y generalizarla cuando la factorizacién de N conste de
mds factores, comenzaremos introduciendo la siguiente notacién exponencial para matrices.

Definicién 5. Dada una matriz cuadrada A € CV*V, para todo entero n > 0 definimos la matriz A" del
siguiente modo, donde 0 denota las matrices de tamafio adecuado cuyos elementos son todos nulos:

A 10 ]

1. . (n+1) ._
AV =A ;A : [ 0 a4

Es decir:

A O

A0 0
AD =4 A® ::[ } A® =10 A o,
0 4 0 0 A

Para cualesquiera p,g € N y matrices A, B € C¥*V es inmediato comprobar las siguientes propiedades:
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1 [A0]Y = A0 3. (@Al = AP, aeC

2. [AB](”) — A Bk

En el siguiente lema resaltaremos la primera de las piezas fundamentales que forman la base del algo-
ritmo.

Lema 2.1. Sea @ := ¢ 2/N raiz N-ésima de la unidad. Entonces, para cualquier factorizacion N =
P-Q 7:= 0¥ es raiz P-ésima de la unidad.

Por otro lado, notemos que por el Teorema de la division entera, para todo indice ntal que 0 <n <N =
P - Q, existiran tnicos p1,q; cumpliendo que:

n=pi+qP, 0<p<P 0<q1<0Q

Del mismo modo, intercambiando los papeles de Py Q, también existiran tnicos g, p tal que:
n=q+p0, 0<gp<Q 0<py<P

Con estas apreciaciones, podemos definir la segunda de las piezas del algoritmo, la permutacién Op:

Definicién 6. Sea N = P- Q. Denotamos como 6po € Xy a la permutacién dada por:

opo(p+qP)=q+pQ, pe{0,....P—1} ¢q€{0,...,0—1}
En particular, usaremos esta permutacion actuando sobre vectores y sobre matrices:
Definicion 7. Sea o € Xy.

= Dado un vector a = (a;)o<;j<y € CV, denotamos como o (a) al vector resultante al aplicar ¢ sobre
sus componentes:

o(a):= [af’(i)]ogi<N

» Dada una matriz A = [A;}] € CVN*N, denotamos como o' (A) a la matriz resultante al aplicar

O sobre sus columnas:

0<i,j<N
o(A) = [Aic(j)] 0<i,j<N

Definicién 8. Dada una permutacién ¢ € Ly, denotamos como Ss € CV*V a la matriz de permutacién
asociada a o:
€o(0) )
. N
So = : , e,=10,...,1,...,0] e C

€o(N-1)

Las matrices de permutacién cumplen las siguientes propiedades:

Proposicién 2.2. Sea a € CN yA € CN*N. Dada una permutacion o € £V se tiene que:
» 0(a) =Ssa » 0(A) =AST ST =51

Y con ellas es inmediato probar el siguiente lema:

Lema 2.3. Sea x € CN, A € CN*N y 6 € Xy. Entonces:

Ax=o0(A)o(x)
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Este hecho nos permitird reordenar la matriz Fy y el vector f sin modificar el resultado del producto
FNfI

Fp.of = 0po(Fp.g)opo(f)
Por una parte, la aplicacion de op g sobre un vector f queda determinada por su matriz de permutacién

Scp,- Como en todo el capitulo haremos uso de la misma permutacion, a partir de ahora denotaremos
por Spg a la matriz de permutacion S, ,. Asi tenemos que:

oro(f) =Srof

Por la otra parte, tenemos a opo(Fy), que estd definido como:

opo(Fy) = [(FN)iGRQ(j):| = [wi‘GP‘Q(j)}

0<i,j<N N 0<i,j<N

No obstante, por motivos posteriores es interesante dividirla en submatrices de tamafio P X P:

Bo o Bo,1 -+ Bog-1
1 By By o Bigoi
opo(Fy) = @ . . .
Bo_10 Bo-11 - Bop-10-1

Donde cada submatriz queda descrita del siguiente modo:

B, = w(i+r‘P)'GP1Q(j+S‘P):| - [w(i+r~P)-(S+j~Q)}

0<i,j<P 0<i,j<P

Proposicion 2.4. Sea B, 0 < r,s < Q, la matriz definida anteriormente. Entonces:
1

°
Br,s =P- Wr,s 'FP siendo Wr.,s = C()rSP

wP-1s
Demostracion. Sean r,s indices fijos tal que O < r,s < Q. Recurriendo a la propia definicién y operando:

B — [w(iJrrP)-(sﬂQ)] — T 0" 0. "0
s 0<i,j<P [ ]0§1.,]<P
Denotando como 7 := ®?, sabiendo que ®”? = @V = 1 por ser @ raiz N-ésima de la unidad, y que
""" es constante, obtenemos:

:wrsP. [(Dis-’l,'ij-(l)jr] _wrsP. [(Dis'Tij]

0<i,j<P — 0<i,j<P

Como o™ solo depende de i podemos sacarlo de la matriz como producto por una matriz diagonal:

[le]ogi.,j@ =W [7] 0<i,j<P
a)(P—l)s

Y finalmente, como por el lema (2.1) T es raiz P-ésima de la unidad se tiene que [Tij ] =P -Fp,

se obtiene el resultado buscado:

0<i,j<P

an - Wr,s -P 'FP
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De este modo, con cada bloque de la matriz opo(Fy) factorizado y la ayuda de la notacién dada en la
definicién (5), ya podemos expresar la identidad cremallera:

Teorema 2.5. (Identidad cremallera). Dada una factorizacion N = P - Q, se tiene la siguiente identidad:

Woo WOJ - Woo-1
1 (0) Wio Wi o Wiga
FP'QZEQP,QFP SRQ donde QRQ:: ‘ ‘
Wo-10 Wo-11 - Wo_10-1

Demostracion. Con la factorizacion para cada B, y la notacién exponencial es inmediato ver que:

1
0ro(Fro) = 5—Qro- P i = = QroF}?
Q Q
Asi mismo, conocemos que o (f) estd descrito por su matriz de permutacion:
oro(f) =Sro

Por lo que uniendo ambas expresiones junto con el lema (2.3) tenemos que:

Fpof =opo(Fpo)oro(f) = éQPQF 'Spof

Como esta igualdad es cierta para cualquier f € CV, tenemos finalmente el resultado:
1
Fro= éQRQFJ(DQ)SP,Q

O]

Ejemplo. Tomemos el caso N = 6, con los factores P =2 y Q = 3. Como hemos podido ver, la per-
mutacion opg juega un papel crucial para hallar la identidad cremallera. Primeramente, calculemos
explicitamente la permutacion o 3:

023(p+2-9) = (q+3-p)
0=0+2-0 (p,g)=(0,00 — 0+3-0=0
1=142-0 (p,g)=(1,00 — 0+3-1=3
2=0+2-1 (p,g)=(0,1) — 143.-0=1
3=142-1 (pg)=(1,1) — 1+3-1=4
4=04+2-2 (p,gq)=(0,2) — 243-0=2
5=1+22 (pg)=(1,2) — 243-1=5

Con la permutacién descrita, podemos ver facilmente la accién de 0> 3 sobre el vector f:

023(f) = [fo(]peics = [fo. fs i, fas fou fs) = Sasf

Asi mismo, también podemos expresar la accién de la permutacién sobre la matriz F.3:

1 1 1 1 1 1
1 @ | o o| o o
11 0|0 oot o
023(F23) = [(ch)io(zj)(j)}oq 6 6] 1 @ |0 0?0 o
- 1 o2 o 0% o° oo
1 ob | o 02| 0 @
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Y teniendo en cuenta que T := ®> es una raiz 2-ésima de la unidad y que genera un subgrupo de orden
2, es facil ver la factorizacion:

1 1 1
1 ® w?
F, 0, | 0
1] 1 ? w* 1
6273 (F2.3) = — 3 6 02 F2 02 =5 Q273 . F(23)
3 1 0} [0} 0.0, I F 3
1 o* ok 21712
1 ®’ o'

Finalmente uniendo ambas expresiones se tiene la identidad obtenida en la seccion:

1
Fys3f = 023(F23)003(f) = §Q2,3F§3)Sz,3f

La eleccion de esta permutacion no es casual, en este caso particular se puede ver bien que 0, 3 reordena
la matriz por bloques de columnas cuyos indices pertenecen a la misma clase de equivalencia médu-
lo 3. Esto es lo que permite que aparezca T := @’ y que obtengamos la sencilla factorizacién de la
proposicién (2.4):

B, = w(i+2~r)-(s+3<j)}

)

2rs 2rs
. w w _ooas| 10 I 0| .
0<ij<2 [ o0 o 0¥ o} ] -0 [ } [ 0 ¢ | W2l

O

2.3. Factorizacion de Fy en el caso N = 2"

Si se dispone de una factorizacién de N = P; --- P,, con mds de dos factores, el siguiente paso natu-
ral serfa aplicar recursivamente la identidad cremallera hasta llegar a un caso trivial. A continuacién
abordaremos esta tarea en el caso més simple, cuando todos los factores sean 2.

Comenzaremos particularizando la identidad cremallera obtenida en la seccién anterior al caso N =
2-M, M > 1. Como en esta seccién tomaremos P =My Q = 2, escribiremos Qaps := Qpr.2 Y Som :=Sm2
para simplificar la notacidn. Asi, la identidad cremallera se reescribe como:

1 Fur | O 1 @)
Foy == Som == F,,/’S 2.2
M 2QzM [ 0y | Foy ] M 2QzM M Som (2.2)
Por otro lado, teniendo en cuenta que oM = —1, ya que (a)M )2 =N =1 y @ # 1, la matriz Qo

también se reescribe de la siguiente forma mads simple:

1 1

Quym = (2.3)

1 _a)Mfl

Nétese que la identidad (2.2) relaciona Fy con Fy /2. Por lo que, si nuestro N inicial se factoriza como
N = 2", podremos aplicar esta relacion que nos aporta la identidad cremallera recursivamente hasta
llegar al caso trivial F; = [1]. Dicha recursién es la que nos lleva a la factorizacién de Fon.
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Teorema 2.6. Sea N =2", m=1,2,.... Entonces:

1 m—1 m—1 m—2
Fzm = 27szmQ§3n)71 Qgrtn)—Z cee ng )Bzm, donde Bzm = ng )ng ) ce Sé,zn),l Szm
Demostracion. Aplicando la identidad cremallera m veces con Q =2y P = 2% k=m—1,...,0, y
usando las propiedades de la notacién exponencial (5) tenemos que:

1 @)

FZ'" = §Q2m Fzm—l S2m

1 (2)

1 2
= Esz EQZWHI Fgm),z Sszl Szm

1
=~ QuQ) F\Y ST Sy

4
1 m m—1 m—2
== Q) QL FEUSETSET s s

Finalmente, teniendo en cuenta que

y reuniendo todas las matrices de permutacién en

By =S 8" S s

Obtenemos el resultado:

1 2 2)7171
Fan = 271szQg,,,),l Q" By

O]

k
Notemos que las matrices Sg%n,)k, k=1,...,m—1 son matrices de permutacion. Por ello, como el produc-

to de matrices de permutacion es también una matriz de permutacion, By~ serd igualmente una matriz de
permutacién. Que hayamos definido la matriz Bo» no es casual; en la siguiente seccién describiremos
la permutacién que representa.

2.3.1. Accion de Byn

Como hemos definido en la seccidn anterior, la matriz de permutacién B,» esta formada por un producto
de matrices de permutacién. Por ello, el guién que seguiremos para conocer su accién sobre un vector
serd describir las acciones de cada una de las matrices de permutacién que la conforman, y hallar la
accion global componiéndolas ordenadamente.

Antes de comenzar con ello, notemos que las matrices involucradas son del tipo Sgik,)k, donde donde
k es un entero tal que 0 < k < m. Es decir, matrices diagonales por bloques formadas por 2% matrices
S,n—« de tamafio 2% x 2"~k Recordemos que estas matrices S,u—« := Syn—i—1 , vienen expresadas por
la permutacidn: |

Opiia(p+q 2" " =gq+p-2, 0<p<2v*! 0<g<2

A su vez, nétese que si dividimos el vector en 2% bloques de tamaifio 2, las matrices S,.« que
2k P ..

conforman Sg,,, ,)k actuaran idénticamente sobre cada uno de estos bloques. Con ello, si indexamos los

indices en 2¥ bloques (es decir n = n' +r-2"*, 0 < r < 2%), es sencillo ver que podemos expresar la

(25

permutacion asociada a la matriz S, %, en términos de Gym-«-15:

! k
62(3—)/&1 2 (n) = 62(31—)/(—1 2 (p+gq- 2kl 2mik) = Opm—k-17 (p+gq- 2m7k71) +r- 2m7k,

0<p<2m*k 1l o<r<2f 0<g<2
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(2)

(29 .
o k1o Entonces:

sui la matriz de permutacion asociada a o

Proposicion 2.7. Sea x € CN yS o=

ok —k—1 k
(ng,)kx)p+q,2m—k—l+r,2m—k = Xy pogromt; 0<p<2™ g=0,1 0<r<?2

. L. . 2k
Es decir, la accion de la permutacion ) sobrelas componentes del vector x mueve la componente

2)717k71,2
de indice g+ p-2+r-2""* a la componente de indice p+ q-2"*"1 +r-2"K_Denotaremos dicho
movimiento con la siguiente notacion:

s q+p‘2+r.2m—k} — ptg-2mhl g gmk

Demostracion. Recurriendo a la definicién (7) de la accién de una permutacién sobre un vector, a la

k
primera de las propiedades de la proposicion (2.2) y a la descripcion de la permutacién 62(,%,),(,172 dada,
se tiene el resultado:

(2 —
(Sz,,,,kx)p+q.2m7k71_H,szk = xczk

om—1 2 (p+q‘2m7k7 ! _;’_r‘szk)

= Xoyu 1, (prg 2k ) fr2mk = Xggpogpromk
O
Observacion. Notese que si k = 0 se tiene que la permutacion resultante, asociada a Som, €s Oyn-1 5:
62(,}1)—1,2(17"’9'2’"71 +r2)=g+p-2+r2" 0<p<2™! 0<g<2 0<r<l1
Omis(p+q 2" ) =g+r2, 0<p<2™! 0<g<2

Por lo que el movimiento asociado a So» queda expresado como:

solg+p-2l=p+q-2m', 0<p<2m! g=0,1 (2.4)
Por otro lado, si k = m — 1 se tiene que la permutacién resultante es la identidad:

Gl(z,l—l)(p—i—q1+r2):q+p2+r27 0§p<1 0§q<2 0§r<2m_1

m—1
01(,22 )(CI+V'2) =g+r-2, 0<qg<2 0<r<2m!
Es decir, esta accion no mueve ninguna componente. En particular se tiene que:
2»171
sY ) =Ly (2.5)
]

Para llegar a nuestro objetivo y poder componer todas las matrices necesitaremos el siguiente resultado,
que también es consecuencia del Teorema de la divisién entera:

Proposicion 2.8. (Expresion binaria). Para todo entero n tal que 0 < n < N = 2X existen iinicos {bi}f.‘;()l
cumpliendo:

n=by+b;-2+b, '22+ e +bk72-2k72+bk,1 2kl (bkflbkfz' “blbo)z)

Lema 2.9. Sea N =2™ y k un entero tal que 0 < k < m— 1. La accion de la permutacion asociada a la

.2k k=1 . . . oo
matriz Sém,)k . ng,k 21 ---Som estd descrita por el siguiente movimiento:

1e[(bm—1-+-b0)2)] = (bu—1-+brs1)2) + (bi - - bo)s) Vi

Donde n = (by—1-+-bo)y) es la expresion binaria de cada indice 0 <n <2™.
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Demostracion. En primer lugar, fijemos un indice con expresién binaria n = (b1 -+ b)), definida en
la proposicién anterior (2.8). Probemos el lema por induccion:

= k=0. Se reduce a expresar el movimiento de Sy», reescribiendo la expresion binaria:
70 [(Bm—1-+b0)2)] = 50 [(bm—1-+-b0)2)] =50 [(b0)2) + (bm—1---b1)2) - 2]

Notando que 0 < by <2y que 0 < (by—1-+-b1)y) < 2"=1'y usando la expresion (2.4) del movi-
miento s se tiene el resultado:

50 [(b0)2) + (b1 -++b1)2)-2] = (bm—1---b1)2) + (bo)2) pm—1
» 0 <k <m—1.Supongamos que es cierto para k — 1. Entonces:
ric [(m—1 - .bo)z)] = ¢ [ri—1 [(bm—1 - 'bo)z)ﬂ = 5 [(bmf1 <b)ay+ (bo- - bro1)o) om—k
= 5k [(bk)z) + (b1 bri)ay 24 (bo -+ br—1)a ,2m—k]

Notando que 0 < by < 2,0 < (by—1---bir1)2) < 2m—k=ly 0 < (bo-++bi—1)2) < 2%,y usando la
expresion del movimiento s; obtenido en la proposicién (2.7) se tiene la induccién:

= (bm—1++bes1)2)+ (b)) - 2" 4 (bo -+ bp1)) - 2"
= (bm1++bis1)2)+ [(Bi)oy + (bo- - bi—1)2) - 2] - 2" = (b1 byt )2 + (o -+ br)ay - 27!
[
Teorema 2.10. Sea By := ngmq)ngmiz) .. sf,),lszm y f € C*". Entonces se tiene que:
(Bon 1) (boby--buy2bm—1)2 = S (Burbmz-b1bo)a

Es decir, la accion de la permutacion asociada a Bym sobre las componentes del vector f mueve la
componente de indice (by,—1by—2 - -blbo)z) a la componente de indice (bob - - 'bm,zbm,l)z) :

Fim1 [(bm—1bm—2--b1bo)2)] = (bob1 -+ bm—2bm_1))

Demostracion. Sea n un indice con expresién binaria n = (by—1 -+ - bo),). Notemos que por la observa-
cion (2.5) se tiene que:
B2m = ngmil)sé(fmiz) LY Sgi)fl SZ’" = Sé(‘zmiz) e Sg%n)fl SZW

Que en términos de movimientos se traslada a la siguiente igualdad:
Pt [(bm—1bm—2--b1b0)2)| = rm—2 [(bm—1bm—2---b1b0)y)]
Y gracias al lema anterior (2.9) se tiene el resultado:

T2 [(bm—1bm—2---b1bo))] = (bm-1)2) + (bo---bm-2)2) -2 = (bo- - b_1)2)

Observacién. Notese que la permutacion representada por By es una transposicion:

To 1 [(Bm=1++80)2)] = Pt [(b0 "+ bm—1)2)] = (Bum—1---b0)2)

En la literatura, este movimiento de componentes recibe el nombre de “bit reversal permutation”.
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2.3.2. Algoritmo de Bracewell-Buneman

En esta seccién deduciremos uno de los multiples algoritmos existentes para calcular el “bit revesal”
de los indices 0 < i < N = 2™, Este algoritmo tomard como entrada un entero m > 0, para devolver el
vector r de tamafio 2™ cuya componente i-ésima contiene la representacion binaria de m bits invertida
de i = (by—1 --~b0)2), es decir:

r=[rilo<icon, donde r;i=ry_1[i] = rm-1[(bm-1---bo)y)]

Observacion. Noétese que aunque las expresiones (0by,—1by—2---b1bo)2 y (by—1bm—2---b1by), repre-
sentan el mismo ndmero, con m + 1 y m bits respectivamente, en general se tiene que:

Fm[(0bym—1bm—2 -+ -b1b0)2] # Fim—1[(bm—1bm—2 - - -b1bo)2]
Sin embargo, se cumple la siguiente relacion:
Fim[bmbm—1---b1bg)2] = (boby -+ - bm—1bm)2
=2-(bob1---bp_1)2+bn
=2Tm-1[(bm-1---b1bo)2] + b
Que expresado de forma compacta:
2-F_1[n] sio n=0,1,...,2m1 -1
’Md_{2m4M—T"ﬂ+lsin:T"HW1+L”wW—1

Esta expresion serd la célula que usard el algoritmo. De manera ilustrativa, el proceso iterativo se puede
ver en la siguiente tabla:

n|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ron] |0 1
ria] |0 2 1 3
p |0 4 2 61 53 7
;] |0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

La mitad izquierda de la fila m se obtiene doblando los valores de la fila anterior m — 1, y la mitad
derecha, sumando uno a los elementos de la mitad izquierda obtenida.

Con ello, el algoritmo de Bracewell-Buneman es el siguiente:

Algoritmo 1: Algoritmo de Bracewell-Buneman

Entrada: Entero m > 0 (nimero de bits)
Salida : El vector r: r[i] = ry—1[i], 0 <i< 2™

1r0]:=0;M:=1

2 fori=0,1,....m—1do

3 fork=0,1,....M —1do

4 rlk] :==2-r[k]

5 rlk+M] :=rlk] +1

6 M :=2M

Dado que el nimero de operaciones que se realizan en el bucle interno (lineas 4-5) es constante y que
M = 2! en cada iteracién del bucle externo (lineas 2-6), el coste en tiempo de este algoritmo es del orden
de Z;":Bl 2! =2" — 1. Asi, si suponemos que N = 2", entonces el coste es O(N).

No obstante, notemos que al tratarse de una transposicion, realmente no es necesario calcular todos
los indices r,,—1[n], 0 < n < N, ya que n se intercambia con r,,_;[n] y rp,—i[n] con n. Con un estudio
de este hecho, se puede modificar el algoritmo para calcular solamente los pares (r,_1[n],n) tales que
Fm_1[n] > n, reduciendo el coste en tiempo y con un coste en espacio de a lo sumo v/2N.
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2.3.3. Descripcion del algoritmo en el caso N = 2"

Con todo el desarrollo realizado y los resultados obtenidos, ya nos encontramos en situacién para pre-
sentar el esquema del algoritmo de la Transformada Répida de Fourier (FFT), cuando N = 2™. Dicho
algoritmo tomard como entrada el valor m y un vector f € C, para devolver el vector resultante del
producto Fy f.

El célculo del producto se basa en la factorizacién obtenida en el teorema (2.6), realizando los productos
de derecha a izquierda:

1 m—1
271Q2,,1Q§,3,1 QY Buf =Fyf (2.6)

Antes de presentar el algoritmo completo, desgranaremos y detallaremos los trozos del algoritmo que
calculan estos productos.

Como hemos visto en el teorema (2.10), 1a matriz Bo» actda sobre el vector f moviendo su componente
de indice n = (by—1bm—2---b1bg), a la componente de indice r[n] = (bob; - - by—2bm—1)2. Asi, con el
“bit reversal" de cada indice precalculado (Alg. (1)) podemos realizar el producto B, f intercambiando
pares de componentes de f, por ser una transposicion (Obs. (2.3.1)).

Algoritmo 2: Célculo de By f

Entrada: Enterom >0y f € CN,N=2"
Salida : El vector permutado Box f

1 Alg. (1) “bit reversal” — r

2 for n=1,2,.... N—2do

3 if 7[n] > n then

4 L L <fn7fr[n]> = <fr[n]7fn>

Notemos que es innecesario intercambiar las componentes 0, N — 1-ésimas debido a que r[0] =0y
rIN—1]=N-1.

Como ya hemos visto, el calculo del “bit reversal"(linea 1) tiene un coste en tiempo de O(N). Igual-
mente, el bucle del algortimo (lineas 2-4) tiene un coste O(N). Por tanto, el coste en tiempo de este
algoritmo es O(N).

Por el otro lado tenemos las matrices de la forma ng,l), matrices diagonales por bloques donde cada blo-
que es la matriz Qyyy, cuya expresion simplificamos en la ecuacién (2.3). Aprovechando esa repeticion
en los bloques, el siguiente trozo de algoritmo calcula de forma inteligente el producto Qg]f,l) f:

Algoritmo 3: Cilculo de Q')

Entrada: Enteros M,K >0y f € C?MK
Salida : El vector ng,l) f

1 0:=e T/M

2 for A =0,1,.... M—1do

3 for kx=0,1,...,K—1do

4 L [ fK-ZM—«—). ]._[l wk :| |: fx~2M+l :|
Sreomsrsm | 1 -0t Seamirm

Como el nimero de operaciones del bucle interno (lineas 3-4) es constante y, por otro lado, M y K
son valores también constantes, el coste en tiempo de este algoritmo es O(MK) (sin tener en cuenta el
célculo de las potencias de ®).

Finalmente, uniendo el algoritmo (2) y afiadiendo un bucle para las matrices Q, obtenemos el algoritmo
completo que realiza todos los productos matriciales de la factorizacion (2.6):
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Algoritmo 4: Algoritmo FFT cuando N = 2"

Entrada: Enterom >0y f € CV
Salida : El vector Fou f

1 fZ: Bsz (Alg 2)
2 for u=1,2,....,mdo

3 0:=e 22 U .=1

4 | for A=0,1,....24" 1 —1do

5 for «k=0,1,...,2" * —1do

6 8= franga

7 Sreania :=8+U- frouiaion

8 Jroniaron1 =8 —U- froupou
9 U:=wU

10 for k=0,1,....N—1do
u | fo=fi/2"

[

Por un lado, nétese que el bucle interno (lineas 3-9) se corresponde al algoritmo (3) con M =241y
K =2""# como valores de entrada. Como hemos visto, el coste en tiempo de dicho bucle es O(MK) =

0(2m=1), es decir, O(N). No es de extrafiar que este coste no dependa de m, ya que las matrices Qg’;}
del producto (2.6) cumplen que 2MK = N. Asi, como este coste es constante en cada iteracion del bucle
externo (lineas 2-9), el coste en tiempo del bucle es O(mN), m = log, N.

Por otro lado, es sabido ya que el coste en tiempo del célculo de By« f (linea 1) es O(N), calculado
previamente en el estudio del algoritmo (2). El bucle final (Iineas 10-11) también tiene coste O(N).

Con este estudio, el coste en tiempo del algoritmo FFT cuando N = 2" es O(Nlog, N). Cabe mencionar
que el coste en espacio es O(N), al estar tinicamente almacenado el vector f € CV y el vector “bit
reversal” r € ZVN involucrado en el cilculo de By» f (linea 1).

2.4. Factorizacion de Fy enel caso N = P;--- Py

En esta tltima seccién generalizaremos la factorizacion de la matriz F para cualquier factorizacion
N=P;-P--P,. Del mismo modo que en el caso N = 2", aplicaremos recursivamente la identidad cre-
mallera con los factores de la descomposicién de N, relacionando Fp,...p, con Fp,...p, , y sucesivamente,
reduciendo los factores hasta llegar al caso trivial F; = [1]. Esta factorizacion se recoge en el siguiente
resultado:

Teorema 2.11. Sea N = P, - - - P,,. Entonces:

1

_ (Pn) (P3+-Pn)  y(PoP)
FN*Pl..-Pm.QPIWmel’Pm.QPI"'Pm—LPm—l.”QP17P2 Qip " SPp By

o QPseoBn)  Q(PaPr) (Pu)
donde SPI PoyesPn—1,Pm - — SP] P ’ SP]PQ,P3 T SP]---Pm,LPm,] ’ SPl"'Pm—l\,Pm

Demostracion. La demostracion seguird el mismo esquema usado en la factorizacién del caso N = 2™
2.6. Aplicaremos la identidad cremallera tomando P = Py --- Py, Q = P, k = m,...,1, hasta llegar al
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caso trivial F; = 1.

! (Pa)
FP] ”'P’" = F ’ QPI "'Pm—hPmFPl ~n“Pm,ISPI "'Pm—laBn
m
1 (P ) (Pm)
= cQpopy 1 By | QPP s by Fpp  SPPy Py Spip 1P,
m— m
1 (Pu_1 P
— m—1" m) (Pm)
- Pm_lpm QP] -1, 3P QP] Pu_2,Pn_1 FP]WPm,Z SP]WPm,z,Pm,] SP]"'P/11—17Pm
1 (PP
_ 2 m) (Ple) (PZ'“PM) (P'5 )
- Pl' QPl Pn—1,F, QPI Pz Ql,Pl 'Fl 'SI,PI 'SPl P SP1 Py_1,Py

Teniendo en cuenta que:

B = [0 <,

Py
oin(@)=q 0<q<P = S{%" =1p.p,

Y reuniendo en Sp, _ p, todas las matrices de permutacion generadas:

. (P3"'Pm) (P4Pm) (Pm)
Spi...p = Spp, " Seip e SKp, 5B, SPPL P

Se tiene el resultado:

1 P
Fp..p, = P ...P. “QpyBy 1 Py Q Q1([’13Pz Qg P ) "SPia
Py P

m27

O]

Nétese que esta factorizacion serd diferente segtin los divisores que consideremos en la descomposicién
de N y del orden en el que los tomemos. Como cabe esperar, la factorizacién coincidird con la obtenida
en (2.6) cuando todos los factores sean P, = 2.

24.1. AcciéondeSp,  p,

Andlogamente a la seccion (2.3.1), describiremos cada uno de los movimientos de las matrices que con-
forman la matriz de permutacién Sp, _p, para posteriormente componerlos y hallar el movimiento de
las componentes que realiza el producto total. Dichos movimientos, expresados con la misma notacién
que en la seccion (2.3.1), estan reunidos en los siguientes resultados:

Proposicion 2.12. La accion representada por la matriz Sp,...p, | p, estd descrita por el movimiento:
ey lq+p-Pul=p+q-(Pi---Py1), 0<p<(Pi---Pp1) 0<qg<By

Es decir, al actuar sobre un vector, Sp,...p, | p, mueve la componente de indice g+ p-P,, a la componente

de indice p+q- (Py---Ppy_1).
Proposicion 2.13. Sea k un entero tal que 2 < k < m. La accién de la matriz S(P”})k f ,lk estd descrita
por el movimiento:

splg+p-Petr-(PrP)|=p+q- (P -P1)+r- (PP,
donde 0<p<(P---P1) 0<g<P. 0<r<Pyi-Py,

Es decir, al actuar sobre un vector, S(P“}Dk T’"[),k mueve la componente de indice g+p-Pc+r-(P---P) a

la componente de indice p+-q- (P ---P—1) +1- (P - P).
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De manera andloga al resultado (2.8), necesitaremos una descomposicion de los indices particular para
poder deducir el movimiento de Sp, _ p,:

Proposicion 2.14. Sea N = P, --- P,,. Entonces, para todo entero n tal que 0 < n < N existen tinicos
{pi}!"| cumpliendo:

m m
n:Zpi <HP]) :pm"i_pmfl'Pm+pm72'Pm71'Pm+"'+pl'(PZ"'Pm)
i=1 Jj>i

donde 0<p; <P, 1<i<m

De este modo, con los movimientos y la descomposicion de indices, ya podemos describir el movimiento
de SPI Pyt

Teorema 2.15. La accion de la matriz Sp, ... p, estd descrita por el movimiento:

m m m m
s [ZPi (HE)] =Y Pmirei <HPm+1j> , 0<pi<P, 1<i<m
i=1 i~

J>i Jj>i

Es decir, al actuar sobre un vector, Sp, . p, mueve la componente de indice:

n:pm+pm—l 'Pin+pm—2'Pm—1 Pm++p1 (PZPm)
a la componente de indice:
sfnl=p1+p2-Pi+p3s-Pr-Pot-+pu- (Bu1---Pr)

Demostracion. Basta aplicar ordenadamente los movimientos involucrados, descritos en las proposi-
ciones (2.12) y (2.13), para obtener el resultado. 0

.....

Notemos que en general, no podemos asegurar que Sp,__p, sea una transposicién como lo era So». Por
ello, a la hora de mover las componentes, ya no se tratardn de intercambios entre pares de componentes.

2.4.2. Descripcion del algoritmo en el caso N =P, --- P,

Finalmente, en esta seccién presentaremos el esquema del algoritmo de la Transformada Répida de
Fourier (FFT) en el caso general, cuando N = P; - - - B,,. Dicho algoritmo tomard como entrada la facto-
rizacion N = P, --- P, y un vector f € C, para devolver el vector resultante del producto Fy f.

Andlogamente a la descripcion del caso N = 2™ en la seccidn (2.3.3), el calculo del vector se basa en la
factorizacion obtenida en el teorema (2.11), realizando los productos de derecha a izquierda:

1 (PyPy)
3 m (P2"'Pm)
'QPI"‘Pm—hPm'“Qpl,Pz Ql Py 'SPMPZ:“'aPm—hme
P ---P, ;

Como hemos visto en la seccion anterior (2.4.1), particularmente en el teorema (2.15), la matriz Sp, _ p,
actda sobre el vector f moviendo su componente de indice:

n:pm—i—pm*l'Pm+pin72'Pm71'Pm+"'+pl'(P2"'Pm)
a la componente de indice:
sinl=pi1+p2-Pi+p3-Pr-Po+- -+ pm (Pp1--P)

De este modo, podemos realizar el producto Sp,,
algoritmo de la division) y recurriendo a un vector auxiliar para reordenar las componentes:
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Algoritmo 5: Cédlculo de Sp, . p, f

Entrada: m >0, P;,...,P, > 2y
feCN conN="p P,
Salida : El vector Sp, . p, f
1 forn=0,1,.... N—1do

2 s:=0;d:=n

3 foruy=mm—1,...,1do
4 q:=|d/P]

5 p=d—P,-q

6 ri=p+pP-r

7 d:=q

8 | gls]:=fln]

9 forn=0,1,.... N—1do
10 | fn] = gln]

Notemos que el nimero de operaciones que se realizan en el bucle interno (lineas 3-7) es constante y
que en cada iteracion del bucle externo (lineas 1-8) tnicamente se realizan asignaciones, por lo que el
coste en tiempo del bucle es del orden de mN, el nimero de iteraciones realizadas. Trivialmente, el coste
en tiempo del dltimo bucle (Iineas 9-10) es O(N). Por tanto, el coste en tiempo del algoritmo completo
es O(mN).

El algoritmo requiere en espacio a los m factores Py, ..., F,, al vector f y al vector auxiliar g, estos dos
ultimos de tamafio N. Nétese que m < N, ya que el nimero de factores que descomponen un nimero es
menor que dicho ndmero. Por tanto el coste en espacio del algoritmo es O(méax{m,N}) = O(N).

Analogamente, nos faltard ver los productos de las matrices Q
idea que el algoritmo (3) del caso N = 2"

Pk+1 "'Pm . . .
PP P Este algoritmo sigue la misma

Algoritmo 6: Célculo de Qgﬁ, f

Entrada: Enteros M,P,K >0y f € CYPK
Salida : El vector Qz(vll(} f

1 for A=0,1,.... M—1do

2 for «x=0,1,...,K—1do
f)L+1<MP flﬂcMP
f7L+M+KMP f7L+M+KMP
3 . = Ql,M7P
A+(P—1)M+KkMP Jar(p—1)mxmp
Donde
1 o* w2 oo @P-DA
A+M 2(A+M) . (P—1)(A+M)
Qump:= 1 w a) co . @i=e 2m/MP
1 oM P-DM 2R (P-0M] o (P-1) A (P-)M]

Notemos que el producto matricial de la linea 3 del algoritmo anterior requiere P — 1 sumas y solamente
P — 1 productos de nimeros complejos para actualizar cada una de las P componentes del vector, ya que
todos los elementos de la primera columna de ©; 3, p son 1. De este modo, sin tener en cuenta el cdlculo
de las potencias de m, como el nimero de operaciones es constante en cada iteracidn del bucle interno,
y los valores M, K también son constantes, el coste en tiempo del algoritmo es O(MK(P — 1)P).
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Juntando ambos algoritmos y afiadiendo un bucle para calcular todos los productos de las matrices
gﬂ P:’I" p.» €l algoritmo general completo es el siguiente:

Algoritmo 7: Algoritmo FFT cuandoN =P, --- P,

Entrada: m >0, P;,...,P, >0y f e CV,
conN=~P---P,
Salida : El vector Fy f
1 f:=8p. . pf (Alg.5)
2M:=1;P:=1;K:=N
3for u=1,2,...,mdo

4 P:=P,;K:=K/P

s @ = o~ 2%i/MP

6 W:=1;V:=aoM

7 | g:=copy(f)

8 for A =0,1,.... M—1do

9 A=W

10 for «x=0,1,...,K—1do

1 fori=0,...,P—1do

12 u:=gyiemp;I:=A
13 for j=1,...,P—1do
14 u:=u+II-gryimixmp
15 II:=1I-A

16 Javimrxmp == u

17 | A=AV

18 | W=V

19 7M::M~P

20 for A =0,1,...,N—1do
2 | fii=fi/N

Notemos que el bucle interno (Iineas 8-18) se corresponde al algoritmo (6) conM =Py ---P,_1,P=PF,y
K =Py P, como valores de entrada; salvo el caso particular i = 1, donde toma los valores M = 1,
P=P yK=P--Py, Por lo ya analizado, el coste en tiempo de dichas lineas es O(MK(P — 1)P).
Aprovechando que para estos valores de M, P,K se cumple que MPK = N, lo podemos reescribir como
O(N(Py —1)). Conocido el coste del bucle interno para cada iteracién del bucle externo (lineas 3-19),

el coste en tiempo del bucle es O (N . Z:’f:l (Py— 1)) . Por otra parte, gracias al estudio previo, también

conocemos que el coste en tiempo del cdlculo de Sp, .
bucle (lineas 20-21) tiene coste O(N).

p,f (linea 1) es O(mN). Finalmente, el ultimo

fm

Con esto y teniendo en cuenta la siguiente desigualdad

(g E

(P[J_l>2m (yaqueplw-,l”mz2)
1

u

el coste en tiempo del algoritmo FFT cuando N = P; - - - P, es el anunciado al inicio del capitulo:

ON-{(P=1)+(P=1)+---+ (B —1)})

Para acabar, hemos visto que el cdlculo de Sp, . p,f tiene un coste en espacio O(N) y en el resto
del algoritmo tnicamente requieren espacio la copia de f en en vector g, del mismo tamafio N, y las
variables definidas. Por tanto, el coste en espacio del algoritmo es O(N).
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Apéndice A
La transformada de Fourier

En este apéndice presentamos una coleccién de resultados de Andlisis de Fourier. Unicamente se reco-
gen los resultados necesarios para el estudio y desarrollo de la transformada discreta de Fourier realiza-
dos en el primer capitulo (1). El contexto y desarrollo de este drea se ha estudiado en mayor profundidad
en la asignatura Analisis de Fourier del Grado de Matematicas.

A partir de ahora asumiremos que f : R — C es una funcién 2L-periddica. No obstante, cabe mencionar
que en el capitulo de la transformada discreta se toman por comodidad funciones 1-periddicas.

Definicién 9. Sea f € L'([-L,L]).

a) Llamaremos coeficiente de Fourier n-ésimo de f a
A 1 (L . m
o =5 / FO)e"Edr, nez
~L
b) Llamaremos serie de Fourier de f a la serie

Y fmert

Nn—=-—oo

¢) Dado N € NU{0}, llamaremos suma parcial N-ésima de la serie de Fourier a
N ~ 2T
Snf(t)="Y, fln)e't!, 1eR
n=—N

Nétese que los coeficientes de Fourier estdn bien definidos porque f € L!([—L,L]). Més adn, cumplirdn
la siguiente propiedad:

Teorema A.l. (Lema de Riemann-Lebesgue). Sea f € L'([—L,L]). Entonces, {f(n)}pez € co(Z). Es
decir,
lim f(n)=0

|| e

En cambio, no podemos asegurar la convergencia de la serie de Fourier en general. No obstante, si que
tendremos convergencia para las familias de funciones de interés en el capitulo (1).

Teorema A.2. Sea f una funcion continua y de clase C (' 4 trozos en [—L,L). Entonces, Sy f converge
uniformemente a f en R.

Lema A.3. Sea f € L' ([—x, 7)), [a,b] un intervalo 'y ¢ € € ([a,b]). Entonces,

b
lim / f(x—1)¢(t)sin(At)dt = 0, uniformemente en x € R

A—oo
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Teorema A.4. (Convergencia uniforme local). Sea f € L'([~L,L)]) y [a,b] un intervalo tal que f es
continua y de clase ¢ 4 trozos en él. Entonces, V8 > 0 tal quea+6 <b—34,

N—oo

Snf(t) —— f(t) uniformemente, t € [a+ 6,b— 9|
Demostracion. Demostraremos el resultado para L = 7. Supongamos que la longitud de [a,b] es menor
que 27, ya que en otro caso, por el teorema anterior, la serie de Fourier converge uniformemente en

todo R. Para demostrar el resultado nos apoyaremos en una funcién F € €y de clase €(! a trozos en
[—m, 7], tal que

F(x)=f(x), x€]la,b]

Por ejemplo, la funcién extendida que une los valores f(b+k-2m)y f(a+ (k+1)-2x), k € Z, con
lineas rectas. Es claro que dicha funcién es continua y de clase €' a trozos.

Denotemos como G(x) = f(x) — F(x) a la diferencia. Es claro que esta funcién es L!([—7, ]), cum-
pliendo que G(x) = 0 si x € [a,b]. Entonces se tiene que:

Svf =SvF +SnvG

Como por el teorema (A.2) SyF converge uniformemente a F, tenemos que SyF converge uniforme-
mente a f en [a,b]. Solo nos faltard ver que SyG converge a 0 uniformemente en [a + §,b — 8] para
tener el resultado. Fijemos entonces un 6 > 0 y tomemos x € [a + &,b — 8]. Reescribimos la suma
parcial como:

SnG(x) = 21 G(x—t)'_itdt

—0>t>8 = a>x—0>x—t>x+08 >b,entonces G(x—1) = 0. Luego,

1 /9 sin(N -+ 1)z s1n N+ )
SnG G(x—t 2) /G ——2dt
NGl) = 27r/ iy sin %

2

Basta aplicar el lema anterior a las funciones G € L' ([—7, 7t]) y ¢ (1) = ﬁ que es de clase €' en los
intervalos [—m, —9d] y [, 7].
O

Teorema A.5. Sea f € L'([~L,L]) y to € R un punto tal que f es derivable tanto a izquierda como a
derecha de ty. Entonces,

fltg) — flty)

Aim Swf (o) = 2

Donde f(ty) y f(ty ) denotan los respectivos limites laterales de f en .

Lema A.6. Sea oy = m ,N € N. Entonces,

, 2 ["sinx
,}l_I)I}oSN(‘l/to)(aN):E b x X=Y

Donde vy, es la funcion 2L-periodica generada por

-1 SixE[l‘()—L,to)
Vi (x) = .
1 six € [to,to+L)
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Teorema A.7. (Fendmeno de Gibbs). Sea f € L'([~L,L]) y to € R un punto tal que f es derivable tanto
a izquierda como a derecha de ty. Ademds, supongamos que la diferencia entre los limites laterales es
positiva, f(t}) — f(ty ) := 2A > 0. Entonces,

Jim Sy f(to+ 5 ) = (i) + A1)

2(N+1)
lim S o0 57 39) = /) ~Ar—1)

De forma mds general, si {ty}%_, es una sucesion que converge a ty cuando N — oo, entonces:

limsup Sy f(ty) < f(t5) +A(y—1)

N—oo

limint Sy f (1) > fi3) —~A(y—1)

Demostracion. Consideremos la funcién h = f — g = f — Ay,,. El punto #y es un punto de continuidad
para h, ya que

h(ty) —h(ty) = f(tg) — f(tg) — (8(tg) —8(ty)) =24 —2A =0

Ademéds, h tiene derivadas laterales en 79 y

o) = ) EHe0) _ T6) + 1)

Entonces, si vemos (con oy = m) que

1im Sy(h)(t0+ ) = hito) (A.1)

habremos demostrado el resultado, pues

lim Sy(f)(to+ an) = lim Sy(h)(to + ay) + lim Sy(g) (o + an) = h(tp) +Ay
N—roo N—ro0 N—yoo

La funcién & es continua y de clase 4! a trozos en (to — 0, + 8). Por tanto, se da convergencia

uniforme de la serie de Fourier en cualquier subintervalo cerrado. En particular, dado € > 0 podemos

encontrar un n; € N tal que

€ 0 0
SM)0) - H0) < 5. We -t 5], vzm

Por otro lado, por la continuidad de &, podemos elegir n, € N tal que |oy| < 6/2 y que

€
’h(l‘()—}— OCN) —h(l‘o)| < 5 Vn > ny

Entonces, si n > ngp = max{n,n; }, se tiene que

1Sn () (t0 + aiw) — h(to)| < [Sn (k) (to+ o) — h(to) + o] + |h(to + oty ) — h(to)| < g L8

Demostrando asi (A.1), y con ello el teorema.
O

Corolario A.8. Sea f € L'([-L,L)) tal que f posee una discontinuidad de salto en ty € R. Ademds,
supongamos que f es de clase €' en un entorno (19 — €,10 + €) \ {to}. Entonces Syf no converge
uniformemente a f en (to— 8,10+ ) \ {to} VO tal que 0 < & < &.



La transformada rapida de Fourier 29

Demostracion. Supongamos que Sy f converge uniformemente (o — 6,79+ 06) \ {fo} Vo talque 0 < 6 <
€. En particular, Ve; > 0 existe un N; € N tal que para todo N > N; se tiene que

ISnf(t)—f(t)| <&, Vte(to—38,60+0)\{to} (A.2)
Por otro lado, por el teorema anterior se tiene que:
fim IS (to 50— flto % 5| = Ay 1)
1mm —_—) — _— = —
N PV E S vy T v g 4

Con ello, basta tomar un € < A(y— 1) para obtener la contradiccién. Por un lado, existe un N, € N tal
que |ay| < 8, VN > N,. Y por otro lado, existe un N3 € Ny & > 0 tal que

L L
Aly—1)—&< |SNf(foim)_f(foim)| <A(y—1)+&, VN>N;

con & cumpliendo que & < A(y— 1) — &. Asi, tomando un N > Ny, donde Ny = max{N;,N,, N3},

tendriamos que #y £ m €(to—0,10+98)\{rn}yque

L

g <A(y—1)—& <|Swf(to=£ m

)= flio+ )|

L
2(N+1)

Que se contradice con (A.2), probando el resultado.
O

Corolario A.9. Sea f un funcion €\ a trozos salvo en ty € R. Entonces, para todo § > 0 existe un
N € N suficientemente grande tal que:

sup{[f(t) =Snf(1)] : 1 € (=8,8)} < c(A)

Donde c(A) es una constante dependiente del salto A := w



	Abstract
	La transformada de Fourier discreta
	Introducción
	Idea principal
	Existencia y solución explícita
	La transformada discreta de Fourier
	Convergencia de la transformada discreta
	Muestreo par. Suma parcial desviada
	Funciones de cualquier periodo

	La transformada rápida de Fourier (FFT)
	Introducción
	La identidad cremallera FPQ
	Factorización de FN en el caso N=2m
	Acción de B2m
	Algoritmo de Bracewell-Buneman
	Descripción del algoritmo en el caso N=2m

	Factorización de FN en el caso N=P1 @汥瑀瑯步渠PN
	Acción de SP1,…,Pm
	Descripción del algoritmo en el caso N=P1@汥瑀瑯步渠Pm


	Bibliografía
	La transformada de Fourier

