000125737 001__ 125737
000125737 005__ 20250619084223.0
000125737 0247_ $$2doi$$a10.1063/5.0087435
000125737 0248_ $$2sideral$$a128757
000125737 037__ $$aART-2022-128757
000125737 041__ $$aeng
000125737 100__ $$aReyna Lara, A.
000125737 245__ $$aA metapopulation approach to identify targets for Wolbachia-based dengue control
000125737 260__ $$c2022
000125737 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125737 5203_ $$aOver the last decade, the release of Wolbachia-infected Aedes aegypti into the natural habitat of this mosquito species has become the most sustainable and long-lasting technique to prevent and control vector-borne diseases, such as dengue, zika, or chikungunya. However, the limited resources to generate such mosquitoes and their effective distribution in large areas dominated by the Aedes aegypti vector represent a challenge for policymakers. Here, we introduce a mathematical framework for the spread of dengue in which competition between wild and Wolbachia-infected mosquitoes, the cross-contagion patterns between humans and vectors, the heterogeneous distribution of the human population in different areas, and the mobility flows between them are combined. Our framework allows us to identify the most effective areas for the release of Wolbachia-infected mosquitoes to achieve a large decrease in the global dengue prevalence. © 2022 Author(s).
000125737 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CONACYT-709978$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113582GB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E36-17R
000125737 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125737 590__ $$a2.9$$b2022
000125737 592__ $$a0.82$$b2022
000125737 591__ $$aPHYSICS, MATHEMATICAL$$b8 / 56 = 0.143$$c2022$$dQ1$$eT1
000125737 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ1
000125737 591__ $$aMATHEMATICS, APPLIED$$b29 / 267 = 0.109$$c2022$$dQ1$$eT1
000125737 593__ $$aMathematical Physics$$c2022$$dQ1
000125737 593__ $$aStatistical and Nonlinear Physics$$c2022$$dQ2
000125737 593__ $$aApplied Mathematics$$c2022$$dQ2
000125737 593__ $$aMedicine (miscellaneous)$$c2022$$dQ2
000125737 594__ $$a5.9$$b2022
000125737 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000125737 700__ $$0(orcid)0000-0002-6388-4056$$aSoriano Paños, D.
000125737 700__ $$aArias-Castro, J.
000125737 700__ $$aMartínez, H. J.
000125737 700__ $$0(orcid)0000-0001-5204-1937$$aGómez Gardeñes, J.$$uUniversidad de Zaragoza
000125737 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000125737 773__ $$g32, 4 (2022), 041105$$pChaos$$tCHAOS$$x1054-1500
000125737 8564_ $$s1874972$$uhttps://zaguan.unizar.es/record/125737/files/texto_completo.pdf$$yPostprint
000125737 8564_ $$s3442981$$uhttps://zaguan.unizar.es/record/125737/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000125737 909CO $$ooai:zaguan.unizar.es:125737$$particulos$$pdriver
000125737 951__ $$a2025-06-19-08:41:28
000125737 980__ $$aARTICLE