000125752 001__ 125752
000125752 005__ 20241125101129.0
000125752 0247_ $$2doi$$a10.1039/d2qi02664c
000125752 0248_ $$2sideral$$a133174
000125752 037__ $$aART-2023-133174
000125752 041__ $$aeng
000125752 100__ $$aCalderón-Olvera, Roxana M.
000125752 245__ $$aEuropium doped-double sodium bismuth molybdate nanoparticles as contrast agents for luminescence bioimaging and X-ray computed tomography
000125752 260__ $$c2023
000125752 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125752 5203_ $$aA one-pot method for the synthesis of uniform Eu3+-doped NaBi(MoO4)2 nanoparticles with an ellipsoidal shape and tetragonal crystal structure functionalized with polyacrylic acid is reported for the first time in the literature. The method is based on a homogeneous precipitation reaction from solutions in an ethylene glycol/water medium containing appropriate bismuth, sodium, and molybdate precursors and polyacrylic acid. The luminescence properties (excitation and emission spectra and luminescence lifetime) of such nanoparticles are evaluated for different Eu3+ doping levels, finding an intense red emission for all synthesized samples. The X-ray attenuation properties of the nanoparticles have been also analyzed, which were found to be better than those of a commercially computed tomography contrast agent (iohexol). The dispersibility of the nanoparticles in a physiological medium was also analyzed, finding that they could be well dispersed in a 2-N-morpholinoethanesulfonic acid monohydrate medium (pH = 6.5). Finally, the cell viability of such a phosphor has been analyzed using MIA-PaCa-2 cells and its in vivo toxicity has been evaluated using the nematode Caenorhabditis elegans model finding no significant toxicity in both cases up to a nanoparticle concentration of 100 μg mL−1, which is within the range required for most in vivo applications. The developed Eu3+-doped NaBi(MoO4)2 nanoparticles are, therefore, excellent candidates for their use as bimodal probes for luminescence imaging and X-ray computed tomography.
000125752 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E15-17R$$9info:eu-repo/grantAgreement/ES/ISCIII/CB06-01/00263$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-094426-B-I00
000125752 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000125752 590__ $$a6.1$$b2023
000125752 592__ $$a1.255$$b2023
000125752 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b3 / 44 = 0.068$$c2023$$dQ1$$eT1
000125752 593__ $$aInorganic Chemistry$$c2023$$dQ1
000125752 594__ $$a10.4$$b2023
000125752 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125752 700__ $$aNúñez, Nuria O.
000125752 700__ $$aGonzález-Mancebo, Daniel
000125752 700__ $$aMonje-Moreno, Jose M.
000125752 700__ $$aMuñoz-Rui, Manuel J.
000125752 700__ $$aGómez-González, Elisabet
000125752 700__ $$aArroyo, Encarnación
000125752 700__ $$aTorres-Herrero, Beatriz
000125752 700__ $$0(orcid)0000-0003-1081-8482$$aMartínez de la Fuente, Jesús
000125752 700__ $$aOcaña, Manuel
000125752 773__ $$g(2023), [11 pp.]$$pInorg. chem. front$$tInorganic Chemistry Frontiers$$x2052-1545
000125752 8564_ $$s2794182$$uhttps://zaguan.unizar.es/record/125752/files/texto_completo.pdf$$yVersión publicada
000125752 8564_ $$s2784713$$uhttps://zaguan.unizar.es/record/125752/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125752 909CO $$ooai:zaguan.unizar.es:125752$$particulos$$pdriver
000125752 951__ $$a2024-11-22-11:58:32
000125752 980__ $$aARTICLE