Automatic voice disorder detection using self-supervised representations
Financiación H2020 / H2020 Funds
Resumen: Many speech features and models, including Deep Neural Networks (DNN), are used for classification tasks between healthy and pathological speech with the Saarbruecken Voice Database (SVD). However, accuracy values of 80.71% for phrases or 82.8% for vowels /aiu/ are the highest reported for audio samples in SVD when the evaluation includes the wide amount of pathologies in the database, instead of a selection of some pathologies. This paper targets this top performance in the state-of-the-art Automatic Voice Disorder Detection (AVDD) systems. In the framework of a DNN-based AVDD system we study the capability of Self-Supervised (SS) representation learning for describing discriminative cues between healthy and pathological speech. The system processes the SS temporal sequence of features with a single feed-forward layer and Class-Token (CT) Transformer for obtaining the classification between healthy and pathological speech. Furthermore, there is evaluated a suitable data extension of the training set with out-of-domain data is also evaluated to deal with the low availability of data for using DNN-based models in voice pathology detection. Experimental results using audio samples corresponding to phrases in the SVD dataset, including all pathologies available, show classification accuracy values until 93.36%. This means that the proposed AVDD system achieved accuracy improvements of 4.1% without the training data extension, and 15.62% after the training data extension compared to the baseline system. Beyond the novelty of using SS representations for AVDD, the fact of obtaining accuracies over 90% in these conditions and using the whole set of pathologies in the SVD is a milestone for voice disorder-related research. Furthermore, the study on the amount of in-domain data in the training set related to the system performance show guidance for the data preparation stage. Lessons learned in this work suggest guidelines for taking advantage of DNN, to boost the performance in developing automatic systems for diagnosis, treatment, and monitoring of voice pathologies.
Idioma: Inglés
DOI: 10.1109/ACCESS.2023.3243986
Año: 2023
Publicado en: IEEE Access 11 (2023), 14915-14927
ISSN: 2169-3536

Financiación: info:eu-repo/grantAgreement/ES/AEI/PDC2021-120846-C41
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-126061OB-C44
Financiación: info:eu-repo/grantAgreement/ES/DGA/T36-20R
Financiación: info:eu-repo/grantAgreement/EC/H2020/101007666/EU/Exchanges for SPEech ReseArch aNd TechnOlogies/ESPERANTO
Tipo y forma: Article (Published version)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-10-23-12:23:26)


Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-04-20, last modified 2023-10-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)