000125764 001__ 125764
000125764 005__ 20230602121511.0
000125764 0247_ $$2doi$$a10.1016/j.jclepro.2023.137001
000125764 0248_ $$2sideral$$a133305
000125764 037__ $$aART-2023-133305
000125764 041__ $$aeng
000125764 100__ $$0(orcid)0000-0002-7743-0426$$aPerpiñán, Jorge$$uUniversidad de Zaragoza
000125764 245__ $$aHigh oxygen and SNG injection in blast furnace ironmaking with Power to Gas integration and CO2 recycling
000125764 260__ $$c2023
000125764 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125764 5203_ $$aIn the last years, reduction of CO2 emissions from the steel industry has been of great importance. Carbon capture, oxygen blast furnaces and top gas recycling technologies, among others, have been deeply studied as low carbon solutions. In this paper, a novel integration of carbon capture and power to gas technologies in the steelmaking industry is presented. Green hydrogen via proton exchange membrane (PEM) electrolysis and CO2 via methyldiethanolamine (MDEA) scrubbing from the blast furnace gas (BFG) are used to produce synthetic natural gas in an isothermal fixed bed methanation plant. The latter gas is injected into the blast furnace, closing a carbon loop and reducing coal consumption. The oxygen by-produced in the electrolyser covers the entire oxygen demand of the steelmaking plant and avoids the need for an air separation unit (ASU). The novelty of this work relies on the variation of the oxygen enrichment and its temperature in the hot blast, and how it influences the power to gas integration concept. This power to gas integration is compared with a conventional BF-BOF plant from a technical, economic, energy and environmental point of view. Both plant process configurations were implemented in Aspen Plus simulations, assessing the fossil fuel demand, energy penalty, cost and CO2 emissions. Emission reduction up to 34% can be achieved with power to gas integration, with an energy penalty of 17 MJ/tHM and a cost of 352 €/tCO2.
000125764 536__ $$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130000B–I00$$9info:eu-repo/grantAgreement/ES/UZ/IT16/12
000125764 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000125764 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125764 700__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000125764 700__ $$0(orcid)0000-0001-9967-5806$$aPeña, Begona$$uUniversidad de Zaragoza
000125764 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000125764 700__ $$aEveloy, Valerie
000125764 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000125764 773__ $$g405 (2023), 137001 [12 pp.]$$pJ. clean. prod.$$tJournal of Cleaner Production$$x0959-6526
000125764 8564_ $$s7000379$$uhttps://zaguan.unizar.es/record/125764/files/texto_completo.pdf$$yVersión publicada
000125764 8564_ $$s2695364$$uhttps://zaguan.unizar.es/record/125764/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125764 909CO $$ooai:zaguan.unizar.es:125764$$particulos$$pdriver
000125764 951__ $$a2023-06-02-11:02:53
000125764 980__ $$aARTICLE