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Abstract. The family of rings of the form

Z4 〈x, y〉
〈x2 − a, y2 − b, yx− xy − 2(c + dx + ey + fxy)〉

is investigated which contains the generalized Hamilton quaternions over Z4.

These rings are local rings of order 256. This family has 256 rings contained

in 88 distinct isomorphism classes. Of the 88 non-isomorphic rings, 10 are

minimal reversible nonsymmetric rings and 21 are minimal abelian reflexive

nonsemicommutative rings. Few such examples have been identified in the lit-

erature thus far. The computational methods used to identify the isomorphism

classes are also highlighted. Finally, some generalized Hamilton quaternion

rings over Zps are characterized.
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1. Introduction

In recent years there has been much attention on ring properties related to com-

mutativity, namely, symmetric, reversible, semicommutative, reflexive and duo.

Cohn introduced reversible rings in [2]. A ring R is reversible if for any a, b ∈ R,

ab = 0 implies ba = 0. Similar to reversible rings, Lambek studied symmetric rings

in [8]. A ring R is symmetric if for any a, b, c ∈ R, abc = 0 implies bac = 0. Marks

in [9], investigated the connection between reversible and symmetric rings with and

without identity. It is easy to see that a symmetric ring with identity is reversible,

but, Marks gave the example F2Q8 of a reversible nonsymmetric ring. Incidentally,

he also showed that these two properties are independent when considering rings

without identity. In [12], Szabo answered a question posed by Marks which essen-

tially asked “What is the minimal possible order of a reversible nonsymmetric ring

(with identity)?”
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Reflexive rings were first studied by Mason in [11]. A ring R is reflexive if for any

a, b ∈ R, aRb = 0 implies bRa = 0. A similar notion is that of semicommutative

rings. A ring R is semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0.

There is a nice connection between reversible, reflexive and semicommutative rings.

A ring is reversible if and only if the ring is reflexive and semicommutative. In

the recent paper [1], Chimal and Szabo showed that a minimal abelian reflexive

nonsemicommutative ring also has order 256. A ring R is abelian if each idempotent

of R is central. Interestingly enough, an example of such a ring is F2D8. Note, Q8

and D8 are the only two nonabelian groups of order 8. The mentioned results show

that F2D8 and F2Q8 are not isomorphic. Generalizations of these group rings and

their ring properties were given in [3]. A ring R is right (left) duo if for all a, b ∈ R,

ba ∈ aR (ba ∈ Rb) (equivalently, every right (left) ideal of R is 2-sided and a ring

that is both right and left duo is simply a duo ring).

A taxonomy relating the ring properties mentioned thus far which also included

2-primal rings was given in [10]. For finite rings, 2-primal rings and NI rings are

equivalent. A ring is NI if its set of nilpotent elements form an ideal. The following

diagram is taken from [13] showing the various finite ring class containments. These

class containments are strict as has been shown in [1,7,9,10,12,13].

reflexive

commutative +3

$,

symmetric +3 reversible

��

KS

+ks

duo +3 semicommutative +3 abelian +3 NI

In both cases of the minimal rings mentioned so far, only a couple of examples

have been given. In this work, using the family of rings of the form

Z4 〈x, y〉
〈x2 − a, y2 − b, yx− xy − 2(c+ dx+ ey + fxy)〉

and some computational ingenuity, many examples of these two types of rings will

be given. Notice that any element can be represented as s1 +s2x+s3y+s4xy where

s1, s2, s3, s4 ∈ Z4. This allows for the study of these rings computationally. Finding

rings with certain properties is generally an arduous task. The rings in this family

are 4-dimensional algebras over Z4, so they have a simple matrix representation

as sub-rings of M4(Z4), the main fact that makes them computationally easily

treatable.
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For a ring R and a, b ∈ R, the generalized Hamilton quaternion ring of (a, b)

over R is defined as (
a, b

R

)
=

R 〈x, y〉
〈x2 − a, y2 − b, yx+ xy〉

.

For more on these rings see [4,5,6,14]. The class of generalized Hamilton quaternion

rings over Z4 is contained within the family of rings we are considering. Foreshad-

owing, we point out that
(

3,3
Z4

)
and

(
1,1
Z4

)
are minimal reversible nonsymmetric

and abelian reflexive nonsemisommutative rings respectively. It turns out that gen-

eralized Hamilton quaternion rings of (p, p) over Zps for an odd prime p are also

local 4-dimensional algebras over Zps and possess other similar characteristics to

the specific case when s = 2 and p = 2. As with many other results related to

primes, there are two main cases, when p ≡ 1 (mod 4) and p ≡ 3 (mod 4). Having

a square root of −1 as usual, is the reason for this distinction playing a crucial role

in the underlying results.

Throughout, rings are assumed to be associative with identity 1 6= 0. Given a

ring R, J(R) is the Jacobson radical of R, U(R) is the set of invertible elements of

R and N(R) is the set of nilpotent elements of R. In Section 2, the main family of

rings will be considered. Each ring in the family will be shown whether or not they

posses certain ring properties. Specifically, the properties considered are abelian,

commutative, symmetric, reversible, semicommutative and reflexive. In Section 3

many examples of minimal rings from the family are given. Finally, in Section 4

all generalized quaternion algebras over Z4 are characterized. Furthermore, the

generalized Hamilton quaternion rings of (p, p) over Zps for an odd prime p are also

characterized.

2. The ring Z4〈x,y〉
〈x2−a,y2−b,yx−xy−2(c+dx+ey+fxy)〉

Let a1, a0, b1, b0, c, d, e, f ∈ {0, 1} ⊂ Z4, a = 2a1 + a0, b = 2b1 + b0 and

S =
Z4 〈x, y〉

〈x2 − a, y2 − b, yx− xy − 2(c+ dx+ ey + fxy)〉
.

Then with the substitutions x = u+ a0 and y = v + b0 and then collecting terms,

we see that the previous ring is isomorphic to

R =
Z4 〈u, v〉

〈u2 + 2(a1 + a0u), v2 + 2(b1 + b0v), vu− uv − 2(α1 + β1u+ γ1v + δ1uv)〉
where α1 = c + fa0b0 + da0 + eb0 (mod 2), β1 = d + fb0 (mod 2), γ1 = e + fa0

(mod 2), and δ1 = f . In this section, we present two propositions which collectively

characterize each of the rings in the form of R. First, some common calculations

are given to simplify the proofs to come.
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It can be shown that R is a Z4-algebra with basis {1, u, v, uv}. Also,

u2 = −2(a0u+ a1) = 2(a0u+ a1),

v2 = −2(b0v + b1) = 2(b0v + b1),

vu = uv + 2(α1 + β1u+ γ1v + δ1uv),

(uv)u = u(vu) = u(uv + 2(α1 + β1u+ γ1v + δ1uv))

= u2v + 2(α1u+ γ1uv)

= 2a0uv + 2a1v + 2α1u+ 2γ1uv

= 2α1u+ 2a1v + 2(a0 + γ1)uv,

u(uv) = u2v = 2a1v + 2a0uv,

v(uv) = (vu)v = 2b1u+ 2α1v + 2(b0 + β1)uv,

(uv)v = uv2 = 2b1u+ 2b0uv, and

(uv)2 = 2α1uv.

(2.1)

Note, u, v and uv are nilpotent. Therefore, R is local.

In the proofs we will also need the following tedious calculations multiple times.

Let x = x1 + x2u + x3v + x4uv, y = y1 + y2u + y3v + y4uv ∈ R where xi, yi ∈ Z4.

Then

xy = x1y1 + 2(a1x2y2 + α1x3y2 + b1x3y3)+

(x2y1 + x1y2 + 2(α1x4y2 + β1x3y2 + a0x2y2 + b1(x4y3 + x3y4)))u+

(x3y1 + x1y3 + 2(α1x3y4 + γ1x3y2 + b0x3y3 + a1(x4y2 + x2y4)))v+

(x4y1 + x1y4 + x3y2 + x2y3+

2(δ1x3y2 + (a0 + γ1)x4y2 + b0x4y3 + a0x2y4 + (b0 + β1)x3y4 + α1x4y4))uv.

(2.2)

Swapping the roles of x and y we can calculate yx and see that

yx− xy = 2α1(x2y3 − x3y2)+

(2β1(x2y3 − x3y2) + 2α1(x2y4 − x4y2))u+

(2γ1(x2y3 − x3y2) + 2α1(x4y3 − x3y4))v+

(2δ1(x2y3 − x3y2) + 2γ1(x2y4 − x4y2) + 2β1(x4y3 − x3y4))uv.

(2.3)

Before proceeding, a simple result on reflexive rings is given, which simplifies the

proof of reflexivity in the coming proposition.

Lemma 2.1. A ring T is reflexive if and only if for any a, b ∈ T , aTb = 0 implies

ba = 0.
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Proof. Let T be a ring with the property that for any a, b ∈ T , aTb = 0 implies

ba = 0. Let a, b, r ∈ T such that aTb = 0. Then raTb = 0. By the assumed

property of R, bra = 0 showing bTa = 0. Hence, T is reflexive. The reverse

implication is obvious. �

Proposition 2.2. Let a0, a1, b0, b1, α1, β1, γ1, δ1 ∈ {0, 1} ⊂ Z4 and

R =
Z4 〈u, v〉

〈u2 + 2(a1 + a0u), v2 + 2(b1 + b0v), vu− uv − 2(1 + β1u+ γ1v + δ1uv)〉
·

Then R is local reflexive nonsymmetric of order 256. Furthermore, R is semicom-

mutative (hence reversible) if and only if a1 = 1 = b1.

Proof. The order and localness were shown in the discussion preceding the propo-

sitions. Notice in this proposition, the cases where α1 = 1 are considered. By

Equations 2.1,

u2 = 2(a0u+ a1),

v2 = 2(b0v + b1),

vu = uv + 2(1 + β1u+ γ1v + δ1uv),

uvu = 2u+ 2a1v + 2(a0 + γ1)uv,

u2v = 2a1v + 2a0uv,

vuv = 2b1u+ 2v + 2(b0 + β1)uv,

uv2 = 2b1u+ 2b0uv and

(uv)2 = 2uv.

(2.4)

Note, u, v and uv are nilpotent and 2vu = 2uv.

Since u(uv)v = 0 but (uv)uv = 2uv 6= 0, R is nonsymmetric. If a1 = 0 then

u(u + 2a0) = 0 and uv(u + 2a0) = uvu + 2a0uv = 2u + 2γ1uv 6= 0. Hence, R

is nonsemicommutative in this case. Similarly, if b1 = 0 then (v + 2b0)v = 0 and

(v + 2b0)uv = 2v + 2β1uv 6= 0 showing R is nonsemicommutative.

Next, we show R is reflexive. Let x = x1 + x2u + x3v + x4uv, y = y1 + y2u +

y3v+y4uv ∈ R where xi, yi ∈ Z4 and assume xRy = 0. If x ∈ U(R) then y = 0 and

yx = 0. Similarly, if y ∈ U(R), yx = 0. So, assume x and y are not units. Then

x1, y1 ∈ 〈2〉. So, from Equation 2.2, 0 = x2y = 2xy = 2(x3y2 + x2y3)uv showing

x3y2 + x2y3 ∈ 〈2〉.
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By Equation 2.2 with appropriate substitutions,

xu =2(a1x2 + x3) + (x1 + 2(x2a0 + β1x3 + x4))u+

2(γ1x3 + a1x4)v + (x3 + 2(δ1x3 + a0x4 + γ1x4))uv,

xv =2x3b1 + 2b1x4u+ (x1 + 2b0x3)v + (x2 + 2b0x4)uv,

xuv =2b1x3u+ 2(x3 + a1x2)v + (x1 + 2(x2a0 + b0x3 + β1x3 + x4))uv.

Now again using Equation 2.2 with appropriate substitutions (remember x3y2 +

x2y3 ∈ 〈2〉),

0 = xuy =(2(a1x2 + x3)y2 + 2(x3y2 + b1x3y3))u+ (2(a1x2 + x3)y3 + 2a1x3y2)v+

(x3y1 + 2(a1x2 + x3)y4 + 2(γ1x3 + a1x4)y2+

(x1 + 2(x2a0 + β1x3 + x4))y3 + 2((a0 + γ1)x3y2 + b0x3y3 + x3y4))uv

=(2a1x2y2 + 2b1x3y3)u+ 2x3y3v+

(x3y1 + x1y3 + 2a1(x4y2 + x2y4) + 2(β1 + b0)x3y3 + 2x4y3)uv

and similarly

0 = xvy =2x2y2u+ (2b1x3y3 + 2a1x2y2)v+

(x2y1 + x1y2 + 2b1(x4y3 + x3y4) + 2(a0 + γ1)x2y2 + 2x2y4)uv.

From the previous 2 equations, x2y2, x3y3 ∈ 〈2〉, so,

0 = xuy =(x3y1 + x1y3 + 2a1(x4y2 + x2y4) + 2x4y3)uv

0 = xvy =(x2y1 + x1y2 + 2b1(x4y3 + x3y4) + 2x2y4)uv.

This shows

x3y1 + x1y3 + 2a1(x4y2 + x2y4) =2x4y3

x2y1 + x1y2 + 2b1(x4y3 + x3y4) =2x2y4

(2.5)

Since 0 = xy, we have that x1y1 + 2(a1x2y2 + x3y2 + b1x3y3) = 0 and since

x1, y1, x2y2, x3y3, x3y2 + x2y3 ∈ 〈2〉, x3y2, x2y3 ∈ 〈2〉. Then using Equations 2.5,

0 = xy = 2(x4y2 + x2y4)u+

2(x4y3 + x3y4)v+

(x4y1 + x1y4 + x3y2 + x2y3+

2((a0 + γ1)x4y2 + b0x4y3 + a0x2y4 + (b0 + β1)x3y4 + x4y4))uv.

(2.6)
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This shows

2(x4y2 + x2y4) =0

2(x4y3 + x3y4) =0

(x4y1 + x1y4 + x3y2 + x2y3 + 2(γ1x4y2 + β1x3y4 + x4y4) =0.

(2.7)

Finally, switching the roles of x and y in Equation 2.2 and applying all of the

developed relations, yx = 0. Hence, by Lemma 2.1, R is reflexive.

Assume a1 = b1 = 1. We now show R is reversible in this case. Let x =

x1 +x2u+x3v+x4uv, y = y1 + y2u+ y3v+ y4uv ∈ R where xi, yi ∈ Z4 and assume

xy = 0. If x ∈ U(R) the y = 0 and if y ∈ UR) then x = 0. In either case, yx = 0.

So, assume neither is a unit. Then x1 ∈ 〈2〉 and y1 ∈ 〈2〉. Then

0 = xy = x1y1 + 2(x2y2 + x3y2 + x3y3) +

(x2y1 + x1y2 + 2(β1x3y2 + a0x2y2 + x4y2 + x4y3 + x3y4))u+

(x3y1 + x1y3 + 2(γ1x3y2 + b0x3y3 + x3y4 + x4y2 + x2y4))v +

(x4y1 + x1y4 + x3y2 + x2y3 + 2(a0(x4y2 + x2y4) + b0(x4y3 + x3y4) +

β1x3y4 + γ1x4y2 + δ1x3y2 + x4y4))uv.

First, 2x2y2 + 2x3y2 + 2x3y3 = 0 showing at least one of x2, x3, y2, or y3 is in

〈2〉. Since x1, y1 ∈ 〈2〉, 0 = 2xy = 2(x3y2 + x2y3)uv showing (x3y2 + x2y3) ∈ 〈2〉.
Thus at least two of x2, x3, y2, or y3 are in 〈2〉. If x2, y2 ∈ (2) then

2x2y2 + 2x3y2 + 2x3y3 = 2x3y3 = 0

so, x3 ∈ 〈2〉 or y3 ∈ 〈2〉. Similarly, if x3, y3 ∈ (2) then x2 ∈ 〈2〉 or y2 ∈ 〈2〉. Assume

x2, x3 ∈ 〈2〉 but y2 /∈ 〈2〉 and y3 /∈ 〈2〉. Then

0 = xy = (x1y2)u+

(x1y3 + 2x4y2)v +

(x4y1 + x3y2 + x2y3 + x1y4 +

2(a0x4y2 + γ1x4y2 + b0x4y3 + x4y4))uv.

Since y2 /∈ 〈2〉 and y3 /∈ 〈2〉, 0 = x1y2 +x1y3 + 2x4y2 = x1(y2 + y3) + 2x4y2 = 2x4y2

showing x4 ∈ 〈2〉. This shows in this case x ∈ 〈2〉. Similarly, if y2, y3 ∈ 〈2〉 but

x2 /∈ 〈2〉 and x3 /∈ 〈2〉 then y ∈ 〈2〉.
Now, if x2, y2, x3 ∈ 〈2〉 then

0 = x2y1 + x1y2 + 2(β1x3y2 + a0x2y2 + x4y2 + x4y3 + x3y4)

= 2x4y3
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showing x2, x3, y2, y3 ∈ 〈2〉 or x ∈ 〈2〉. Similarly, it can be shown that if three of

the four members of {x2, x3, y2, y3} are in 〈2〉 then x2, x3, y2, y3 ∈ 〈2〉, x ∈ 〈2〉 or

y ∈ 〈2〉 and so this is true in any case. Since x2, x3, y2, y3 ∈ 〈2〉, x ∈ 〈2〉 or y ∈ 〈2〉,
by Equation 2.3, we have that yx = yx− xy = 0. Hence, R is reversible. �

Proposition 2.3. Let a1, a0, b1, b0, β1, γ1, δ1 ∈ Z2 and

R =
Z4 〈u, v〉

〈u2 + 2(a1 + a0u), v2 + 2(b1 + b0v), vu− uv − 2(β1u+ γ1v + δ1uv)〉
·

Then R is local of order 256.

(1) If β1 = 0 and γ1 = 0 then R is symmetric. In addition,

(a) if δ1 = 0 then R is commutative and

(b) if δ1 = 1 then R is noncommutative.

(2) If β1 6= 0 or γ1 6= 0 and β1 = b1 and γ1 = a1 then R is symmetric

noncommutative.

(3) If β1 6= 0 or γ1 6= 0 and β1 6= b1 or γ1 6= a1 then R is nonreflexive. In

addition,

(a) if a1 = b1 = 1 and a0 = b0 then R is semicommutative and

(b) if a1 6= 1, b1 6= 1 or a0 6= b0 then R is nonsemicommutative.

Proof. The order and localness were shown in the discussion preceding the propo-

sitions. Notice in this proposition, the cases where α1 = 0 are considered. By

Equations 2.1,

u2 = 2(a0u+ a1),

v2 = 2(b0v + b1),

vu = uv + 2(β1u+ γ1v + δ1uv),

uvu = 2a1v + 2(a0 + γ1)uv,

u2v = 2a1v + 2a0uv,

vuv = 2b1u+ 2(b0 + β1)uv,

uv2 = 2b1u+ 2b0uv and

(uv)2 = 0.

(2.8)

Note, u, v and uv are nilpotent and 2vu = 2uv.

For use throughout the proof, let x = x1 + x2u + x3v + x4uv, y = y1 + y2u +

y3v + y4uv, z = z1 + z2u+ z3v + z4uv ∈ R \ 0 where xi, yi, zi ∈ Z4.

case β1 = γ1 = 0: Assume β1 = γ1 = 0. As in the proof of Proposition 2.2, if

xy = 0 then x3y2 + x2y3 ∈ 〈2〉 and then Equation 2.3 shows that yx = yx− xy =
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2δ1(x2y3 − x3y2)uv = 0. So, R is reversible. Assume xyz = 0. If z ∈ U(R) then

xy = 0 and since R is reversible, yx = 0 so, yxz = 0. So, in addition, assume

z /∈ U(R). Then z1 ∈ 〈2〉 and so, yxz = (yx − xy)z = 2δ1(x2y3 − x3y2)uvz = 0.

Hence, R is symmetric. Clearly here R is commutative if and only if δ1 = 0.

case β1 = b1 = 0 and γ1 = a1 = 1: Assume β1 = b1 = 0 and γ1 = a1 = 1.

Assume xy = 0. Then from Equation 2.2, considering the constant term, x2 ∈ 〈2〉
or y2 ∈ 〈2〉. Considering this in the u-term, both x2 and y2 must be divisible by

2. Then using Equation 2.3, yx = yx − xy = 0 showing R is reversible. Now,

assume instead xyz = 0. If z ∈ U(R) then xy = 0 and since R is reversible, yx = 0

so, yxz = 0. So, in addition, assume z /∈ U(R). Then z1 ∈ 〈2〉 which implies

0 = 2xyz = 2(x2y3 + x3y2)z = 2(x2y3 − x3y2)z and 2uvz = 0. So,

yxz = (yx− xy)z

= (2γ1(x2y3 − x3y2)v + 2(δ1(x2y3 − x3y2) + γ1(x2y4 − x4y2))uv)z

= 0.

Hence, R is symmetric.

case β1 = b1 = 1 and γ1 = a1 = 0: Similar to the previous case, if β1 = b1 = 1

and γ1 = a1 = 0 then R is symmetric.

case β1 = b1 = 1 and γ1 = a1 = 1: Assume β1 = b1 = 1 and γ1 = a1 = 1.

As in the previous cases, we first show that R is reversible. To that end, assume

xy = 0. Again, since x and y are nonzero, x1, y1 ∈ 〈2〉. Equation 2.2 with xy = 0

shows that x2y2 +x3y3 ∈ 〈2〉. Since 2xy = 0, from Equation 2.2, x2y3 +x3y2 ∈ 〈2〉.
If x2, x3, y2, y3 ∈ U(Z4) (2 divides none of them) then yx = (2(y4 − x4) + 2(y4 −
x4))uv = 0 and if x2, x3, y2, y3 /∈ U(Z4) (2 divides all of them) then yx = 0. Also, if

2 divides 3 of the four of them then it divides them all. For instance, if 2|x2, 2|x3 and

2|y2 then 0 = x1y3 +x3y1 + 2x3y3b0 + 2x3y2 + 2(x2y4 +x4y2) = x1y3 showing 2|y3.

Since x2y2 +x3y3, x2y3 +x3y2 ∈ 〈2〉, it cannot be the case that 2 divides exactly one

of x2, x3, y2, y3 nor exactly one of x2, x3 and one of y2, y3. Without loss of generality

we may assume x2, x3 ∈ 〈2〉. Then either y2, y3 ∈ 〈2〉 or y2, y3 /∈ 〈2〉. Note that in

either case y2 + y3 ∈ 〈2〉. Fianlly, since 2(x2y3 − x3y2) = 2(x2y3 + x3y2) = 0, from

Equation 2.3,

yx = yx− xy = (2(x2y4 − x4y2) + 2(x3y4 − x4y3))uv

= 2x4(y2 + y3)uv = 0

showing R is reversible.
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Now assume xyz = 0. By reversibility, we may assume, x, y and z are not units

so, x1, y1, z1 ∈ 〈2〉. So, 2uvz = 0 and by Equation 2.3,

yxz = (yx− xy)z = 2(x2y3 − x3y2)(u+ v)z

= (x2y3 − x3y2)2(u+ v)(z2u+ z3v)

= (x2y3 − x3y2)2(z2 + z3)uv.

If z2, z3 ∈ 〈2〉 or z2, z3 /∈ 〈2〉, yxz = 0. Assume 2|z2 but 2 - z3. Then

0 = xyz = 2(x2y2 + x3y3)(z3v + z4uv) +

(x1y2 + x2y1 + 2x2y2a0 + 2x3y2 + 2x3y4 + 2x4y3)z3uv +

(x3y2 + x2y3)z1uv + (x3y2 + x2y3)z3(2b0uv + 2u).

So, (x2y3 + x3y2)z3 is the coefficient of u above showing (x2y3 + x3y2)z3 = 0. So,

in this case yxz = 0. Similarly, if 2 - z2 but 2|z3 then yxz = 0. Hence, in any case,

yxz = 0 showing R is symmetric. Hence, R is symmetric.

case β1 6= 0 or γ1 6= 0 and β1 6= b1 or γ1 6= a1: Now, assume β1 6= 0 or γ1 6= 0

and that β1 6= b1 or γ1 6= a1.

Assume a1 = 0 and γ1 = 1. If a0 = 0 then (uv)u = 2uv 6= 0 and uR(uv) = 0

and if a0 = 1 then u(uv) = 2uv 6= 0 and (uv)Ru = 0. Also, u(u + 2a0) = 0

but uv(u + 2a0) = 2uv. Then R is nonreflexive nonsemicommutative in this case.

Similarly, b1 = 0 and β1 = 1, R is nonreflexive nonsemicommutative.

Now, if a1 = 0 = γ1, since β1 6= 0 or γ1 6= 0 and β1 6= b1 or γ1 6= a1, b1 = 0 and

β1 = 1. Similarly, if b1 = 0 = β1 then a1 = 0 and γ1 = 1. So, if a1 = 0 or b1 = 0

then R is nonreflexive nonsemicommutative.

Assume a1 = 1 = b1. Without loss of generality, we may assume β1 = 1 and

γ1 = 0. Then

(u2 + uv + 2b0u)R(u+ v) = 0

but

(u+ v)(u2 + uv + 2b0u) = 2uv 6= 0

so, R is nonreflexive in this case. If a0 = 0 and b0 = 1 then

(2 + 2δ1u+ (u+ v))(u+ v) = 2u+ 2v + 2δ1uv + (u+ v)2

= 2u+ 2v + 2δ1uv + 2 + uv + 2u+ uv + 2δ1uv + 2v + 2

= 0

but (2 + 2δ1u+ (u+ v))u(u+ v) = 2uv 6= 0, showing R is nonsemicommutative in

this case. Similarly, if a0 = 1 and b0 = 0 then R is nonsemicommutative. Finally,
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we show if a0 = b0 then R is semicommutative. So, to finish, assume a0 = b0 (and

remember a1 = b1 = β1 = 1 and γ1 = 0).

Assume xy = 0. Then

0 = xy = x1y1 + 2(x2y2 + x3y3) +

(x2y1 + x1y2 + 2(x3y2 + a0x2y2 + x4y3 + x3y4))u+

(x3y1 + x1y3 + 2(a0x3y3 + x4y2 + x2y4))v +

(x4y1 + x1y4 + x3y2 + x2y3 +

2(x3y2δ1 + a0(x4y2 + x2y4 + x4y3 + x3y4) + x3y4)uv.

Similar to previous cases, we can deduce that x1, y1, x2y3 +x3y2, x2y2 +x3y3 ∈ 〈2〉.
If x2, x3, y2, y3 ∈ U(Z4) (2 divides none of them) then y1+x1+2(1+a0+x4+y4) = 0

and y1 +x1 +2(a0 +x4 +y4) = 0. Adding these equations gives 2 = 0. So, 2 divides

at least one of them. Since x2y3 + x3y2, x2y2 + x3y3 ∈ 〈2〉, it cannot be the case

that 2 divides exactly one of x2, x3, y2, y3 nor exactly one of x2, x3 and one of y2, y3.

If 2 divides 3 of the four of them then it divides them all. For instance, if 2|x2,

2|x3 and 2|y2 then 0 = x3y1 + x1y3 + 2(a0x3y3 + x4y2 + x2y4) = x1y3 showing

y3 ∈ 〈2〉. Without loss of generality we may assume x2, x3 ∈ 〈2〉. Then we can also

deduce that x1y2 = 2x4y3 and x1y3 = 2x4y2. Let r = r1 + r2u+ r3v + r4uv where

r1, r2, r3, r4 ∈ Z4. Then xr1y = r1xy = 0, xr4uvy = r4x1uvy = 0,

xr2uy = r2(x1u+ x3vu+ x4uvu)y

= r2(x1u+ x3uv + x4(2v + 2a0uv))y

= r2(x1u+ 2x4v + (2x4a0 + x3)uv))y

= r2(2x4y2 + x1y3)uv = 0

and

xr3vy = r3(x1v + x2uv + x4uv
2)y

= r3(x1v + x2uv + x4(2u+ 2a0uv))y

= r3(x1v + 2x4u+ (2x4a0 + x2)uv))y

= r3(2x4y3 + x1y2)uv = 0.

So, xry = 0. Hence, if xy = 0, xRy = 0 showing R is semicommutative. �
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3. Isomorphism classes

Let

Rn =
Z4 〈u, v〉

〈u2 + 2(a1 + a0u), v2 + 2(b1 + b0v), vu− uv − 2(α1 + β1u+ γ1v + δ1uv)〉
where

n = a1 ∗ 27 + a0 ∗ 26 + b1 ∗ 25 + b0 ∗ 24 + α1 ∗ 23 + β1 ∗ 22 + γ1 ∗ 2 + δ1 ∈ N

and R = {Rn|0 ≤ n ≤ 255}. Using Mathematica we have identified 21 non-

isomorphic reflexive nonsemicommutative rings in R and 10 non-isomorphic re-

versible nonsymmetric rings in R. By Proposition 2.2 it can be seen that for such

rings in R, α1 = 1. By Theorem 2 in [1] and Theorem 3.1 in [12] these are minimal

rings of their respective types.

Proposition 3.1. The following rings are a subset of R which are non-isomorphic

representatives of each of the isomorphic classes of reflexive nonsemicommutative

rings in R.

(1) Z4〈u,v〉
〈u2,v2,vu−uv−2(1+v)〉

(2) Z4〈u,v〉
〈u2,v2,vu−3uv−2(1+v)〉

(3) Z4〈u,v〉
〈u2,v2+2v,vu−uv−2〉

(4) Z4〈u,v〉
〈u2,v2+2v,vu−3uv−2〉

(5) Z4〈u,v〉
〈u2,v2+2,vu−uv−2(1+v)〉

(6) Z4〈u,v〉
〈u2,v2+2,vu−3uv−2(1+v)〉

(7) Z4〈u,v〉
〈u2,v2+2,vu−uv−2(1+u)〉

(8) Z4〈u,v〉
〈u2,v2+2,vu−3uv−2(1+u)〉

(9) Z4〈u,v〉
〈u2,v2+2(1+v),vu−uv−2〉

(10) Z4〈u,v〉
〈u2,v2+2(1+v),vu−3uv−2〉

(11) Z4〈u,v〉
〈u2+2u,v2+2,vu−uv−2〉

(12) Z4〈u,v〉
〈u2+2u,v2+2,vu−3uv−2〉

(13) Z4〈u,v〉
〈u2,v2,vu−uv−2〉

(14) Z4〈u,v〉
〈u2,v2,vu−3uv−2〉

∼= Z4〈u,v〉
〈u2,v2+2,vu−3uv−2〉

(15) Z4〈u,v〉
〈u2,v2+2,vu−uv−2〉

(16) Z4〈u,v〉
〈u2+2u,v2+2v,vu−uv−2〉

(17) Z4〈u,v〉
〈u2+2,v2,vu−3uv−2(1+u+v)〉

(18) Z4〈u,v〉
〈u2,v2,vu−uv−2(1+u+v)〉

(19) Z4〈u,v〉
〈u2,v2,vu−3uv−2(1+u+v)〉

(20) Z4〈u,v〉
〈u2,v2+2v,vu−uv−2(1+v)〉

(21) Z4〈u,v〉
〈u2+2u,v2+2v,vu−3uv−2〉

Proposition 3.2. The following rings are a subset of R which are non-isomorphic

representatives of each of the isomorphic classes of reversible nonsymmetric rings

in R.

(1) Z4〈u,v〉
〈u2+2,v2+2,vu−uv−2〉

(2) Z4〈u,v〉
〈u2+2,v2+2,vu−3uv−2〉

(3) Z4〈u,v〉
〈u2+2,v2+2,vu−uv−2(1+v)〉

(4) Z4〈u,v〉
〈u2+2,v2+2,vu−3uv−2(1+v)〉

(5) Z4〈u,v〉
〈u2+2,v2+2(1+v),vu−uv−2〉

(6) Z4〈u,v〉
〈u2+2,v2+2(1+v),vu−3uv−2〉

(7) Z4〈u,v〉
〈u2+2(1+u),v2+2(1+v),vu−3uv−2〉

(8) Z4〈u,v〉
〈u2+2(1+u),v2+2(1+v),vu−uv−2〉

(9) Z4〈u,v〉
〈u2+2,v2+2,vu−3uv−2(1+u+v〉

(10) Z4〈u,v〉
〈u2+2,v2+2,vu−uv−2(1+u+v〉
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Here we list the precise isomorphic classes of R (along with the representative

from the list above). The subscripts are listed as a 2-digit hexadecimal so as to

make it easy to read what the precise ring is in the class. This then also shows how

closely related the classes are.

• reflexive nonsemicommutative

(1) {R0Ah
, R0Ch

, R1Eh
, R4Eh

}, Z4〈u,v〉
〈u2,v2,vu−uv−2(1+v)〉

(2) {R0Bh
, R0Dh

, R1Fh
, R4Fh

}, Z4〈u,v〉
〈u2,v2,vu−3uv−2(1+v)〉

(3) {R18h
, R48h

, R5Ah
, R5Ch

}, Z4〈u,v〉
〈u2,v2+2v,vu−uv−2〉

(4) {R19h
, R49h

, R5Dh
, R5Bh

}, Z4〈u,v〉
〈u2,v2+2v,vu−3uv−2〉

(5) {R2Ah
, R8Ch

, R3Eh
, RCEh

}, Z4〈u,v〉
〈u2,v2+2,vu−uv−2(1+v)〉

(6) {R2Bh
, R8Dh

, R3Fh
, RCFh

}, Z4〈u,v〉
〈u2,v2+2,vu−3uv−2(1+v)〉

(7) {R2Ch
, R6Eh

, R8Ah
, R9Eh

}, Z4〈u,v〉
〈u2,v2+2,vu−uv−2(1+u)〉

(8) {R2Dh
, R6Fh

, R8Bh
, R9Fh

}, Z4〈u,v〉
〈u2,v2+2,vu−3uv−2(1+u)〉

(9) {R38h
, R7Ah

, RC8h
, RDCh

}, Z4〈u,v〉
〈u2,v2+2(1+v),vu−uv−2〉

(10) {R39h
, R7Bh

, RC9h
, RDDh

}, Z4〈u,v〉
〈u2,v2+2(1+v),vu−3uv−2〉

(11) {R68h
, R7Ch

, R98h
, RDAh

}, Z4〈u,v〉
〈u2+2u,v2+2,vu−uv−2〉

(12) {R69h
, R7Dh

, R99h
, RDBh

}, Z4〈u,v〉
〈u2+2u,v2+2,vu−3uv−2〉

(13) {R08h
, R1Ch

, R4Ah
, R5Eh

}, Z4〈u,v〉
〈u2,v2,vu−uv−2〉

(14) {R09h
, R1Dh

, R4Bh
, R5Fh

,

R29h
, R3Dh

, R6Bh
, R7Fh

, R89h
, R9Dh

, RCBh
, RDFh

}, Z4〈u,v〉
〈u2,v2,vu−3uv−2〉

∼= Z4〈u,v〉
〈u2,v2+2,vu−3uv−2〉

(15) {R28h
, R3Ch

, R6Ah
, R7Eh

, R88h
, R9Ch

, RCAh
, RDEh

}, Z4〈u,v〉
〈u2,v2+2,vu−uv−2〉

(16) {R58h
, R6Ch

, R9Ah
}, Z4〈u,v〉
〈u2+2u,v2+2v,vu−uv−2〉

(17) {R1Bh
, R6Dh

, R9Bh
,

R4Dh
, R2Fh

, R8Fh
}, Z4〈u,v〉
〈u2+2,v2,vu−3uv−2(1+u+v)〉

(18) {R0Eh
, R2Eh

, R8Eh
}, Z4〈u,v〉
〈u2,v2,vu−uv−2(1+u+v)〉

(19) {R0Fh
, R3Bh

, RCDh
}, Z4〈u,v〉
〈u2,v2,vu−3uv−2(1+u+v)〉

(20) {R1Ah
, R3Ah

, RCCh
,

R4Ch
, R78h

, RD8h
}, Z4〈u,v〉
〈u2,v2+2v,vu−uv−2(1+v)〉

(21) {R59h
, R79h

, RD9h
}, Z4〈u,v〉
〈u2+2u,v2+2v,vu−3uv−2〉
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• reversible nonsymmetric

(1) {RA8h
, RBCh

, REAh
, RFEh

}, Z4〈u,v〉
〈u2+2,v2+2,vu−uv−2〉

(2) {RA9h
, RBDh

, REBh
, RFFh

}, Z4〈u,v〉
〈u2+2,v2+2,vu−3uv−2〉

(3) {RAAh
, RACh

, RBEh
, REEh

}, Z4〈u,v〉
〈u2+2,v2+2,vu−uv−2(1+v)〉

(4) {RABh
, RADh

, RBFh
, REFh

}, Z4〈u,v〉
〈u2+2,v2+2,vu−3uv−2(1+v)〉

(5) {RB8h
, RE8h

, RFAh
, RFCh

}, Z4〈u,v〉
〈u2+2,v2+2(1+v),vu−uv−2〉

(6) {RB9h
, RE9h

, RFBh
, RFDh

}, Z4〈u,v〉
〈u2+2,v2+2(1+v),vu−3uv−2〉

(7) {RF9h
}, Z4〈u,v〉
〈u2+2(1+u),v2+2(1+v),vu−3uv−2〉

(8) {RF8h
, RBAh

, RECh
}, Z4〈u,v〉
〈u2+2(1+u),v2+2(1+v),vu−uv−2〉

(9) {RAFh
, RBBh

, REDh
}, Z4〈u,v〉
〈u2+2,v2+2,vu−3uv−2(1+u+v〉

(10) {RAEh
}, Z4〈u,v〉
〈u2+2,v2+2,vu−uv−2(1+u+v〉

4. Generalized Hamilton quaternions over a ring Zps

In this section we will consider generalized Hamilton quaternion rings which we

define next.

Definition 4.1. For a ring R and a, b ∈ R, the generalized Hamilton quaternion

ring of (a, b) over R is defined as(
a, b

R

)
=

R 〈x, y〉
〈x2 − a, y2 − b, yx+ xy〉

.

We first consider the set of generalized Hamilton quaternion rings over Z4. This

is a subset of the family of rings considered in Section 2. Taking a, b ∈ Z4 there

are 16 rings. Using Mathematica, the isomorphism classes have been determined

while using Propositions 2.2 and 2.3 the ring types can be deduced. These results

are collected here.

Proposition 4.2. A generalized Hamilton quaternion ring over Z4 is local and

there are 16 such rings contained in 7 distinct isomorphism classes. The classes

along with their ring type are

(1)
{(

0,0
Z4

)}
, symmetric

(2)
{(

0,3
Z4

)
,
(

3,0
Z4

)}
, symmetric

(3)
{(

2,2
Z4

)
,
(

0,2
Z4

)
,
(

2,0
Z4

)}
, symmetric

(4)
{(

3,3
Z4

)}
, reversible nonsymmetric

(5)
{(

1,1
Z4

)
,
(

1,3
Z4

)
,
(

3,1
Z4

)}
, reflexive nonsemicommutative

(6)
{(

0,1
Z4

)
,
(

1,0
Z4

)}
, nonreflexive nonsemicommutative

(7)
{(

1,2
Z4

)
,
(

2,1
Z4

)
,
(

2,3
Z4

)
,
(

3,2
Z4

)}
, nonreflexive nonsemicommutative.
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Proof. With a = 2a1 + a0 and b = 2b1 + b0 where a0, a1, b0, b1 ∈ {0, 1} ⊂ Z4, from

Section 2, we can deduce that(
a, b

R

)
=

R 〈x, y〉
〈x2 − a, y2 − b, yx+ xy〉

=
R 〈u, v〉

〈u2 + 2(a1 + a0u), v2 + 2(b1 + b0v), vu− uv − 2(a0b0 + b0u+ a0v + uv)〉
.

(4.1)

Then the ring types can be determined by Propositions 2.2 and 2.3. �

Next, we determine the ring type of the generalized Hamilton quaternion ring of

(p, p) over Zps i.e.
(

p,p
Zps

)
for any s ∈ N and odd prime p.

Definition 4.3. For w ∈
(
p,p
Z
)

s.t. w = a0 + a1x+ a2y+ a3xy where ai ∈ Z define

‖w‖ = a2
0 − pa2

1 − pa2
2 + p2a2

3.

The next two results are well-known.

Lemma 4.4. Let w, z ∈
(

a,b
Z

)
. Then ‖wz‖ = ‖w‖ · ‖z‖.

Lemma 4.5. Let p be an odd prime. Then the only solutions of the equation

x2 + y2 ≡ 0 (mod p) are x, y ≡ 0 (mod p) if and only if p ≡ 3 (mod 4).

The next five lemmas are the keys to the main results which immediately follow

them.

Lemma 4.6. Let p be an odd prime and w = a0 + a1x + a2y + a3xy ∈
(
p,p
Z
)
. If

‖w‖ ≡ 0 (mod p2) then p|a0 and p|a2
1 + a2

2.

Proof. Assume ‖w‖ ≡ 0 (mod p2). Then a2
0 − p(a2

1 + a2
2) ≡ ‖w‖ ≡ 0 (mod p2)

which implies p|a0 and p|a2
1 + a2

2. �

Lemma 4.7. Let p be an odd prime s.t. p ≡ 3 (mod 4) and w = a0 + a1x+ a2y+

a3xy ∈
(
p,p
Z
)
.

(1) If ‖w‖ ≡ 0 (mod p2) then a0 ≡ a1 ≡ a2 ≡ 0 (mod p).

(2) If ‖w‖ ≡ 0 (mod p3) then p|w.

Proof. First, assume ‖w‖ ≡ 0 (mod p2). By Lemma 4.6, p|a0 and p|a2
1 +a2

2. Since

p ≡ 3 (mod 4), by Lemma 4.5, p|a1 and p|a2.

Next, assume ‖w‖ ≡ 0 (mod p3). This implies ‖w‖ ≡ 0 (mod p2), so from

above, p|a0, p|a1 and p|a2. Remember, ‖w‖ = a2
0 − p(a2

1 + a2
2) + p2a3. Since p|a0,

there exists a′0 ∈ Z s.t. a0 = pa′0. Then p|a′20 +a2
3. Since p ≡ 3 (mod 4), by Lemma

4.5, p|a3. �
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Lemma 4.8. Let p be an odd prime and w, z ∈
(

0,0
Z
)
. Then wz ≡ 0 (mod p) if

and only if zw ≡ 0 (mod p).

Proof. Can be verified by direct computation. �

Lemma 4.9. Let p be an odd prime s.t. p ≡ 3 (mod 4), s ≥ 2 and w, z ∈
(
p,p
Z
)
.

Then wz ≡ 0 (mod ps) if and only if zw ≡ 0 (mod ps).

Proof. First, w = α1 + β1x+ γ1y + δ1xy and z = α2 + β2x+ γ2y + δ2xy for some

α1, β1, γ1, δ1, α2, β2, γ2, δ2 ∈ Z. Assume wz ≡ 0 (mod ps). It should be clear that

p|α1 and p|α2. Note, for a ∈
(
p,p
Z
)
, if a ≡ 0 (mod ps) then ‖a‖ ≡ 0 (mod p2s).

By assumption wz ≡ 0 (mod ps), so by Lemma 4.4, ‖w‖ ≡ 0 (mod p3) or ‖z‖ ≡ 0

(mod p3) or s = 2, ‖w‖ ≡ 0 (mod p2) and ‖z‖ ≡ 0 (mod p2).

Then by Lemma 4.7, p|w, p|z or we have that s = 2 and p|β1, p|β2, p|γ1 and

p|γ2. We proceed by induction. Assume s = 2. Assume p|w so, w = pw′ for some

w′. Then w′z ≡ 0 (mod p). By Lemma 4.8, zw′ ≡ 0 (mod p) showing zw ≡ 0

(mod p2). Similarly, if p|z, the result holds. Now assume p|β1, p|β2, p|γ1 and p|γ2.

Then

0 ≡wz

≡(α1 + β1x+ γ1y + δ1xy)(α2x+ β2x+ γ2xy + δ2xy)

≡(α1δ2 + δ1α2)xy (mod p2),

showing α1δ2 + δ1α2 ≡ 0 (mod p2) and so,

zw ≡(α2 + β2x+ γ2y + δ2xy)(α1x+ β1x+ γ1xy + δ1xy)

≡(α1δ2 + δ1α2)xy

≡0 (mod p2).

Now, assume s > 2 and for 2 ≥ k < s, ab ≡ 0 (mod pk) if and only if ba ≡ 0

(mod pk) for a, b ∈
(
p,p
Z
)
. Assume w = pw′ for some w′ ∈ Z from which we

have w′z ≡ 0 (mod ps−1). By the assumption then zw′ ≡ 0 (mod ps−1). Finally,

zw = z(pw′) = (pw′)z = wz ≡ 0 (mod ps). Similarly, if p|z the result holds. �

Lemma 4.10. Let p be an odd prime, s ≥ 2 and w, z ∈
(
p,p
Z
)
. If for any r ∈

(
p,p
Z
)

wrz ≡ 0 (mod ps) then zw ≡ 0 (mod ps).

Proof. First, w = α1 + β1x+ γ1y + δ1xy and z = α2 + β2x+ γ2y + δ2xy for some

α1, β1, γ1, δ1, α2, β2, γ2, δ2 ∈ Z. Assume for any r ∈
(
p,p
Z
)
wrz ≡ 0 (mod ps). If

w ≡ 0 (mod ps) or z ≡ 0 (mod ps) then the result holds so we assume this is not
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the case. Since s > 1, it should be clear that p|α1 and p|α2. Now,

0 ≡wz

≡(α1 + β1x+ γ1y + δ1xy)(α2 + β2x+ γ2y + δ2xy)

≡(α1α2 + β1β2p+ γ1γ2p− δ1δ2p2)+

((α1β2 + β1α2) + (−γ1δ2 + δ1γ2)p)x+

((α1γ2 + γ1α2) + (−δ1β2 + β1δ2)p)y+

((α1δ2 + δ1α2) + (−γ1β2 + β1γ2))xy (mod ps)

(4.2)

0 ≡wxz

≡(α1 + β1x+ γ1y + δ1xy)(α2x+ β2p+ γ2xy + δ2py)

≡(α1α2 + β1β2p− γ1γ2p+ δ1δ2p
2)x+

((α1β2 + β1α2)p+ (γ1δ2 − δ1γ2)p2)+

((α1γ2 − γ1α2) + (δ1β2 + β1δ2)p)xy+

((α1δ2 − δ1α2)p+ (γ1β2 + β1γ2)p)y (mod ps)

(4.3)

0 ≡wyz

≡(α1y + β1xy + γ1p+ δ1px)(α2 + β2x+ γ2y + δ2xy)

≡(α1α2 − β1β2p+ γ1γ2p+ δ1δ2p
2)y+

((−α1β2 + β1α2) + (γ1δ2 + δ1γ2)p)xy+

((α1γ2 + γ1α2)p+ (δ1β2 − β1δ2)p2)+

((−α1δ2 + δ1α2)p+ (γ1β2 + β1γ2)p)x (mod ps)

(4.4)

0 ≡wxyz

≡(α1xy + β1py − γ1px+ δ1p
2)(α2 + β2x+ γ2y + δ2xy)

≡(α1α2 − β1β2p− γ1γ2p+ δ1δ2p
2)xy+

((−α1β2 + β1α2)p+ (−γ1δ2 + δ1γ2)p2)y+

((α1γ2 − γ1α2)p+ (δ1β2 − β1δ2)p2)x+

((−α1δ2 + δ1α2)p2 + (−γ1β2 + β1γ2)p2) (mod ps)

(4.5)
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Using sums and differences of 4.2, 4.3, 4.4 and 4.5 we can establish the following:

β1β2p ≡ 0 (mod ps)

γ1γ2p ≡ 0 (mod ps)

δ1δ2p
2 ≡ 0 (mod ps)

β1α2 + δ1γ2p ≡ 0 (mod ps)

α1β2 + γ1δ2p ≡ 0 (mod ps)

α1γ2 + β1δ2p ≡ 0 (mod ps)

γ1α2 + δ1β2p ≡ 0 (mod ps)

(4.6)

Note, for a ∈
(
p,p
Z
)
, if a ≡ 0 (mod ps) then ‖a‖ ≡ 0 (mod p2s). By assumption

wz ≡ 0 (mod ps), so by Lemma 4.4, ‖w‖ ≡ 0 (mod p2) or ‖z‖ ≡ 0 (mod p2). By

(4.6), p|β1 or p|β2 and p|γ1 or p|γ2 and if s > 2, p|δ1 or p|δ2.

(1) If p - β2 and p - γ2 then by (4.6), p|β1, p|γ1 and p|δ1. Hence, p|w.

(2) If p - β1 and p - γ1 then by (4.6), p|β2, p|γ2 and p|δ2. Hence, p|z.
(3) Since ‖w‖ ≡ 0 (mod p2) or ‖z‖ ≡ 0 (mod p2),

(a) If p|β1 and p|β2 then p|γ1 or p|γ2 by Lemma 4.6.

(b) If p|β1 and p|γ2 then p|β2 or p|γ1 by Lemma 4.6.

(c) if p|β2 and p|γ1 then p|γ2 or p|β2 by Lemma 4.6.

(d) If p|γ1 and p|γ2 then p|β1 or p|β2 by Lemma 4.6.

(e) If p divides exactly 3 elements of {β1, β2, γ1, γ2}, then by (4.6) p|w or

p|z.
(f) If p divides all 4 elements of {β1, β2, γ1, γ2} and s > 2, then by (4.6)

p|w or p|z.

In any case, p|w, p|z or we have that s = 2 and p|β1, p|β2, p|γ1 and p|γ2. From

here the same inductive argument can be used as in the proof of Lemma 4.9. �

Proposition 4.11. Let p be an odd prime and

R =
Zp 〈x, y〉

〈x2, y2, yx+ xy〉
.

Then R is symmetric.

Proof. Since xyx = −x2y = 0 and yxy = −y2x = 0, we see that J(R)3 = 0.

Since R is local, by Proposition 2.4 in [12] we need only show R is reversible. To

that end, let a, b ∈ R \ 0 and assume ab = 0. Since R is local, a nor b is a unit.

So, a = β1x + γ1y + δ1xy and b = β2x + γ2y + δ2xy for β1, γ1, δ1, β2, γ2, δ2 ∈ Zp.

Then 0 = ab = (β1γ2 − γ1β2)xy and so ba = (γ1β2 − β1γ2))xy = 0. Hence, R is

symmetric. �
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Lemma 4.12. Let s > 1, p be an odd prime and

R =
Zps 〈x, y〉

〈x2 − p, y2 − p, yx+ xy〉
.

Then R is local reflexive nonsymmetric.

Proof. By Lemma 4.10, R is reflexive. Since ps−2(p+xy)y(x+y) = 0 but ps−2(p+

xy)(x+ y)y = 2ps−1xy 6= 0, R is nonsymmetric. �

Proposition 4.13. Let s > 1, p be an odd prime s.t. p ≡ 1 (mod 4) and

R =
Zps 〈x, y〉

〈x2 − p, y2 − p, yx+ xy〉
.

Then R is local reflexive nonsemicommutative.

Proof. By Lemma 4.12, R is reflexive. By Lemma 4.5, there exist a, b ∈ Zps s.t.

p - a, p - b and p|a2 + b2 6= 0. Then ps−2(ax + by)2 = (a2 + b2)ps−1 = 0 and

ps−2(ax + by)x(ax + by) = ps−2(a2px + abpy + abpy − b2px) = (a2 − b2)ps−1x +

2abps−1y 6= 0. Hence, R is nonsemicommutative. �

Proposition 4.14. Let s > 1, p be an odd prime s.t. p ≡ 3 (mod 4) and

R =
Zps 〈x, y〉

〈x2 − p, y2 − p, yx+ xy〉
.

Then R is reversible and nonsymmetric.

Proof. By Lemma 4.9, R is reversible and by Lemma 4.12 R is nonsymmetric. �

5. Computational considerations

In this section, the computational considerations are discussed to give insight into

how the isomorphism classes were found in previous sections using Mathematica.

A Mathematica notebook for the code can be found at https://oeis.org/A342305.

In this discussion, the family of rings considered is slightly larger than that con-

sidered in Sections 2 and 3. Let R be a commutative ring with identity and let

a, b, c, d, e, f ∈ R. Throughout this section, we will denote by R(a, b, c, d, e, f), the

quotient ring
R 〈x, y〉

〈x2 − a, y2 − b, yx− c− dx− ey − fxy〉
.

Note that R(a, b, c, d, e, f) is always generated by the set {1, x, y, xy} and, con-

sequently, it has at most |R|4 elements. In the case that it has exactly |R|4, every

element can be expressed uniquely in the form x0 +x1x+x2y+x3xy where xi ∈ R,

i.e., it is a free algebra over R. Hence, these rings in this case, can be embedded in
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a standard way into the ring M4(R) using right multiplication and the canonical

basis, {1, x, y, xy}. Moreover, given a ring R(a, b, c, d, e, f), we can define

X =


0 1 0 0

a 0 0 0

c d e f

ad c af e

 and Y =


0 0 1 0

0 0 0 1

b 0 0 0

0 b 0 0

 .

Then the set of matrices {I4, X, Y,XY } are linearly independent and Y 2 = bI4 in

any case. If X2 = aI4 and Y X = cI4 + dX + eY + fXY , the set {x0I4 + x1X +

x2Y + x3XY : xi ∈ R} forms a ring which is then isomorphic to R(a, b, c, d, e, f).

As a consequence, we get the following proposition.

Proposition 5.1. Let R be a ring and a, b, c, d, e, f ∈ R. Then the ring R(a, b, c, d, e, f)

has order |R|4 if and only if

X =


0 1 0 0

a 0 0 0

c d e f

ad c af e

 and Y =


0 0 1 0

0 0 0 1

b 0 0 0

0 b 0 0


satisfy the equations X2 = aI4 and Y X = cI4 + dX + eY + fXY .

In addition to enumerating all the rings of the form R(a, b, c, d, e, f), we will also

seek to determine the isomorphism classes. In the cases where |R(a, b, c, d, e, f)| =
|R|4, we used the following result which can easily be proven using Proposition 5.1.

Corollary 5.2. Let R be a ring, a1, b1, c1, d1, e1, f1, a2, b2, c2, d2, e2, f2 ∈ R, R1 =

R(a1, b1, c1, d1, e1, f1), R2 = R(a2, b2, c2, d2, e2, f2),

X =


0 1 0 0

a1 0 0 0

c1 d1 e1 f1

a1d1 c1 a1f1 e1

 and Y =


0 0 1 0

0 0 0 1

b1 0 0 0

0 b1 0 0

 .

Assume |R1| = |R2| = |R|4. Then R1
∼= R2 if and only if there exist matrices

A,B ∈ {x0I4 + x1X + x2Y + x3XY : xi ∈ R} satisfying the equations A2 = a2I4,

B2 = b2I4 and BA = c2I4 + d2A+ e2B + f2AB and the set |{x0I4 + x1A+ x2B +

x3AB : xi ∈ R}| = |R|4.

Now, we turn to anti-isomorphisms. Recall that two rings R1 and R2 are anti-

isomorphic if and only if R1
∼= Rop

2 . Hence, in order to be able to use Propo-

sition 5.1 to determine anti-isomorphism classes, we need to describe the ring

R(a, b;α, β, γ, δ)op. This is done in the following result.
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Proposition 5.3. Let us assume that the rings R(a, b;α, β, γ, δ) and R(b, a;α, γ, β, δ)

are of order |R|4. Then,

R(a, b;α, β, γ, δ)op ∼= R(b, a;α, γ, β, δ).

Proof. Since both rings are of order |R|4, they are free R-modules. By their

definition, we can put R(a, b;α, β, γ, δ) = {x0 + x1x + x2y + x3xy : xi ∈ R}, with

x2 = a, y2 = b, yx = α+ βx+ γy + δxy and R(b, a;α, γ, β, δ) = {x0 + x1x+ x2y +

x3x y : xi ∈ R}, with x2 = b, y2 = a, y x = α+ γx+ βy+ δx y. Now, if we define an

R-module homomorphism φ : R(b, a;α, γ, β, δ) −→ R(a, b;α, β, γ, δ) by φ(1) = 1,

φ(x) = y, φ(y) = x, φ(x y) = xy, it is straightforward that it induces the claimed

isomorphism and the result follows. �

In this situation we get the following corollary, which does not require any proof.

It implies that, once when know the isomorphism classes of our family of rings, we

also know the anti-isomorphism classes.

Corollary 5.4. Let us assume that the rings R(a, b;α, β, γ, δ) and R(â, b̂; α̂, β̂, γ̂, δ̂)

are of order |R|4. Then, they are anti-isomorphic if and only if

R(â, b̂; α̂, β̂, γ̂, δ̂) ∼= R(b, a;α, γ, β, δ).

Algorithm 1 Isomorphy Test

1: Let R1 = R(a, b, α, β, γ, δ); R2 a ring of order |R|4

2: Let Ω(a) = {X ∈ R2 : X2 = a} = {X1, X2, ..., Xn}
3: Let Ω(b) = {X ∈ R2 : X2 = b} = {Y1, Y2, ..., Ym}
4: for i = 1, 2, . . . n do

5: for j = 1, 2, . . .m do

6: if YjXi = α + βXi + γYj + δXiYj and | < I,Xi, Yj , XiYj > | = |R|4

then

7: return True

8: end if

9: end for

10: end for

11: return False

Sometimes it is easy and fast to check that two rings are not isomorphic, just

by verifying that certain equations have a different number of solutions in each

ring. However, this approach fails in many cases, for example when the rings are

anti-isomorphic but not isomorphic. In such situations it is necessary to resort
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to the algorithm above. This is also the case if we want to prove that two rings

are isomorphic. The computational complexity of this test is easily seen to be

of order O(n8), and hence it can only be used for moderately low values of n.

The reflexibility, reversibility, semi-commutativity and abelianity tests are also of

complexity O(n8). The symmetry test is of even higher complexity, O(n12), since

the definition of symmetry involves 3 elements.

In the caseR = Z4, Algorithm 1, allows to determine that there are 97 isomorphic

classes of this family and there are 88 in the family considered in Sections 2 and 3.

The extra 9 classes that were not part of our main analysis were either nonabelian

or nonreflexive and nonsymmetric.

Algorithm 1 has also made it possible to find numerous interesting examples

using other coefficient rings. Some results are given in the following table.

R isomorphic
classes

comm. non-auto-
anti-isom.

reversible
nonsymm.

reflexive abelian
nonsemicomm.

F2 3 1 0 0 0

F3 13 5 2 0 0

F4 4 1 0 0 0

Z4 97 9 4 10 21

F5 14 5 2 0 0

F7 15 5 2 0 0

F8 5 1 0 0 0

Z8 624 29 16 34 166

F9 16 5 2 0 0

Z9 67 13 28 5 9

In all cases except for Z9 in the table, all non-auto-anti-isomorphic rings are

nonreversible. In the Z9 case, there are 8 reversible non-auto-anti-isomorphic rings.

6. Conclusions and challenges

In this work we have presented some novel examples of minimal reversible non-

symmetric rings and minimal abelian reflexive nonsemicommutative rings. Few

such rings have been previously presented and finding them without computational

aids is indeed a very hard task. Our computational approach has allowed us to

find 10 new minimal reversible nonsymmetric rings and 21 new minimal abelian

reflexive nonsemicommutative rings. In addition, our computations allowed us to

find examples of characteristic p2 for p = 2, 3, 5 that led us to conjecture, and

then prove, the existence of other examples of characteristic ps for any prime and
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s ≥ 2. To close the paper, we propose some challenges related to this work that

will hopefully foster further research.

• Find new examples of minimal nonsymmetric reversible (or abelian reflexive

nonsemicommutative) rings of characteristic 2.

• Find some minimal reversible nonsymmetric (or abelian reflexive nonsemi-

commutative) rings of characteristic 8, 16 and 32; or prove that such rings

do not exist.

• In [9], an example of a 13-dimensional reversible nonsymmetric K-algebra

(K a field) was given. Does there exist a family of reversible nonsymmetric

K-algebras of lesser dimension? Similarly, in [1], Example 4.2 is a 12-

dimensional abelian reflexive nonsemicommutative F2-algebra. Replacing

F2 with K will be a K-algebra of the same type. Does there exist a family

of reflexive nonsemicommutative K-algebras of lesser dimension?
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José Maŕıa Grau

Departamento de Matemáticas
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