000125766 001__ 125766
000125766 005__ 20241125101133.0
000125766 0247_ $$2doi$$a10.1039/d2ta09541f
000125766 0248_ $$2sideral$$a133179
000125766 037__ $$aART-2023-133179
000125766 041__ $$aeng
000125766 100__ $$aSlesinski, A.
000125766 245__ $$aA double-redox aqueous capacitor with high energy output
000125766 260__ $$c2023
000125766 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125766 5203_ $$aThe paper puts forward the concept of a double-redox electrochemical capacitor operating in an aqueous electrolyte. The redox activity of sulphur from insoluble Bi2S3 nanocrystals embedded in the negative electrode material (up to 10 wt%) operating in 1 mol L−1 Li2SO4 electrolyte is demonstrated. It is also shown that the performance is significantly boosted using MPA (3-mercaptopropionic acid) as a ligand attached to the surface of the nanocrystals, which allows for more efficient use of Bi2S3 redox active species. This redox activity is combined with the reactions of iodides, which occur at the opposite electrode with 1 mol L−1 NaI. This enables the formation of a discharge voltage plateau that effectively boosts the capacitance (275 F g−1), and thus specific energy of the device owing to the relatively high cell voltage of 1.5 V. This performance is possible due to the advantageous electrode mass ratio (m− : m+ = 2 : 1), which helps to balance the charge. The rate capability test of the device demonstrates its capacitance retention of 73% at 10 A g−1 of the discharge current. The different states of the redox species ensure their operation at separate electrodes in an immiscible manner without a shuttling effect. The specific interactions of the redox active species with carbon electrodes are supported by operando Raman spectroscopy.
000125766 536__ $$9info:eu-repo/grantAgreement/ES/MICIN PCI2019–103637
000125766 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000125766 590__ $$a10.8$$b2023
000125766 592__ $$a2.804$$b2023
000125766 591__ $$aCHEMISTRY, PHYSICAL$$b24 / 178 = 0.135$$c2023$$dQ1$$eT1
000125766 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000125766 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b46 / 439 = 0.105$$c2023$$dQ1$$eT1
000125766 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000125766 591__ $$aENERGY & FUELS$$b16 / 171 = 0.094$$c2023$$dQ1$$eT1
000125766 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000125766 594__ $$a19.5$$b2023
000125766 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125766 700__ $$aSroka, S.
000125766 700__ $$0(orcid)0000-0002-2866-9369$$aAina, S.$$uUniversidad de Zaragoza
000125766 700__ $$aPiwek, J.
000125766 700__ $$aFic, K.
000125766 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, M. P.$$uUniversidad de Zaragoza
000125766 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea, M.
000125766 700__ $$aFrackowiak, E.
000125766 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000125766 773__ $$g11, 12 (2023), 6258-6273$$pJ. mater. chem. A$$tJournal of Materials Chemistry A$$x2050-7488
000125766 8564_ $$s3945631$$uhttps://zaguan.unizar.es/record/125766/files/texto_completo.pdf$$yVersión publicada
000125766 8564_ $$s2834157$$uhttps://zaguan.unizar.es/record/125766/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125766 909CO $$ooai:zaguan.unizar.es:125766$$particulos$$pdriver
000125766 951__ $$a2024-11-22-11:59:49
000125766 980__ $$aARTICLE