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Abstract
Over the past three years (2020–2022) more structures of
GPCRs have been determined than in the previous twenty
years (2000–2019), primarily of GPCR complexes that are
large enough for structure determination by single-particle
cryo-EM. This review will present some structural highlights
that have advanced our molecular understanding of promis-
cuous G protein coupling, how a G protein receptor kinase and
b-arrestins couple to GPCRs, and GPCR dimerisation. We will
also discuss advances in the use of gene fusions, nanobodies,
and Fab fragments to facilitate the structure determination of
GPCRs in the inactive state that, on their own, are too small for
structure determination by single-particle cryo-EM.
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Introduction
GPCRs play a pivotal role in intercellular signalling
throughout the human body and are the targets of 34%
of FDA approved drugs [1]. Only a proportion of all
GPCRs have been drugged and there is intense scrutiny
of other GPCRs to develop novel therapeutics for the

treatment of diseases such as diabetes, cancer and
neurodegeneration [2]. Structural biology plays a key
role in drug development through either providing a
www.sciencedirect.com
structure suitable for screening in silico ultra-large drug
libraries [3��] or through providing a mechanistic un-
derstanding of fundamental molecular processes such as
receptor and G protein activation [4,5]. Here we high-
light a few of the fundamental molecular insights that

underpin complexities in GPCR pharmacology that have
been uncovered by the wealth of structures determined
by cryo-EM over the past few years.
Structural mechanisms in promiscuous
GPCR-G protein coupling
GPCRs signal through heterotrimeric G proteins and
the type of a-subunit determines the downstream
signalling cascade affected. There are four major fam-
ilies of G proteins in humans, Gs, Gi/o, Gq/11 and G12/13

that signal through different pathways. Although some
GPCRs are specific and activate a single type of G
protein, at least 50% of GPCRs activate two or more G
proteins [6e8]. Promiscuous coupling activates
different G proteins with varying efficacies and kinetics,
generating a fingerprint-like signalling profile within the

cell [9], thus enhancing the complexity of GPCR
signalling and providing new therapeutic opportunities.

Cryo-EM structures of eleven GPCRs have been
determined with each GPCR coupled to two or more
distinct G proteins: GCGR, b1AR, ADGRF1 and 5HT4R
coupled to Gs and Gi/o [10e13], NK1R coupled to Gs

and Gq/11 [14], CCKAR coupled to Gq, Gi1 and Gs

[15,16], ADGRL3 coupled to Gs, Gi, Gq and G12 [17��]
and four receptors coupled to Gi/o and Gq/11 (GSHR
[18,19], CCKBR [20], GPR139 [21] and MRGPRX2

[22]). Several trends arise from analysing this set of
structures [23].

The outward movement of the cytoplasmic end of
transmembrane helix TM6 is a hallmark of GPCR
activation and is thought to determine the size and
shape of the intracellular cleft where the cytoplasmic
end of helix a5 of the G protein a-subunit couples [24].
Structures of many different GPCRs coupled to G
proteins suggested initially that the magnitude of TM6
displacement correlated with the type of G protein. A

large outward movement of TM6 forms a wide intra-
cellular cleft that is required typically for Gs coupling,
whilst smaller movements of TM6 form a narrower cleft
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characteristic of Gi/o-Gq/11 coupling [25,26]. However,
recent new structures show that this is not always the
case when they are the secondary couplers, with Gs

sometimes coupling to a narrow cleft and Gi or Gq

coupling to a wide cleft. Structures of the same GPCR
coupled to either Gs or another G protein suggest that
the movement of TM6 is usually the same regardless of
the secondary G protein coupled i.e. the secondary G

protein has to use a similar intracellular cleft for
coupling as the primary G protein (Figure 1aee). For
example, the primary coupler to GCGR is Gs and the
GCGR-Gs cryo-EM structure shows a wide intracellular
cleft; the receptor structure coupled to its secondary
coupler Gi/o shows an equally wide cleft to when Gs is
coupled, and not a narrow cleft as might be expected
[10]. Conversely, CCKAR and NK1R couple primarily to
Gq and adopt a narrow intracellular cleft upon activa-
tion, and the secondary G protein Gs also couples to this
narrow cleft. In some instances, such as for CCKAR, this

forces the G protein to adopt ‘non-standard’ confor-
mations where the a-subunit shows an unwinding of
the ‘wavy hook’ in the a5 helix C-terminus, which
Figure 1

Structural snapshots of promiscuous GPCR-G protein coupling. Structural su
similarities in TM6 (a) and differences in ICL2 (b) [10]. Structural superpositio
similarities in TM6 position (c), differences in the ordering of ICL3 depending o
a-subunit C-terminal ‘wavy hook’ for Gs vs Gq (e) [15,16].
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protrudes outwards from the receptor intracellular
cavity (Figure 1e). Primary coupling of Gi/o and Gq/11

results in a similar narrow intracellular cleft, which may
explain the high abundance of Gi/o-Gq/11 promiscuous
couplings [7].

The intracellular loops (ICLs) of GPCRs are the ele-
ments that differ most when coupling to different G

proteins. However, there appears to be no correlation
with the type of ICL rearrangement and the type of G
protein or primary/secondary couplings. ICL3 takes a
prominent role in promiscuous G protein coupling in
MRGPRX2, 5-HT4R, ADGRF1, GSHR, GPR139, and
CCKAR where it makes different interactions to
different G proteins (Figure 1d.) ICL2 also changes
conformation or interactions in most GPCR-G protein
complexes (e.g. GCGR and GSHR, Figure 1b), whereas
ICL1 differential interactions have only been observed
in GCGR. The loop between TM7 and H8 also varies in

b1AR coupled to either Gs or Gi. Such differences in
ICLs contribution to promiscuous G protein coupling
were supported by mutagenesis and functional assays,
perposition of the GCGR coupled to Gs (blue) and Gi1 (red) showing
n of the CCKAR coupled to Gq (green), Gi1 (red) and Gs (blue) showing
n the coupled G protein (d) and differences in the engagement mode of the
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where alterations in the CCKAR ICL3 had a major
impact on Gq but not GS or Gi signalling [15]. Similarly,
alterations in the GCGR ICL3 and ICL1 showed a
greater impact on Gi compared to GS signalling [10].
GPCR structures coupled to GRK or
arrestin
One mechanism in the cell to terminate GPCR-G pro-
tein signalling at the plasma membrane is through re-
ceptor phosphorylation by GRKs, recruitment of arrestin
via the phosphorylated C-terminus/ICL3 and then
clathrin-mediated endocytosis mediated by arrestin-
clathrin/AP2 interactions [27]. Arrestin interacts with

GPCRs in two distinct ways. Arrestin binds first to the
phosphorylated C-terminus/ICL3 of the receptor,
causing a conformation change in arrestin that subse-
quently facilitates coupling of arrestin to the receptor
[28e30]. Arrestin couples to GPCRs using the same
intracellular cleft that binds the C-terminal a5 helix of
the G protein [31] and results in activation of the
intracellular ERK1/2 signalling cascade. It is crucial to
understand the molecular differences between coupling
of G proteins, GRKs and arrestins, because the thera-
peutic effect and side effects of drugs may arise through

different signalling pathways [32]. There is thus intense
interest in developing biased ligands that specifically
activate/inhibit only one specific pathway.

Structure determination of a GPCR-GRK complex has
been difficult, however, stabilisation of the rhodopsin-
GRK1 complex by a combination of crosslinking, bind-
ing of two Fabs and lipids resulted in the first low reso-
lution structures [33��]. The receptor was in its active
state, with the N-terminus of GRK1 forming an a-helix
that binds to the intracellular cleft like G proteins and
arrestin (Figure 2a,d). Comparison between the confor-

mation of rhodopsin when coupled to either GRK,
arrestin or the G protein transducin shows that they are
virtually identical (RMSDs of 0.9e1.0 Å) and that the
binding sites on rhodopsin overlap significantly
(Figure 2h). There are eight residues that interact with
all three coupled proteins (Val1393.54, Asn14534.53,
Phe14634.54, Gln2375.72, Glu2496.32, Val2506.33,
Asn3108.47, Gln3128.49) and a further subset of residues
(Figure 2h) that interact only with GRK1 (6 residues),
visual arrestin (8 residues) or transducin (2 residues).

Seven structures of GPCRs coupled to arrestins have
now been determined. The first high-resolution struc-
ture of a GPCR-arrestin complex was a crystal structure
of constitutively active mutant of human rhodopsin
fused to a preactivated form of mouse arrestin 1 (visual
arrestin) [34]. A variety of different strategies were
required for cryo-EM structure determination of non-
visual arrestins coupled to activated receptors,
including combinations of the following: fusion with the
C-terminus of phosphorylated V2 receptor, arrestin
www.sciencedirect.com
mutants, cross-linking, binding of Fab30 to stabilise the
active state of arrestin and the use of lipid-mimicking
environments. Structures of complexes with arrestin 2
(Arr2; also called b-arrestin1; Figure 2b,c) were deter-
mined coupled to NTS1R [35�,36], b1AR [37��], M2R
[38�], V2R [39�] and 5HT2BR [40��].

G proteins couple to different receptors in a relatively

conserved way [25], but in contrast arrestins have shown
a wide variation in their binding poses. Significant vari-
ations occur in the structure of the finger loop of arrestin
inserted into the intracellular cleft of the receptor
(Figure 2d) and the angle of interaction between
arrestin and the GPCR when viewed both perpendicular
to the membrane plane and parallel to the membrane
plane (Figure 2eeg).

Two GPCR-arrestin structures (b1AR [37] and 5HT2BR
[40]) have been determined at 3.3 Å resolution where

there is good density for the ligand in the orthosteric
binding pocket. Comparison with the receptor bound to
the same ligand but coupled either to a G protein
(5HT2BR) or a G protein-mimetic nanobody (b1AR)
showed similar weakening of interactions between the
ligand and H5, explaining the weaker ligand affinity in
the arrestin-coupled state compared to the G protein
coupled state. There are also other differences between
a G protein-coupled receptor and arrestin-coupled re-
ceptor, the most obvious one being the difference in
outward movement of H6, although in b1AR this is less

than in the G protein coupled state whereas for 5HT2BR
it is greater than in the G protein coupled state. The
differences observed between structures could be used
in the development of biased agonists.
GPCR dimers
The existence and functional role of obligate class C and
class D GPCR dimers are well-established, both struc-
turally and functionally [41,42]. However, for Class A
receptors there is no consensus on whether dimerisation
is a ubiquitous mechanism in regulating Class A GPCR
function. Some class A GPCRs are accepted to form
transient dimers and higher order oligomers, although
their physiological role is often uncertain [43,44]. Any
structural dimer composed of parallel protomers
observed in either X-ray crystal structures [45] or cryo-
EM has the potential to be physiologically relevant,

but careful validation is required by biochemistry and
pharmacology to support this.

Humans possess 22 Class C GPCRs and there are now
76 cryo-EM structures, determined between 2019 and
2022, bound to either antagonist, agonist, positive
allosteric modulator (PAM), negative allosteric
modulator (NAM), regulator of G protein signalling
(RGS) protein and/or G protein. Due to space con-
straints, we will discuss only those receptors where a
Current Opinion in Structural Biology 2023, 80:102574
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Figure 2

Variations in coupling of arrestins and GRK2 to GPCRs. (a) Cryo-EM density (EMDB-23979) of rhodopsin coupled to GRK1 [33]. Density for the Fab
required for structure determination has been removed for clarity. (b) Cryo-EM density of b1AR in a lipid nanodisc coupled to b-arrestin1 (EMDB-10515)
[37]. Density for Fab30 required for structure determination has been removed for clarity. (c) Superposition of b1AR coupled to mini-Gs (purple; PDB code
7JJO [72]) and b1AR (grey) coupled to b-arrestin1 (green; PDB code 6TKO [37]). (d) Different conformations of the GRK coupling helix and arrestin finger
loop when coupled to different receptors. (e–g) Variation in the angle of arrestin coupled to different receptors (see main text for references): (e) a view
perpendicular to the membrane plane; panels (f–g) are views parallel to the membrane plane in positions 1 and 2, respectively, as defined in panel (e). (h)

4 Membranes (2023)

Current Opinion in Structural Biology 2023, 80:102574 www.sciencedirect.com

www.sciencedirect.com/science/journal/0959440X


Table 1

Details of GPCR structures discussed in the main text.

Receptor Dimer type Class PDB Agonist (Ag),
antagonist (Ant),

PAM, NAM

G protein
family

Stabilising antibodies
and fusions

Reference

Apelin Homo A 7W0N Ag Gi scFv16 + BRIL [52��]
7W0L Ag Gs scFv16 +BRIL

Ste2 Homo D 7AD3 Ag Gpa1 – [53��]
7QB9 – – – [54��]
7QA8 Ant – –

7QBC Ag – –

7QBI Ag – –

GABAB Hetero C 7EB2 Ag Gi scFv16 [47�]
C 7CA3 PAM – – [49]
C 7CA5 – – –

C 7CUM Ant + NAM – –

C 6UO8 Ag + PAM – – [50�]
C 6UO9 Ag – –

C 6UOA Ag – –

C 6VJM APO – –

C 7C7S Ant – – [46��]
C 7C7Q Ag + PAM Gi1 –

C 6WIV – – – [55]
C 6W2X Ant + NAM – – [56]

Homo C 6W2Y Ant + NAM – –

Metabotropic
glutamate receptors

mGlu1 Homo C 7DGD – – – [57]
7DGE Ag Nb43

mGlu2 C 7E9G Ag + PAM Gi scFv16 + Nb [48�]
mGlu2 Homo C 7MTQ Ant – – [51�]

C 7MTR Ago-PAM + Ag – –

C 7MTS Ago-PAM Gi

mGlu2 Homo C 7EPA – – – [58�]
7EPB Ag Nb-RON

mGlu7 Homo C 7EPC – – –

mGlu2mGlu7 Hetero C 7EPD – – –

mGlu5 Homo C 6N52 – [59]
Homo 6N51 Ag Nb43

mGlu5-5M Homo C 7FD8 Ag – – [60]
Homo C 7FD9 Ant

mGlu3 Homo C 7WI8 Ant – – [61]
7WI6 Ag + NAM – –

7WIH Ag – –

mGlu4 Homo C 7E9H Ag Gi3 scFv16 [48�]

GPCR cryo-EM structures Gusach et al. 5
fully active G protein-coupled state has been deter-
mined (Table 1), namely the GABAB receptor
[46��,47�] and metabotropic glutamate receptors
(mGluRs) [48�]. The common feature of Class C
dimers is that they are maintained dimeric predomi-
nantly through interactions in the extracellular Venus
fly trap domain (VFT; Figure 3b) that binds agonists.

The agonist-induced conformational change in the
VFT is transmitted via a linker region to the trans-
membrane regions, ultimately resulting in a rotation of
one helical bundle with respect to the other. In the
GABAB receptor, this changes the dimer interface from
Snake plots of bovine rhodopsin with amino acid residues within 3.9 Å (inclusi
for the complexes are as follows: rhodopsin-GRK, 7MTB [33��]; rhodopsin-G
using GPCRdb [75].

www.sciencedirect.com
being formed by predominantly H5-H5 to H6-H6
[46��,47�] and in the mGluRs from mainly H4-H4 to
H6-H6 [48�]. A number of variations between these
states have also been described, highlighting the plas-
ticity of these receptors and a number of different so-
lutions for how PAMs can promote the formation of
active-like states [46��,48�,49,50�]. Extensive phar-

macological and biochemical studies have determined
that only one protomer in the dimer couples to a G
protein and that signalling is transmitted from the VFT
of one receptor in the dimer to the G protein coupling
site on the adjacent dimer [41]. This is recapitulated in
ve) of either GRK, G protein or arrestin coloured appropriately. PDB codes
protein, 6OYA [73]; rhodopsin-arrestin, 5W0P [74]. The panels were made

Current Opinion in Structural Biology 2023, 80:102574
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Figure 3

Signalling routes in GPCR dimers. (a) Cryo-EM density of the apelin receptor (EMDB-32243) shows that there is sufficient room for only one G protein to
couple per dimer, and the C-terminus of the adjacent protomer binds in the G protein-coupling cleft in an auto-inhibitory mechanism [52]. The dimer
interface is shown by in the GABAB receptor dimer (EMDB-21534) is from the VFT domain of one protomer through the transmembrane helices of the
adjacent protomer that can couple to G protein. The structures of two transmembrane helical bundles are not identical and the G protein coupling site
forms only in one protomer [46,47]. The dimer interface is shown by the red box. (c) The Ste2 dimer (EMDB-11720) contains two protomers of identical
conformation that are both capable of coupling to G proteins simultaneously, although one G protein is highly mobile, with the exception of the a5 helix that
is ordered where it contacts the receptor [53]. The tilt of the G protein with respect to the receptor is over 50� different from that observed in G protein-
coupling to Class A receptors, thus allowing two G proteins to couple simultaneously. The signalling pathways through the receptor are assumed to follow
the paradigm of a monomeric receptor, however it is unclear whether both G proteins can signal to the same extent and there could be crosstalk between
protomers across the dimer interface [54]. The dimer interface is shown by the red box.
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the asymmetric active-state dimer structures where
only a single G protein is coupled per dimer, via a
coupling site formed through interactions primarily to

ICL2, which is distinct to that found in other GPCR
families [47�,48�,51�].

In contrast to Class C receptors, the cryo-EM structure
of the class D receptor homodimeric GPCR Ste2
(Figure 3c) showed that it couples to two G proteins
simultaneously [53��]. The density for one G protein
was well-resolved, but the density for the adjacent G
protein was diffuse and molecular dynamics simulations
showed that each G protein underwent phases of
mobility, with only one G protein being ordered at any

one time. The interface between the two protomers is
also dynamic [54��], even though it has a very large
surface area in the active state (2500 Å2) and is
composed of interactions between the N-terminus,
ECL1 and H1. Cryo-EM structures of five different
receptor conformations showed that Ste2 activation
upon binding the native agonist a-factor involved an
increase in the strength of the interface and a 20 Å
Current Opinion in Structural Biology 2023, 80:102574
movement of the cytoplasmic end of H7 [54��]. The
movement of H7 unblocked the G protein coupling site
and then formed additional contacts at the dimer

interface in a mechanism currently unique to Ste2.

There is currently only one high-resolution structure of
a Class A GPCR dimer, the active state of the apelin

receptor [52��]. This is different from dimers of Class C
and Class D receptors as the interface is extremely small
(140 Å2), comprising residues at the extracellular end of
H3 (Figure 3a). Only one of the protomers is coupled to
a G protein, and there are no contacts between the G
protein and the adjacent protomer. Mutation of a key
residue at the dimer interface (F101 A3.24) significantly
reduced dimer formation and had a profound effect on
the pharmacology of the apelin receptor, increasing basal
activity and Emax significantly.

Inactive GPCR structures by cryo-EM
The inactive state of GPCRs may only consist of
35e40 kDa of ordered protein, which is embedded in a
detergent micelle typically w100 kDa in size and makes
www.sciencedirect.com
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Figure 4

Examples of strategies to determine structures of GPCR inactive states. (a) Cryo-EM density of ligand-free Smoothened (EMDB-27062) [69]. (b) Cryo-EM
density (EMDB-25648) of the adenosine A2A receptor with a BRIL insertion in ICL3 and bound to an anti-BRIL Fab fragment [69]. (c) Cryo-EM density
(EMDB-26589) of the neurotensin receptor NTSR1 engineered to contain the H5-ICL3-H6 region of MOR and bound to the anti-MOR nanobody Nb6 [67].
(d) Cryo-EM density (EMDB-26590) of the histamine H2 receptor engineered to contain the H5-ICL3-H6 region of MOR, bound to the anti-MOR nanobody
Nb6 and the anti-nanobody Fab (NabFab) [67]. Ligand density in the orthosteric binding pocket is shown above each receptor.
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processing of cryo-EM images of these small membrane
proteins highly challenging. To circumvent this problem,
extra mass needs to be added to the receptor that can
extend beyond the detergent micelle and facilitate par-
ticle alignment during image processing. An obvious so-
lution is to repurpose successful strategies in engineering
GPCRs for X-ray structure determination through either
binding an antibody Fab fragment [62], nanobody [63] or
insert a small soluble protein such as BRIL in ICL3 [64].

One recent approach was to graft a section of H5-

ICL3-H6 from the mu opioid receptor (MOR) into a
target GPCR and then bind nanobody Nb6 that spe-
cifically recognises this region [65,66]. This resulted in
sub-3 Å resolution structures of the inactive states of
NTS1R, H2R (Figure 4c,d) and somatostatin receptor 2
[67�]. Another approach was to insert BRIL in place of
ICL3 in Frizzled5 and then use an anti-BRIL Fab/Nb
complex to increase the mass further; the structure
was determined by single-particle cryo-EM to 3.7 Å
resolution, with the low resolution being explained by
the flexibility of the GPCR-BRIL fusion points [68�].
This methodology was explored further [69�] to
determine the structure of thermostabilised A2AR-
BRIL bound to an anti-BRIL Fab to 3.4 Å resolution
(Figure 4b) and a Smoothened ICL3 chimera fused to
Pyrococcus glycogen synthase (PGS) at 3.7 Å resolution
(Figure 4a). A recent innovative strategy to create a
www.sciencedirect.com
three-point linkage between the heterodimer calci-
neurin and the b2AR facilitated the structure deter-
mination of the receptor either in the ligand-free state
or bound to antagonist/agonist with overall resolutions
between 3.5 and 3.9 Å [70�].
Conclusions
The incredible advances in all the technology involved in
single particle cryo-EM have made the structure deter-
mination of GPCR complexes in all conformational states
considerably easier than using X-ray crystallography [71].
There are more advances in the cryo-EM pipeline and so
the future holds rich promise for improving the
throughput of GPCR structure determination, making it
the premier tool for structure-based drug design and the
determination of novel GPCR structures. A concerted

effort over the coming years will undoubtedly determine
structures of all human non-olfactory GPCRs.
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