Comparing the Min–Max–Median/IQR Approach with the Min–Max Approach, Logistic Regression and XGBoost, maximising the Youden index
Resumen: Although linearly combining multiple variables can provide adequate diagnostic performance, certain algorithms have the limitation of being computationally demanding when the number of variables is sufficiently high. Liu et al. proposed the min–max approach that linearly combines the minimum and maximum values of biomarkers, which is computationally tractable and has been shown to be optimal in certain scenarios. We developed the Min–Max–Median/IQR algorithm under Youden index optimisation which, although more computationally intensive, is still approachable and includes more information. The aim of this work is to compare the performance of these algorithms with well-known Machine Learning algorithms, namely logistic regression and XGBoost, which have proven to be efficient in various fields of applications, particularly in the health sector. This comparison is performed on a wide range of different scenarios of simulated symmetric or asymmetric data, as well as on real clinical diagnosis data sets. The results provide useful information for binary classification problems of better algorithms in terms of performance depending on the scenario.
Idioma: Inglés
DOI: 10.3390/sym15030756
Año: 2023
Publicado en: Symmetry 15, 3 (2023), 756 [26 pp.]
ISSN: 2073-8994

Factor impacto JCR: 2.2 (2023)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 50 / 134 = 0.373 (2023) - Q2 - T2
Factor impacto CITESCORE: 5.4 - Computer Science (miscellaneous) (Q1) - Mathematics (all) (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Chemistry (miscellaneous) (Q2)

Factor impacto SCIMAGO: 0.485 - Chemistry (miscellaneous) (Q2) - Physics and Astronomy (miscellaneous) (Q2) - Mathematics (miscellaneous) (Q2) - Computer Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E46-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/IODIDE research group
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-116873GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-12:00:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Estadística e Investigación Operativa



 Registro creado el 2023-04-20, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)