Numerical solution of singularly perturbed 2-D convection-diffusion elliptic interface PDEs with Robin-type boundary conditions
Resumen: We consider a singularly perturbed two-dimensional convection-diffusion elliptic interface problem with Robin boundary conditions, where the source term is a discontinuous function. The coefficient of the highest-order terms in the differential equation and in the boundary conditions, denoted by ε, is a positive parameter which can be arbitrarily small. Due to the discontinuity in the source term and the presence of the diffusion parameter, the solutions to such problems have, in general, boundary, corner and weak-interior layers. In this work, a numerical approach is carried out using a finite-difference technique defined on an appropriated layer-adapted piecewise uniform Shishkin mesh to provide a good estimate of the error. We show some numerical results which corroborate in practice that these results are sharp.
Idioma: Inglés
DOI: 10.1016/j.camwa.2023.03.010
Año: 2023
Publicado en: COMPUTERS & MATHEMATICS WITH APPLICATIONS 140 (2023), [16 pp]
ISSN: 0898-1221

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2017-83490-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Exportado de SIDERAL (2023-04-20-14:36:22)

Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:

 Record created 2023-04-20, last modified 2023-04-20

Versión publicada:
Rate this document:

Rate this document:
(Not yet reviewed)