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A B S T R A C T

Photovoltaic (PV) energy development has increased in the last years mainly based on large utility-scale plants.
These plants are characterised by a huge number of panels connected to high-power inverters occupying a large
land area. An accurate estimation of the power production of the PV plants is needed for failure detection,
identifying production deviations, and the integration of the plants into the power grid. Various studies have
used Machine Learning estimation techniques developed on very small PV plants. This paper deals with large
utility-scale plants and uses all the available information to represent the non-uniform radiation over the whole
studied solar field. Variables measured in up to four meteorological stations and distributed across the plant
are used. Three PV plants with 1, 2 and 4 meteorological stations have been used to develop Machine Learning
models. The hyperparameters were systematically optimised, demonstrating the improvements by comparing
with a simple model based on Multiple Linear Regression. The best results were obtained with the Random
Forest technique for the three PV plants, providing a RMS error value ranging from 1.9% to 5.4%. The final
models were compared with those found in the literature for tiny PV plants showing in general much better
performance.
1. Introduction

Solar photovoltaic (PV) is an ever-expanding technology, with an
annual growth rate in recent years of more than 20% (International
Renewable Energy Agency - IRENA, 2021). The global PV capacity at
the end of 2020 was 714 GW (International Renewable Energy Agency -
IRENA, 2021), and this figure will be doubled in the next five years. Its
growth potential and lower generation costs will enable PV to become
the most competitive energy source globally in the coming years.

The modularity of this technology allows an easy and quick instal-
lation of different plant sizes, from a few watts for self-consumption
to hundreds of megawatts for large utility-scale grid-connected plants.
Large utility-scale PV plants are characterised by a huge number
of panels (hundreds of thousands) connected to high-power invert-
ers (megawatts of power) and occupying a large land area (tens of
hectares). Its size makes finding malfunctioning parts more compli-
cated, and the time to do that can be considerable. So, energy losses due
to failures and unavailability can become significant in large plants.

The availability and energy losses of the plants have been evaluated
through reliability studies (Spertino et al., 2021b,a; Ketjoy et al., 2021),
analysing the root causes of failures, and finding that inverters are
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responsible for the highest losses and unavailability. It was also con-
cluded that availability in large plants was better due to advantageous
maintenance contracts. Energy losses in utility-scale PV plants have
also been estimated using performance analysis (Bansal et al., 2022;
Dahmoun et al., 2021; Jed et al., 2021). Different climatic zones
provided PR values ranging from 70% in hot climate (India) to 87%
in cold climate (France) with yearly degradation rates varying from
0.2% to around 1%. It can be concluded that accurate knowledge
of the photovoltaic production is essential not only to determine the
performance of the plants and its evolution in time but also to char-
acterise energy losses associated with possible component failures and
to ensure the integration of the plants into the power grid. Energy
production can be obtained from actual measurements, made with
the plant equipment or specific monitoring systems (Beránek et al.,
2018), or from simulation models that accurately reproduce the plant’s
behaviour in real conditions. Combining the two methods allows a
more accurate estimation of losses than the obtained in performance
assessment methods using standard conditions (Bansal et al., 2022; Jed
et al., 2021).

The estimation of the power production of a PV plant can be done
using parametric and non-parametric models. In both cases, the model
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is fed with several inputs, solar irradiation and temperature, for exam-
ple, providing one output, AC or DC power (Platon et al., 2012; Almeida
et al., 2015). The parametric models are based on physical properties
of the system represented with analytical equations (Sabbaghpur Arani
and Hejazi, 2016). Non-parametric models consider the photovoltaic
plant as a black box (Almeida et al., 2015). They are numerical models
that learn the plant’s behaviour from historical time series data. As a
result, these models relate the power generated to other parameters,
such as climatological variables, electrical measurements, the temper-
ature of the PV modules, etc. Garoudja et al. (2017), Mellit and Pavan
(2010), and even can identify the energy losses associated with faults
and shadows (Øgaard et al., 2021).

The techniques applied to model developing range from statistical
(Fazai et al., 2019; Nobre et al., 2016) and control charts (Øgaard
et al., 2021) to the most advanced machine learning (ML) algorithms
(Mellit et al., 2018; Li et al., 2021; Elsheikh et al., 2019), being
Artificial Neural Networks (ANNs) the most widely used (Daliento
et al., 2017). Recent studies focused on improving the prediction results
by combining ANNs with other ML techniques (Theocharides et al.,
2020; Moreira et al., 2021). Nevertheless, comparing the performance
of the ANN models to other techniques may be challenging due to
different data sources, distinct time steps in the time series, and the
diverse scales and metrics used. Some papers compared ANNs with
other methods such as Multiple Linear Regression (MLR), Support
Vector Machines (SVM) and Gaussian Process Regression (GPR) meth-
ods (Monteiro et al., 2017; Graditi et al., 2016; Trigo-Gonzalez et al.,
2021; Huang et al., 2016), showing ANNs as the most suitable. How-
ever, some advanced algorithms found in the literature with promising
results, such as the tree-based ones, Random Forests (RF) and Gradient
Boosting (GB) (Almeida et al., 2015; AlSkaif et al., 2020), have not been
compared.

The proliferation of ML models and their application to PV power
estimation has been possible due to the intensive development of ML
algorithms in recent years. However, the good use of these algorithms
requires optimising their hyperparameters as they can greatly impact
the prediction performance. Most of the reviewed documents lack a
good reason or justification for choosing the hyperparameters, and
only a few papers implemented systematic techniques to determine
them (Pan and Tan, 2019; Trigo-Gonzalez et al., 2021; Theocharides
et al., 2020; Pan et al., 2020; Piliougine and Spagnuolo, 2022). Given
these recent developments, it is clear that ML algorithms require a
methodology to optimise the hyperparameters, thus improving the
models’ performance.

The use of ML to analyse PV systems is still in its infancy and
it is being applied to many small-scale technologies (Sohani et al.,
2022). When dealing with utility-scale PV installations, their large
size has to be considered due to the possible influence in the energy
output of the variations of terrain, clouds and shadows across the entire
plant. Most of the developed models mentioned above use simulated or
experimental data from very small PV installations, varying from some
panels (Monteiro et al., 2017) to several tens of kilowatts (Moreira
et al., 2021). Up to the authors knowledge, there is only one paper
forecasting the production of large utility-scale PV plants with nominal
power varying from 958 kWp to 2640 kWp (Almeida et al., 2015).
Nevertheless, they used spatial variability indexes calculated with a
12 × 12 km grid that considerably exceeded the plants dimensions.
Then, it appears clear that the size of these large plants is a factor that
have to be considered when trying to predict their power production.

1.1. Aim of the work

This work aims to accurately estimate the power production of
large utility-scale photovoltaic plants. Different ML algorithms have
been applied to find the most suitable technique and search for the
optimal combination of input variables. Multiple Linear Regression
89

(MLR), Random Forests (RF), Gradient Boosting (GB) and Artificial
Table 1
Summary of characteristics of the PV plants.

Installed power Surface Terrain type Altitude Met stations

PV1 15 MW 0.3 Km2 Hilly with bushes Low 1
PV2 30 MW 1.5 Km2 Flat and clean Low 2
PV3 100 MW 3 Km2 Mountain High 4

Neural Networks (ANN) techniques were used with data from three
large utility-scale PV plants. Models hyperparameters were systemat-
ically optimised. The size of the plants were considered using input
variables taken from several meteorological stations distributed across
the installations.

The paper is organised as follows; the second section describes the
data and the PV plants; next section explains the methodology to adjust
the models, the fourth section present the results and compare the
different models and the last section compare the results with other
literature models. Finally, the summary of the results is presented in
the conclusions.

2. PV plants data

Data were obtained from three utility-scale fixed-tilt PV plants.
They were chosen to cover a range of scenarios regarding topography,
latitude, and total installed power. The three plants share the same
configuration using centralised inverters with nominal power exceeding
1 MW per unit. Multi-crystalline Si (mc-Si) solar modules with a tilt
angle ranging from 10◦ to 20◦ are installed. The overall characteristics
of the three plants are given in Table 1. More specific details are
confidential and cannot be provided.

Apart from topography and location, the main difference between
the three plants is their maximum power and thus their total surface
area. Larger plants may need more weather stations to reflect the
weather conditions. The plant planners use to take this into account
by installing more weather stations as the size of the plant increases,
as can be seen in Table 1.

The size of the studied PV plants can make data manipulation and
the hyperparameters search process unaffordable. Data from only one
of the inverters of each plant, accounting for a power value equal to
1 MWp each one, are used in this work. This size is big enough to be
representative of the solar field of large PV plants. In contrast, mete-
orological data are taken from all available weather stations located
across the plant to consider the spatial distribution of the solar field
and its effect on power production. Total AC power is acquired from
the inverter, whereas tilted solar radiation, ambient temperature and
module temperature are obtained from the met stations. Fig. 1 shows
the layout of the studied inverter including distances and approximate
profiles.

Data were measured at a frequency of 1 min, and the average values
were recorded every 10 min. Collected data periods and measured
variables are shown in Table 2.

3. Methodology and theoretical basis

This section describes the proposed methodology for selecting the
optimal PV output estimation model as a function of solar radiation,
ambient temperature, and module temperature. ML models should be
tuned by optimising their hyperparameters before fitting the definitive
models. Hyperparameters are parameters whose values control the
learning process and determine the values of model parameters that a
learning algorithm ends up learning. Then, it is crucial their fine tuning
in order to have good estimation results from the models.

Fig. 2 shows the schematic diagram of the proposed methodology
for obtaining the PV production from the measured variables.

The algorithms were coded using the open source R programming

language (R. Core Team, 2021) and libraries.
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Fig. 1. Schematic layout with the position of the studied inverter and the distances between the solar field, the inverter and the weather stations for each plant.
Fig. 2. Schematic diagram of the methodology.
3.1. Data preprocessing

Data pre-processing consists of three steps, filtering, scaling and
partitioning the data. Data filtering controls the presence of wrong mea-
surements or outliers which can cause errors or add uncertainties in the
developed models. Scaling is needed in order to have a homogeneous
range of variation in the used features. Normalisation procedure is used
here according to Eq. (1).

𝑥′ =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
(1)

Data partitioning is performed in two steps. First, data are divided
into training and test subsets. Then, the training set is further divided
into a new training and validation subsets to use the train subset to
fit the model parameters and the validation subset to optimise the
hyperparameters and fine tune the models using unbiased data. The test
subset has been used to evaluate the performance of the final models.
The common partition scheme 80/20% was used in both steps.

3.2. Theoretical basis of MLR, RF, GB and ANN

One statistical regressor, MLR, and three automatic machine learn-
ing techniques are proposed in this work. They are briefly described in
the next subsections.

3.2.1. Multiple linear regression
Multiple linear regression (MLR), is a statistical technique with the

purpose of seeking for the linear relationship between a dependent
variable (response) and several independent or explanatory variables
(features). In essence, multiple regression is the extension of ordi-
nary least-squares (OLS) regression because it involves more than one
explanatory variable. MLR model is typically described by Eq. (2),

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜖𝑖 (2)

where 𝑦𝑖 is the dependent variable, 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑘 are the regression
coefficients, and 𝜖𝑖’s are the errors. The regression coefficients are
estimated using the least squares principle, while the error term is
usually assumed to be normally distributed with a constant variance
𝜎2.
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Table 2
Information on the studied periods, variables used in the models and weather stations
from which the variables were extracted.

Data period Records Variables Weather stations

PV1 Feb 17–Oct 19
(32 months) 104178

AC Power
Radiation
Ambient
temperature
Module temperature

WS1
WS1
WS1

PV2 Jul 17–Oct 19
(27 months) 122832

AC Power
Radiation
Ambient
temperature
Module temperature

WS1 to WS2
WS1 to WS2
WS1 to WS2

PV3 Mar 19–Aug 21
(29 months) 126288

AC Power
Radiation
Ambient
temperature
Module temperature

WS1 to WS4
WS1 to WS4
WS1 to WS4

3.2.2. Random forests
The Random Forest (RF) algorithm (Breiman, 2001) is a supervised

nonlinear technique. It uses ensemble learning for regression, which
combines estimations from multiple machine learning algorithms to
make a more accurate estimation than a single model. In this case,
it uses many decision trees. The estimation is obtained by taking the
average or mean of the output from all the trees built. The schematic
procedure of the algorithm is shown in Fig. 3. The average of the
estimations is more accurate than that of any individual tree, and
increasing the number of trees increases the precision of the outcome.

The results obtained with the RF algorithm depend on the model
hyperparameters, the number of trees (Ntrees), the trees Depth, the
number of variables randomly considered in each split (Mtries) and the
sampling rate (SR), used to speed up the training process.

3.2.3. Gradient Boosting
Gradient Boosting is a machine learning technique that, when used

in regression tasks, provides an estimation in the form of an ensemble
of weak estimations, using decision trees similarly to RF (Friedman,
2002). The main difference between RF and GB is that GB builds one
tree at a time combining the results along the way with the use of
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Fig. 3. Schematics of Random Forest algorithm.
Fig. 4. Gradient Boosting process of adding trees minimising loss function.

a loss function. The final estimation is the sum of estimations of all
individual trees. Then, the model is obtained in an iterative process
where each tree is built with the estimation errors of the previous one
in order to minimise a loss function, as can be seen in Fig. 4. The tuning
hyperparameters are the number of trees Ntrees, their Depth and the
sampling rate (SR).

3.2.4. Artificial Neural Networks
Artificial Neural Networks are a series of algorithms that try to

mimic the way that human brain works. Individual neurons are inter-
connected with other neurons to recognise relationships in data sets.
A neural network contains layers of interconnected nodes. Each node
(or neuron) in the net is named Perceptron (Goodfellow et al., 2016).
Here, the type of Neural Networks named Multilayer Perceptron (MLP)
is used. MLPs consist of an input layer and an output layer stacked
with one or more hidden layers in between. Every unit in a layer is
connected with all the units in the previous layer. These connections
are not all the same as a weight is applied to each one. All inputs to the
layer are combined with their weights in a weighted sum and subjected
to the activation function, feeding the next layer and repeating the
procedure until reaching the output layer (feedforward process). The
value of a metric is forwarded in the process and used to obtain its
gradient between all input and output pairs in each layer. Then, it
is propagated back allowing updating the weights used in each layer
with the calculated gradient (backpropagation). The whole process is
iterated until convergence in the gradient is reached. Fig. 5 shows the
working principles of the MLP.
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ANNs and, in particular, MLPs have a wide range of hyperparam-
eters that can be tuned to optimise the models. Here, the chosen
hyperparameters to be tuned are the number of hidden layers, the
number of neurons in hidden layer j(𝑢𝑛𝑖𝑡𝑠𝑗), the learning rate (LR), the
regularisation applied to layer j (𝑑𝑟𝑜𝑝𝑜𝑢𝑡𝑗) and the number of epochs.

3.3. Methods for hyperparameters optimisation

Hyperparameters in Machine Learning can be thought of as the
tuning knobs of the developed models. In this section, an introduction
to Hyperparameter optimisation (HPO) is given.

The most popular and simple HPO techniques are Grid Search and
Random Search, which consist of exploring the hyperparameters space
to find the best combination based on the model metrics (Hutter et al.,
2019). Recently, modern bandit-based strategies, such as Hyperband
have come into play (Li et al., 2018) to improve hyperparameter
optimisation.

Grid Search is the simplest HPO method where the user specifies a
finite set of values for each hyperparameter, and grid search evaluates
the Cartesian product of these sets. The problem is that the number
of function evaluations grows exponentially with the dimensionality
of the configuration space. A simple alternative to grid search is Ran-
dom Search which samples configurations at random until a specific
budget for the search is exhausted. Additionally, HyperBand search is
a strategy which divides the total computational budget into several
combinations of number of configurations versus the budget of each,
and then calls successive halving as a subroutine on each set of random
configurations. It applies a hedging strategy that includes running some
configurations only with the maximum budget. In the worst case,
HyperBand takes at most a constant factor more time than vanilla
random search on the maximum budget. HyperBand has been shown to
improve upon conventional methods on some ML problems (Li et al.,
2018).

In this work, the above described search algorithms have been used
depending on the number of parameters to tune and the computation
resources needed.

3.4. Metrics for model evaluation

The metrics used in this work are the normalised Mean Absolute Er-
ror (𝑛𝑀𝐴𝐸), the normalised Root Mean Squared Error (𝑛𝑅𝑀𝑆𝐸), and
the normalised bias (n𝐵𝐼𝐴𝑆), widely accepted in the literature (Kumari
and Toshniwal, 2021).

The Mean Absolute Error is the absolute mean of the difference
between the expected value of the estimator and the actual value of the
parameter being estimated. It represents the mean value of the absolute
errors in a regression model and is calculated according Eq. (3).

𝑛𝑀𝐴𝐸 = 100 × 1
𝑁
∑

|𝑦̂𝑖 − 𝑦𝑖| (3)

𝑁 𝑖=1
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Fig. 5. Working principles of the Multilayer Perceptron.
Fig. 6. MLR estimation Power compared with measured power for a sampled dataset of PV1, PV2 and PV3.
where 𝑦̂𝑖 and 𝑦𝑖 are the estimated and actual normalised values, respec-
tively, of the 𝑖𝑡ℎ parameter sample.

The Bias is the mean of the difference between the expected value
of the estimator and the actual value of the parameter being estimated.
It is a measure of the models accuracy and represents the systematic
error between the estimated value and actual value and is calculated
with Eq. (4).

𝑛𝐵𝐼𝐴𝑆 = 100 × 1
𝑁

𝑁
∑

𝑖=1
(𝑦̂𝑖 − 𝑦𝑖) (4)

The Root Mean Squared Error is the root square of the mean of
the squared differences between the expected value of the estimator
and the actual value of the parameter being estimated. This metric can
be used to identify the outliers of the mean tendency of the model.
𝑛𝑅𝑀𝑆𝐸 can be obtained following Eq. (5).

𝑛𝑅𝑀𝑆𝐸 = 100 ×

√

√

√

√

1
𝑁

𝑛
∑

𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)2 (5)

In addition, to better visualise the obtained improvements, the
performance of the models is compared with a reference using the
skill score (𝑆𝑆), which describes the accuracy of the models’ output
regarding a baseline model. 𝑆𝑆 = 100% indicates a perfect estimation,
while 𝑆𝑆 = 0% means that the model equals the baseline model and
there is no improvement.

𝑆𝑆 = 100 ×
(

1 −
𝑛𝑅𝑀𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)

(6)
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𝑛𝑅𝑀𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
Table 3
Metrics for the baseline models of the PV plants.

nRMSE nMAE nBiass

PV1 5.75% 3.02% 0.68%
PV2 2.70% 1.75% 0.26%
PV3 4.91% 3.1%2 0.98%

4. Results

This section presents the results of the models developed for the
three PV studied plants including the baseline models, the hyperparam-
eter optimisation and the final results of the models.

4.1. Baseline models

A baseline is a simple model that provides reasonable results with-
out requiring much expertise or time to develop. Baseline models
provide a sanity check against improvements and a potential basis for
enhancements. Here, Multiple Linear Regression models are the chosen
baselines.

The MLR algorithm has been applied estimating the power produc-
tion of one inverter in each plant. Fig. 6 shows the Power estimation
with MLR compared to the Measured Power for a sample dataset of
each of the three PV plants.

Table 3 shows the metrics obtained for the reference models, re-
vealing that the model performance is better for simpler terrain plants,
such as PV2 (see PV plant terrain types and model inputs in Section 2).
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Table 4
Hyperparameters values used in the Grid Search for RF. Where not indicated, values apply for the three
plants.

First sweep Second sweep

Min Max Delta Min Max Delta

Depth 5 50 5 5 (PV1)
15 (PV2)
25 (PV3)

15 (PV1)
35 (PV2)
40 (PV3)

1

Mtries 2 3 (PV1)
6 (PV2)
12 (PV3)

1 2 (PV1)
2 (PV2)
4 (PV3)

SR 0.1 1 0.1 0.6 (PV1)
0.8 (PV2)
0.8 (PV3)

1 0.1

Ntrees 0 1500 10 0 1500 10

Models tested 30000 (PV1)
60000 (PV2)
165000 (PV3)

7500 (PV1)
9000 (PV2)
6750 (PV3)
Fig. 7. RF Hyperparemeters search results.
4.2. Hyperparameters optimisation

This section describes the process of hyperparameters optimisation.
The improvements of the search process were validated using the
nRMSE metric. The Grid Search algorithm was applied using the H2O
library (H2O.ai, 2020), while the Hyperband and the Random Search,
were coded using the kerastuner package (Abdullayev, 2022). Both
libraries allowed parallelisation on the Ryzen 9 processor used for the
calculations.

4.2.1. Random Forests hyperparameters optimisation
The algorithm used for the RF hyperparameters optimisation was

the Grid Search. The search space was constructed using four variables,
Depth, Mtries, SR, Ntrees. Two sweeps were performed, using the second
one for fine-tuning. Table 4 shows the summary of the values used
search process.

Fig. 7 shows the nRMSE errors obtained with the training and
validation subsets. The influence of each hyperparameter on the error,
which allows its selection, is studied below.

For the Mtries hyperparameter, the best values obtained were Mtries
= 2 for PV1 & PV2 and Mtries = 4 for PV3, which coincide with
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the approximate value of the square root of the number of variables
involved in the model, the rule recommended by the used framework.

The variation of the error obtained with the training and validation
periods for different Depth values, keeping constant Mtries and SR, is
plotted in Fig. 8(a). There is not overfitting, as the values with both
periods are similar. It is also observed that, as Depth increases, the
nRMSE decreases. Then, the optimal Depth values were chosen to be
small enough at which the error would no longer decrease no matter
how much we increased the value of Depth.

Fig. 8(b) shows that the influence of the sampling rate, SR, on the
nRMSE is very small in all the plants. It would be expected to obtain
better results for higher SR values as this parameter is used to reduce
the number of input data and speed up the training process.

Finally, the number of trees, Ntrees was shown with an asymptotic
behaviour in the study of each of the previous hyperparameters. The
error decreases as the number of trees increases. Then, the optimal
number of trees will be the minimum value that does not improve the
error.

A set of hyperparameter values providing minimum errors were
selected with the previous analysis. Table 5 shows the summary of
results for the hyperparameters search of the RF models.



Solar Energy 254 (2023) 88–101A.P. Talayero et al.
Fig. 8. RF Hyperparemeters search results. Influence of Depth and SR.
Table 5
Selected hyperparameters and metrics for RF.

PV1 PV2 PV3

Mtries 2 2 4
Depth 10 20 20
SR 0.7 0.7 0.7
Ntrees 560 520 560
nRMSE 5.2% 1.9% 3.1%
Models tested 37500 69000 172250

Table 6
Hyperparameters values used in the Grid Search for GB for each PV
plant.

Min Max Delta

Depth 1 15 1
SR 0.1 1 0.1
Ntrees 0 3000 5
Models tested 90000

4.2.2. Gradient Boosting hyperparameters optimisation
The Grid Search algorithm was also used to look for the optimal

hyperparameters of the GB models. Here, only three variables were
used to construct the search space, Depth, SR and Ntrees. The search
process was performed in one sweep for each plant using the same
values for each plant. The values are shown in Table 6.

Fig. 9 plots the nRMSE against the sampled hyperparameters sum-
marising the whole set of models tested for the three plants. The
increase of Depth decreases the error but produces overfitting from a
specific value, as can be seen clearly in the case of PV1 and more faintly
for PV2. Then, care has to be applied to avoid the overfitting effect
when selecting the optimal values.

The dependence of the nRMSE with the trees Depth is not so strong
as it was in the case of RF, as shown in Fig. 10(a). Moreover increasing
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Table 7
Selected hyperparameters and metrics for GB.

PV1 PV2 PV3

Depth 2 4 3
SR 0.4 0.4 0.7
Ntrees 2430 1280 1280
nRMSE 5.2% 1.5% 2.7%
Models tested 90000 90000 90000

its value produces overfitting, as commented before. Then, the optimal
Depth values were chosen small enough so that the error would be lower
and avoid overfitting.

The influence of the SR on the nRMSE, shown in Fig. 10(b), is very
small in all the plants and the optimal value was chosen belonging the
middle of the variation range. Finally, The number of trees, Ntrees has
an asymptotic behaviour, as in RF and, for this reason, the optimal
number of trees was chosen as the minimum value that does not
improve the error.

The set of optimal hyperparameters selected with the previous
analysis are shown in Table 7

4.2.3. Artificial Neural Networks hyperparameters optimisation
Neural networks, in particular MLPs, have a wider range of hyper-

parameters to optimise. Among them, the number of hidden layers,
the number of neurons (Units) in each hidden layer, the dropout regu-
larisation (Dropout) in each layer, the number of epochs (Epochs) and
the learning rate (LR) were selected in this work. After some initial
attempts varying the number of epochs, the learning rate and the
number of neurons in each hidden layer, it was decided to explore
only the number of neurons (Units) and the dropout regularisation
(Dropout) in each hidden layer, keeping the learning rate fixed. The
number of epochs was not explicitly explored as it is done automatically
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Fig. 9. GB Hyperparemeters search results.
Fig. 10. GB Hyperparemeters search results. Influence of Depth and SR.
by the Hyperband search method, used in the first sweep. The second
sweep was performed more simply using the random search method.
Models containing 1, 2 and 3 hidden layers were tested for each PV
plant exploring the number of Units and the Dropout in each hidden
layer. The input layer dropout value was also considered. A total
computational budget containing 10,550 models was used for each run.
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The second sweep, with random search, was only performed on the
models with one hidden layer for all plants and the model with two
hidden layers for PV1, as the rest did not improve the results. The
number of explored models equalled 4000 in this second sweep.

Table 8 shows the hyperparameters values for the two sweeps.
Four search runs, accounting for 35,650 explored models, for PV2 and
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Table 8
Hyperparameters values used in the Hyperband Search for ANN. Where not indicated, values apply for the
three plants.

First sweep
hyperband search

Second sweep
random search

Min Max Delta Min Max Delta

Input Dropout 0 0.9 0.1 – – –
Units L1 2 512 2 1 512 11 Layer
Dropout L1 0 0.9 0.1 0 0.3 0.1

Input Dropout 0 0.9 0.1 – (PV1) – (PV1) – (PV1)
Units L1 2 512 2 350 (PV1) 512 (PV1) 1 (PV1)
Dropout L1 0 0.9 0.1 0(PV1) 0.3 (PV1) 0.1 (PV1)
Units L2 2 512 2 1 (PV1) 512 (PV1) 1 (PV1)

2 Layers

Dropout L2 0 0.9 0.1 0 (PV1) 0.3 (PV1) 0.1 (PV1)

Input Dropout 0 0.9 0.1
Units L1 2 512 2
Dropout L1 0 0.9 0.1
Units L2 2 512 2
Dropout L2 0 0.9 0.1
Units L3 2 512 2

3 Layers

Dropout L3 0 0.9 0.1

Models tested 10550 (each run) 4000 (each run)
Fig. 11. Overall view of ANN Hyperparemeters search results.
Fig. 12. ANN hyperparameters search results for PV1.
PV3, and five search runs with 39,650 explored models for PV1, were
performed.

Fig. 11 shows the error obtained for all the explored models in
function of the number of neurons (Units) with the colour indicating the
corresponding hidden layer number. The error is bounded in a range
of values where the upper limit means that the Hyperband stopping
criterion is suitable, while the clearer lower limit indicates that proper
solutions minimising the error were found.

Fig. 11 reveals that the minimum error is found for models with only
one hidden layer for PV2 and PV3, while for PV1, a second hidden layer
is needed.

Fig. 12 summarises the dependence of the error with the Dropout
and the Units of each hidden layer in the models explored for PV1. The
96
lowest error is achieved with null Dropout in the first hidden layer but
not in the second, where 0.1 is selected. The number of Units has an
asymptotic behaviour in both hidden layers which allowed the proper
selection of the number of neurons.

Fig. 13 plots the influence of the Dropout and Units of the hidden
layer on the error in PV2 and PV3. The Droput of the hidden layer for
PV2 should be null, while in the PV3 plant is a little better to select the
value 0.1. The number of neurons were selected with the same criteria
used for PV1.

As it was said before, the learning rate was kept constant and equal
to 10−4 while the number of epochs was equal to 81 for all explored
models. Table 9 shows the summary of results for the hyperparameters
search of the ANN models for each PV plant.
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Fig. 13. ANN hyperparameters search results for PV2 & PV3.
Table 9
Selected hyperparameters and metrics for ANN.

PV1 PV2 PV3

Input Dropout 0 0 0
Droput L1 0 0 0.1
Droput L2 0 – –
Units L1 239 204 114
Units L2 475 – –
Learning rate 10−4 10−4 10−4

Epochs 81 81 81
nRMSE 6.6% 2.3% 3.8%
Explored models 46200 35650 35650

4.3. Performance evaluation and comparison of the optimised models

Here, the performance of the final models is evaluated and com-
pared. The test data subsets and the optimised hyperparameters have
been used to obtain the results and calculate the metrics each model
provides in each PV plant. Fig. 14 shows a scatter plot representing the
estimated versus the measured power, for each model and plant. The
dispersion observed in the plots indicates the goodness of the models.
Less dispersion means better performance of the model. The plots also
show the regression (orange) and the unity slope (green) lines.

Plant PV2 has the lowest dispersion and shows the best regression.
This can be due to the plant location in a flat area, without shadows,
and the uniform distribution of the met-stations covering the whole
studied surface. Plant PV1 shows the highest dispersion and the worst
regression. This results may be due to the location in complex terrain,
which means more shadows in the PV panels, and the availability of
only one met-station. Finally, plant PV3 is also in complex terrain but
has more met-stations available. Its results are between those of PV1
and PV2, probably due to a better representation of the radiation in
the PV field due to the met-stations availability.

Regarding the models, Fig. 14 clearly shows that the MLR is the
worst performing with high dispersion and the worst regression. This
result was expected because MLR is a naive approximation used as a
baseline for evaluating the improvements of the models. Observing the
differences among the other three proposed models is difficult because
they all look like reasonable options. Table 10 shows the numerical
metrics for the three PV plants, including again the results of MLR
model as baseline.

The results presented in Table 10 show that the best estimations (in
green) for the three PV plants are achieved with RF, closely followed
by GB. Only the normalised Bias for PV1 and PV2 favour the MLR.
Nevertheless, the nBias results are minimal in all cases and cannot be
taken as a bad indicator. It is worth noting that being PV1 the plant
with the worst results, its Skill Score for the RF model is the best of
the three plants, reaching 30%, while for PV2 and PV3, the SS of the
RF model is around 25%. Finally, it is significant that the ANN model,
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claimed as the best solution in many papers, was found as the worst
option for the three tested PV plants.

4.4. Comparison with other models found in the literature

Comparing the results with those obtained by other authors is
difficult due to plant sizes, the type of data and their sample rate, the
frequency of the estimates and the evaluation metrics. However, this
section compares the most similar models found in the literature.

Five articles providing at least the average value of the nRMSE were
selected. They include Multiple Linear Regression, Artificial Neural Net-
works, Support Vector Machines, Gaussian Process Regression (GPR)
and Random Forests.

Graditi et al. (2016) developed one parametric and two ML, MLR
and ANNs, using a large dataset with 7 years of data. The plant had
a power value equal to 1 kWp. The objective was to determine the
optimal subset of data using a Genetic Algorithm (GA). The ANN
model was constructed with one hidden layer containing 3 neurons
without any optimisation. The final models used only two days of
data providing error values similar to those obtained with one year
of data. Huang et al. (2016) focused on improving the accuracy of
ANNs in the estimation of the power including inputs related to the
sun position. Data were from two sites with 1 kWp and 78.7 kWp. The
ANN model was constructed with one hidden layer containing six and
fourteen neurons without clearly explaining the reasons. The results
were better for the models including the sun position variables. There
was a big difference between the errors in the studied sites, justified by
the larger size of the second one. The authors also compared with SVM
and GPR. Pan and Tan (2019) proposed to cluster the weather regimes
and fit a RF model for each cluster. An ensemble was then constructed
using Ridge Regression to obtain the weights of each weather regimen
prediction. One year of freely available data of three plants with peak
power varying from 1.5 kWp to 5 kWp were used. Theocharides
et al. (2020) developed a method based on an ensemble of ANNs built
from 5 wheater clusters. They used data from a test-bench with a
power of 1.2 kWp and meteorological data obtained from the Weather
Research and Forecasting (WRF) Model. Trigo-Gonzalez et al. (2021)
used data from one locations with 9.3 kWp and two other with 2.8
kWp. They developed local models with data from each location and
one global model using data from the three locations and including
the altitude. They optimised the input variables by studying the results
obtained with different combinations for ANN, SVM and MLR models.
Some optimisation of the hyperparameters of the ANNs were also done.
Nevertheless, the range of variation of the number of neurons was very
small.

Summarising, the different authors considered important to include
in the models not only meteorological variables, sun radiation, tem-
perature, wind speed, module temperature, etc. but also the position
of the sun, the weather regime and the location and altitude of the
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Fig. 14. Plots of the estimated versus measured power for the developed models.
Table 10
Final results of the optimised models.

PV1 PV2 PV3

MLR RF GB ANN MLR RF GB ANN MLR RF GB ANN

nMAE (%) 2.846 1.899 2.150 2.436 1.196 0.752 0.797 0.988 2.148 1.253 1.372 1.660
nBIAS (%) 0.005 0.055 0.029 0.048 −0.004 −0.012 −0.021 −0.280 −0.020 −0.001 −0.020 0.047
nRMSE (%) 7.858 5.436 5.852 6.638 2.585 1.926 1.997 2.218 4.093 3.075 3.188 3.534
SS (%) – 30.821 25.523 15.530 – 25.466 22.746 14.169 – 24.866 22.110 13.669
plant to improve the power estimation. None of them took into account
the size of the plant and only one paper justified the bad results with
a bigger size of the PV field. Table 11 shows the comparison of the
results found with those of this work. The best results were achieved
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in this work using data from PV2 for all the developed models. The
properties of the plant, located in flat terrain without shadows, the
use of more than one meteorological station to represent the PV field
and the systematical optimisation of the hyperparameters of the models
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Fig. 15. Measured and the estimated power of PV1, PV2 and PV3 in a cloudy and a sunny day.
Table 11
Comparison with other authors.

Reference Method PV plant
capacity
(kWp)

Average
nRMSE
(%)

Graditi et al. (2016) MLR 1.0 5.0
ANN 4.6

Huang et al. (2016)
ANN

1.0–79
3.8–7.3

SVM 3.8–7.5
GPR 3.2–7-0

Pan and Tan (2019) RF 1.5–5.0 8.8

Theocharides et al.
(2020)

ANN 1.2 6.1

Trigo-Gonzalez et al. (2021)
MLR

9.3–2.8
6.3

ANN 4.5
SVN 3.5

This work

PV1, PV2,
PV3

MLR

1000

7.9, 2.6,
4.1

RF 5.4, 1.9,
3.1

GB 5.9, 2.0,
3.2

ANN 6.6, 2.2,
3.5

allowed those results. Looking at the results of the other two PV plants,
it can be seen that PV3 is also better than those in the literature, while
the errors of PV1 are slightly higher, which can be justified by the
location of the PV field in a complex terrain with shadows and the use
of a single measurement station.

5. Discussion and concluding remarks

The low costs of photovoltaic generation have contributed to the
developing and installing of many large utility-scale PV plants. The
accurate estimation of the production of these plants is essential to
characterise their performance, detect energy losses associated with
component failures and ensure their grid integration. This work con-
tributes with the development of accurate models to know the pro-
duction of large plants at the inverter level with a time scenario of
10 min.

Three non-parametric models based on different machine learning
techniques to estimate the power production of large utility-scale PV
plants are proposed. The methods used were Random Forests, Gradient
Boosting and Artificial Neural Networks. They were compared with
a Multiple Linear Regression model used as a baseline due to its
simplicity. Some of these techniques have been previously applied to
PV plants with good results. Nevertheless, the models proposed so
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far were defined with small plants well below the megawatt range,
where the meteorological measurements are in the same location as the
generation. Plants installed nowadays can reach hundreds of megawatts
with distances between the meteorological stations and the PV modules
of hundreds or even thousands of metres. Therefore, it is necessary to
somehow include in the models the effect of the size of the plant that
affects the non-uniform distribution of solar radiation and the presence
of shadows due to clouds and, sometimes, to the orography in which
the plant is built. In this work, this effect was taken into account
including the measurements of several met-stations distributed along
the PV plant. Then, three PV plants with 1, 2 and 4 met-stations were
studied.

Machine Learning techniques became very popular in all scientific
fields. Nevertheless, the specific tuning of the models’ hyperparameters
is not always done. This work demonstrates how the hyperparameters
can increase the model error up to 5 times, making the need for adjust-
ment clear. A systematic methodology to optimise the hyperparameters
has been carried out for each ML technique. Grid search, Hyperband
search and Random search methods were used depending on the num-
ber of hyperparameters to optimise. This systematic optimisation has
revealed better options than neural networks to model the plant. Less
complex models with less computational demand, such as decision
tree models, are in the same range of error or even improve it. This
contribution is significant because these models have a more suitable
implementation than neural networks in the day-to-day operation of
photovoltaic plants, allowing energy losses to be controlled.

Once defined the hyperparameters, the final results were calculated
using the test data subset. The results showed that even the simplest
model, MLR, provided a reasonable adjustment and was reliable for
estimating the production in a PV plant. However, it was also shown
that the most advanced models could improve MLR up to 30%. The
metrics showed that RF slightly outperforms GB while ANNs have a
bit worst results. The results also revealed that using distributed data
along the plant enhances the models’ performance. Fig. 15 shows the
estimated power of PV1, PV2 and PV3 for a cloudy and a sunny day,
obtained with the three ML models. It can be seen how the best results
were achieved in plant PV2, located in flat terrain and using two
met-stations. Plants PV1 and PV3 are both located in more complex
terrain, but the results of PV1 are worse than those of PV3 due to the
availability of only one met-station in PV1, while PV3 has four.

Comparing the results with those from other authors, the models
for PV2, including the simplest MLR, outperform all reported ones,
indicating the appropriateness of including distributed data in the
models, two met-stations in this case. Models developed for PV3 are in
the range of those reported in the literature, while those generated for
PV1 are only a bit worse, even with very different plant sizes. Then, the
systematic search for optimal hyperparameters is highly recommended
when developing ML models.
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The results obtained have, however, certain limitations. On the one
hand, the developed models allow a very precise estimation of the
plant’s production and hence the losses. However, it is impossible to
determine the origin and root cause of the production losses, and it is
necessary to use other information obtained at the plant. On the other
hand, the study period is limited compared to the lifetime of the plants.
It would be necessary either to use a more representative period of the
plant life or to update the models based on actual plant measurements.
Finally, although considerable computational resources are no longer
necessary once the models have been developed, it should be noted
that they are required for the optimisation of the hyperparameters and
the initial training of the models.

In summary, the main contribution of this work is an accurate
methodology for estimating the production of large utility-scale PV
plants. It has been demonstrated that the size of the plants has to be
accounted for in the models and this is done using data from several
meteorological stations distributed in the plant. Finally, the optimisa-
tion of the hyperparameters may decrease the final error up to five
times. The methodology can be used to characterise the performance
of the plants, detect energy losses associated with component failures
and ensure their grid integration.
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