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Resumen

La planificación de muchas tareas en entornos de millones de nodos no con-
fiables representa un gran reto. Las plataformas de computación más conocidas
normalmente confían en poder gestionar en un elemento centralizado todo el
estado tanto de los nodos como de las aplicaciones. Esto limita su escalabilidad
y capacidad para tolerar fallos. Un modelo descentralizado puede superar estos
problemas pero, por lo que sabemos, ninguna solución propuesta hasta el mo-
mento ofrece resultados satisfactorios. En esta tesis, presentamos un modelo de
planificación descentralizado con tres objetivos: que escale hasta millones de nodos,
sin una pérdida de prestaciones que lo inhabilite; que tolere altas tasas de fallos; y
que permita la implementación de varias políticas de planificación para diferentes
situaciones.

Nuestra propuesta consta de tres elementos principales: un modelo de datos
genérico para representar la disponibilidad de los nodos de ejecución; un esquema
de agregación que propaga esta información por una capa de red jerárquica; y un
algoritmo de reexpedición que, usando la información agregada, encamina tareas
hacia los nodos de ejecución más apropiados. Estos tres elementos son fácilmente
extensibles para proporcionar diversas políticas de planificación. En concreto,
nosotros hemos implementado cinco. Una política que simplemente asigna tareas
a nodos desocupados; una política que minimiza el tiempo de finalización del
trabajo global; una política que cumple con los requerimientos de fecha límite de
aplicaciones tipo «saco de tareas»; una política que cumple con los requerimientos
de fecha límite de aplicaciones tipo workflow; y una política que otorga una porción
equitativa de la plataforma a cada aplicación.

La escalabilidad se consigue a través del esquema de agregación, que provee
de suficiente información de disponibilidad a los niveles altos de la jerarquía sin
inundarlos, y el algoritmo de reexpedición, que busca nodos de ejecución en varias
ramas de la jerarquía de manera concurrente. Como consecuencia, los costes de
comunicación están acotados y los de asignación muestran un comportamiento
casi logarítmico con el tamaño del sistema. Un millar de tareas se asignan en una
red de 100.000 nodos en menos de 3,5 segundos, así que podemos plantearnos
utilizar nuestro modelo incluso con tareas de tan solo unos minutos de duración.
Por lo que sabemos, ningún trabajo similar ha sido probado con más de 10.000
nodos.

Los fallos se gestionan con una estrategia de mejor esfuerzo. Cuando se detecta
el fallo de un nodo, las tareas que estaba ejecutando son reenviadas por sus propie-
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tarios y la información de disponibilidad que gestionaba es reconstruida por sus
vecinos. De esta manera, nuestro modelo es capaz de degradar sus prestaciones
de manera proporcional al número de nodos fallidos y recuperar toda su funcio-
nalidad. Para demostrarlo, hemos realizado pruebas de tasa media de fallos y de
fallos catastróficos. Incluso con nodos fallando con un periodo mediano de solo
5 minutos, nuestro planificador es capaz de continuar dando servicio. Al mismo
tiempo, es capaz de recuperarse del fallo de una fracción importante de los nodos,
siempre que la capa de red jerárquico que sustenta el sistema pueda soportarlo.

Después de comprobar que es factible implementar políticas con muy distintos
objetivos usando nuestro modelo de planificación, también hemos probado sus
prestaciones. Hemos comparado cada política con una versión centralizada que
tiene pleno conocimiento del estado de cada nodo de ejecución. El resultado es
que tienen unas prestaciones cercanas a las de una implementación centralizada,
incluso en entornos de gran escala y con altas tasas de fallo.
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Abstract

Scheduling many tasks in environments of millions of unreliable nodes is a
challenging problem. Well-known platforms usually rely on managing the state of
every computing node and application at a centralized entity. This limits their scal-
ability and resilience. A decentralized model can overcome these problems but, to
our knowledge, no solution proposed in the literature provides a satisfactory result.
In this thesis, we present a decentralized scheduling model with three objectives:
to scale to millions of nodes, without a loss of performance that would render
it useless; to tolerates high rates of failures; and to enable the implementation of
many scheduling policies for different situations. We support our claims with the
results from trace-driven simulation tests on a network of up to a million nodes.

Our proposal consists of three main elements: a generic data model that rep-
resents execution node availability; an aggregation scheme that propagates this
information on a hierarchical network overlay; and a forwarding algorithm that,
using the aggregated information, routes tasks towards the most suitable execution
nodes. These three elements are easily extensible to provide very different schedul-
ing policies. We have implemented five policies. A policy that just allocates tasks
to idle nodes; a policy that minimizes the global makespan; a policy that fulfills
deadline requirements of bag-of-tasks applications; a policy that fulfills deadline
requirements of workflow applications; and a policy that provides a fair share of
the platform to every application.

The scalability is achieved through the aggregation scheme, that provides enough
availability information to the top levels of the hierarchy without flooding them,
and the forwarding algorithm, that looks for execution nodes in several branches
of the hierarchy concurrently. In consequence, the communication overhead is
bounded and the allocation cost shows an almost logarithmic behavior with the
system size. A thousand tasks are allocated to a network of 100,000 nodes in
less than 3.5 seconds, so we can consider using our model on tasks of only some
minutes long. As far as we know, no other similar work has been tested on more
than 10,000 nodes.

Faults are managed with a best-effort strategy. When a node failure is detected,
the tasks it was executing are resubmitted by their owners and the availability
information it managed is rebuilt by its neighbors. In this way, our model is able
to degrade its performance accordingly to the number of failed nodes and recover
its functionality. To show it, we have performed tests of churn and catastrophic
failures. Even with nodes failing with a median period of only 5 minutes, our
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scheduler is able to continue giving a degraded service. Meanwhile, it is able to
recover from the failure of an important fraction of the nodes, as long as the
underlying hierarchical overlay supports it.

After checking the feasibility of implementing policies with very different
objectives on our scheduling model, we have also tested their performance. We
have compared each of them with a centralized version that has full knowledge
of every execution node state. The result is that they perform very close to a
centralized implementation, in large-scale environments and with high rates of
failures.
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Chapter 1.
Introduction
“In all matters, before beginning, a diligent preparation should be made.”

— Cicero

1.1. Motivation
Computers get more powerful every day. They get faster, they get more storage and they reach more
devices. Today, a smartphone has the same capabilities as a personal computer ten years ago. With
such amount of ubiquitous computing power, we are able to run applications that solve problems with
heavy requirements in a fraction of the time they needed before. Common examples (Figure 1.1) are
applications that search through an enormous state space, like chemical combination models; that need
to process huge amounts of data, like outer space signal processing; or that simulate complex systems,
like climate change simulations. In many cases, these problems present coarse-grained parallelism.
That is, they can be divided into multiple tasks so that all or part of them are executed concurrently,
with few or no communication among them. For instance, several tasks executing the same code
may process different parts of the data set, or they may process the same data with different code.
When there exists no dependency between any two tasks, all of them can be started at once. This
kind of application is called a bag-of-tasks. When the execution of some tasks depends on the outcome
of other tasks, it is called a workflow. This thesis is mostly focused on bag-of-tasks applications, but
Chapter 6 deals with workflow applications.

Since there is little communication among coarse-grained parallel applications, they usually perform
well on slow networks or through high-latency links. So, they are the best candidate for distributed
computing platforms. These platforms consist of a set of geographically distributed, loosely-coupled
and unreliable execution nodes. On top of them, a set of common services allocate tasks to execution
nodes and monitor their successful result. A resource discovery service finds the execution nodes that
match certain criteria. A scheduling service decides how to perform the allocation so that an objective
is optimized. Other services provide additional functionality, like fault tolerance, data storage and
user interaction. Distributed computing platforms are very flexible because they can be built using
commodity hardware, connecting different geographical locations and administrative domains.

In this thesis, we tackle the problem of scheduling applications to a very large distributed computing
platform. We present a distributed scheduling model that is able to allocate many tasks in environments
of millions of nodes in a matter of seconds. A distributed scheduling model describes the details and
concepts that a distributed computing platform uses to allocate applications to nodes: application
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Figure 1.1.: Many applications require high amounts of computational resources. For instance, chemical
combination models, outer space signal processing and climate change simulations. Pictures shared
with a Creative Commons Attribution License by users wasoxygen, karenandbrademerson and
NASA Goddard Photo and Video, from Flickr (http://www.flickr.com).

parameters, node properties, algorithms, objective, etc. Well-known platforms usually implement
a scheduling model that relies on managing the state of every execution node and application at a
centralized entity. This includes Condor [90], BOINC [8], Falkon [77] and Hadoop [73], among
others. The shift of these technologies towards newer environments, like cloud computing [11, 22],
and applications, like many-task computing [76, 53], still maintain a dependency on full knowledge
of the system. If that knowledge is very detailed, as in the case of Condor and its ClassAds system,
the cost of its management limits the scalability of the centralized manager, which can only cope with
some hundreds of nodes. But not enough detail limits its scheduling capabilities, as in the case of
BOINC. In both cases, the failure of the centralized manager means the failure of the whole system.

A decentralized solution is able to overcome these problems. Accessing the state of the computing
nodes in a decentralized way can provide a good level of detail without putting all the stress on a
single machine. Likewise, this design is much more resilient to individual node failures. With these
benefits, a decentralized design is still able to manage most of the scheduling policies of a centralized
one. Many works claim to implement these properties to some degree [58, 12, 98, 75]. However, to
our knowledge, no one fully provides all of them at the same time. Their tests comprise less than
a few thousand nodes, failure scenarios are scarcely found and they only compare heuristics for the
same policy.

This thesis presents STaRS (Scalable Task Routing approach to distributed Scheduling), a novel
distributed scheduling model that aims to deal with millions of nodes, tolerate high rates of failures
and support policies with very different objectives. This design it suitable for the most demanding
applications (e.g. many-task computing applications with thousands of tasks and several scheduling
restrictions) in a variety of scenarios (from volunteer computing platforms to cloud data centers).

1.2. Hypothesis and Goals
A distributed computing infrastructure consists of a set of nodes connected through a communication
network. Nodes are independent, in the sense that they have heterogeneous resources, independent
clocks and a user behind each of them that may act at will. They have an availability difficult to



Introduction 3

predict, either due to human decisions or to unexpected failures. Besides, the network introduces a
variable delay in the message transmission that cannot be ignored.

Compared to a monolithic design, such as multiprocessor supercomputers, this distributed design
is harder to manage, but also has many advantages. It is easy to increase the available resources when
needed. New nodes can be connected to the network, old links can be replaced with faster ones.
In this way, its overall performance grows incrementally. Moreover, these platforms can often be
deployed over commodity hardware, so they are cheaper. However, hardware malfunction, natural
disasters and human negligence become more probable as scale increases. But due to its intrinsic
independence, a distributed design is able to stop using failed parts until they are replaced.

To exploit these advantages, we consider that a distributed scheduling model requires the following
properties:

• Scalability: It must deal with a huge number of nodes, from hundreds to millions, without a
loss of performance that would render it useless.

• Fault-tolerance: Failures must be expected with such scales of operation. The model must
degrade its performance and recover its normal operation after the failure of a node. Moreover,
it must tolerate the failure of several nodes, even with high rates of failures.

• Versatility: It must enable the implementation of many scheduling policies for different situ-
ations. This covers application types (bag-of-tasks, workflows, etc.), requirements (memory,
disk, deadline, etc.) and platform configurations (loosely- or tightly-coupled platforms).

The objective of this thesis is to design such a distributed scheduling model. To support these
claims, we drive several simulation tests. We simulate networks of different size, with up to a million
nodes, to study the behavior of our model with increasing scale. We also evaluate if our model is able
to recover and maintain its operation with different rates of failures. Finally, we test the performance
of five different policies. To provide a context, we compare them with a centralized implementation
and a random allocation, and evaluate how near we get to the former and how far from the later.

1.3. Context and Contributions
The research that originates this thesis has been carried out within the Group of Discrete Event
Systems Engineering (GISED)1, from the Aragon Institute of Engineering Research (I3A)2 and the
Departamento de Informática e Ingeniería de Sistemas (DIIS)3 of the Universidad de Zaragoza4. It has
been funded by project CICYT DPI2006-15390 of the Spanish Government, grant B018/2007 (for the
formation of researchers) of the Aragonese Government, and the GISED as a group of excellence of
the Aragonese Government. Additionally, part of this research has been carried out in collaboration
with the Laboratoire de l’Informatique du Parallélisme (LIP)5 of the École normale supérieure de
Lyon6, as a three-month stay funded by grant TME2008-01125 of the Spanish Government.

1http://webdiis.unizar.es/GISED
2http://i3a.unizar.es
3http://diis.unizar.es
4http://www.unizar.es
5http://www.ens-lyon.fr/LIP
6http://www.ens-lyon.eu
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As a result, the main contributions of this thesis are:

• An aggregation scheme that propagates information about the availability of nodes on a tree-
based overlay network. It consists of a generic data model that represents the execution
node availability, and a common set of operations to aggregate this information. Each policy
specializes the data model with the actual node properties it depends on, which may range from
scalar values (like available memory space) to functions (like available computation before a
deadline). The aggregation algorithms can be tuned to find a tradeoff between accuracy and
cost.

• A forwarding algorithm that routes tasks towards the most suitable execution nodes. The
aggregated availability information is used to find the correct route. Using the policy-specific
availability information, it is able to perform stateless resource discovery and allocation simul-
taneously.

• Five example policies that illustrate the use of the scheduling model in specific situations. The
first one is a simple policy to allocate idle nodes that meet memory and disk space requirements,
and is used to explain the aggregation scheme and the forwarding algorithm. Then, we also
present a policy that minimizes the global makespan, finishing all the work as soon as possible;
a policy that fulfills application deadlines; a policy that looks for a fair share of the platform
among applications, using an approximation of the stretch; and a policy for applications with
deadlines, but using workflows of tasks instead of bags of tasks.

The foundations of the tree overlay, the aggregation scheme and the simple idle/busy policy have
been published in the proceedings of the 7th International Conference on Grid Computing [33] and in
volume 4208 of the journal Lecture Notes in Computer Science, titled “High Performance Computing
and Communications” [32]. This last paper was awarded the best paper of the 2nd International
Conference on High Performance Computing and Communications, Munich, September 2006. The
development of those ideas, along with further simulation and comparison with similar work, has
been published in the journal Future Generation Computer Systems [36]. The policy with deadlines
and its results have been published in the proceedings of the 12th International Conference on Grid
Computing [35]. A first approach to the fair share policy has been published in the proceedings of the
10th International Symposium on Cluster, Cloud and Grid Computing [37]. Finally, the policy for
workflows with deadlines has been published in the proceedings of the 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Computing [34].

1.4. Thesis Overview
First, Chapter 2 presents the current state of the art in scheduling in distributed computing platforms.
Then, Chapter 3 explains the details of our main contribution to that state of the art, the decentralized
scheduling model. We give an overview of its architecture and its four main components: the
scheduling model, the nodes, the overlay and the fault-tolerance mechanisms. We explain how these
components work together to build up a generic aggregation scheme for availability information and a
generic task routing process. Both can be instantiated through specific policies, so we give an example
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of a simple policy, the IBP policy. It allocates tasks to idle nodes with enough available memory and
disk space.

Then, Chapters 4 through 7 present four additional policies with different scheduling objectives.
In Chapter 4, the MMP policy tries to minimize the makespan of all the scheduled applications in
the system. In Chapter 5, the DP policy tries to successfully schedule applications with deadlines.
In Chapter 6, the WDP policy explores the use of workflow applications with our decentralized
model, extending the DP policy to this kind of applications. In Chapter 7, the FSP policy schedules
applications so that every one obtains an equal share of the system.

Finally, Chapter 8 analyzes the performance of our model with the proposed policies. It presents
the accuracy and scalability results of the generic model, comparing its behavior among the different
policies. Then it evaluates the performance of each policy individually, compared with a centralized
implementation with full knowledge and a random allocation. Chapter 9 discusses these results and
summarizes the conclusions of this thesis.





Chapter 2.
State of the Art
STaRS provides a scalable scheduling model to virtually any type of distributed computing platform,
from loosely coupled desktop grids to dense clusters. Its design decisions are motivated by the
shortcomings we have observed in the related literature. Centralized designs have a structurally
limited scalability and resilience, so many decentralized alternatives have been proposed. Most use
aggregated information in some way, but they fail to provide good scalability, fault-tolerance and
flexibility at the same time.

2.1. Centralized Designs
Centralized scheduling services are common in cluster, grid and cloud computing, so their limitations
are well known. The most popular desktop grid platform is BOINC [8], with millions of volunteers
in projects like SETI@home [9]. However, it reaches these high scales by having the global scheduler
manage very little detail about each execution node. On the contrary, Condor [90] provides a power-
ful scheduling engine to cluster and grid platforms at the expense of needing ad-hoc solutions [43]
to reach scales over the thousand nodes. Falkon [77] aims for higher scales sacrificing some of the
functionality provided by Condor, like multiple queues and priorities. However, its centralized
dispatcher still scales to a maximum number of managed tasks and resources. In their tests, they reach
two million tasks on 54,000 nodes. Something similar happens with Mesos [50]. It does not perform
any scheduling, it just manages a set of resources and provides a fair share among several distributed
computing frameworks. It offers resources to the platforms, and they perform the actual scheduling.
In this way, it should be able to scale to more than the 50,000 nodes the authors advertise, but a
maximum is inevitable. STaRS circumvents these limitations because it aggregates rich information
about execution nodes to avoid centralizing the scheduling decisions. It reaches higher scales than
Condor or Falkon, without an expected maximum, while being able to implement a wider range of
scheduling policies than BOINC.

Other platforms with application-specific policies rely on centralized resource management. Nim-
rod [6, 4, 5, 3] performs parameter exploration experiments acting as a resource broker: it first gathers
the available resources that fit the experiment requirements and then schedules the tasks on them.
MapReduce [39] and Hadoop [73] process large-scale data sets, centralizing data management and job
scheduling on dedicated nodes. Policies based on economic models [19] set prices and offers indepen-
dently from each other, but inflation adjustment and price gathering problems have been solved in
practice with centralized market managers [48, 21] or non-scalable algorithms [95, 93]. Many-task
computing platforms [76, 53] focus on the scheduling of a large number of short, data-intensive tasks.
Raicu et al. [76] think that they must relax some constraints found in other platforms to be able to
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cope with this amount of fine-grained workload. This is the case of Falkon commented before. All
these works would benefit from a decentralized model like STaRS.

2.2. Decentralization with Aggregated Information
Several proposals adapt grid schedulers to use aggregated information describing each domain. They
are still not fully decentralized, but claim to increase their scalability by using less detailed information
with similar capabilities. Rodero et al. [84] use this information to rank brokers of each domain
by suitability. They define a distributed meta-broker architecture that distributes the aggregated
information to every domain, so that the best broker for a job can be selected. Kokkinos and Var-
varigos [59] use aggregation to reduce the amount of information exchanged between domains, limit
the exposure of sensitive information and improve interoperability. They focus on the aggregation
accuracy for different kinds of attributes and clustering operators. Unfortunately, the architecture
is only a two-level hierarchy, with a centralized meta-scheduler at the top level, that decides which
domain a task is allocated to. Brunner et al. [18] propose the use of a conceptual clustering algorithm
to summarize resource capabilities in different grid domains. They focus on finding suitable execution
nodes in near locations to reduce data transmission times. There is no centralized scheduler, but all
domains must know each other to maximize the matchmaking performance. Rahman et al. [75]map
a d-dimensional logical index to a distributed hash table (DHT). Execution nodes are published in the
index, using capabilities as coordinates, and they are found with point and range queries.

Many decentralized solutions have been proposed to date, some of them also using aggregated
information. In the field of the resource discovery with aggregated information, Cai and Hwang [23]
build distributed aggregation trees on a Chord-like DHT[88], that aggregate node information
for Grid resource monitoring. SWORD [7] allows complex queries to search for computational
resources. The authors propose a decentralized implementations based on partitioning the availability
information space into ranges and map them to a DHT. Each node is responsible for the availability
information of the set of resources in the same range. However, partitioning must be done carefully
to reach good load-balancing. Cohesion [85] is a decentralized, tree-based information aggregation
system on an unstructured peer-to-peer grid platform. They define two ways of building the tree
from the set of nodes, one focused on efficiency and another focused on scalability. NodeWiz [12]
implements a Grid information service specialized on range queries. It uses a binary balanced tree
to partition an attribute space and is able to look for nodes that match certain criteria, but it is
limited to scalar attributes. Cardosa and Chandra [26] present an hierarchical aggregation method
that clusterizes resource capacity distribution functions into so called “resource bundles”. These
bundles provide statistical information about resource properties, with a level of confidence. This
implies that there is a certain probability of discovering nodes that may not fulfill the requirements of
the requested application.

Other works also try to decentralize the scheduling component, but we have seen no other work
that combines scalability, fault tolerance and flexibility as we do. Diet [28, 27] uses a static, ad-hoc
hierarchy to route requests to execution nodes, but no aggregated information is used for forwarding.
Instead, the root node sends each request to all the execution nodes, and they respond whether
they can execute it. Intermediate nodes use stateful queues to control the flow of requests. This
architecture is difficult to scale to millions of nodes. It is not very resilient, either, but they maintain
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links to some ancestors other than the father to manage failures. WaveGrid [98] uses a CAN [80]
overlay to organize nodes by timezone. It allocates work to idle nodes whose timezone is currently
in the night. Resources are discovered by randomly selecting some initial nodes and then using an
expanding ring search. While it scales fairly well, the information used for scheduling is too limited
and random to allow more complex policies. Kim et al. [58] also use CAN to organize nodes by their
resource availability and aggregate queue length information. They justify this overlay by its superior
scalability and fault-tolerance properties over a tree overlay, but its non-hierarchical structure is less
suited for the aggregation of data. Their solution is, at each cell of the CAN overlay, to aggregate the
information coming only from the same row in each dimension, which discards most information to
make scheduling decisions. Kwan and Mupala [61] use a super-peer network to schedule bag-of-tasks
application in volunteer desktop grids. A gossip protocol scatters aggregated information about
computing power and location of resources between super-peers. The scheduling policy consists in
just assigning tasks to the fastest idle node in the selected super-peer. Unstructured networks are more
resilient to failures, as long as super-peers have a very low failure rate.

2.2.1. Aggregating Information on Trees
All these works highlight that aggregating resource information in a tree is a popular approach to
decentralize the resource discovery process. It scales well by reducing the amount of information
that needs to be managed. A similar approach is often found in sensor networks [52, 71], where
less transmitted information between nodes leads to less consumed energy. Several general-purpose
aggregation and indexing frameworks also use hierarchical aggregation. Astrolabe [82] uses a gossip
protocol inside a user-defined hierarchy, with arbitrary aggregation functions. In [38, 74], the authors
describe a generic aggregation protocol for network management purposes. It creates a tree structure
on top of an overlay network, and aggregates network state variables – bandwidth, delay, number
of nodes – using operators like sum, average and min/max. Mortar [65] focuses on data stream
management. For each query, it builds several static tree overlays to provide resilience and faster
aggregation. It is also very common to build a virtual tree on top of a more resilient structure, like
a DHT. That is the case of SDIMS [96], which improves the tree performance by treating read-
dominated and write-dominated parameters separately. These works inspired our aggregation scheme,
but there are important differences. We are interested in the individual state of each execution node.
For this reason, the aggregation is not actually performed until enough samples are collected. Then, a
clustering algorithm selects which samples should be aggregated together. This scheme prioritizes the
accuracy of the aggregation in the lowest levels, where the forwarding algorithm needs to be more
precise.

2.3. Hierarchical Overlays
The use of a hierarchical overlay network is important in our design. Both the aggregation scheme
and the forwarding algorithm assume that nodes are organized in a binary tree (see Section 3.1.3). We
also expect the overlay to recover from node failures. Many works propose fault-tolerant hierarchical
overlays. NodeWiz builds a k-d-tree in which nodes are sorted by their properties. Each branch
divides the search space in two parts by one of the properties. Its objective is to maintain the tree
and the load of its nodes well-balanced. It also considers several failure situations and their solution.
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P-Grid [2] builds a virtual trie structure on top of a DHT, for storage and search of data. By using
self-organization, the tree balances its load even with non-uniform key distributions. However, it does
not take fault-tolerance into account. VBI-Tree [54] builds a virtual balanced tree on top of a DHT.
It uses multi-dimensional indexing that allows range queries to be performed with cost O(log2 N ).
There are references to failure management, but its mechanisms are not properly described. Finally,
Caron et al. [29] contribute a distributed lexical placement table (DLPT), which is a trie that allows
exact, partial and range queries. In this case, it uses replication to provide resilience.



Chapter 3.
A Common Scheduling Model for Many
Policies
“All models are false but some models are useful.”

— George E. P. Box

In this chapter we present the details of STaRS. It is an online distributed scheduling model,
customizable with different policies:

• Distributed scheduling: STaRS receives request from users for the execution of applications.
Each application consists of a set of tasks, and STaRS allocates them to many, independent
execution nodes.

• Online: Applications are allocated as they arrive to the system, they are not known in advance.

• Different policies: A scheduling policy defines the objective of the allocation of tasks: fulfill
certain requirements, finish them as soon as possible, provide fairness to users, etc. It is possible
to implement different policies on STaRS with a common architecture.

• Model: STaRS is a model that describes a set of tools, protocols and algorithms. When
implemented on a distributed scheduling platform, it provides with scalability, fault-tolerance
and versatility.

STaRS tries to fill a gap. It simultaneously provides with the scalability, fault-tolerance and versatility
properties that most distributed computing platforms lack. Scalability, as its ability to manage as
many execution nodes, users and applications as needed. Fault-tolerance, as its ability to gracefully
degrade its performance when part of its components fail, and later recover. Versatility, as its ability
to schedule different application types, with different objectives and in different environments. We
have seen no other distributed computing platform that provides all of them at the same time.

To achieve these goals, we build up STaRS on the principles of decentralization and partial knowl-
edge. In this way, we avoid the bottleneck and single point of failure of a centralized design, and no
algorithm needs to know the full state of the system at once. Then, we propose three generic tools: a
data model to represent the availability of execution nodes; an aggregation scheme that propagates
the availability information on a tree-based overlay network, and that can be tuned to find a tradeoff
between its accuracy and cost; and a forwarding algorithm that, using that information, routes tasks
towards the most suitable execution nodes, performing stateless resource discovery and allocation
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Figure 3.1.: STaRS architecture. The scheduling model is divided into a local and a global part. Execution
nodes provide the local scheduling, while submission and routing nodes provide the global one.
Execution and submission nodes are placed at the leaves of a tree-based overlay, while routing
nodes occupy the branches.

simultaneously. Many policies can be implemented by providing a suitable instantiation of these three
elements. In this chapter we present an example policy, the Idle/Busy Policy (IBP), that allocates tasks
to idle nodes.

In order to facilitate the reading of this and the following chapters, Appendix A contains a brief
reference of the most common notation used throughout it. It also presents the dot notation used in
algorithms to refer to the fields of compound values. Nevertheless, notation is further detailed as it is
used in the thesis. In particular, the notation that only appears in certain chapters.

3.1. Architecture Overview
Figure 3.1 presents STaRS architecture. From top to bottom, the scheduling model consists of a
local and a global part. The local scheduling manages the task execution, while the global scheduling
manages the resource discovery and task allocation. The functionality of each part is implemented
through the node model. Each physical node may play up to three roles: Execution nodes provide the
local scheduling, while submission and routing nodes provide the global scheduling. These nodes are
organized in a logical tree-based overlay, so that routing nodes occupy the branches and execution
and submission nodes hang from the leaves. Finally, the fault tolerance is taken into account at every
level. The tree overlay must recover from physical node failures. Then, the node roles that a failed
physical node was playing can be reassigned to another one, and the scheduling model can maintain
its functionality, with a proportional degradation if needed.

3.1.1. Scheduling Model
STaRS presents a common scheduling architecture for different policies. Among other things, the
policy defines the type of application that is being scheduled. We have mainly focused on policies for
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bag-of-tasks applications, but other kinds of application could be accepted by the system. For instance,
the workflow of tasks is commonly found in many scientific applications. Chapter 6 presents a policy
for workflow applications.

A bag-of-tasks application Ai consists of a set of ni independent, identical tasks. Additionally,
depending on the policy being used, an application may have other parameters that describe the
properties and requirements of its tasks. Common ones are the length of the tasks ai , measured in
millions of floating point operations (FLOPs), and their required memory and disk space, mi and
di , measured in megabytes. Let PRi = (ni ,ai , mi , di , . . .) be the tuple of parameters that describes
application Ai . Then, a user submits an applications to the system as an application scheduling request
containing PRi . This kind of configuration is very common in distributed scheduling platforms due
to its high degree of parallelism.

The scheduling model is divided into a local and global part. The former describes the local
scheduler and its policy. The local scheduler of a node manages a queue with the received remote
tasks. The local policy decides whether new tasks can be accepted into the queue, and their order
of execution. Common examples of local policies are First Come First Served (FCFS) or Earliest
Deadline First (EDF).

The global part describes the availability information, the aggregation scheme and the forwarding
algorithm. They are deeply discussed in Sections 3.2 and 3.3. Every local scheduler periodically
calculates its availability to execute different types of applications, and exports this information.
The aggregation scheme distributes it among the nodes of the system in a hierarchical fashion. It is
then used by the forwarding algorithm to route application scheduling requests towards the most
suitable execution nodes. The global scheduling policy determines the implementation of these three
elements.

Naturally, the global and local policies must match. For instance, a global policy which tries to
fulfill application deadlines will be used along with an EDF local policy. Thus, throughout this thesis
we refer to both of them as just the scheduling policy, without distinction. Five common policies are
presented in the following chapters.

3.1.2. Node Roles
Every physical node Pu of the system plays three node roles that provide the scheduling model
functionality:

• The execution node Eu contains a local scheduler and an execution environment. The execution
environment provides the platform-dependent mechanisms for the safe execution of remote
tasks.

• The submission node Su is the interface between the user and the platform. It manages the
submission of application requests, and monitors the activity of any remote task that has been
successfully allocated to an execution node.

• The routing node Ru is the component that implements the global scheduling policy rules.
First, it receives the availability information from the execution nodes and distributes it to its
neighbors. Then, it forwards application requests towards the most suitable execution nodes
using that information.
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Figure 3.2.: Interactions between the node roles. First, availability information from execution nodes is
aggregated by routing nodes. Then, submission nodes issue a request, that is routed to the
execution nodes. When tasks are allocated to execution nodes, they communicate directly with
the source submission node.

These roles are organized in a hierarchical fashion (Figure 3.2). The local scheduler at each
execution node sends its availability information to its father routing node. Routing nodes aggregate
this information through the tree. When a user wants to get an application executed, it instructs a
submission node to issue an application scheduling request. This request is forwarded by the routing
nodes towards the most suitable execution nodes, using the aggregated information. Execution nodes
are allocated as they are found, in a single stage. From then on, task communication is performed
directly between the execution node and the source submission node.

Usually, all physical nodes play these three roles in order to balance the load among them, but
other configurations may also be interesting, e.g. only some nodes playing the submission node role
in a dedicated cluster. The roles played by the same physical node are placed independently within
the overlay. This provides great flexibility by allowing the relocation of any of the roles of a node
without affecting the other ones.

The execution environment at each execution node Eu isolates remote tasks from the rest of the
system. A virtual machine is a straightforward implementation, but more lightweight ones can be
found in some platforms (e.g. Linux containers). This is done mainly for security reasons, to prevent
remote tasks from abusing the host computers. It also allows the node owner to arbitrarily limit the
type and amount of resources that remote tasks may use. These values are often used to calculate the
availability of an execution node, most common ones being:

• The computational power su , measured in millions of FLOPs per second.

• The available memory reserved for the execution of remote tasks Mu , measured in megabytes.

• The available disk space Du , measured in megabytes too.

In order to be able to execute every remote task under the same conditions, we assume that the
environment disallows preemption. This feature is commonly found in existing distributed computing
platforms, since it prevents preempted tasks from consuming memory and disk space to store their
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Figure 3.3.: Mapping of the different node roles. Every physical node plays as a leaf and a branch node in
the tree. On top of them, execution and submission nodes are mapped to the leaves, and routing
nodes are mapped to the branches.

paused state. So, at each execution node, there is only one running task at a time, which either finishes
or is aborted.

3.1.3. Overlay Structure
STaRS assumes the existence of an underlying overlay network with a balanced binary tree organization.
In fact, it assumes a design similar to VBI-Tree [54]. It is a search tree that differentiates branches from
leaves. Leaf nodes contains the resources that the system looks for. Branch nodes route discovery
requests to find the matching resources. Physical nodes play both roles, so that they can contain
resources and route requests at the same time. In our case, physical nodes play the routing node role
at the branches and the execution and submission node roles at the leaves (Figure 3.3). Every physical
node may play all three roles in different positions of the tree, mutually independent from each other.

The tree is balanced so that the management, search and distribution of data operations are
performed with cost O(log2 N ). This provides very good scalability properties to the system. The
tree is binary because, from our experience in [32], it has a better tradeoff between computational
cost and tree height than higher-degree trees. On one hand, at each node, the network traffic and the
cost of most core algorithms are proportional to the number of children: maintain tree links, receive
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and aggregate children information, route tasks to child nodes, etc. On the other hand, increasing
the tree degree decreases the tree height, and so it shortens the path between any two nodes. This
reduces the time of two important processes: routing a request to the execution nodes and distributing
the availability information through the tree. However, for every tree degree over 3, while the
computational cost increases by a factor of k, the tree height is reduced by a factor of less than k. So,
there is no performance benefit if we increase the tree degree over 3. Then, it is much simpler to
manage a binary tree than a 3-degree tree, so the binary option is preferred.

We also assume that nodes are ordered in the tree, grouping nearby execution nodes under the
same branch. By doing so, certain locality information is provided to the forwarding algorithm in
order to look first for execution nodes nearer to the submission node. This can be accomplished with
topology-aware overlay construction, like in [81]. However, it does not meaningfully contribute
to the evaluation of STaRS, so we use the simpler method of sorting nodes by network address in
our tests. In order to bootstrap the overlay, we propose using a classical approach in decentralized
systems, where a set of well-known nodes are used as a persistent entry point.

We proposed a first design of such an overlay in [32]. It provided the methods to build the tree
structure and expose it to the scheduling components, but it had limited fault-tolerance capabilities.
Later, two master thesis [31, 67] have been carried out to overcome these limitations, taking two
different approaches. The first one backs up the tree structure on a DHT, and the second uses
redundant links between nodes. They show the feasibility of building a scalable and fault-tolerant
tree-based overlay, being able to successfully recover from multiple node failures, but they still need
further development. For this reason, and since this thesis is focused on the scheduling part, the
overlay behavior is simulated in the experiments.

3.1.4. Fault Tolerance
The management of faults in STaRS takes a best-effort approach. It tries its best to allocate and finish
applications, but failures are admissible and should be expected by users. A failed node can make
requests reach no execution node, loose the availability information of its branch and abort the tasks
it was executing. Thus, every level of the model must consider resilience to faults.

First, the overlay network must be fault-tolerant in order to provide a reliable structure. Several
peer-to-peer overlays already exist that construct a tree structure with good scalability and fault-
tolerance properties [12, 54, 2]. Additionally, we have the experience of the two master thesis
commented in the previous section. All of them prevent the top levels of the tree from turning into a
bottleneck and a single point of failure. So, in our tests, we assume that the overlay is able to recover
from node failures, and we evaluate the impact of the recovery in the scheduling performance. We do
not evaluate the cost of the recovery, as the authors of each referred overlay have already done it.

For failures in the node and scheduling models, we treat routing, submission and execution nodes
independently. Routing node failures affect the aggregation scheme and the forwarding algorithm. A
failed routing node looses the availability information aggregated from its branch. The availability
information is distributed in a reactive way, it is sent whenever a routing node modifies its information
or a link with a neighbor changes. Likewise, when a routing node detects that a neighbor has failed, it
sends an update as soon as the link is recovered. Any missing information is quickly rebuilt.

A failed routing node also disconnects its branch from the rest of the tree. Scheduling requests
cannot jump from one side to the other until the node recovers, so we assume that this will impact
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the scheduling performance temporarily. However, some requests may get lost as a result of a routing
node failure. To cope with it, submission nodes set timeouts to detect tasks that have not been
successfully allocated in a reasonable period of time. Then, they retry sending those tasks in a new
request.

Submission nodes deal with their own failures by saving the state of submitted applications to a
database. It contains pending requests, allocated tasks and their current status – queued, running or
finished. All the information about ongoing applications is reloaded as soon as the user restarts the
software.

On the contrary, execution nodes do not save their state. When they fail, all the information about
queued tasks is lost. This is done in this way because we do not known how much time an execution
node will remain off. It is better to resubmit the lost tasks to different nodes. Execution nodes send
heartbeat messages periodically to all the submission nodes for which they have a task in their queue.
When a submission node does not receive three heartbeats in a row from an execution node, it assumes
that it has failed and resubmits its allocated tasks in a new request. Currently, failed tasks must restart
their execution once they are allocated to a new execution node. Well-known mechanisms could be
easily implemented to avoid this, like periodically checkpointing task state or sending several replicas
of each task.

In Section 8.5, we measure how failures actually impact the scheduling performance. We analyze
two situations: the simultaneous failure of a group of nodes, with different group sizes; and several
degrees of churn, which is the rate of nodes leaving the network over a period of time.

3.2. Availability Information Management
The availability information is the glue between the local schedulers and the forwarding algorithm.
Local schedulers use it to describe their availability to accept new tasks. Then, routing nodes aggregate
this information, so that it approximates the availability of the execution nodes in their branch. In
this way, routing nodes can decide where to forward the scheduling requests they receive.

In this section we give a generic pattern for the availability information representation and its aggre-
gation scheme. Each policy must specialize it with the node parameters and application requirements
that it considers relevant. We illustrate this with a simple policy, the Idle/Busy Policy (IBP). We
firstly introduced the IBP policy in [32]. An execution node may only accept one task at a time, so
its state is either “idle” or “busy”. Then, a task of application Ai that needs mi memory and di disk
space for its execution will only be accepted by an idle node with enough available memory and disk
space. This configuration may be appropriate in scenarios where very little information is obtained
from execution nodes. For example, in projects of volunteer computing it is very difficult or even
impossible to estimate the availability of execution nodes with any useful precision.

3.2.1. Describing Node Availability
The term “availability” is very vague. It refers to the possibility of an execution node of accepting
new tasks, given the objective of the policy. For instance, in the IBP policy, a busy node would have
zero availability, but we need to decide which of two any idle nodes is more available. To solve this
problem, we define a set of tools, common to all the policies, that measure the availability of the
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execution nodes. The first one is the availability function, a primitive that describes the availability of
an execution node to accept tasks of a certain application, defined as follows:

Definition 1. The availability function AFu (PRi ) describes the availability of execution node Eu at
the current time, as the number of tasks of application Ai , with its parameters PRi , that Eu is able to
execute.

The actual implementation of AFu depends on the scheduling policy being used. It will take into
account the parameters of application Ai and the corresponding node resources. In the IBP policy, the
availability function for Eu would be AFu (mi , di ). For any pair of values (mi , di ) such that mi ≤Mu
and di ≤Du , the function would return a value of 1, and 0 otherwise. As the definition states, it is
also usual to include the current time if any aspect of the node availability depends on it, like queue
state.

When receiving a request at a routing node, the forwarding algorithm must calculate the availability
function of the execution nodes in its branch, to decide how to distribute the tasks among them. With
the application parameters PRi in the request, it needs the node resources. Execution nodes send
this information up the tree, providing their state to the forwarding algorithm. For this purpose, the
availability function is first discretized into a sampled function.

Definition 2. A sampled function fu for node Eu is a tuple of samples of the availability of node Eu ,
for each of its resources, that is used to compute its availability function.

These samples, together with the parameters of a newly submitted application, are used to approx-
imate the value of the availability function by interpolation. This representation is very flexible
since its size is O(k l ), where k is the number of resources of Eu and l is the number of samples per
resource. By increasing k and l , the approximation will be more accurate, but the sampled function
will also be larger, so a tradeoff must be found. On one hand, the information reported to the routing
nodes is used by the forwarding algorithm to look for a certain scheduling objective, so improving its
accuracy directly affects the scheduling performance. On the other hand, the data sent between nodes
must be compact in order to save network and computational resources. This tradeoff looks for a
good performance and scalability balance.

The method to determine which samples are useful, and how the approximation of the availability
function is actually done – e.g. linear interpolation –, heavily depends on the nature of the function
and its parameters. In the IBP policy, only a single sample is needed for each node resource, so its
sampled function is the tuple (Mu , Du). The availability function can be computed comparing the
application parameters mi and di with the samples in the tuple, as explained before. Each policy must
then define its own representation of the availability, using the concepts of availability function and
sampled function. In the following chapters, more elaborate policies are analyzed.

3.2.2. Availability Aggregation Scheme
The sampled functions of execution nodes are propagated to the routing nodes in availability sum-
maries, which are just sets of sampled functions. Summaries are sent from children to fathers. After
receiving new information, a routing node builds the summary of its branch as the union of the
summaries of its children. That is the information needed to allocate tasks to execution nodes in that
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Figure 3.4.: Hierarchical agglomerative clustering of sampled functions. At each step, the two most similar
functions are joined together.

branch. However, the availability summary size grows exponentially as we climb up the tree, so this
solution does not scale over a few tree levels.

To limit the amount of information distributed through the network, and to the top levels in
particular, we use a tree-based aggregation scheme [66]. Such scheme reduces the number of sampled
functions in the summary of a branch, but maintains a good approximation. When the size of a sum-
mary is over a certain maximum SFmax, we use a hierarchical agglomerative clustering algorithm [55].
As depicted in Figure 3.4, it iteratively sums up the two most similar functions into one, until the
number of sampled functions reaches the maximum again. While being suboptimal, it provides a
good tradeoff between cost and accuracy. Note that, unlike other tree-based aggregation schemes,
that look for a single value that summarizes the global state, we look for the individual states of the
execution nodes. By delaying the aggregation until the availability summary reaches a certain size,
and then applying a clustering algorithm, we can control how accurately the resulting information
approximates the actual availability of the execution nodes.

We think that a hierarchical agglomerative clustering algorithm is better suited than other agglom-
erative and partitional algorithms. Their details can be found in [55]. All of them start with a set
of sampled functions and iteratively reduce them to a certain number of representatives. At each
step they provide a partial solution. To calculate this partial solution, a hierarchical algorithm only
uses the result of the previous step and reduces the number of sampled function by one. Other
agglomerative and partitional algorithms need the original set of functions at every step. For this
reason, with a hierarchical algorithm we can cluster the availability information at any level of the
tree, even if it has already been clustered before. The original set of functions is not passed up the tree
once the availability information is clustered for the first time, so other agglomerative and partitional
algorithms produce less accurate results, or may not be applicable at all.

The Sum and the Distance

We just said that the clustering algorithm sums up similar sampled functions. From the definition
of availability function, it is easy to see that the number of tasks that could be executed by a pair of
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nodes is calculated as the sum of their availability functions. So we define the sum of two sampled
functions as:

Definition 3. The sum of sampled functions f1 and f2 (expressed as SUM( f , g )), that are used to
compute functions AF1 and AF2 respectively, is the sampled function that is used to compute
AF1+AF2.

With the associative property, this definition is extended to the sum of any number of sampled
functions. It follows that a sampled function is able to describe the availability of a set of nodes, not
just one. So, we also extend the definition of sampled function f to include an attribute f .v for the
number of nodes it describes. When an execution node provides a sampled function for its availability,
it sets f .v = 1. Then, for h = SUM( f , g ), we have that h.v = f .v + g .v.

Obviously, how the sum operation is performed depends on the node resources the sampled
function contains and how they are represented. For instance, the sampled function of the IBP policy
contains samples for two resources and the v attribute: (M , D , v). We can argue that, since we want
to allocate tasks to nodes that have enough available memory and disk space, the sum operation of
this policy should be

SUM( f1, f2) =
�

min( f1.M , f2.M ), min( f1.D , f2.D), f1.v + f2.v
�

. (3.1)

Equation 3.1 expresses that there are f1.v + f2.v nodes with at least min( f1.M , f2.M ) memory and
min( f1.D , f2.D) disk space. Then, tasks with lower requirements than those can be sent to any of the
execution nodes of f1 and f2. However, it is easy to see that a single sampled function for a set of
nodes must be less accurate than their respective set of functions. Assuming f2.M < f1.M , tasks with
f2.M < mi < f1.M could be allocated to any node of f1, but we would not know with the information
in SUM( f1, f2). The more f1.M and f2.M differ, the more accuracy is lost. Or, in general, the more
similar the parameters of the sampled functions are, the less accuracy is lost in the sum operation.
This can be measured with the distance operator.

Definition 4. The distance of sampled functions f1 and f2, expressed as DIST( f1, f2), is a measure of
the accuracy lost by representing the availability of their set of nodes with SUM( f1, f2).

Again, the implementation of the distance operation depends on the policy. Usually, it is easy
to obtain a measure of the accuracy lost for each resource in the sampled function, but we need to
reduce them to a single value. The solution that has shown best results is to normalize these values
and perform a weighted sum. With the weight of each resource, we control how important it is to
meet each of the application requirements.

To improve the aggregation performance, the clustering algorithm sums up the two closest sampled
functions, those that loose less accuracy at each iteration. In this way, it groups together sampled
functions that represent nodes with similar available resources. With the sum and distance operations,
Algorithm 3.1 shows the aggregation of two summaries x and y.

Clustering Scalar Parameters

Scalar parameters are the most common ones to appear in sampled functions. For instance, the
IBP policy includes the available memory and disk space. Other examples are the queue length, the
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Algorithm 3.1 Aggregation of two availability summaries.

Pre: x and y are summaries.
Post: z is the result of the aggregation of x and y.
1: function AGGREGATE(x, y)
2: z← x

⋃

y
3: while |z |> SFmax do

4: Let f , g ∈ z | DIST( f , g )≤ DIST(i , j ) ∀i , j ∈ z
5: z← (z \ { f , g})

⋃

{SUM( f , g )}
6: end while

7: return z
8: end function

processor power and the network bandwidth. Therefore, we have developed an implementation of
the sum and distance operations on sampled functions with scalar parameters. We use it extensively
in our other policies.

First, consider a scalar parameter p for a generic resource. The value for node Eu is denoted as
pu , as usual, and a sampled function with that parameter is written as the tuple f = (p, v). Such
a function represents a set of f .v execution nodes with an amount of resource p equal to f . p. It
is clear that, for every node Eu such that pu 6= f . p, we are introducing an error in the availability
information. We want to:

• Be able to compare the error introduced by two different sampled functions.

• Minimize the total error:
∑ f .v

u=1 | f . p − pu |.

• Minimize the maximum error among all the nodes: max f .v
u=1 | f . p − pu |.

To accomplish this, we calculate the mean square error (MSE) of parameter p introduced by a
sampled function. We can use this value to compare two sampled functions. For functions that
represent the same number of nodes, the one with the lowest MSE is also the one with the lowest
total error. Finally, for the same total error, the function with the lowest MSE is also the one with the
lowest maximum error. So, we include a new attribute msep in the sampled function:

f .msep =
1

f .v

f .v
∑

u=1
( f . p − pu )

2. (3.2)

The MSE is 0 for the sampled function fu that an execution node creates to represent its own
availability, since fu . p = pu . We now explain how the sum operation calculates the MSE of the
resulting sampled function. Let f and g be the sampled functions that result from adding functions
fi , 1≤ i ≤ f .v, and g j , 1≤ j ≤ g .v, respectively. Their MSE of parameter p are

f .msep =
1

f .v

f .v
∑

i=1

( f . p − fi . p)2, g .msep =
1

g .v

g .v
∑

j=1

(g . p − g j . p)2.
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We want to calculate h = SUM( f , g ) only with the information of f and g , without needing to
know anything about functions fi and g j . We already showed that h.v = f .v + g .v and that h. p can
be calculated with a simple operation on f . p and g . p (like the minimum, maximum, average, etc).
The attribute h.msep is then

h.msep =
1

h.v







f .v
∑

i=1

(h. p − fi . p)2+
g .v
∑

j=1

(h. p − g j . p)2





. (3.3)

If we take the term (h. p − f1. p)2 from (3.3) and add and subtract f . p, we obtain

(h. p − f1. p)2 = (h. p − f . p + f . p − f1. p)2 =

= (h. p − f . p)2+( f . p − f1. p)2+ 2(h. p − f . p)( f . p − f1. p). (3.4)

Repeating (3.4) for all the terms on fi we get that

f .v
∑

i=1

(h. p − fi . p)2 = f .v(h. p − f . p)2+
f .v
∑

i=1

( f . p − fi . p)2+ 2(h. p − f . p)
f .v
∑

i=1

( f . p − fi . p) =

= f .v
�

(h. p − f . p)2+ f .msep

�

+ 2(h. p − f . p)
f .v
∑

i=1

( f . p − fi . p). (3.5)

The same applies to the terms on g j . Note that, at this point, we are able to compute h. p − f . p only

with the information of f , but we still need
∑ f .v

i=1( f . p − fi . p). Let it be called the linear term of
parameter p in f . We can incorporate it to the sampled function too, in an attribute called lt p . So
far, a sampled function with one scalar parameter p would contain the values (p,msep , lt p , v). Then,
from (3.3) and (3.5), the sum of f and g would obtain h where

h.msep =
1

h.v

h

f .v
�

(h. p − f . p)2+ f .msep

�

+ g .v
�

(h. p − g . p)2+ g .msep

�

+

+ 2(h. p − f . p) f .lt p + 2(h. p − g . p)g .lt p

i

. (3.6)

And the same procedure is used to calculate h.lt p :

h.lt p =
f .v
∑

i=1

(h. p − fi . p)+
g .v
∑

j=1

(h. p − g j . p) =

= f .v(h. p − f . p)+
f .v
∑

i=1

( f . p − fi . p)+ g .v(h. p − g . p)+
g .v
∑

j=1

(g . p − g j . p) =

= f .v(h. p − f . p)+ g .v(h. p − g . p)+ f .lt p + g .lt p . (3.7)



A Common Scheduling Model for Many Policies 23

Now, the clustering algorithm is able to take the two sampled functions that produce the minimum
MSE when summed up. With one scalar parameter, the distance operation of two sampled functions
is straightforward: it just returns the MSE of their sum. But with more than one scalar parameter, we
have many MSE values as the result of the sum operation, one for each parameter. As we explained
before, the best solution is to calculate the distance as a weighted sum of the normalized MSE for each
parameter. That is, for n scalar parameters p1 through pn ,

DIST( f , g ) =
n
∑

i=1

αi NORMi (SUM( f , g ).msepi
). (3.8)

The αi coefficients represent the weight of each parameter in the distance operation. Usually, they
will all have the same value, but in some situations it is interesting to give more importance to some
of the parameters over the rest. For the IBP policy, we have decided that both memory and disk space
have the same weight. Then, the normalization function NORMi that appears in (3.8) maps the MSE
of parameter pi to the [0,1] range. Let B be the set of all the execution nodes of the current branch,
whose information is being clustered, then

NORMi (m) =
m

�

max
E∈B
(E . pi )−min

E∈B
(E . pi )

�2
. (3.9)

Values maxE∈B(E . pi ) and minE∈B(E . pi ) must be known at each routing node, so they are also
aggregated. An availability summary contains a maximum and a minimum value for each parameter
pi . Execution nodes initialize them with their own value. When two summaries are aggregated, the
resulting summary simply gets the maximum of the maximums and the minimum of the minimums.
So, the cost in time and space is very little. If the maximum and minimum values for any parameter
are equal, the sum operation cannot make an error on that parameter, and it is not taken into account
in the linear combination.

3.2.3. Distributing the Availability Information
The aggregation of the availability summaries is done in a hierarchical fashion. Execution nodes
send a summary to their father routing node with a single sampled function, representing their own
availability. Then, routing nodes aggregate the summaries from both children, and send the result
further up the tree. This scheme is reactive: whenever execution nodes change their availability or
routing nodes receive new information, the aggregation mechanism is triggered.

Execution node availability changes periodically. For some policies, it may change only every time
a task starts or finishes. In other cases, it may be frequently changing, since time can be an important
factor of the execution node state. For this reason, the availability information must be kept up to
date at the routing nodes. However, if many execution nodes change at the same time, a cascading
effect will flood the upper levels with update summaries, rendering the system unusable. To provide
scalability and reliability, this problem must be faced.

We propose two solutions. The first one is implicit to the aggregation scheme. Routing nodes
periodically receive updated information from their children nodes, aggregate it and store the result
as the information of their branch. But when previous information exists, it is compared with the



24 A Common Scheduling Model for Many Policies

new one. If they are equal, it is not reported to the father, since it is the same it already has. This may
happen when a child node sends a similar summary to the one it sent before, due to the way in which
the sum of sampled functions is performed. If it uses operations like the minimum or maximum, as in
the IBP example policy, little variations will probably produce the same result. So, a summary going
up the tree may stop before reaching the root when the availability changes lightly.

The second measure is to limit the bandwidth used to send summaries. Routing nodes insert a short
delay after sending each summary to keep the average used bandwidth under an arbitrary maximum.
After the delay expires, only the most recently aggregated summary is sent. This can be done with
the availability information because each new summary makes the previous ones obsolete. This
bandwidth limit, along with the size of the availability summary, is a tradeoff between the traffic
supported by nodes and the time needed by a change in the leaves to reach the root of the tree. The
lower the bandwidth limit, the higher the period between two summaries are sent. This results in the
availability information being out of date more often. As we will show, this impacts the performance
of some policies that are more sensible to availability changes.

3.3. Task Routing
Task routing is the process of forwarding the tasks in an application scheduling request towards the
most suitable nodes, given its parameters. We call it “task routing” because it resembles the routing
of packets in a computer network. A network router uses the forwarding table to decide in which
direction to send a packet. Our forwarding algorithm uses the availability information to decide in
which direction a request may reach the best execution node for each of its tasks.

The task routing process starts when a submission node Su issues a new application scheduling
request req for req.n tasks of application Ai . As we explained in Section 3.1.1, we focus on bag-of-tasks
applications. For such an application, a request contains the application properties PRi , the address
of the requester Su , a request identifier and an interval of task identifiers [1, req.n]. All the tasks in
a bag-of-tasks application are identical, so we can group them in an interval instead of enumerating
each of them. Then, routing nodes invoke the forwarding algorithm on the requests they receive.

3.3.1. Forwarding Algorithm
Using the availability information, the forwarding algorithm decides in which direction it sends each
task. So, it ends up sending nl tasks to the left child, nr tasks to the right child and n f tasks to the
father, so that nl + nr + n f = req.n. With these values, it creates three new requests with the same
application properties, request identifier and requester address as the original. The request for the
left child will contain the task identifiers in [1, nl ]; the one for the right child, task identifiers in
[nl + 1, nl + nr ]; and the one for the father, task identifiers in [nl + nr + 1, req.n]. The resulting
requests are sent in the corresponding direction, as long as they carry at least one task. However, if
there is no father because the current routing node is the root, the n f tasks that were meant for it are
discarded. They are treated as a scheduling failure and will be resent by their submission node. The
algorithm is stateless with regard to the requests it forwards: it needs to hold no record of them. This
improves its scalability and fault tolerance.

Each policy must specialize the forwarding algorithm, as it specializes the availability information.
Usually, a policy-dependent objective function sorts sampled functions by the suitability of allocating
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Algorithm 3.2 Forwarding algorithm for the IBP policy.

Pre: Ru is this routing node. request is the request.
Post: reqLeft, reqRight and reqFather are the resulting requests to be sent to the left child, right

child and father nodes, respectively.
1: procedure FORWARD(request)

2: availableSF ← ;
3: if request.srcAddr 6= Ru.leftAddr then

4: GETSF(Ru.leftInfo, request.PR, availableSF)
5: end if

6: if request.srcAddr 6= Ru.rightAddr then

7: GETSF(Ru.rightInfo, request.PR, availableSF)
8: end if

9: SORT(availableSF) . Best nodes are allocated first.
10: while ¬ISEMPTY(availableSF)

∧

request.n > 0 do

11: sf ← POPFRONT(availableSF)
12: numTasks ← AF(sf, request.PR)
13: if ISFROMLEFTCHILD(sf) then
14: reqLeft ← EXTRACT(request, numTasks)
15: else

16: reqRight ← EXTRACT(request, numTasks)
17: end if

18: end while

19: if request.n > 0 then

20: reqFather ← request

21: end if

22: end procedure

a task to one of their nodes. Then, tasks can be assigned to each child from the most to the least suited
sampled function. Besides, in most policies, the forwarding algorithm also updates the availability
information of the children branches, trying to estimate how it will change once the sent tasks are
allocated. This avoids sending tasks of subsequent requests to the same execution nodes before their
availability is updated through the aggregation scheme.

For instance, Algorithm 3.2 shows the forwarding algorithm of the IBP policy. Procedure GETSF
fills the list availableSF with the sampled functions of those nodes that are able to execute tasks from
the request. Then, this list is sorted to allocate first those nodes whose available memory and disk
space are closest to the requirements. With this heuristic, nodes with more available resources are
saved for future applications with higher requirements. Tasks that cannot be allocated in this branch
are sent up to the father routing node.

3.3.2. Routing Patterns
Specializing the forwarding algorithm for each policy may produce several patterns. A common one
is the IBP policy pattern, which assigns as many tasks as possible to the current branch and send the
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Figure 3.5.: Path followed by a request that is forwarded towards the execution nodes where it is allocated. At
each routing node, it can be divided so that independent branches are explored concurrently.

rest to the father. At the next level, the forwarding algorithm assumes that it cannot send any more
tasks in the direction the request came from, so it sends some tasks to the other one and the rest again
to the father. But if the request comes from the father, all the tasks are sent to the children nodes.
Figure 3.5 illustrates this pattern with an example. A request with K tasks is issued by a submission
node from a leaf of the tree. At each routing node, the forwarding algorithm separates the ni tasks
that can be allocated to its branch, and the rest is sent up. The process continues until all tasks are
allocated or all nodes are reached. A similar pattern consists in sending all the tasks to the father node
as long as a certain criteria is not met. Then, send them down again, assigning tasks to both children.

But all the patterns have some advantages in common. The first one is that the task routing process
looks for execution nodes in independent branches concurrently, so its cost depends on the number
of network jumps of the longest path. In a balanced binary tree, this cost is O(log2 min(ni ,N )) jumps,
where ni is the number of tasks to allocate and N is the size of the network. This cost scales very well
with both parameters. Another one is that all the submissions originate in the leafs, and only climb
up the tree until they discover enough execution nodes. Doing so, maintains most request traffic
in the lower levels of the tree, and uses more accurate availability information. Furthermore, if the
execution nodes are ordered in the tree by location, as suggested in Section 3.1.3, the discovered ones
will be nearby the requester. This might be helpful when the applications have big input or output
data.



Chapter 4.
MMP: Makespan Minimization Policy
“It’s the job that’s never started takes longest to finish.”

— J. R. R. Tolkien

4.1. Makespan Scheduling
When the users have no other priority, one of the most common policies consists in trying to finish
all the scheduled work in the platform as soon as possible. As shown in Figure 4.1, it is well known
that this objective is accomplished when all the nodes finish at the same time. Otherwise, nodes that
finish earlier would be able to do part of the work of the nodes that finish later. However, this is only
feasible if tasks can be arbitrarily divided. In an heterogeneous environment as we consider, each
execution node runs tasks at different speed and with an indivisible amount of computation. So, the
objective of such a policy is to minimize the makespan: the maximum time needed by any node to
finish its work.

This subject has been widely studied since long ago. The problem is usually divided into offline and
online scheduling, and considering machines with both identical and different speeds. The optimal
offline solution is NP-hard [46] in any case, but several polynomial time approximation schemes have
been proposed. The Graham’s well-known list scheduling algorithm [47] is (2− 1/m)-competitive
on m identical machines with linear cost. It sorts the list of jobs by priority and sends each one to
the machine that has been assigned the least amount of work so far. Hochbaum and Shmoys [51]
propose another solution with arbitrary relative error. On machines with different speed, Lenstra
et al. [63] give a 2-competitive solution based on integer programming. On the other hand, online

(a) (b) (c)

Figure 4.1.: The minimum makespan of a random schedule in (a) with two configurations: with (b) divisible
tasks and (c) atomic tasks. The former is always shorter or equal to the later.
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solutions deal with the problem of having to decide on each job before knowing about the next one.
Fleischer and Wahl present MR [45], an online algorithm for identical machines, that reaches 1.9201-
competitiveness, setting the current best upper bound. Englert et al. [42] propose a 2-competitive
online algorithm for machines with different speeds, by buffering the incoming jobs and reordering
them.

Here, we present the Makespan Minimization Policy (MMP) for STaRS. It is an online, decentralized
policy to minimize the makespan among all the currently scheduled applications. In this policy, an
execution node queue may hold as many tasks as needed, so the makespan is the maximum end time
of the longest queue. Then, similarly to the list scheduling algorithm, tasks are routed to those nodes
whose queue will remain the shortest after allocating them.

4.2. Local Policy
Unlike the IBP policy, the MMP local schedulers have an unlimited task queue. They accept every
incoming task, as long as memory and disk space requirements are met. Then, tasks are inserted at
the back of the queue, in FCFS order, because we assume that there is no specific application priority.

Since we want to limit the queue length by allocating a similar workload to every node, we
introduce a constraint to the queue length in the availability function: it cannot be longer than a
certain time. We define the availability function for this policy as AFu(mi , di ,ai , qi ). We recall that
mi , di and ai are the required memory, required disk space and length of a task of application Ai ,
respectively. Then, the function returns the maximum number of tasks of application Ai that can
be added to the queue of execution node Eu so that it finishes no later than time qi . This function
allows the forwarding algorithm to decide how many tasks can be sent to a node in order to increase
its queue to a certain length. Let the queue end time of node Eu be Qu , the availability function is
calculated as

AFu (mi , di ,ai , qi ) =







�

(qi −Qu )su

ai

�

if mi ≤Mu

∧

di ≤Du

0 otherwise,

(4.1)

where we remind that su is the computational power of Eu . Note that Qu is equal to the current time
if the queue is empty.

4.2.1. Measuring the Execution Time
This policy is the first to use a key element in scheduling: the execution time of a task in a certain
node. We assume that this time can be computed as ai/su . However, measuring these two values
raises several problems.

First, what unit should we use with them? We said in Section 3.1.1 that we measure ai in millions
of FLOPs, so su is measured in millions of FLOPs per second. While this is valid for a theoretical
analysis, in practice it is less useful. The task length and the computing power are not comparable
between different architectures because they include instructions of varying complexity. Besides, the
execution of a task is also affected by several architecture-dependent delays that are difficult to predict:
cache misses, failed branch predictions, data and control dependencies, etc.
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The second question is how to estimate ai and su . While the later may be easier to measure
with benchmarks, the former has several implications. A few tasks may have a constant execution
length, but most depend on the conditional branches and loops that the flow of execution follows.
Furthermore, there should be an automatic method of estimating ai without actually executing a
task.

A possible solution would be to adapt the work by Dinda [40], who suggests estimating the
execution time of a task in Eu with the nominal execution time in an unloaded, reference node,
tnom, and the load of Eu . To provide a good estimation, the load of Eu is constantly monitored and
predicted. Then, we could treat ai as the normalization of tnom with the inverse speed of the reference
node, and predict su on every node as Dinda predicts the load. Many other works on performance
prediction propose methods to estimate the node availability [87, 56, 60]. Task length estimation
methods are covered, for instance, by works on worst-case execution-time (WCET) estimation [94].
Unfortunately, these works show that the best results are obtained with sample executions of all or
part of the code to measure.

For the sake of simplicity, we have used the millions of FLOPs as the task length unit to carry out
the analysis and experiments of this thesis. It is realistic enough to evaluate the STaRS scheduling
model and policies. Furthermore, we assume that node Eu has a constant dedicated computing
power of su for the execution of remote tasks, unless it fails. In a real implementation, the previous
considerations would have to be taken into account.

4.3. Global Policy

4.3.1. Availability Information

So, the properties needed to compute the availability function of a node consists of its memory, disk
space, computing power and end queue time. Thus, in this policy, the sampled function for a set of
nodes is (M , D , s ,Q, v), with a sample for each of the previous node parameters plus the number of
nodes v. The clustering of such sampled function uses the same scheme for scalar parameters as the
IBP policy explained in Section 3.2.2.

We have also decided that the sum operation of f1 and f2 should return

SUM( f1, f2) =
�

min( f1.M , f2.M ), min( f1.D , f2.D), min( f1.s , f2.s),
max( f1.Q, f2.Q), f1.v + f2.v

�

. (4.2)

It calculates the minimum available memory and disk space that can be found in each node of f1 and
f2, as usual. But it also gives the minimum speed a task is going to be executed at, and the maximum
time a task is going to start at. This may be seen as an excessively conservative option. Unlike the
memory and disk constraints, failing to estimate the speed or the queue length is not going to avoid
the allocation of a task. In this case, it would make sense to adopt a more optimistic approach with
the computing power and queue end time. This can be done calculating their weighted average as

avgs =
f1.s f1.v + f2.s f2.v

f1.v + f2.v
, avgQ =

f1.Q f1.v + f2.Q f2.v

f1.v + f2.v
,
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which would yield

SUM( f1, f2) =
�

min( f1.M , f2.M ), min( f1.D , f2.D), avgs , avgQ , f1.v + f2.v
�

.

With this approach, a sampled function advertises shorter queues and faster nodes than with the
previous one. So, the forwarding algorithm is able to allocate more tasks to the set of nodes of a
sampled function. This results in requests needing to climb less tree levels, thus reducing the network
traffic. On the other hand, sending too many tasks may also increase the makespan. After simulating
both approaches under the same conditions, we have concluded that this optimistic approach always
produces a larger makespan without a noticeable decrease of network traffic. So, in the experiments
of Section 8 we only use the conservative one.

Time is relevant in this policy, since the availability function depends on Qu . So, the sampled
function reported by each node must be updated when its queue end time changes. If the task queue is
not empty, and tasks finish at their expected end time, Qu does not change until a new task is pushed
at the end of the queue. If the task queue is empty, Qu is equal to the current time, so it changes
continuously. However, if it is not updated, a routing node that finds a sampled function with Qu
earlier than current time will automatically deduce that its represented queues have become empty,
and update it by itself. This reduces the update frequency.

4.3.2. Forwarding Algorithm

To minimize the global makespan, tasks must be sent to the nodes whose queue will remain shorter
after allocating them. However, it is not enough to consider only the current branch. Routing nodes
also need information about the queue end times in the rest of the tree. Without it, the routing can be
performed by making all requests climb up the tree to the root node, but this solution would quickly
flood the root with requests. On the other hand, routing nodes could send availability summaries to
the children nodes, too. The summary sent to each child would come from the aggregation of the
information obtained from the other child and the father. Then, every node would have information
about all the tree. But also, each change in the availability would reach a much larger number of
nodes. This solution would flood the network with availability summaries.

As a compromise between these two extremes, routing nodes use the maximum queue end time
in the rest of the tree in the forwarding algorithm, along with the availability information of their
children. They receive it from their fathers. They send to each child the maximum between the values
coming from their father’s and the other child’s subtrees. Being a maximum, its propagation is usually
bounded to just a few branches, so the traffic generated is negligible.

Algorithm 4.1 shows how the maximum queue end time is used in the forwarding algorithm.
It starts by finding the expected makespan that will be obtained if all the tasks in the request are
allocated. The availability function, with the information of the whole branch (Ru.info), returns the
number of tasks that can be allocated for a certain makespan (medMakespan). The minimum expected
makespan (minMakespan) is found with a binary search, until the availability function returns the same
number of tasks the request contains. This new makespan cannot be longer than β times the longest
makespan in the tree (Ru.maxMakespan), which is the difference between the maximum queue end
time and the current time. If it is longer, and the request did not came from the father node, the
request is sent to the father to look for a shorter makespan or until the root is reached. Otherwise,
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Algorithm 4.1 Forwarding algorithm for the MMP policy.

Pre: Ru is this routing node. request is the request.
Post: reqLeft, reqRight and reqFather are the resulting requests to be sent to the left child, right

child and father nodes, respectively.
1: procedure FORWARD(request)

2: minMakespan ← 0

3: maxMakespan ← BIG_INT . Start with a very big value for the maximum.
4: while minMakespan≤ maxMakespan+ 1 do

5: medMakespan ← (minMakespan+ maxMakespan)/2
6: numTasks ← AF(Ru.info, request.PR, medMakespan)
7: if numTasks≤ request.n then

8: minMakespan ← medMakespan

9: else

10: maxMakespan ← medMakespan

11: end if

12: end while

13: isTooMuch ← minMakespan>βRu.maxMakespan

14: if ¬ISROOT(Ru )
∧

¬FROMFATHER(request)
∧

isTooMuch then

15: reqFather ← request

16: else

17: numLeft ← AF(Ru.leftInfo, request.PR, minMakespan)
18: EXTRACT(request, numLeft, reqLeft)
19: reqRight ← request

20: end if

21: end procedure

the availability function is used with the summary of the left child to calculate how many tasks can
be sent to its branch, and the rest are sent to the right child. The β factor is a tradeoff between
load balance and makespan minimization. The lower it is, the shorter the makespan will be, but the
requests will usually climb more levels of the tree until they find a good set of nodes, so the upper
levels will get more loaded. In Chapter 8 we empirically show that 0.5 is the best value.

The routing pattern of this policy is different from the one of the IBP policy. All the tasks are sent
upwards until the expected makespan in the current branch gets shorter than a certain threshold.
Then, they are distributed among all the nodes of that branch. In this way, the forwarding algorithm
is capable of estimating a similar queue end time for all the nodes that will receive one of the tasks.
Otherwise, these nodes could end up with very different queue end times, which is contrary to the
objective of minimizing the makespan.





Chapter 5.
DP: A Policy for Applications with Deadlines

“Time is money.”
— Benjamin Franklin

5.1. Applications with Time Requirements
Most users of a distributed scheduling platform expect their applications to finish as soon as possible.
Sometimes, they want – or need – them to finish before a certain deadline. Ramamritham et al. [78]
were among the first to propose the use of distributed algorithms to schedule tasks with time and
resource restrictions. They give different algorithms for this purpose, and compare their performance.
They claim that their solution is effective even in hard real-time environments. However, their
approach requires each node to have full knowledge of the rest of the system, which naturally limits
its scalability.

Later works propose using soft deadlines as a quality of service guarantee. For instance, meeting
production or research deadlines to apply for more budget. Nimrod/G [4] is a scheduling platform on
the Grid for parameter sweep applications. It supports additional constraints that can be found in such
a heterogeneous environment as the Grid. In particular, it allows to set deadlines on the submitted
jobs, and charges users with higher costs for tighter deadlines. In [20], Buyya et. al. optimize the
relation between deadline and budget to provide the maximum quality of service at minimum cost. A
similar approach is taken by Takefusa et. al. [89], who focus on scheduling jobs with deadlines and
minimizing the overall number of missed deadlines.

All these works use several centralized services, like resource allocation managers, to discover
and allocate nodes to tasks. Again, these centralized services limit their scalability. We overcome
this problem with decentralized algorithms and overlay networks. Similarly, Cao et. al. [25] use a
hierarchy of agents to coordinate a set of local grid schedulers. They use performance prediction to
minimize the makespan and processor idle time, but also try to meet deadlines. However, they do not
encourage an extensive use of the hierarchy to find the best candidate for a request, arguing that grid
users prefer a satisfactory resource as fast and local as possible. To our knowledge, other decentralized
and P2P-based computing platforms exist [13, 17, 98, 48, 58], but they do not include deadlines. In
BOINC [8], deadlines are used only locally [10]. Volunteered nodes use them to decide the order of
execution of the tasks coming from different projects. However, the availability of the nodes is not
reported to the project servers and so it cannot be used to allocate tasks to nodes.

33
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In this chapter, we present the Deadline Policy (DP). With it, we propose an alternative use of
deadlines as a quality of service guarantee: to measure the time users are willing to wait for their
jobs to finish. In order to find a relation between user behavior and job response time, Shmueli and
Feitelson study different traces taken from real deployments [86, 44]. Their conclusion is that user
satisfaction is directly related to short job response times, independently of their length. So, they
design a scheduling policy whose objective is to minimize the job response time. Our approach
consists in allowing users to provide information about their desired job response time to the scheduler
in advance.

5.2. Local Policy
The local scheduling policy sorts tasks in EDF [64] order, so that the next task to execute is the one
with the earliest deadline. A well-established property of EDF order is that if it cannot ensure that
all the deadlines are met, then no other does. So, new tasks are only accepted if, when inserted in
the queue in EDF order, all the tasks meet their deadline. However, since we forbid preemption, the
running task always remains the first of the queue even if a new task has an earlier deadline.

It is important to state that the acceptance of a task is a contract between submission nodes and
execution nodes. On one hand, submission nodes expect their accepted tasks to meet deadlines, unless
failures occur. On the other hand, an execution node Eu expects an accepted task from application Ai
to have a duration not longer than ai/su . Otherwise, it could make other tasks in the queue miss their
deadlines. For that reason, each node checks its task queue periodically, and tasks that run longer
than expected are dropped to favor the rest. In this way, a tradeoff is needed to estimate task lengths.
The less the estimation overshoots the real length of a set of tasks, the easier it will be to allocate them.
But they may be eventually aborted if the estimation was actually lower than the real length.

5.2.1. Availability Function
In the DP policy, the function AFu(mi , di ,ai ,δi ) describes the current availability of a node Eu . It
returns the number of tasks of application Ai , with memory and disk space restrictions mi and di ,
and length ai , that can be executed by node Eu before deadline δi . Let function lu (δ) be the amount
of FLOPs that node Eu is able to execute before δ. Then, the availability function is calculated as

AFu (mi , di ,ai ,δi ) =







�

lu (δi )

ai

�

if mi ≤Mu

∧

di ≤Du

0 otherwise.

(5.1)

Algorithm 5.1 computes lu (δ) on node Eu . The local scheduler calculates the position k at which a
new task with deadline δ would be placed. The first k − 1 tasks would be executed in sequence until
the time at which the new task would begin; let this time be called bk . The new task would have to
finish before either δ or the time at which task k + 1 must begin so it does not miss its deadline; let
this time be called xk+1. Hence, the available amount of FLOPs in this time interval is

lu (δ) = (min(δ, xk+1)− bk )su .
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Algorithm 5.1 Computation of lu (δ) on node Pu .

Pre: δ is the application deadline. The n tasks are sorted in EDF order.
Post: Return number of instructions available before δ.
1: function lu(δ)
2: xn ← δn − an/su
3: for j ← n− 1 to 1 do

4: x j ← min(δ j , x j+1)− a j/su
5: end for

6: Get k so that δk−1 <δ ≤ δk+1

7: bk ← ν +
∑k−1

j=1 a j/su . ν is the current time.
8: if min(δ, xk+1)> bk then

9: return (min(δ, xk+1)− bk )su
10: else

11: return 0

12: end if

13: end function

After calculating the position k of the new task, there are two possibilities: either δ < xk+1 or
xk+1 ≤ δ. In the first case, the available amount of FLOPs increases linearly with the deadline, with
slope su . In the second case, it is constant regardless of how δ varies. These two situations occur
for each possible position of a new task in the queue, so we conclude that lu(δ) is a piecewise linear
function. The endpoints of the intervals that define each piece are, on one hand, those values of δ
such that δ = xi ∀i . On the other hand, those at which the position of a new task changes, that is,
δ = δi ∀i . Moreover, it is trivial to see that the function is continuous also at the interval endpoints.

Figure 5.1 shows an example of lu(δ) for a queue with three tasks, τ1, τ2 and τ3. A new task
with deadline δ is inserted in the queue between τ1 and τ2 if δ1 ≤ δ < δ2, between τ2 and τ3 if
δ2 ≤ δ <δ3, or behind τ3 if δ3 ≤ δ. It would not be accepted if δ ≤ b1, because τ1 is the running
task and it cannot be preempted. The figure shows that, for a task that would be executed between τ1
and τ2, lu (δ) would evolve in the following way:

• lu (δ) = 0 if δ ≤ b1, because task τ1 is still running.

• lu (δ) = (δ − b1)su if b1 ≤ δ < x2.

• lu (δ) = (x2− b1)su if x2 ≤ δ <δ2, because otherwise τ2 would not finish before its deadline.

In the moment δ exceeds δ2, the new task would be scheduled between τ2 and τ3. lu (δ) continues
its evolution in the following way:

• lu (δ) = (x2− b1+δ −δ2)su if δ2 ≤ δ < x3, due to the time available between task τ2 and τ3.

• lu (δ) = (x2− b1+ x3−δ2)su if x3 ≤ δ <δ3, because τ3 must meet its deadline.

After δ3 no other task is scheduled, so lu (δ) evolves with unbounded linear growth.
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x2 δ2

x3 δ3
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δ

Figure 5.1.: Example of lu (δ) for a queue with three tasks. It can be seen that it is a piecewise linear function.

5.3. Global Policy
5.3.1. Availability Information
The sampled function of this policy is a tuple (M , D , L, v). It consists of the number of nodes v, a
sample M and D for the available memory and disk space, and a set of samples L= { (δ j , l (δ j )), 1≤ j }.
For a sampled function f , let f .l (δ) be the available amount of FLOPs before δ in each node of
f . Then, f .l (δ) is linearly interpolated from the samples in f .L. Being a piecewise linear function,
samples are only needed at each interval endpoint of f .l (δ), in order to know where the slope of this
function changes. For instance, in the example of Figure 5.1, there would be a sample for b1, x2, δ2,
x3 and δ3.

As with the MMP policy, the current time is relevant to calculate the availability function. From
the example, it can be seen that the function lu(δ) does not change while a task is running, since it
cannot be preempted. Thus, the availability information must be updated only when a task finishes.

The sum operation

The sum operation is computed as

SUM( f1, f2) =
�

min( f1.M , f2.M ), min( f1.D , f2.D), min( f1.L, f2.L), f1.v + f2.v
�

. (5.2)

The deadline is also a restrictive requirement, so the sum operation in (5.2) calculates the minimum
available amount of FLOPs before deadline on every node of the sampled function. Then, for
h = SUM( f , g ), we have that h.l =min( f .l , g .l ). h.l is again a piecewise linear function, and h.L is
the set of samples that interpolate h.l . Its slope changes at the same points f .l and g .l do, but also at
the points where they cross each other.

Note that, in the worst case, h.L can have up to three times the samples of f .L or g .L. We must
eliminate some samples to limit the size of all the sampled functions. It would be useless to limit the
size of the availability summaries if sampled functions could be arbitrarily large. Eliminating one
sample means that the linear interpolation will take place between the adjacent samples. A sample can
only be eliminated if the resulting interpolation is lower than the original one, so that it still guarantees
a minimum availability. However, this method also introduces an additional approximation error, so
the samples that are actually removed are those that introduce the lowest error. The distance operation
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Figure 5.2.: h.L interpolates the minimum of f .L and g .L, with sample at s2 removed.

measures the combination of all these approximation errors committed in the sum operation. An
example is shown in Figure 5.2, where functions f and g , with two samples both, are summed up.
Both share samples at s1 and s3, and cross at s2. In the result, the minimum is calculated and the
sample at s2 is removed to obtain two samples again.

The distance operation

Again, the MSE is used to compute the distance between two sampled functions. The two scalar
parameters M and D are treated as explained in Section 3.2.2. For each of them, we add two additional
attributes to accumulate the MSE and the linear term. Also, an availability summary carries the
minimum and maximum values for both parameters among all the represented nodes.

For the available amount of FLOPs before deadline, a similar method is used. Being a function
instead of a scalar value, the natural way of calculating the MSE is with the definite integral. So, for a
sampled function f that represents f .v nodes, we have

f .msel =
1

f .v

f .v
∑

u=1

∫ h

ν

�

f .l (δ)− lu (δ)
�2dδ. (5.3)

The endpoints of the domain of integration are the current time ν and an horizon h. This horizon
must be large enough to compare the l (δ) functions of all the sampled functions in a summary. So, let
tlast be the latest sample among the L sets of all the sampled functions, we calculate h = ν+1.2(tlast−ν).
This adds a 20% margin to take the last piece of every sampled function into account. Since the
l (δ) functions are piecewise linear, there is an analytical form of the integral for each piece. Then,
computing the integral in the interval [ν, h] is O(n), where n is the number of pieces, or the number
of samples in L. Remember also that the sum operator limits this value to a maximum.

As we showed for the scalar parameters, the sum operation is also able to calculate the MSE of the
resulting sampled function for the l parameter. Let f and g be the sampled functions that result from
adding functions fi , 1≤ i ≤ f .v, and g j , 1≤ j ≤ g .v, respectively. Their MSE of parameter l are

f .msel =
1

f .v

f .v
∑

i=1

∫ h

ν

�

f .l (δ)− fi .l (δ)
�2dδ, g .msel =

1

g .v

g .v
∑

j=1

∫ h

ν

�

g .l (δ)− g j .l (δ)
�2dδ.
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The attribute h.msel is then

h.msel =
1

h.v







f .v
∑

i=1

∫ h

ν

�

h.l (δ)− fi .l (δ)
�2dδ +

g .v
∑

j=1

∫ h

ν

�

h.l (δ)− g j .l (δ)
�2dδ






. (5.4)

Like we did before, if we take the term
�

h.l (δ)− f1.l (δ)
�2 from (5.4) and add and subtract f .l (δ),

we obtain
�

h.l (δ)− f1.l (δ)
�2 =

�

h.l (δ)− f .l (δ)+ f .l (δ)− f1.l (δ)
�2 =

=
�

h.l (δ)− f .l (δ)
�2+

�

f .l (δ)− f1.l (δ)
�2+

+ 2
�

h.l (δ)− f .l (δ)
��

f .l (δ)− f1.l (δ)
�

. (5.5)

Now, we repeat (5.5) for all the terms on fi to obtain

f .v
∑

i=1

∫ h

ν

�

h.l (δ)− fi .l (δ)
�2dδ =

= f .v
∫ h

ν

�

h.l (δ)− f .l (δ)
�2dδ +

f .v
∑

i=1

∫ h

ν

�

f .l (δ)− fi .l (δ)
�2dδ+

+2
∫ h

ν

�

h.l (δ)− f .l (δ)
�

f .v
∑

i=1

�

f .l (δ)− fi .l (δ)
�

dδ =

= f .v

 

∫ h

ν

�

h.l (δ)− f .l (δ)
�2dδ + f .msel

!

+

+2
∫ h

ν

�

h.l (δ)− f .l (δ)
�

f .v
∑

i=1

�

f .l (δ)− fi .l (δ)
�

dδ. (5.6)

Again,
∑ f .v

i=1

�

f .l (δ)− fi .l (δ)
�

is the linear term f .ltl (δ). In this case, h.msel is a scalar value, but
h.ltl (δ) is also a function. So, from (5.4) and (5.6), the sum operation of f and g would obtain h
where

h.msel =
1

h.v



 f .v

 

∫ h

ν

�

h.l (δ)− f .l (δ)
�2dδ + f .msel

!

+

+ g .v

 

∫ h

ν

�

h.l (δ)− g .l (δ)
�2dδ + g .msel

!

+

+ 2
∫ h

ν

�

h.l (δ)− f .l (δ)
�

f .ltl (δ)dδ + 2
∫ h

ν

�

h.l (δ)− g .l (δ)
�

g .ltl (δ)dδ



 . (5.7)
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and

h.ltl (δ) =
f .v
∑

i=1

�

h.l (δ)− fi .l (δ)
�

+
g .v
∑

j=1

�

h.l (δ)− g j .l (δ)
�

=

= f .v
�

h.l (δ)− f .l (δ)
�

+
f .v
∑

i=1

�

f .l (δ)− fi .l (δ)
�

+

+ g .v
�

h.l (δ)− g .l (δ)
�

+
g .v
∑

j=1

�

g .l (δ)− g j .l (δ)
�

=

= f .v
�

h.l (δ)− f .l (δ)
�

+ g .v
�

h.l (δ)− g .l (δ)
�

+ f .ltl (δ)+ g .ltl (δ). (5.8)

Once we calculate the sum of two sampled functions and obtain the MSE for all three parameters,
the distance operation is again a weighted sum of their normalized values. The normalization function
for the l (δ) function is similar to the scalar case. The availability summary includes the minimum and
maximum l (δ) functions, let them be called lmin(δ) and lmax(δ). Then, the normalization function
is

NORM l (m) =
m

∫ h

ν

�

lmax(δ)− lmin(δ)
�2dδ

. (5.9)

5.3.2. Forwarding Algorithm
The forwarding algorithm and routing pattern of the DP policy are similar to the ones in the IBP
policy, shown in Algorithm 3.2 and Figure 3.5. The forwarding algorithm obtains the list of sampled
functions whose nodes may fulfill the deadline of the new application. The difference is that the DP
policy sorts this list having time into account, too. It selects first those sampled functions whose
nodes have an available amount of computation before the application deadline closer to its task
length. In this way, it tries to minimize the clearance between tasks in each execution node, so that
its time is well used. As we said before, minimizing this remainder increases the probabilities of
allocating future applications with longer tasks. Finally, if there are any unassigned tasks, they are
sent upwards to look for execution nodes in further branches.

If the root node is reached, the unassigned tasks are simply discarded because they cannot be
allocated at the moment. This is interpreted by the submission node as a failure in the discovery
process. Since deadlines are a quality of service, users must accept that when a task is not allocated,
they must look for a longer deadline. The root node does not notify discarding a request, for two
reasons. The first one is that it would generate additional traffic. The second one is that with
immediate notifications, users would first send a request with a very short deadline, expecting it to
fail and slowly increasing the deadline until all tasks are allocated. In this way, they would always
obtain the best result for them, with an important increase of load and traffic for every one else.
Then, the policy would loose its purpose. The absence of notification is solved by setting a timeout at
the submission node of thirty seconds. Having to wait for this time between requests makes it very
difficult for users to cheat like that.





Chapter 6.
WDP: DP for Workflow Applications

“All things are difficult before they are easy.”
— Thomas Fuller

6.1. Scheduling of Workflow Applications
In this chapter, we explore the possibility of adapting STaRS to a different application type. One of
the most common types, specially in scientific domains, are the workflow applications. However,
traditional grid platforms, like those based in Condor [90], show poor scaling with big workflows
(up to a hundred thousand of tasks) due to scheduler overheads [24]. Scaling is even worse if most
tasks in the workflows have a short duration (in the range of minutes). In [57], advance reservations,
multi-level scheduling and infrastructure as a service are explored to reduce these overheads.

In [41], the authors propose a distributed double-layer scheduling model for grid workflows. It
contains a global scheduler that aggregates information about resource status, to avoid full knowledge.
It also considers resource availability fluctuations to allocate the workflows. However, there is no
study about the scalability of the system and their experiments, using 3 resource clusters with 10 nodes
each, do not allow to evaluate this feature either. In [79], a scheduling algorithm is described based on
the cooperation of distributed workflow brokers. A distributed hash table provides a decentralized
coordination space that is responsible for the resource discovery and scheduling, and it uses a FCFS
allocation strategy.

So, it seems reasonable to apply a decentralized model to the scheduling of workflow applications.
We present the Workflow-with-Deadlines Policy (WDP), an extension of the DP policy for workflow
applications with time constraints. It includes a workflow decomposition process that allows the
global scheduler to match sequences of dependent tasks with time constraints. Since this is a first
approach, we only consider available computing time as the availability information of execution
nodes. Likewise, the information model is simpler than the ones shown in the previous policies.

6.1.1. Workflow Management
A workflow is modeled after a DAG G(T , D), where nodes represent tasks and edges represent
dependencies between them. For each τi ,τ j ∈ T , an edge (τi ,τ j ) ∈D exists if task τ j depends on τi .
In that case, task τi must finish before τ j may start. An example can be seen in Figure 6.1.
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τ10
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τ2

τ3
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τ1

Figure 6.1.: A typical DAG with 10 tasks and several dependencies between them.

We divide workflows into several parts that can be submitted concurrently, to exploit the inherent
parallelism of the graph structure. Classic workflow scheduling algorithms[16] usually divide them
by DAG levels. Two tasks τi and τ j are in the same level when an edge (τ j ,τi ) or (τi ,τ j ) does not
exist. This decomposition is suitable when the objective of the scheduler is to optimize makespan. A
set of resources is reserved in advance, and levels are allocated one after another minimizing the queue
length of these resources.

However, we use a different approach, since we allocate resources as they are discovered. We divide
the DAG into sequences of dependent tasks. A sequence is an ordered set of tasks S = {τi |1≤ i ≤ n}
where ∀i , 1 ≤ i < n, (τi ,τi+1) ∈ D. The longest sequence gets its deadline directly from the DAG.
Shorter ones get their time constraints from the sequences they depend on, as they are allocated.

The decomposition is depicted in Algorithm 6.1. It starts by extracting the sequence that contains
the longest path of the DAG, in terms of task length. Then, at each iteration, it extracts the longest
sequence S so that edges may only go:

1. From an already extracted task to the first task of S.

2. From the last task of S to an already extracted task.

Note that any DAG may be decomposed this way, as at each iteration at least a sequence of one
task is eligible. Thus, all tasks are eventually assigned to a sequence.

Once the DAG is decomposed into sequences, they are assigned not only a deadline, but also a
startline. Every sequence must start after its startline and end before its deadline. The startline of a
sequence is calculated after the task it depends on is allocated, because we know when it is supposed
to finish. Likewise, its deadline is calculated after the tasks that depend on the sequence are allocated,
because we know when they must start to meet their own deadline. The longest sequence is allocated
first, because its deadline is provided by the user and the startline is the current time. After it is
allocated, all the sequences that get their constraints from it get prepared. At each step, all the prepared
sequences may be sent concurrently, as they do not depend on each other. Thus, the submission
process consists of a set of stages, in which all the prepared sequences are sent. We define the width of
a workflow as the number of stages needed to submit the complete workflow. Likewise, we define
the minimum length of a workflow as the sum of the task lengths in the critical path, and the total
length of a workflow as the sum of all the task lengths. As we show in the experimental results of
Section 8.6, these properties have relevant impact in the system performance.
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Algorithm 6.1 Extract the sequences of dependent tasks from G

Pre: G is a DAG with tasks in G.T and dependencies in G.D .
Post: S contains the sequences extracted from G.
1: function DECOMPOSITIONINTOSEQUENCES(G)

2: Extract longest path from G to sequence S.
3: S ← S

⋃

S
4: while G.T 6= ; do

5: Extract the tasks from G.T that form the longest path S so that:

• ∀si ∈ S | si 6= s1, @τi ∈ S | (τi , si ) ∈G.D

• ∀si ∈ S | si 6= sn , @τi ∈ S | (si ,τi ) ∈G.D

6: S ← S
⋃

S
7: end while

8: return S
9: end function

δ1 δ2 δ3 δ4

hs1 he1 hs2 he2

τ1 τ2 τ3 τ4

Figure 6.2.: Task queue with four tasks, and the holes available between them.

6.2. Local Policy
This policy, like the DP policy, uses an EDF-based local scheduler. For a sequence of tasks, the
deadline of the sequence is applied to the last task. Then, the deadline and estimated execution time
of each task is used to calculate the deadline of its predecessor.

Every time the task queue changes, the availability of an execution node is recalculated, to report
when and of what length new sequences could be accepted. To obtain this information, all tasks in
the queue are pushed to their deadline, except the currently running task, because task preemption is
not allowed. Then, a list is built up from the “holes” of availability that exist between tasks. These
holes represent a simplified view of the maximum length a new sequence may have to avoid making
another task miss its deadline, if it is accepted.

Figure 6.2 shows an example of a task queue with four tasks. A hole that starts at hs i and ends at
he i , represents the maximum length a sequence may have, with a deadline in [δi ,δi+1), so that in
EDF order it would execute before τi+1. Actually, if τ2 is executed just after τ1, the hole between
τ2 and τ3 would be longer, but it is not considered for sake of simplicity. Note that there is no hole
between τ3 and τ4, as τ4 should have already started by δ3.

The computational power of the node is also reported, so that it can be used to estimate how much
work is performed by the node in an arbitrary period of time; for instance, when a node is completely
idle.
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Algorithm 6.2 Generate a set of n interval endpoints from the current time ν.
Pre: n is the number of endpoints to create, dmin is the minimum interval duration.
Post: L contains n interval lower endpoints.
1: procedure CREATEENDPOINTS(n)
2: L ← ;
3: t0 ← ν − BEGINNINGOFDAY(ν)
4: d1 ← dmin
5: for i ← 1 to n do

6: L ← L
⋃

{dt0/die+ 1)× di }
7: di+1 ← 2di
8: end for

9: end procedure

6.3. Global Policy

6.3.1. Availability Information

Once the set of holes is created, it is sent to the father routing node so that it will be aggregated with
the sets of the other execution nodes in that branch. However, aggregating sets of arbitrary holes
would be impossible. Every pair of holes start and end at different times. For this reason, we have
developed a method to approximate them to a set of fixed values.

Since this is a first approach, we have simplified the availability information model. An availability
summary only contains one sampled function, with the number v of nodes it represents and an
ordered set of time intervals. Intervals are consecutive, so interval Ii ends at the time interval Ii+1
starts. Each one contains the list of holes that finish within its endpoints. Within each list, holes
are further classified with two criteria. First, holes are grouped by their span. A hole that starts in
interval Ii and finishes in interval Ii+k has a span of k + 1 intervals. So, a hole that starts and finishes
in the same interval has a span of one interval. However, holes with the same span may not have the
same availability, as this depends on the computational power of each execution node. So, they are
also classified by availability levels.

Instead of using the clustering algorithm presented in Section 3.2.2, we select a suitable set of
availability levels and interval endpoints that allow an easy aggregation of summaries. They must have
similar values in all the availability summaries that are to be aggregated together. First, the availability
of every hole is approximated to the immediately lower power of two. Like with the DP policy, this
conservative method enables finding nodes where tasks meet deadlines. Also, by using powers of two,
the error is always lower than 50%.

The interval endpoints are generated with Algorithm 6.2. It only generates the lower endpoints;
the upper endpoint of an interval is equal to the lower endpoint of its successor. Its objective is that
summaries created at moments near in time have most endpoints in common. To accomplish this,
it generates a set of lower endpoints whose difference with the beginning of the day is a multiple
of certain durations. In the algorithm, the creation time t0 is the current time ν, relative to the
beginning of the day. Then, dmin is the minimum interval duration. The first lower endpoint is
t0+ dmin, rounded up to the next multiple of dmin. Then, the duration is doubled for every successive
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Table 6.1.: Interval endpoints generated from three example creation times t0. The difference between each
endpoint and t0 is always between one and two times the intended interval duration.

Intended interval duration

t0 5’ 10’ 15’ 30’ 1h 2h 4h 8h 16h 1 day

4:33 4:40 4:50 5:00 5:30 6:00 8:00 12:00 16:00 1d:00:00 2d:00:00

5:48 5:55 6:00 6:15 6:30 7:00 8:00 12:00 16:00 1d:00:00 2d:00:00

17:17 17:25 17:30 17:45 18:00 19:00 20:00 1d:00:00 1d:08:00 1d:16:00 2d:00:00

interval, again to maintain the error of the approximation under 50%. So, for interval i , its duration
di is dmin× 2i−1 and it starts at t0+ di rounded up to the next multiple of di . The result is that the
difference between the lower endpoint of interval i and t0 is between one and two times di . Table
6.1 shows three examples of the output of this algorithm. There, di is slightly modified to provide
more “human-readable” results. Instead of being doubled at every step, it jumps from 10 minutes to
15 minutes, and from 16 hours to 1 day.

6.3.2. Forwarding Algorithm
The forwarding algorithm decides how and where to route task sequences. It tries to find holes with
enough availability to execute all the tasks in the sequence. Like in the DP policy, it looks for holes
that better fit the sequence requirements. That is, one that starts short before the startline and ends
short after the deadline of the sequence, and with an availability similar to the sequence length. In this
way, it leaves bigger holes in case a longer sequence is received later, trying to improve resource usage.

The forwarding algorithm of this policy is shown in Algorithm 6.3. First, GETPARTITIONS

calculates all the possible partitions of the sequence into multiple consecutive subsequences. The
algorithm iterates them, in ascending order of number of subsequences. At each iteration, GETHOLES

looks for a set of holes that can accept each of the subsequences of the partition. They cannot
overlap, to respect the dependencies between consecutive subsequences. When a hole is found for
each subsequence, a new request is constructed for each one and sent to the corresponding subbranch.
For each subsequence, the startline and deadline are taken from its respective hole endpoints. Finally,
if the forwarding algorithm finds no hole for any of the subsequences, the original request is routed to
the next level of the tree to try further.
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Algorithm 6.3 Forwarding algorithm for the WDP policy.

Pre: Ru is this routing node. request is the request.
Post: reqLeft, reqRight and reqFather are the resulting requests to be sent to the left child, right

child and father nodes, respectively.
1: procedure FORWARD(request)

2: P ← GETPARTITIONS(request.sequence)
3: for numParts ← 1 to request.sequence.length do

4: for all S ∈ { s ∈ P |s.length= numParts} do

5: holes ← GETHOLES(Ru.info, S)
6: if |holes| ≥ numParts then . There is a hole for every sequence.
7: reqLeft ← GETLEFTPARTS(holes)
8: reqRight ← GETRIGHTPARTS(holes)
9: return

10: end if

11: end for

12: end for

13: reqFather ← request . If we get here, there was no suitable partition.
14: end procedure



Chapter 7.
FSP: Fair Share Policy
“These men ask for just the same thing, fairness, and fairness only. This, so far as in
my power, they, and all others, shall have.”

— Abraham Lincoln

7.1. Fairness as the Scheduling Objective
The Fair Share Policy (FSP) tries to provide a similar share of the platform among the scheduled
applications. The fair sharing of resources has been deeply studied before in other areas, like network-
ing [49, 68], which consider the amount of data to be transferred by each user. When scheduling
multiple applications, we consider the amount of computation that each user wants to get done.
In this case, the most suited metric seems to be the maximum stretch, or slowdown [69, 62]. The
stretch of an application is defined as the ratio of its response time under the concurrent scheduling of
applications to its response time when it is the only application executed on the platform. Let ri be
the release time of an application, ei its finish time and tR its response time in a dedicated platform,
its stretch Si is calculated as

Si =
ei − ri

tR
. (7.1)

Ideally, a fair share of the platform is obtained scheduling applications so that all of them obtain
the same stretch. Like it happened with the MMP policy, this is only possible in practice with offline
scheduling and divisible load. We consider a more constrained environment, with online scheduling
and atomic tasks, so the best tradeoff is obtained by minimizing the maximum stretch among all
applications. Previously, Benoit et al. [14] have studied the minimization of maximum stretch for
concurrent applications in a centralized setting. In particular, their study shows that interleaving
tasks of several concurrent bag-of-tasks applications performs better than scheduling each application
after the other.

The main problem we face is that computing the response time of an application in a dedicated
platform requires full knowledge of its characteristics. While easy to perform in a centralized context,
it is unthinkable in a decentralized one. However, with some reasonable assumptions we can find a
good approximation.

1. Applications have much less tasks than nodes in the platform.
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2. The distribution of computing power changes very little.

We already presented a first design of this policy in [37]. In this chapter, we refine its methods to
obtain better results.

7.1.1. Slowness
The first assumption is that applications have much less tasks than nodes in the platform. From the
traces used in the experiments of Section 8, the number of tasks per application in a common cluster
computing environment is distributed as:

• The application with more tasks has 1120 tasks.

• 95% of applications have less than 128 tasks.

• 75% of applications have less than 16 tasks.

• 50% of applications have only one task.

Since we aim for platforms with a hundred thousand nodes or more, to minimize tR of an application
with ni tasks, we have to allocate a task to each of the ni fastest nodes. Then, the response time would
be the time needed by the slowest of these nodes to execute its task.

The second assumption is that the distribution of computing power changes very little. Even more,
we assume that the fastest nodes will have a similar computing power. This is more complicated,
since the computing power distribution is usually skewed towards the lower values, but with the
relation of a thousand tasks to a hundred thousand nodes, we think it is reasonable. In that case, we
can approximate tR as ai/smax, where smax is the computing power of the fastest node. In practice,
this value is still unknown. But since we assume that it changes very seldom, we turn the problem of
minimizing the maximum stretch into minimizing the maximum ratio between the stretch and smax.
This ratio zi is

zi =
Si

smax
=

ei − ri

ai
. (7.2)

Note that zi is the inverse of the effective speed at which a task has been executed, so we call it
slowness.

7.2. Local Policy
7.2.1. Minimizing the Local Maximum Slowness
The local scheduler only knows about the applications which have at least one task allocated to its
execution node. So, its objective is to minimize the maximum slowness among these applications.
Moreover, in order to estimate the eventual slowness of an application, it must calculate its end time ei
based only on the tasks that are contained in the queue. Therefore, two local schedulers may compute
a different slowness for the same application. The global scheduling policy is in charge of minimizing
this unbalance.
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δ = zai + ri
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Figure 7.1.: Value zi j , where tasks τi and τ j switch positions because their deadline functions cross.

Given an ordering of the task queue, each application has a certain slowness. To reduce the current
maximum slowness, the local scheduler must find out if there is a better ordering. Our strategy is to
set a target maximum slowness and calculate the queue ordering that provides it, if it exists. From
equation 7.2, to obtain a certain maximum slowness, each application must finish before an end time
ei so that its slowness is equal or lower to the maximum. So, the end time of each application can be
interpreted as a deadline δi :

zi =
δi − ri

ai
=⇒ δi = zi ai + ri (7.3)

Given the deadline of their application, the tasks in the queue are sorted in EDF order as we did in
the DP policy. If all the tasks meet their deadline, the current queue ordering provides a maximum
slowness below or equal to the target. Otherwise, the target maximum slowness is not feasible. So,
we can use a binary search to find the ordering that minimizes the maximum slowness.

Since the ordering of the queue depends on the ordering of the deadlines, the same ordering is
obtained by a range of slowness values. As we cross the boundary between two ranges, the deadline
of a task surpasses the deadline of another and they switch positions (Figure 7.1). These boundary
values zi j are

δi = δ j =⇒ zi j ai + ri = zi j a j + r j =⇒ zi j =
r j − ri

ai − a j
. (7.4)

In Algorithm 7.1, the set of boundary values is computed from every pair of tasks of the queue,
discarding those pairs where ai = a j and the negative boundary values. Then, the set is sorted. The
queue maintains the same ordering between any two consecutive boundary values, so the binary
search is performed on the set of boundary values. This is shown in Algorithm 7.2, that sorts the
queue to minimize the maximum slowness. It uses Algorithm 7.3 to sort the queue with any target
slowness that lies between two consecutive boundary values. Then, Algorithm 7.4 checks whether all
the tasks meet their deadline, with that order, at the lower boundary. If they do, we must continue
the binary search under that value. Otherwise, we must continue over it.
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Algorithm 7.1 Find the set of boundary values for the tasks in the queue Q.

Pre: Q is the task queue.
Post: B is the sorted set of boundary values for the tasks in Q.

function GETBOUNDARIES(Q)

B ← ;
for all τi ∈Q do

for all τ j ∈Q do

if ai 6= a j then

zi j ← (r j − ri )/(ai − a j )
if zi j ≥ 0 then

B ← B
⋃

{zi j }
end if

end if

end for

end for

SORT(B)
return B

end function

7.2.2. Availability Function

The availability of an execution node is described by function AFu (mi , di ,ai , ri , zmax). It returns the
number of tasks of a new application Ai , with memory and disk constraints mi and di , task length
ai and release time ri that can be executed by node Eu so that the maximum slowness among all its
applications is not higher than zmax. Like in previous policies, to compute it we must take the amount
of FLOPs of application Ai available at Eu , divide it by ai and round down. In the DP policy, the
available amount of FLOPs only depended on the application’s deadline δi . In this policy, it depends
on ai , ri and zmax. Representing and clustering a function of three parameters is much more complex.
So, we simplify the problem to reduce the number of independent variables. We do this in two ways:

1. We eliminate ri , so that AFu (mi , di ,ai , zmax) returns the number of tasks of application Ai that
node Eu is able to execute if Ai is released at the current time.

2. Like in the MMP policy, the best way of reducing the slowness is to allocate each task of Ai to a
different node. So, we calculate the maximum slowness of adding just one task to each node.

Let function zu(a) be the maximum slowness among all the applications in Eu if we add a new
application with one task of length a that is released at the current moment. Then, the result of
AFu (mi , di ,ai , ri , zmax) will be 1 if memory and disk space requirements are met, and zu (ai )≤ zmax.
zu (a) is a one parameter function, like lu (δ), so it can be represented and clusterized in a similar way.
Of course, two problems arise: Are we able to estimate zu(a) if the release time of the application is
later than the one we used to compute it? Are we able to estimate zu(a) if we want to allocate more
than one task of the same application? We show later how to solve these problems.
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Algorithm 7.2 Sort a task queue to minimize its maximum slowness.

Pre: Q is the task queue.
Post: Q is sorted so that the maximum slowness among its applications is minimized.

procedure SORTMINSLOWNESS(Q)

B ← GETBOUNDARIES(Q)
Imin ← 1, Imax ← |B |
while Imin+ 1< Imax do

Imed ← b(Imin+ Imax)/2c
medianSlowness ← (B[Imed]+B[Imed + 1])/2 . B[i] is element i of sorted set B .
SORTBYSLOWNESS(Q, medianSlowness)
if MEETDEADLINES(Q, B[Imed]) then

Imax ← Imed
else

Imin ← Imed
end if

end while

medianSlowness ← (B[Imin+B[Imin+ 1])/2
SORTBYSLOWNESS(Q, medianSlowness)

end procedure

Algorithm 7.3 Recalculate deadlines for a maximum slowness and sort tasks.

Pre: Q is a task queue, z is the target maximum slowness.
Post: Tasks in Q are sorted by non-decreasing deadlines.

procedure SORTBYSLOWNESS(Q, z)
for all τ ∈Q do

τ.δ ← τ.r + zτ.a
end for

SORTEDF(Q) . The first task always remains first, because it is not preemptible.
end procedure

Algorithm 7.4 Check if all tasks in a queue meet their deadlines for a certain slowness.

Pre: Q is a task queue.
Post: Whether all tasks in Q, with their current order, meet their deadlines for a certain slowness.

function MEETDEADLINES(Q, z)
b ← ν . ν is the current time.
for all τ ∈Q do

b ← b +τ.a/su
if b > τ.r + zτ.a then return false

end if

end for

return true

end function
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τ1 τ2 · · · τk · · · τn

Figure 7.2.: A possible task queue with n tasks.

Characterization of zu(a)

From Equation 7.2, the slowness of an application depends on its finish time ei , so it depends on the
position of its tasks in the queue. If we want to assign a similar slowness to every applications, we are
forcing a relation between the position of a task and its length. As a rule of thumb, shorter tasks will
usually finish sooner than longer ones. So, to characterize zu(a) we must take into account that the
queue ordering changes for different values of a.

Consider the task queue in Figure 7.2. It contains n tasks τi , 1 ≤ i ≤ n. For simplicity in the
notation, assume that the subindex i identifies the position of the task in the queue. Also, consider
that ai is the length of τi , δi is its deadline, and so on. During the explanation, task τk is the new
task we want to introduce in the queue. It occupies position k, has length ak and is released at rk . So,
we want to characterize zu (ak ), taking into account that the current time is rk .

For any value of ak , each task has the following slowness:

• The slowness of tasks before τk does not depend on ak :

zi<k =
ei − ri

ai
=

rk +
∑i

j=1(a j/su )− ri

ai
=

∑i
j=1 a j +(rk − ri )su

ai su
(7.5)

• The slowness of τk depends inversely on ak :

zk =
ek − rk

ak
=

ak +
∑k−1

j=1 a j +(rk − rk )su

ak su
=

∑k−1
j=1 a j

ak su
+

1

su
(7.6)

• The slowness of tasks after τk depends linearly on ak :

zi>k =
ei − ri

ai
=

ak

ai su
+

∑i
j=1, j 6=k a j +(rk − ri )su

ai su
(7.7)

The result of zu(ak) is the maximum of all of these values. The function maintains the same
tendency (constant, inverse or linear) until one of the following conditions is true:

• Another task becomes the task with maximum slowness. This happens at the value of ak for
which the current maximum slowness is equal to the slowness of another task.

• The queue changes its order to provide a lower maximum slowness. This happens at the value
of ak for which the deadline of two tasks is equal.
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Algorithm 7.5 Computation of zu (a) pieces.

Pre: Q is a task queue.
Post: S is a list of pieces of function zu (a) for queue Q.
1: function GETPIECES(Q)

2: S ← ;
3: A ← {amin}
4: while A 6= ; do

5: ak ← min(a ∈A)
6: Q ′ ← Q

⋃

{τk} . Insert new dummy task of length ak .
7: SORTMINSLOWNESS(Q ′)
8: Get i so that τi is the task that sets the maximum slowness in Q ′.
9: if i < k then

10: p ← New piece is constant, left endpoint is ak .
11: else if i = k then

12: p ← New piece is inverse, left endpoint is ak .
13: else if i > k then

14: p ← New piece is linear, left endpoint is ak .
15: end if

16: S ← S
⋃

{p}
17: A ← {a | τi<k sets the maximum (Equation 7.5)}
18: A ← A

⋃

{a | τk sets the maximum (Equation 7.6)}
19: A ← A

⋃

{a | τi>k sets the maximum (Equation 7.7)}
20: A ← A

⋃

{a | zu (a) ∈ GETBOUNDARIES(Q ′)} . Queue changes order.
21: end while

22: return S
23: end function

The conclusion is that zu (a) is a piecewise function again. Each piece can be a constant, an inverse
function or a linear function of a. We can characterize each piece p j (a) with parameters u j , v j and
w j and endpoints α j andω j as

p j (a) =
u j

a
+ v j a+w j , when a ∈ [α j ,ω j ). (7.8)

Algorithm 7.5 calculates the parameters and endpoints of each piece of zu(a) from the queue of
Eu . At each iteration, set A contains all the potential left endpoints of the next piece, so we select
ak as their minimum. Then, the algorithm creates a copy of the queue Q that includes a dummy
task τk of length ak . ak starts with a minimum task length amin > 0, to avoid dividing by zero when
calculating the slowness. The queue is sorted and the algorithm calculates which task is setting the
maximum slowness. If it is previous to τk , the new piece is constant (u = 0, v = 0 and w 6= 0). If
it is τk , the new piece is inverse (u 6= 0, v = 0 and w 6= 0). If it is after τk , the new piece is linear
(u = 0, v 6= 0 and w 6= 0). In any case, the left endpoint is ak and the new piece is added to the result
set. Then, the algorithm calculates the potential left endpoints of the next piece, as expected for the
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z

amin
a

a(1) a(2) a(3)

Figure 7.3.: Example of a zu (a) function with four pieces. amin is the shortest length a task may have.

next iteration. Set A is populated with the a values at which another task sets the maximum slowness
– using Equations 7.5, 7.6 and 7.7 – and those at which the queue changes order – using the set of
boundaries of Algorithm 7.1. When this set is empty, the algorithm ends, and the last piece has no
right endpoint. We have chosen amin = 1 because, although it is an unprovable task length, it covers
all the possible situations.

Figure 7.3 shows an example of an zu(a) function with four pieces. The first piece is an inverse
function, because the new task is setting the maximum slowness. This is a very common situation,
because for a small value of a the slowness of the new task is very big. When a = a(1), a task whose
position in the queue is before the new one becomes the one that sets the maximum, so the second
piece is constant. At a = a(2), the new task has pushed a later one so much that now it becomes the
task that sets the maximum, and the third piece is a linear function. Finally, at a = a(3), the new task
is setting the maximum slowness again.

Estimating zu(a) with different ri

The problem of simplifying variables is that, once we have calculated the piece endpoints and
parameters, we do not have them anymore. Not using ri as a variable of zu (a)means that we have to
assume that the release time is always the same. It is value rk in Equation 7.6. The problem is that
zu (a) is used on applications that will be released in the future. We need to estimate the result of zu (a)
for applications with ri = rk + t , where t is an arbitrary amount of time. Equation 7.6 would look
like

zk =
ek − rk

ak
=

ak +
∑k−1

j=1 a j +(rk − rk − t )su

ak su
=

∑k−1
j=1 a j

ak su
+

1

su
−

t

ak
,

showing that the slowness of the new task decreases as its release time advances. That was expected
from Equation 7.2. Note that zu (a) only changes at those pieces where τk sets the maximum slowness
(u j 6= 0). So, we have two options to estimate zu (a) for ri = rk + t :

1. Calculate zu (a) as if t = 0. At those pieces where τk sets the maximum slowness, the estimation
will be higher than the real value because we miss the −t/ak term.

2. Calculate zu(a) with t = ri − rk to obtain a better estimation. In this case, for every zu(a)
function we also need the rk value that was used to calculate its parameters. Then, subtract t
from u j in every piece where u j 6= 0.
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In practice, we have observed that ignoring t yields better results. Since we are minimizing the
maximum slowness, we do not want to get a higher real value than the one we estimated. Besides,
only with the piece endpoints and parameters, we have a very limited information about Eu queue.
First, in those pieces where we subtract t from u j , we do not know whether τk is still setting the
maximum slowness. Second, the endpoints of those pieces may change in an unknown way, yielding
a wrong estimation in the adjacent ones.

Nevertheless, note that the previous considerations assume that the queue does not change. So, in
any case, zu (a) pieces must be recalculated every time a new task is added to the queue or an old one
finishes.

Estimating zu(a) for more than one task

This is how Equations 7.6 and 7.7 look like if we allocate n tasks of size ak :

zk =
nak +

∑k−1
j=1 a j +(rk − rk )su

ak su
=

∑k−1
j=1 a j

ak su
+

n

su

zi>k =
nak

ai su
+

∑i
j=1, j 6=k a j +(rk − ri )su

ai su

Once when we have the piece endpoints and parameters of zu (a) for one task, we can safely say that,
multiplying the v j and w j parameters of each piece by n, we obtain a good estimation of zu (a) for n
tasks. Two problems arise, similarly to the estimation with different ri . First, in pieces where τk was
setting the maximum slowness, a task later in the queue may take over, or vice versa. Second, the
piece endpoints may also change, like in the previous case. Nevertheless, the experiments have shown
that, in this case, the estimation is better than not taking action.

7.3. Global Policy

7.3.1. Availability Information Management

Similarly to the DP policy, the sampled function of the FSP policy consists of the parameters
(M , D ,Z , v). It contains the number of nodes v, a sample M and D for the available memory and
disk space, and a set of samples Z = { (α j , u j , v j , w j ), 1≤ j }. These samples define the pieces of the
z(a) function of the nodes represented by this sampled function, with their endpoints and parameters.
Only the left endpoint α j is needed because pieces are adjacent, the right endpoint is the next piece’s
left endpoint. The last piece has no right endpoint. The first two parameters of a sampled function
are scalar values, as usual. Z is a functional parameter, and all the considerations that applied to L in
Section 5.3.1 apply to Z now. In particular, for notation, the function represented by f .Z is written
as f .z(a). As we said in the previous section, zu(a)must be recomputed in Eu every time its queue
changes, so an availability summary is sent to the father routing node with this frequency.
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Figure 7.4.: Two examples of how to join two pieces (black) into one (red).

Sum operation

The sum operation is computed as

SUM( f1, f2) =
�

min( f1.M , f2.M ), min( f1.D , f2.D), max( f1.Z , f2.Z), f1.v + f2.v
�

. (7.9)

As we said before, since we are trying to minimize the maximum slowness, we prefer that the
estimation overshoots the real value. So, the sum operation calculates the maximum between f1.Z
and f2.Z . Like with the L parameter of the DP policy, the result is a set of pieces whose endpoints
come from the endpoints of f1.z(a) and f2.z(a), and from the points where they cross each other.
So, the number of pieces in SUM( f1, f2).Z may be up to three times the number of pieces of f1.Z or
f2.Z . In this case, we reduce its number by joining two consecutive pieces into a new one. It covers
the same range as the pieces it replaces, and its parameters are calculated so that it maintains the
same value at its endpoints, and provides a higher or equal estimation of the slowness between them.
Figure 7.4 show two examples of this process. Joining two pieces carries an error in the estimation, so
the sum operation iteratively joins those pieces that minimize the error, until a fixed number of pieces
is reached again. Then, these estimation errors are also taken into account in the distance operation.

Distance operation

In the distance operation of the FSP policy, the parameters M and D are treated as scalar values, as
explained in Section 3.2.2, while parameter Z is treated like the parameter L of the DP policy in
Section 5.3.1. Let f .z(a) be the function described by the pieces in f .Z . Then, the sum operation of
f and g would obtain h with the MSE of parameter Z ,

h.msez =
1

h.v



 f .v

 

∫ h

ν

�

h.z(a)− f .z(a)
�2da+ f .msez

!

+

+ g .v

 

∫ h

ν

�

h.z(a)− g .z(a)
�2da+ g .msez

!

+

+ 2
∫ h

ν

�

h.z(a)− f .z(a)
�

f .ltz (a)da +

+ 2
∫ h

ν

�

h.z(a)− g .z(a)
�

g .ltz (a)da



 , (7.10)

and the linear term of parameter Z ,

h.ltz (a) = f .v
�

h.z(a)− f .z(a)
�

+ g .v
�

h.z(a)− g .z(a)
�

+ f .ltz (a)+ g .ltz (a). (7.11)
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For the normalization function of the Z parameter, the availability summary includes the minimum
and maximum z(a) functions as usual. Let them be called zmin(a) and zmax(a), the normalization
function is

NORMz (m) =
m

∫ h

ν

�

zmax(a)− zmin(a)
�2da

. (7.12)

7.3.2. Forwarding Algorithm
The FSP policy tries to minimize a global property, the maximum slowness. So, its forwarding
algorithm and routing pattern are closer to those of the MMP policy. Tasks must be sent to those
nodes whose maximum slowness will remain lower after accepting them. To have an idea about the
global maximum slowness, besides the availability information that comes from each child, routing
nodes receive the maximum slowness of the rest of the tree from their father. Like in the MMP policy,
being a maximum, it seldom changes and its impact in the traffic is negligible. Requests climb up the
tree until a routing node decides that, with the nodes of its branch, the maximum slowness will be no
greater than β times the maximum slowness of the rest of the tree. Then, it divides the set of tasks
of the request between its children. In Chapter 8 we also show that, in this case, the value of β that
obtains the best results is 0.04.

The forwarding algorithm of the FSP policy appears in Algorithm 7.6. First, it calculates the
minimum slowness that can be reached allocating the tasks of the request to the nodes in the current
branch. This is done by function GETMINSLOWNESS, in Algorithm 7.7. It creates a list candidates
with all the sampled functions and estimates the slowness obtained by assigning one task to the
nodes of each candidate. Procedure PURGE eliminates from the list the worst candidates so that
there remains just enough nodes to allocate request.n tasks. At this point, the partial result is the
maximum slowness among them, in candidates.last.slowness. However, if we assign more tasks
to the nodes with lowest slowness, they could still get a lower slowness than the other nodes. To
find this out, the algorithm iteratively checks whether it obtains a better result by assigning one task
more to some sampled function. At iteration i , the sampled functions that obtained i − 1 tasks in the
previous one are tested with one task more. This is done with function ESTIMATEZ, that estimates
the value of function z(a) with i tasks. If they still get a lower slowness than the partial result, they
get that new one task, and the list of candidates is purged again. The process stops when it cannot
obtain a lower slowness. The forwarding algorithm then compares the obtained slowness with β
times the maximum slowness in the rest of the tree. If it is lower, the availability function decides how
many tasks to send to each child. It is easy to see that the routing pattern generated by this forwarding
algorithm is the same as that of the MMP policy.
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Algorithm 7.6 Forwarding algorithm for the FSP policy.

Pre: Ru is this routing node. request is the request.
Post: reqLeft, reqRight and reqFather are the resulting requests to be sent to the left child, right

child and father nodes, respectively.
1: procedure FORWARD(request)

2: minSlowness ← GETMINSLOWNESS(Ru.info, request)
3: isTooMuch ← minSlowness>βRu.maxSlowness

4: if ¬ISROOT(Ru )
∧

¬FROMFATHER(request)
∧

isTooMuch then

5: reqFather ← request

6: else

7: numLeft ← AF(Ru.leftInfo, request.PR, minSlowness)
8: EXTRACT(request, numLeft, reqLeft)
9: reqRight ← request

10: end if

11: end procedure

Algorithm 7.7 Get the minimum slowness that can be reached when assigning the tasks in request

to the nodes described by info.

Pre: info is an availability summary. request is the request.
Post: candidates.last.slowness is the minimum slowness that can be reached when assigning the

tasks in request to the nodes described by info.
1: function GETMINSLOWNESS(info, request)

2: candidates ← ;
3: for all sf ∈ info do

4: candidates ← candidates
⋃

{(sf, sf.z(info.a), 1)}
5: end for

6: PURGE(candidates, request.n)
7: oneMoreTask ← true

8: i ← 1

9: while oneMoreTask do

10: i ← i + 1
11: oneMoreTask ← false . If nothing happens, this is the last iteration.
12: for all (sf, slowness, n) ∈ candidates | n = i − 1 do

13: if ESTIMATEZ(info.a, i)< candidates.last.slowness then

14: candidates ← candidates \ {(sf, slowness, n)}
15: candidates ← candidates

⋃

{(sf, ESTIMATEZ(info.a, i), i)}
16: oneMoreTask ← true

17: end if

18: end for

19: PURGE(candidates, request.n)
20: end while

21: return candidates.last.slowness

22: end function



Chapter 8.
Experimentation

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.”

— Richard P. Feynman

We have measured the scalability, fault-tolerance and performance of our proposal through a set of
tests and simulations. We have first developed tests to evaluate the accuracy of the aggregation scheme.
They are run by a specific evaluation program that aggregates the information of a set of nodes in
the same way that would be done in the tree. Then, we have also developed an ad-hoc discrete event
simulator (DES) to observe our model under more realistic conditions. This DES is written in C++,
focused on minimizing the memory footprint to simulate as many nodes as possible. Its details can be
found in Appendix B. The five presented policies have been tested, but only the IBP, MMP, DP and
FSP policies are compared with each other. Due to its characteristics and it being a first attempt to
schedule a different kind of application, the WDP policy results are presented in Section 8.6.

8.1. Aggregation Tests
We have studied the accuracy of the aggregation scheme for the different kind of parameters that have
appeared in this thesis. To evaluate its scalability, we have varied the system size and the number of
sampled functions per summary. We understand the accuracy of the aggregation scheme, applied to a
set of nodes, as the fraction of their actual availability that is represented in the resulting summary.
With 100% accuracy, the resulting summary perfectly represents the actual availability. The 0%
accuracy corresponds to the minimum value that the scheme could potentially calculate. For instance,
to aggregate the available memory of two nodes, we compute their minimum. So, the minimum of all
the nodes would be an accuracy of 0%. Note that this is more restrictive than assigning a 0% accuracy
to no available memory.

We have developed a specific evaluation program that calculates this fraction. The parameters
of the program are the size of the network (N ), the policy being tested and the maximum number
of sampled functions per summary (SFmax). First, it generates the availability information of a set
of N nodes, setting their properties and queue states at random with a uniform distribution. This
distribution of values is the worst case for a clustering algorithm. Then, it aggregates this information
recursively, imitating the organization of the nodes in a balanced binary tree. Finally, it compares
the result with the actual availability of all the nodes and calculates the accuracy of the aggregation.

59
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Figure 8.1.: Aggregation accuracy of a set of 1024 nodes for an increasing SFmax, for the (a) IBP, (b) MMP,
(c) DP and (d) FSP policy parameters. The accuracy represents the fraction of the actual availability
of a set of nodes that is represented in the aggregated summary. It is very similar for the scalar
parameters.
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Figure 8.2.: Aggregation accuracy with 200 sampled functions per summary for an increasing number of
nodes, for the (a) IBP, (b) MMP, (c) DP and (d) FSP policy parameters. The accuracy represents the
fraction of the actual availability of a set of nodes that is represented in the aggregated summary.
It is very similar for the scalar parameters.
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We execute the program for each policy and several network sizes and SFmax values. At each step, we
double the number of nodes to increment the tree height one more level.

Figure 8.1 shows the aggregation accuracy with different SFmax, for the four policies and a set of
1024 nodes, which would be found at level 10 of the tree. It can be seen that the accuracy quickly
improves when we increase SFmax in the low value range. It hardly improves anymore when we
increase SFmax over 200 sampled functions per summary. We show later how SFmax affects the network
traffic and each policy performance, in order to choose an appropriate value for each situation. Then,
Figure 8.2 presents the aggregation accuracy with an increasing number of nodes, for an SFmax of 200
and each policy. The decrease of accuracy is very low compared to the increase in the number of
nodes. This figure also highlights that it is difficult to normalize the MSE of the functional parameters.
The available amount of FLOPs before deadline of the DP policy gets noticeably less accuracy than
the memory and disk space parameters, while the slowness per task length of the FSP policy gets
more, because they are not correctly weighted in the distance operator. But in general, the clustering
algorithm provides a well balanced accuracy among the different resource types, even when their
values lay in very different intervals.

8.2. Simulation Setup

Besides the aggregation tests, we have also developed a DES that executes our scheduling model
in a network of nodes for a certain amount of time. The network size is configurable, and there
is direct communication between every pair of nodes. Nodes can send messages to each other, or
messages can be injected to emulate the user behavior. To check the scalability of our model, we have
simulated networks from five thousand up to a hundred thousand nodes. With the IBP policy, whose
complexity is lower, we are able to simulate networks of up to a million nodes.

For every message, the DES takes into account both the transmission and computational times. The
transmission time of a message is calculated by modeling the end-to-end link. We test our proposal
with the end-to-end link of a typical volunteer computing platform, with 10 Mbps bandwidth and
a delay between 50 ms and 300 ms, and of a fast cluster interconnection network, with 1 Gbps
bandwidth and a delay between 0.1 ms and 1 ms. The delay follows a Pareto distribution, as suggested
in [97]. The processing time of a message is the time needed by the simulation machine to process
it. It could be scaled to the computing power of each node, but we decided to not do it. In this way,
we are able to compare the processing time of a request in our model with the processing time in a
single centralized machine. Only task execution time is calculated with the computing power of the
execution nodes.

Simulations consist in having a user at each node, continuously submitting new jobs. For the
generation of this workload, we have implemented the site-level simulation model proposed by Shmueli
and Feitelson [86, 44]. It simulates the interaction between users and the system to calculate the
timing and parameters of each submitted application. It was designed analyzing the influence of the
scheduling performance on user decisions in several production system traces. These traces contain
many years of activity of about 2000 users, with information of nearly half a million jobs. The
DES also uses them to extract the distribution of application parameters and node properties (power,
memory and disk), so we consider it realistic enough.
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Figure 8.3.: Average throughput of each policy by network size. It depends on the workload characteristics,
like the distribution of the number of tasks and release time.

A problem we faced with Shmueli and Feitelson’s model is that the probability of a user having
a break increases with the job turnaround time. Poorer performance usually yields longer job
turnaround time. So, for certain performance metrics, like number of successfully finished tasks,
the difference between two simulations’ results may be larger than it should just because users are
breaking more often and sending less jobs in the least performing one. For this reason, instead of
applying the site-level model to every simulation as is, we apply it just once, generate our own trace
of workload and replay it in the simulations we want to compare together. Then, users always submit
the same amount of jobs and differences in the results are only due to our design.

Finally, we have developed a centralized version of each policy but the WDP. It is a centralized
online scheduler that uses the same heuristics as its decentralized counterpart, but with full knowledge
of the system state. In this way, it provides a reference to evaluate the advantages of a decentralized
design against a centralized one. Their implementation and details can be found in Appendix C.

8.3. Scalability Results
We first show how our model preserves its scalable properties regardless of the policy being used
through three metrics: the throughput, the allocation time and the bandwidth usage.

Figure 8.3 presents the average throughput of each policy for increasing number of nodes. Param-
eters other than the network size are kept constant. The absolute values are not relevant, because
they depend on the workload characteristics of the site-level simulation model, and no policy tries
to maximize the throughput. Instead, it is interesting to see that, for every policy, the throughput
linearly increases with the system size.

We define the allocation time as the time elapsed between a request is submitted and all its tasks get
accepted. It measures the cost of the task allocation algorithm as perceived by the user. Figures 8.4
and 8.5 compare the average allocation time of a request with a thousand tasks between the decentral-
ized and centralized versions of all four policies, respectively. Figures 8.4a and 8.5a show the results
of the decentralized and centralized versions of each policy in the slow network link model, while
Figures 8.4b and 8.5b are plotted with the results of the fast one. As predicted in Section 3.3, in
the decentralized case, the increase of allocation time with network size is near logarithmic, which
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Figure 8.4.: Average allocation time against network size and policy, of a 1000 task request, with the (a) slow
and (b) fast network link, by the decentralized versions of each policy.
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Figure 8.5.: Average allocation time against network size and policy, of a 1000 task request, with the (a) slow
and (b) fast network link, by the centralized versions of each policy.
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Table 8.1.: 99th percentile and maximum percentage of link bandwidth used by link model, policy, sampling
interval and SFmax, on simulations with an update bandwidth limit of 100 KBps.

Slow model Fast model

SFmax Average 10 sec. 1 sec. Average 10 sec. 1 sec.

IB
P

20 s.f. .002(0.35) .111(1.93) .720(10.3) <.001(.003) .001(.010) .003(.102)

50 s.f. .002(0.51) .109(2.68) .747(9.84) <.001(.004) .001(.015) .004(.098)

200 s.f. .002(1.39) .126(8.11) .914(12.5) <.001(.007) .001(.019) .005(.102)

M
M

P 20 s.f. .002(0.70) .615(13.4) 1.47(16.4) <.001(.004) .001(.011) .007(.030)

50 s.f. .003(1.25) .710(14.2) 1.60(17.0) <.001(.008) .003(.019) .018(.058)

200 s.f. .008(3.62) .862(15.6) 1.66(18.4) <.001(.022) .002(.042) .016(.154)

D
P

20 s.f. .008(5.34) .865(15.1) 7.04(17.4) <.001(.026) .001(.041) .012(.065)

50 s.f. .014(10.0) 1.37(16.6) 10.9(19.4) <.001(.054) .002(.079) .018(.126)

200 s.f. .017(15.8) 1.74(17.2) 12.3(26.3) <.001(.145) .003(.170) .025(.238)

FS
P

20 s.f. .011(15.9) .264(17.6) 1.64(30.8) <.001(.159) .002(.179) .010(.314)

50 s.f. .019(15.9) .410(17.9) 2.52(28.1) <.001(.159) .003(.185) .019(.319)

200 s.f. .024(15.9) .608(18.5) 3.80(36.7) <.001(.160) .005(.194) .030(.338)

supports the scalability of our model. To show it, Figures 8.4a and 8.4b are plotted with a logarithmic
x axis. The MMP and FSP policies are almost perfectly logarithmic, the IBP policy is even better
than logarithmic, while the DP policy is a bit over the logarithmic behavior. They also show the
difference between the routing patterns of each policy. The decentralized versions of the MMP and
FSP policies are the slowest ones because they look for as much nodes as possible in order to fulfill
their objective, while the DP and IBP policies can use the first nodes they find. On the other hand,
in the centralized case, the allocation time is an almost linear function of the network size. For this
reason, our decentralized model is much faster when used in large, fast networks, like a data center.
This behavior would also bound the maximum size of a real centralized implementation, that would
vary depending on the policy complexity. Among our proposed policies, it seems the DP policy
would saturate the centralized scheduler at a lower system size.

To study the impact of our algorithms on the network traffic, we have measured the link bandwidth
used on both link models. We have recorded the average bandwidth used throughout the simulation,
and the peaks of usage, sampling at intervals of 10 and 1 second. Table 8.1 shows this values as a
percentage of the link bandwidth, for both network models, the four policies and three SFmax values.
Only the incoming traffic appears in the table, because it is always higher than the outgoing. The
distribution of link usage among nodes is very skewed towards the low values. To illustrate this, for
each configuration we present the 99th percentile and the maximum in parentheses. These simulations
were performed with an update bandwidth limit of 100 KBps, thus giving a reference for the very
worst case.
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Figure 8.6.: Maximum percentage of link bandwidth used by policy and network size, with the fast link model,
a sampling interval of 1 second and an SFmax of 200.

As expected, the traffic seems to be affected by the availability summary size and update frequency.
It grows with the number of sampled functions per summary, but also with the size of each sampled
function. The IBP and MMP policy, with just scalar parameters, use a small fraction of the bandwidth
in average. Meanwhile, the DP and FSP policies have a higher average traffic due to their functional
parameters. It can also be seen the great difference between the 99th percentile and the maximum
in all the values of the table. This means that the peaks (of up to 20%-30% in the slow network
model) are very rare. They are dominated by the update bandwidth limit of 100 KBps. In the slow
network model, it is 10% of the link bandwidth, and in the fast model, it is 0.1%. So, if a node receives
an update from both children simultaneously, if will suffer a burst of 20% or 0.2% of its incoming
bandwidth, respectively. The possibility of receiving two updates at the same time depends on the
frequency of the updates. It is higher in the DP and FSP policies, so they reach higher maximum
peaks of traffic.

Figure 8.6 illustrates the evolution of the maximum percentage of link bandwidth for increasing
number of nodes. These tests were performed with the fast link model, a sampling interval of 1
second and 200 sampled functions per summary. Besides its low values, it tends to stabilize instead of
linearly growing, which is an indicator of scalability.

8.4. Policy Performance Results
The definition of performance depends on each policy objective, so we evaluate it separately for each
one. We study how each parameter affects performance separately, except for failures, which are
covered in the next section. First we analyze the impact of the network configuration, testing each
policy for 60 hours with the maximum network size, a SFmax value of 200, both link models and an
update bandwidth limit of 100, 1000 and 10000 bytes per second (Bps). These tests are repeated 5
times with the same trace but different random seed. We have seen that they only yield noticeable
differences for the MMP and FSP policies. For the IBP and DP policies, we stick to using the fast
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Figure 8.7.: (a) Finished tasks and (b) finished computation by the IBP policy, on a million nodes, for different
values of SFmax, compared to its centralized version and a random allocation.

link model and an update bandwidth limit of 1 KBps. Once the network parameters are fixed, we
simulate the decentralized version of each policy with different values of SFmax. To provide a context,
we also simulate the centralized version and a trivial allocation of tasks to nodes at random. Then,
we compare the performance results of all these simulations to see how far our model stays from the
random allocation, and how near it gets to a centralized implementation.

8.4.1. IBP Policy
We measure the performance of the IBP policy with the amount of computation and the number of
tasks successfully finished. We test a SFmax value of 20, 50 and 200 sampled functions per summary
on a million node network. Figure 8.7a shows the number of tasks successfully finished when
the simulation ends. The random allocation is far behind the others. However, it looks like the
decentralized version finishes more tasks with less availability information, even more than the
centralized version. We explain this surprising behavior with the distribution of the task length in
the workload. The model we use generates a lot of short tasks and a few long ones. With better
information, long tasks have more probabilities of being allocated, but then nodes get occupied for
longer and many short tasks are not executed. So, the total amount of computation finished, in
Figure 8.7b, behaves as expected. It shows little improvement in using 200 sampled functions over 50
or even 20, as expected from the accuracy tests, but it is still only around 20% behind the centralized
version. Our conclusion is that a low summary size is enough for this policy.
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8.4.2. MMP Policy

The performance of the MMP policy is measured as the maximum makespan obtained at each moment.
As said before, it seems to be affected by the network parameters. The network configuration tests for
this policy show important variations when the random seed changes, illustrated in Figure 8.8. Shaded
regions represent the difference between minimum and maximum values obtained in the tests for each
configuration. These differences narrow with a faster link and a higher update bandwidth limit. Test
with the fast link model and an update bandwidth limit of 10 KBps show the most consistent results,
colored in red in Figure 8.8b. So, the rest of the tests are performed with this network configuration.

Another important parameter for this policy is theβ factor of the forwarding algorithm. It decides
if the makespan obtained in a branch is short enough (see Section 4.3.2). This factor affects how high
in the tree a request goes. The higher, the better the performance, but the higher the traffic. We
want to obtain a good tradeoff between the performance of the policy and the traffic generated in
the top levels of the tree. We have seen that for β< 0.5, the number of requests that reach the upper
levels and the performance decrease very little. But at β= 0.5, the number of requests drops abruptly
by around 200 times. Then, for β > 0.5, this value continues decreasing very slowly again, while
performance drops significantly. So, β= 0.5 is the best value of this parameter.

With the network andβ parameters set, we tested a SFmax value of 20, 50 and 200 sampled functions
per summary on a hundred thousand nodes. Figure 8.9 shows the evolution of the maximum
makespan throughout the simulation. The decentralized version with 50 sampled functions per
summary performs like with 200, but it makes some wrong decisions that should be considered when
selecting the SFmax value. However, both are very close to the centralized version. The decentralized
version with 20 sampled functions per summary is omitted because of its bad results. So, for this
policy, a summary size of at least 50 sampled functions should be used.

8.4.3. DP Policy

To evaluate the DP policy, we faced a problem with the site-level simulation model. It does not
generate deadline information, because it did not appear in the original traces. So, we generate the
deadline for an application that is going to be submitted, assuming that the user would like to have it
finished before having a break or going to sleep. The deadline should make the user decide to continue
working. As Shmueli and Feitelson calculated, the probability of continuing is 0.8/(0.05tr +1), where
tr is the response time of the last application in minutes. Then, a suitable deadline distribution would
be∆= (0.8/U − 1)/0.05, where U is the standard uniform distribution. If the result would make an
application finish while the owner is sleeping, then its deadline is set to the wake time, to provide
weaker time restrictions. Additionally, we enforce a maximum and minimum values, δmax and δmin,
for each application Ai . δmax = ai ni/su is the time it would take in the submitting user’s computer.
δmin = ai ni/Splat is the time the user thinks it will take in the platform. To calculate δmin, Splat is the
platform speed as perceived by the user. We compute it from the response time of the previously
submitted applications, giving more weight to the most recent ones.

We evaluate the performance of the DP policy with the amount of computation and the number of
tasks successfully finished, as for the IBP policy. The results are presented in Figure 8.10. Again, we
test a SFmax value of 20, 50 and 200 sampled functions per summary on a hundred thousand nodes.
The decentralized version with 20 sampled functions per summary performs quite poorly, but with
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Figure 8.8.: Performance variation in 5 simulations of the MMP policy for different update bandwidth limit
with (a) the slow link model and (b) the fast link model.
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Figure 8.10.: (a) Finished tasks and (b) finished computation by the DP policy, on a hundred thousand nodes,
for different values of SFmax, compared to its centralized version and a random allocation.

50 and 200 sampled functions per summary, it is only 10% and 4.5% behind the centralized version.
With these values, 50 sampled functions per summary seem accurate enough and save bandwidth at
the same time.

8.4.4. FSP Policy
Before presenting the FSP policy results, we must check that the site-level simulation model generates
a set of applications and nodes that fulfill our assumptions. In Section 7.1.1 we stated that applications
should have less tasks than nodes in the platform, that the distribution of computing power should
change very little and that the fastest nodes should have a similar computing power. In fact, we already
noted that the generated applications have no more than 1120 tasks. This is far less than the 100,000
nodes we are testing. Also, we never change the computing power distribution during the simulation.
We think it is a reasonable scenario in most situations, even with nodes entering and leaving the
system frequently. Finally, from the set of nodes generated, 1008 nodes have the maximum speed
and 2000 have at least 93% of the maximum speed. So, we can safely say that the stretch of each
application is proportional to its slowness, and that the maximum slowness is a good measure of the
fairness.

Now we study the behavior of the FSP policy against different network configurations. There
seems to be little difference between the slow and the fast network model, but the update bandwidth
limit plays an important role. With 10 KBps, the maximum slowness was 1.75, with 1 KBps it was
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Figure 8.11.: Maximum slowness among coexisting applications during the simulation, by the FSP policy, on
a hundred thousand nodes, for different values of SFmax, compared to its centralized version.

32.1 and with 100 Bps it was 58.4. We conclude that maintaining the availability information up
to date is determinant for this policy. With these differences, we have decided to do the rest of the
simulations with the fast link model and 10 KBps of update bandwidth limit.

Like in the MMP policy, we also have to set theβ parameter to find a tradeoff between performance
and traffic. In this case, the β parameter decides if the slowness obtained by the forwarding algorithm
in a branch is short enough (see Section 7.3.2). We have tested the performance of the FSP policy
for several values of β between 0.01 and 2. The maximum slowness is regular with β< 1, quickly
increasing after this value. However, the number of requests that reach the root start growing
significantly after β = 0.04. So, we think that β = 0.04 is the correct value for the following
performance tests.

Finally, we measure the performance of the FSP policy by the maximum slowness among the
applications that coexist in the system. Figure 8.11 shows how it evolves during the simulation on
a hundred thousand nodes. We have plotted the results for a SFmax value of 20, 50 and 200 sampled
functions per summary and for the centralized version. The random allocation, on the other hand, is
off the charts. Its maximum slowness quickly grows to 138, remaining there the rest of the simulation.
For the decentralized version, it can be seen that it presents a noticeable variation of performance
among different values of SFmax. The performance with SFmax = 200 is up to 20 times that with
SFmax = 20. However, we are still far away from the performance of the centralized version. After
5 hours of simulation, when it was nearest to the performance of the decentralized version with
SFmax = 200, it was still about 40 times better.

8.5. Fault-tolerance Results
To test the fault-tolerance of our model, we also perform simulations in which nodes fail. As explained
in Section 3.1.4, the consequences of a node failing are that all the tasks in its queue are aborted and
the availability information of its branch is lost. The information about issued application requests
and tasks waiting to be finished is saved to a database. We model failures as in [83]: every time a node
leaves another one replaces it, so that the system maintains its size. We assume that the tree overlay
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Figure 8.12.: Finished computation for simulations with churn, with median session times of 60, 30, 15 and 5
minutes, for the (a) IBP, (b) MMP, (c) DP and (d) FSP policies. It is normalized to the results
without churn.

is one of the works cited in Section 3.1.4 and that it recovers by itself, but we do not consider its
recovery overhead. That would depend on the actual implementation used, so we focus on the cost of
recovering the components of our model. Then, the system automatically recovers by redistributing
the availability information and resubmitting aborted tasks. We perform these failure tests with the
same parameters as the performance tests, and an SFmax value of 200.

We simulate churn and catastrophic failures. Churn is the continuous process of node arrival and
departure, very common in desktop grids and P2P computing platforms. In managed environments,
like clusters and data centers, churn is very light. Rhea et al. [83] characterize churn by the median
session time of a node. From the observed session times in various P2P systems, they suggest median
session times from 5 to 60 minutes. We show how the computation finished by each policy degrades
with churn in Figure 8.12, for median session times of 60, 30, 15 and 5 minutes. Values are normalized
to the finished computation by each policy without churn.

We understand a catastrophic failure as the simultaneous failure of a large set of nodes. It is rare,
but it is most significant in managed environments; e.g. due to a power loss in a data center, a cutting
in an interconnection network or a misconfiguration propagated to several virtual instances. We
tested our model with all four policies when a catastrophic failure occurs after 1 day of simulation,
with 5%, 10%, 20% and 40% of the nodes failing. As soon as the underlying tree structure recovers
from the failure, our model is able to quickly recreate the lost availability information and resubmit
the aborted tasks, so the impact in global performance of each policy is minimal. The only noticeable
effect is that the recovered applications obtain a longer response time, and in the DP policy some may
not meet their deadline.
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Figure 8.14.: A Laplace equation solver graph model with 9 tasks.

8.6. WDP Policy Tests

The WDP policy is different to the other policies in many aspects. It is a first approach to schedule
a different kind of application. So, the site-level simulation model cannot be applied to this policy,
because it is not designed to generate workflow applications. Also, the availability model has been
simplified, and there is nothing like a sampled function in this policy. For these reasons, and to assess
whether it is worth further development of this policy, we only present results on allocation time,
speed-up and computational and network costs of our decentralized proposal. Additional experiments
will be carried out in the future.

8.6.1. Simulation Setup

We have simulated this policy on the slow network model with one million nodes. As workflows,
two different kinds of DAGs has been selected to get results on different sizes and workflow widths.
The selected models are a Fork-Join and a Laplace equation solver-like graph, shown in Figures 8.13
and 8.14. The arrival of new workflows follows a Poisson process, with a mean interarrival time of 3
milliseconds. The mean arrival rate is twice the aggregated speed of all the platform, so it maintains
every node busy at almost any time. Finally, the deadline of each workflow is calculated through the
workflow relative priority W j . It is the ratio between the time the submission node would need to
execute the workflow and the time remaining until deadline. A value of 1 or less would mean that the
sender could execute that workflow by itself, so higher values are tested.
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Figure 8.15.: Allocation time for different workflow widths, in a network of 1 million nodes.

8.6.2. Results

Probably, the system property that users firstly notice is response time. It depends on two factors:
workflow allocation time and workflow execution time. The time a workflow needs to be allocated is
directly related to its width. Figure 8.15 shows the cumulative distribution of the allocation time for
both models and different sizes. As expected, the allocation time of fork-join workflows varies very
little with their size, while it grows significantly for Laplace-like models, whose concurrency is lower.
As with the other policies, the allocation is done in just a few seconds.

The workflow execution time is the time lapse between a request is sent and the last task is finished.
We define the speed-up as the ratio between the time the submission node would need to execute
the workflow by itself and the actual execution time. The ratio between workflow total length and
minimum length provides the maximum speed-up that can be expected in execution nodes with
similar computing power as the submission node. Table 8.2 presents average speed-up values registered
for different workflow relative priorities. As it can be seen, the fork-join model has an expected
maximum speed-up of 3.3 while the Laplace model could get a speed-up of just 1.8. Results show
that for the Laplace model, the system performs better than expected, as tasks may run in faster
machines than the client’s one. However, in the fork-join model, the WDP policy is unable to reach
the maximum expected speed-up. In both cases, the speed-up increases with the workflow priority as
deadlines become tighter.

Finally, we present the network traffic of the WDP policy. It has been tested with links of 1Mbps
of bandwidth and an update bandwidth limit of 10 KBps. The average traffic along the simulation is
very low, so we have studied the peaks of traffic. Like with the other policies, we measure the traffic
at intervals of one second, and register the maximum of all intervals. The average peak of outgoing
traffic among all the nodes was 216 Bps, 75% of the nodes only generated less than 2500 Bps of peak
traffic, and the maximum peak was 8200 Bps. Likewise, the average peak of incoming traffic was 190
Bps, about 75% of the nodes received less than 1000 Bps of peak traffic, just 1% of the nodes received
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Table 8.2.: Average speedup by workflow model and priority.

Maximum
Speed-up

Workflow relative priority W j

Model 1.1 1.2 1.3 1.4

Laplace 1.8 2.05 2.09 2.18 2.22

Fork-Join 3.3 2.12 2.85 2.90 2.92

more than 8000 Bps, and the maximum value registered during the tests was 29000 Bps. Again, the
impact of the communications in the user experience is very limited.

8.7. Comparison with Other Works
In this chapter we have quantitatively compared the scalability and performance of our decentralized
model with a centralized one, which we have also implemented. But it would also be interesting to
compare ourselves with some of the work presented in Chapter 2. However, this is often a difficult
task, because each one uses different metrics and parameters. Many decisions made by the authors
affect the results, like the policies being used, the generation of workload or the network model. So,
we have made a more qualitative comparison. After studying the characteristics that the experiments
of the related work have in common with us, we have selected four of them as indicators of scalability,
fault-tolerance and versatility: The number of simulated nodes, to provide an idea of how far the
authors pushed their implementations; the existence of a failure scenario; the implemented policies;
and the workload generation, to evaluate if the simulations were realistic enough. Table 8.3 shows the
results.

Decentralized resource discovery platforms offer the best numbers, but they obviously implement
no scheduling policy. NodeWiz, SWORD and the work by Cardosa and Chandra show simulations of
10,000 nodes. NodeWiz authors even test a prototype implementation on 1,000 emulated nodes and
100 real nodes, and take failures into account. No other work shows results of tests with failing nodes.
All of them use real data collected from platforms like PlanetLab [72]. The exception is Cohesion,
whose authors only test platforms of 64 nodes with synthetic data.

The works on grid schedulers with aggregated information present the tests with the least number
of nodes. Their scalability is limited because they usually only consider one broker per grid domain,
and they use a centralized scheduler (Kokkinos and Varvarigos) or expect every domain to know
each other (Brunner et al. and Rodero et al.). Surprisingly, Rahman et al. claim to decentralize their
scheduling by using a DHT to index domain capabilities, but they only test it on 100 domains. On
the other hand, they test several scheduling policies, including scientific workflows. Rodero et al. and
Kokkinos and Varvarigos also use traces from the Grid Workloads Archive [91].

Finally, we consider that we have improved the state of the art in relation to other decentralized
scheduling platforms. They experiment with less than 10,000 nodes, no node failures, only one policy
and synthetic workloads. WaveGrid does not take node failures into account, but it migrates tasks
when users reclaim their nodes. Kwan and Mupala mention the resilience of their unstructured
network, but it is not tested. Kim et al. compare the performance of its model with an idealistic
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Table 8.3.: Comparison of several distributed scheduling projects.

Project N. nodes Failure Policies Workload

Our model 1,000,000 Yes Various Traces

NodeWiz [12] 10,000 Yes N.A. Mixed

SWORD [7] 10,000 No N.A. Mixed

Cardosa and Chandra [26] 10,000 No N.A. Traces

Cai and Wang [23] 8,192 No N.A. Traces

WaveGrid [98] 5,000 No IBP Synthetic

Kwan and Mupala [61] 4,000 No IBP Poisson p.

Kim et al. [58] 1,000 No MMP Poisson p.

Kokkinos and Varvarigos [59] 1,000 No Various Traces

Brunner et al. [18] 1,000 dom. No Workflows Synthetic

Rahman et al. [75] 100 No Workflows Poisson p.

Cohesion [85] 64 No N.A. Synthetic

Diet [27] 50 No IBP Synthetic

Rodero et al. [84] 18 No various Traces

centralized scheduler, like we do, with a MMP-like policy. Yet, we consider that 1,000 tested nodes
are too few nowadays. Diet authors propose an extensible architecture, with plug-in policies, but only
one is tested. Although only 50 nodes are tested, they perform tests on a full implementation, not on
simulation. All these works generate their own synthetic workloads, usually with a Poisson process.
They could present more realistic results with workloads coming from real system traces. In contrast,
we test up to one million nodes, millions of tasks generated from real traces, failures of varying size
and frequency, and five different policies.

8.8. Discussion
Returning to the properties we considered in Section 1.2 a distributed scheduling model should have,
we can evaluate now if we accomplished our goals.

The model should be scalable, in the sense that it should be able to deal with an increase in the
number of nodes without a noticeable impact in its performance. Our scalability results in Figures 8.4
and 8.5 show that the allocation cost has a logarithmic-like behavior with the system size, due to
the concurrent allocation in different branches. We emphasize that our model can be faster than
a centralized implementation in low delay interconnection networks, like those found in cloud
computing facilities and data centers. Yet, it still manages to allocate a thousand tasks among a
hundred thousand nodes with high link delay in less than 3.5 seconds. With its logarithmic behavior,
we can extrapolate an average allocation time of less than 5 seconds with ten million nodes. Besides,
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the communication overhead seems to be bounded even with an increase of the number of nodes.
The bandwidth usage with the fast link model is negligible, and even the peaks with the slow link
model can be considered low. This is due to the aggregation scheme, that effectively limits the traffic
in the top levels of the tree. Finally, the throughput increases linearly with the number of nodes,
without notice of deceleration. We consider reasonable to extrapolate these results and think that our
model would behave similarly in higher scales than tested.

The model should also be fault-tolerant, degrading its performance but continuing its work in the
case of failure. The tests on churn and catastrophic failures confirm that our model supports high
rates of failures without loosing functionality, just degrading the performance accordingly. However,
churn rises some special considerations. It can be seen that churn quickly affects the performance
of the DP policy. This is because deadlines are a heavy requirement and resubmitted tasks cannot
meet them. On the other hand, short session times badly affect the FSP policy, while it should be
expected to behave like the MMP policy. Since the FSP policy has been recently developed, we have
to further investigate the reason of this problem. In general, complex policies or policies with strong
requirements should get worst results under churn. Additionally, most long tasks cannot finish with
the shortest session times. To overcome this problem, users should also implement checkpointing or
replication into their applications, to avoid resending failed tasks too often.

Finally, the model should be extensible to several different policies. By design, our generic avail-
ability information representation, tunable aggregation scheme and task routing approach make it
feasible. With them, we have implemented five different policies of increasing complexity. We want
to highlight that the most common IBP, MMP and DP policies obtain very good performance results
compared to their centralized versions, while using availability information of very different level of
detail. The WDP and FSP policies, however, still have room for improvement. The novelty of the
former and the simplifications we made in the later yield moderate results. It is also worth bearing in
mind that the MMP and FSP policies require a higher update bandwidth. The most probable cause is
their routing pattern, but we must study this problem further.





Chapter 9.

Conclusions

“Yet in all those cases I finally steeled myself to seize the opportunity, and find a way to
muddle through and eventually conclude that I had, in fact, chosen the right path, as
risky as it seemed at the time.”

— Vinton Cerf

In this thesis we presented a distributed scheduling model for large-scale platforms. It aggregates
availability information about execution nodes on a hierarchical overlay. Then, using that information,
it forwards tasks towards the most suitable execution nodes. We claim that it reaches scales of millions
of nodes, tolerates high rates of failures and supports policies with very different objectives. We
provide results from trace-driven simulation tests on a network of up to a million nodes.

The scalability is achieved through two main mechanisms. First, we propose an aggregation scheme
that provides enough availability information to the top levels of the hierarchy without flooding them.
An agglomerative clustering algorithm summarizes the availability information to avoid it growing
without limit. Then, the update bandwidth is also bounded to reduce the network traffic. This scheme
finds a good tradeoff between resource usage and accuracy. Second, we take a task-routing approach
to scheduling. The nodes of the hierarchy use a forwarding algorithm that looks for execution nodes
in several branches of the hierarchy concurrently, because they are independent. In our tests, the
communication overhead is bounded and the allocation cost shows an almost logarithmic behavior
with the system size. In networks of 100,000 nodes, link bandwidth of 1Gbps and link delays of under
1 millisecond, our decentralized scheduler can allocate tasks up to 10 times faster than its centralized
equivalent. For instance, the decentralized version of the DP policy allocates a thousand tasks in 5ms,
against 50ms of the centralized version. Meanwhile, the maximum bandwidth usage peak was under
0.25% of the link bandwidth. With delays of up to 300 milliseconds, the slowest policy still needs less
than 3.5 seconds. The result is that our model is very well suited even for applications with thousands
of short tasks, like many-task computing and map-reduce applications.

Faults are managed with a best-effort strategy. When a node failure is detected, the tasks it was
executing are resubmitted by their owners and the availability information it managed is rebuilt by
its neighbors. In this way, our model is able to degrade its performance accordingly and recover its
functionality. To show it, we have performed tests of churn and catastrophic failures. Even with
nodes failing with a median period of only 5 minutes, our scheduler is able to continue giving a
degraded service. Meanwhile, it is able to recover from the failure of an important fraction of the
nodes, as long as the underlying hierarchical overlay supports it.
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Finally, we have designed our distributed scheduling model with extensibility in mind. The avail-
ability information model supports a generic set of operations to aggregate different properties of the
execution nodes. Besides, the forwarding algorithm provides a common prototype to different realiza-
tions. So, we have implemented five policies, by specializing their own availability representation and
forwarding algorithm. The IBP policy allocates bag-of-tasks applications to idle nodes as they become
ready, if they meet the memory and disk space requirements. The MMP policy also considers queue
length to minimize the global makespan. The DP policy allows the use of time constraints to schedule
first the applications with a shorter deadline. The FSP policy introduces the concept of slowness to
provide a fair share of the platform to every application. And the WDP policy explores the extension
of the DP policy to a different application type, the workflow, that includes additional dependencies
between tasks. We propose a common method to represent and clusterize scalar parameters of the
execution node availability, like available memory and disk space. It is applied in the four policies for
bag-of-tasks applications. Besides, for the DP and FSP policies, we also present a method to represent
and clusterize functional parameters, like the available amount of FLOPs before a certain deadline.

After checking the feasibility of implementing policies with very different objectives on our
scheduling model, we have also tested their performance. We have compared them with a scheduler
that allocates tasks to nodes at random, and with a centralized version of each policy that has full
knowledge of every execution node state. The simpler IBP, MMP and DP policies perform very close
to a centralized implementation. On the other hand, the FSP and WDP policies, due to their novelty
and the simplifications we have made, present more moderate results.

These results open the door to many possible improvements. The immediate one would be to
improve the FSP and WDP policies, so that they yield results comparable to the other policies.
Then, we could complete the missing parts and create a fully-fledged distributed computing platform,
or integrate our code in an existing one. In this way we could test our model on a real scenario.
Meanwhile, we want to study the generation and simulation of specific workloads, like many-task,
map-reduce and data-intensive applications. Since many policies depend on the task length, we also
plan to study different methods of task length estimation. Likewise, availability prediction models
could provide better information about execution nodes to those policies where the future state is
important, like the MMP and DP policies.
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Appendix A.
Notation

Table A.1.: Notation in text and algorithms.

Notation Description

Ai Application.

PRi Properties of application Ai .

ri Release time of Ai .

ei End time of the last task of Ai .

ni Number of tasks of Ai .

ai Length of a task of Ai , in millions of FLOPs.

mi Required memory to execute a task of Ai , in megabytes.

di Required disk space to execute a task of Ai , in megabytes.

qi Desired makespan for Ai .

δi Deadline of Ai .

zi Slowness of Ai .

Pu Physical node.

Ru/Eu/Su Routing/Execution/Submission node role.

AFu Availability function of node Eu .

su Computing power of node Eu , in millions of FLOPs per second.

Mu Memory available at node Eu , in megabytes.

Du Disk available at node Eu , in megabytes.

Qu Queue end time of node Eu .

lu (δ) Amount of FLOPs available before δ at Eu .

zu (a) Maximum slowness at Eu adding one task of length a.

x, y, z Availability summaries.

f , g , h Sampled functions.

f . p Parameter of a sampled function.

Continues on next page.

89



90 Notation

Table A.1.: Continued from previous page.

Notation Description

SUM( f , g ) Sum operation of two sampled functions.

DIST( f , g ) Distance operation of two sampled functions.

τk Task in position k of the queue.

β Factor to adjust MMP and FSP forwarding algorithm.

ν Current time.

SFmax Maximum summary size.

request An application scheduling request.

request.srcAddr Request source address.

request.PR Application properties of a request.

request.p One of the properties in request.PR.

request.n Number of tasks in a request.

Ru.fatherAddr Address of a routing node father.

Ru.leftAddr Address of a routing node left child.

Ru.rightAddr Address of a routing node right child.

Ru.leftInfo Availability information of the left child.

Ru.rightInfo Availability information of the right child.

Ru.info The aggregation of Ru.leftInfo and Ru.rightInfo.

Eu . p A parameter of execution node Eu .



Appendix B.
The STaRS Simulator
To evaluate the scalability, fault-tolerance and performance of our model, we have developed a
simulator in C++. The simulator code is available at http://webdiis.unizar.es/~jcelaya/stars.
Our main reason to develop it instead of using an existing alternative was to reduce its memory
footprint. In this way, we are able to simulate up to a million nodes with a simple policy, like the IBP.

B.1. History
The development of a simulator for the STaRS model started in 2005, to obtain the results of [32]. We
built it with Omnet++ [92, 70], a DES for computer networks. It includes the INET framework [1],
a good TCP stack and topology model, but we decided to use a simpler network model. The INET
framework introduces too much overhead, so we simulated our scheduling model over a star network
with fixed link bandwidth and delay. With 2 gigabytes of memory we were able to simulate 50,000
nodes.

One of the reasons for using Omnet++ was the possibility of distributing the simulation among
several computers, to increase its speed and/or memory usage. However, at that time, it was an
experimental feature, it only used a very conservative synchronization protocol and it had no way of
correctly stopping the simulation. So, a Master Thesis [15] was carried out to fix these problems.

Meanwhile, we started the implementation of a new DES engine. Its objective was to provide
only the features of Omnet++ that we needed, stripping everything else out, to reduce the memory
footprint as much as possible. Now we are able to simulate one million nodes of the IBP policy in
under 10 gigabytes of memory.

B.2. Design
Our DES engine consists of three main classes:

• Simulator: An object of this class drives the simulation. It contains a set of nodes, a network
model and an event queue. It iteratively extracts the next event from the queue and sends it
to its destination node. The node processes the event, and may generate new events that are
inserted in the queue. The network model calculates when the events arrive at its destination.

• StarsNode: Each object of this class is a node in the network. It implements the distributed
scheduling model presented in this thesis, with the different components of each node role.
The model code is decoupled from the simulation engine, so it can be used in a future real
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implementation. The simulator maintains a table with as many instances of this class as nodes
in the network.

• SimulationCase: An object of this class prepares the simulation and decides how it evolves.
For instance, the site-level simulation model presented in Section 8 is implemented in a class
derived from SimulationCase. At the beginning of the simulation, a SimulationCase instance is
created and configured with the contents of a configuration file.

In each simulation, a single instance of the Simulator class is created. It then creates a SimulationCase
instance and configures it with the contents of a file, that is provided through the command line. This
file is just a set of arbitrary key-value pairs. We have a helper tool that generates several configuration
files for parameter-sweep simulations. Then, the SimulationCase instance generates the initial events,
and the Simulator starts processing the event queue. For the transmission events, the simulator
uses a simple network model. It simulates end-to-end links between every pair of nodes, with fixed
bandwidth and a random delay that follows a Pareto distribution, as explained in Section 8. It also
simulates the transmission and reception queue of every node. The simulation ends when the queue is
empty, or certain configurable conditions are met, like reaching a maximum elapsed time or number
of submitted requests.

Besides these three classes, there are other ones that provide extra functionality. There is an
implementation of the different policies in a centralized scheduler, an in-memory implementation of
the submission node application database, and several classes that gather data during the simulation,
like throughput, traffic and performance statistics.

B.3. Future Work
Having reduced the memory footprint of the simulator, we are able to simulate huge networks in a
reduced amount of memory. However, we have lost important functionality that other simulators
provide. The two most important features we miss is a more realistic network model and the
distributed simulation. For this reason, we are evaluating the reimplementation of core elements of
our DES engine with either Omnet++ or SimGrid [30]. They provide these features to some extent,
and are worth bearing in mind.



Appendix C.
Centralized Version of each Policy

C.1. IBP Policy
The centralized version of the IBP policy is shown in Algorithm C.1. It knows exactly how much
memory and disk space is available at every node, and whether they are idle or busy. So, it creates a
list of the nodes that fulfill the application requirements and sorts it as in the decentralized version.
Then, a task is sent to each of the best nodes as long as there are enough. It is trivial to see that both
loops have a time complexity of O(n), where n is the number of nodes, and the sort procedure can
be performed with complexity O(n log n) with a heap structure. Meanwhile, the space complexity is
also O(n).

C.2. MMP Policy
The centralized version of the MMP policy appears in Algorithm C.2. Again, it uses the same heuristic
as the decentralized one, allocating tasks to those nodes whose queue will remain shortest afterward.
Besides their available memory and disk space, it also records information about the queue end time
of every node. The algorithm starts creating a list candidates of nodes that fulfill the application
requirements, and their queue end time if they accept a task of the new application. This list is sorted
by the queue end time. Then, each task is sent to the node that will finish it earlier. The queue end
time of that node is updated, it is inserted in the list and the list is sorted again.

The first loop has a time complexity of O(n), and the sort procedure can be performed with
complexity O(n log n)with a heap structure, like in the IBP policy. The second loop has n repetitions
at most, but it includes a sorting operation. Since it just inserts a new element in an already sorted
heap, its complexity is just O(log n). In the end, the whole algorithm can be performed with
complexity O(n log n). The space complexity is still O(n).

C.3. DP Policy
The centralized version of this policy can be seen in Algorithm C.3. Its workings are similar to the
previous two policies. First, it fills the list holes with the nodes that can execute at least one of the
new tasks before its deadline. For each node, it calculates the amount of FLOPs that remain free after
allocating as many new tasks as possible. Then, the list is sorted so that the nodes with less remaining
FLOPs come first, and tasks are allocated to them.

The first loop is repeated for every node in the system, but its body contains a call to the function
lu (request.δi ), that returns the amount of FLOPs that can be executed by node Eu before request.δi .
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Algorithm C.1 Centralized version of the IBP policy forwarding algorithm.

Pre: request is the request, E is the set of execution nodes.
Post: All the tasks in request are allocated to nodes in E.
1: procedure FORWARDCENTRALIZED(request)

2: availableNodes ← ;
3: for all Eu ∈E do

4: if Eu fulfills request.PR then

5: availableNodes ← availableNodes
⋃

Eu
6: end if

7: end for

8: SORT(availableNodes) . Best nodes are allocated first.
9: while ¬ISEMPTY(availableNodes)

∧

request.n > 0 do

10: Eu ← POPFRONT(availableNodes)
11: task ← EXTRACTTASK(request)
12: SEND(task, Eu )
13: end while

14: end procedure

Algorithm C.2 Centralized version of the MMP policy forwarding algorithm.

Pre: request is the request, E is the set of execution nodes.
Post: All the tasks in request are allocated to nodes in E.
1: procedure FORWARDCENTRALIZED(request)

2: candidates ← ;
3: for all Eu ∈E do

4: if Eu fulfills request.PR then

5: candidates ← candidates
⋃

{(Eu , Eu .Q + request.ai/su )}
6: end if

7: end for

8: SORT(candidates) . Nodes are sorted by their queue end time.
9: while request.n > 0 do

10: (Eu, te ) ← POPFRONT(candidates)
11: task ← EXTRACTTASK(request)
12: SEND(task, Eu )
13: PUSHBACK((Eu, te + surequest.ai ))
14: SORT(candidates)
15: end while

16: end procedure
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Algorithm C.3 Centralized version of the DP policy forwarding algorithm.

Pre: request is the request, E is the set of execution nodes.
Post: All the tasks in request are allocated to nodes in E.
1: procedure FORWARDCENTRALIZED(request)

2: holes ← ;
3: for all Eu ∈E do

4: if Eu fulfills request.PR then

5: h ← lu (request.δi )
6: if h ≥ request.ai then

7: holes ← holes
⋃

{(Eu, h, h mod request.ai )}
8: end if

9: end if

10: end for

11: SORT(holes) . Nodes are sorted by the remaining amount of FLOPs.
12: while request.n > 0 do

13: (Eu, th ) ← POPFRONT(holes)
14: numTasks ← bth/request.ai/suc . Allocate as many tasks as possible
15: tasks ← EXTRACTTASKS(request, numTasks)
16: for all τ ∈ tasks do

17: SEND(τ, Eu )
18: end for

19: end while

20: end procedure

It can be seen in Algorithm 5.1 that its cost is O(m), where m is the number of tasks in Eu queue.
So, the cost of the first loop is O(T ), where T is the total number of tasks currently allocated in
the system. In practice, this means that the first loop takes much longer to execute than in the two
previous policies. Again, sorting the list holes has a time complexity of O(n log n), and the second
loop has a complexity of O(n). Finally, in this case, the space complexity is O(T ).

C.4. FSP Policy
Finally, the centralized version of the FSP policy appears in Algorithm C.4. Like the decentralized
version, it calculates how many tasks to send to each node to minimize the maximum slowness.
However, it works with full knowledge about all the execution nodes. It creates a list candidates
with all the nodes that meet the memory and disk requirements, and calculates the slowness obtained
by assigning one task to each of them. In this case, the function GETSLOWNESS(Eu , a, n) uses the
algorithms of Section 7.2.1 to calculate the exact value of the maximum slowness reached when adding
n tasks of length a to the queue of Eu . Then, it purges the list to keep the request.n best nodes, and
iterates on the number of tasks to see if some nodes provide a better slowness with more tasks than
others. When no better result is obtained, it sends its assigned number of tasks to each node in the
candidates list.
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Algorithm C.4 Centralized version of the FSP policy forwarding algorithm.

Pre: request is the request, E is the set of execution nodes.
Post: All the tasks in request are allocated to nodes in E.
1: procedure FORWARDCENTRALIZED(request)

2: candidates ← ;
3: for all Eu ∈E do

4: if Eu fulfills request.PR then

5: l ← GETSLOWNESS(Eu, request.a, 1)
6: candidates ← candidates

⋃

{(Eu, l, 1)}
7: end if

8: end for

9: PURGE(candidates, request.n)
10: oneMoreTask ← true

11: i ← 1

12: while oneMoreTask do

13: i ← i + 1
14: oneMoreTask ← false . If nothing happens, this is the last iteration.
15: for all (Eu, lold, n) ∈ candidates | n = i − 1 do

16: lnew ← GETSLOWNESS(Eu, request.a, i)
17: if lnew < candidates.last.slowness then

18: candidates ← candidates \ {(Eu, lold, n)}
19: candidates ← candidates

⋃

{(Eu, lnew, i)}
20: oneMoreTask ← true

21: end if

22: end for

23: PURGE(candidates, request.n)
24: end while

25: return candidates.last.slowness

26: end procedure

Both loops that iterate on the candidate nodes have a time complexity of O(n). The while loop can
be repeated up to request.n times, in the case that all the tasks end up in the same node. However,
this is extremely rare, and it is repeated no more than four times in most cases. Besides, the candidates
list must be kept sorted with a heap structure, to be able to purge and find the worst candidate in O(1).
So, like in previous policies, the whole algorithm can be performed with complexity O(n log n). The
space complexity is still O(n).



Glossary
clustering algorithm An algorithm that groups a set of data objects in such a way that objects in

the same group (called cluster) are more similar, in some sense or another, to each other than to
those in other groups. 8, 9, 19, 20, 23, 44, 59, 62, 79

deadline The time by which all the tasks of an application must be finished. 3–5, 13, 33–37, 39,
41–45, 49–52, 62, 69, 72–74, 77, 80, 89, 93

directed acyclic graph (DAG) A graph with directed edges and no cycle. That is, it is not
possible to start at some vertex v and follow a sequence of edges that eventually loops back to v
again. 41–43, 98

discrete event simulator (DES) A simulator that models the operation of a system as a discrete
sequence of events in time. Each event occurs at a particular instant in time and marks a change
of state in the system. 59, 62, 91, 92

Earliest Deadline First (EDF) A local scheduling policy that sorts tasks so that those with the
earliest deadline come first. 13, 34, 35, 43, 49

First Come First Served (FCFS) A local scheduling policy that sorts tasks in the same order that
they arrived at the execution node. 13, 28, 41

floating point operation (FLOP) An atomic operation of the microprocessor involving floating
point arithmetic. 13, 14, 28, 29, 34–37, 50, 60–62, 80, 89, 93, 95

forwarding algorithm In networking, an algorithm that decides in which direction a router should
send a packet to reach its destination. In the context of this thesis, it decides in which direction
to send one or more tasks. 4, 9, 11, 13, 16–18, 24–26, 28, 30, 31, 39, 45, 57, 69, 71, 79, 80, 90,
94–96

makespan In the scheduling of tasks, the makespan is the total duration of the schedule, from
when the first task starts until the last one ends. 4, 5, 27, 28, 30, 31, 33, 42, 67–69, 80, 89

mean square error (MSE) A measure that quantifies the difference between values implied by an
estimator and the true values of the quantity being estimated, corresponding to the expected
value of the squared error loss. That is, it measures the average of the squares of these differences.
21, 23, 37, 39, 56, 62

overlay network A computer network that is built on top of another one. Nodes are connected
through logical links that correspond to paths of one or more links in the underlying network.
4, 9, 11, 12, 14–16, 33, 71, 79
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slowness Term used in this thesis to denote the ratio of the amount of time an application spends in
the system to its task length. Under certain conditions, it is proportional to the stretch. 48–58,
60–62, 70, 71, 80, 89, 95

startline Term used in this thesis to denote the time after which the tasks of an application are
allowed to start. 42, 45, see deadline

stretch Ratio of the amount of time an application spends in the system to the amount of time it
would spend if it was the only scheduled application. 4, 47, 48, 70, 98

workflow A set of tasks and a set of dependencies between some of them. When a task depends
on another one, the later must finish before the former may start its execution. It is usually
represented with a DAG, where nodes are tasks and edge are dependencies. 1, 3–5, 13, 41, 42,
73–76, 80
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