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Abstract

This Thesis presents the results of a theoretical investigation into the exchange of

substances between a capillary network and its surrounding tissue, a process referred

to as blood–tissue exchange. As is well known, related physiological phenomena in-

clude, among others, the microcirculation, the diffusion of blood-borne substances in

the extravascular extracellular space, as well as various mechanisms for transmem-

brane exchange and intracellular transport. In particular, diffusion has long been

known to play a crucial role in the supply of oxygen and nutrients to the cells, and

in the removal of metabolic waste products.

A number of experimental techniques have been introduced over the years for the

assessment of transport and exchange processes in the tissues, and simultaneously a

number of transport and exchange models have been developed in order to estimate

relevant transport and exchange parameters for numerous applications. In practice,

physiological transport and exchange phenomena are often assessed with the aid of

appropriate tracer substances. Both endogenous (e.g., magnetically tagged blood

water and partially deoxygenated blood) and exogenous (e.g., paramagnetic gadolin-

ium chelates) tracers are widely employed in both research and clinical studies in

magnetic resonance imaging (MRI).

Importantly, the effect on blood–tissue tracer exchange under non-steady-state

conditions of (i) extravascular diffusion of tracer, and (ii) different compartmental

rates of tracer consumption has, to the best of this author’s knowledge, not been

thoroughly addressed in the tracer-exchange literature. Both these processes, how-

ever, are highly relevant to tracer-exchange modelling in MRI applications.

A survey of the literature reveals that most blood–tissue models currently used for

the analysis of arterial spin labelling (ASL) MRI data belong in the class of lumped

tracer-exchange models. The basic postulate of any lumped-tracer exchange model

is that well-mixed compartments can be defined in which the concentration of tracer

becomes rapidly uniform by the action of, for example, efficient diffusion of tracer

molecules. One such model, namely the lumped model of Parkes and Tofts [34], will

be considered in this Thesis as explained below.
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Nonetheless, spatiotemporal models also have been proposed in the literature for

use in ASL studies; for example, the water-exchange model of St. Lawrence, Frank

and McLaughlin [31], to be discussed in this Thesis. Although it takes into account

intracapillary convection, this model does not consider the effect of diffusion. On

the other hand, certain literature models (e.g., Lee and Fronek [44]; Kuo et al. [45])

of tracer-dilution studies do take into account extravascular diffusion, but not the

effect of non-zero consumption rates, and hence they are not adequate for use in ASL

studies. Models of tissue oxygen delivery also are not, in principle, adequate because

oxygen consumption depends non-linearly with tissue oxygen tension.

The aim of this Thesis is, therefore, to investigate theoretically diffusion and con-

sumption phenomena as they jointly affect the exchange of tracer substances between

blood and tissue. To this end, a spatiotemporal model of blood–tissue tracer exchange

is presented which takes into account blood flow, diffusive transcapillary permeation,

first-order consumption in blood and extravascular tissue, and extravascular diffusion

of tracers. Both transient and steady-state conditions are investigated.

Making use of linearity and time invariance, a framework for whole tissue (i.e.,

tissue including its contained blood) is developed. In this framework, the impulse

response function, which characterises the passage of tracer from capillary blood into

the extravascular tissue, is expressed in very compact, general form with the use of

the Green’s function of extravascular space. Because the analytical evaluation of this

latter function is unfeasible, a reasonably realistic, analytically tractable model is

produced that describes tracer exchange on the scale of individual capillary segments

and their surrounding (i.e., pericapillary) tissue. The model describes non-uniform

concentrations of tracer for diffusion times smaller than those required to cover typical

half-intercapillary distances.

This ‘single-capillary approximation’ is shown in this Thesis to be appropriate

for tissues such as brain and myocardium. Several tracer-exchange quantities for this

simplified model are evaluated, namely the arterial-to-intracapillary impulse response

function, the intracapillary-to-extravascular (i.e., blood-to-tissue) impulse response

function and step response function, and the effective extravascular depolarised vol-
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ume. The latter is a time-dependent function which characterises the removal of

extravascular tracer under conditions of fast intracapillary consumption, and has

been validated numerically using Monte Carlo simulations.

The conditions under which diffusion- and permeability-limited exchange are each

expected to occur in practice are identified from the tracer-exchange quantities de-

veloped, and the effects of extravascular diffusion and consumption in blood and

extravascular space are investigated for both these regimes. The regions of valid-

ity of lumped and spatiotemporal tracer-exchange models are identified according

as which mechanism – capillary permeability or extravascular diffusion – limits the

transcapillary flux of tracer.

As an important application of the spatiotemporal tracer-exchange model devel-

oped in this Thesis, an expression for the ASL signal is obtained for both continuous

and pulsed labelling approaches, under the assumption that the inflowing arterial

magnetisation is well modelled by a sharp bolus with exponentially decaying ampli-

tude. These theoretical results are then compared to analogous results provided by

two well-known literature models, neither of which takes into account water diffusion.

The presented model has also been compared to several literature models of gas ex-

change in tissue, a situation in which extravascular diffusion plays a prominent role.

In addition, the steady state has been evaluated as a limiting case against which to

test the accuracy of lumped tracer-exchange models. The above comparisons allow

tracer-exchange regimes to be identified for which the model presented in this Thesis

might predict the spatially varying concentration of tracer more accurately than the

literature models considered. Any potential improvements in model performance can,

however, only be validated through model fitting to measured data.

In conclusion, it is anticipated that the spatiotemporal model set forth in this The-

sis will prove useful in the analysis of tracer transport and exchange when compart-

mental diffusion becomes the rate-limiting mechanism of transmembrane tracer ex-

change between physiological compartments with different tracer consumption rates,

thereby overcoming a theoretical limitation of lumped tracer-exchange modelling ap-

proaches.
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Resumen

En esta tesis se presentan los resultados de una investigación teórica concerniente

al intercambio de sustratos entre vasos capilares y los tejidos circundantes, un con-

junto de procesos fisiológicos a los que nos referimos colectivamente como intercambio

capilar–tisular (“blood–tissue exchange” en el texto). Como es sabido, los fenómenos

de transporte e intercambio de sustratos en tejidos biológicos comprenden, entre otros,

el transporte sangúıneo en la red de vasos capilares, la difusión en el espacio extravas-

cular extracelular y diversos mecanismos de intercambio a través de membranas, aśı

como de transporte intracelular. En particular, es bien conocida la important́ısima

función que desempeña la difusión en el aporte de ox́ıgeno y nutrientes a las células

y en la excreción de los productos de desecho del metabolismo.

Existe una amplia gama de técnicas experimentales, basadas en diversos princi-

pios f́ısicos, para el estudio de los fenómenos de transporte e intercambio tisulares.

Asimismo, se ha propuesto un gran número de modelos cuantitativos para estimar los

parámetros fisiológicos relevantes en dichos fenómenos. En la práctica, los fenómenos

de transporte e intercambio se estudian con ayuda de trazadores (también llama-

dos medios o agentes de contraste) cuyas propiedades de transporte e intercambio

sean análogas a las de un sustrato de interés. Por ejemplo, en ciertas modalidades

de imagen por resonancia magnética (“magnetic resonance imaging”, MRI) se em-

plean trazadores endógenos (v. g., moléculas de agua marcadas magnéticamente en el

plasma arterial; sangre parcialmente desoxigenada durante su paso por los capilares)

y en otras se usan trazadores exógenos (v. g., quelatos paramagnéticos de ciertos

lantanoides, como el gadolinio).

Atañe directamente al objeto de esta tesis la observación de que el efecto ejercido

concomitantemente por la difusión extravascular y por las diversas tasas de consumo

(v. g., relajación magnética intravascular y extravascular) de trazadores, en particular

en el estado transitorio, no ha sido suficientemente analizado en la literatura sobre

intercambio capilar–tisular. Los modelos de transporte e intercambio empleados ac-

tualmente en las técnicas ASL (“arterial spin labelling”) de imagen por resonancia

magnética son, por lo general, modelos de parámetros concentrados (abreviadamente:
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modelos concentrados, “lumped tracer-exchange models” en el texto). El postulado

básico de dichos modelos es que los procesos de intercambio tienen lugar entre aśı

llamados compartimentos cinéticos, en los que las concentraciones de trazador se con-

sideran espacialmente homogéneas y, por tanto, variables únicamente en el tiempo.

Otra clase de modelos empleados en ASL, entre otras técnicas, es la de los modelos

espaciotemporales (“spatiotemporal models”). En un modelo espaciotemporal las

concentraciones se consideran funciones del tiempo y la posición en compartimentos

cuya geometŕıa —parte esencial del modelo— ha de aproximarse razonablemente

a los compartimentos fisiológicos de interés. Entre los modelos espaciotemporales

empleados en ASL, el de St. Lawrence, Frank y McLaughlin [31] tiene en cuenta

la convección del trazador en el lumen capilar, pero omite el efecto de la difusión.

Por otra parte, diversos autores (Lee y Fronek [44]; Kuo et al. [45]) han propuesto

modelos espaciotemporales de “dilución” de trazadores como la inulina y la sacarosa,

considerando la difusión de estos en el espacio extravascular de diversos órganos; no

obstante, dichos trazadores no se consumen en los tejidos y emergen finalmente en el

sistema venoso. Asimismo, los modelos espaciotemporales de suministro de ox́ıgeno

a los tejidos tienen en cuenta la difusión de esta molécula. Sin embargo, dichos

modelos tampoco son aplicables en ASL, pues el consumo tisular de ox́ıgeno depende

de forma no lineal de su presión parcial local, mientras que la relajación magnética

es proporcional (consumo de primer orden) a la densidad de momento magnético

(magnetización).

Por las razones antedichas, el propósito de esta tesis es investigar teóricamente el

efecto de los fenómenos de difusión y consumo de trazadores en el intercambio capilar–

tisular. A tal fin presentamos un modelo espaciotemporal de transporte e intercambio

que describe la convección en el lumen capilar, la permeación de tipo difusivo a

través de la pared capilar, el consumo de primer orden —tanto en los capilares como

en el espacio extravascular— y la difusión extravascular de trazadores. No hemos

considerado otros mecanismos de intercambio a través de la pared capilar como, por

ejemplo, la difusión facilitada por protéınas espećıficas. Por sencillez del tratamiento

matemático, representamos el espacio extravascular como un medio homogéneo a
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efectos del consumo y la difusión de trazadores.

El método de solución del modelo expuesto en esta tesis está basado en la función

de Green de la ecuación de difusión–consumo/relajación en el espacio extravascular.

Por medio de la función de Green hemos expresado con toda generalidad la función

matemática que describe la respuesta extravascular a un aporte de trazador en la

red capilar en forma de impulso en el tiempo (“blood-to-tissue impulse response

function”). Empero, el cálculo anaĺıtico de la función de Green para una muestra

macroscópica de tejido es, como puede suponerse, inabordable. Por ello, a partir del

citado marco teórico general hemos desarrollado un modelo anaĺıticamente manejable,

pero razonablemente realista, que permite cuantificar tanto el transporte capilar como

el intercambio capilar–tisular en la escala de segmentos capilares y de tiempos de

difusión inferiores a los correspondientes a semidistancias intercapilares t́ıpicas. Esta

aproximación cuantitativa de segmentos capilares individuales (denominada “single-

capillary approximation” en el texto) está justificada en tejidos con reducido volumen

capilar (v. g., el tejido cerebral y el miocardio) y para intervalos de tiempos de difusión

en el espacio extravascular t́ıpicos en MRI.

Mediante este modelo f́ısico simplificado hemos evaluado las funciones de respuesta

arterial–capilar y capilar–tisular, tanto a un impulso como a un escalón, suponiendo

condiciones ideales de linealidad y estacionariedad. Estas funciones caracterizan el

intercambio capilar–tisular. También hemos obtenido, y validado numéricamente

mediante simulaciones de tipo Monte Carlo, el volumen extravascular despolarizado

equivalente, una función del tiempo que cuantifica la remoción de trazador debido

al flujo del mismo desde el espacio extravascular al capilar, en condiciones de rápida

eliminación del trazador en los capilares. Dichas funciones permiten identificar dos

reǵımenes diferenciados, según que el intercambio capilar–tisular esté limitado por

la permeabilidad de la pared capilar (“permeability-limited regime”) o bien por la

difusión del trazador en el espacio extravascular (“diffusion-limited regime”).

La literatura proporciona diversos estudios, varios de ellos citados en el texto,

que comparan las prestaciones de diversos modelos concentrados. Sin embargo, se

echan en falta análisis teóricos comparativos entre dichos modelos y los modelos
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espaciotemporales, que poseen mayor generalidad f́ısica. El estudio de los diferentes

reǵımenes de intercambio capilar–tisular nos ha permitido determinar las regiones de

validez tanto de los modelos concentrados como del modelo espaciotemporal descrito

en esta tesis, según cuál de los citados fenómenos (permeabilidad o difusión) restrinja

más acusadamente la tasa de intercambio de trazador a través de la pared capilar.

También hemos calculado la distribución espacial del trazador en el régimen esta-

cionario suponiendo, en la aproximación de segmentos capilares individuales, la exis-

tencia de barreras fijas entre regiones pericapilares contiguas (caso ciertamente irreal

en la arquitectura tisular) con flujo neto de trazador nulo a través de las mismas.

Como aplicación importante del modelo espaciotemporal de transporte e inter-

cambio capilar–tisular presentado en esta tesis, hemos obtenido la expresión de la

señal ASL para las variantes de marcado magnético continuo (CASL) y pulsado

(PASL). Seguidamente hemos comparado estos resultados con la señal ASL predicha

por dos conocidos modelos de la literatura —el ya mencionado de St. Lawrence et al.

y el de Parkes y Tofts [34]— ninguno de los cuales considera la difusión en el espa-

cio extravascular. De esta comparación deducimos intervalos temporales, aśı como

órdenes de magnitud de los parámetros de transporte e intercambio, en los que el mo-

delo descrito en esta tesis logra resultados (presumiblemente más exactos, pero esto

solo puede confirmarse experimentalmente) que difieren de aquellos de los citados

modelos de la literatura.

También hemos aplicado el modelo al análisis teórico (con hipótesis notablemente

simplificadas) del intercambio gaseoso tisular, fenómeno en el que la difusión extra-

vascular desempeña un papel muy destacado. El modelo presentado en esta tesis

proporciona los mismos resultados que dos estudios anteriores.

En lo concerniente a los métodos empleados en esta tesis, el enfoque teórico queda

resumido en los párrafos precedentes. Hemos realizado simulaciones de tipo Monte

Carlo (mediante trayectos aleatorios) para validar ciertos resultados teóricos del mo-

delo presentado. Las comparaciones entre modelos se han realizado a partir de los

respectivos resultados anaĺıticos de aquellos. No hemos contado con datos experimen-

tales para la estimación de parámetros de transporte e intercambio capilar–tisular.



Contribuciones y conclusiones

A continuación se describen las principales contribuciones y conclusiones de esta

tesis.

Modelos de transporte e intercambio capilar–tisular

Los fenómenos f́ısicos considerados en el modelo espaciotemporal de transporte e

intercambio capilar–tisular presentado en esta tesis han sido descritos en el Resumen

precedente. Aqúı ponemos de relieve una caracteŕıstica del presente modelo que lo

distingue de otros de la literatura, a saber: la descripción del efecto de la difusión

extravascular y de las diferentes tasas de consumo (o relajación) de un trazador en

los espacios intracapilar y extravascular; en particular, en el estado transitorio y

para valores arbitrarios de permeabilidad capilar. Dicha caracteŕıstica permite, en

principio, aplicar este modelo de transporte e intercambio a las técnicas de marcado

magnético de los protones de agua del plasma arterial (ASL).

Hemos demostrado que el modelo espaciotemporal propuesto por Lee y Fronek

[44] (para estudios de dilución de trazadores que atraviesan sin consumirse la red

vascular de un órgano) no es aplicable a la estimación del momento magnético total

en experimentos ASL. En efecto, para tiempos de difusión en el espacio extravascular

cerebral de varios cientos de milisegundos, t́ıpicos en ASL y asimismo compatibles

con el método de solución aqúı descrito, la desviación del modelo de Lee y Fronek con

respecto al modelo presentado en esta tesis puede llegar a ser, teóricamente, del orden

de varias decenas porcentuales. Dicha desviación es mayor cuanto más impermeable

sea la pared capilar, pues esto dificulta que el flujo de momento magnético arterial

compense la pérdida de momento magnético extravascular por relajación.

No obstante, se observa teóricamente que, si la permeabilidad capilar al trazador

considerado es suficientemente baja, la mencionada desviación aumenta con el tiempo

más lentamente que en el caso de permeabilidades más altas. Esto es debido a que el

flujo arterial incrementa la fracción de momento magnético en el espacio intravascular

que compensa, en cierta medida, la pérdida por flujo venoso del momento magnético
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remanente, ya parcialmente relajado. En consecuencia, disminuye la desviación del

modelo de Lee y Fronek con respecto al modelo descrito en esta tesis.

Aplicabilidad de los modelos concentrados de transporte e intercambio

El estudio de las funciones matemáticas que caracterizan el intercambio capilar–

tisular (véase el Resumen) demuestra que el principal mecanismo limitante de dicho

intercambio puede variar en el transcurso del proceso. Consideremos dos ejemplos

no exhaustivos de todas las posibilidades: a) para tiempos de difusión en el espacio

extravascular tales que la distancia eficaz de difusión sea mucho menor que el radio

capilar y también que el grosor eficaz de la pared capilar (parámetro adimensional

que depende de la permeabilidad y del coeficiente de difusión extravascular), el inter-

cambio está limitado por la permeabilidad de la pared capilar al trazador en cuestión;

b) cuando la distancia eficaz de difusión sea superior al radio capilar y del orden de

la semidistancia intercapilar; y cuando, además, el parámetro que representa la efi-

cacia relativa de los mecanismos de permeabilidad capilar y difusión extravascular

(dado por la razón del coeficiente de difusión al producto de la permeabilidad y el

radio capilar) valga del orden de la unidad; en este caso, se deduce teóricamente que

la difusión extravascular del trazador regula apreciablemente el flujo de trazador a

través de la pared capilar.

Hemos demostrado teóricamente que los modelos concentrados no evalúan ade-

cuadamente las condiciones de contorno entre compartimentos adyacentes, lo cual

conduce a sobrestimaciones del flujo de trazador a través de la membrana intercom-

partimental. Hemos comprobado que en el régimen de intercambio capilar–tisular

limitado por la difusión en el espacio extravascular, el perfil de la concentración

extravascular de trazador difiere acusadamente de aquel predicho por los modelos

concentrados. Este resultado es razonable, puesto que el postulado básico de di-

chos modelos (véase el Resumen) asume la rápida redistribución del trazador en los

espacios intracompartimentales por efecto de la difusión.

También hemos mostrado que, incluso cuando el intercambio está limitado por

la permeabilidad de la pared capilar, y aun en el régimen estacionario, el postulado
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fundamental de los modelos concentrados puede desviarse marcadamente de las pre-

dicciones del modelo espaciotemporal propuesto en esta tesis. (Hemos evaluado el

régimen estacionario como caso ĺımite para verificar la validez teórica de los modelos

concentrados, pues cabŕıa esperar que, en dicho régimen, el postulado de concentra-

ciones homogéneas se verificase con mayor aproximación que durante los transitorios

difusivos). Concretamente, en relación con un segmento capilar y su región pericapi-

lar, definidos geométricamente como sendos cilindros concéntricos según el conocido

modelo de Krogh [47], la comparación entre el modelo espaciotemporal descrito en

esta tesis y el correspondiente modelo concentrado demuestra que, en el caso de

intercambio limitado por permeabilidad, el modelo concentrado predice con buena

aproximación la cantidad de trazador en el espacio extravascular, pero subestima la

concentración en un entorno de la pared capilar y la sobrestima en zonas alejadas

de la misma. Por el contrario, en el caso de intercambio limitado por difusión, el

modelo concentrado predice con gran exactitud la concentración extravascular en

la pared capilar, pero sobrestima considerablemente la cantidad de trazador en el

espacio extravascular.

Mejoras con respecto a modelos de ASL tomados de la literatura

Hemos comparado el modelo espaciotemporal descrito en esta tesis con otros dos

modelos de intercambio capilar–tisular, a saber: el modelo concentrado bicompar-

timental de Parkes y Tofts [34] y el modelo espaciotemporal bicompartimental de

St. Lawrence, Frank y McLaughlin [31], ambos formulados en el contexto de estudios

ASL en el tejido cerebral. Este último modelo describe la distribución de trazador

en el interior del capilar debida a la convección y al flujo a través de la pared capi-

lar, pero presupone que la concentración extravascular es homogénea. En concreto,

hemos obtenido la señal ASL predicha por cada uno de los tres modelos para un

conjunto común de parámetros t́ıpicos para estudios CASL y PASL en miocardio y

tejido cerebral.

Nuestros resultados teóricos indican que el modelo de St. Lawrence et al. produce

resultados similares a los del modelo espaciotemporal presentado en esta tesis solo
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en el régimen de intercambio capilar–tisular limitado por permeabilidad. En cambio,

para valores de los parámetros correspondientes al intercambio limitado por difusión

extravascular, los resultados del modelo de estos autores se desv́ıan apreciablemente

de los del modelo espaciotemporal aqúı descrito. Hemos evaluado dichas desviaciones

en función del tiempo de difusión en el espacio extravascular y para un amplio rango

de valores de la razón del coeficiente de difusión al producto de permeabilidad y radio

capilar.

Asimismo hemos observado que, en comparación con el modelo presentado en

esta tesis, el modelo concentrado bicompartimental de Parkes y Tofts subestima la

cantidad de trazador tanto en el espacio capilar como en el extravascular cuando la

permeabilidad capilar es relativamente baja (v. g., la permeabilidad al agua en capi-

lares cerebrales o cardiacos). Lo atribuimos al hecho de que los modelos concentrados

evalúan el flujo convectivo capilar con un modelo de “caja negra” que dificulta la es-

timación del flujo convectivo de trazador en el extremo venoso de los capilares. En

cambio, para permeabilidades elevadas puede ocurrir un efecto compensatorio tal que

los resultados del modelo de Parkes y Tofts se aproximen al modelo espaciotemporal

presentado en esta tesis más que los del modelo de St. Lawrence et al.

Consideraciones finales

Como se ha indicado en el Resumen, el trabajo de investigación realizado en esta

tesis es eminentemente teórico. Los resultados anaĺıticos obtenidos a partir del mo-

delo de intercambio capilar–tisular han sido ilustrados gráficamente, contrastados con

simulaciones Monte Carlo en algunos casos y comparados con diversos modelos pu-

blicados en la literatura sobre MRI. El modelo de intercambio capilar–tisular no ha

sido evaluado en sujetos en esta etapa. Ulteriores avances requerirán refinamientos

del modelo y la realización de experimentos de MRI encaminados a dilucidar cues-

tiones teóricas y a demostrar la estimación robusta de parámetros de transporte e

intercambio capilar–tisular en sujetos.

A modo de conclusión, consideramos que el modelo espaciotemporal de inter-

cambio capilar–tisular propuesto en esta tesis será útil en aquellas situaciones en
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que la difusión del trazador en el espacio extravascular sea el principal fenómeno

f́ısico limitador de la tasa de intercambio y, especialmente, en aquellos casos en que,

además, difieran las tasas de consumo de trazador en los diversos compartimentos fi-

siológicos. Esto supone, en principio, un avance frente a una limitación teórica de los

modelos concentrados. Como ejemplo de aplicación práctica del modelo presentado,

mencionamos la cuantificación del intercambio de magnetización en diversos tejidos

mediante técnicas ASL en imagen por resonancia magnética.
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Ignacio Alcalde, Pepe López, Pedro Pindado, Rafa Belinchón, Mariano Casado

y Fernando Sendra compartieron conmigo su calidad personal y su caudal de ex-
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de estudios de doctorado y amiga, por su empat́ıa y afecto. A Ernesto y Celia, por

tantos momentos compartidos —verdaderos regalos de amistad— y también a Toño:

por esos montes de Aragón hemos caminado fraternalmente.

Los años van destilando el cariño a la familia de una forma sutil que, con paciencia,

he llegado a saborear aunque no siempre a donar con reciprocidad. Vosotros —Rufino,
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Chapter 1

Introduction

This Chapter describes the background, aims and organisation of this Thesis.

1.1 Background: quantification of physiological trans-

port and exchange processes

Physiological transport and exchange processes are essential to maintain tissue func-

tion [1, p. 140]. They involve a variety of transport mechanisms, including the supply

of solutes to the immediate vicinity of the tissues by the microcirculation; passive,

facilitated and active transmembrane exchange; see, e.g., Refs [1, pp. 140 ff.], [2,

p. 507 ff.] and [3, pp. 18 ff.]; diffusion in the interstitial space; and various types of

intracellular transport mechanism [2]. In particular, diffusion plays a key role in the

delivery of oxygen and nutrients to the cells, and in the removal of waste products of

the cell metabolism [4].

Accurate quantification of physiological exchange processes is a key step in the as-

sessment of a number of diseases and conditions, including tumours, stroke, multiple

sclerosis [5], myocardial perfusion [6] and renal function [7], and also for evalua-

tion of metabolic function and antiangiogenic agents [8]. A number of experimental

techniques are currently available which provide varying levels of spatiotemporal res-
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olution and sensitivity to various tissues and disease conditions. Imaging techniques

at the whole-organ level include, but are not limited to, magnetic resonance imag-

ing (MRI), positron emission tomography (PET), single-photon emission computed

tomography (SPECT), computed tomography (CT), and combined techniques like

PET–CT and PET–MRI [8]. In all of these techniques, tissue structure and phys-

iology are probed with the aid of suitable tracers, also referred to as indicators,

contrast agents and contrast media. Tracers can be either endogenous, i.e., intrinsic,

or produced from bodily substances like magnetically tagged arterial blood water; or

exogenous, i.e., extrinsic substances which are introduced in the body, like paramag-

netic gadolinium chelates and superparamagnetic iron oxide nanoparticles.1

The main aim of this Thesis is to evaluate the interactive effects of diffusive

transport and first-order consumption2 of tracer substances involved in transcapillary

exchange between blood and tissue (referred to as blood–tissue exchange). Because

in this Thesis an emphasis will be placed on MRI applications, we begin with a brief

discussion of MRI basics, followed by a review of relevant tracer-exchange models

that have found widespread application in MRI, PET, indicator-dilution and oxygen-

delivery studies. Subsequently, we formulate the research aims of this Thesis and close

this Chapter with a description of the structure of this Thesis.

1.1.1 Magnetic resonance imaging

A fundamental quantum-mechanical property of atomic nuclei with odd atomic or

mass numbers is that they possess non-zero nuclear spin [11, p. 60]. Nuclear mag-

netism is coupled to the nuclear spin and is represented by the nuclear magnetic

1The term indicator is also often used in the literature. Sourbron and Buckley, quoting Perl,

Lassen and Effros, made a distinction between indicators and tracers as follows: ‘A tracer is a

particular type of indicator which is chemically identical to a systemic substance of interest, but

separately detectable.’ (see Ref. [9], p. R3). Because most of the applications considered in this

Thesis (Chapter 4) involve use of endogenous tracers, we use the term ‘tracer’ throughout except

when referring specifically to indicator-dilution techniques.
2In first-order consumption processes, the rate at which a substance is consumed is proportional

to the amount of remaining substance; see, e.g., Ref. [10], pp. 305 – 310.
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Chapter 1. Introduction

dipole moment. For any given nucleus, the magnitude of its nuclear spin can only

assume certain discrete values (it is said to be quantised). On the other hand, in

the absence of an external magnetic field, the individual nuclear spins point in com-

pletely random directions, due to thermal motion. However, if an external constant

magnetic field (the so-called main field) is applied, then each nuclear spin will take

on one of a discrete set of orientations with respect to the direction of the main field.

For spin-1/2 nuclei like 1H, this causes the population of spins to split between a

lower-energy state (with magnetic moments parallel to the main field) and a higher-

energy state (with magnetic moments anti-parallel to the main field) [11, pp. 64 ff.].

The number of spins in the lower-energy state exceeds the number of spins in the

higher-energy state by just a few parts per million, thereby giving rise to a detectable

net macroscopic (bulk) magnetisation. Moreover, the nuclear spins, hence also the

net magnetisation, precess about the external field at the Larmor frequency, which

is proportional to the magnetic flux density [11, p. 68], measured in Tesla (T) and

sometimes loosely referred to as the main field strength. This constitutes the basic

nuclear magnetic resonance (NMR) phenomenon. In loose parlance, one says that the

main field converts the random nuclear magnetic moments to a bulk magnetisation

which is aligned in the direction of the field.

The question then arises, how can the NMR phenomenon be exploited so as to

generate an image, i.e., how does one actually go from NMR to MRI? The basic

physical principles involved in any MRI pulse sequence are (i) the generation of a net

transverse (i.e., perpendicular to the main field) magnetisation; (ii) spatial encoding

of spin position into the Larmor frequency by means of magnetic field gradients,

and (iii) Faraday’s law of electromagnetic induction for NMR signal detection [11].

A simplified description of the main MRI processes is given below; it draws mainly

from the book by Liang and Lauterbur [11], in particular Chapters 1, 3 – 6:3

• The bulk magnetisation is first driven out of equilibrium using radiofrequency

(RF) excitation pulses. In this step, the magnetisation is usually manipulated

3Additional information on physical principles and pulse-sequence topics can be found in, for

example, the book by Haacke et al. [12].
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1.1. Background: quantification of physiological transport and exchange processes

by means of a preparation module that imparts the desired NMR contrast

‘weighting’ to the magnetisation (see below) as it relaxes back to equilibrium.

Magnetic relaxation is characterised by the longitudinal (T1) and transverse

(T2) relaxation times, which respectively refer to the components of the bulk

magnetisation aligned with, and perpendicular to, the main field. The sponta-

neous return to equilibrium of the magnetisation gives rise to a free induction

decay (FID); alternatively, spin-echo and gradient-echo signals can be elicited

through application of suitable RF pulses and magnetic gradients, respectively.

In this time interval, additional gradients can be applied to, for example, sen-

sitise the experiment to diffusion of tissue water [5]. Importantly, it is the

transverse magnetisation that, in subsequent stages, will be detected, sampled

and transformed into an image.

• Spatial encoding, or signal localisation, of the nuclear magnetisation is the key

MRI step [11, p. 8]. During the relaxation period, linear gradients are applied

in order to impart specific position-dependent Larmor frequencies and phase

offsets to the net magnetisation.

• According to Faraday’s law, the transverse, time-varying component of the spa-

tially encoded magnetisation induces a voltage in a receiver coil. This voltage

is sampled, digitised and stored during the read-out interval for subsequent

digital processing.

• Lastly, a conventional image reconstruction approach involves taking the spatial

Fourier transform of the detected voltage to yield an image or a set of images.

MRI is a versatile technique that can provide structural and/or functional infor-

mation about the imaged object with a broad range of image contrast possibilities,

as determined by the choice of MRI pulse sequence. This means that the local NMR

signal can be made sensitive to any of a number of physical parameters, including

tissue proton density, longitudinal and/or transverse relaxation rates, spin diffusion

and both micro- and macrovascular blood flow. A wealth of information on MRI

pulse sequences can be found in, e.g., the book by Bernstein, King and Zhou [13].
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MRI tracers, or contrast agents, are designed to provide two primary mechanisms

of enhanced image contrast, namely relaxivity and susceptibility effects [14]. Re-

laxation effects are caused by short-range dipolar interactions between the nuclear

spins of mobile MRI-active nuclei, and the unpaired electrons in the tracer molecules.

Such interactions enhance both the longitudinal and transverse spin relaxation rates

in large, and equal, proportion. However, because in tissue the longitudinal relax-

ation rate is smaller than the transverse relaxation rate, the tracer-induced percent-

age change is much greater for the longitudinal relaxation rate [14]. Susceptibility

effects, on the other hand, rely on compartmentalisation of the tracer to create mag-

netic susceptibility gradients which increase the spread of tissue Larmor frequencies

[15], thereby enhancing the spin transverse relaxation rate [14]. Importantly, it is the

relaxation of the proton (H+) magnetic moments of tissue molecules (including water

and fat molecules), not the nuclear and/or electronic magnetic dipole moments4 of

the paramagnetic tracer, that is imaged in an MRI experiment.

Because the hydrogen nucleus has spin one-half and because it is largely abundant

in living systems as a constituent of water and fat, most clinical MRI studies are

based on the 1H nucleus; other NMR-visible nuclei of biochemical importance include

13C, 19F and 31P [11]. Current field strengths for clinical human scanning are 1.5

to 3 T, resulting in Larmor frequencies of the order of 102 MHz, i.e., well in the

familiar radiofrequency range. While MRI avoids the downsides of ionising radiation

and injected radiotracers, potential side effects of exogenous MRI tracers should

be considered (refer to, e.g., Ref. [17] for a review of Gd-based tracers). Strict MR

compatibility and patient safety rules are to be observed on an individual basis before

undergoing an MRI scan.

For the above reasons, MRI has established itself as a potent clinical tool for the

assessment of both tissue structure and function. Anatomical MRI is widely employed

clinically for brain [5], whole-body and musculo-skeletal imaging. In addition, MRI

techniques can be used to assess a variety of biophysical processes, including blood

4The electron has spin 1/2 and its associated magnetic dipole moment precesses at a much higher

Larmor frequency than that of the proton when placed in an external magnetic field [16].
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1.1. Background: quantification of physiological transport and exchange processes

flow in the large vessels (e.g., MR angiography and venography) [13]; perfusion of

brain [18, 19], kidney [7] and myocardium [6]; water diffusion in biological compart-

ments [20, 21] and blood-oxygenation-level-dependent (BOLD) changes associated

with neuronal activation patterns [22].

Arterial spin labelling

In this Section we briefly discuss a class of MRI techniques known as arterial spin

labelling (ASL)5. This background material shall prove useful in Chapter 4.

The underlying physical principle of ASL is that the difference in the longitudinal

magnetisation of arterial blood water between a ‘tag’ and a ‘control’ state can be

used as an endogenous MRI tracer to evaluate tissue blood flow and transcapillary

exchange. Tagging typically involves inversion (i.e., creating a net spin-down popula-

tion) of the longitudinal magnetisation by RF pulses. The difference in longitudinal

magnetisation between the tag and control states is referred to as the tagged mag-

netisation, the tagged bolus or simply the tag [23]. In an ASL experiment, a tagged

bolus is first created in an artery feeding the tissue of interest. This bolus travels

along the arterial tree, reaches the capillary network, exchanges with the tissue to

some extent and is eventually cleared by longitudinal relaxation and venous outflow

[23, 24]. It is the change in tissue magnetisation caused by blood–tissue exchange of

tagged spins that is actually imaged in an ASL experiment.

A generic ASL pulse sequence therefore consists of a magnetisation preparation

module, which differs somewhat for the tag and control states, and an imaging mod-

ule, which can be single-slice, multi-slice or fully three-dimensional. The sequence is

played twice, with and without tagging, and the spatial change in tissue magnetisa-

tion is estimated by subtracting the tag and control images. Ideally, the difference

between the tagged and control NMR signals is only due to the delivery of tagged

spins to the tissue by the microcirculation, whereas the signal from the static tissue

and from larger, non-exchanging vessels will both be perfectly suppressed upon image

subtraction [24]. Because the signal-to-noise ratio of subtraction images is inherently

5Also referred to as arterial spin tagging (AST) [13].
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low owing to the small volume fraction of capillaries, multiple images are usually

averaged to improve image quality. The time course of the tagged bolus in the tissue

can be obtained by imaging over a range of tagging–imaging delays.

There exist various schemes for the preparation of the tagged spins [13, 23] and

only the two most basic of these will be considered here. In the continuous ASL

(CASL) scheme, an RF excitation inverts the arterial magnetisation at a proximal

position, relative to the imaged tissue, for a relatively long tagging interval (e.g.,

2 – 4 seconds [25]; RF power deposition limits must not be exceeded). This causes

the amplitude of the arterial magnetisation to reach a steady state. On the other

hand, in the pulsed ASL (PASL) class of pulse sequences, the magnetisation in a

thick (10 – 15 cm [23, 25]) slab below the imaging region is inverted for a relatively

short interval of time, thus creating a transient bolus [13].6

Further information on ASL pulse sequences can be found in Ref. [13]. For an

overview of the physical principles, practical issues and clinical applications (e.g.,

estimation of tissue perfusion in brain, kidney and myocardium) of ASL, see, for

example, the reviews by Petersen et al. [25] and Golay et al. [26].

1.1.2 Review of tracer-exchange models

Tracer-exchange models have long been utilised for the analysis of tracer exchange

data in indicator-dilution studies, nuclear medicine and MRI. For the class of spa-

tiotemporal models the concentration of tracer is defined as a function of both po-

sition and time, whereas for lumped models the concentration is considered only a

function of time [27].7

6An alternative PASL scheme inverts the magnetisation in the slice of interest (tag) and in the

entire sensitive region of the transmit RF coil (control) [13].
7Note on terminology : tracer-exchange models are also commonly referred to as tracer kinetic

[9] or pharmacokinetic [28] models. Spatiotemporal and lumped models are alternatively referred to

as distributed-parameter (or heterogenous) and concentrated-parameter (or homogenous) models,

respectively [29, 30]. Kinetic compartments are also referred to as ‘pools’ or ‘sites’. Sometimes

the terms one- and two-barrier models are used synonymously with two- and three-compartment

models, respectively [29, 31].
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Lumped models

Specifically, a defining assumption of any lumped tracer-exchange model is that well-

mixed compartments can be defined in which the concentration of tracer is spatially

uniform (see Refs [9, p. R5], [29, p. 443], [32, p. 93]). For this well-mixed assump-

tion to hold approximately, the distribution of tracer by diffusive transport must

prevent the build-up (or depletion) of tracer near the boundaries of the exchanging

compartments [29].

Kety’s single-compartment model of gas exchange at the lungs and tissues [33]

has been the basis for many later modelling developments in, e.g., PET, ASL and

dynamic contrast-enhanced (DCE) MRI. In this model, tracer conservation was ex-

pressed in terms of time rates of average arterial, venous and tissue concentrations

of tracer. An inherent assumption of single-compartment lumped models is that the

tracer is able to permeate freely across physiological membranes [31, 34], so that

the extravascular space is assumed to be in diffusive equilibrium with venous blood.

If incorrect, this assumption can cause quantification errors like the so-called falling

flow phenomenon [29, p. 444]: it has been observed that cerebral blood flow estimates

obtained from PET data using the Kety model progressively decrease at sufficiently

high cerebral blood flow values (Ref. [29] and references therein) and/or sufficiently

long measurement times [31].

Larson, Markham and Raichle [29] investigated the falling flow effect in PET

measurements of H 15
2 O uptake in monkey brains using a set of two lumped and

two spatiotemporal models. Both the one-compartment (Kety) model and a two-

compartment lumped model failed to track the amount of radio-tracer in whole tis-

sue at most measurement times (& 2 – 5 s). A two-compartment spatiotemporal

model taking into account intracapillary convection and capillary wall permeability

to radiotracer also did not improve over the lumped models. The closest fit to the

measured data was obtained using a three-compartment spatiotemporal model incor-

porating, besides intracapillary convection and capillary wall permeability, a radial

‘tissue conductance’ governing tracer flux between the two extravascular compart-

ments [29, Fig. 4]. Larson and co-workers interpreted their “‘tissue-conductance”
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Chapter 1. Introduction

parameter (. . .) to be a lumped representation of a hypothetical radially distributed

diffusive conductance.’ [29, p. 459]. They argued that its estimated value was too low

to be ascribable to the permeability–surface-area product of neurons and glial cells.

These authors’ work suggests that it is important to account for extravascular H 15
2 O

diffusion in PET studies. In another study of the cerebral microcirculation, Kassissia

and co-workers [35] arrived at the same conclusion concerning the inaccuracy of a

single-compartment model for description of tritiated water outflow curves in the dog

brain.

Modelling water exchange in ASL experiments must incorporate the effect of lon-

gitudinal magnetic relaxation. In the single-compartment model of Detre et al. [36],

the Bloch equation is augmented with the net flow of tissue magnetisation. Alterna-

tively, the single-compartment model of Buxton et al. [23, 24] draws explicitly on the

theory of linear, time-invariant systems to express the tissue magnetisation as the con-

volution of the arteriolar magnetisation and the product of the tissue relaxation and

tissue residue functions. Parkes and Tofts [34] developed a model of water exchange

between the intracapillary and extravascular spaces of brain tissue and demonstrated

parameter estimation errors associated with the use of single-compartment models in

ASL.

Contrary to water PET observations, the falling flow effect has not been demon-

strated in ASL studies [31]. Instead, the so-called T1 and outflow effects [34] can also

lead to biased capillary flow estimates. The error magnitude depends on such factors

as flow rate, capillary water permeability, host tissue, field strength and measure-

ment technique employed [34]. More recently, Kelly, Blau and Kerskens [37], have

produced a model of the ASL signal that describes pseudo-diffusion of the tagged

spins within the microvasculature using a completely different approach based on the

theory of stochastic differential equations.

The lumped models of Tofts and Kermode, Brix et al. and Larsson et al. have been

used in DCE MRI studies to estimate the influence of capillary flow and permeability

on the distribution of paramagnetic tracers in the extravascular space of the tissues;

see Refs [28, 32, 38] for details. More recently, Li, Rooney and Springer [30] have
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1.1. Background: quantification of physiological transport and exchange processes

developed a three-compartment model (i.e., whole blood, extravascular extracellular8

space and intracellular space) for the use of paramagnetic tracers in T1-weighted MRI

studies.

Spatiotemporal models

Spatiotemporal models have found application in, for example, whole-organ indicator

dilution studies, two-compartment modelling of the diffusion NMR signal, and in gas

exchange in tissue.

Sangren and Sheppard [39] in 1953 considered capillary flow and transcapillary

exchange of a tracer substance. In the extravascular space, there was assumed to be

fast diffusive mixing of the tracer only in the direction perpendicular, but not parallel

to, the capillary axis. The models of Johnson and Wilson [40], Goresky et al. [27]

and St. Lawrence and Lee [41] all account for intracapillary convection but treat the

extravascular space as a well-mixed compartment. The model of Perl and Chinard

[42] postulates instantaneous tracer equilibration in the radial direction, but takes

into account axial diffusion in both the intracapillary and extravascular spaces as well

as intracapillary convection; this model was tested in indicator studies of dog kid-

ney. Bassingthwaighte et al. [43] developed a four-compartment (i.e., intravascular,

endothelial, interstitial and parenchymal spaces), multiple parallel-pathway model of

blood–tissue exchange that takes into account flow heterogeneity, axial diffusion and

first-order consumption but not extravascular radial diffusion.

Lee and Fronek [44] investigated the influence of extravascular diffusion of an

indicator on extraction ratio and venous outflow curves, as assessed with the dou-

ble indicator-dilution method. They modelled intracapillary convection, transcap-

illary permeation and extravascular diffusion of indicator substances (e.g., inulin

and sucrose) within a radially unbounded, homogenous extravascular region. Kuo,

Gustafson and Friedman [45] later modified this model to represent the intersti-

tial space as a cylindrical annulus, its lateral inner and outer surfaces representing

8In this Thesis, the terms ‘extravascular extracellular space’ and ‘interstitial space’ shall be used

interchangeably.
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permeable capillary and cell walls, respectively. More recently, Beard and Bassingth-

waighte [46] have simulated tracer convection and extravascular diffusion numerically

in a three-dimensional network of regularly spaced, fully permeable capillaries with

cross-connecting segments among them (as found in striated mammalian muscle [47]).

Tracer consumption was not considered.

Kärger [48] considered molecular transport and exchange in systems consisting

of two distinct ‘subregions’ (also called ‘pools’ [49, p. 712]) with differing diffusion

coefficients. In this model, the pools may be physical entities (e.g., cells) or they may

also represent distinct mechanisms of molecular migration for, typically, different

chemical species [48, p. 143]. The main modelling assumptions are as follows: (i) the

spatial scale on which the Kärger equations apply exceeds the typical dimension of

an individual pool but is much smaller than the dimension of, say, a voxel, thus pro-

viding a coarse-grained description of transport phenomena [49, p. 714]; and (ii) the

exchange between pools is uncorrelated with diffusion in the pools. As Kärger him-

self noted [48, p. 143], the latter assumption is not justified when diffusive transport

in each pool is relatively inefficient compared to exchange between the pools. The

Kärger model has been investigated numerically by Fieremans et al. [49] in connection

with the diffusion-weighted signal due to an ensemble of long, parallel cylinders with

a random in-plane arrangement. In this study, the authors showed that the Kärger

model is correct in the long-time limit for the case of poorly permeable cylinder walls.

However, the effect of differing relaxation rates inside and outside the cylinders was

not considered.

Danish physiologist and 1920 Nobel Laureate, August Krogh,9 introduced his

famous capillary–tissue cylinder model in the course of his investigations on oxygen

delivery to striated muscle of mammals [47]. Hoofd [50, 51] extended the steady-state

Erlang–Krogh [52] solution10 to consider a network of randomly distributed parallel

9See “The Nobel Prize in Physiology or Medicine 1920”. Nobelprize.org. 31 Jul 2012,

http://www.nobelprize.org/nobel prizes/medicine/laureates/1920/.
10The Danish mathematician A. K. Erlang was acknowledged by Krogh for having provided

the oxygen-tension formula appearing in his paper [47]. Erlang is best-known for his pioneering

contributions to the field of telephone traffic engineering [53].
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capillaries. Wang and Bassingthwaighte [54] studied the shape of capillary supply

regions in the steady state, assuming a constant consumption rate per volume of

tissue. Secomb and co-workers [55] presented a model of steady-state oxygen delivery

to tissue in which the microvessels and the tissue are modelled as a set of discrete

oxygen sources and sinks, respectively.

Time-dependent models of gas exchange in Krogh geometries have been set forth

by a number of investigators. Roughton [56] considered the exchange of a substance in

a long, cylindrical, homogenous annulus, assuming a fixed concentration at the inner

annular surface. Diffusion and both zero- and first-order reactions11 were taken into

account. A simplified version of Roughton’s results were later considered by Hudson

and Cater [52]. In both these models, the assumption of such a fixed concentration

implies a very high capillary wall permeability.

The influence of capillary transport has been considered more recently by Reneau

et al. [57], Lagerlund and Low [58] and Sharma and Jain [59]. While these models

take into account oxygen delivery, as well as diffusion and consumption in both the

capillaries and extravascular tissue, they are not directly applicable to magnetically

tagged water or paramagnetic tracers as employed in MRI. This is mainly due to the

fact that tissue oxygen consumption obeys non-linear kinetics.

1.2 Aims of this Thesis

Diffusion and consumption of solutes delivered to the tissues by the microcirculation

are both key to tissue physiology [54]. For example, diffusion plays an important

role in the distribution of ions, metabolites and neuroactive substances, and hence in

how neurons interact with their environment [60]. Furthermore, as argued by Kety

[33, p. 8], diffusion of solutes during blood–tissue exchange cannot be expected to

occur only across the capillary wall. Equilibration of the extravascular concentration

of tracer by radial diffusion (i.e., in any direction perpendicular to a given straight

11In zero-order reactions, the reaction rate is constant and independent of the concentration of

reactants; see, e.g., Ref. [10], p. 310.
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capillary segment) may be considered fast in the well-perfused visceral organs [27, 42]

due to relatively small intercapillary distances, so that the time to reach a diffusive

steady state in the radial direction may be assumed smaller than typical capillary

transit times [27]. On the other hand, spatial diffusive gradients in solute concentra-

tion are expected to develop in tissues with greater intercapillary distances and/or a

greater proportion of non-perfused capillaries (e.g., resting skeletal muscle) [27] and

owing to the presence of physiological barriers which tend to slow down the diffusion

[42, p. 276].

Diffusion and first-order consumption processes are both directly relevant to ar-

terial spin labelling MRI. Nonetheless, the manner in which they jointly affect the

time course of blood–tissue water exchange has been so far incompletely addressed

in the MRI literature. Models of the contribution of extravascular diffusion to tran-

scapillary exchange have appeared in the works of Lee and Fronek [44] and Kuo,

Gustafson and Friedman [45]. However, since these spatiotemporal models were both

developed for use in indicator-dilution studies involving non-metabolised (or other-

wise non-consumed) tracers, they cannot be directly applied to analyse ASL data.

Also, spatiotemporal models of oxygen delivery to tissue do not appear to be ade-

quate for the evaluation of blood–tissue tracer exchange mediated by extravascular

diffusion and first-order consumption: the reason is that oxygen consumption in the

tissues varies non-linearly with tissue oxygen concentration, as discussed in Section

1.1.2.

The main research aims undertaken in this Thesis are therefore as follows:

1. To develop a spatiotemporal model of blood–tissue exchange of tracer sub-

stances which takes into account capillary flow, diffusive transcapillary per-

meation, first-order consumption (both in blood and in extravascular tissue)

and diffusion in extravascular space. Based on anatomo-physiological facts, a

capillary–tissue model will be developed that is reasonably realistic on the meso-

scopic scale of individual capillary segments and their surrounding tissue, yet

is also analytically tractable. Blood–tissue tracer-exchange will be evaluated

under both diffusion- and permeability-limited conditions.
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2. To develop validity conditions for the class of lumped tracer-exchange models,

dependent upon capillary tracer permeability, tracer diffusion coefficient and

diffusion time, as well as and geometrical parameters of the capillary network.

A number of performance comparisons among various lumped tracer-exchange

models have been reported in the literature (e.g., Refs [28, 31, 32, 34, 61, 62]).

However, to the best of this author’s knowledge, validity conditions for lumped

tracer-exchange models, as compared to the class of spatiotemporal models,

have to date not been explicitly discussed in the literature, and will be given

herein.

The spatiotemporal tracer-exchange model set forth in this Thesis shall there-

fore be compared in some generality to the class of lumped tracer-exchange

models, for which spatially uniform tracer concentrations are postulated. The

predictions of both kinds of modelling approach will be compared in both the

non-steady and steady states. The latter case represents an extreme case for

assessment of the validity of the well-mixed assumption in lumped modelling

approaches, since interplay of diffusion and first-order consumption results in

non-uniform concentration profiles also when the concentration becomes stable

over time.

3. To develop a model of the ASL signal which takes into account diffusion of mag-

netically tagged water in extravascular space. Mathematical expressions for the

intracapillary and extravascular magnetisation for a generic ASL experiment,

including both continuous and pulsed ASL approaches, will be obtained based

on the spatiotemporal model presented in this Thesis. They will then be com-

pared to the expressions predicted by the lumped model of Parkes and Tofts

[34] and the spatiotemporal model of St. Lawrence, Frank and McLaughlin [31],

neither of which considers water diffusion. The model presented here will also

be compared to the spatiotemporal model of Lee and Fronek [44], which does

include diffusion but not magnetic relaxation.

As a result, both the time scale and appropriate range of values of characteristic
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tracer-exchange parameters will be identified for which the model presented

here is expected to predict the ASL signal more accurately than the literature

models considered for comparison purposes.

The accuracy of selected analytical and numerical results is validated using Monte

Carlo simulations. Literature data, as available, is analysed using the presented

spatiotemporal tracer-exchange model. Although the main applications with which

we shall be concerned in this Thesis pertain to MRI, and in particular to ASL,

we expect our results to remain applicable – with appropriate modifications and

extensions – to other tracer-based techniques in which compartmental diffusion may

be expected to play a significant role.

1.3 Organisation of this Thesis

The contents of this Thesis are organised as follows:

• Chapter 2 describes the adopted capillary–tissue model, introduces the gov-

erning equations of transport, exchange and consumption of tracers in whole

tissue and defines the main quantities which characterise blood–tissue tracer

exchange.

• Chapter 3 evaluates the spatiotemporal model for one- and two-dimensional

extravascular diffusion.

• Chapter 4 is devoted to the practical applications of the theory developed in the

previous Chapter. Specifically, this Chapter first discusses the various blood–

tissue tracer-exchange regimes identified from the spatiotemporal model solu-

tion and provides general criteria for the validity of the class of lumped tracer-

exchange models. Relevant situations involving diffusion- and permeability-

limited exchange are discussed in detail as exemplified, respectively, by gas ex-

change in the tissues and by water exchange between blood and extravascular

tissue. In the latter case, the presented spatiotemporal tracer-exchange model

affords an expression of the ASL signal for standard continuous and pulsed
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tagging schemes; this result is then compared against the results of several

literature models, both lumped and spatiotemporal.

• Chapter 5 reviews the main contributions of this Thesis, suggests further related

work and gives concluding remarks.

Chapters 2 – 4 each include a Discussion section and a number of accompanying

Appendices.
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Chapter 2

Blood–Tissue Tracer Exchange:

Model

This Chapter describes the capillary–tissue model, governing equations, and time-

and position-dependent quantities that are required for evaluation of blood–tissue

tracer exchange.

2.1 Capillary–tissue model

Biological tissues are highly specialised structures with a high degree of microscopic

heterogeneity. Microvascular networks are specific to each tissue [63] and form quite

complex structures, as demonstrated by anatomical and/or stereological studies in,

e.g., the brain cortex [64, 65], myocardium [66], skeletal muscle [67], kidney [68] and

liver [69] of several mammalian species. The interstitial space is a highly tortuous

medium [70] and is filled with the interstitial fluid that bathes1 the parenchymal cells

1The interstitial fluid is similar in composition to blood plasma (except that the latter has a much

higher protein content [1, p. 831]) and serves a number of important functions, including allowing

the delivery of nutrients to, and removal of waste products from, parenchymal cells; providing a low-

resistance return path for cell transmembrane currents; and providing a channel for extrasynaptic

cell communication (Refs [1, p. 790] and [70]).
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and an extracellular matrix of glycoproteins [1, p. 134].

Owing to their microscopic heterogeneity, it is unfeasible to incorporate a compre-

hensive microscopic description of parenchymal tissues and microvascular networks

into a theoretical model of transport and exchange in whole tissue; cf. the discussion

in Ref. [71, p. 682]. However, blood–tissue exchange in whole tissue can be described

on a mesoscopic scale. On this ‘intermediate’ scale, any microscopic fluctuations in

physical quantities of interest (e.g., the concentration of a given tracer) are effectively

smoothed out, yet significant variations in these quantities over tissue lengths ranging

between this scale and the actual measurement scale are preserved. If the measure-

ment scale is defined by the smallest linear dimension of, e.g., a typical imaging voxel,

this latter condition ensures that sub-voxel variations can be taken into account. As

an example, a characteristic mesoscopic length for ionic diffusion in the interstitial

space of the rat cerebellum was estimated by Nicholson and Phillips [60] as ∼ 6 µm,

given by the geometric mean of the interstitial width (≤ 0.04 µm) and the dimension

of a cerebellar folium (≥ 1000 µm). Note that this length is comparable to cell size

and is smaller than intercapillary distance, as required. A similar result is obtained

if the dimension of a typical MRI voxel are considered.

In this Thesis, a simplified mesoscopic tissue model is considered that includes (i)

the intracapillary space contained in the exchanging capillaries2 and (ii) the surround-

ing extravascular space, in particular pericapillary regions associated with individual

capillary segments (Fig. 2.1a, b). On a mesoscopic scale, relevant anatomo-functional

units include, besides capillary segments, erythrocytes, and parenchymal cells and

cell clusters, with characteristic lengths of the order of 1 – 100 µm; see, for example,

Refs [1, Fig. 7.1], [72, pp. 1067 ff.] and [74, 75]. For transport and exchange processes

of the kind to be discussed in this Thesis, the corresponding characteristic times are

of the order of 1 – 1000 ms. Further technical details concerning the mesoscopic scale

2Blood–tissue exchange, however, is not restricted to the capillaries. According to Zweifach [72,

p. 1066], ‘the phenomenon referred to as “capillary permeability” encompasses exchange across the

wall of vessels ranging from the terminal arteriolar class down through all of the various capillary

subdivisions and including the large collecting venules’. Also, the arterioles are involved in O2

exchange between blood and extravascular tissue [73].
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are found in Appendix 2.5.1 (p. 59).

2.1.1 Intracapillary space

The microvascular network enables the bulk of blood–tissue exchange via the ex-

changing arterioles, capillaries and venules. In this Thesis we only consider flow and

exchange phenomena which occur at the level of the capillaries, i.e., in the intracap-

illary space. Our main modelling assumptions pertaining to intracapillary space are

described below.

We treat the time-dependent intracapillary concentration of tracer as uniform at

every capillary cross-section, but allow for variations with distance along the capil-

lary axis. This assumption is plausible due to the mixing of blood-borne substances,

including both endogenous and exogenous tracers, effected by the motion of erythro-

cytes [43]. Specifically, this assumption seems to be justified for tracer blood water,

since exchange of water between plasma and the erythrocytes is about two orders of

magnitude faster than between plasma and the interstitial fluid, with respective time

rates of the order of 100 s−1 and 1 s−1 [76, 77].

The capillary wall anatomically consists of an endothelium (i.e., a one-layer array

of flattened cells) and an outer basement membrane [1, p. 830] and has a thickness of

about 1 µm [63, 78, 79]. This thickness is smaller than typical capillary radii as well

as typical diffusion lengths involved in MRI experiments; hence, for present purposes

we model the capillary wall not as a distinct compartment, but rather as a negligibly

thin membrane characterised by its diffusive permeability coefficient, κ [80, p. 509].

The diffusive permeability of a membrane to a given solute is defined as the

amount of that solute which traverses unit surface area of the membrane in unit time,

when unit concentration difference is maintained across each face of the membrane

[81, p. 294]. Mathematically, the diffusive permeability is equal to the ratio of the

solute diffusion coefficient inside the membrane to the thickness of the membrane, in

the limit when both these quantities become vanishingly small [80]. Neither osmotic

permeation nor forced permeation due to hydraulic pressure gradients will be included

in the presented model of blood–tissue exchange; osmotic permeation, however, is
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briefly discussed in Section 2.4.3.

Section 2.4.1 of Discussion to this Chapter gives a brief description of the capillary

anatomy and flow properties in relation to the tissue modelling assumptions made

above. Detailed descriptions of various aspects of the microcirculation can be found

in, for example, Refs [65, 72, 82].

2.1.2 Extravascular space

In this Section we consider the extravascular space from the viewpoint of its diffusion

properties. In this Thesis, the term ‘diffusion’ shall refer to the random motions of

tracer molecules in the extravascular space, whereas the term ‘diffusive permeation’

shall refer to non-osmotic, passive transmembrane transport – thus excluding any

active transport processes.

Diffusion in heterogenous media, hence in biological tissues, is a scale-dependent

process (for a discussion see, e.g., Refs [83, 84]). Due to microscopic heterogeneities

(e.g., cell membranes and axonal fibre crossings; Fig. 2.1b), the probability density

function of molecular displacements in tissue is, in general, non-Gaussian and the

diffusion coefficient is time- and position-dependent [71, 80]. This is in contrast to

diffusion in a homogenous medium [80], which is Gaussian and hence is characterised

by a constant and uniform diffusion coefficient.

However, diffusion in tissue becomes Gaussian over diffusion times for which a

length scale known as the correlation length of the tissue [71, p. 689] is exceeded; the

corresponding time scale is referred to as the tortuosity asymptote or tortuosity limit

[84]. On this spatiotemporal scale the molecules of tracer have had ample time to

probe the connectivity and geometrical tortuosity of the medium, so the molecular

displacements become statistically independent (cf. Refs [48, p. 138] and [85, p. 160]).

Because the parenchymal cells are densely packed, the tissue correlation length is de-

pendent upon cell size (i.e., individual cells, cell organelles and cell clusters) and

additional tissue-specific parameters like (in white matter) the distribution of axonal

radii. Typical tissue correlation lengths are in the range 1 – 10 µm [71, 86]. Im-

portantly, in the tortuosity limit the tracer diffusion coefficient attains its long-time

20



Chapter 2. Blood–Tissue Tracer Exchange: Model

asymptotic value, which is lower than the tracer diffusion coefficient in bulk aqueous

or gel media [84, 87]. Experimental results in brain white matter suggest that typical

correlation times are of the order of 1 – 50 ms. For this and further details concerning

the time dependence of the diffusion coefficient the reader is referred to Section 2.4.4

of the Discussion to this Chapter.

The kinetics of tracer exchange between the intracapillary, interstitial and intra-

cellular spaces affects how the tortuosity limit is approached; see, e.g., Ref. [49] for

the case of a random in-plane packing of parallel permeable cylinders. We consider

three different cases. First, since the intracellular volume fraction is usually large,

when interstitial–intracellular exchange is much faster than intracapillary–interstitial

exchange, the extravascular space can be regarded as a single compartment described

by average parameters. At the other extreme, for extravascular extracellular tracers

(e.g., gadopentetate dimeglumine, Gd-DTPA) the intricate geometry of the intersti-

tial space results in non-Gaussian diffusion prior to attainment of the tortuosity limit.

Lastly, when the rates of intracapillary–interstitial and interstitial–intracellular tracer

exchange are comparable, the tissue correlation time is expected to depend markedly

on tracer exchange. In particular, water is able to exchange between the intracap-

illary, interstitial and intracellular spaces. Figure 2.1b represents, schematically, a

hypothetical situation in which the passage of tracer molecules into, and subsequent

diffusion in, the intracellular space is significantly impeded by a low cell membrane

permeability. Experiments in brain and myocardial tissue indicate that interstitial–

intracellular water-exchange rates are moderate to fast; refer to Section 2.4.3 in the

Discussion to this Chapter for more details.

In conclusion, in this Thesis the extravascular space is modelled as an effective

homogenous medium with spatially uniform properties governing diffusion and first-

order consumption of tracers on a mesoscopic spatiotemporal scale. Specifically, dif-

fusion of tracer molecules in the presence of multiple extravascular barriers is assumed

to occur in the tortuosity limit, hence to be Gaussian and therefore characterised by

a uniform and constant tracer diffusion coefficient.
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2.1.3 The single-capillary approximation

We regard the pericapillary region supplied by any given capillary segment as being

notionally bounded by a diffusion watershed that is responsive to changing microvas-

cular conditions [54, p. 104]. In this Thesis we only consider the case in which tracer

exchange between any given capillary segment and its attendant pericapillary region

– to be jointly regarded as a basic blood–tissue exchange unit – is largely unaffected

by tracer exchange in the neighbouring microvessels; we shall refer to this approach

as the single-capillary approximation (Fig. 2.1a, b). This approximation is expected

to be reasonably accurate for tracer diffusion times such that the diffusion length of

tracer molecules does not exceed typical half-intercapillary distances, A, in the tissue

of interest.

A basic blood–tissue tracer exchange unit shall be modelled taking into account

relevant anatomical features of capillary networks. For example, in dog myocardium

Bassingthwaighte et al. [66, p. 229] described ‘large groups of capillaries running par-

allel to muscle fibers and extending for up to a few centimeters’, capillary diameter

(at maximum dilation) and average unbranched capillary length being 5.6 µm and

100 µm, respectively. On the other hand, cortical brain capillary segments are no-

ticeably curved, cf. Fig. 6 of Ref. [65]. Pawlik et al. [65, p. 35] estimated the mean

capillary diameter, median radius of curvature and median segment length in cat

brain cortex as 5.1 µm, 57 µm and 108 µm, respectively. However, for the purpose

of evaluating tracer diffusion in the pericapillary region, cortical brain capillary seg-

ments can be treated as straight provided that the tracer diffusion length is much

smaller than both the length and radius of curvature of a typical capillary segment.

We thus model a capillary segment as a straight cylinder of radius a and length

L, whose lateral surface has diffusive tracer permeability κ. The pericapillary region

extends radially outwards from the capillary segment for distances comparable to,

but not greater than, a typical half-intercapillary distance, A; its shape, however,

is immaterial to a spatiotemporal analysis of blood–tissue exchange when only rela-

tively short diffusion lengths are considered. The average net flux of tracer between

adjacent pericapillary regions represents the time-averaged effect of the surrounding
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microvasculature on any given capillary segment, and is assumed zero. A blood–tissue

exchange unit is illustrated in Fig. 2.1c.

All three parameters a, L, and A can be determined by stereological methods

[64, 65, 67]. Brain and, to a lesser extent, myocardial capillary networks may be

referred to as sparse capillary networks in that intercapillary distances are relatively

large (i.e., a/A≪ 1) and capillary volume fractions correspondingly low (Table 2.1).

In the idealised situation described, the distribution of tracer in whole tissue

is given by the sum of contributions from all capillary segments and pericapillary

regions. The simplest assumption that can be made in order to quantify blood–tissue

exchange is that in any given volume of whole tissue there is a collection of straight

capillary segments consistent with typical values of capillary radius, intercapillary

distance and capillary volume fraction, all capillary segments connecting one and the

same notional pair of arterial inflow and venous outflow ends in the given volume.

This simple parallel arrangement overlooks capillary branching. In fact, at and near

to any capillary branching the exchange must be strongly dependent on the functional

state of all the capillary segments joined at that branching point. However, because

capillary segment lengths are, on average, much larger than both capillary radii and

intercapillary distances (see examples in Table 2.1), the surface area associated with

capillary branchings is only a small fraction of the total surface area available for

tracer exchange. Thus, capillary branching effects shall not be considered further

here.
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a)

Figure 2.1: a) Cross-sectional view of a hypothetical capillary network. Shaded

regions represent the distribution of tracer in extravascular space; the diffusion watershed

is suggested by brighter areas in the space surrounding the capillaries. b) Diagram of

capillary segment illustrating convection, transcapillary permeation and extravascular

diffusion and cell transmembrane permeation of tracer molecules. c) Single-capillary

approximation. A capillary segment of length L is shown indicating a permeable capil-

lary wall (broken line) and the diffusion watershed between adjacent pericapillary regions

(thicker dash-dot line). Dimensions are not to scale. Notations are defined in Sections 2.1.3

and 2.2.1.
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2.2 Mathematical model

In this Section the governing equations for mesoscopic blood–tissue exchange are set

forth and the method of solution is described.

2.2.1 Governing equations

The spatiotemporal governing equations of blood–tissue exchange, Eqs (2.1a) – (2.1d)

below, are set on a mesoscopic scale (introduced in Section 2.1.2). The reason is that

on a microscopic (i.e., subcellular) scale the tracer concentration will vary irregularly

and the concentration gradients may fluctuate significantly [60, p. 227] and be ill-

defined [87, p. 826], whereas on a mesoscopic scale both these quantities are well

behaved; cf. Refs [49], [60, pp. 227 – 228] and [87, p. 826]. A method for expressing

the microscopic transport and exchange equations on a mesoscopic scale is detailed

in Appendix 2.5.1 (p. 58); a summary is found on pp. 95 ff. of this Appendix.

Let ψiv(z, t) and ψev(r, t) denote the time- and position-dependent concentration

of tracer in intracapillary and extravascular space, respectively, expressed in units of

quantity of tracer per unit of tracer-accessible volume in the respective spaces. As

an example, in ASL experiments the tracer concentration represents the difference in

longitudinal magnetisation, with respect to equilibrium values, between the ‘tag’ and

‘control’ states and is usually expressed in units of magnetic moment per volume of

water in blood and in extravascular space; in PET and DCE MRI it is the concen-

tration of, respectively, a radiotracer and an exogenous paramagnetic tracer that is

monitored, and both plasma and whole-blood concentrations may be employed.

The argument r ≡ (r, z) is a position vector, r denoting radial distance from the

capillary axis and z denoting axial distance from the inflow end of the capillary seg-

ment (Fig. 2.1c); t denotes the time, with t = 0 at the time of first arrival of tracer

molecules in the considered capillary segment. As mentioned in Section 2.1.1, the

intracapillary concentration is assumed uniform across any capillary cross-section,

hence independent of angular coordinate. In the pericapillary region, the concentra-

tion varies both in the radial and axial directions, but not with angular coordinate due
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to the assumed negligible influence of the neighbouring capillaries (Section 2.1.3).3

For a generic capillary segment and its adjacent pericapillary region, we consider

the case in which the blood–tissue exchange is driven by the concentration of tracer

at the inflow end of the capillary segment, ψiv(z = 0, t). The time course of the

intracapillary and extravascular concentrations of tracer is described by the pair of

partial differential equations

∂ψiv(z, t)

∂t
= −uz

∂ψiv(z, t)

∂z
− ψiv(a−, t)− ψev(a+, t)

τiv
−Rivψiv(z, t) (2.1a)

and

∂ψev(r, t)

∂t
= Dev∇2ψev(r, t)−Revψev(r, t) , (2.1b)

which are coupled through the diffusive transcapillary permeation flux jκ, i.e., the

amount of tracer crossing unit capillary surface area per unit time, given by

njκ(a, t) = −Devn∇ψev(a+, t)

= κ [ψiv(a−, t)− ψev(a+, t)] . (2.1c)

Similarly, in the single-capillary approximation the zero-flux at the diffusion water-

shed is expressed as

Devn∇ψev(r, t)|diffusion watershed = 0 . (2.1d)

However, for actual calculations (see Chapters 3 and 4) we shall replace this condition

by the simpler one given by

Devn∇ψev(r = A, t) = 0 . (2.1e)

In the above equations, a∓ = (a∓, z) denotes a point on, respectively, the luminal

(i.e., intracapillary) and abluminal (i.e., extravascular) face of the capillary wall; n

3Remark on notation: where confusion does not arise, the average of any dependent variable with

respect to any one of its arguments shall simply be denoted by dropping that argument. For example,

ψiv(z, t) denotes the average intracapillary concentration with respect to radial distance and angular

coordinate, and ψev(t) denotes a spatially averaged extravascular concentration of tracer.
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is a unit normal directed outwards from the abluminal capillary surface (Fig. 2.1c).

Since the intracapillary concentration has been considered uniform at every capillary

cross-section (Section 2.1.1), the concentration at the luminal face of the capillary wall

a distance z from the inflow end of the capillary segment, ψiv(a−, t) ≡ ψiv(a−, z, t),

is taken to be approximately equal to the average intracapillary concentration over

the entire capillary cross-section, ψiv(z, t).

The rest of the variables have the following meaning: uz is the mean speed of

tracer flow in a direction parallel to the capillary axis, and it is comparable to the

erythrocyte speed (see Table on p. 362 of Ref. [82]); Dev is the diffusion coefficient for

tracer in extravascular space; and Riv and Rev are the rates of tracer production or

consumption/relaxation. Here, all four parameters, κ, Dev, Riv and Rev, shall be as-

sumed spatially uniform (by the modelling assumption of extravascular homogeneity;

p. 21) and time independent. The mean intracapillary residence time, or first-order

lifetime, τiv, for well-mixed tracer molecules [88, 89] in the absence of convection and

consumption, is equal to the volume of tracer-accessible intracapillary space divided

by the product of capillary permeability and surface area parameters; see the de-

velopment leading to Eqs (2.70a) and (2.70b) of Appendix 2.5.1. For a cylindrical

capillary segment of radius a we have

τiv =
a

2κ
× fraction of tracer-accessible intracapillary space . (2.2a)

Often, estimates for the anatomo-physiological parameters that enter in (2.2a) are

available only on a coarser spatial scale (e.g., an MRI voxel) and the mean intracap-

illary residence time is thus rewritten as

τiv =
viv
PS

, (2.2b)

where viv is the fraction of tracer-accessible intracapillary volume and PS is standard

notation for the product of capillary tracer permeability and capillary surface area;

both viv and PS are expressed per unit volume of whole tissue (i.e., including its

contained blood).4 Likewise, the mean extravascular residence time for well-mixed

4It is noted that the parameters viv, vev, τiv and τev can be specified on various spatiotemporal
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tracer molecules [88, 89] in the absence of convection and consumption is given by

τev ∼
A2

2aκ
× fraction of tracer-accessible extravascular space

=
vev
PS

, (2.2c)

where vev is the tracer-accessible extravascular volume per unit volume of whole

tissue. In the case in which all space is accessible to tracer, viv + vev = 1; this has

been assumed for the estimation of mean water residence times in grey matter and

myocardium (Table 2.1). Comparing (2.2b) and (2.2c) gives the well-known relation

τiv/τev = viv/vev.

Equation (2.1a) expresses tracer mass balance in a capillary segment, as deter-

mined by capillary flow (convection), intracapillary relaxation and blood–tissue per-

meation; see pp. 66 ff. of Appendix 2.5.1. The mean transit time of tracer through a

capillary segment is

τc =
L

uz
(2.3a)

and the capillary tracer flow per volume of whole tissue is given by

fiv =
viv
τc
. (2.3b)

Here, fiv is defined in terms of tracer-accessible volume of capillary blood; for tracers

which do not exchange with the erythrocytes, capillary tracer flow is equal to capillary

blood flow times haematocrit, i.e., the cell volume fraction of whole blood [3, p. 25];

the effect of other plasma-borne cells is neglected as their count number per cubic

millimetre of blood is much less than for erythrocytes [3, pp. 27 ff.].

Equation (2.1b) is a diffusion–consumption (or diffusion–relaxation) equation.

The Laplace operator is indicative of Gaussian diffusion [49, p. 714], since for non-

Gaussian diffusion higher-order time and space derivatives would arise in Eq. (2.1b)

[71, p. 685].

scales, e.g., those associated with generic mesoscopic volume elements (Appendix 2.5.1), capillary

segments and their associated pericapillary regions, and imaging voxels. However, since the appro-

priate scale shall be clear from the context, we use a scale-independent notation for these parameters

throughout.
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Importantly, for tracers which can permeate the parenchymal cell membrane (e.g.,

tracer water), transcellular exchange as well as diffusive transport and first-order con-

sumption in the interstitial and intracellular spaces can be jointly described by an

equation of the form (2.1b) when the intracellular concentration is negligibly low or

when nearly-equilibrium conditions exist (these are sufficient conditions). In this lat-

ter case, the tracer concentrations per unit tracer-accessible volume in the interstitial

and extravascular spaces are nearly equal, and hence they are also approximately

equal to the tracer concentration per volume of whole extravascular space. More

details can be found in Appendix 2.5.1 (pp. 76 ff.).

Lastly, Eq. (2.1c) expresses that the tracer concentration has a jump discontinuity

at the capillary wall, whereas the flux of tracer is continuous everywhere. Using this

equation, the effective thickness of the capillary wall is defined by

ℓ ≡ Dev

κ
, (2.4)

which is the thickness of a notional, one-dimensional slab of extravascular tissue such

that the difference between the steady-state tracer concentrations at each side of the

slab equals the actual concentration difference at the capillary wall (Fig. 2.2).5

It is the coupling between Eqs (2.1a) and (2.1b) through the boundary condition

(2.1c) that prevents, insofar as this author is aware, obtaining the solution to the

above system of differential equations for arbitrary values of Riv and Rev, from the

solution for the case in which Riv = Rev. In particular, the expression for the ASL

signal cannot be constructed from the solution given by Lee and Fronek [44] for the

case appropriate to indicator-dilution studies, i.e., Riv = Rev = 0.

In the single-capillary approximation, the postulated time-averaged net zero flux

between adjacent pericapillary regions is represented approximately by the more

stringent condition (2.1d), which is interpreted as imposing elastic molecular reflec-

tions at the notional pericapillary wall [90].

As shown in Eqs (2.1a) and in (2.1b), here axial diffusion of tracer is assumed

negligibly low on account of smooth concentration profiles at both the capillary and

5In Ref. [80, p. 509] the effective membrane thickness is defined as one-half the quantity on the

right-hand side of our Eq. (2.4).
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Membrane

 

 

Figure 2.2: Effective membrane thickness, ℓ.

tissue levels. In this situation, the extravascular concentration of tracer at any given

position r′ = (r′, z′) at time t′ is only dependent upon the concentration at positions

on the same transverse section (z = z′) for times t earlier than t′ (Fig. 2.3a). How-

ever, ψev(r
′, t′) will, in general, depend upon the concentration of tracer at arbitrary

positions at times t < t′ (Fig. 2.3b). In the following paragraphs the effect of axial

diffusion in both intracapillary and extravascular space is discussed.

For magnetically tagged water [24, 34] and low-molecular-weight paramagnetic

tracers [14, 91, 92], arterial dispersion causes the intracapillary concentration to peak

at approximately 1 s and 10 s, respectively, after arrival of the tracer bolus at a brain

voxel; see, e.g., Fig. 1 of Ref. [14] and Fig. 6 of Ref. [24]. Assuming an erythrocyte

speed of 0.39 – 1.5 µmms−1 [65, 93],6 we estimate the build-up of tracer concentration

to occur over vessel lengths not smaller than about 400 µm, thus it is reasonable to

assume negligible axial diffusion gradients in the capillaries. Because axial diffusion

times are much greater than mean transit times through a capillary segment, convec-

tion dominates tracer transport for times (t & Dz/u
2
z) greater than a few milliseconds.

For typical values of the parameters, e.g., L = 100 µm, uz = 0.4 – 1.5 µmms−1 and

Dz = 0.8 µm2ms−1 [94], these times are L2/(2Dz) = 5 s and L/uz ≤ 250 ms, respec-

tively; the resultant Péclet number, a measure of the strength of convective versus

axial diffusive phenomena, is estimated as (L2/(2Dz))/(L/uz) = uzL/(2Dz) ≥ 20.

6Pawlik et al. [65] provide a median value, whereas Seylaz et al. [93] quote an average value.
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b)a)

Figure 2.3: Axial diffusion dependence of extravascular concentration at position r′. a)

Negligibly low axial diffusion. b) Non-negligible axial diffusion. More details on p. 30.

In the extravascular space we only consider the situation where axial diffusive

fluxes are much lower than any radial diffusive fluxes. This is expected if the trans-

port of tracer by convection and transcapillary permeation is more efficient than by

axial extravascular diffusion,7 e.g., for capillary-segment parameters τc . 280 ms,

τiv ∼ 300 – 900 ms (Table 2.1) and L2/2Dz ∼ 2 s (using Dz = 2.26 µm2ms−1 for

water in human brain white matter [86]). In this situation, for times of the order of

one mean capillary-segment transit time, the concentration of tracer at the ablumi-

nal side of the capillary wall is expected to be virtually uniform, provided that the

capillary permeability varies not too abruptly with axial distance. This argument

is somewhat less accurate for times much smaller than the capillary-segment transit

time, and for high capillary wall permeabilities to tracer, since in both these situa-

tions the exchanged tracer tends to accumulate near the inflow end of the capillary.

In Appendix 2.5.3 we estimate the magnitude of some axial and radial diffusive fluxes.

2.2.2 Method of solution

Tracer capillary flow, transcapillary permeation and extravascular diffusion are mod-

elled as linear, time-invariant (stationary) phenomena through Eqs (2.1a) – (2.1c).

Thus, the arterial-to-intracapillary impulse response function, hiva (z, t), and arterial-

to-extravascular impulse response function, heva (r, t), are respectively defined through

7It is misleading to speak of a diffusion rate or diffusion speed because, at sufficiently short times,

the value of
√
Dev/t exceeds the instantaneous velocity of the diffusing molecules [95, p. 11].
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the relations:

ψiv(z, t) = hiva (z, t) ∗ ψiv(z = 0, t)

≡
∫ t

0

hiva (z, t− t′)ψiv(z = 0, t′) dt′ , (2.5a)

ψev(r, t) = heva (r, t) ∗ ψiv(z = 0, t) , (2.5b)

where ∗ denotes time convolution; the limits of integration in Eq. (2.5a) correspond

to causal concentrations, i.e., ψiv(z, t < 0) = 0, ψev(r, t < 0) = 0.

Furthermore, we make the modelling assumption that the concentration of tracer

at the inflow end of a capillary segment drives the intracapillary concentration, which,

in turn, drives the tracer concentration in the pericapillary region associated with

that capillary. Thus, the blood-to-tissue (i.e., intracapillary-to-extravascular) impulse

response function, w(r, t), may similarly be defined by the relation

ψev(r, t) = w(r, t) ∗ ψiv(z, t) , (2.5c)

where z is the z-component of position vector r (Fig. 2.1c, Fig. 2.3b). The arterial-

to-extravascular impulse response function is therefore given by

heva (r, t) = w(r, t) ∗ hiva (z, t) . (2.5d)

In this Thesis, we evaluate the blood-to-tissue impulse response function for the

case where the intracapillary concentration is not significantly altered by any tracer

back-flux from extravascular space into the blood. In the tracer kinetic literature

this is usually assumed to be the case when the ratio viv/vev of tracer-accessible

spaces is small [34]. However, it must be borne in mind that it is not the spatially

averaged concentration, but the abluminal tracer concentration, that determines the

transcapillary flux. Conditions for the rapid clearance of tracer from the blood by

capillary flow and/or relaxation may be obtained by evaluating the intracapillary

concentration due to a constant, axially uniform concentration at the abluminal face

of the capillary wall, i.e., ψiv(z, t < 0) = 0 and ψev(a+, 0 ≤ z ≤ L, t ≥ 0) = 1.

(In Ref. [96] we considered the simpler case in which only the effect of relaxation

32



Chapter 2. Blood–Tissue Tracer Exchange: Model

was relevant). The difference between intracapillary and extravascular relaxation

rates is accounted for by putting Riv 7→ Riv − Rev. Then, for each position z, the

intracapillary concentration increases during the interval t < z/uz due to increasing

amounts of tracer flowing in from upstream positions, and then remains stationary.

The steady-state concentration is greatest at the outflow end of the capillary segment;

the ratio of ‘venous’ to extravascular concentration at time τc is given by8

ψiv(z = L, t = τc) =
1− exp{−[1 + (Riv −Rev)τiv]τc/τiv}

1 + (Riv −Rev)τiv
. (2.6)

Thus, the tracer will be rapidly cleared from intracapillary space if

τc
τiv

∼ PS

fiv
≪ 1 (2.7a)

or if

(Riv −Rev)τiv ≫ 1 . (2.7b)

Constraint (2.7a) implies that the wash-out of tracer molecules is much faster

than their accumulation in the capillary due to back-flux from the extravascular

space; hence in Eq. (2.6) the ratio of intracapillary to extravascular concentration is

as small as τc/τiv. Constraint (2.7b) implies that intracapillary relaxation is nearly

complete on the scale of typical intracapillary residence times, in contrast to much

slower extravascular relaxation/consumption.

In the absence of paramagnetic tracers, we estimated |Riv −Rev|τiv ∼ 10−2 – 10−1

for longitudinal relaxation in brain and myocardium (see Table 2.1 and Appendix

2.5.2), hence rapid clearance from the blood requires that (2.7a) hold. This condition

is well satisfied in brain cortex but is perhaps less well satisfied in myocardium, owing

to higher capillary water permeability and greater capillary segment lengths (see

Table 2.1). On the other hand, when intravascular paramagnetic tracers are used,

enhancement of the proton relaxation rate results in Riv ≫ Rev, hence either (2.7a)

or (2.7b) must hold (numerical estimates are given in Appendix 2.5.4).

8For Riv = Rev, the right-hand side of (2.6) is identical with the steady-state tracer extraction

ratio, which for low extravascular concentrations is given by E = 1− exp(−PS/fiv); see Ref. [81].
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It may be useful to highlight the analogy between the basic unit of blood–tissue

tracer exchange, under conditions of rapid tracer clearance, and a simple electric

circuit in the stationary regime after all transients have died out. In this situation,

the intracapillary space can be likened to an ideal voltage generator with zero in-

ternal impedance (analogous to the case of fast capillary flow and/or intracapillary

relaxation rate), whose output voltage [i.e., ψiv(z, t)] is therefore independent of the

current [i.e., the transcapillary tracer flux jκ(t)] delivered to, or absorbed from, the

circuit (i.e., the extravascular space) at any time. In this analogy, each nodal current

and each branch voltage [i.e., ψev(r, t)] can be calculated using a specific impulse

response function analogous to (2.5c).

In conclusion, if either relation (2.7a) or relation (2.7b) holds, then the blood-

to-tissue impulse response function, w(r, t), can be meaningfully defined as a spa-

tiotemporal filter which characterises the blood-to-tissue tracer flux and the diffusion

of tracer in the extravascular space. The method of solution of the blood–tissue

exchange equations developed herein involves three main sequential steps:

1. The blood-to-tissue impulse response function, w(r, t), is evaluated as described

in Section 2.3.1.

2. The blood-to-tissue impulse response function is substituted into Eq. (2.1a) for

the intracapillary tracer concentration, and the resultant equation is solved to

obtain the arterial-to-intracapillary impulse response function, hiva (z, t).

3. The arterial-to-extravascular impulse response function, heva (r, t), is evaluated

with the use of (2.5d).
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2.3 Blood–tissue exchange quantities

2.3.1 Blood-to-tissue impulse and step response functions

The function w(r, t) represents the response to an idealised, impulse-like intracapil-

lary concentration, i.e., ψiv(z, t) = δ(t), where δ(·) is the Dirac delta function and

r = (z, r) denotes a position in extravascular space (Fig. 2.3). As is well known, an

equivalent description of blood–tissue exchange is given by the blood-to-tissue step

response function, W (r, t), which represents the extravascular concentration driven

by a unit step increase in intracapillary concentration, i.e., ψiv(z, t < 0) = θ(t), where

θ(t) =

 0, if t < 0 ;

1, otherwise ,
(2.8)

is the Heaviside unit step function (Ref. [97], p. 492). Thus

W (r, t) =

∫ t

0

w(r, t′) dt′ . (2.9)

By definition, both the blood-to-tissue impulse response and step response func-

tions satisfy the diffusion–consumption equation (2.1b) and the transcapillary tracer

flux condition (2.1c). The diffusion–consumption equation is, in general, hard to solve

because of the inhomogenous boundary condition (2.1c) arising from the non-zero,

time-varying intracapillary concentration ψiv(a−, t).

Nonetheless, the analysis of blood–tissue exchange with zero initial conditions (in

intracapillary space) and with an inhomogenous boundary condition (at the capil-

lary wall) may be reduced to the case in which (i) the extravascular concentration

satisfies the diffusion–consumption equation with a non-zero initial condition, and

(ii) the intracapillary concentration satisfies the homogenous absorbing intracapil-

lary boundary condition, ψiv(a−, t) = 0. The extravascular tracer concentration for

absorbing intracapillary boundary conditions will be denoted by ψabs
ev (r, t), to avoid
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2.3. Blood–tissue exchange quantities

confusion with the concentration for general intracapillary conditions, and satisfies

∂ψabs
ev (r, t)

∂t
= ∇ ·Dev∇ψabs

ev (r, t) , (2.10a)

Devn∇ψabs
ev (a+, t) = κψabs

ev (a+, t) , (2.10b)

Devn∇ψabs
ev (r, t)|diffusion watershed = 0 , (2.10c)

and the initial condition

ψabs
ev (r, 0) = 1 (2.10d)

without loss of generality, by linearity and time-invariance.

In practice, absorbing intracapillary boundary conditions hold when the in-

tracapillary tracer concentration is much lower than the extravascular concentra-

tion, in particular if ψiv(a−, t) ≪ ψabs
ev (r, t), hence (2.10b). Further note that the

exponential term, exp(−Revt), has been factored out via the change of function

ψev 7→ ψev exp(−Revt).

The calculation of W (r, t) is accomplished by means of the transformation

W (r, t;Rev = 0) ≡ 1− ψabs
ev (r, t) , (2.11)

with r in extravascular space (Fig. 2.4). Equation (2.11) is only valid in the absence

of extravascular relaxation; the effect of extravascular relaxation will be taken into

account below. W (r, t;Rev = 0) satisfies (2.10a) as well as the initial and boundary

conditions

W (r, 0) = 0 , (2.12a)

−Devn∇W (a+, t) = κ [1−W (a+, t)] . (2.12b)

Differentiating (2.9) with respect to time with the use of (2.11), and taking ac-

count of the extravascular relaxation, yields the blood-to-tissue impulse response

function as

w(r, t) =
∂W (r, t;Rev = 0)

∂t
exp(−Revt)

= − ∂ψabs
ev (r, t)

∂t
exp(−Revt) . (2.13)
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Figure 2.4: Construction of blood-to-tissue (intracapillary-to-extravascular) step

response function. a) Extravascular concentration under absorbing intracapillary bound-

ary conditions. b) Blood-to-tissue step response function in the absence of extravascular

consumption. Insets show the gradient of the concentration at the capillary wall that

produce the correct transcapillary flux (2.1c).

The blood-to-tissue impulse response function is independent of intracapillary con-

sumption/relaxation, since the assumed input ψiv(a−, z, t) = δ(r−a−, z, t) is zero for

t ̸= 0. Equation (2.9) and Eq. (2.13) can now be used to obtain W (r, t) taking full

account of the extravascular relaxation. Integrating (2.13) by parts gives

W (r, t) =

∫ t

0

w(r, t′;Rev = 0) exp(−Revt
′) dt′

= W (r, t;Rev = 0) exp(−Revt) +Rev

∫ t

0

W (r, t′;Rev = 0) exp(−Revt
′) dt′ .

(2.14)

The above expression agrees with a general relationship developed by Danckwerts

[98] which expresses the solution of the diffusion–consumption equation for the case

of non-zero relaxation in terms of that for the case of zero relaxation with zero ini-

tial conditions; appropriate boundary conditions include the absorbing intracapillary

condition considered here and must be the same for both cases.

Unless otherwise specified, the relaxation term in (2.13) will be omitted in the

remainder of this Chapter for simplicity.

37



2.3. Blood–tissue exchange quantities

Importantly, the homogeneity of the absorbing intracapillary boundary condition

(2.10b) allows introduction of the Green’s function G(r, r′, t) [99] of the diffusion–

consumption equation (2.10a) for whole extravascular space.9 This is the key tech-

nical feature of the method developed in this Thesis. As is well-known, the Green’s

function represents the response of the system at position r and time t, due to an

impulse-like excitation at position r′ at time t′ = 0. (It is noted that for time-invariant

systems the choice of the time origin is arbitrary).

Thus, in the physical situation considered here, G(r, r′, t) is interpreted as the

concentration of tracer at r at time t due to an impulse-like injection delivered at

r′ at time zero, both these positions being in extravascular space. Integrating over

all positions r therefore gives the fraction of tracer, delivered as an impulse, that

remains in the extravascular space at time t > 0. If the tracer is conserved, G(r, r′, t)

is also interpreted as the probability density function for a ‘packet’ of tracer molecules

delivered at position r′ initially to be found at position r at the time t > 0 [71, p. 684].

Mathematical details are found in Appendix 2.5.5.

The blood-to-tissue impulse response function (2.13) is expressed exactly in terms

of the Green’s function for whole extravascular tissue as

w(r, t) =

∫
S

κG(r, a+, t) dS , (2.15)

where a+ denotes a point on the abluminal capillary surface S, and the factor

exp(−Revt) has been absorbed into G(r, a+, t). The above equation is derived in

Appendix 2.5.5 with the use of the Gauss theorem (Ref. [101], p. 315) and the ab-

sorbing intracapillary boundary condition.

Importantly, Eq. (2.15) is valid in all extravascular space and is not restricted to

the spatiotemporal limits of validity of the single-capillary approximation. However,

this equation relies on the assumption that the intracapillary concentration of tracer

is not affected by any back-flux of tracer from extravascular space into the blood. Pro-

vided this latter condition holds, the extravascular concentration in whole tissue may

9For an appraisal of the work of the English mathematician George Green (1793 – 1841) concern-

ing both the theorem and the class of functions named after him, see for example Ref. [100].
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then be expressed as the spatiotemporal convolution of the blood-to-tissue impulse

response function (2.15) and the concentration of tracer in the capillary network.

To see the physical content of Eq. (2.15), it may first be noted that the product

κ dS gives the time rate of the amount of tracer that permeates from intracapillary

into extravascular space across a small capillary surface element, dS, due to unit

concentration difference between the luminal and abluminal faces of the capillary

wall; cf. Eq. (2.10b). In particular, the time rate of permeation of tracer due to a

unit-step intracapillary concentration, with zero initial extravascular concentration,

is equal to κ dS. Thus, multiplying by G(r, a+, t) and integrating over the capillary

surface, one obtains the time rate of the concentration of tracer at r due to a unit step

increase in intracapillary concentration, in agreement with the first line of Eq. (2.13).

Lastly, a related blood-to-tissue impulse response function, wµ(t), can be defined

that gives the amount of tracer in extravascular space in terms of the average intra-

capillary concentration, ψiv(t). Integrating ψev(r, t) in Eq. (2.5c) over extravascular

space, and noting that w(r, t) does vary with distance z along the capillary, gives

µev(t) = wµ(t) ∗ ψiv(t) , (2.16a)

where

wµ(t) =

∫
ev

w(r, t) ddr

=

∫
S

κψabs
ev (a+, t) exp(−Revt) dS (2.16b)

is obtained using the representation of ψabs
ev (r, t) in terms of the Green’s function

[Eq. (2.75) of Appendix 2.5.5]; here d = 1, 2, 3 is the space dimensionality.

It is clear from Eq. (2.16a) and from the physical meaning of w(r, t) that

Eq. (2.16b) gives the time rate of the amount of tracer in the extravascular space

due to a unit step change in spatially averaged intracapillary concentration, for zero

initial conditions. This may also be understood by noting that (i) the product

κψabs
ev (a+, t) in (2.16b) gives the tissue-to-blood flux due to an extravascular con-

centration ψabs
ev (r, t), under absorbing intracapillary boundary conditions; and that

(ii), in the absence of extravascular consumption, this flux is also numerically equal
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2.3. Blood–tissue exchange quantities

to the blood-to-tissue flux due to a step intracapillary concentration, with zero initial

extravascular concentration [see Eq. (2.11) and Fig. 2.4]; the effect of consumption

is accounted for by the factor exp(−Revt). Therefore, integration of the quantity

κψabs
ev (a+, t) exp(−Revt) over the capillary surface yields the time rate of the amount

of tracer permeating into extravascular space in response to a step intracapillary

concentration.

We conclude this Subsection with a short list of properties of the impulse response

and step response functions:

• w(r, t) ≥ 0, since the integrand of (2.15) is non-negative by definition of the

Green’s function.

• w(r, t) → κδ(|nr| − |a+|) as t → 0. This follows from a standard property of

the Green’s function given by Eq. (2.80) of Appendix 2.5.5.

• In the vicinity of the abluminal capillary surface, w(r, t) is a non-decreasing

function of radial distance, since n∇w(a+, t) = (κ/Dev)w(a+, t) ≥ 0 for t > 0.

• On the other hand, W (r, t) is a non-increasing function of radial distance, since

n∇W (a+, t) = −n∇ψabs
ev (a+, t) = −(κ/Dev)ψ

abs
ev (a+, t) ≤ 0.

2.3.2 Arterial-to-intracapillary impulse response function

The arterial-to-intracapillary impulse response function gives the intracapillary tracer

concentration due to an impulse-like amount of tracer appearing at the inflow end

of the capillary segment at time t = 0, i.e., ψiv(z = 0, t) = δ(t). The intracapillary

space is assumed void of tracer initially.

Substituting (2.5c) into the governing equation (2.1a) and putting ψiv(a−, t) ≈
ψiv(z, t) gives

∂ψiv(z, t)

∂t
= −uz

∂ψiv(z, t)

∂z
−Rivψiv(z, t)−

ψiv(z, t)− ψiv(z, t) ∗ w(a+, t)

τiv
. (2.17)

The general solution of this equation is given in Appendix 2.5.6. The arterial-to-

intracapillary impulse response function is the solution to (2.17) with initial condition
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ψiv(0 < z ≤ L, t = 0) = 0 and boundary condition at the inflow end of the capillary

ψiv(z = 0, t) = δ(t). In Appendix 2.5.6 we show that for times t after the arrival of

the tracer bolus at the capillary such that√
(τc/τiv)(t/τev) ≪ 1 , (2.18)

the arterial-to-intracapillary impulse response function takes the form

hiva (z, t) ≈
[
δ(t− tz) +

tz
τiv

w(a+, t− tz)

]
exp(−R+

ivtz) (2.19a)

for 0 < tz ≤ t, and is zero at 0 < z ≤ L for times t < tz, where

tz ≡
z

uz
=
z

L
τc , R+

iv ≡ Riv +
1

τiv
. (2.19b)

The above simplified expression is the sum of two terms: the first one represents

the fraction of tracer that travels without dispersion along the capillary lumen and

exchanges with extravascular space, and the other represents the back-flux of the

extracted fraction of tracer from the extravascular space into the capillaries.

Quantitatively, in the absence of tracer consumption and back-flux, the fraction

of tracer extracted in one capillary transit time is seen to be given by the well-known

extraction, E = 1 − exp(−τc/τiv) = 1 − exp(−PS/fiv). The second term inside the

brackets in (2.19a) gives the time rate of the amount of tracer (per unit of tracer-

accessible intracapillary volume) due to back-flux from extravascular space into the

blood after the passage of an impulse-like quantity of tracer. This is seen by noting

that the product κS × tzw(a+, t− tz) gives, to a first approximation, the amount of

tracer passing from extravascular space into the capillary per unit time. Dividing

this term by the capillary volume and recalling the definition of mean intracapillary

residence time, one obtains the term (tz/τiv)w(a+, t− tz) in Eq. (2.18).

The arterial-to-extravascular concentration results from (2.5c) and (2.19a):

heva (z, t) ≈
[
w(r, t− tz) +

tz
τiv

w(a+, t− tz) ∗ w(r, t)
]
exp(−R+

ivtz) . (2.20)

Using the above-defined impulse response functions, the amount of tracer in a

given blood–tissue exchange unit is expressed as

µ(t) =

[∫
iv

hiva (z, t) d
dr+

∫
ev

w(r, t) ∗ hiva (z, t) ddr
]
∗ ψiv(z = 0, t) . (2.21)

41



2.3. Blood–tissue exchange quantities

2.3.3 Effective extravascular depolarised volume

The effective extravascular depolarised volume, Λ(t), quantifies the amount of tracer

cleared from the extravascular space by the tissue-to-blood flux under absorbing

intracapillary conditions. The concept applies to any exchanging species whose con-

centration in intracapillary space is much lower than in extravascular space, and is

not restricted, as the term ‘depolarised’ might suggest, to extravascular (longitudi-

nal) magnetisation. We introduced part of the material presented in this Section in

Ref. [96].

The amount of tracer in extravascular space is given by

µabs
ev (t) =

∫
ev

ψabs
ev (r, t) ddr =

∫
ev

∫
ev

G(r, r′, t) ddr ddr′ , (2.22)

where the representation of ψabs
ev (r, t) in terms of the Green’s function has been used;

see Eq. (2.75) of Appendix 2.5.5. The concept of the effective extravascular depo-

larised volume in one spatial dimension is illustrated in Fig. 2.5, where the ‘effective’

concentration, ψeff(r, t), is equal to ψ
abs
ev (r, 0) = 1 for |r| > Λ(t), and is zero elsewhere.

Thus, at time t the amount of tracer cleared from extravascular space is given by

µabs
ev (0)− µabs

ev (t) ≡ ψabs
ev (r, 0)Λ(t) , (2.23a)

which, since ψabs
ev (r, 0) is spatially uniform by definition, is rewritten as

Λ(t)

Vev
=
µabs
ev (0)− µabs

ev (t)

µabs
ev (0)

(2.23b)

with µabs
ev (0) = Vevψ

abs
ev (r, 0).

Substituting the right-most term of (2.22) into Eq. (2.23a) and making use of the

initial condition for the Green’s function, Eq. (2.80) of Appendix 2.5.5, gives

Λ(t) =

∫
ev

[
1−

∫
ev

G(r, r′, t) ddr

]
ddr′ . (2.24)

The right-hand side of this equation is analogous to a quantity introduced by

Yablonskiy and Haacke [102] which represents the volume of the region where NMR

signal dephasing due to magnetic susceptibility effects, is strongest [74]. In the con-

text of (longitudinal) magnetic relaxation, the inner integral in (2.24) gives the nor-

malised magnetic moment, ψabs
ev (t; r′), due to a point source (or spin packet) placed
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Intracapillary

space

Capillary wall

 

Extravascular

space

Figure 2.5: Effective extravascular depolarised volume in one spatial dimen-

sion. The extravascular concentration ψabs
ev (r, t) (solid line) and the ‘effective’ concentration

ψeff(r, t) (broken line) are evaluated under absorbing intracapillary boundary conditions;

the areas under both curves are equal.

at position r′ at time t = 0, such that ψabs
ev (0; r′) =

∫
ev
G(r, r′, 0) ddr = 1. The term in

brackets in (2.24) therefore represents the fractional reduction in extravascular mag-

netic moment. Integration over the extravascular space then gives, numerically, the

volume of a region adjacent to the capillary in which the extravascular magnetisation

is deemed to have become effectively depolarised by time t. In this example, Λ(t)

represents the normalised extravascular NMR signal.

If the capillary wall is impermeable (κ = 0) to tracer the extravascular magnetic

moment µabs
ev (t) is conserved, hence the integral of G(r, r′, t) is equal to unity at

all times; this results in Λ(t ≥ 0) = 0, as expected. On the other hand, if the

capillary wall is permeable to tracer (κ > 0) the extravascular magnetic moment

decreases steadily over time. Hence, at long times the integral of G(r, r′, t) over the

extravascular space vanishes and Λ(t) approaches its limiting value, Vev.

Differentiating (2.23a) and (2.24) gives an expression for the effective extravascu-

lar depolarised volume in terms of the (normalised) blood-to-tissue tracer flux under

absorbing intracapillary conditions:

dΛ(t)

dt
= −dµabs

ev (t)

dt
=

∫
S

κψabs
ev (a+, t) dS . (2.25)
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Finally, we note that if there is a net flux of tracer outward from the capillaries,

then the effective extravascular diffusion volume can be defined by

ΛD(t) =
µev(t)

ψev(a+, t)
. (2.26)

This definition is meaningful because diffusion causes the concentration of extravas-

cular tracer to fall off away from the capillary wall. ΛD(t) does not depend on the

extravascular relaxation rate.

The simplest case is that of one-dimensional free Gaussian diffusion, whose dif-

fusion profile is ψev(r, t) = (2πσ2(t))−1/2 exp(−r2/2σ(t)2), with σ(t) =
√
2Devt. The

effective extravascular diffusion volume is proportional to tracer diffusion length:

ΛD(t) =
√
2πσ(t) =

√
4πDevt.

2.3.4 Spatially averaged concentration

The spatially averaged concentrations, denoted by ψiv(t) and ψev(t), are the quan-

tities of interest for lumped tracer-exchange models. They are defined as average

concentrations over the tracer-accessible volume in, respectively, intracapillary and

extravascular space. Differential equations for ψiv(t) and ψev(t) are obtained by inte-

grating the governing spatiotemporal equations (2.1a) and (2.1b), and they are basic

to the discussion on the validity of lumped tracer-exchange models given in Section

4.2.

However, the spatially averaged extravascular concentration for absorbing intra-

capillary boundary conditions is written very simply in terms of the effective extra-

vascular depolarised volume as

ψabs
ev (t) =

1

Vev

∫
ev

ψabs
ev (r, t) ddr =

µabs
ev (t)

Vev

= 1− Λ(t)

Vev
, (2.27)

where Eq. (2.23b), with ψabs
ev (r, 0) = 1, has been used.
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2.3.5 Green’s function for the single-capillary approximation

The role of the Green’s function for whole extravascular space, G(r, r′, t), has become

apparent in the previous Subsections. However, evaluation of this quantity for real-

istic tissue samples is, in general, unfeasible. This difficulty can be overcome in part

if there is an interval of diffusion times during which the value of the Green’s func-

tion is largely independent of the geometry of the surrounding capillary network, for

positions r sufficiently close to the abluminal surface of the nearest capillary segment.

For diffusion times and extravascular positions for which this condition holds, the

exchange of tracer between any given capillary segment and its surrounding tissue

may be supposed independent of that occurring in the neighbouring capillaries. Thus,

in this case we expect the single-capillary approximation to hold true. Since the root

mean square displacement of tracer molecules is ⟨|r− r′|2⟩1/2 ∼
√
Devt, and since the

distance from the capillary segment to the diffusion watershed is comparable to the

typical half-intercapillary distance, A, the single-capillary approximation is expected

to hold for diffusion times such that
√
Devt

A
≪ 1 . (2.28)

A key simplifying assumption can now be made on the basis of the single-capillary

approximation: for short diffusion lengths, as given by (2.28), the Green’s function,

Gc(r, r
′, t), for a geometrically simpler pericapillary region approximates the Green’s

function for whole extravascular space, G(r, r′, t). This is of practical importance,

since it simplifies considerably the evaluation of the blood-to-tissue impulse response

function (2.15), which requires the knowledge of G(r, a+, t).

The foregoing assumption can be made plausible by a qualitative argument.10

In Fig. 2.6 a cross-sectional view of a hypothetical tissue containing a network of

parallel capillaries is considered, for simplicity; the capillaries are regarded as sinks

for tracer molecules and the net flux of tracer between adjacent pericapillary regions

is assumed, on average, zero. A test molecule of tracer is found initially at position

10Here we have adapted an argument by Kac [103] concerning a plane region which was divided

up into a square grid with absorbing edges, but containing no discrete sinks.
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Figure 2.6: Concerning the Green’s function for the single-capillary approxi-

mation. Capillary lumina are depicted as black circles surrounded by diffusing tracer

molecules. Also shown are the diffusion watershed (dash-dot lines) and the tissue boundary

(solid line). Broken lines indicate maximal diffusion lengths for which the single-capillary

approximation remains valid; see also Fig. 2.1c. Lines with arrowheads point at the tissue

regions associated with the various Green’s functions considered in the analysis.

r′ within the pericapillary region of a capillary whose lumen centre is at position r.

A consideration of the survival probability of this molecule when diffusing within the

considered pericapillary region (with reflective, or zero-flux, boundary conditions),

within the whole extravascular space (i.e., tracer exchange with zero net flux between

neighbouring pericapillary regions) and in free (i.e., void of absorbing capillaries)

space, leads to the chain of inequalities

0 ≤ Gc(r, r
′, t) ≤ G(r, r′, t) ≤ Gfree(r, r

′, t) , (2.29)

where Gfree(r, r
′, t) denotes the well-known Green’s function for free space, or ‘free

propagator’ [103, 104]. Because at sufficiently short times the molecules of tracer do

not sense the presence of the more distant capillaries, it is assumed that G(r, r′, t) ≈
Gc(r, r

′, t). Moreover, in the limit of short diffusion distances, the molecules of tracer
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are unable to probe their milieu and hence the Green’s function of extravascular space

can be approximated by the free propagator [103, 104].

The calculations presented in Chapter 3 have been obtained with the aid of the

Green’s function, Gc(r, r
′, t), for a long, straight annulus with capillary radius a

and pericapillary radius A. In the single-capillary approximation, the parameter

A is treated as large relative to both capillary radius and tracer diffusion length.

Thus, none of the blood–tissue exchange quantities will be expressed in final form

as functions of pericapillary radius A. This parameter shall only be used to obtain

order-of-magnitude estimates and in the analysis of the steady state found in Section

4.5.

For simplicity, in the sequel we writeG(r, r′, t) to denote both the Green’s function

for whole extravascular space and that for a given pericapillary region; the meaning

will be clear from the context.

2.4 Discussion

In 1966 Johnson and Wilson wrote [40, p. 1299]: ‘The complexity of the capillary

circulation in many tissues has made it difficult to achieve a general, quantitative

treatment of transcapillary exchange. This means that each tissue must be examined

carefully to see if certain simplifying assumptions are plausible in order to set up

models which lead to tractable equations’.

The deterministic spatiotemporal model of blood–tissue exchange introduced in

this Chapter may be regarded as a zero-order approximation to a statistical theory

of transport and exchange in complex heterogenous media, referred to as an effective

medium theory [71], in that inside their respective physiological compartments, and

at compartment boundaries, the tissue- and tracer-related parameters (e.g., diffusion

coefficient, consumption/relaxation rates and capillary-wall permeability) considered

have all been assumed spatially uniform; see Ref. [71, p. 683]. The aim of any effective

medium theory is to represent a microscopically heterogenous medium by means of an

‘effective’, or ‘apparent’, homogenous medium whose observable properties depend on
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such relevant microscopic features as ‘survive’ the spatiotemporal averaging inherent

to any measurement process [71, pp. 682, 691]. The appropriate effective medium

would therefore behave under specified measurement conditions in the same manner

as would the actual heterogenous medium considered [71, p. 691].

The presented model includes capillary flow, diffusive transcapillary permeation,

first-order consumption in both blood and extravascular tissue, and extravascular

diffusion of a tracer substance. By allowing for spatial as well as temporal variations

of the concentrations of tracer, and by taking into account the effect of extravascular

diffusion, the model aims to overcome an inherent theoretical limitation of the class

of lumped tracer-exchange models when the exchange is rate-limited not by transcap-

illary permeation but by diffusive transport in extravascular space. Such variations

in concentration are described on a mesoscopic scale (p. 18) in order that the partial

differential operators in Eqs (2.1a) – (2.1e) be well posed.

The assumption of linearity and time invariance is pervasive [9, 105, 106] in the

literature on mass transport and exchange in biological systems and is also a basic

feature of the model presented in this Thesis. We consider blood–tissue exchange to

be driven by the concentration of tracer in the capillaries, which is therefore barely

influenced by the back-flux of tracer from extravascular space into the blood. (This

modelling assumption will be assessed practically in Chapter 4). In this physical sit-

uation, the exchange of tracer is jointly characterised by the arterial-to-intracapillary

impulse response function and the blood-to-tissue impulse response function.

In the method proposed in this Thesis, the blood-to-tissue impulse response func-

tion is evaluated by first examining a simpler tracer exchange situation defined by

a non-zero, spatially uniform concentration of tracer in extravascular space at ini-

tial time, with an absorbing intracapillary boundary condition at the luminal face

of the capillary wall. Importantly, this homogenous boundary condition allows in-

troduction of the Green’s function of the diffusion–consumption equation for whole

extravascular space. This formulation has a transparent physical interpretation and

is the basis for expressing the blood–tissue tracer-exchange-related quantities (tran-

scapillary flux, intracapillary and extravascular concentration, effective extravascular
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depolarised volume).

The presented model can be extended to account for different types of microvessels

and non-uniform concentrations of tracer in the capillaries. In the range of validity of

the single-capillary approximation, one can account for a non-uniform distribution of

intracapillary concentrations by averaging these contributions over the appropriate

distribution of capillary parameters, as determined from stereological measurements.

For example, Honig et al. [67] found that capillary segment length, total capillary

length and number of capillary anastomoses in rat gracilis muscle were described by

Weibull, gamma and negative binomial distributions, respectively. Capillary segment

lengths in cat brain cortex were also found to be Weibull-distributed [65].

In the following sections we discuss several aspects, both anatomical and phys-

iological, of microvascular networks, all of which have a bearing on the modelling

assumptions adopted in this Thesis.

2.4.1 Capillary networks

Blood–tissue exchange relies on the structural and functional properties of capillary

networks [72].

Anatomically, the capillary network demonstrates arterio-venous anastomoses, bi-

furcations and junctions, bends, loops and dead-ends. Capillary length and calibre is

observed to vary widely both within and among tissues [65, 72, 82]. The modelling

assumption of straight capillary segments is justified for myocardial tissue, as was

demonstrated by Bassingthwaighte, Yipintsoi and Harvey [66] in dog myocardium:

the capillary network of a main branch of a coronary artery comprises dense arrays

of capillaries running parallel to muscle fibres for lengths of up to a few centime-

tres; functional capillary lengths range between 500 – 1000 µm; unbranched capillary

lengths average 100 µm, with a strongly right-tailed distribution; and capillary diam-

eters average 5.6 µm. These authors noted that this anatomic arrangement facilitates

concurrent flow in neighbouring capillaries, as well as diffusive exchange between in-

flow and outflow regions [66]. The model set forth in this Thesis does not deal with

such possible diffusive interactions.
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In marked contrast to myocardial capillaries, the brain cortex reveals a highly

tortuous capillary network with significant interregional variability, as was demon-

strated by Pawlik et al. [65] in the in vivo cat brain cortex. In regions with a reduced

capillary volume fraction, the curvature of capillaries was observed to increase so as

to keep intercapillary distances comparatively short. Nevertheless, for typical val-

ues of capillary diameter, radius of curvature and segment length of brain capillaries

(p. 22) these can reasonably be modelled as long straight cylinders.

The flow of blood in the capillaries is a highly complex phenomenon. Because

erythrocytes often have diameters greater than those of the capillaries through which

they pass [72, 82], capillary blood flow is often described in the tracer kinetic lit-

erature as being approximately of plug-flow type. In reality, the erythrocytes are

surrounded by a thin (< 1 µm) annulus of plasma which lubricates the gap between

the erythrocytes and the capillary wall ([107, pp. 302 – 303], [108, Fig. 5]); in the

space between adjacent erythrocytes, the plasma velocity is characterised by eddy-

like streamlines [107] with both axial and radial velocity components [82]. This is

referred to as two-phase flow (Ref. [109] and references therein). Indeed, because

in the narrower capillaries the erythrocytes undergo deformations, and because the

number of erythrocytes in any one capillary varies stochastically, intermittent capil-

lary flow is observed [82]. At a higher hierarchical level, intermittent flow is largely

due to opening and closure of the precapillary sphincters, thus channelling the blood

flow through different capillaries. The local regulatory action on blood flow, referred

to as vasomotion [72], matches physical conditions in the microvascular network to

tissue requirements; for example, the action of these precapillary sphincters largely

determines the available permeability surface area for tissue–blood exchange. As a

result of this and other physiological variables, blood flow through most capillaries is

a non-steady-state phenomenon [72].

2.4.2 Krogh-type models

Krogh in 1919 proposed the first quantitative model of steady-state diffusion of oxy-

gen in striated muscle of mammals. He assumed ‘(. . .) each capillary to supply
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oxygen independently of all the others to a cylinder of tissue surrounding it. In a

transverse section such a cylinder is represented by an area which can be taken as

circular and the average area belonging to each capillary can be calculated from a

counting of the number of capillaries in a transverse section by division of its total

area with the number found.’ [47, p. 410]. Krogh’s modelling assumptions have been

reviewed in detail by Hudson and Cater [52] and by Goldman [73].

The Krogh model is a much simplified depiction of real capillary networks, yet it

is analytically tractable and yields quantitative physical insight. The single-capillary

model has been utilised in both theoretical and experimental studies of indicator-

dilution [44], exchange-dependent tracer-induced relaxation [90, 110], and the BOLD

effect [111]. Multiple-capillary models have been proposed and investigated numeri-

cally in more realistic modelling approaches of oxygen delivery to tissue (reviewed in

Ref. [73]).

In considering the enhancement of the longitudinal relaxation in tissue due to

transcapillary water exchange and extravascular diffusion of paramagnetic tracers,

several authors [45, 90, 110] have extended the Krogh model to consider three con-

centric cylinders representing intracapillary, interstitial and intracellular space, with

radii determined by the volume fraction of the respective physiological compart-

ments. In this author’s opinion, however, it is unclear that this modelling can yield

comparable results to those obtained by including the geometrical tortuosity of inter-

stitial space, since in normal tissue the distances between the parenchymal cells and

their supplying capillaries can be much smaller than the radius of the interstitial–

intracellular boundary predicted by the three-cylinder model. For example, for re-

alistic values of intracapillary, interstitial and intracellular volume fractions in brain

cortex of 1%, 15% and 84% [112, 113, 114], the corresponding cylinder radii are in

the ratios 1 : 4 : 10. Thus, for a capillary radius of 3 µm, the corresponding width of

the interstitial cylinder in the three-cylinder model is 9 µm. Kuo et al. [45] evaluated

blood–tissue exchange, interstitial diffusion and interstitial–intracellular exchange us-

ing a three-cylinder model. As another example, in their study on the effect of water

exchange on the estimation of rabbit myocardial perfusion using paramagnetic trac-
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ers, Judd et al. [110] chose cylinder radii of 2.5, 5.0 and 10 µm, and a common water

diffusion coefficient of 1.5 µm2 ms−1. These two examples point to a further difficulty

with the three-cylinder model, namely the selection of reasonable values of the dif-

fusion coefficient in the interstitial and intracellular cylinders. It is not immediately

obvious that, even if all cylinder compartments conform to correct compartmental

volume fractions in whole tissue, their apparent compartmental diffusion coefficients

should be equal among them, and also equal to the diffusion coefficient of tracer in

whole tissue in the tortuosity limit.

It is emphasised that, in this Thesis, the representation of intracapillary and extra-

vascular space is not made by means of the above-described Krogh capillary–tissue

model. Instead, we investigate the effect of diffusion and consumption of a tracer

substance under conditions where the exchange between any given capillary and its

surrounding extravascular space is supposed largely independent of that occurring in

neighbouring capillaries (refer to Section 2.1.3). In this physical situation, both the

contour surface of the pericapillary region and the form of the pericapillary boundary

conditions become immaterial (Sections 2.1.3 and 2.3.5).

2.4.3 Water transmembrane exchange

Osmotic permeation

Biological membranes are semipermeable: they allow the passage of water and other

small molecules through them, but are impermeable to all solutes above a certain

size. It is well known that when two solutions at different concentrations are sep-

arated by a semipermeable membrane, solvent will flow across the membrane from

the more dilute towards the more concentrated solution (osmosis). This osmotic flow

of solvent convects solute molecules towards the membrane in the dilute solution,

and away from the membrane in the concentrated solution [115, p. 281]. As a re-

sult, the solute concentrations at each face of the membrane will differ from those at

greater distances from the membrane. This creates so-called ‘unstirred’, ‘stagnant’

or ‘concentration boundary’ layers. The apparent permeability of an extravascular
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unstirred layer of thickness δ is expressed as κusl = Dev/δ [116]. Patlak and Paulson

[117] found theoretically that the presence of unstirred layers around cerebral capillar-

ies and in endothelial cells of the blood-brain barrier does not affect significantly the

determination of diffusive capillary permeabilities by the indicator-dilution method.

Osmotic flow still occurs, to some extent, for solutes which encounter somewhat

greater resistance in crossing the membrane than does water [118, p. 843]. We hy-

pothesise that this concomitant flow might be of significance if water itself is employed

as a tracer, but this issue is outwith the scope of this Thesis.

Water exchange in brain tissue

Water molecules are able to exchange between the intracapillary, interstitial and in-

tracellular spaces. The mechanisms which enable the passage of water across the

blood–brain barrier and into the interstitial space and the brain parenchyma are, to

date, the subject of ongoing research [119]. In particular, a number of MRI studies

performed in brain, myocardium and skeletal tissue, suggest that water exchange

between the interstitial fluid and parenchymal cells is an order of magnitude faster

than between the blood and interstitial fluid. Donahue et al. [120] estimated the net

interstitial–intracellular water exchange rate in isolated perfused rat hearts to range

between 8 – 27 s−1; these investigators also estimated an upper bound of 7 s−1 on

the intracapillary–interstitial rate. Judd et al. [110] estimated a net intracapillary–

interstitial rate of 2.7 s−1 in isolated perfused rabbit hearts. Quirk et al. [114] esti-

mated the interstitial-to-intracellular and intracellular-to-interstitial water exchange

rates in in vivo rat brains as 8.5 s−1 and 1.8 s−1, respectively; the estimated net

interstitial–intracellular rate (∼ 10 s−1) is approximately an order of magnitude faster

than typical intracapillary-to-interstitial water exchange rates in cortical brain cap-

illaries (∼ 1 s−1). Landis et al. [76] estimated an average residence time of water in

the sarcoplasm of rat thigh muscle of 1.1 s, hence an intracellular-to-interstitial rate

of 1.1−1 = 0.91 s−1); since intracapillary and interstitial volume fractions in normal

rat thigh muscle are about 3% and 18% [121], respectively, one estimates the net

interstitial–intracellular water exchange rate as (1 + 79/18)× 1.1−1 = 5 s−1.
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All the above-mentioned studies involved T1-weighted and, in Ref. [120], also

T2-weighted MRI measurements using intravascular and/or extravascular, extracel-

lular paramagnetic tracers; in all cases, two-compartment lumped tracer-exchange

models were fitted to the MRI data. More recently, evidence of fast water exchange

between the highly permeable glial cells and the extracellular matrix has been invoked

by Fieremans et al. [86] to model brain extra-axonal white matter as a homogenous

medium in diffusional kurtosis imaging.

On the other hand, He et al. [119], using a hybrid BOLD–ASL approach, estimated

an intraneuronal water residence time of the order of tens of seconds. This implies

that the interstitial–parenchymal water exchange rate in the human brain may be an

order of magnitude smaller than the value estimated by Quirk et al. [114] using DCE

MRI. An explanation for slow exchange suggested by He et al. [119, pp. 6 – 7] relies

on a consensus that most neurons do not express water-specific membrane-channel

proteins, aquaporins.

The experiments of Larson et al. [29] with H 15
2 O PET also appear to support

the hypothesis of slow water exchange. Since the two-barrier spatiotemporal model

utilised by these authors (see Section 1.1.2) showed good agreement with the mea-

sured data up to times (some tens of seconds) far exceeding diffusion times of the

radiolabelled water in extravascular tissue, it may be argued that water exchange

between the interstitial and intracellular spaces may be a slower process than has

been estimated in some studies.

2.4.4 Time-dependent diffusion coefficient

In heterogenous media, the tracer diffusion coefficient, or diffusivity, is position-

dependent and decreases with time [80, 84]. At short diffusion times, tracer molecules

approximately one diffusion length from the medium boundary experience restricted,

non-Gaussian diffusion owing to random collisions with the boundary [83, 85],

whereas molecules at greater distances from the boundaries are assumed to undergo

free Gaussian diffusion. In this limit, the diffusion coefficient is reduced by an amount

approximately proportional to the fraction of molecules undergoing restricted diffu-
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sion, hence to the product of diffusion length and surface-to-volume ratio of the

medium ‘pores’ [83, 122].

On the other hand, over diffusion times exceeding the correlation time of the call

packing, diffusion becomes essentially Gaussian (Section 2.1.2) while reflecting the

connectivity and geometrical tortuosity of the medium. The tortuosity coefficient, λ,

is defined as the ratio of the diffusion coefficient in bulk to the long-time diffusion

coefficient in the tissue [84, 123]. This parameter quantifies the reduction in diffusion

length, for fixed time t, owing to hindrance to diffusion in the medium.11 Numerous

studies have estimated λ1/2 for various mammalian brain tissues and the values ob-

tained are in the range 1.39 – 2.50 (see, e.g., Refs [70, 87]). For example, Nicholson

and Phillips [60] found λ1/2 = 1.48 – 1.55 in the extravascular space of rat cerebellum

for a number of ionic species having diffusion coefficients in agar gel between 0.76

and 1.4 µm2 ms−1.

According to Fieremans et al. [86, p. 179], in brain white matter the tortuosity

limit is already well established at diffusion times of about 50 ms, since the corre-

sponding diffusion length (∼ 14 µm) is approximately an order of magnitude higher

than the correlation length (∼ 1 µm, Ref. [86]) of the axonal packing. We note

that a diffusion time of 50 ms is well within the range of measurement times typi-

cally employed in diffusion-weighted imaging (DWI), ASL and DCE MRI. To gain

additional insight, we have estimated the time to reach the tortuosity limit in the

corpus callosum by rescaling earlier simulation data of Fieremans et al. [125] with

the use of white matter parameters quoted by Nicholson and Syková [70]. Specifi-

cally, the results of Fieremans et al. in fibre phantoms with fibre packing densities

similar to normal axonal densities in the corpus callosum (i.e., 0.7 – 0.8; our estimate

from Table I of Ref. [70]) suggest that the diffusion coefficient reached a long-time

value of, approximately, 40% that of self-diffusion of water (Dfree ≈ 3 µm2 ms−1 at

35◦C [126]) over diffusion lengths lD ≈ 50 µm (cf. Fig. 3c of Ref. [125]). Taking into

account the fibre diameter (dfibre = 20 µm) and the distribution of axonal diameters

11Some authors define the tortuosity coefficient as the square root of the aforementioned diffusion

coefficient ratio. See, e.g., Refs [60, 113, 124].
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(daxon = 0.5 – 3 µm, our estimate from Fig. 1 of Ref. [127]), the time to the tortuosity

limit is estimated as tλ = (lDdaxon/dfibre)
2/(0.40Dfree) ≈ 1 – 50 ms.

As will become apparent in Section 4.1, under permeability-limited conditions for

times below typical correlation times for molecular displacements a time-dependent

tracer diffusion coefficient is expected to have a negligible effect on the exchange.

2.4.5 Time-dependent relaxation rate

The relaxation terms in Eqs (2.1a) and (2.1b) represent the longitudinal relaxation

rates experienced by the diffusing tracer molecules as they sample the medium. They

should not be confused with the apparent relaxation rates which are measured in an

NMR experiment. It is well known that water exchange across physiological compart-

ments can give rise to apparent compartmental relaxation rates which differ signifi-

cantly from those found in the absence of exchange [88]. This effect is demonstrated

even when no paramagnetic tracers are present. The influence of relaxation rates on

the exchange has been assessed using both lumped and spatiotemporal approaches,

both of which are briefly discussed next.

In the theory of chemical exchange, the Bloch equations are augmented by adding

first-order exchange terms proportional to compartmental concentrations [128]; diffu-

sive mixing is assumed to be much faster than both relaxation and exchange. Formu-

lae for apparent relaxation rates are given in, e.g., Refs [88, 129, 130], with discussion

of important special cases. For any given exchanging species, a compartmental system

is said to be in slow chemical exchange if the difference between the relaxation rates in

the exchanging compartments greatly exceeds the first-order exchange rates involved

[129] [compare to Eq. (2.7b)] and is said to be in fast exchange in the opposite case.

In addition to exchange, Bauer et al. [131] considered the effect of capillary flow on

the apparent longitudinal relaxation in whole tissue. They used a two-compartment

lumped model and assumed steady-state relaxation in the capillaries.

Bauer and Schulten [90] evaluated the effect of water diffusion and exchange on

the enhancement of the mean intracapillary, interstitial and intracellular relaxation

rates, due to the presence of an intravascular paramagnetic tracer.
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2.5 Appendices

2.5.1 A derivation of the governing equations of blood–tissue

exchange

In this Appendix we develop equations (2.1a) – (2.1c) of the blood–tissue exchange

model.

Conserved quantities. Equation of continuity

The state of a homogenous fluid is described mathematically by specifying the fluid

velocity and any two thermodynamic quantities like the fluid pressure and density

[142, p. 1]. Thus, five equations are required to specify completely the state of

motion of a fluid, namely the equation of continuity (i.e., the conservation of fluid

mass); the vector equation of motion (i.e., the conservation of momentum); and the

thermodynamic equation of state of the fluid (i.e., the conservation of energy); see

Ref. [142, pp. 1 – 12, 523].

In the present simplified treatment of capillary flow and blood–tissue exchange,

the effects of blood viscosity and heat transfer between different parts in the intra-

capillary and extravascular spaces are assumed to be negligibly low. As a result, the

blood–tissue exchange model reduces to the statement of the conservation of tracer

mass. This simplified ‘kinematic’ approach seems adequate for present purposes and

is discussed at some length in the remainder of this Appendix.

First we obtain an equation of continuity for the tracer on a microscopic scale;

a homogenous fluid is considered for simplicity. The fluxes jconv, jD and jκ give the

mass of fluid passing in unit time through unit surface area due to, respectively,

convection, extravascular diffusion and diffusive transcapillary permeation; see Refs

[142, p. 2] and [143, p. 136]. As is well known, the divergence ∇·j of a vector quantity
j at a point in space P is the net outflow of j across the surface of a volume element

enclosing P , divided by the size of the volume element [144, vol. 2, pp. 3–5].12 Thus,

the divergence of the mass of fluid which in unit time flows through unit surface

12The outflow has the dimensions of the magnitude of the vector quantity times a surface area.
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area enclosing a given volume element is equal to minus the rate of increase of the

contained mass of fluid. Because this rate is also given by minus the time derivative

of the fluid density, ϱ, the continuity equation is expressed as

∂ϱ

∂t
= −∇ · (jconv + jD + jκ)− s , (2.30)

where s is the rate of tracer consumption per unit volume.

A similar argument indicates that Eq. (2.30) also holds for a quantity of tracer in

solution by introducing the appropriate concentration of tracer and the various fluxes

of tracer molecules [142, p. 219 – 220]. In the sequel we examine the appropriate

form of the continuity equation for analysis of blood–tissue exchange in, e.g., MRI

experiments at (sub)millimetre resolution.

Mesoscopic volume averaging

As stated by Nicholson and Phillips, ‘The definition of a complex medium demands

the notion of scale’ [60, p. 227]. Solving the equations of transport and exchange

in complex heterogenous media on a microscopic scale is, in general, unfeasible. For

example, on the scale of tissue interstitial spaces the boundary conditions become

extremely complex and the microscopic concentration of a substance of interest will

vary irregularly [60, pp. 226 – 227].

The method of volume averaging is one of several well-known approaches, includ-

ing statistical [71] and geometric modelling, that have been proposed to overcome

this difficulty [145]. To quote Wood and Whitaker [146, p. 398]: ‘When the length

scales in a hierarchical system are disparate, the method of volume averaging can be

used to transport information from a smaller scale to a larger one and eventually to

the length scale at which the system analysis takes place’. Thus, one seeks to define

an appropriate representative elementary volume [87, p. 826], or volume element, ∆V

(Fig. 2.7), with the following properties: (i) the volume element is sufficiently large

as to encompass microscopic heterogeneities, hence allowing for meaningful averages

Note that, in the literature, the term ‘flux’ is also used to refer to the net flow across any given

surface area. In each case the meaning should be clear from the context.
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Figure 2.7: Macroscopic tissue sample, macroscopic voxel and representative

mesoscopic volume element ∆V , adapted from Figs 2 and 3 of Ref. [146] and Fig. 3 of

Ref. [147]. Here, the ν-phase may be regarded as a tissue interstitial phase (or the pore

space in a soil sample) and bathes an (unlabelled) intracellular phase (or grain space). The

σ-boundary is the dividing surface between both phases. Dimensions are not to scale.

of the physical quantities of interest, yet (ii) it is sufficiently small, compared to the

size of the body under consideration, as to retain some local meaning with respect

to those quantities, which (iii) should vary smoothly from one volume element to

another in order that differential operators may be used in the model equations; see

Refs [60, pp. 227 – 228], [87, p. 826], [145, pp. 16 – 17] and [147, p. 336].

In other words, after averaging over a volume element, the quantities of interest

are expected to vary appreciably only over lengths greater than the characteristic

length of the volume element; cf. Refs [145, p. 16] and [148, p. 822]. The following
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examples are pertinent to the discussion given in this Appendix:

1. In homogenous fluids, the characteristic length of a volume element must be

much greater than intermolecular distances, yet much smaller than the size of

the fluid container. A volume element will then contain a very large number

of molecules, and hence the fluid may be regarded as a continuous medium.13

The expression ‘point in a fluid’ refers not to individual molecules, but to such

a volume element; see Ref. [142, p. 1].

2. For blood–tissue exchange applications, a volume element must include enough

cellular elements (e.g., erythrocytes and parenchymal cells) to yield physically

meaningful volume-element averages [87, p. 826], yet it must be much smaller

than the considered tissue sample. In MRI such a mesoscopic volume element

must be much smaller than a typical imaging voxel if spatial variations on a

sub-voxel scale are to be incorporated in the analysis.

This criterion specifies the mesoscopic scale introduced in Section 2.1. The

single-capillary approximation (Section 2.1.3) places an upper limit on the char-

acteristic length of a volume element of whole tissue at typical capillary-segment

lengths and intercapillary distances. In brain tissue, the characteristic length

of a volume element is of the order of a few micrometres (Section 2.1, p. 18).

Figure 2.7 shows diagrammatically a large tissue sample, an MRI voxel and a

mesoscopic volume element with respective characteristic lengths of the order

of 1 – 10 cm, 1 mm and 10 µm, say.

We make a comment on terminology. In this Thesis, the term ‘microscopic’ shall

refer to physical phenomena and related quantities on a molecular length scale; the

13Consider liquid water: its molecular weight is 18 gmole−1 and its density 1.0 g cm−3 [16, pp.

420, 426 – 427]. With the use of Avogadro’s number, 6.02 × 1023 mole−1 [16, p. 96], the number

of water molecules in a 1-µm3 volume is found to be 3 × 1010. Further, since the concentration of

water molecules in liquid water is approximately 55 M [143, p. 613], the same volume of a 10 mM

solution (of a Gd-based contrast agent, say) will contain of the order of 5× 106 molecules, with an

expected statistical deviation of less than 0.1%.
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term ‘mesoscopic’ shall denote an intermediate length scale in which the microscopic

fluctuations of a physical quantity of interest are smoothed out, yet cannot be re-

garded as ‘bulk’ averages. Alternatively, the term ‘macroscopic’ appears frequently in

both the biological [60, 149] and porous media literature [148] in this latter context.

Here, the term ‘macroscopic’ shall refer to the characteristic scale (e.g., an imaging

voxel) of the measurement process. In MRI, the macroscopic scale also refers to

the bulk tissue under examination [150]. The term ‘local’ shall occasionally be used

where the appropriate length scale is understood from the context and no confusion

arises.

In both the biological and porous media literature (e.g., Refs [60] and [147, 148],

respectively) a volume element is often regarded as comprising a number of distinct

regions, or phases. To quote Pauling, ‘A phase is a homogeneous part of a system,

separated from other parts by physical boundaries. (. . .) A phase in a system com-

prises all of the parts that have the same properties and composition.’ [16, p. 9].

In this Appendix this concept shall be used rather loosely in such phrases as ‘the

intrinsic concentration of tracer molecules in the interstitial phase’, say, since the

concentration may vary from point to point. We thereby intend to avoid confusion

with the notion of kinetic compartment which appears elsewhere in this Thesis and

which involves macroscopic, rather than mesoscopic, spatial averaging.

The above-discussed volume-element properties (i) – (iii) (p. 59) allow one to set

up appropriate partial differential equations for transport and exchange on a meso-

scopic scale. Specifically, the spatiotemporal differential equations describing blood–

tissue exchange provide deterministic predictions of observable phenomena arising

from the collective behaviour of a very large number of independent random molec-

ular events [143, Section 4.4.3]. Equations (2.31a) – (2.31j) below summarise several

well-known definitions and results that are needed for spatial averaging of the conti-

nuity equation (2.30).

It is assumed that intraphase transport and consumption/relaxation, as well as

interfacial exchange, can all be described, on a microscopic scale, by an equation of

the form (2.30). The microscopic concentration in the ν-phase is denoted by ψν(r, t)
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and is zero outwith that phase. The phase-averaged concentration is defined by (e.g.,

Eq. [10] of Ref. [147])

⟨ψν⟩(r, t) =
1

∆V

∫
∆Vν(r,t)

ψν(r+ r′, t) ddr′ , (2.31a)

where r may be chosen as the centroid position of the volume element and need

not be a point in the ν-phase (Refs [145, p. 17] and [147, p. 336]); r′ is a position

vector defined with respect to the local reference frame of the volume element; and

∆Vν(r, t) is the volume within ∆V occupied by the ν-phase and it may change with

time, whereas the shape, size and orientation of the volume element itself may not

[147, p. 336]. The intrinsic phase-averaged concentration is defined by (e.g., Eq. [11]

of Ref. [147])

⟨ψν⟩ν(r, t) =
1

∆Vν(r, t)

∫
∆Vν(r,t)

ψν(r+ r′, t) ddr′ (2.31b)

and is usually the preferred quantity since it gives the correct value when ψν(r, t) is

spatially uniform in the volume element [151, p. 9]. Definitions analogous to (2.31a)

and (2.31b) hold for a phase-averaged flux ⟨j⟩.

The volume fraction of the ν-phase is defined by

vν(r, t) =
∆Vν(r, t)

∆V
, (2.31c)

hence

⟨ψν⟩ = vν⟨ψν⟩ν . (2.31d)

It is useful to consider the volume-weighted sum of the interstitial and intracellular

concentrations, or average extravascular concentration over a volume element, defined

by

⟨ψev⟩ = ⟨ψis⟩+ ⟨ψic⟩ = vis⟨ψis⟩is + vic⟨ψic⟩ic (2.31e)

from (2.31a) – (2.31d). Furthermore, it is often convenient to decompose the micro-

scopic concentration into the intrinsic phase-averaged concentration and the spatial
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deviation concentration, ψ̃ν as14

ψν(r+ r′, t) = ⟨ψν⟩ν(r, t) + ψ̃ν(r+ r′, t) ; (2.31f)

see Refs [146, Eq. (20)], [148, Eq. (8)] and [152, Eq. (11a)]. The intrinsic phase-

averaged concentration changes on the scale of a volume element while the spatial

deviation concentration fluctuates over the characteristic length of the ν-phase. Hence

ψ̃ν ≪ ⟨ψν⟩ν [146, Eq. (26b)].

Next we summarise the required results involving averages of time and spatial

derivatives. Let σ, uσ and nν respectively denote the dividing surface between the

ν-phase and the remainder of the volume element, the velocity of the σ-boundary as

observed in a fixed reference frame, and a unit normal on σ directed outwards from

the ν-phase (Fig. 2.7). The spatial average of the time derivative of ψν(r + r′, t) is

related to the time derivative of ⟨ψν⟩(r, t) by⟨
∂ψν
∂t

⟩
=
∂⟨ψν⟩
∂t

− 1

∆V

∫
σ

ψνuσ · nν dσ

= vν
∂⟨ψν⟩ν

∂t
+ ⟨ψν⟩ν

∂vν
∂t

− 1

∆V

∫
σ

ψνuσ · nν dσ , (2.31g)

cf., for instance, Eq. [33] of Ref. [147]. The integral on the right-hand side takes into

account the rate of expansion of the ν-phase, given by uσ · nν dσ.

The formula for the spatial average of a gradient is (Eq. [15] of Ref. [147])

⟨∇ψν⟩ = ∇r⟨ψν⟩+
1

∆V

∫
σ

ψνnν dσ , (2.31h)

where the integral takes account of any jump discontinuities at the phase boundary,

since ψν is, by definition, zero outwith the ν-phase (Refs [147, pp. 338 – 339] and [152,

p. 231]). Equation (2.31h) indicates that the spatial average of a divergence is given

by

⟨∇ · j⟩ = ∇ · ⟨j⟩+ 1

∆V

∫
σ

j · nν dσ , (2.31i)

14Both tilde and circumflex accent superscripts have been used in the literature to indicate the

spatial deviation concentration.
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where the last term is due to the outward flux through the σ-boundary; cf. Eq. (9)

of Ref. [152] and Eq. [10] of Ref. [148].

Lastly, the integral of the intrinsic phase-averaged concentration over the phase

boundary is given by [152, Eq. (26)]

1

∆V

∫
σ

⟨ψν⟩νnν dσ = −⟨ψν⟩ν∇vν . (2.31j)

To conclude this summary of ‘local volume averaging’ [147] results we note the

following points:

1. The above phase averages are taken not over an entire physiological compart-

ment (as they would for use in a generic lumped tracer exchange model), but

over only a small volume element. Moreover, phase averages may be regarded

as functions of centroid position of some volume element (e.g., Refs [147, p. 336]

and [148, p. 822]). However, the ν-phase average is defined for all points in any

given volume element, not just those points belonging in the ν-phase; see Refs

[145, p. 17] and [152, p. 229]. This property is of importance when mesoscopic

equations are to be integrated over some volume consisting of different phases

(as shall be the case in Chapter 4).

2. If a given phase occupies the volume element in its entirety, the boundary σ

vanishes and so do the integrals in Eqs (2.31g) – (2.31j). As a result, spatial

averaging commutes with the ∇ operator.

3. If the flow of the ν-phase (e.g., the flow of whole blood containing a tracer

solute) is spatially uniform throughout any given volume element, then the

integral on the right-hand side of (2.31g) vanishes even though the velocity uσ

of the σ-boundary may not be zero in the fixed reference frame of Fig. 2.7. In

this case, spatial averaging commutes with time differentiation.

In the remainder of this Appendix we evaluate the mesoscopic form⟨
∂ψν
∂t

⟩
= −⟨∇ · (jconv + jD + jκ)ν⟩ − ⟨sν⟩ (2.32)
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of the microscopic continuity equation (2.30). Gray [152] worked the above equation

further with the use of the results summarised in the foregoing paragraphs as well

as further mathematical results involving repeated phase averages. In the sequel we

also quote the work of other investigators for additional physical discussion. This we

do by considering each flux term of (2.32) in turn.

Convective flux

Convection involves the flow transport of volume elements of fluid whose composition,

hence also the concentration of the tracer under consideration, remains unchanged;

cf. Ref. [142, p. 219]. The concentration of tracer in any given volume element may

of course change due to diffusive transport (discussed in later subsections) between

different volume elements.

Let u(r, t) denote the fluid velocity at a fixed point in space r at the time t;

this velocity is, in general, not the same as that of a given volume element of fluid

as it moves with the flow; cf. Ref. [142, p. 1]. Point r is regarded as the centroid

of a volume element of fluid which contains a large enough number of molecules of

tracer (and solute) that both the microscopic tracer concentration, ψiv(r, t), and the

microscopic convective flux, jconv(r, t), are well defined; refer to Item 1 on p. 61.

Next, an expression for jconv(r, t) is obtained. In Fig. 2.8, the mass of tracer which

crosses in the interval dt the small, fixed cross-sectional area dA perpendicular to the

capillary axis, is equal to the mass of tracer molecules contained in a volume of fluid

of size dA × uzdt; cf. Ref. [144, vol. 1, Section 43–5]. The mass of this quantity

of tracer is given by ψivuz × dA dt, provided that the microscopic concentration of

tracer does not change appreciably during dt in the small volume of fluid. Thus, the

magnitude of the convective flux of tracer is equal to the product of the concentration

and the component of the fluid velocity perpendicular to the capillary cross section,

and its direction is that of u [142, pp. 2, 220]. In vector form,

jconv = ψivu . (2.33a)

We now make several simplifying assumptions in order to evaluate the divergence

∇· jconv. First we note from (2.33a) that for a solution (e.g., one of some tracer in the
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Figure 2.8: Evaluation of convective flux inside a capillary segment. The smaller-

sized, fixed volume element (shaded circle, magnified for clarity) represents a ‘point in the

fluid’ and is used for evaluation of the microscopic convective flux, jconv. The larger-sized

volume element (of size ∆A∆z) is appropriate for evaluation of flux on a mesoscopic scale.

blood), u represents the total momentum of unit mass of the solution; cf. Ref. [142,

p. 219]. A basic assumption of numerous models of tracer transport and exchange

is that the flow of the tracer molecules is representative of that of the total fluid

[105, p. 732]. Therefore, instead of having to follow the course of individual volume

elements of the fluid, one needs only consider fluid velocities as observed at fixed

points in space and time; the above definition of u is consistent with this modelling

assumption.

Second, if incompressible blood flow is assumed, Eq. (2.30) shows that the diver-

gence of the blood velocity is zero. Since the presence of an exogenous tracer in low

concentration causes only a negligible change in the density of the blood, also

∇ · u = 0 (2.33b)

for the blood–tracer solution, from the above assumption.

We further assume that, as a result of the rapid mixing of tracer molecules, the

concentration of tracer is uniform at any capillary cross-section and varies only along
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the capillary axis. The magnitude of u is assumed constant in time (i.e., steady flow

[142, p. 9]) and its direction everywhere parallel to the capillary axis:

u = uz(r) z (2.33c)

and the average speed may be reasonably estimated as a typical erythrocyte speed

(p. 30). With the use of the Navier–Stokes equation of momentum conservation for

incompressible flow (e.g., Eq. (15.7) of Ref. [142]),

∂(ϱu)

∂t
+ (u · ∇)(ϱu) = −∇p+ ηvisc∇2u , (2.34)

(p is the pressure and ηvisc is the viscosity) it is seen that u in Eq. (2.33c) has

perhaps the simplest form compatible with the existence of pressure gradients (due

to blood viscosity) in the capillary network.15 On the other hand, the more drastic

simplifying assumption of a constant and uniform flow velocity would imply the

absence of pressure gradients inside the capillaries. Viscosity, vorticity and pulsatility

effects are not considered further in this analysis.

Under the above assumptions, the divergence of the microscopic convective flux

is given by

∇ · jconv = u · ∇ψiv + ψiv∇ · u

= u · ∇ψiv

= uz(r)
∂ψiv(z, t)

∂z
(2.35a)

with the use of a well-known vector identity [101, Eq. (3.22)]. Spatial averaging over

the larger-sized volume element in Fig. 2.8 yields

⟨∇ · jconv⟩ =
∫
∆A

uz(r)
dA

∆A

∫
∆z

∂ψiv(z, t)

∂z

dz

∆z

= ⟨uz,iv⟩
ψiv(z +∆z/2, t)− ψiv(z −∆z/2, t)

∆z
. (2.35b)

At this point we make the key assumption that a sufficiently smooth change in

microscopic concentration over the volume-element length ∆z can be approximated

15The actual pressure drop in the capillary network is ca. 20 mmHg, or about one-fifth the average

pressure at the aorta [1, Figs 38.8 and 38.11].
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with the corresponding change in intrinsic phase-averaged concentration. In other

words, the spatial deviation concentration ψ̃iv = ψiv − ⟨ψiv⟩iv, given by (2.31f), is

assumed to be relatively uniform along the capillary lumen. Thus,

⟨∇ · jconv⟩ ≈ ⟨uz,iv⟩
⟨ψiv⟩iv(z +∆z/2, t)− ⟨ψiv⟩iv(z −∆z/2, t)

∆z

≈ ⟨uz,iv⟩
∂⟨ψiv⟩iv(z, t)

∂z
. (2.35c)

For tracers which exchange slowly (or not at all) with the erythrocytes, the intrin-

sic plasma-averaged concentration, ⟨ψiv⟩iv, is the more relevant quantity and is higher

than the whole-blood-averaged concentration, ⟨ψiv⟩, by a factor of Hct−1, where Hct

is the haematocrit. In this case, the characteristic length ∆z of a mesoscopic volume

element should be large compared to erythrocyte thickness (2.4 µm [82, p. 357]) and

inter-erythrocyte distance in order that the intrinsic plasma-averaged concentration

may change smoothly along the capillary. On the other hand, for tracers in fast

exchange with erythrocytes, the intrinsic plasma-averaged and whole-blood-averaged

concentrations are approximately equal, hence ∆z may be chosen independently of

erythrocyte thickness and inter-erythrocyte distance.

We assume that the fraction (vν 7→ viv)
16 of tracer-accessible intracapillary space

in the volume element does not change with time and further note that the surface

integral involving the phase velocity uσ vanishes on account of (2.33c). Thus, equat-

ing the right-hand sides of (2.31g) and (2.35c), and dividing by this volume fraction

gives

∂⟨ψiv⟩iv

∂t
= −⟨uz,iv⟩iv

∂⟨ψiv⟩iv(z, t)
∂z

, (2.36)

where ⟨uz,iv⟩iv denotes the intrinsic average of the volume-element velocity in that

part of the lumen which is accessible to tracer. This result is a particular case of a

more general expression for the convection term given by Gray [152, Eq. (36)].

Equation (2.36) is formally identical with the convective part of Eq. (2.1a), where

the intrinsic concentration of tracer with respect to the tracer-accessible phase in

intracapillary space has been denoted more concisely as ψiv(z, t).

16See footnote 4 on p. 28.
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Diffusive flux in homogenous media

In contrast to convective transport, diffusion involves the change in the composition

of the medium17 due to molecular transfer among different volume elements [142,

p. 219]. Before turning to the more complicated case where the molecules of tracer

are allowed to diffuse in a tortuous medium like the extravascular space, we consider

the ‘free’ diffusion of a small amount of tracer molecules in a container of water in

thermal equilibrium (Ref. [144, vol. 1, Section 43–5] discusses this case for a gas

mixture).

Qualitatively, the molecules of tracer move about independently of each other

(because of their low concentration) and experience incessant random collisions, most

frequently with the much more abundant water molecules. The diffusive motion of

tracer molecules is to be described on a time scale much larger than that governing

their collisions with the water molecules [144, p. 41–8]. Because molecular collisions

are random, and because the concentration of tracer varies within the container, there

is a net flow of tracer molecules from regions of higher concentration towards regions

of lower concentration until the concentration becomes everywhere uniform; see Refs

[142, p. 219] and [144, vol. 1, p. 43–7].

The mass of tracer molecules which diffuses in unit time through unit surface

area inside the container is proportional to the concentration difference across the

surface and to the velocity of the tracer molecules.18 Here, the number of molecules

which diffuse across the considered surface from the right must be subtracted from

the number of them which diffuse from the left. Both these concentrations should

be evaluated a distance from the surface of the order of the mean free path between

collisions [144, pp. 43–7, 8]. If the concentration of tracer molecules is further assumed

to be described by a smooth function, denoted by ψν(r, t), the concentration difference

can be replaced by the differential. Thus, the microscopic diffusive flux is proportional

17Diffusion can occur not only in fluids (liquids and gases) but in solids as well.
18In this semi-quantitative argument we ignore the fact that molecular velocities are actually

statistically distributed.
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to the concentration gradient, as stated by Fick’s law (Ref. [153], p. 66)19

jD = −Dν∇ψν(r, t) , (2.37a)

where the molecular, or microscopic, diffusion coefficient Dν is proportional to the

molecular velocity and to the mean free path between collisions for tracer molecules

[144, Eq. (43.27)]. This parameter varies with temperature [143, p. 126], but not

with time or position in the free diffusion case. Thus

−∇ · jD = Dν∇2ψν(r, t) . (2.37b)

Equation (2.37a) applies to spatial scales such that the concentration of diffusing

tracer molecules varies smoothly, in order that the gradient be physically meaningful;

see Refs [49, p. 714] and [60, p. 228]. Since it is the action of multiple random collisions

that tends to smooth out any concentration non-uniformity, it is intuitively clear that

the characteristic length of a volume element must be much greater than the mean

free path between collisions in order for Eq. (2.37a) to hold.20

The constraint that the concentration of tracer molecules be low in comparison

to that of the molecules of the medium in which they diffuse is fulfilled in typical

MRI experiments. For instance, the peak concentration in brain blood of certain

gadolinium-based tracers is ∼ 18 mM for a single dose of the tracer [91, Fig. 2];

this value is much lower than that for the concentration of water molecules in liquid

water, approximately 55 mole litre−1 [143, p. 613]. As a second example, the fraction

of magnetically tagged blood water spins which originate the net magnetisation is

just a few parts per million [11, p. 67].

Lastly, we note that the diffusive flux depends, in general, not only on the concen-

tration gradient but also on temperature and pressure gradients [142, pp. 222 – 224].

19In general, the flux of solute and solvents is driven by the difference in electrochemical potential

between different parts of a solution [154, p. 1]; the electrochemical potential is a function of pressure,

temperature and composition [154, pp. 5 ff.]. Refer to, e.g., Chapter 2 of Friedman’s book [154] for

a discussion of free diffusion and a derivation of Fick’s law based on thermodynamic considerations.
20At the other extreme, Eq. (2.37a) also requires for its validity that the mean free path between

collisions be much smaller than any container dimensions [144, vol. 2, p. 43–10].

71



2.5. Appendices

According to Landau and Lifshitz [142, pp. 225 – 226], the effect of temperature gra-

dients can be neglected whenever the concentration of tracer is low, whereas the effect

of pressure is important only under considerable pressure gradients. As mentioned

earlier, in this Thesis we neglect the effect of pressure and further assume all biolog-

ical processes to occur at constant temperature. The diffusive flux jD then reduces

to Eq. (2.37a).

Diffusive flux in heterogenous media

Unlike the case just discussed, the diffusion of tracer molecules in the extravascular

space of biological tissues (and, generally, in highly heterogenous environments) is

hindered by the tortuous geometry of the milieu. However, it is intuitively recognised

that the molecules of tracer are undergoing some sort of random motion [143, p. 144]

despite the inherent complexity of biological tissues. This process may be charac-

terised, on a mesoscopic scale, by an appropriate diffusion coefficient which differs,

in general, from that of Eq. (2.37a) for the microscopic scale.

We begin by substituting (2.31g) and (2.31i) into the spatially averaged continuity

equation (2.32) for the diffusive flux. This gives

vν
∂⟨ψν⟩ν

∂t
+ ⟨ψν⟩ν

∂vν
∂t

− 1

∆V

∫
σ

ψνuσ · nν = −∇ · ⟨jD⟩ −
1

∆V

∫
σ

jD · nν dσ .

(2.38a)

The last term on the right-hand side is due to the flux of tracer between the ν-phase

and the adjacent phases within a volume element. Thus, the boundary condition for

ψν(r, t) is joined to the mesoscopic equation of continuity in the ν-phase as a result

of spatial averaging (Section 1.2.1 of Ref. [151]).

The divergence of the volume-element-averaged diffusive flux in (2.38a) is further

developed by substituting the microscopic flux (2.37a) and making use of previous
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results to get

−∇ · ⟨jD⟩ = ∇ · ⟨Dν∇ψν⟩

= ∇ ·
{
Dν

[
∇r⟨ψν⟩+

1

∆V

∫
σ

ψνnν dσ

]}
= ∇ ·

{
Dν

[
vν∇r⟨ψν⟩ν + ⟨ψν⟩ν∇rvν +

1

∆V

∫
σ

ψνnν dσ

]}
= ∇ ·

{
vνDν

[
∇r⟨ψν⟩ν +

1

∆Vν

∫
σ

ψ̃νnν dσ

]}
, (2.38b)

where Dν is assumed spatially uniform in the ν-phase. Equation (2.31h) has been

used in the second line of the above expression. The third line of the above equation

requires the use of (2.31c) together with a well-known vector identity, and Eq. (2.31j)

has been used in the last line. Substituting this latter expression into Eq. (2.38a)

and rearranging gives

vν
∂⟨ψν⟩ν

∂t
+ ⟨ψν⟩ν

∂vν
∂t

= ∇ ·
{
vνDν

[
∇r⟨ψν⟩ν +

1

∆Vν

∫
σ

ψ̃νnν dσ

]}
− 1

∆V

∫
σ

[ jD − ψνuσ] · nν dσ . (2.38c)

If the ν-phase is static (i.e., uσ = 0 everywhere on the σ-boundary) and its size

remains unchanged (i.e., vν = const.) the above equation simplifies to

vν
∂⟨ψν⟩ν

∂t
= ∇ ·

{
vνDν

[
∇r⟨ψν⟩ν +

1

∆Vν

∫
σ

ψ̃νnν dσ

]}
− 1

∆V

∫
σ

jD · nν dσ .

(2.38d)

It is recalled that in this equation the term in curly brackets is equal to −⟨jD⟩;
compare to Eq. (2.38a). Lehner used a reciprocity argument involving the quantities

⟨∇ψν⟩ and ∇⟨ψν⟩ν to derive the mesoscopic21 form of Fick’s law as [148, Eq. (24)]

⟨jD⟩ = −vνDνKν∇⟨ψν⟩ν (2.39a)

and the effective diffusion tensor is defined by [148, Eq. (35)]

Deff
ν = DνKν , (2.39b)

21Lehner alluded to his result as “the macroscopic form of Fick’s law”. See the comment on

terminology on p. 61 of this text.
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and Kν , a dimensionless tensor, was termed the ‘intrinsic conductivity’: it quantifies

hindrance to free diffusion in the ν-phase due to the structure of the heterogenous

medium; for the special case of an isotropic porous medium, the intrinsic conductivity

is a non-negative scalar at most unity [148, p. 824]. This parameter can be related to

the reciprocal of the tortuosity coefficient [87, p. 827]. Previously Gray had defined

a ‘dispersion tensor’ 22 which afforded an expression of the form given by (2.39a); cf.

Eqs (32) and (35) of Ref. [152], and references therein.

To arrive at the mesoscopic form (2.39a) of Fick’s law, Lehner required the fol-

lowing physical assumptions [148, pp. 822 – 824]:

1. A statistically homogenous, rigid porous medium is considered whose pores (the

ν-phase) are filled with a dilute solution of some tracer.

2. The diffusion coefficient, Dν , of tracer molecules in the ν-phase is spatially

uniform. Moreover, diffusion should be nearly steady-state on a microscopic

scale. This latter condition is expected to be satisfied if any diffusive transients

of microscopic concentration of tracer in the ν-phase are allowed to decay over

times of the order of

[ν-phase microscopic characteristic length]2

Dν

(2.40a)

and if any changes in phase-averaged quantities occur over much longer times

of the order of the characteristic diffusion time inside a volume element, given

by

[volume-element characteristic length]2

Dν

. (2.40b)

From the mesoscopic-scale condition (2.40b) it may reasonably be assumed

that the microscopic-scale condition (2.40a) will be satisfied when changes in

phase-averaged concentrations occur over time scales much longer than that

given by (2.40a) [148]. For example, given a characteristic length of 0.1 µm,

22The tensor defined by Gray also included a convective term due to the spatial deviation velocity

and spatial deviation concentration [refer to Eq. (2.31f) in the text] in the ν-phase.
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which is less than the typical cell diameter, and using a typical value of Dν ∼
1 µm2 ms−1, mesoscopic processes should have characteristic times greater than

about 10 µs. In this regard, we shall assume that the condition of nearly steady-

state microscopic diffusion in extravascular space is satisfied in the tortuosity

limit (Section 2.4.4).

3. The microscopic flux of tracer across the ν-phase boundary is either uniform

(possibly zero) or proportional to the difference between the amplitude of the

microscopic concentration ψν at the ν-boundary and a ‘mean equilibrium con-

centration’ [148] along the surface of the boundary; this latter concentration

does not vary throughout a given volume element.

Substituting (2.39a) and (2.39b) in (2.38d), and introducing the appropriate con-

sumption/relaxation term, the mesoscopic equation of continuity involving diffusive

transport and consumption/relaxation in the ν-phase reduces to

vν
∂⟨ψν⟩ν

∂t
= ∇ · vνDeff

ν ∇⟨ψν⟩ν − vνRν⟨ψν⟩ν −
1

∆V

∫
σ

jD · nν dσ ; (2.41)

see Eqs (10) and (38) of Ref. [148] and Eq. (37) of Ref. [152]. At the interface between

the capillary wall and the interstitial space, jD represents the diffusive permeation

flux between the plasma and interstitial phases; this flux is evaluated in the next

Subsection of this Appendix.

We base the subsequent discussion of diffusion and consumption/relaxation in ex-

travascular space on the foregoing results. The extravascular space shall be modelled

as a two-phase system consisting of interstitial (ν → is) and intracellular (ν → ic)

phases; transport and exchange associated with cell membranes are regarded as neg-

ligible in this Thesis. Transport and exchange in whole extravascular tissue are then

determined by processes (i.e., diffusion and consumption/relaxation in our simplified

model) which occur at the interstitial and intracellular scale; cf. Ref. [146, p. 399].
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Case 1 Impermeable parenchymal cell membranes

The simplest case is that of extravascular tracers which do not cross poorly per-

meable parenchymal cell membranes to any appreciable extent. The flux jD is thus

either very small or zero and Eq. (2.41) simplifies to

∂⟨ψis⟩is

∂t
= ∇ ·Deff

is ∇⟨ψis⟩is −Ris⟨ψis⟩is (2.42a)

or, since in this case ⟨ψev⟩ = vis⟨ψis⟩is,

∂⟨ψev⟩
∂t

= ∇ ·Deff
is ∇⟨ψev⟩ −Ris⟨ψev⟩ . (2.42b)

Thus, for extravascular extracellular tracers the mesoscopic diffusion–consumption

equation can be written in terms of either the intrinsic phase-averaged concentration

or the average extravascular concentration, in each case involving the effective

interstitial diffusion coefficient. The above equations are formally identical with

governing equation (2.1b).

Case 2 Weakly permeable parenchymal cell membranes

On the other hand, for tracers which do permeate the parenchymal cell membrane

the transmembrane flux will not, in general, be determined by a mean equilibrium

concentration at any given time scale. In this case, Lehner’s development (Ref. [148];

condition 3 on p. 75 above) will be applicable neither to plasma–interstitial exchange

nor to interstitial–intracellular exchange. However, for weakly permeable membranes,

we may assume that ψic ≪ ψis at cell membranes. For example, in nervous system

tissues the interstitial-to-intracellular volume ratio is ∼ 0.2.23 Hence the intracellular-

to-interstitial flux can be assumed, on average, very small, and the interstitial-to-

intracellular flux will be very nearly equal to κσψis; in this case condition 3 above is

approximately satisfied. Writing Eq. (2.41) for the both interstitial and intracellular

23See, e.g., Table I of Ref. [70] for values of interstitial volume fractions for various nervous system

tissues.
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phase, and adding this pair of equations, gives

∂⟨ψev⟩
∂t

= ∇ ·
[
visD

eff
is ∇⟨ψis⟩is + vicD

eff
ic ∇⟨ψic⟩ic

]
− visRis⟨ψis⟩is − vicRic⟨ψic⟩ic . (2.43)

For the case of nearly-equilibrium conditions on a mesoscopic scale, the average

extravascular concentration is approximately equal to each of the intrinsic phase-

averaged concentrations, i.e.,

⟨ψev⟩ ≈ ⟨ψis⟩is ≈ ⟨ψic⟩ic , (2.44)

thus Eq. (2.43) becomes

∂⟨ψev⟩
∂t

= ∇ ·Deff∇⟨ψev⟩ −Reff⟨ψev⟩ (2.45a)

with

Deff ≡ visD
eff
is + vicD

eff
ic , (2.45b)

Reff ≡ visRis + vicRic . (2.45c)

In what follows we examine under which conditions the intrinsic interstitial and

intracellular concentrations may be considered sufficiently near to their equilibrium

value, dependent upon diffusive transport and first-order consumption relaxation;

such conditions are given by Eqs (2.48a), (2.48b) and, in terms of characteristic time

and length scales, by Eqs (2.61a), (2.61b) below. In so doing we adapt for present

purposes the approach taken by Wood and Whitaker [146] in their discussion of

diffusion and reaction in biofilms.24

The concentration difference,

ψδ = ⟨ψis⟩is − ⟨ψic⟩ic , (2.46a)

24The physical situation considered by Wood and Whitaker in Ref. [146] involves diffusive trans-

port within the interstitial and intracellular phases, intracellular Michaelis–Menten reaction and

transmembrane transport mediated by transporter enzymes.
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is conveniently introduced as a measure of deviation from equilibrium. The intrinsic

phase-averaged concentrations are then expressed as

⟨ψis⟩is = ⟨ψev⟩+ vicψδ , (2.46b)

⟨ψic⟩ic = ⟨ψev⟩ − visψδ . (2.46c)

Equation (2.43) is recast in terms of ⟨ψev⟩ and ψδ as

∂⟨ψev⟩
∂t

= ∇ ·Deff ∇⟨ψev⟩ −Reff⟨ψev⟩

+∇ ·
[
visvic(D

eff
is −Deff

ic )∇ψδ
]
− visvic(Ris −Ric)ψδ . (2.47)

This equation suggests that the following conditions should be valid for diffusive

transport with first-order consumption/relaxation processes to be near to mesoscopic

equilibrium:

visvic

∥∥Deff
is −Deff

ic

∥∥
∥Deff∥

∥∇ψδ∥
∥∇⟨ψev⟩∥

≪ 1 , (2.48a)

visvic
|Ris −Ric|

Reff

|ψδ|
⟨ψev⟩

≪ 1 . (2.48b)

Estimates for ∥∇ψδ∥ / ∥∇⟨ψev⟩∥ and |ψδ| /⟨ψev⟩ involving transport and exchange

parameters and appropriate length scales are developed in the sequel. When they

are substituted in (2.48a) and (2.48b), the constraints (2.61a) and (2.61b) below are

obtained.

Condition (2.48a) involves the product of a matrix norm ratio and a vector norm

ratio rather than a ratio of scalars of the form |∇ · (a vector field)|, see Eq. (2.47).

This is reasonable since the use of the surface integral form of the gradient [155,

pp. 119, 122 – 123] gives∣∣∇ ·Deff ∇⟨ψev⟩
∣∣ ≡ ∣∣∣∣ lim

∆V ′→0

1

∆V ′

∫
∆S′

Deff∇⟨ψev⟩ · n dS ′
∣∣∣∣

≤ lim
∆V ′→0

1

∆V ′

∫
∆S′

∣∣Deff∇⟨ψev⟩ · n
∣∣ dS ′

= O
[

lim
∆V ′→0

1

∆V ′

∫
∆S′

∥Deff∇⟨ψev⟩∥ dS ′
]

= O
[
∆S

∆V
∥Deff∇⟨ψev⟩∥

]
, (2.49a)
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and similarly for
∣∣∇ · (Deff

is −Deff
ic )∇ψδ

∣∣. ∆V ′ denotes a volume enclosed by the sur-

face ∆S ′ and containing the point at which the left-hand side of (2.49a) is evaluated;

the primed notation is used to avoid confusion with that employed for a physical

volume element of size ∆V with surface area ∆S. In the last line of (2.49a) the

mathematical limit has been approximated with its physical counterpart on a meso-

scopic scale. This approximation is reasonable for sufficiently small volume elements.

Further, since ∥Deff∇⟨ψev⟩∥ ≤ ∥Deff∥∥∇⟨ψev⟩∥, where the matrix norm is that in-

duced by the considered vector norm [156, p. 8], we may use the constraint (2.48a)

instead of the alternative condition, from Eq. (2.47),

visvic

∥∥(Deff
is −Deff

ic )∇ψδ
∥∥

∥Deff∇⟨ψev⟩∥
≪ 1 . (2.49b)

When either one of the two consumption/relaxation rates markedly dominates,

the two-phase system will not be near to equilibrium and the constraint (2.48b) will

likely not be met; this situation might still be adequately described as one with totally

absorbing boundary conditions (Section 2.3.1, p. 35). For example, when Ric ≫ Ris

we expect ⟨ψic⟩ic ≪ ⟨ψiv⟩is for times t & R−1
is , hence ⟨ψev⟩ ≈ vis⟨ψis⟩is ≈ visψδ and the

left-hand side of (2.48b) is close to unity.

On the other hand, if neither consumption/relaxation rate is clearly dominant,

then by the use of (2.45c), and noting that vis, vic < 1, the condition in (2.48b) can

be replaced by the more conservative, but simpler, constraint

|ψδ| ≪ ⟨ψev⟩ , (2.49c)

which simply expresses that near to equilibrium the deviation of the intrinsic phase-

averaged concentrations about their weighted sum should be small.

In order to obtain estimates for the ratios on the left-hand side of constraints

(2.48a) and (2.48b), a differential equation for ψδ is derived below. Writing Eq. (2.41)

for both the interstitial and intracellular phases, dividing each equation through by

the respective volume fraction (ignoring variations in these parameters), and sub-
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tracting the resultant expressions, yields

∂ψδ
∂t

= ∇ ·
[
Deff

is ∇⟨ψis⟩is −Deff
ic ∇⟨ψic⟩ic

]
−
[
Ris⟨ψis⟩is −Ric⟨ψic⟩ic

]
− 1

visvic∆V

∫
σ

jD · nis dσ , (2.50a)

where nis is an outwardly directed unit normal on the interstitial phase (Fig. 2.7).

The total flux through the ν-boundary can be expressed in terms of the microscopic

concentrations of tracer at each face of the boundary, as∫
σ

jD · nis dσ =

∫
σ

κσ [ψis − ψic] dσ = κσSσ [⟨ψis⟩|σ − ⟨ψic⟩|σ] , (2.50b)

where κσ is a mass transfer coefficient, Sσ denotes the surface area of the interstitial–

intracellular boundary in a volume element, and an obvious notation has been used

for the surface-averaged concentrations over the σ-boundary. Whitaker has shown

that if the fluctuations in the microscopic concentration are small, and if the charac-

teristic length of a volume element is much smaller than the respective characteristic

lengths over which the intrinsic phased-averaged concentrations and their spatial

derivatives change, then the surface-averaged concentrations can be substituted with

good approximation by the intrinsic phase-averaged concentrations; see Ref. [151,

Section 1.3.3] and Whitaker’s earlier work [145, pp. 17 ff.]. If these conditions hold,

Eq. (2.50a) becomes

∂ψδ
∂t

= ∇ ·
[
Deff

is ∇⟨ψis⟩is −Deff
ic ∇⟨ψic⟩ic

]
−
[
Ris⟨ψis⟩is −Ric⟨ψic⟩ic

]
− κσSσ
visvic∆V

[
⟨ψis⟩is − ⟨ψic⟩ic

]
. (2.50c)

Next, substituting the concentration decompositions (2.46b) and (2.46c) in (2.50c)

and rearranging, gives

∂ψδ
∂t

= ∇ ·Disic∇ψδ −Risicψδ −
κσSσ

visvic∆V
ψδ

+∇ · (Deff
is −Deff

ic )∇⟨ψev⟩ − (Ris −Ric)⟨ψev⟩ (2.51a)

with

Disic ≡ vicD
eff
is + visD

eff
ic , (2.51b)

Risic ≡ vicRis + visRic . (2.51c)
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Thus, Disic and Risic respectively describe the diffusion and consumption/relaxation

for the concentration difference ψδ.

Equation (2.51a) affords the following order-of-magnitude estimates:

∂ψδ
∂t

= O
[
∆ψδ
τδ

]
, (2.52a)

∂ψδ
∂t

= O
[
∥Disic∥
ℓδℓδ1

∆ψδ

]
−O[Risicψδ]−O

[
κσSσ

visvic∆V
ψδ

]
+O

[
∥Deff

is −Deff
ic ∥

ℓavℓav1
∆⟨ψev⟩

]
−O[(Ris −Ric)⟨ψev⟩] , (2.52b)

where ℓδ and ℓδ1 denote the characteristic lengths associated with changes in ψδ and

∇ψδ, respectively, over a characteristic time interval τδ; and the characteristic lengths

ℓav, ℓav1 refer to the concomitant changes in ⟨ψev⟩ and ∇⟨ψev⟩.
The right-hand side of (2.52b) shows that uncertainty in the magnitude of the

time derivative ∂ψδ/∂t may arise due to terms of the same order of magnitude having

opposite algebraic signs. Equating the right-hand sides of (2.52a) and (2.52b), and

rearranging, yields the estimate25

∆ψδ
∆⟨ψev⟩

∼
O
[
∥Deff

is −Deff
ic ∥τδ

ℓavℓav1

]
−O

[
⟨ψev⟩
∆⟨ψev⟩

(Ris −Ric)τδ

]
O[1]−O

[
∥Disic∥τδ
ℓδℓδ1

]
+

{
O[Risicτδ] +O

[
κσSστδ
visvic∆V

]}
ψδ
∆ψδ

. (2.53a)

In general the analysis of order-of-magnitude estimates should also take into ac-

count the effect of the initial and boundary conditions [146, p. 408]. Here, initial rest

conditions are assumed. Hence, it may be expected that first ⟨ψev⟩ and ψδ will both
increase due to intracapillary inflow and finite cell membrane permeabilities; that

then they will plateau at somewhat different time instants due to the interplay of dif-

fusive and consumption/relaxation effects; and that, finally, they both will decrease

due to the combined effects of outflow and consumption/relaxation.

25Remark on notation. Throughout this Appendix, any expression of the form α ∼ β is to be

understood in the sense that α and β are of the same order of magnitude, i.e., over the appropriate

value ranges of α and β, the ratio |α/β| is bounded by some fixed positive number, M (cf. Ref. [157,

pp. 273, 277 – 278]); the estimates given in this Appendix do not, in general, enable us to assert that

|α/β| ≈ 1. Landau’s notation, α = O[β], also has been somewhat loosely employed in the text and

conveys the same meaning.
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Since ψδ is a deviation from the average concentration ⟨ψev⟩, see Eq. (2.46a), its

magnitude can be assumed of the same order as ∆ψδ, i.e., changes in ψδ can be

approximated with ψδ itself [146, p. 408] and |∆ψδ/ψδ| = O[1].

If the difference between the interstitial and intracellular diffusion coefficients,

and consumption relaxation rates, is small, the ratio ⟨ψev⟩/∆⟨ψev⟩ is expected to be

highest when τδ is of the order of the time to probe the geometrical tortuosity of

the interstitial and intracellular spaces (i.e., the time to reach the tortuosity limit;

Sections 2.1.2 and 2.4.4). Thus, neglecting in (2.47) both the concentration difference

ψδ and its spatial variation, we get the estimate

⟨ψev⟩
∆⟨ψev⟩

∼
−O[1] +O

[
∥Deff∥τδ/(ℓavℓav1)

]
O[Reffτδ]

. (2.53b)

In order to simplify (2.53a) it is convenient to define a characteristic time, τisic,

and a characteristic length, ℓisic, by

τisic ≡
[
Risic +

κσSσ
visvic∆V

]−1

=

[
Risic +

1

τis
+

1

τic

]−1

, (2.54a)

ℓ2isic ≡ ∥Disic∥τisic , (2.54b)

where τν = vν∆V/(κσSσ) is the mean residence time in the ν-phase under well-mixed

conditions with negligible consumption/relaxation.26 These parameters are discussed

in detail below. Inserting (2.53b) in (2.53a), dividing through by ∥Disic∥τδ and using

(2.54a) and (2.54b), the estimate in (2.53a) can be rearranged as

∆ψδ
∆⟨ψev⟩

∼ ℓ2isic
ℓavℓav1

×
O
[
∥Deff

is −Deff
ic ∥

∥Disic∥

]
−O

[
Ris −Ric

Reff

∥Deff∥
∥Disic∥

]
+O

[
Ris −Ric

Reff

ℓavℓav1
∥Disic∥τδ

]
O[1]−O

[
ℓ2isic
ℓδℓδ1

]
+O

[
τisic
τδ

] .

(2.55)

26Since, under well-mixed conditions, the net flux of tracer molecules between the ν-phases in

adjacent volume elements will be zero, the characteristic time τν can be defined on the scale of a

single volume element up to the scale of an entire mesoscopically homogenous region.
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The various order-of-magnitude terms which appear in this expression and in

(2.53b) and are evaluated in the sequel. The final estimates are given by Eqs (2.58) –

(2.60).

The parameters ℓav and ℓδ may be estimated on physical grounds as follows. Ac-

cording to the diffusion–consumption equation (2.47) for the volume-element averaged

concentration, ⟨ψev⟩, we may write the estimate

ℓ2av & ∥Deff∥τδ . (2.56a)

Here the & sign is appropriate because ℓav includes the effect not only of diffusion,

but also of transmembrane transfer and consumption/relaxation. Since all these three

processes tend to smooth out any concentration non-uniformities, the typical length

ℓav associated with a given change ∆⟨ψev⟩ during a fixed interval τδ is greater than

that due only to diffusion, ∥Deff∥τδ. By a similar argument, from Eq. (2.51a), which

describes the diffusive transport and consumption/relaxation of the concentration

difference ψδ, we get

ℓ2δ & ∥Disic∥τδ . (2.56b)

It is difficult to compare the parameters ℓav and ℓδ a priori, since it can happen

that the average concentration ⟨ψev⟩ changes while the concentration difference ψδ

does not, and vice-versa. For example, these situations might occur in the case of

tissues with, respectively, highly and poorly permeable cell membranes. However,

based on (2.56a) and (2.56b) we may put

ℓav ∼ ℓδ . (2.56c)

We assume that the average concentration varies more smoothly than the concen-

tration difference, and hence that the characteristic length associated with a change

in ∇⟨ψev⟩ during an interval τδ is greater than the characteristic length associated

with a change in ∇ψδ. Thus,

ℓav1 & ℓδ1 . (2.56d)
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We further assume that changes in ∇⟨ψev⟩ and ∇ψδ occur over distances greater than
do the respective changes in ⟨ψev⟩ and ψδ; for example, if ∇⟨ψev⟩ is a constant, ℓav is

finite but ℓav1 → ∞; cf. Ref. [146, p. 408]. Thus,

ℓav1 & ℓav , ℓδ1 & ℓδ . (2.56e)

Combining the constraints given by (2.56c) – (2.56e) gives

ℓav1 & ℓav ∼ ℓδ , ℓav1 & ℓδ1 & ℓδ . (2.56f)

The parameter τisic is interpreted as a characteristic time for changes in the dif-

ference, ψδ = ⟨ψis⟩is − ⟨ψic⟩ic, between the intrinsic phase-averaged concentrations

under well-mixed conditions. This may be understood qualitatively by noting that

(i) τisic does not depend upon the phase diffusion coefficients but varies inversely

with mass transfer coefficient, κσ; and that (ii) it is the mass transfer and con-

sumption/relaxation parameters of the smaller-sized phase that dominate in (2.54b);

intuitively, the influence of the smaller-sized phase on the concentration difference is

greater than the influence on the volume-element averaged concentration. Consider,

for instance, the case in which vis ≪ vic and the two phases are initially void of

tracer. If a given quantity of tracer is delivered to the smaller-sized interstitial com-

partment, we may assume that ⟨ψis⟩is ≫ ⟨ψic⟩ic at not too long times after delivery,

and for this case Eq. (2.54b) gives τisic ≈ [Ris + 1/τis]
−1. This result is physically

reasonable, for when vis ≪ vic the intracellular concentration rises slowly, and hence

the rate at which the large initial concentration difference diminishes is determined

by the rate of interstitial-to-intracellular transfer and by consumption/relaxation in

the interstitial phase.

When the transport of tracer molecules is not adequately described by ideal well-

mixed conditions, diffusive transport must be taken into account and changes in the

concentration difference ψδ take longer. Hence, it is reasonable to assume that the

characteristic time, τδ, for changes in ψδ satisfies

τδ ≫ τδ|well-mixed = τisic , (2.56g)

84



Chapter 2. Blood–Tissue Tracer Exchange: Model

whence τisic/τδ ≪ 1 in the denominator of (2.55).

Combining the relationships ℓ2isic = ∥Disic∥τisic and τisic ≪ τδ, and further making

use of the estimates given by (2.56b) and (2.56f), yields the following inequality chain

ℓ2isic ≪ ℓ2δ . ℓδℓδ1 . ℓavℓav1 . (2.56h)

Thus, the first term on the right-hand side of (2.55) and the second term in the

denominator of that expression are estimated, respectively, as ℓ2isic/(ℓavℓav1) ≪ 1 and

ℓ2isic/(ℓδℓδ1) ≪ 1.

We may note that, for a fixed time τδ, the characteristic lengths associated with

the same change ∆ψδ under both well-mixed and not-well-mixed conditions can be

assumed to satisfy

ℓisic > ℓδ . (2.56i)

However, in order to satisfy the inequality ℓ2isic ≪ ℓδℓδ1 in (2.56h), it must be that

ℓδ < ℓisic ≪ ℓδ1 , (2.56j)

which refines the second order-of-magnitude relationship in (2.56e).

Next, we estimate the terms in the numerator of (2.55). Assuming scalar diffu-

sivity parameters for simplicity, it is easy to establish the bounds

|Deff
is −Deff

ic |
Disic

,
|Ris −Ric|

Reff
≤ max

{
1

vis
,
1

vic

}
(2.57a)

and

min

{
vic
vis
,
vis
vic

}
≤ Deff

Disic

≤ max

{
vic
vis
,
vis
vic

}
(2.57b)

by expressing the considered ratios as functions of the variable Dic/Dis, say, with vis

treated as a parameter. For typical values of the volume fractions vis and vic, the

ratio in (2.57b) spans approximately two orders of magnitude. Thus, a reasonable

estimate of the magnitude of the first two terms in brackets in the numerator of

(2.55) is given by the geometric mean of the minimum and maximum values and is

(visvic)
−1/2 in both cases.
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The third term in the numerator of (2.55) includes a factor ℓavℓav1/(∥Disic∥τδ) &
ℓavℓav1/ℓ

2
δ , from (2.56b). If this term is not too large, the estimate in (2.55) finally

simplifies to27 ∣∣∣∣ ∆ψδ
∆⟨ψev⟩

∣∣∣∣ ∼ 1
√
visvic

ℓ2isic
ℓavℓav1

, (2.58)

and this is the desired estimate for the term ∥∇ψδ∥/∥∇⟨ψev⟩∥ in (2.48a).

Next, we estimate the term in the numerator of (2.53b). By the use of (2.56a)

and (2.56f) we get ∥Deff∥τδ/(ℓavℓav1) . ℓav/ℓav1 . 1. Thus, the order-of-magnitude

estimate in (2.53b) simplifies to ∣∣∣∣ ⟨ψev⟩
∆⟨ψev⟩

∣∣∣∣ ∼ 1

Reffτδ
. (2.59)

From the order-of-magnitude estimate ψδ = O[∆ψδ] we obtain the required esti-

mate for the term |ψδ|/⟨ψev⟩ in (2.48b):

|ψδ|
⟨ψev⟩

= O
[

∆ψδ
∆⟨ψev⟩

∆⟨ψev⟩
⟨ψev⟩

]
∼

∣∣∣∣ ∆ψδ
∆⟨ψev⟩

∣∣∣∣Reffτδ . (2.60)

Substituting the estimates given in (2.58) and (2.60), the constraints in (2.48a)

and (2.48b) for diffusion and consumption/relaxation processes near to exchange

equilibrium can be recast as

∥Deff
is −Deff

ic ∥
∥Deff∥

√
visvic ℓ

2
isic

ℓavℓav1
≪ 1 , (2.61a)

|Ris −Ric|τδ
√
visvic ℓ

2
isic

ℓavℓav1
≪ 1 , (2.61b)

where the various characteristic lengths are defined following Eqs (2.52a), (2.52b)

and (2.54b). The constraints are below.

When ∥Deff
is ∥ and ∥Deff

ic ∥ are comparable, as is likely the case in biological tissues,

the constraint given by (2.61a) is likely satisfied on account of the estimate (2.56h).

To gain some insight into the order of magnitude of the left-hand side of (2.61b)

we refer to a simulation study by Strijkers et al. [158] which examined dependence

27It is easily checked with the use of (2.54b) that the right-hand side of (2.58) remains finite when

vν → 0.
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of the longitudinal relaxation rate of extravascular water on concentration of an in-

tracellular Gd-based tracer. In this study extracellular, cytoplasmic and vesicular

compartments were considered, and the simulations showed [158, Fig. 3g, h] that

water exchange, both interstitial–cytoplasmic and cytoplasmic–vesicular, would oc-

cur in a fast (respectively, slow) regime for concentrations of paramagnetic tracer

below (respectively, above) a small range of concentration values dependent upon

cytoplasmic/vesicular compartmentalisation of the tracer.28

Fast (respectively, slow) chemical exchange implies that the inversion-recovery

time course is accurately described by a monoexponential (respectively, biexponen-

tial) curve with apparent relaxation and compartment fraction parameters. Specifi-

cally, under fast interstitial–intracellular exchange the relaxation rate is equal to the

volume-weighted average of the interstitial and intracellular relaxation rates [89], as

given by Eq. (2.45c). Fast interstitial–intracellular exchange occurs when (p. 56)

|Ris −Ric| ≪
1

τis
+

1

τic
(2.62)

and it is seen with the use of (2.54a) that |Ris−Ric|τisic ≪ 1, but from this it cannot

be inferred that |Ris−Ric|τδ ≪ 1 since τisic ≪ τδ, as given by (2.56g). However, if the

characteristic time for transient changes in ψδ is conservatively estimated as τδ . 1 s,

the simulation data of Strijkers et al. [158] suggests that the constraint (2.61b) might

be reasonably well satisfied for typical ASL experiments.

It is appropriate to discuss the above results for extravascular transport and

exchange across weakly permeable membrane permeabilities in the light of the Kärger

model introduced in Chapter 1 (p. 11). According to this model, the DWI signal can

28Model input parameters from Table 1 (Calculation 1) of Ref. [158]: interstitial, cytoplasmic

and vesicular volume fractions: 0.5, 0.479 and 0.021, respectively; longitudinal relaxation rate in

the absence of exchange: 0.5 s−1 in the interstitial and vesicular compartments and 0.4 s−1 in the

cytoplasmic compartment; diffusive membrane permeability coefficient for water, 10×10−3 µmms−1.

The selected value of interstitial volume fraction is significantly higher than in brain and myocardial

tissue; cf. Refs [70, 110]. The selected diffusive permeability to water of generic parenchymal cells

is approximately an order of magnitude higher than that for capillary endothelial cells in brain and

myocardium; cf. Table 2.1 in this Thesis.
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be expressed as a phase-volume weighted sum of decaying exponentials [48, p. 142].

Fieremans et al. [49] have shown the Kärger model to be accurate for the case of

poorly permeable cell membranes at long measurement times; the effective diffusion

coefficient predicted is of the form (2.45b) and is time dependent, cf. Ref. [49, Eq. (13)]

and references therein. We note that for weakly permeable membranes a relatively

long measurement time is needed for the intrinsic phased-averaged concentrations to

reach their equilibrium value.

Specifically, for the case of a random in-plane packing of parallel permeable cylin-

ders investigated by Fieremans et al. [49], the long-time effective diffusion coefficient

for the Kärger model is given by visDis(t→ ∞)+vivDiv(t→ ∞), where the long-time

diffusion coefficients are smaller than those at time zero by a factor dependent upon

the respective tortuosity and the orientation angle with respect to cylinder axis, con-

sistent with the intrinsic conductivity parameter in (2.39b). Thus, in the range of

validity of the Kärger model the predicted effective diffusion coefficient is of the same

form as Eq. (2.45b) above.

Based on the foregoing developments, we hypothesise that for ASL experiments

in brain and myocardial tissue, the intrinsic average interstitial and intracellular

concentrations likely satisfy nearly-equilibrium conditions on a mesoscopic scale,

i.e., ⟨ψev⟩ ≈ ⟨ψis⟩is ≈ ⟨ψic⟩ic (see p. 63) for moderate parenchymal cell membrane

permeabilities. Thus, Eq. (2.45a) is expected to describe diffusion–consumption

in the extravascular space of these tissues in terms of the average concentration

⟨ψev⟩. This equation is formally identical with the governing equation (2.1b) of the

blood–tissue exchange model (Section 2.2.1).

Case 3 Highly permeable parenchymal cell membranes

For highly permeable parenchymal cell membranes, one may intuitively expect

that the extravascular space can, on a mesoscopic scale, be regarded as a single

interstitial–intracellular ‘phase’, albeit one consisting of distinct regions with micro-

scopic diffusion coefficients Dis and Dic, and relaxation/consumption rates Ris and
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Ric. Let ψev(r, t) and jD(r, t) denote the microscopic concentration and flux at a

given point and time.

The average extravascular concentration is evaluated from (2.31g) and (2.31e) as⟨
∂ψev

∂t

⟩
=
∂⟨ψis⟩
∂t

+
∂⟨ψic⟩
∂t

− 1

∆V

∫
σ

[ψis − ψic]uσ · nis dσ

=
∂⟨ψis⟩
∂t

+
∂⟨ψic⟩
∂t

=
∂⟨ψev⟩
∂t

. (2.63)

The integral vanishes because the difference in microscopic concentration at each

face of a highly permeable membrane is very small. The spatial average of ∂ψev/∂t

is equal to minus the spatially averaged divergence of the microscopic diffusive flux,

which is evaluated with the use of (2.31i) as

⟨∇ · jD⟩ = ∇ · ⟨jDis⟩+∇ · ⟨jDic⟩+
1

∆V

∫
σ

[ jDis − jDic ] · nis dσ (2.64a)

and the integral vanishes since the interfacial flux is continuous at the σ-boundary.

Further development of the right-hand side of the above equation using the last line

of (2.38b) gives

−⟨∇ · jD⟩ = ∇ ·
{
visDis

[
∇r⟨ψis⟩is +

1

∆Vis

∫
σ

ψ̃isnis dσ

]
+ vicDic

[
∇r⟨ψic⟩ic −

1

∆Vic

∫
σ

ψ̃icnis dσ

]}
. (2.64b)

For the case of highly permeable membranes, a nearly-equilibrium situation im-

plies that spatial deviation concentrations at cell membranes are very nearly equal,

ψ̃is|σ ≈ ψ̃ic|σ. Thus, the above equation simplifies to

−⟨∇ · jD⟩ = ∇ ·
{
(visDis + vicDic)∇r⟨ψev⟩+

Dis −Dic

∆V

∫
σ

ψ̃isnis dσ

}
(2.64c)

and the last term may be assumed small since it is the average of a fluctuation [148,

pp. 823 – 824]. Thus,

−⟨∇ · jD⟩ ≈ (visDis + vicDic)∇2⟨ψev⟩ , (2.64d)
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i.e., the effective diffusion tensor Deff reduces to a scalar and is equal to the volume-

weighted sum of the microscopic interstitial and intracellular diffusion coefficients.

Unlike the case of two phases exchanging through weakly permeable membranes, for

highly permeable membranes the effective intrinsic conductivity parameter (73) is

unity.

In addition, for highly-permeable membranes with fast interstitial–intracellular

exchange, the net consumption/relaxation rate is given by the volume-weighted av-

erage of the interstitial and intracellular consumption/relaxation rates [89]. Thus,

∂⟨ψev⟩
∂t

= (visDis + vicDic)∇2⟨ψev⟩ − (visRis + vicRic) ⟨ψev⟩ . (2.65)

For highly permeable membranes, the characteristic time τδ for a given change

in concentration difference ψδ and the characteristic time τisic for well-mixed condi-

tions, given by Eq. (2.54a), are both expected to decrease, whereas the characteristic

lengths, ℓav and ℓav1, for changes in, respectively, the amplitude and gradient of

the spatially averaged concentration ⟨ψev⟩, are expected to increase. Thus, the con-

straints given by (2.61a) and (2.61b) remain valid for the case of highly permeable

membranes.

Diffusive permeation flux

Tracer transport across a biological membrane is often characterised in terms of the

solute permeability of the membrane, as given by the experimentally determined ratio

of transmembrane flux to tracer concentration difference across the membrane; cf.,

for instance, Refs [60, Eq. (A7)], [148, Eq. (26)] and [154, Section 2.1.2, Eq. (2.19)].

Equation (2.1c) also is of this type; both this equation and the permeation term in

(2.1a) are discussed in this Section.

We consider a highly simplified model of the capillary wall that furnishes an

estimate of the permeability due to exceedingly narrow pores like fenestrae and in-

terendothelial clefts, which together allow for passive diffusion of gases, water, small

hydrophylic molecules and many lipid-soluble solutes (Refs [1, p. 830] and [63]). The

pore width is of the order of 10 nm (our own estimate from [1, Fig. 7.30] for intesti-

nal epithelium and [159, Fig. 21] for mouse brain) and defines the microscopic scale.
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While in, e.g., brain tissue pore widths are comparable to, but apparently not greater

than, the thickness of the interstitial fluid layer (cf. Refs [70, Fig. 1] and [159, Fig.

21]), the total pore volume appears to be much less than the volume of the intersti-

tial space adjacent to the capillary wall. Thus, if the concentration of tracer in the

compartments adjacent to the membrane changes slowly, nearly steady-state diffu-

sion inside the pores can be assumed, leading to a uniform microscopic transcapillary

flux.

Solving the steady-state one-dimensional diffusion equation shows that the intra-

pore diffusive flux will be proportional to the concentration difference across the

membrane, the appropriate partition coefficient,29 the diffusion coefficient for tracer

molecules in the pores and the reciprocal membrane thickness (see, e.g., Ref. [143,

pp. 142 – 145] and the careful discussion given by Friedman in Ref. [154, Sections

2.1.1 and 2.1.2]). The partition coefficient, tracer diffusion coefficient and membrane

thickness can be combined into a single pore permeability coefficient, κp. Thus, the

microscopic transcapillary flux is expressed as

npjκ|microscopic = κp [ψiv(ap−, t)− ψis(ap+, t)] (2.66)

inside a pore, and is zero at non-pore locations; ap−, ap+ denote pore openings at the

luminal and abluminal face, respectively (Fig. 2.9), and the unit vector np is directed

from the luminal to the abluminal face.

Since there is a thin plasma layer (respectively, interstitial fluid bath) between the

erythrocytes (respectively, parenchymal cells) and the capillary wall (see, e.g., Refs

[1, Fig. 38.11] and [108, Fig. 5]), we expect the microscopic concentration of tracer at

each face of the capillary wall to vary continuously, as determined by the time course

of capillary flow and the distribution of pores on the capillary surface.

In the capillary-wall model described above, the microscopic transcapillary flux

is not continuous due to the discrete distribution of pores. On the other hand, the

29The partition coefficient is defined as the ratio of the concentration of tracer in oil to that

in water. Specifically, it is the ratio of the concentration inside the lipid bilayer of a biological

membrane and that in the exterior aqueous environment (Refs [3, p. 19] and [143, pp. 144 – 145]).
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mesoscopic flux is expected to vary smoothly over capillary-wall volume elements

containing sufficiently many pores (Fig. 2.9) provided that the molecules of tracer do

not to stagnate in the endothelial cells. Integrating (2.66) over the abluminal face of

this volume element with the use of the mean value theorem for integrals gives the

capillary boundary condition on a mesoscopic scale as

njκ|mesoscopic =
1

∆Sm

∫
∆Sm

κp [ψiv(ap−, t)− ψis(ap+, t)] dSm

= κ
[
⟨ψiv⟩iv(a−, t)− ⟨ψis⟩is(a+, t)

]
, (2.67a)

where ⟨ψiv⟩iv(a−, t) and ⟨ψis⟩is(a+, t) denote the intrinsic surface-averaged concentra-

tion of tracer over, respectively, the luminal and abluminal face, ∆Sm, of the volume

element with centroid position a (Fig. 2.9), and κ is the mesoscopic capillary wall

permeability,

κ ∼ ∆Sp

∆Sm

κp

∼ pore void fraction× average pore permeability , (2.67b)

where ∆Sp is the total pore area in the considered volume element. This order-of-

magnitude estimate is obtained by using the decomposition given by (2.31f) that

gives

njκ|mesoscopic =
κp∆Sp

∆Sm

[
⟨ψiv⟩iv(a−, t)− ⟨ψis⟩is(a+, t)

]
+

1

∆Sm

∫
∆Sm

κp [ψ̃iv(ap− , t)− ψ̃is(ap+, t)] dSm . (2.68)

The integral in the above equation gives the difference between the intrinsic surface-

averaged spatial deviation for the capillary-wall pore concentration at each face of the

capillary wall. If these two averages can be assumed equal to the respective intrinsic

volume averages (p. 80), then they are equal to zero from Eq. (2.31f).

Equation (2.67a) is formally analogous to the second line of Eq. (2.1c) in the main

body of the text. In order to complete the mesoscopic form of this boundary condi-

tion, the average over the capillary surface of the quantity Dis∇ψis(a+, t) is required.

To that end, we define a generic volume element adjacent to the abluminal capillary
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surface and follow an argument analogous to that leading to the mesoscopic form

(2.39a) of Fick’s law. However, the intrinsic conductivities of such a volume element

and another consisting of only interstitial and intracellular phases will, in general,

differ. While this may have a bearing for the correct interpretation of estimated per-

meabilities, it poses no difficulty for the theoretical evaluation of blood–tissue tracer

exchange quantities (see Chapter 3) and can be circumvented by absorbing into the

mesoscopic capillary wall permeability parameter a scalar term equal to the ratio

of intrinsic conductivities for interstitial–intracellular and interstitial–transcapillary

volume elements. With this convention, the mesoscopic transcapillary permeation

flux in terms of the gradient of the extravascular concentration at the capillary wall

is given by the first line of Eq. (2.1c), where the diffusion coefficient is the same as

enters in the diffusion–consumption equation (2.1b).

Next, we evaluate the divergence of the microscopic diffusive permeation flux

through a capillary-wall pore of volume δVp and uniform cross-section δSp. Since the

pore width is much smaller than the capillary wall thickness,

∇ · jκ ≈
δSp

δVp
npjκ

=
δSp

δVp
κp [ψiv(ap−, t)− ψis(ap+, t)] (2.69a)

and is zero at non-pore locations; the flux into the endothelial cytoplasm is taken to

be zero.

In order correctly to evaluate tracer mass balance in intracapillary space, the

volume average of the divergence of the blood-to-tissue flux (2.69a) must be taken

over a volume element of size ∆V which includes both the capillary lumen and the

capillary wall; the capillary wall thickness is taken into account for now and in the

considered volume element the capillary wall has a volume ∆Vm. However, the form

of (2.69a) indicates that the integral required for evaluation of ⟨∇ · jκ⟩ is non-zero

over only the capillary wall volume. Thus, the volume averaged form of ∇ · jκ is
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membrane pore

endothelial cell

Figure 2.9: Volume element for evaluation of transcapillary permeation.

evaluated as

⟨∇ · jκ⟩ =
1

∆V

∫
∆Vm

∇ · jκ dVm

≈ 1

∆V

∫
∆Vm

δSp

δVp
npjκ dVm

≈ 1

∆V

∫
∆Sm

ℓmδSp

δVp
npjκ dSm

=
∆Sm

∆V
njκ|mesoscopic

≈ κ∆Sm

∆V

[
⟨ψiv⟩iv(a−, t)− ⟨ψis⟩is(a+, t)

]
, (2.69b)

where Eqs (2.67a) and (2.69a) have been used, and δVp = ℓmδSp is the volume of

a pore. If the capillary wall thickness is much smaller than the capillary radius,30

∆Vm ≪ ∆V and (2.69b) simplifies to

⟨∇ · jκ⟩ ≈ viv
⟨ψiv⟩iv(a−, t)− ⟨ψis⟩is(a+, t)

τiv
(2.70a)

where, here, vν 7→ viv is the tracer-accessible intracapillary volume per volume ele-

30Because the thickness of the endothelial layer varies from about 0.5 µm at interendothelial clefts

to about 1 µm at the nucleus [63], a negligibly thin capillary wall is only an approximation.
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ment31 and

τiv =
viv∆V

κ∆Sm

=
∆Viv
κ∆Sm

, (2.70b)

where the numerator is equal to the fraction of the considered volume element that is

accessible to tracer; see Eq. (2.31c), has been used. For cylindrical capillary segments,

Eq. (2.70b) becomes Eq. (2.70b) in the main text.

Upon dividing both sides of (2.70a) by viv we obtain the term due to transcapillary

exchange that appears in Eq. (2.1a).

Mesoscopic blood–tissue exchange equations: a summary

In this Thesis we consider the case in which tracer exchange between plasma and ery-

throcytes is either negligible or else occurs very fast (as for, respectively, Gd-based

tracers and magnetically tagged water) relative to exchange between the intracapil-

lary and extravascular spaces. Then the mesoscopic tracer-balance equation taking

account of intracapillary convection, diffusive transcapillary permeation and first-

order consumption of tracer is obtained from Eqs (2.36) and (2.70a) as

∂⟨ψiv⟩iv

∂t
= −⟨uz,iv⟩iv

∂⟨ψiv⟩iv

∂z
− ⟨ψiv⟩iv(a−, t)− ⟨ψev⟩ev(a+, t)

τiv
−Ris⟨ψiv⟩iv ,

(2.71)

where ⟨ψiv⟩iv and ⟨uz,iv⟩iv are the intrinsic phase-averaged concentration and fluid

velocity, respectively, over the region of intracapillary space, i.e., plasma or whole

blood, which is accessible to tracer; cf. Eq. (2.31b). Under the above-mentioned

exchange conditions, the consumption/relaxation term is correctly given by the last

term of (2.71).

For extravascular extracellular tracers, the mesoscopic tracer-balance equation

taking into account diffusion and consumption/relaxation of tracer in extravascular

space is given by Eq. (2.42a) and is repeated here for convenience:

∂⟨ψis⟩is

∂t
= ∇ ·Deff

is ∇⟨ψis⟩is −Ris⟨ψis⟩is (2.72a)

31See footnote 4 on p. 28.
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with the boundary condition (2.67a):

njκ|mesoscopic = κ
[
⟨ψiv⟩iv(a−, t)− ⟨ψis⟩is(a+, t)

]
. (2.72b)

Here, ⟨ψis⟩is is the intrinsic phase-averaged concentration over interstitial space and

the diffusion tensor Dis reflects, on a mesoscopic scale, the microscopic tortuosity of

interstitial space; see Eq. (2.39b).

On the other hand, for tracers which are able to cross the parenchymal cell mem-

brane, transmembrane exchange, diffusive transport and first-order consumption in

interstitial and intracellular space may not in all cases be described by a single tracer-

balance equation. However, on a time scale such that nearly-equilibrium conditions

exist, i.e., when the intrinsic phase-averaged concentrations ⟨ψis⟩is and ⟨ψic⟩ic are both
very nearly equal to the spatially averaged concentration, ⟨ψev⟩ [see Eq. (2.44)], such
a unified description is indeed possible. The constraints given by (2.61a) and (2.61b)

are indicative of nearly-equilibrium conditions for diffusive transport with first-order

consumption/relaxation. The mesoscopic tracer-balance equation is then given by

∂⟨ψev⟩
∂t

= ∇ ·Deff∇⟨ψev⟩ −Reff⟨ψev⟩ (2.73a)

with the boundary condition

njκ|mesoscopic = κ
[
⟨ψiv⟩iv(a−, t)− ⟨ψev⟩(a+, t)

]
. (2.73b)

For this kind of tracer, the effective diffusion tensor, Deff, is the volume-weighted

sum of the effective interstitial and intracellular diffusion tensors; it is given by Eqs

(2.45b) and (2.65) for the case of, respectively, weakly permeable and highly perme-

able membranes. Intracellular transport and exchange between the cytoplasm and

various cell organelles could be incorporated, in principle, by following a line of anal-

ysis similar to that set forth in this Appendix, however this is outwith the scope of

this Thesis.

We conclude this summary with a remark on notation. In the main body of

this Thesis, all mesoscopic quantities shall be written without angle brackets, for

simplicity. Thus, ⟨uz,iv⟩iv 7→ uz and ⟨ψν(r, t)⟩ν 7→ ψν(r, t). No confusion should arise

96



Chapter 2. Blood–Tissue Tracer Exchange: Model

with an identical notation for microscopic concentration in the ν-phase [cf., e.g., the

integrand of Eq. (2.31a)] which is used in this Appendix only. Also, the mesoscopic

extravascular diffusion coefficient shall be denoted simply by Dev instead of Deff
ev .

2.5.2 Physiologic parameter values

Capillary wall permeabilities to water

In PET experiments Herscovitch and co-workers [160] determined the average global

capillary-permeability surface-area product for H 15
2 O in the human brain as PS =

1.04 mlmin−1 g−1, ranging between 0.78 – 1.52 mlmin−1 g−1 for white matter and the

central cortex, respectively. Eichling et al. [161] obtained PS = 0.023 cm3 s−1 g−1

(= 1.4 mlmin−1 g−1) in the brain of adult Rhesus monkeys using the same radiotracer.

We have estimated the mean intracapillary residence time and the permeability to

water of cortical brain capillaries from the relation 2κ/a ≈ 1/τiv ≡ PS/viv with the

capillary radius parameter a given in Table 2.1 and PS = 1.5 min−1. The resultant

permeability estimate κ = 1.7× 10−3 µmms−1 (Table 2.1) is in good agreement with

the value κ ≤ 1.5 × 10−4 cm s−1 for normal rodent and canine brain, obtained by

Neuder et al. [162].

Wacker et al. [134] estimated both the myocardial intracapillary volume (viv =

12.9%) and the intracapillary–extravascular water exchange frequency (f = 0.48 s−1,

and equivalent to PS) in subjects with coronary artery disease. The authors fitted a

model of Bauer et al. [131] to their measurements of longitudinal relaxation rates in

blood and myocardium at 1.5 T using an intravascular paramagnetic tracer. Then

from these estimates and from the value of capillary diameter given in Table 2.1 we

obtain κ = aPS/2viv = 5.2× 10−3 µmms−1 (Table 2.1), which is comparable to the

value 6× 10−3 µmms−1 for tritiated water obtained by Rose et al. [163].

Tracer diffusion coefficients

The apparent diffusion coefficient of water in the human brain cortex is taken to be

Dev = 0.8 µm2 ms−1 [94]. In rat myocardium, Seland et al. determined a pair of values
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of the water diffusion coefficient, i.e., 1.2 µm2 ms−1 and 3.0 µm2 ms−1, each originating

from a distinct intracellular compartment; the authors employed a pulse sequence that

allowed for combined diffusion and transverse relaxation measurements. Garrido et al.

[135] obtained 1.8 µm2 ms−1 and 2.5 µm2 ms−1 when the applied diffusion gradients

were, respectively, perpendicular, or parallel to, the epicardial surface.

Gordon et al. [164] estimated the diffusion coefficient of Gd-DTPA through 10%

polyvinyl alcohol-cryogel, a close tissue mimic, to be DGd = 0.26 µm2 ms−1. Gillis

et al. [165] determined by MRI methods the diffusion coefficient of Gd(DTPA)2−

(gadopentetate dimeglumine, [166]) in both fresh and glycosaminoglycan-depleted

calf cartilage as 0.184 µm2ms−1 and 0.208 µm2ms−1, respectively. For Gd(HPDO3A)

(gadoteridol) the appropriate values were 0.155 µm2ms−1 and 0.183 µm2 ms−1, re-

spectively [165]. Using the above values, we estimate the characteristic diffusion time

in myocardial and brain tissue to be of the order of, respectively, tens and hundreds

of milliseconds.

Longitudinal relaxation rates

The longitudinal relaxation rates of arterial and capillary blood differ because of

haematocrit dependence of longitudinal (spin–lattice) relaxation. Spees et al. [167]

reported longitudinal relaxation rates of 0.59 s−1 and 0.70 s−1 at haematocrits of 0.30

(typical of capillaries) and 0.40 (typical of larger vessels), respectively, in in vitro

human blood at 1.5 T. Note that the values of Riv listed in Table 2.1 are for whole

blood.

In the following paragraphs we estimate the difference |Riv −Rev| in the absence

of paramagnetic tracers in connection with the condition in (2.7b) for fast intracap-

illary relaxation. The case in which a paramagnetic tracer is present in the blood is

discussed in Section 2.5.4 below.

Let Rtiss denote the apparent longitudinal relaxation rate of whole tissue. In the

healthy human brain, we estimate |Riv −Rtiss| to be in the range 3× 10−5 ms−1 (for

prefrontal cortex) to 6 × 10−4 ms−1 (for corpus callosum and frontal white matter),

using Riv = 1664−1 ms−1 [132] and T1 times of various brain regions reported in
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Refs [133, 168], all at 3 T. For in vivo rat myocardium, we estimate |Riv − Rtiss| ∼
3× 10−4 ms−1 at 2 T, from measurements reported in Ref. [136].

Since in the above brain studies no paramagnetic tracers were used, and since

myocardial T1 times were baseline (pre-contrast) values, the tissue longitudinal re-

laxation rates were likely determined under fast chemical exchange conditions, i.e.,

the net rate of blood–tissue tracer exchange is expected to have been much faster than

the difference between the intracapillary and extravascular relaxation rates [129]. In

this case, the tissue relaxation rate is accurately expressed as a compartment average

[129], i.e., Rtiss ≈ vivRiv+vevRev, from which |Riv−Rtiss| ≈ vev|Riv−Rev|. The values
of Rev listed in Table 2.1 are apparent tissue relaxation rates in the specified tissues.

Renal proximal tubule

A typical mammalian renal proximal tubule can be modelled as three concentric

cylinders representing the luminal, epithelial and interstitial spaces, respectively.

The basolateral membrane covers the outer epithelial surface [137]. Verkman and

Wong [137] estimated the basolateral diffusive permeability to water in adult rabbit

kidneys to be P bl
d = 2× 10−2 µmms−1 at 37 ◦C, corrected for membrane surface con-

volutions. We then estimate the equivalent basolateral membrane permeability for a

right cylindrical surface to be κ = 7× 10−1 µmms−1, with the use of the relationship

κSbl/Vbl = P bl
d (S/V )bl, where (S/V )bl = 4.1 µm−1 [137] is the basolateral membrane

surface-to-volume ratio, Sbl is the basolateral surface area and Vbl is epithelial vol-

ume; we estimated the ratio Sbl/Vbl using the values r1 = 11 µm and r2 = 22 µm for

the luminal and basolateral radius, respectively [137]. Quigley and Baum obtained

a similar value for the permeability to water of juxtamedullary proximal convoluted

tubules of adult rabbits; cf. Fig. 5 of Ref. [140].

2.5.3 An estimate of radial and axial diffusive fluxes

In this Appendix, we assess numerically the validity of the modelling assumption of

negligible axial diffusive fluxes (Section 2.1).

At times of the order of one mean capillary-segment transit time (t ∼ τc), the axial
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diffusive flux at a point on the abluminal face of the capillary wall at the arteriolar

end of the capillary can be estimated to zero-order as

|jDz| = −Dzz∇zψev(a+, t)|z=0

≈ Dz
ψev(a+, t)|z=0 − ψev(a+, t)|z=L

L

≤ Dz
ψev(a+, t)|z=0

L
, (2.74a)

where it has been assumed that the concentration at the outflow end of the capillary

segment is not higher than the concentration at its inflow end.

If t is also much smaller than the characteristic extravascular diffusion time, τD,

in any direction normal to the capillary axis, the radial diffusive flux can be estimated

as

|jDr| = −Drn∇rψev(a+, t)|z=0 ≥ Dr
ψev(a+, t)|z=0

A
. (2.74b)

Thus

|jDz|
|jDr|

<
DzA

DrL
. (2.74c)

Opposite inequality signs arise in (2.74a) and (2.74b) since, in the considered

time frame (0 < t ∼ τc), the intracapillary concentration has been assumed to vary

almost linearly with distance along the capillary lumen, whereas the extravascular

concentration has been assumed to vary non-linearly in all directions perpendicular

to the capillary surface. The inequality in (2.74c) might therefore not apply at times

t ≪ τc because the axial flux of tracer will likely exceed the estimate given by the

second line of (2.74a). It might also not apply at times t > τD because the radial flux

decreases as the diffusive steady state is approached, in which case the inequality in

(2.74b) might be incorrect.

In grey matter, |jDz|/|jDr| ≈ A/L ∼ 0.1 – 0.3, assuming isotropic diffusion, i.e.,

that Dz ≈ Dr. In rat ventricular myocardium, we have estimated |jDz|/|jDr| . 0.2

from the values of capillary segment length (71 – 108 µm) and tissue supply area (395 –

505 µm2) for coronary capillaries given in Ref. [169], and the myocardial diffusion
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coefficients determined by Garrido et al. [135] (see Section 2.5.2). Thus, in the cases

considered here the influence of axial diffusion on transport is expected to be relatively

small.

2.5.4 Condition for fast intracapillary relaxation

In this Appendix we provide numerical examples concerning the condition in

Eq. (2.7b) for fast intracapillary relaxation for the case in which a paramagnetic

tracer is present in capillary blood. An intracapillary paramagnetic tracer present at

high concentration in whole blood enhances the nuclear magnetic relaxation of whole

blood in a way that is mediated by blood–tissue water exchange [90]. Inducing fast

relaxation rates in a given tissue region by loading with paramagnetic tracers can be

used for the estimation of water exchange rates [110, 130, 170].

We have estimated (Riv − Rev)τiv ∼ 10 – 100 in human central cortex at 3 T, for

Gd-DTPA concentrations in plasma of about 4 – 32 mM. The lower concentration

value is appropriate for both the early inflow and late pass phases, while the higher

value is an estimate of peak plasma concentration for a single dose of tracer (0.1 mM

per kg body weight), as derived by Albert et al. [91]. We obtained the required

values of longitudinal relaxation times (for blood and tissue) and tracer relaxivity in

plasma32, respectively, from Refs [132, 133, 166].

Similarly, for human myocardium we have estimated (Riv − Rev)τiv ∼ 0.5 – 5 at

1.5 T, at concentrations of 0.5 – 5 mg per kg body weight of the intravascular tracer

Feruglose; see Table 1 of Ref. [134].

The condition ψiv(z, t) ≪ ψabs
ev (r, t) might not be satisfied if the tracer-induced

shift in the Larmor frequency of whole blood falls in the pass-band of the RF excita-

tion pulse. Typical one-sided excitation bandwidths are of the order of 103 Hz [13].

The shift in the Larmor frequency of blood, f0, in a vessel aligned with the static mag-

netic field is given in SI units by ∆f0 =
1
3
f0∆χ [92], with ∆χ = 0.31× [Gd-DTPA] the

increase, in parts per million (ppm), in the concentration-dependent magnetic sus-

32The relaxivity is defined as the slope of the dependence of solvent relaxation rate with concen-

tration of solute paramagnetic tracer [171].
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ceptibility of blood, and [Gd-DTPA] the millimolar concentration of tracer in whole

blood [91]. For example, at 3 T, a maximum transient Gd-DTPA concentration of

18 mM [91] will shift the proton Larmor frequency of whole blood by about 240 Hz,

which may well fall in the pass-band of the excitation pulse. In this case the condition

ψiv(z, t) ≪ ψev(r, t) might be violated at echo times, TE, such that (Riv−Rev)TE . 1

[compare to relation (2.7b)].

2.5.5 Eigenfunction representations

In this Appendix, the Green’s function method for the evaluation of blood–tissue

tracer exchange is briefly reviewed. This method is the basis for a convenient rep-

resentation of the blood–tissue exchange quantities in terms of the eigenfunctions of

the Laplace operator, as developed in this Thesis.

Overview of Green’s function methods

The Green’s function, G(r, r′, t), for whole extravascular space is the solution to

the diffusion equation (2.10a) for the extravascular space, with the initial condition

G(r, r′, 0) = δ(r−r′). In the present case, G(r, r′, t) is identically zero in the intracap-

illary space and satisfies the boundary conditions (2.10b) and (2.10c). The gradient

operator in the right-hand side of Eq. (2.10a) acts on the first argument of G(r, r′, t).

Then the extravascular concentration for absorbing intracapillary boundary con-

ditions is represented in terms of the Green’s function as

ψabs
ev (r, t) =

∫
ev

G(r, r′, t)ψabs
ev (r′, 0) ddr′ , (2.75)

where the integral is taken over the extravascular space. The above expression satis-

fies Eqs (2.10a) – (2.10d), on account of the above mentioned properties of the Green’s

function, and is valid for an arbitrary initial condition ψabs
ev (r′, 0).

Next we review the standard method of eigenfunction decomposition for con-

structing the Green’s function for an initial- and boundary-value problem. In the
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method of separation of variables, a series solution of the form∑
n

fn(r) exp(−λnt)

is sought. Substitution of the nth term of this series into (2.10a) yields a Sturm–

Liouville eigenvalue equation (cf., for example, Refs [97, pp. 251 ff.], [99, p. 249 ff.]

and [172, p. 342]) as

∇ ·Dev∇fn(r) + λnfn(r) = 0 (2.76a)

with

Devn∇fn(a+) = κfn(a+) , (2.76b)

Devn∇fn(|r| = A) = 0 . (2.76c)

The functions fn(r) are the eigenfunctions
33 of the Laplace operator ∇·Dev∇, the

coefficients λn being the corresponding eigenvalues.34 The eigenvalues form a non-

negative increasing sequence, 0 ≤ λ1 < λ2 < · · · < λn < · · · . The first eigenvalue

vanishes only in the physically trivial case of an impermeable capillary wall (κ = 0).

Because, unlike the general transcapillary flux boundary condition (2.1c), the

absorbing intracapillary boundary condition (2.76b) is homogenous, the normalised

eigenfunctions form a complete orthonormal eigenbasis (Ref. [99], pp. 251, 311). This

means that any function of the spatial coordinate r which satisfies the boundary

conditions, and which has piecewise continuous first and second derivatives, can be

expanded in an absolutely and uniformly convergent series of the eigenfunctions (Ref.

[99], pp. 251, 310 – 312). In particular, the representation of the initial condition

ψabs
ev (r, 0) is

ψabs
ev (r, 0) =

∞∑
n=1

[∫
ev

ψabs
ev (r′, 0)fn(r

′) ddr′
]
fn(r) , (2.77)

33We shall use real-valued eigenfunctions throughout. Where complex-valued eigenfunctions enter

into the formulae, any terms of the form fn(r)fn(r
′) are to be replaced by the product fn(r)f

∗
n(r

′),

where the asterisk denotes complex conjugation.
34There exists a one-to-one mapping between eigenvalues and eigenfunctions, except for the case

of periodic boundary conditions (Ref. [99], p. 310), which are not imposed here.
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where the nth term in brackets represents the projection, ψn(r, 0), of ψ
abs
ev (r, 0) onto

fn(r). Furthermore, ψabs
ev (r, t) is represented as (Ref. [99], pp. 268, 311)

ψabs
ev (r, t) =

∞∑
n=1

[∫
ev

ψabs
ev (r′, 0)fn(r

′) ddr′
]
fn(r) exp(−λnt) . (2.78a)

This can be checked by direct substitution of the above expression in (2.10a) and

(2.10b). The validity of this procedure relies on the uniform convergence of the series

in (2.78a) with respect to both r and t, which allows the interchange of summation and

termwise differentiation (provided that the resultant series is uniformly convergent)

and of summation and integration. This property shall be used in a number of

derivations in the sequel and is justified below (see, for example, pp. 193 – 194 of Ref.

[173] for the standard results on series referred to in the discussion below):

• Since the series in (2.77) converges, and since exp(−λnt) is positive and de-

creases with n, the series in (2.78a) converges for all r and t, by Abel’s test.

• The uniform convergence of the series in (2.78a) with respect to both r and t

follows from the Weierstrass test, by noting that the (m − 1)th remainder is

upper bounded by a certain constant SW for all r and t, i.e.,∣∣∣∣∣
∞∑
n=m

ψn(r, 0)fn(r) exp(−λnt)

∣∣∣∣∣ ≤
∞∑
n=m

|ψn(r, 0)fn(r)| ≤ SW , (2.78b)

on account of the absolute convergence of the series in (2.77).

Making use of the uniform convergence, Eq. (2.77) is rearranged as

ψabs
ev (r, t) =

∫
ev

[
∞∑
n=1

fn(r)fn(r
′) exp(−λnt)

]
ψabs
ev (r′, 0) ddr′ . (2.78c)

On comparison with (2.75), the expression inside the brackets in the above equation

is recognised as the representation of the Green’s function G(r, r′, t) as a uniformly

convergent series of the eigenfunctions [99]:

G(r, r′, t) =
∞∑
n=1

fn(r)fn(r
′) exp(−λnt) . (2.79)
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Note that G(r, r′, t) is symmetric with respect to interchange of its spatial arguments

[99, p. 308]. It is verified by direct substitution that (2.79) satisfies equations (2.10a)

through (2.10c). On putting t = 0 in (2.79) it is seen from (2.78c) that G(r, r′, t)

satisfies the initial condition

G(r, r′, 0) =
∞∑
n=1

fn(r)fn(r
′) = δ(r− r′) , (2.80)

which is the well-known representation of the Dirac delta function in terms of a

discrete eigenbasis. The Green’s function thus satisfies the normalisation condition:∫
ev

G(r, r′, 0) ddr = 1 . (2.81)

It follows from the preceding discussion that the superposition formula (2.75)

does represent the concentration ψabs
ev (r, t). The preceding equations follow from the

theory of Green’s functions and Sturm–Liouville operators, and are general. The only

assumption made is that the tracer diffusion coefficient is invariant with respect to

time.

Series representations

In the following paragraphs we use the foregoing results to obtain the eigenfunction

representation of the blood–tissue exchange quantities introduced in Chapter 2. It has

been deemed convenient first to develop geometry-independent expressions; specific

results for one- and two-dimensional geometries are presented in the next Chapter.

Assuming cylindrical symmetry, the Sturm–Liouville equation (2.76a) in d spatial

dimensions reads

1

rd−1

d

dr

(
rd−1dfn

dr

)
+ q2nf(r) = 0 , a < r < A , (2.82)

where the spatial eigenfrequency, qn, is defined by35

q2n =
λn
Dev

. (2.83)

35The discrete and continuous eigenfrequencies, respectively denoted by qn and q, should not be

confused with the diffusion-weighting vector, q, of DWI MRI, which also has units of inverse length.

See, for example, Ref. [71].
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The use of eigenfrequencies rather than eigenvalues is advantageous (as will be seen

in Chapter 3) when passing to the continuum limit of the eigenvalue spectrum. Eval-

uation of (2.82) with the use of the absorbing intracapillary boundary condition and

the zero-flux condition at the outer tissue boundary, gives

f ′′
n(a+) = −

(
q2n +

d− 1

a2
κa

Dev

)
fn(a+) , (2.84a)

f ′′
n(|r| = A) = −q2nfn(|r| = A) . (2.84b)

Since q2n ≥ 0, the amplitude and curvature of fn at |r| = a and |r| = A have opposite

signs, hence the eigenfunctions are oscillatory in their respective neighbourhoods.

The general behaviour of the eigenfunctions is discussed in detail in Refs [99], pp. 392 –

397, and [174].

The Rayleigh–Ritz relation expresses the eigenvalues as

λn =

∫
S

κf 2
n(a+) dS +

∫
ev

∇fn(r) ·Dev∇fn(r) ddr . (2.85a)

Hence, when Dev is spatially invariant,

q2n =
κS

Dev

f 2
n(a+) +

∫
ev

|∇fn(r)|2 ddr , (2.85b)

where the fn(r) are normalised to have unit norm. Identity (2.85a) is obtained on

multiplying both sides of the Sturm–Liouville equation (2.76b) by fn(r) and integrat-

ing over the extravascular space with the aid of the vector identity

fn(∇ · u) = ∇ · (fnu)−∇fn · u

(e.g., Ref. [101, p. 320]) with u = Dev∇fn, and making use of the Gauss theorem

and the usual boundary conditions. Equation (2.85b) shows that the eigenvalues are

non-negative; see also Ref. [99, p. 252].

The eigenfunction decomposition of the extravascular concentration with an ab-

sorbing intracapillary boundary condition is found by carrying out the integration in

the right-hand side of Eq. (2.78c). For ψabs
ev (r, 0) = 1 this gives

ψabs
ev (r, t) =

∞∑
n=1

[∫
S

κfn(a+) dS

]
fn(r)

exp(−λnt)
λn

(2.86a)

=
κS

Dev

∞∑
n=1

fn(a+)fn(r)
exp(−Devtq

2
n)

q2n
, (2.86b)
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where in the second line each eigenfunction is assumed uniform on the abluminal face

of the capillary wall, fn(a+) = constn. The above equations follow from the identity

λn

∫
ev

fn(r) d
dr =

∫
ev

−∇ ·Dev∇fn(r) ddr

=

∫
S

Devn∇fn(a+) dS

=

∫
S

κfn(a+) dS , (2.87)

which results from integration of the Sturm–Liouville equation (2.76a) with the use

of the Gauss theorem. Here, n is a unit normal directed outwards from the abluminal

capillary surface.

Substituting (2.85b) into (2.86b), rearranging and evaluating at r = a+, we obtain

the concentration at the capillary wall, hence also the transcapillary flux (up to a

factor of κ), under absorbing intracapillary boundary conditions:

ψabs
ev (a+, t) =

∞∑
n=1

[
1−

∫
ev
|∇fn(r)|2 ddr

q2n

]
exp(−Devtq

2
n) (2.88a)

=
∞∑
n=1

[
1 +

Dev

κS

∫
ev
|∇fn(r)|2 ddr
f 2
n(a+)

]−1

exp(−Devtq
2
n) . (2.88b)

These equations comprise the effect of capillary permeability and extravascular

diffusion, as well as the relative contribution of the eigenfrequencies at different dif-

fusion times. To gain qualitative insight into the role of diffusion, we estimate the

interval of eigenfrequencies that contribute most to the transcapillary flux. To esti-

mate the nth term of (2.88b) we use the order-of-magnitude estimates

∥∇fn∥2 ∼ q2n∥fn∥2 ,

f 2
n(a+) ∼

∥fn∥2

Vev
,

both of which are plausible for eigenfunctions of the form exp(±iqn|r| + δn) in one

linear dimension, or for |r|−1/2 exp(±iqn|r| + δn) in one radial dimension (for large

|r|). Thus,

ψabs
ev (a+, t) ∼

∞∑
n=1

1

1 +Devτevq2n
exp(−Devtq

2
n) , (2.89)
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with the mean extravascular residence time τev = Vev/κS, from Eq. (2.2c). The main

contribution to the above sum is due to eigenfrequencies

qn . min

{
1√
Devt

,
1√

Devτev

}
. (2.90)

The interval of contributing eigenfrequencies becomes narrower as the diffusion time

increases, as expected. Note that the normalised ‘cut-off’ eigenfrequency for short

diffusion times may be defined by

qA ∼
√

1

Devτev
∼

√
κa

Dev

. (2.91)

Integrating (2.86a) and (2.86b) once more yields the spatially averaged extravas-

cular concentration for absorbing intracapillary boundary conditions:

ψabs
ev (t) =

1

Vev

∞∑
n=1

[∫
S

κfn(a+) dS

]2
exp(−λnt)

λ2n
(2.92a)

=
1

Devτev

κS

Dev

∞∑
n=1

f 2
n(a+) exp(−Devtq

2
n)

q4n
. (2.92b)

The representation of the blood-to-tissue impulse response function, Eq. (2.15),

is obtained as follows:

w(r, t) = −∂ψ
abs
ev (r, t)

∂t

=

∫
ev

−∂G(r, r
′, t)

∂t
ddr′

=

∫
ev

−∇ ·Dev∇G(r, r′, t) ddr′

=

∫
ev

−∇′ ·Dev∇′G(r, r′, t) ddr′

=

∫
S

Devn∇′G(r, a+, t) dS

=

∫
S

κG(r, a+, t) dS . (2.93)

In the second line of (2.93), ψabs
ev (r, t) has been represented in terms of the Green’s

function and the order of differentiation and integration has been interchanged. In

the third line, the operator ∇ acts on r, whereas the variable of integration is r′.
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However, the symmetry of the Green’s function with respect to interchange of its

spatial arguments is used to obtain

∇ ·Dev∇G(r, r′, t) =
∞∑
n=1

{∇ ·Dev∇fn(r)} fn(r′) exp(−λnt)

=
∞∑
n=1

−λnfn(r)fn(r′) exp(−λnt)

= ∇′ ·Dev∇′G(r, r′, t) , (2.94)

which follows directly from the Sturm–Liouville equation (2.76a) and the eigenfunc-

tion representation of G(r, r′, t) (2.79); here ∇′ acts on the argument r′. In the fourth

line of (2.93) the Gauss theorem has been applied with the use of both the transcap-

illary tracer flux condition (2.10b) and the zero-flux condition at the outer boundary

of extravascular space.

The eigenfunction representation of w(r, t) is obtained by substituting (2.79) in

(2.93) as

w(r, t) =
∞∑
n=1

[∫
S

κfn(a+) dS

]
fn(r) exp(−λnt) (2.95a)

= κS

∞∑
n=1

fn(a+)fn(r) exp(−Devtq
2
n) . (2.95b)

Similarly, the eigenfunction representation of wµ(t), Eq. (2.16b), is given by

wµ(t) =
∞∑
n=1

[∫
S

κfn(a+) dS

]2
exp(−λnt)

λn
(2.96a)

=
κ2S2

Dev

∞∑
n=1

f 2
n(a+)

exp(−Devtq
2
n)

q2n
. (2.96b)

The limiting form of w(r, t) for small time can be obtained from the asymptotic

formula [103]:

∞∑
n=1

f 2
n(r) exp(−λnt) ∼

1

Vev

∞∑
n=1

exp(−λnt) , t→ 0 . (2.97)

The left-hand side of the above expression is equal to G(r, r, t), from Eq. (2.79),

and is independent of position, as shown by the right-hand side. This is because
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the probability for a diffusing molecule to be found within a small volume around

its initial position, r′, is, at short observation times, independent of r′. Putting

r = r′ = a+ in (2.97) and using (2.15) and then (2.2c), the short-time behaviour

of the blood-to-tissue impulse response function, evaluated at the capillary wall, is

obtained as

w(a+, t) ∼
1

τev

∞∑
n=1

exp(−λnt) , t→ 0 . (2.98)

Lastly, the eigenfunction representation of the effective extravascular depolarised

volume is written as

Λ(t) =
∞∑
n=1

[∫
S

κfn(a+) dS

]2
1− exp(−λnt)

λ2n
(2.99a)

=

(
κS

Dev

)2 ∞∑
n=1

f 2
n(a+)

1− exp(−Devtq
2
n)

q4n
. (2.99b)

Equation (2.99a) is obtained from (2.24) with the use of the concentration (2.86a) to

obtain the eigenfunction decomposition of unity from the initial condition ψabs
ev (r, 0) =

1. Alternatively, one integrates the rate of blood–tissue tracer exchange in the right-

hand side of (2.25) and uses the initial value Λ(t = 0) = 0.

Integral representations

There are two important cases, discussed below, in which equations (2.79), (2.86b),

(2.95b) and (2.99b), can be recast as integrals using the well-known fact that the dif-

ference between consecutive eigenfrequencies approaches ∆qn ∼ 1/A for large values

of the summation index, n [99]:

1. When the difference between consecutive eigenfrequencies of the spectrum of

the ∇·Dev∇ operator becomes sufficiently small as the outer radius A becomes

sufficiently large: in this case, in addition to an integral sum there usually

arises a sum proportional to the ratio (a/A)2 ∼ viv, which defines the accuracy

of the approximation. This limit is approached in the case of sparse capil-

lary networks, in which the extravascular volume is large because intercapillary

distances are, typically, much greater than capillary radii.
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2. For relatively short tracer diffusion lengths, as expressed by Eq. (2.28): as the

summation index n increases by one, the non-dimensional argument of the nth

eigenfunction, given by qnr, undergoes the small change

r∆qn ∼
√
Devt

A
≪ 1 , (2.100)

which implies that the amplitude of the eigenfunctions varies by a small amount.

This justifies the approximation of all of the above-mentioned sums by integrals.

The procedure is worked out in detail in Chapter 3.

2.5.6 Derivation of arterial-to-intracapillary impulse response

function

In this Appendix we show that when the time interval after the first tracer arrival

at the capillary is short in terms of the mean extravascular residence time of a well-

mixed tracer, such that the condition in Eq. (2.18) holds, the arterial-to-intravascular

impulse response function reduces to Eq. (2.19a).

The standard method of taking the time Fourier transform36 of the intracapillary

tracer balance equation (2.17) of the partial differential equation [97] yields, after

rearranging, the first-order differential equation

dψiv(z, ω)

dz
+
B(ω)

uz
ψiv(z, ω) =

ψiv(z, t = 0)

uz
, (2.101a)

where

B(ω) = −iω +Riv +
1− w(a+, ω)

τiv
. (2.101b)

The solution to Eq. (2.101a) is given by

ψiv(z, ω) = hiva (z, ω)ψiv(z = 0, ω) + hiva (z, ω) ∗z
ψiv(z, t = 0)

uz
, (2.102a)

36The definition of the Fourier transform employed here is: F {f(t)} =
∫ +∞
−∞ f(t) exp(iωt) dt. In

present notation, the transformed quantities are distinguished from their time conjugates simply by

the second argument, which is ω instead of t.
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where ∗z denotes convolution with respect to axial distance z, and the Fourier trans-

form of the arterial-to-intravascular impulse response function is given by

hiva (z, ω) = exp[−B(ω)tz] , (2.102b)

with tz = z/uz (2.19b). Back-transformation of Eq. (2.102a) gives

ψiv(z, t) = hiva (z, t) ∗ ψiv(z = 0, t) + hiva (z, t) ∗z
ψiv(z, t = 0)

uz
, (2.103a)

where the arterial-to-intravascular impulse response function is expressed as

hiva (z, t) = F−1

{
exp

[
tz
τiv

w(a+, ω)

]}
exp(−R+

ivtz) ∗ δ(t− tz) , (2.103b)

where F−1 denotes the inverse Fourier transformation and R+
iv = Riv + τ−1

iv (2.19b).

In the sequel, we assume zero intracapillary concentration initially, hence the sec-

ond term on the right-hand side of (2.103a) vanishes. The first convolution operand

in (2.103b) represents transport and exchange of tracer present at the inflowing end

of the capillary. The function w(a+, ω) is evaluated from (2.95a) after multiplication

by the extravascular relaxation term, exp(−Revt). This gives

w(a+, ω) =
∞∑
n=1

κSf 2
n(a+)

−iω +Rev + λn
, (2.104)

where fn(a+) is assumed constant on the capillary surface. Thus, in (2.103b) we have

exp

[
tz
τiv

w(a+, ω)

]
=

∞∏
n=1

exp

[
bn

−iω +Rev + λn

]
, (2.105)

where

bn ≡ κSf 2
n(a+)

τiv
tz =

Vevf
2
n(a+)

τev

τc
τiv

z

L
. (2.106)

Using the standard Fourier transform pair

exp

(
−bn
iω

)

 δ(t) +

√
bn
t
I1(2

√
bnt) , t ≥ 0 , (2.107)

where I1(·) is the modified Bessel function of the first kind and first order, the arterial-

to-intravascular impulse response function (2.103b) is rewritten as

hiva (z, t) = δ(t− tz) exp(−R+
ivtz) ∗ H1(t) ∗ H2(t) ∗ · · · ∗ Hn(t) ∗ · · · (2.108a)
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for t ≥ 0, where

Hn(t) = δ(t) +

√
bn
t
I1(2

√
bnt) exp[−(Rev + λn)t] . (2.108b)

The second term in Hn(t) is non-singular: for small arguments, z−1/2I1(z
1/2) ∼ 1/2,

whereas for large arguments, z−1/2I1(z
1/2) ∼ z−3/4 exp(z1/2), hence the exponential

term due to relaxation and transcapillary exchange dominates; see Ref. [175].

To obtain a useful analytical approximation to (2.108a), we estimate the argu-

ment
√
bnt as follows. We first note that z/L and Vevf

2
n(a+) appearing in bn (2.106)

are both at most equal to unity [since fn(r) is normalised]. Thus, the condition√
(τc/τiv)(t/τev) ≪ 1 of Eq. (2.18) results in

√
bnt≪ 1, hence I1(2

√
bnt ) ≈

√
bnt with

relative error of order bnt.
37 To this approximation, the nth convolution operand in

(2.108b) reduces to

Hn(t) = δ(t) + bn exp[−(λn +Rev)t] , t ≥ 0 . (2.108c)

By the associativity of convolution, Eq. (2.108a) becomes, after rearranging terms:

hiva (z, t) ≈ δ(t− tz) ∗

[
δ(t) +

∞∑
n=1

Bn(t)

]
exp(−R+

ivtz) , (2.109a)

where Bn(t) is an infinite sum, over all indices i1 < i2 < · · · < in, of terms each

involving n− 1 convolutions of the form∑
i1<···<in

bi1exp[−(λi1 +Rev)t] ∗ · · · ∗ binexp[−(λin +Rev)t] . (2.109b)

In particular, from (2.95b) and (2.106) we get

B1(t) =
∞∑
n=1

bn exp[−(λn +Rev)t] =
tz
τiv

w(a+, t) . (2.110)

37This estimate follows from the series expansion [175]:

Iν(z) =

∞∑
k=0

(z/2)2k+ν

k!Γ(ν + k + 1)
,

where Γ(·) is the Euler gamma function.
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The term B2(t) is also easily evaluated as

B2(t) =
∞∑
n=1

cnbn exp[−(λn +Rev)t] (2.111a)

with

cn =
∞∑
m=1

bm
λm − λn

, m ̸= n . (2.111b)

Equation (2.109a) can be simplified further by noting that, since λi1 < λi2 <

· · · < λin , Bn(t) is upper bounded by

Bn(t) ≤
∑
i1

bi1exp[−(λi1 +Rev)t] ∗ · · · ∗ binexp[−(λi1 +Rev)t]

=
∑
i1

(bi2 · · · bin)tn−1

(n− 1)!
bi1exp[−(λi1 +Rev)t]

≪ C2(n−1)

(n− 1)!
B1(t) , (2.112)

where C ≪ 1 is an upper bound of
√
bint for all in. Thus, we can neglect B2(t) and

subsequent terms in the expression (2.109a) of the arterial-to-intracapillary impulse

response function, with relative error of the order of C2, which is small by assumption.

This results in Eq. (2.19a), as was to be shown.

Substitution of hiva (z, t) and h
ev
a (r, t) = w(r, t) ∗ hiva (z, t) into Eq. (2.17) of tracer

balance in intracapillary space, gives

∂hiva (z, t)

∂t
= −uz

∂hiva (z, t)

∂z
−Rivh

iv
a (z, t)−

hiva (z, t)− hiva (z, t) ∗ w(a+, t)

τiv

+
1

τiv

[
tz
τiv

w(a+, t) ∗ w(a+, t− tz)

]
. (2.113)

The term in brackets in the second line of the above equation represents a correction

to heva (r, t).
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Chapter 3

Blood–Tissue Tracer Exchange:

Evaluation

In this Chapter we evaluate the quantities, as defined in the previous Chapter, which

describe the exchange of a tracer substance between the capillaries and the surround-

ing tissue, assuming that the single-capillary approximation holds.

As is well known, diffusion consists in the transport of matter from one part of a

system to another due to the random molecular motions of the diffusing substance

(Ref. [176], p. 1). Random molecular motions also underlie the transfer of heat by

conduction (Ref. [176], p. 2). In 1855 the German physiologist A. Fick [153] developed

a quantitative description of diffusion which was founded on the mathematical theory

of heat conduction of J. Fourier [177], published in 1822; see for example Chapter II,

pp. 99 – 103 of this latter work.

In addition to the above-mentioned phenomena, the heat equation unifies the

mathematical treatment of numerous important physical problems, including viscous

motion, diffusion of liquids in porous media and electrical conduction in good con-

ductors (Ref. [178], pp. 28 – 29; Ref. [179], p. 29).

An extensive collection of solutions of the heat equation for planar, cylindrical,

conical and spherical geometries, valid for a variety of initial and boundary condi-

tions, is found in the books by Carslaw and Jaeger [178] and by Crank [176]. Thus,
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certain blood–tissue exchange quantities presented in this Chapter have counterparts

as heat transfer results which can be consulted in these references.1 Nonetheless, we

have independently worked out all the relevant tracer-exchange quantities for com-

pleteness and self-consistency of the material presented in this Thesis. In particular,

a quantity analogous to the blood-to-tissue impulse response function, Eq. (2.15),

which plays a central role in the theory presented herein, was not found in the above-

cited references. We also mention that have consistently made use of the method

of eigenfunction decomposition (Appendix 2.5.5), whereas the method most often

employed by Carslaw and Jaeger in Ref. [178] involves the Laplace transformation.

Further details are given in the discussion of each blood–tissue exchange quantity

below.

Because in the model described in this Thesis the effect of axial diffusion on the

exchange has been considered negligible (Section 2.2.1), molecular diffusion shall be

treated as occurring in plane regions concentric with, and perpendicular to, any given

capillary segment at increasing distances from the inflow end of the capillary.

This Chapter devotes considerable attention, first, to diffusion in one spatial di-

mension. In certain studies (see the Discussion section) both the experimental con-

ditions and measurement method of choice may justify the use of such a simplified

model of diffusion in the tissues. Further, at sufficiently short diffusion times the

results for this case are valid for the more general case of diffusion in a plane region

with cylindrical symmetry, which is also discussed subsequently in detail.

We presented parts of the material found in this Chapter in Ref. [96].

1As an example of the existing analogies, it is noted that Eqs (2.10a) – (2.10d) describe the

transfer of heat from a body, kept at constant temperature initially, into a medium kept at zero

temperature. In heat transfer problems, the boundary condition (2.1c) is sometimes referred to as

a radiation boundary condition since it expresses approximately the time course of the temperature

at the contact surfaces of two media which exchange heat by radiation (see more details in Ref.

[178], pp. 18 – 21, and in Ref. [179], pp. 57 – 58). This boundary condition is also appropriate to the

exchange of moisture between, e.g., a solid and a stream of air passing over its surface (Ref. [176],

pp. 35 – 36).
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3.1 One-dimensional diffusion

The diffusion of tracer molecules may be considered to occur in one spatial dimension

(1d) in two distinct, not mutually exclusive cases:

1. The diffusion of tracer molecules is constrained by physical boundaries to occur

in a region having a principal orientation axis whose dimensions are in a large

ratio to those in any perpendicular direction (Fig. 3.1a). An important example

of such a medium is provided by the two types of neuronal process, axons

and dendrites (see, e.g., Ref. [1] and Table 1.1 of Ref. [180]). A 1d diffusion

model may also be appropriate to describe interstitial diffusion in certain normal

and neoplastic tissues. (This latter case is considered in some detail in the

Discussion section to this Chapter).

2. At sufficiently short tracer diffusion times, the difference between the concen-

tration of tracer at any given time and that at initial steady state varies appre-

ciably only in the region near the membranes between adjacent physiological

environments. However, at such short times the diffusing molecules are un-

able to ‘sense’ the size and curvature of physiological membranes [103]. Since

molecular diffusion can then be regarded as occurring in a medium bounded

by a large, virtually flat membrane (Fig. 3.1b), and since only the component

of the diffusive flux in the direction perpendicular to the membrane is of sig-

nificance to tracer exchange, one-dimensional diffusion therefore describes this

situation with good accuracy. These intuitive arguments will be developed

mathematically in Section 3.2.

In heat transfer problems, conduction of heat in a straight rod of small cross

section can also be considered spatially linear when no heat is lost through the con-

ductor surface (Ref. [178], p. 50). Further, when the isothermal surfaces are parallel

planes, the direction of the heat flow occurs in the direction perpendicular to them

and one-dimensional modelling is therefore appropriate [179].
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Figure 3.1: Effective one-dimensional diffusion: a) due to structural constraints of

the medium; b) diffusion at short diffusion times in the vicinity of a permeable capillary

wall (thick broken line); see text for details.

In the case of diffusion in one spatial dimension, the Sturm–Liouville equation

(2.82) becomes

f ′′
n(r) + q2nf(r) = 0 , a < r < A , (3.1)

where r denotes a Cartesian coordinate. The (non-normalised) eigenfunctions can be

written as the superposition of an incident wave and a reflected wave [96]:

fn(r) = exp(−iqnr) + exp(iqnr − i2δn) ∼ cos(qnr − δn) (3.2)

for n = 1, 2, . . . , where ‘i’ denotes the imaginary unit. Imposing the boundary condi-

tion at the capillary wall, given by Devf
′
n(a) = κfn(a),

2 see Eq. (2.76b) and Fig. 3.2,

gives the scattering phase shift, δn, as

δn = qna+ arc cot ℓqn , (3.3a)

where ℓ = Dev/κ, Eq. (2.4). We define

δ′n = arc cot ℓqn . (3.3b)

2The parameter a is used here for notational consistency with the spatially two-dimensional case

discussed in Section 3.2, since certain results for the one-dimensional case carry over, with minor

modifications, to the two-dimensional case.
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Figure 3.2: Boundary conditions for spatially one-dimensional (Section 3.1) and two-

dimensional with cylindrical symmetry (Section 3.2) geometries. A hypothetical eigenfunc-

tion f6(q6r) = cos [q6(r− a)− π/3] for one-dimensional diffusion and exchange is shown by

way of example.

The spatial eigenfrequencies are obtained from the zero-flux condition at the outer

pericapillary boundary, Eq. (2.76c), as

qnA− δn = (n− 1)π . (3.4a)

Substituting δn from (3.3a) into the above expression gives

qn =
(n− 1)π + δ′n

A− a
⇒ tan qn(A− a) =

1

ℓqn
. (3.4b)

Substituting the foregoing results into Eq. (2.79) yields the Green’s function for

the 1d case as [96]:

G1d(r, r
′, t) =

∞∑
n=1

cos[qn(r − a)− δ′n] cos[qn(r
′ − a)− δ′n]

∥fn∥2
exp(−Devtq

2
n) , (3.5)

where the eigenfunction norm is given by

∥fn∥2 =
A− a

2
+

sin 2δ′n
4qn

=
1

2

[
A− a+

ℓ

1 + ℓ2q2n

]
. (3.6)

Equations (3.5) and (3.6) are a particular case of the result given by Carslaw and

Jaeger for heat conduction in a solid bounded by the planes r = a and r = A, the

outwards heat flux being proportional to the respective surface temperature; see Eqs

14.3.II (3) – (6) of Ref. [178]. Rather than making explicit use of the eigenfunction

decomposition – as we have done in this Thesis – these authors expressed the Green’s
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function for the one-dimensional case as the sum of the Green’s function for an

infinite one-dimensional medium and an auxiliary function which was required (i)

to vanish at time t = 0 and (ii) to ensure compliance of the whole G1d(r, r
′, t) with

the boundary conditions [see remark after Eq. (3.54a) of Appendix 3.6.1]. Their

calculations involved the Laplace transformation.3

The one-dimensional tracer concentration under absorbing intracapillary bound-

ary conditions is obtained by substituting the normalised eigenfunctions in (2.86b)

as [96]:

ψabs
1d (r, t) =

∞∑
n=1

sin qn(r − a) + ℓqn cos qn(r − a)

∥fn∥2 (1 + ℓ2q2n) qn
exp(−Devtq

2
n) , (3.7)

where the identity sin z = (1 + cot2 z)−1/2 has been used. The eigenfrequencies, the

Green’s function and the concentration of tracer are all functions of distance to the

capillary wall, r − a, rather than functions of the ‘absolute’ coordinate r; this is

an expected consequence of the 1d geometry. Equation (3.7) may be obtained as a

particular case of Eq. 3.11 (21) of Ref. [178].

Analysis of the general term in the right-hand side of (3.7) shows that the main

contribution to the series comes from values of n such that

qn . min

{
1√
Devt

,

√
1

ℓ2
+

1

(A− a)ℓ

}
, (3.8)

which accords with the previous estimate (2.90), noting that τev = (A− a)/κ for the

1d case.

Because of the non-linear expression for the eigenfrequencies, the infinite sums

in (3.5) and (3.7) cannot, in general, be evaluated analytically. However, as shown

next, when a/A ≪ 1 these sums go over into integrals. Since the difference ∆qn

between consecutive eigenfrequencies decreases with A, the eigenfrequency spectrum

3In certain simple cases, the use of look-up tables allows straightforward inversion of the Laplace-

transformed quantities. In more complicated cases the inversion formula for the Laplace transfor-

mation is called for, contour integration resulting in the appropriate eigenfunction decomposition,

as in Eq. (3.5).
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becomes continuous in the limit as A → ∞. The small increment ∆qn is estimated

by expanding the eigenfrequency expression (3.4b) as

∆qn =
1

A− a

[
π − ℓ∆qn

1 + ℓ2q2n
+O[ℓ∆qn]

2

]
. (3.9)

Neglecting the small term of order [ℓ∆qn]
2, rearranging and using (3.6), gives

1

∥fn∥2
≈ 2

π
∆qn . (3.10)

Therefore, when a/A≪ 1 the general terms of (3.5) and (3.7) are both slowly-varying

functions of n, hence these infinite sums become integral sums in q.

In particular, the 1d Green’s function for sparse capillary networks with absorbing

intracapillary boundary conditions evaluates to (see Appendix 3.6.1)

G1d(r, r
′, t) =

2

π

∫ ∞

0

cos[q(r − a)− δ′] cos[q(r′ − a)− δ′] exp(−Devtq
2) dq

=
1√

4πDevt

{
exp

[
−(r + r′ − 2a)2

4Devt

]
+ exp

[
−(r − r′)2

4Devt

]}
− 1

ℓ
exp

(
r + r′ − 2a

ℓ
+
Devt

ℓ2

)
erfc

(
r + r′ − 2a√

4Devt
+

√
Devt

ℓ

)
(3.11)

with δ′ = arc cot ℓq and ℓ = Dev/κ.

Equation (3.11) is formally identical with an expression given by Carslaw and

Jaeger, see Eq. 14.2.II (6) of Ref. [178], which applies to the transfer of heat from a

semi-infinite solid into a medium kept at zero temperature, with the same boundary

condition as has been prescribed here. The method employed by the authors was the

same as that discussed above (p. 119) in connection with the Green’s function for the

finite interval a ≤ r ≤ A.

The various terms of the 1d Green’s function (3.11) are illustrated schematically

in Fig. 3.3, where the permeable membrane is at r = a = 0, for simplicity. The two

Gaussian terms (denoted by G1 and G2, respectively) in the second line of (3.11) are

each recognised as the 1d Green’s function for an infinite one-dimensional medium.

Their sum gives the Green’s function for diffusion in a semi-infinite medium bounded

by an impermeable plane surface at r = a when only the component of diffusion in
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the direction perpendicular to this surface is considered.4 Lastly, the term on the

third line of (3.11), denoted by G3, represents the effect of a non-zero flux of diffusing

substance and satisfies the (absorbing) boundary condition at r = a. This term may

be recast as

G3(r, r
′, t) = − 2/ℓ√

4πDevt

∫ 2a−r′

−∞
exp

(
ξ + r′ − 2a

ℓ

)
exp

(
−(r − ξ)2

4Devt

)
dξ , (3.12)

and when put in this form Eq. (3.11) above becomes Eq. (15) of Sommerfeld’s book

[179, Section 13]. In Fig. 3.3 the terms in the integrand of G3 are represented with

dash-dot lines for clarity. The horizontal axis is doubly scaled for r (i.e., for G1 and

G2) and ξ [for the integration variable in Eq. (3.12)]. Because G2 appears in the

convolution integral (3.12), the term G3 is interpreted as the contribution of a line

of sinks of position-dependent amplitude (2/ℓ) exp[(ξ + r′ − 2a)/ℓ]dξ extending from

ξ = 2a− r′ to −∞ [178].

Several important cases are considered below:

• If unit amount of tracer is delivered at position r′ at time t = 0, then for times

t ≪ r′2/(4Dev) the Green’s function G1d(r, r
′, t) of Eq. (3.11) is approximately

equal to the free propagator G2, since the contributions of the ‘mirror’ Gaussian

term, G1, and of the line of sinks are both negligibly small.

• For highly permeable membranes (i.e., ℓ/a≪ 1) the integral in (3.12) evaluates

to −2G1, approximately. Thus, the Green’s function G1d(r, r
′, t) ≈ −G1 +G2,

with G1d(a+, r
′, t) ≈ 0, consistent with the absorbing condition imposed in the

region r < a.

• For poorly permeable membranes (ℓ/a ≫ 1), the term G3 is very small at

all times. Hence G1d(r, r
′, t) ≈ G1 + G2 and ∂G′

1d(a+, r
′, t)/∂r ≈ 0, i.e., the

transmembrane flux is negligibly low.

4This part of the required Green’s function may be obtained by the method of images. See, e.g.,

Section 10.10 of Ref. [178].
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Chapter 3. Blood–Tissue Tracer Exchange: Evaluation

Figure 3.3: Green’s function (3.11) for one-dimensional diffusion in the half-space

r > 0, adapted from Fig. 14 of Sommerfeld [179]. The boundary condition at the permeable

membrane is as in Fig. 3.2.

Passing to the integral in (3.7), or after straightforward integration of the Green’s

function in the interval r′ ≥ a, the extravascular concentration for absorbing intra-

capillary conditions becomes

ψabs
1d (r, t) =

2

π

∫ ∞

0

sin q(r − a) + ℓq cos q(r − a)

(1 + ℓ2q2)q
exp(−Devtq

2) dq

= 1− erfc

(
r − a√
4Devt

)
+ exp

(
−(r − a)2

4Devt
+ ξ2

)
erfc(ξ) , (3.13a)

where erfc(ξ) = 2π−1/2
∫∞
ξ

exp(−z2) dz is the complementary error function [175]

and5

ξ =
r − a√
4Devt

+

√
Devt

ℓ
. (3.13b)

5The integral in the first line of Eq. (3.13a) is evaluated with the use of formulae (3.954.1) and

(3.954.2) of Ref. [181] as well as the following relation, obtained by integrating by parts:∫
exp(±r) erfc(b± r/2b) dr = ∓ erfc(b) + exp(−b2) erf(r/2b)± exp(±r) erfc(b± r/2b) ,

where erf(·) = 1−erfc(·) = 2π−1/2
∫ ξ

0
exp(−z2) dz is the well-known error function and b =

√
Devt/ℓ.
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Figure 3.4: One-dimensional extravascular concentration under absorbing intra-

capillary conditions for the sparse capillary network approximation (a/A≪ 1).

After minor rearrangements, Eq. (3.13a) may be put in the form of Eq. 2.7 (1) of

Ref. [178], which gives the temperature of a semi-infinite solid at uniform temperature

initially, heat flowing through its surface into a medium, kept at zero temperature, at

a rate proportional to the surface temperature of the solid. With present notation, the

method employed by Carslaw and Jaeger involves the change of dependent variable

ψabs
1d 7→ ψabs

1d − (Dev/κ)(∂ψ
abs
1d /∂r).

Crank [176] obtained expressions for the related problem in which diffusion oc-

curs also in the left half-space r < a, with the same initial conditions as have been

considered here. In the absence of consumption, the situation in which the concen-

tration of tracer in r < a is very low at all times may be approximated by setting the

diffusion coefficient in that region to a much greater value than that in the region

r > a. Equation (3.49) of Ref. [176] then reduces to Eq. (3.13a) above.

ψabs
1d (r, t) is graphed in Fig. 3.4. At a distance of approximately three diffusion

lengths from the capillary wall, the concentration of tracer is barely influenced by

the magnitude of the diffusive flux near the capillary wall. The time course of the

tissue-to-blood flux is given by the line r = a, up to a factor of κ.
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Figure 3.5: Blood-to-tissue impulse response function in one spatial dimension

for the sparse capillary network approximation. Ten spatial profiles are shown,

corresponding to the normalised time instants
√
Devt/ℓ = 0.05, 0.1, . . . , 0.5.

The blood-to-tissue impulse response function is obtained either by differentiation

of (3.13a) or by making use of the general Eq. (2.15). This gives

w(r, t) = κG1d(r, a+, t)

=
κ

ℓ

[
ℓ√
πDevt

− exp(ξ2) erfc(ξ)

]
exp

(
−(r − a)2

4Devt
−Revt

)
, (3.14)

where the effect of extravascular relaxation has been included. For small time, use of

the asymptotic formula
√
π exp(ξ2) erfc(ξ) ≈ ξ−1 and of the Green’s function (3.11)

gives

w(r, t) ≈ κ√
πDevt

exp

(
−(r − a)2

4Devt
−Revt

)
. (3.15)

Figure 3.5 plots (ℓ/κ)w(r, t) as a function of normalised distance from the capillary

wall, (r− a)/
√
Devt, for a range of values of the parameter

√
Devt/ℓ. The amplitude

of the blood-to-tissue impulse response function in one spatial dimension is seen to

decrease rapidly with diffusion time.

The step response function W (r, t) is evaluated according to Eq. (2.14) with the

use of the formula W (r, t;Rev = 0) = 1 − ψabs
1d (r, t), where ψabs

1d (r, t) is given by
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3.1. One-dimensional diffusion

Eq. (3.13a). The result is

W (r, t) =
1

1− ηℓ

[
2∑
i=1

αi exp(γ
2
i ) erfc(γi)− exp(ξ2) erfc(ξ)

]

× exp

(
−(r − a)2

4Devt
−Revt

)
(3.16a)

with

ηℓ =
ℓ2Rev

Dev

(3.16b)

and

α1,2 =
1±√

ηℓ

2
, γ1,2 =

r − a√
4Devt

±
√
Revt . (3.16c)

It is easily checked6 that the right-hand side of (3.16a) remains non-negative and finite

for all values of the parameter ηℓ. We note that ηℓ > 1 for the tissue parameters listed

in Table 2.1. Without consumption or relaxation, Eq. (3.16a) gives

W (r, t;Rev = 0) = erfc

(
r − a√
4Devt

)
− exp

(
−(r − a)2

4Devt
+ ξ2

)
erfc(ξ) , (3.17)

which is the same as 1−ψabs
ev (a+, t) as obtained from (3.13a), as expected. The above

expression also gives the temperature of a semi-infinite solid, initially at temperature

zero, which is heated through the plane surface r = a by heat flowing from a con-

tiguous body maintained at constant unit temperature; see Eq. 2.7 (5) of Ref. [178].

Equation (3.17) also appears as Eq. (3.35) of Ref. [176].

As expected, when A is large, none of the above quantities depend on pericapillary

radius. The time course of tracer exchange is determined by two parameters, namely

the ratios of tracer diffusion length to effective thickness of the capillary wall and to

distance from the membrane.

Under absorbing intracapillary boundary conditions, the tissue-to-blood flux of

tracer is given by

njabsκ,1d(a, t) = κψabs
1d (a+, t) = κ exp

(
Devt

ℓ2

)
erfc

(√
Devt

ℓ

)
. (3.18)

6For example, for ηℓ > 1 we have α1 > 0, α2 < 0, γ2 ≤ ξ ≤ γ1 and the result W (r, t) ≥ 0 follows

from Eq. (3.16a) by noting that exp(z2) erfc(z) is non-negative and decreasing.
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Chapter 3. Blood–Tissue Tracer Exchange: Evaluation

The effective 1d extravascular depolarised volume is obtained by integrating the flux

to time t. For finite A, the series in Eq. (2.99b) is rewritten as [96]:

Λ1d(t) =
∞∑
n=1

1

∥fn∥2
1− exp(−Devtq

2
n)

(1 + ℓ2q2n) q
2
n

, (3.19)

Letting A → ∞ and making use of (3.10) gives, by the same arguments as those

leading to Eq. (3.13a),

Λ1d(t) =
2

π

∫ ∞

0

1− exp(−Devtq
2)

1 + ℓ2q2
dq

q2
, (3.20)

which solves to [96]7

Λ1d(t)

ℓ
=

2√
π

√
Devt

ℓ
+ exp

(
Devt

ℓ2

)
erfc

(√
Devt

ℓ

)
− 1 . (3.21)

It is therefore convenient to express the effective 1d extravascular depolarised

volume in units of effective membrane thickness, and to express diffusion times in

units of tracer diffusion length relative to effective membrane thickness.

Equation (3.21) is graphed in Fig. 3.6 jointly with the results of a Monte Carlo

simulation (see Appendix 3.6.5 for details). An alternative derivation of Eq. (3.21) is

given in Appendix 3.6.2. The above result was obtained by Crank by integrating an

expression analogous to Eq. (3.18) from time zero to t; see Eq. (3.37) and Fig. 3.5 of

Ref. [176].

The 1d effective depolarised volume is upper bounded by

Λ1d(t) ≤ κt , (3.22)

as follows by noting that exp(z2) erfc(z) + 2π−1/2z − 1 ≤ z2, with z =
√
Devt/ℓ in

Eq. (3.21).8 In physical terms, the inequality in (3.22) means that an upper limit

7Equation (3.21) also follows directly from integration of Eq. (3.18). A primitive is easily found

by integration by parts:∫
exp(z) erfc(z1/2) dz = 2π−1/2z1/2 + exp(z) erfc(z1/2) + constant .

8The above inequality is established by noting that both sides vanish at z = 0 and that their

respective derivatives satisfy 0 ≤ 2z exp(z2) erfc(z) ≤ 2z, where the right-hand inequality in this
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Figure 3.6: Effective 1d extravascular depolarised volume, Eq. (3.21), with Monte

Carlo simulation. A small subset of computed data points are marked either as squares

(analytical formula) or crosses (Monte Carlo simulation) for clarity. The numerical value of

the parameters and the deviation of the simulation results from the theoretical expression

(3.21) are both found in Appendix 3.6.5.

to the amount of tracer that permeates from extravascular space into the capillaries

is attained when the transcapillary exchange is rate-limited by the capillary wall

permeability.

3.2 Two-dimensional diffusion

In the case of two-dimensional (2d) diffusion in a plane region with cylindrical sym-

metry, the Sturm–Liouville equation (2.82) is written as

[rf ′
n(r)]

′
+ q2nrf(r) = 0 , (3.23)

expression results from

exp(z2) erfc(z) =
2√
π

∫ ∞

0

exp(−t2 − 2tz) dt ≤ 2√
π

∫ ∞

0

exp(−t2) dt = 1 .
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Chapter 3. Blood–Tissue Tracer Exchange: Evaluation

for 0 < a < r < A. The (non-normalised) eigenfunctions can be expressed as [96]:

fn(r) = cos δnJ0(qnr) + sin δnY0(qnr) , (3.24)

where J0(·), Y0(·) are Bessel functions of the first and second kind, respectively, and

order zero. The scattering phase shift and the eigenfrequency relation are obtained in

the same manner as for the 1d case with the use of the boundary conditions (2.76b)

and (2.76c), as shown in Fig. 3.2. This gives [96]:

tan δn = −J0(qna) + ℓqnJ1(qna)

Y0(qna) + ℓqnY1(qna)
(3.25)

and

cos δnJ1(qnA) + sin δnY1(qnA) = 0 . (3.26)

Now the following notations are introduced for convenience:

P (z) = J0(z) + (ℓ/a)zJ1(z) , Q(z) = Y0(z) + (ℓ/a)zY1(z) . (3.27)

We use the short-hand notation [P 2+Q2](z) ≡ P 2(z)+Q2(z), and similarly for other

combinations of Bessel functions as in, e.g., tan δn = −[P/Q](qna) and Eqs (3.28)

and (3.29) below.

The eigenfunction norm is given by

∥fn∥2 = πA2 [cos δnJ0(qnA) + sin δnY0(qnA)]
2

− πa2 [cos δnJ0(qna) + sin δnY0(qna)]
2

− πa2 [cos δnJ1(qna) + sin δnY1(qna)]
2

=
4 cos2 δn
πq2n

[
1

Y 2
1 (qnA)

− 1 + ℓ2q2n
Q2(qna)

]
=

4

πq2n

{
1

[J2
1 + Y 2

1 ](qnA)
− 1 + ℓ2q2n

[P 2 +Q2](qna)

}
(3.28)

with the use of a standard Bessel-function primitive9 as well as Eqs (3.25) and (3.26),

9The required formula is (see, e.g., Ref. [175])∫
[bJ0(z) + cY0(z)]

2
z dz =

z2

2

{
[bJ0(z) + cY0(z)]

2
+ [bJ1(z) + cY1(z)]

2
}
.
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3.2. Two-dimensional diffusion

and the Wronskian of J0(·) and Y0(·) [175]:

[J1Y0 − J0Y1](z) =
2

πz
. (3.29)

The expression for the 2d Green’s function with cylindrical symmetry on any

cross section perpendicular to the capillary axis, and under absorbing intracapillary

boundary conditions, is found by inserting fn(·) and ∥fn∥2, as given, respectively, by
Eq. (3.24) and Eq. (3.28), into Eq. (2.79), repeated below for ease of reference:

G2d(r, r
′, t) =

∞∑
n=1

fn(r)fn(r
′)

∥fn∥2
exp(−Devtq

2
n) , (3.30)

where the factor exp(−Revt) has been left understood.

The resultant expression is, up to this relaxation term, a particular case of a

more general expression given by Carslaw and Jaeger for the loss of heat through

the lateral surfaces of an infinite hollow cylinder, the flux of heat being proportional

to the respective surface temperature. Imposing an outer zero-flux condition in Eq.

14.8.IV (11) of Ref. [178] yields after some algebra Eq. (3.30) above, with fn given by

(3.24) above. To arrive at their result, Carslaw and Jaeger augmented the response to

a unit instantaneous cylindrical surface source with an auxiliary function vanishing at

zero time, and such that the Green’s function satisfied the boundary conditions at r =

a and r = A. For this problem, however, the method of the Laplace transformation

does not yield a standard transform and the Green’s function was obtained in series

form by contour integration.

The 2d tracer concentration under absorbing intracapillary boundary conditions

is obtained by substituting the normalised eigenfunctions in (2.86b) and making use

of (3.25) and (3.29):

ψabs
2d (r, t) =

∞∑
n=1

4

∥fn∥2
Y0(qnr)P (qna)−Q(qna)J0(qnr)

[P 2 +Q2](qna)

exp(−Devtq
2
n)

q2n
, (3.31)

It may be noted that the abluminal concentration is, in general, non-zero, since

the absorbing condition is imposed on the luminal face of the capillary wall (and,

moreover, in all of intracapillary space). However, the abluminal concentration does
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Chapter 3. Blood–Tissue Tracer Exchange: Evaluation

vanish in the limit that the capillary wall becomes fully permeable (ℓ/a → 0) to a

given tracer, as is seen from Eq. (3.27).

Neither the Green’s function nor the right-hand side of the above expression

can, in general, be expressed analytically. However, for sparse capillary networks,

Eq. (3.31) can be simplified because the error incurred by the use of Bessel function

approximations for large arguments is small; details are found in Appendix 3.6.3.

Substituting the asymptotic expansions of J1(qnA) and Y1(qnA) into (3.26) and using

a well-known trigonometric identity, yields an estimate of the eigenfrequencies as

qnA ≈ (n+ 1)π + δn ⇒ ∆qn ≈ π +∆δn
A

. (3.32)

To this accuracy, the eigenfunction norm (3.28) becomes

∥fn∥2 ≈
4

πq2n

{
πqnA

2
− 1 + ℓ2q2n

[P 2 +Q2](qna)

}
. (3.33)

Lastly, differentiating both sides of (3.25) gives

∆δn =
2

π

1 + ℓ2q2n
[P 2 +Q2](qna)

∆qn
qn

. (3.34)

Substituting this expression into (3.32), rearranging and comparing with (3.33) gives

1

∥fn∥2
≈ qn∆qn

2π
. (3.35)

Analogously to the 1d case, when a/A≪ 1 the general term of (3.31) is a slowly-

varying function of the summation index n, hence the sum becomes an integral in q.

The Green’s function for sparse capillary networks therefore becomes

G2d(r, r
′, t) =

1

2π

∫ ∞

0

f(r)f(r′) q exp(−Devtq
2) dq , (3.36a)

where the non-normalised eigenfunction (3.24) is written as

f(r) =
Q(qa)J0(qr)− P (qa)Y0(qr)√

[P 2 +Q2](qa)
(3.36b)

with the use of (3.27). The above expressions are formally identical with, respectively,

Eq. 14.8 (12) and Eq. 14.8 (13) of Ref. [178].
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Similarly, the extravascular concentration for absorbing intracapillary conditions

is expressed as [96]:

ψabs
2d (r, t) =

2

π

∫ ∞

0

P (q′)Y0(q
′r′)−Q(q′)J0(q

′r′)

[P 2 +Q2](q′)

exp(−ς2q′2)
q′

dq′ , (3.37)

where

ς =

√
Devt

a
(3.38a)

is a normalised diffusion length and

r′ = r/a , q′ = qa . (3.38b)

When q′ → 0 the integrand of (3.37) has a singularity of order q′−1(ln q)−2, as is seen

upon inserting the small-argument forms of the Bessel functions [175]. However, since∫ ϵ
0
q′−1(ln q′)−2 dq′ = −(ln ϵ)−1 is finite, the above integral converges, as expected on

physical grounds. Equation (3.37) is formally identical with Eq. (15) of Section 13.5.II

of Ref. [178], which was obtained by the method of the Laplace transformation.

Differentiating (3.37) with respect to time and accounting for exponential extra-

vascular consumption yields the blood-to-tissue impulse response function for sparse

capillary networks. Thus,

w(r, t) =
2Dev

πa2

∫ ∞

0

P (q′)Y0(q
′r′)−Q(q′)J0(q

′r′)

[P 2 +Q2](q′)
q′ exp(−ς2q′2) dq′

× exp(−Revt) . (3.39)

The fraction in the integrand quantifies the trade-off between capillary permeation

and extravascular diffusion through the effective thickness of the capillary wall rel-

ative to capillary radius, ℓ/a = Dev/κa. In Fig. 3.7a and Fig. 3.7c the blood-to-

tissue impulse response function has been plotted for two widely different values

of the normalised effective membrane thickness, ℓ/a = Dev/κa, and for a range

of extravascular diffusion times. The blood-to-tissue impulse response function at-

tains its maximum at a position rmax > a, since the gradient at the capillary wall,

n∇w(a+, t) = (κ/Dev)w(a+, t) > 0.
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The approximate arterial-to-intracapillary impulse response function (2.19a) is

obtained from (3.39), noting that [PY0 − QJ0](q
′) evaluates to 2ℓ/πa with the use

of the Wronskian (3.29). Integrating (3.39) yields the blood-to-tissue step response

function as

W (r, t) =
2

π

∫ ∞

0

P (q′)Y0(q
′r′)−Q(q′)J0(q

′r′)

[P 2 +Q2](q′)

1− exp[−ς2(q′2 + ηa)]

q′2 + ηa
q′ dq′ ,

(3.40a)

where

ηa =
a2Rev

Dev

. (3.40b)

Several examples of W (r, t) are plotted in Fig. 3.7b and Fig. 3.7d. The amplitude of

the step response at the capillary wall is easily evaluated with the use of a standard

Bessel-function identity. It can also be obtained from the flux relation (2.25), valid

for absorbing intracapillary conditions, which in terms of W (a+, t) reads

κS[1−W (a+, t;Rev = 0)] = κSψabs
ev (a+, t;Rev = 0) =

dΛ(t)

dt
.

Differentiating (3.43) then gives10

W (a+, t;Rev = 0) = 1− 1

κS

dΛ2d(t)

dt
(3.41a)

=
4ℓ

π2a

∫ ∞

0

1− exp(−ς2q′2)
[P 2 +Q2](q′)

dq′

q′
. (3.41b)

Under absorbing intracapillary conditions, the tissue-to-blood tracer flux is given

by

njabsκ,2d(a, t) = κψabs
2d (a+, t)

=
4Dev

π2a

∫ ∞

0

exp(−ς2q′2)
[P 2 +Q2](q′)

dq′

q′
, (3.42)

10Equation (A12) of Lee and Fronek [44] apparently contains a typographical error which may

result in large negative concentrations. If in the integrand of that equation ka/D is written instead

of D/ka, and if the exponent is corrected dimensionally by writing a2 instead of a, then Eq. (A12)

of Lee and Fronek coincides with Eq. (3.41b) in this Thesis.
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3.2. Two-dimensional diffusion

where (3.29) has been used. Integrating the amount of tracer cleared from the peri-

capillary region per unit time, given by 2πanjabsκ,2d(a, t), yields the effective 2d extra-

vascular depolarised volume:

Λ2d(t) =
8a2

π

∫ ∞

0

1− exp(−ς2q′2)
[P 2 +Q2](q′)

dq′

q′3
, (3.43)

which is valid for sparse capillary networks.

When the diffusion length is small in terms of capillary radius, the exchange of

tracer molecules is effectively confined to a shallow region adjacent to the capillary

wall and can be treated as one-dimensional exchange, as discussed previously. In this

situation the effective 2d extravascular depolarised volume is therefore related to its

1d counterpart by [96]:

Λ2d(t) ≈ 2πaΛ1d(t) . (3.44)

The accuracy of this expression is given by the relative difference between the

amplitude of the abluminal concentration under absorbing intracapillary boundary

conditions for the 1d and 2d cases. As shown in Fig. 3.8, this difference increases with

capillary permeability (i.e., with lower ℓ/a ratios, Dev being held fixed) and diffusion

time. There is, however, a wide range of ℓ/a ratios for which (3.44) is reasonably

accurate at short diffusion times.

On the other hand, when the diffusion length is much greater than the capillary

radius, the exchange becomes essentially two-dimensional and (3.43) evaluates to [96]:

Λ2d(t) ≈
2πDevt

ln(
√
Devt/a) + ℓ/a− γ′

, (3.45)

with γ′ = γ − ln 2 ≈ −0.1159, where γ ≈ 0.5772 is Euler’s constant. The above

formula is derived in Appendix 3.6.4. Figure 3.9 plots Λ2d(t)/πa
2 as a function of

normalised diffusion length for a range of Dev/κa ratios. In Fig. 3.10 the results

of a Monte Carlo simulation are graphed together with equations (3.43), (3.44) and

(3.45). For details on Monte Carlo simulations see Appendix 3.6.5.
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Figure 3.7: Single-capillary blood-to-tissue impulse response function w(r, t),

Eq. (3.39), and step response function W (r, t), Eq. (3.40a), for sparse capillary net-

works (a/A ≪ 1) in the absence of tracer consumption, plotted as functions of radial

distance (r/a) for a range of diffusion lengths (
√
Devt/a) and a pair of values of the nor-

malised effective membrane thickness, ℓ/a = Dev/κa. For panels a), c), the time scale is
√
Devt/a = 10−1 – 10−0.2 with five logarithmically equispaced time instants. For panels

b), d), the time scale is
√
Devt/a = 10−0.5 – 102 with six logarithmically equispaced time

instants. For these examples, maximum numerical integration error is ∼ 0.3%, as estimated

from the deviation of 1−W (r > a, t = 0;Rev = 0) from unity.

135



3.2. Two-dimensional diffusion
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Figure 3.8: Percentage difference between 1d and 2d abluminal concentrations

under absorbing intracapillary boundary conditions for sparse capillary net-

works at short diffusion times.
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Figure 3.9: Effective 2d extravascular depolarised volume. Equation (3.43) was

integrated numerically for Devt/a
2 = 10n (n = 1, 2, 3, 4) and the shown values of Dev/κa.

The relative error incurred in using the simplified formula (3.45) is plotted in Fig. 3.16

(Appendix 3.6.4).
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Figure 3.10: Effective 2d extravascular depolarised volume vs normalised diffusion

length. The curves labelled Numerical integration and Analytical were obtained, respec-

tively, by numerical integration of (3.43) and from the approximate analytical expression

(3.45). Also shown is the asymptotic expression for short diffusion times (3.44). Parameter

values: a = 3.5 µm, A/a ≈ 49, κ = 5.0× 10−2 µmms−1, Dev = 1.0 µm2ms−1.
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3.3. Influence of the boundary conditions

3.3 Influence of the boundary conditions

Since microvascular networks exhibit highly irregular geometries [55] and, further, are

subject to arteriolar vasomotion [72], tracer fluxes can occur across any arbitrarily

defined boundaries in the extravascular space [55]. It has been reported [55] that

quantitative predictions based on the Krogh model can be quite sensitive to the

choice of boundary conditions; for example, imposing a zero-flux condition at the

outer cylinder boundary can lead to the extent of hypoxic tissue being artefactually

overestimated.

In this Chapter the case is considered in which the tracer diffusion length in extra-

vascular space is small compared to typical intercapillary distances; refer to Sections

2.1.3 and 2.3.5. As shown by the developments leading to Eqs (3.4b) and (3.26), the

eigenfrequencies are determined by the boundary conditions at the capillary wall and

the outer pericapillary surface. When the pericapillary region is large, or the interval

of extravascular diffusion times is small, the effect of the exchange conditions near

the capillary wall (resp., near the diffusion watershed) becomes, respectively, more

(resp., less) important in relative terms. In order to assess, in a greatly simplified

case, the influence of the boundary conditions at the outer boundary of the pericap-

illary region, we consider the segment 0 ≤ r ≤ A and impose a zero-concentration

boundary condition, rather than the zero-flux condition of previous calculations, at

the endpoint r = A. The nth eigenfrequency for the zero-concentration case, q̂n, and

that for the zero-flux condition, Eq. (3.4b), satisfy the relation

q̂n − qn =
π/2 + δ̂n − δn

A
. (3.46)

Thus, (i) for large pericapillary regions the eigenfrequencies are barely sensitive to

the pericapillary boundary conditions, and (ii) the relative difference between corre-

sponding eigenfrequencies for various homogenous boundary conditions decreases as

qnA ∼ n−1, and is barely sensitive to pericapillary radius.

Next, we estimate the time at which interactions between two neighbouring cap-

illary segments begin to affect the concentration in pericapillary space at some fixed

position along the segments. This provides further quantitative insight into the range
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of diffusion times for which the single-capillary approximation may be deemed accu-

rate.

First, the case in which capillary interactions are negligibly low is conveniently

simulated by applying at time t = 0 a step change in concentration at the plane

boundary of a semi-infinite medium. Thus, the step response for this case is obtained

by letting κ→ ∞ in (3.17):

W (r, t) = erfc

(
r√

4Devt

)
, r ≥ 0, t > 0 . (3.47)

At the other extreme, a situation of maximal capillary interaction can be repre-

sented by two planar tracer sources a distance 2A apart, each producing a constant

unit concentration just outside the capillary wall, so that the net flux of tracer is zero

at the mid-point position (r = A). The step response for this case is thus obtained

from Eq. (3.7), with the use of (3.4b) and (3.6), on letting κ → ∞. This gives, for

0 ≤ r ≤ A and t > 0:

W (r, t) = 1− 4

π

∞∑
n=1

sin qnr

2n− 1
exp(−Devtq

2
n) , qn =

2n− 1

2A
π . (3.48)

Let t% denote the threshold time at which the deviation between the concentra-

tions given by (3.17) and (3.48) attains a specified percentage. Figure 3.11 shows the

variation of t% with distance to the nearest capillary source. The interval of diffusion

times has been chosen so that Devt/A
2 ≤ 1. It is seen that threshold times decrease

with increasing distance from the tracer source, i.e., nearer the diffusion watershed,

as expected. Variations in threshold time are almost linear for intermediate locations,

but markedly non-linear at positions near the capillary, where the concentration of

tracer is barely influenced by the chosen boundary conditions. If the acceptable

extent of capillary interaction is increased, the threshold times also increase.
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Figure 3.11: Threshold time, t%, for interactions between two planar tracer

sources. Percentage deviations (2%, 5% and 10%) are with respect to the non-interaction

case. Least-squares lines for 0.3 ≤ r/A ≤ 0.9 are shown in red.

3.4 Upper bound on spatially averaged step response

function and lowest eigenvalue

In the absence of tracer consumption, the difference between the blood-to-tissue step

response function and its spatially averaged value is given by

|W (t)−W (r, t)| =
∣∣ψabs

ev (t)− ψabs
ev (r, t)

∣∣
=

1

Vev

∣∣∣∣∣
∞∑
n=1

[
κSfn(a+)

λn

]2 [
1− λnτev

fn(r)

fn(a+)

]
exp(−λnt)

∣∣∣∣∣ , (3.49a)

where Eqs (2.11), (2.2c), (2.86a) and (2.92a) have been used, and the label ‘Rev = 0’

has been omitted for simplicity. Since the extravascular concentration under absorb-

ing intracapillary conditions is a concave function of position, and since the concen-

tration gradient is sharpest at the abluminal face of the capillary wall, the difference

(3.49a) between the local and the spatially averaged value of the concentration is
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Extravascular

space

Capillary wall

Figure 3.12: Illustration of inequality (3.49b). Linear and non-linear concentration

profiles are shown; broken lines represent the respective spatially averaged concentrations.

greatest at r = a+ (Fig. 3.12), as expected on physical grounds. Thus

|W (t)−W (r, t)| ≤ ψabs
ev (t)− ψabs

ev (a+, t)

=
1

Vev

∞∑
n=1

[
κSfn(a+)

λn

]2
(1− λnτev) exp(−λnt)

≤ ψabs
ev (t+ τev) (3.49b)

with the use of the inequality 1− z ≤ exp(−z) and Eq. (2.92a).

Next, we obtain an upper bound on the lowest eigenvalue, λ1. Since the right-

hand side of (3.49b) is non-negative, and since the sequence of eigenvalues is non-

decreasing, then at least the first term of the series in (3.49b) must be non-negative.

Noting that λn maps to λn +Rev when extravascular absorption occurs, we obtain

λ1 ≤ Rev +
1

τev
⇒ q21 . Rev

Dev

+
1

A2

κa

Dev

. (3.50)

3.5 Discussion

In this Chapter, one-dimensional diffusion has been considered in detail because this

case is applicable to (i) two-dimensional diffusion at sufficiently short times and (ii)

in cases where the tissue geometry has a dominant direction.

Nugent and Jain [182] quantified transport of various fluorescent test molecules

in the rabbit ear chamber using a 1d diffusion model. Test molecules included bovine
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serum albumin and several dextrans, all having molecular weights of the order of 1.7 –

6.7× 104 (i.e., much greater than that of Gd-DTPA). Surgically implanted chambers

were approximately 40 µm thick and 5.4 mm in diameter. Because of the zero-flux

constraints imposed by the chamber plates above and below the tissue layer, these

authors assumed that photometric measurement yielded total integrated concentra-

tions essentially equivalent to those that would arise from a planar source. Interstitial

diffusion coefficients were determined by fitting the concentration at positions just

outside the capillaries to a series of concentration-time measurements at a set of

uniformly spaced positions aligned perpendicularly to capillaries in regions where in-

tercapillary distances were usually 100 µm. These authors made use of the equation

in the second line of Eq. (3.51):

ψev(r, t;Rev = 0;κ→ ∞) =
dW (r, t;Rev = 0;κ→ ∞)

dt
∗ ψ0(t)

=
2√
π

∫ ∞

r/
√
4Devt

ψ0

(
t− r2

4Devz2

)
exp(−z2) dz , (3.51)

where ψ0(t) is the concentration measured just outside the capillary wall. Here, the

use of Eq. (3.17) is justified because in the limit of high capillary wall permeability

the amplitude of the concentration becomes continuous at the capillary wall.

Nugent and Jain estimated the onset of diffusive interactions among neighbour-

ing capillaries by comparing the concentration predicted by the 1d model of non-

interaction, and that due to two sources of equal strength separated by one intercapil-

lary distance. The time at which the deviations between these concentrations reached

2% was approximated by the expression t2% = 0.57 − 1.30 × (r/A) + 1.14 × (r/A)2

for 0.1 ≤ r/A ≤ 0.6; see Eq. (10) of Ref. [182]. To check this procedure, we fitted

a least-squares parabola to the difference between Eqs (3.47) and (3.48) above, and

obtained the comparable result, Devt%/A
2 = 0.5088−1.180×(r/A)+0.9008×(r/A)2,

with R2 = 0.9724.
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3.6 Appendices

3.6.1 Derivation of the 1d Green’s function for sparse capillary

networks

In this Appendix we evaluate the 1d Green’s function for sparse capillary networks

with absorbing intravascular boundary conditions, Eq. (3.11).

Setting x = r + r′ − 2a and x′ = r − r′ for brevity, the Green’s function (3.5) for

diffusion in one spatial dimension can be rewritten as

G(r, r′, t) =
∞∑
n=1

[
cos qnx+ cos qnx

′

2
+
ℓqn sin qnx− cos qnx

1 + ℓ2q2n

]
exp(−Devq

2
nt)

∥fn∥2
, (3.52)

where Eq. (3.3b) for δ′n has been used. The above series becomes an integral in the

limit as A→ ∞, as discussed previously in Section 3.1. The latter will be decomposed

into three simpler integrals, G1, G2 and G3, for ease of evaluation, as follows:

G1(r, r
′, t) =

1

2

∞∑
n=1

cos(qnx) exp(−Devq
2
nt)

∥fn∥2

=
1

π

∫ ∞

0

cos(qx) exp(−Devq
2t) dq

=
1√

4πDevt
exp

(
− x2

4Devt

)
, (3.53a)

where the expression (3.10) for the norm has been used. Note that the integral in

the second line of (3.53a) reduces to a standard Gaussian integral.11

Similarly,

G2(r, r
′, t) =

1√
4πDevt

exp

(
− x′2

4Devt

)
. (3.53b)

Lastly, the remaining term in the right-hand side of Eq. (3.52) yields the integral

G3(r, r
′, t) =

2

π

∫ ∞

0

ℓq sin qx− cos qx

1 + ℓ2q2
exp(−Devtq

2) dq′ . (3.53c)

11The well-known Gaussian integral below (with a, b real numbers and a > 0) is evaluated as∫ ∞

−∞
exp(−az2 ± bz) dz =

√
π

a
exp

(
b2

4a

)
.
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The above integral is evaluated below by differentiation with respect to x, with t

treated as a parameter. After straightforward manipulations, we get

ℓ
dG3(x, t)

dx
= G3(x, t) + 2G1(x, t) . (3.54a)

This expression guarantees that the boundary condition at the capillary wall is sat-

isfied, i.e., that Devn∇G(a+, r′, t) = κG(a+, r
′, t), upon noting that G1(a+, r

′, t) =

G2(a+, r
′, t) and that G′

1(a+, r
′, t) = −G′

2(a+, r
′, t). The solution of (3.54a) is given

by

G3(x, t) = G3(x = 0, t) exp(x/ℓ) + (2/ℓ) exp(x/ℓ) ∗G1(x, t) . (3.54b)

The convolution on the right-hand side of the above expression is with respect to x

and evaluates to

1

ℓ
exp

(
x

ℓ
+
Devt

ℓ2

)[
erfc

(√
Devt

ℓ

)
− erfc

(
x√
4Devt

+

√
Devt

ℓ

)]
. (3.54c)

On the other hand, the term

G3(x = 0, t) = − 2

π

∫ ∞

0

exp(−Devtq
2)

1 + ℓ2q2
dq′ (3.54d)

is evaluated by differentiating both sides of the above equation with respect to t. The

resultant first-order equation

dG3(x = 0, t)

dt
=
Dev

ℓ2

[
G3(x = 0, t) +

1√
πDevt

]
is solved by standard methods to give

G3(x = 0, t) = −1

ℓ
exp

(
Devt

ℓ2

)
erfc

(√
Devt

ℓ

)
, (3.54e)

which satisfies the initial condition G3(x = 0, t = 0) = −1/ℓ, from Eq. (3.54d). Then

substitution of (3.54c) and (3.54e) in (3.54b) gives

G3(r, r
′, t) = −1

ℓ
exp

(
r + r′ − 2a

ℓ
+
Devt

ℓ2

)
erfc

(
r + r′ − 2a√

4Devt
+

√
Devt

ℓ

)
. (3.54f)

Equation (3.11) in the main body of the text then results upon summing the terms

G1(r, r
′, t), G2(r, r

′, t) and G3(r, r
′, t) obtained above.
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3.6.2 Derivation of Λ1d(t) for sparse capillary networks

In this Appendix we provide an alternative derivation of the expression for the ef-

fective 1d extravascular depolarised volume for sparse capillary networks, Eq. (3.20).

The method involves perturbing the solution of the eigenvalue problem on the inter-

val 0 ≤ r ≤ A with absorbing and zero-flux boundary conditions at r = 0 and r = A,

respectively. For this latter problem, the eigenfunctions, gn, and eigenfrequencies,

kn, are given by

gn(r) = sin knr , (3.55a)

kn = (n− 1/2)(π/A) , (3.55b)

for n = 1, 2, . . . , where gn(0) = g′n(A) = 0. The norm is

∥gn∥2 = A/2 , (3.55c)

Expanding the eigenfrequency (3.4b) and the eigenfunction norm (3.6) in powers

of the small ratio a/A gives

qn = kn

{
1 +

a

A
− δ′′n
knA

+O[a/A]2
}

(3.56a)

and

∥fn∥2 = ∥gn∥2
[
1− a

A
+

sin 2δ′n
2qnA

]
, (3.56b)

where

δ′′n ≡ π/2− δ′n = arc tan ℓqn , (3.56c)

see (3.3b). With use of the above equations we obtain

1

∥fn∥2q2n
=

1

∥gn∥2k2n

{
1− a

A
+

2δ′′n
knA

− sin 2δ′′n
2qnA

+O[a/A]2
}

(3.57a)

and

exp(−Devtq
2
n) = exp(−Devtk

2
n)

{
1 + 2Devt

k2na− knδ
′′
n

A
+O[a/A]2

}
. (3.57b)
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After substitution of Eq. (3.57a) and Eq. (3.57b) into Eq. (2.24), and rearranging

conveniently, the effective 1d extravascular depolarised volume is recast to first order

in a/A as

Λ1d(t) = A− a−
∞∑
n=1

sin2δ′n
∥fn∥2

exp(−Devtq
2
n)

q2n
(3.58a)

= A− a+
∞∑
n=1

1− exp(−Devtk
2
n)

∥gn∥2k2n
(3.58b)

+
∞∑
n=1

cos2δ′n
∥gn∥2k2n

exp(−Devtk
2
n) (3.58c)

−
∞∑
n=1

1

∥gn∥2k2n
(3.58d)

−
∞∑
n=1

1

A

Tn
∥gn∥2k2n

exp(−Devtk
2
n) (3.58e)

+
∞∑
n=1

1

A

Tn cos
2δ′n

∥gn∥2k2n
exp(−Devtk

2
n) , (3.58f)

where

Tn = −a+ 2δ′′n
kn

− sin 2δ′n
2qn

. (3.58g)

It may be noticed that Eq. (3.58a) has been decomposed into a number of terms

which are non-singular in the limit as kn and qn approach 0.

First term

Since ∆kn → π/A = (π/2)/∥gn∥2 as A grows large, the infinite sum in (3.58b)

becomes an integral, which is easily evaluated as

Λ1(t) ≡
∞∑
n=1

1− exp(−Devtk
2
n)

∥gn∥2k2n
=

2

π

∫ ∞

0

1− exp(−Devtk
2)

k2
dk

=
2√
π

√
Devt . (3.59)
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Second term

Substituting the identity cos2 δ′n = (1 + tan2 δ′n)
−1 = ℓ2q2n/(1 + ℓ2q2n) in (3.58c) and

using (3.56a) gives

Λ2(t) ≡
∞∑
n=1

cos2δ′n
∥gn∥2

exp(−Devtk
2
n)

k2n
=

∞∑
n=1

1

∥gn∥2
ℓ2q2n

1 + ℓ2q2n

exp(−Devtk
2
n)

k2n

≈
∞∑
n=1

1

∥gn∥2
ℓ2

1 + ℓ2k2n
exp(−Devtk

2
n) (3.60)

with approximate termwise relative error

2a/A− 2δ′′n/knA

1 + ℓ2q2n
= O[a/A] .

As A→ ∞, the infinite sum in the second line of (3.60) becomes an integral:

Λ2(t) =
2ℓ2

π

∫ ∞

0

exp(−Devtk
2)

1 + ℓ2k2
dk = ℓ exp

(
Devt

ℓ2

)
erfc

(√
Devt

ℓ

)
, (3.61)

which remains bounded for all values of t (see formula 7.1.13 of Ref. [175]). For times

such that
√
Devt/ℓ ≪ 1, the main contribution to the integral in Eq. (3.61) comes

from the interval k . 1/ℓ≪ 1/
√
Devt. Thus, approximating the exponential term in

the integrand of (3.61) by unity, we obtain

Λ2(t) ≈
2ℓ2

π

∫ ∞

0

dk

1 + ℓ2k2
= ℓ =

Dev

κ
.

On the other hand, for large times (
√
Devt/ℓ ≫ 1), practically all the contribution

to the integral in Eq. (3.61) is due to values of k . 1/
√
Devt≪ 1/ℓ. Hence,

Λ2(t) ≈
2ℓ2

π

∫ ∞

0

exp(−Devtk
2) dk =

ℓ2√
πDevt

.

Third term

Substituting (3.55b) into (3.58d) results in the well-known series

Λ3(t) ≡ −
∞∑
n=1

1

∥gn∥2k2n
= −8A

π2

∞∑
n=1

1

(2n− 1)2
= −A . (3.62)
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Fourth term

The fourth term in the decomposition of Λ(t), Eq. (3.58e), is repeated here for con-

venience

Λ4(t) ≡ −
∞∑
n=1

exp(−Devtk
2
n)

∥gn∥2k2n
Tn
A
.

Since A∥gn∥2k2n = O[n2], the leading contribution to the above series comes from

terms with a relatively small value of index n; the respective eigenfrequencies are

correspondingly small and the exponential term exp(−Devtk
2
n) ∼ exp(−Devtn

2/A2)

is close to unity, since
√
Devt ≪ A by assumption. Thus, the series in (3.58e) is

evaluated with small error by letting kn, qn → 0. In this limit, δ′′n = arc tan ℓqn → ℓqn,

hence the approximation sin 2δ′′n ≈ 2δ′′n gives

Tn(kn → 0) = −a+ 2δ′′n
kn

− δ′′n
qn

+O[a/A]2 = −a+ ℓ+O[a/A] . (3.63)

The right-hand side of Eq. (3.58e) is conveniently rewritten as

Λ4(t) ≡ −
∞∑
n=1

1

∥gn∥2k2n
Tn
A

+
∞∑
n=1

1− exp(−Devtk
2
n)

∥gn∥2k2n
Tn
A
. (3.64)

The first term in (3.64) evaluates, approximately, to

− 8

π2

∞∑
n=1

Tn(kn → 0)

(2n− 1)2
= a− ℓ . (3.65)

The second term in (3.64) is small, since it can be approximated as

Tn(kn → 0)
2

πA

∫ ∞

0

1− exp(−Devtk
2)

k2
dk = (ℓ− a)

√
Devt

A

with the use of (3.59) and (3.63). Thus, the term (3.58e) evaluates to

Λ4(t) ≈ a− ℓ . (3.66)

Fifth term

A comparison of the general terms of (3.58f) and (3.58c) shows that |Λ5(t)| ∼ Λ2(t)/A,

since Tn is bounded. Hence the term (3.58f) can be neglected for large A.
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Final result

Finally, adding together (3.59), (3.61), (3.62) and (3.66), and inserting the result into

(3.58a), yields formula (3.21).

3.6.3 Use of asymptotic expansions of Bessel functions in 2d

calculations

In this Appendix we show that it is possible to use the large-argument approximations

of the Bessel functions in obtaining the blood–tissue exchange quantities for radial

diffusion in two spatial dimensions (Section 3.2). To this end we begin by reviewing

the asymptotic behaviour of the eigenfrequencies of the Laplace (more generally, of

the Sturm–Liouville) operator.

The eigenfrequencies of the Laplace operator

∇2 = ∂2/∂x21 + · · ·+ ∂2/∂x2d (3.67)

satisfy the asymptotic relation of H. Weyl,12

qn ∼
(
n

Vev

)1/d

(3.68)

for large n, where Vev is the d-dimensional volume of the bounded region (with piece-

wise smooth boundary) of definition of the operator [99]. Thus, d = 1 for a segment.

This turns out also to be the case for a plane region in which the argument of the

Laplacian exhibits cylindrical symmetry.13 Indeed, we obtained qn ∼ n/A for both

these cases (refer to Sections 3.1 and 3.2). A proof of the asymptotic behaviour of the

eigenvalues of Sturm–Liouville operators may be found in, e.g., Ref. [99], pp. 360 –

361.

12Weyl, H. Über die asymptotische Verteilung der Eigenwerte. Nachrichten der Königlichen

Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Naturwissenschaftliche Klasse 1911:

110–117. Cited in Ref. [183].
13This may be qualitatively understood by noting that the cylindrical symmetry removes one

degree of freedom.
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Specifically, the eigenfrequencies of the Sturm–Liouville equation for two-

dimensional diffusion in a region with cylindrical symmetry are obtained from the

roots of the equation cos δnJ1(qnA) + sin δnY1(qnA) = 0, see Eq. (3.26). The large

roots of this equation are given by Eq. (8.547) of Ref. [181] as

qnA = (n+ 1/4)π + δn −
3/8

(n+ 1/4)π + δn
+O[n−3] . (3.69)

Thus, the estimate qnA ≈ (n+ 1/4)π + δn of Eq. (3.32) has an error O[n−1].

Figure 3.13 shows the relative error, ϵ(n), of the large-argument expansion of the

term [J2
1 + Y 2

1 ]
−1(qnA) from its true value. An approximate value of the argument,

qnA ≈ (n+ 1/4)π, has been used in both the exact and approximate expressions for

[J2
1 +Y

2
1 ]

−1(·) for simplicity. This is reasonable because, as A grows large, qn becomes

small and the scattering phase shift δn approaches zero, since tan δn ∼ −(ln qn)
−1 → 0

in this limit.

It is seen in Fig. 3.13 that the relative error ϵ(n) is small even for n = 1 [i.e.,

ϵ(1) ≈ 1%] and that it decreases approximately as n−2. The corresponding relative

error, ϵnorm(n), of the squared 2d norm (3.28) is then found, after straightforward

manipulations, as

ϵnorm(n)

ϵ(n)
=

{
1− (1 + ℓ2q2n)

[J2
1 + Y 2

1 ](qnA)

[P 2 +Q2](qna)

}−1

. (3.70)

Figure 3.14 plots the ratio (ϵnorm/ϵ)(n) for a pair of values of the ratio (a/A)
2 ∼ viv

and a range of values of the normalised membrane thickness, ℓ/a; here the estimate

qnA ≈ (n+ 1/4)π has, again, been used. The amplitude of (ϵnorm/ϵ)(n) is seen to be

of order unity. In conclusion, the error incurred due to the use of the large-argument

approximation in the expression for the squared 2d norm (3.28) is negligibly low.

Various limiting forms and asymptotic expansions of Bessel functions are given

below for ease of reference (see, e.g., Refs [99, 175]):

1. For large arguments,

Jν(z) =
√

2/(πz) cos(z − π/4− νπ/2) +O[z−3/2] , (3.71a)

Yν(z) =
√

2/(πz) sin(z − π/4− νπ/2) +O[z−3/2] . (3.71b)
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Figure 3.13: Relative error, ϵ(n), of the large-argument approximation of[
J2
1 (qnA) + Y 2

1 (qnA)
]−1

. The relative error has been fitted (solid line) to the power law

expression: ϵ(n) = 3.283 × 10−2n−1.966 (r2 = 0.9992) for n = 2, 3, . . . , 100. Only a subset

(open circles) of fitted data points is shown for clarity.

Hence [J2
1 +Y 2

1 ](z) ≈ 2/(πz)+O[z−2] for large z. On the other hand, for small

arguments, [J2
1 + Y 2

1 ](z) = (2/π)2z−2 +O[ln z].

2. The function [P 2 + Q2]−1(q′) vanishes at the limits q′ → 0 and q′ → ∞, and

has a maximum of amplitude ϱ2(a/ℓ)
α2 at q′p = ϱ1(a/ℓ)

α1 , where the constants

α1,2 and ϱ1,2 are both positive and have values near unity, and α2/α1 & 1. An

approximation to [P 2 +Q2](q′) for small arguments is given by

[P 2 +Q2](z) = 1 + (4/π2)(ln z − ℓ/a+ γ′)2 +O[z2] +O[z2 ln z] , (3.71c)

where γ′ = γ − ln 2 ≈ −0.1159 and γ ≈ 0.5772 is Euler’s constant.

On the other hand, an approximation for large arguments is given by

[P 2 +Q2](z) = (2/π)(ℓ/a)2(z + C2z−1) +O[z−3] (3.71d)

with C2 = 3/8 + a/ℓ+ (a/ℓ)2.

The relative error incurred by retaining only the leading terms in (3.71c) and

(3.71d) is plotted in Fig. 3.15. As expected, this error is largest near q′ = 1. It
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Figure 3.14: Ratio (ϵnorm/ϵ)(n), Eq. (3.70), for values of the parameters including those

listed in Table 2.1 for grey matter and myocardium: (a/A)2 = 0.0232 and 0.129 (for left

and right panel, respectively) and ℓ/a = 0.15, 1.5, 15 and 150.

should also be noted that if [P 2+Q2]−1(q′) attains its stationary point at some q′p < 1,

then the approximation given by the leading term of (3.71c) becomes inaccurate for

eigenfrequencies q′p < q′ < 1, since this term decreases with z in the range of validity

(z = q′ < 1) of the small-argument approximation. For values of the ℓ/a ratio outwith

the shown range, the error curves practically overlap.

3.6.4 Evaluation of Λ2d(t) for intermediate diffusion times

In this Appendix we evaluate the effective 2d extravascular depolarised volume for

intermediate diffusion times (a ≪
√
Devt ≪ A, i.e., 1 ≪ ς ≪ A/a) by piecewise

integration of (3.43). Choice of the appropriate intervals of integration is dependent

upon the relative values of ς and the position, q′p, of the maximum of [P 2+Q2]−1(q′).

The eigenfrequency dependence of the integrand in (3.43) is discussed in Appendix

3.6.3.
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Figure 3.15: Percentage error of large- and a small-argument approximations of

[P 2+Q2]−1(q′) for several values of the ℓ/a ratio. Only the leading terms in Eq. (3.71c)

(applies for q′ < 1) and Eq. (3.71d) (applies for q′ > 1) have been used in the calculations.

Case 1: ς−1 < q′p < 1

In this case the small-argument approximation (3.71c) is accurate for q′ < ς−1. The

integral in (3.43) is thus evaluated over the eigenfrequency intervals (0, ς−1), (ς−1, q′p),

(q′p, 1) and (1,∞):

1. In the interval (0, ς−1), the exponential term in the integrand of (3.43) becomes

1 − exp(−ς2q′2) ≈ ς2q′2, whereas the term [P 2 + Q2](q′) is approximated by

(3.71c). This gives

Λ11(t) =
8a2

π

∫ ς−1

0

1− exp(−ς2q′2)
[P 2 +Q2](q′)

dq′

q′3

≈ 8a2ς2

π

∫ ς−1

0

1

1 + (4/π2)(ln q′ − ℓ/a+ γ′)2
dq′

q′

= 4πa2ς2 arc cot[(2/π)(ln ς + ℓ/a− γ′)] . (3.72a)

If ln ς + ℓ/a≫ 1, the Taylor expansion arc cot z = z−1 +O[z−3] gives

Λ11(t) ≈
2πa2ς2

ln ς + ℓ/a− γ′
, (3.72b)
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which reproduces (3.45).

2. In the interval (ς−1, q′p), the exponential term may be approximated by unity

whereas for [P 2 +Q2](q′) the approximation (3.71c) holds. Thus

Λ12(t) ≈
8a2

π

∫ q′p

ς−1

1

1 + (4/π2)(ln q′ − ℓ/a+ γ′)2
dq′

q′3

< 2πa2ς2
∫ q′p

ς−1

1

(ln q′ − ℓ/a+ γ′)2
dq′

q′

≈
ln(q′pς)

−ln q′p + ℓ/a− γ′
Λ11(t) , (3.72c)

where the inequality q′−3 ≤ ς2q′−1 and Eq. (3.72b) have been used in the second

and third line, respectively, of the above equation. Since, from item 2 above

(p. 151), −ln q′p = −ϱ1 +α1 ln(ℓ/a) . ℓ/a, it follows that Λ12(t) is smaller than

Λ11(t) by a factor of order a/ℓ.

3. In the interval (q′p, 1), the use of Eq. (3.71c) yields a poor approximation to

the term [P 2 + Q2]−1(q′). However, since the maximum of this function is of

order (a/ℓ)α2 ∼ (q′p)
α2/α1 , the contribution to the effective 2d extravascular

depolarised volume on this interval is upper bounded by

Λ13(t)

a2
∼ (q′p)

α2/α1

∫ 1

q′p

dq′

q′3
∼ (q′p)

(α2/α1)−2 < ς2−(α2/α1) , (3.72d)

where 1/q′p < ς has been used. Thus, the right-most term is smaller than Λ11(t)

in (3.72b) by a factor of order (ln ς + ℓ/a)ς−α2/α1 .

4. Lastly, for q′ ≥ 1, the approximation 1− exp(−ς2q′2) ≈ 1 and Eq. (3.71d) yield

an integrand of rational fraction form. The integral is given by right-hand side

of

Λ14(t) ≈
4a2(a/ℓ)2

C2

(
1− 1

C
arc cot

1

C

)
, (3.72e)

where C is given below Eq. (3.71d). For ℓ/a > 1, Λ14(t) = O[(a/ℓ)2], whereas

Λ11(t) = O[ς2(ln ς)−1] or O[(a/ℓ)ς2], according as ln ς > ℓ/a or vice versa. In

the former case, the diffusion lengths may greatly exceed those typical of tracer

transport in biological tissues.
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The above estimates (3.72a) – (3.72e) have been confirmed by piecewise numerical

integration over the intervals (0, ς−1), (ς−1, a/ℓ), (a/ℓ, 1) and (1,∞), where the pa-

rameter a/ℓ instead of q′p has been used to allow for easier comparison with various

values of the ℓ/a ratio across cases. For ℓ/a = 10 and ς2 ≡ Devt/a
2 = 103 and 104,

numerical integration gives [Λ12/Λ11](t) = 2.9% and 3.1%, respectively. For ℓ/a = 1

and the same diffusion times, this ratio increases to 12% and 9.1%, respectively. On

the other hand, the eigenfrequencies q′ > a/ℓ contribute to Λ2d(t) by less than 1%.

Case 2: q′p < ς−1 ≪ 1

Here, the small-argument approximation (3.71c) is only accurate for q′ < q′p. Thus,

the integral in (3.43) is evaluated over the eigenfrequency intervals (0, q′p), (q
′
p, ς

−1),

(ς−1, 1) and (1,∞):

1. In the interval (0, q′p), a similar calculation to that for the previous case yields:

Λ21(t) ≈
8a2ς2

π

∫ q′p

0

1

1 + (4/π2)(ln q′ − ℓ/a+ γ′)2
dq′

q′

= 4a2ς2 arc cot
[
(2/π)(−ln q′p + ℓ/a− γ′)

]
≈ 2πa2ς2

−ln q′p + ℓ/a− γ′
, (3.73a)

where the last approximation is justified because the argument of arc cot(·) is
large: since q′p < ς−1 ≪ 1, the ratio ℓ/a ∼ (q′p)

−α1 ≫ 1. Moreover, (ℓ/a)−α1 ≫
ln(ℓ/a)−α1 ∼ −ln q′c which, in turn, is much greater than ln ς. This implies that

Λ21(t) can be approximated by Λ11(t) with good accuracy.

2. In the interval (q′p, ς
−1), the leading term in (3.71c) cannot be used to obtain an

approximation to [P 2+Q2]−1(q′). However, it can be used, instead, to obtain an

upper estimate of the contribution to the effective 2d extravascular depolarised

volume over this interval. Operating as in the development leading to (3.72c)
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gives

Λ22(t) ≤
8a2ς2

π

∫ ς−1

q′p

1

1 + (4/π2)(ln q′ − ℓ/a+ γ′)2
dq′

q′

<
−ln(q′pς)

ln ς + ℓ/a− γ′
Λ21(t) , (3.73b)

where the numerator is non-negative. The relation 1 ≪ ς < 1/q′p ∼ (ℓ/a)α1

implies that Λ22(t) is smaller than Λ21(t) by approximately a factor of a/ℓ.

It is noted that the above result is an upper bound (possibly a conservative

one) on the error incurred by the use of the small-argument approximation to

[P 2 +Q2]−1(q′) in the estimation of the contribution to Λ2d(t) over the interval

0 < q′ < ς−1. The reason is that for q′ . a/ℓ the approximation error (Fig. 3.15)

is small, whereas for higher frequencies it is bounded by [P 2 +Q2]−1(q′).

3. Similarly, in the interval (ς−1, 1) an upper bound is found as

Λ23(t) ≤
8a2ς2

π

∫ 1

ς−1

1

1 + (4/π2)(ln q′ − ℓ/a+ γ′)2
dq′

q′

<
ln ς

ℓ/a− γ′
2πa2ς2

ln ς + ℓ/a− γ′

≈ (a/ℓ) ln ς Λ21(t) ≪ Λ21(t) , (3.73c)

where approximations are based upon the discussion of bullet point 1 above.

4. For q′ ≥ 1 the contribution to Λ2d(t) is the same as that for Case 1 above.

The above discussion shows that the Λ21(t) term dominates and differs from Λ11(t),

given by Eq. (3.45), by a small amount. For ℓ/a = 100 and ς2 = 100, . . . , 104,

numerical integration shows that [Λ22/Λ21](t) is less than 4% and decreases with

diffusion time, whereas [Λ23+Λ24](t)/Λ21(t) increases with diffusion time but remains

below 0.5%.

Case 3: ς−1 ≪ 1 < q′p

Here, the integration intervals may be chosen as (0, ς−1), (ς−1, 1) and (1,∞) since for

q′ ≥ 1 the large-argument approximation to [P 2 +Q2]−1(q′) obtained from (3.71d) is
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ς2 = Devt/a
2 100 101 102 103 104

Λ32(t)/Λ31(t) (%) − 25 21 15 11

Λ33(t)/Λ31(t) (%) 50 10 1.5 0.21 0.026

Table 3.1: Percentage contributions to effective 2d extravascular depolarised

volume at intermediate diffusion times, for ℓ/a = 0.1 (Case 3 in text). Integration

intervals were (0, ς−1), (ς−1, 1) and (1,∞). Note that for ς2 = 1 the integration limits in

Λ32(t) overlap, hence this contribution vanishes.

rather accurate (Fig. 3.15). It follows that Λ31(t) = Λ11(t) and that Λ33(t) = Λ14(t).

The term

Λ32(t) ≈
8a2

π

∫ 1

ς−1

1

1 + (4/π2)(ln q′ − ℓ/a+ γ′)2
dq′

q′3
(3.74a)

contributes a sizeable amount to the overall integral and has been computed numer-

ically (Table 3.1).

To conclude this Appendix, we show in Fig. 3.16 the relative error of the simplified

formula (3.45). For low ℓ/a ratios, and for diffusion times such that
√
Devt/a is of

order unity, this formula becomes less accurate.

3.6.5 Monte Carlo simulations

We performed Monte Carlo simulations in order to validate numerically the theo-

retical expressions for the effective depolarised volume for sparse capillary networks,

Eq. (3.21) and Eq. (3.43).

The physical situation addressed in the simulation involves the diffusion of tracer

molecules in the extravascular space and their permeation across the capillary wall

into the capillary lumen, whereupon they are rapidly cleared from the blood. Axial

diffusion and consumption of tracer molecules in the extravascular space is assumed

to be negligibly low. The initial condition specifies a constant concentration of tracer

molecules in the extravascular space. As may be recalled, for this problem the extra-

vascular concentration was denoted by ψabs
ev (r, t) (Section 2.3.1).

Only a highly simplified case is investigated in the Monte Carlo simulations de-
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Figure 3.16: Percentage error of simplified analytical formula (3.45) for effective

2d extravascular depolarised volume at intermediate diffusion times, relative to

the numerical integration of (3.43). The legend shows the set of ℓ/a ratios used.

scribed in this Appendix, namely the single-capillary approximation for sparse cap-

illary networks (Section 2.1.3). The numerical results obtained for both the 1d and

2d cases are plotted together with the appropriate analytical expressions in Fig. 3.6

and Fig. 3.10, respectively.

In the sequel we first describe the simulation procedure with an emphasis on the

2d case (for the 1d case, see also Ref. [96]), then both the values of the simulation

parameters and plots of the simulation error are given for both the 1d and 2d cases.

Simulation procedure

The two-dimensional diffusion of tracer molecules in the pericapillary region was

simulated using an ensemble of random walks, each consisting of (a maximum of)

Nt independent, normally distributed steps with root-mean-squared length σ. The

capillary lumen was modelled as a circle of radius a and was placed at the centre of

a square box of size 2A that modelled the extravascular space (Fig. 3.17). An initial

population of Ns random walkers (each representing a tracer molecule) was placed
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Figure 3.17: Monte Carlo simulation box used to model the capillary lumen (circle),

the permeable capillary wall (broken line) and the pericapillary region (with square-shaped

boundary). The effect of a probability Pabs < 1 of traversing the capillary wall and that of

periodic boundary conditions at the pericapillary wall are also both shown (dashed lines).

randomly according to a uniform probability distribution in the ‘extravascular’ region

of the box.14

The length A of each side of the box must be large enough that near the edges of

the box the concentration of walkers remains virtually unaltered throughout the sim-

ulation (Fig. 2.5), as has been assumed in the derivation of Eq. (3.21) and Eq. (3.43).

A was therefore chosen as a trade-off between the systematic error due to a finite box

size, and the size of the initial population of random walkers required to maintain an

14It may be noted that a square box does not possess cylindrical symmetry, contrary to what has

been assumed in the analytical treatment of the capillary–tissue model. However, the precise shape

of the simulation box should be of little consequence provided that A ≫ a. Moreover, the periodic

boundary conditions on the sides of a square are easier to compute than the reflective boundary

conditions on a circumference.

159



3.6. Appendices

adequate concentration initially and throughout the simulation. Thus

A = max
{
a+ 3

√
4Devtmax , 10a

}
(3.75)

was chosen based on the total diffusion length for a total simulation time tmax, and

typical intercapillary distances for brain and myocardium.

Furthermore, in the simulated physical situation, the pericapillary region may

be considered a ‘large’ source of tracer molecules maintaining an almost constant

average concentration of tracer (except, possibly, in a region near the capillary wall).

The number of ‘surviving’ random walkers must therefore be sufficiently high at all

times throughout the simulation. Thus, the condition

Λ2d(tmax)

A2
≪ 1 (3.76)

should also hold. Equation (3.22) gives the upper bound Λ2d(tmax) ≤ 2πaκtmax. For

the 1d case the capillary radius a is not defined and the length of the simulation

interval should be chosen such that
√
Devtmax

A
≪ 1 and

κtmax

A
≪ 1 , (3.77)

where (3.22) has been used in the latter inequality.

The probability density of normally distributed, one-dimensional steps from initial

position x′ to final position x is given by

px(x, x
′) =

1√
2πσ2

x

exp

[
−(x− x′)2

2σ2
x

]
, (3.78)

and likewise for the y direction. The root-mean-squared length of random steps,

σx = σy =
√
2Dev∆t , σ =

√
σ2
x + σ2

y =
√
4Dev∆t , (3.79)

must be chosen to be small relative to the capillary radius.

The time step, ∆t, is then determined from Eq. (3.79) with the use of σ and the

extravascular diffusion coefficient, Dev. The maximum number of random steps, Nt,

performed by any random walker is given by

Nt =
tmax

∆t
=

4Devtmax

σ2
. (3.80)
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Note that (3.75) can be rewritten as A = max
{
a+ 3σ

√
Nt , 10a

}
.

Any random walker diffusing beyond the pericapillary boundary re-enters the sim-

ulation box according to periodic boundary conditions (Fig. 3.17), thereby simulating

tracer mass balance across the whole pericapillary boundary. In the 1d case this type

of boundary condition is meaningless, hence a reflective condition was used instead,

i.e., if x(n) > A, then x(n) 7→ 2A − x(n), where x(n) denotes the position of any

given walker at the nth time step.

The removal of random walkers in the circle of radius a is governed by the ‘absorp-

tion’ probability Pabs (evaluated below). Specifically, let δNabs(n) denote the number

of random walkers which reach the interior of the circle between the (n − 1)th and

nth time steps. Then, on average, only a fraction Pabs of these walkers will actually

be removed from the ensemble – thereby simulating fast tracer clearance in the cap-

illaries – whereas a fraction 1− Pabs, on average, will be put back in their respective

positions outwith the circle at the time step immediately previous. This was realised

by extracting at each time step δNabs(n) samples from a uniform variate in the in-

terval [Pabs − 1, Pabs]. This process therefore models the permeation of, on average,

δNabs(n) = PabsδNabs(n) tracer molecules into the capillary lumen between the time

instants (n− 1)∆t and n∆t; see Fig. 3.17.

Pabs was calculated by equating two equivalent expressions for the tissue-to-blood

tracer flux under absorbing intracapillary conditions: the ‘macroscopic’ formulation

makes use of the definition of membrane permeability, Eq. (2.10b), whereas the

‘microscopic’ formulation involves the probability density of random displacements,

Eq. (3.78). Moreover, since the step size is typically much smaller than the capillary

radius, Pabs can be calculated with small error from considerations of 1d diffusion

near the capillary in the direction normal to the capillary wall surface. Thus

−njκ = κψabs
ev (a+, t) =

1

∆t

[
Pabs

∫ ∞

0

dx′
∫ 0

−∞
dx px(x, x

′)

]
ψabs
ev (a+, t) . (3.81)

The above iterated integral gives the probability that a walker performs a random

step between an arbitrary position in the pericapillary region (x′ > 0) and another in
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the capillary lumen (x < 0), and evaluates to σx/
√
2π.15 Thus, Pabs can be expressed

in any of the forms:

Pabs = min

{√
2π

κ∆t

σx
, 1

}
= min

{√
π

2

κσ

Dev

, 1

}
= min

{
κ

√
π∆t

Dev

, 1

}
. (3.82)

The above expressions suggest that, the permeability coefficient κ being held fixed,

the probability of permeating the capillary wall is favoured by efficient diffusion in

the extravascular space.

Finally, the simulated effective 2d extravascular depolarised volume is estimated

from (2.23b) as

ΛMC(n∆t)

4A2 − πa2
=
Nabs(n)

Ns

, (3.83)

where Nabs(n) is the total number of absorbed random walkers to the nth time step.

Values of the parameters and simulation error: 2d case

The values of the parameters for the simulation depicted in Fig. 3.10 and Fig. 3.18

are discussed next. The simulation box is defined by the parameters a = 3.5 µm and

A/a ≈ 49.16 Seventeen instances of the simulation routine were independently run;

care was taken to use different initial states for the random number generators in each

run. For each run, one million random walkers were placed at random according to a

uniform probability distribution initially; approximately 0.03% of these walkers fell

inside the central circle of radius a and were discarded. Thus, there was a total of

Ns ≈ 1.7×107 random walkers initially. Of these, a fraction of 0.54%, approximately,

was absorbed in the inner circle during the course of the simulation. Ns and Nabs(n)

in Eq. (3.83) were computed by adding the values of those quantities for all seventeen

runs. Because the effect of molecular size was not modelled in the simulation, we have

15Since the main contribution to the second integral in (3.81) comes from an interval of length x

of the order of σx ≪ a, integration over the interval (−∞, 0) rather than over (−∞,−a) is justified.
The iterated integral is easily evaluated by rotating the coordinate axes by ±π/4 radians, thereby

exploiting the contour lines x± x′ = const.
16The non-integer value of A/a arises from the value of the parameters used in Eq. (3.75).
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neglected the probability that two or more walkers may ‘occupy’ identical positions

at any given time step in the same, or different, runs.

The values of the other simulation parameters were: σx/a = σy/a = 10−2; Dev =

1.0 µm2 ms−1; κ = 5.0× 10−2 µmms−1; the resultant time step was ∆t ≈ 1.5× 10−6,

in units of τκ = ℓ/κ = 400 ms. The simulation time was set to tmax = 2.0 in the same

units; thus each random walker performed a maximum of Nt = 2× 104Devtmax/a
2 ≈

1.3× 106 steps. The resultant absorption probability was Pabs ≈ 2.2× 10−3.

The simulation spanned both short and intermediate diffusion times, as is seen

from the ratios
√
Devtmax/a ≈ 8 and

√
Devtmax/A ≈ 0.2. At short diffusion times the

tissue-to-blood flux is expected to be rate-limited by the capillary permeability, since

the effective membrane thickness is greater than the capillary radius (ℓ/a = 5.7). On

the other hand, at intermediate diffusion times, both permeation and extravascular

diffusion are expected to contribute similarly to the tissue-to-blood flux, since the

values of the non-dimensional parameters ℓ/a and ln(
√
Devtmax/a) ≈ 2.4 are compa-

rable.

We have found heuristically that, for properly chosen values of the initial number

of walkers (Ns) and diffusion time steps (Nt), and for appropriate box dimensions

(A/a), the statistical simulation error ϵMC(n) decreases as the square root of the

amount of absorbed random walkers:

ϵMC(n) ∼
1√

Nabs(n)
. (3.84)

In Fig. 3.18 are plotted both the deviation of the simulated effective 2d depolarised

volume, ΛMC(n∆t), from the theoretical value, Eq. (3.43), and the expected simu-

lation error, ϵMC(n). The results of this particular Monte Carlo simulation are seen

to underestimate (by less than 1%) the value of Λ2d(n∆t) in the long run. Since

Λ2d(tmax)/A
2 = 6.9× 10−3 [see Eq. (3.76)] it may be assumed that the concentration

of random walkers near the edge of the square box remains approximately constant

at its initial value, and hence that the effect of finite box size introduces only a small

statistical error.

The accuracy of the simulation for short diffusion times can be assessed as follows:

equating the theoretical and simulated values for the effective 2d depolarised volume,
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Figure 3.18: Percentage error of Monte Carlo simulation of effective 2d depo-

larised volume relative to numerical integration of Eq. (3.43). Error amplitudes have

been plotted in increments of one-thousand time steps starting at t = ∆t. For t = ∆t

and t = 1001∆t the error amplitudes are 947% and 10.5%, respectively, and have not been

represented for clarity. The broken line represents the expected statistical error, Eq. (3.84).

Eq. (4.7c) and Eq. (3.83), respectively, and solving for the theoretical amount of

absorbed random walkers after the nth time step, N theo
abs (n), gives

N theo
abs (n) ≈ Λ2d(n∆t)

Vev
Ns ≈

2πaκ∆tNs

Vev
n = 9.5× 10−2n . (3.85)

According to this expression, for the parameters used in this simulation N theo
abs (n)

can only take integer values for n ≥ 11 time steps, thus explaining large initial

discretisation errors. For example, after the first nine time steps only one random

walker was removed, far exceeding the approximate theoretical value of N theo
abs (1) given

by (3.85). The ratio Nabs/N
theo
abs − 1 ≈ 948% = ΛMC/Λ2d − 1 is largest for n = 1, i.e.,

for t = ∆t.

Values of the parameters and simulation error: 1d case

The values of the parameters for the simulation depicted in Fig. 3.6 and Fig. 3.19 are

discussed next.
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Figure 3.19: Percentage error of Monte Carlo simulation of effective 1d de-

polarised volume relative to formula (3.21). The broken line represents the expected

statistical error, Eq. (3.84).

Ten million random walkers were used in the simulation. Of these, a fraction of

1.2%, approximately, was absorbed over a maximum of Nt = 5000 diffusion steps.

The value of membrane permeability was κ = 1.7× 10−3 µmms−1 and the diffusion

coefficient was Dev = 1.0 µm2 ms−1 as for the 2d case. The simulation time was

tmax = 10 in units of τκ ≈ 3.5× 105 ms (see above), i.e., tmax ≈ 1 hour. The diffusion

time step was ∆t = 2 × 10−3τκ ≈ 690 ms. The length of the 1d simulation box

was A = 50
√
2Devtmax ≈ 1.3 × 105 µm; the root-mean-squared diffusion step was

σx/A ≈ 2.8× 10−4. Moreover, with reference to Eq. (3.77), the ratios
√
Devtmax/A ≈

1.4×10−2 and κtmax/A = 4.5×10−2 are reasonably small. The absorption probability

was Pabs = 7.9× 10−2.

All the simulation routines were programmed inMatlab (The MathWorks, Inc.).

The pseudo-random generator number used had a period of 264 ∼ 1019, well exceeding

the requirements of the simulation. Part of the simulations were run on the computing

cluster at the Medical Physics Section, Department of Radiology, Albert-Ludwigs

Universität, Freiburg im Breisgau, Germany.
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Chapter 4

Applications and Model Comparisons

This Chapter opens with a description of various regimes in which blood–tissue tracer

exchange can occur, as determined by the interplay of extravascular diffusion and

transcapillary permeation. This analysis leads to a discussion of potential sources of

deviation between the class of lumped tracer-exchange models and the more general

class of spatiotemporal models. Subsequently, the predictions of the spatiotemporal

model presented in preceding Chapters are compared to those found in previously

published work, including gas exchange in the tissues and arterial spin labelling

(ASL). Importantly, the ASL signal taking into account diffusion of magnetically

tagged water in extravascular space is evaluated using the present spatiotemporal

model. This result is then compared to two ASL models from the literature, none of

which takes account of water diffusion, by evaluating the signal output of each model

for selected boli of inflowing magnetisation (appropriate for both PASL and CASL)

using a common set of tissue parameters. A comparison of the spatiotemporal and

lumped models at steady state is also provided. The Chapter closes with a brief

discussion of earlier chemical exchange results.
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4.1 Blood–tissue tracer exchange regimes

4.1.1 Permeability-limited vs diffusion-limited exchange

The exchange of solutes between blood and the surrounding tissue can be rate-limited

either by capillary flow, capillary wall permeability to tracer, or tracer diffusion in

the extravascular space:

1. In a flow-limited regime, the capillary flow is slower than transcapillary perme-

ation: τc ≫ τiv or, equivalently, fiv ≪ PS, from Eqs (2.2b) – (2.3b).

Herscovitch et al. [160] estimated capillary flow and permeability surface area

in human brain tissue using H 15
2 O PET. Regional values were in the ranges

fw = 31.8 – 62.9 ml [100 g]−1 min−1 and PSw = 81 – 152 ml [100 g]−1 min−1, with

the lower and higher values corresponding to white matter and central cortex,

respectively. The resultant H 15
2 O extraction was high, i.e., Ew ≈ 0.8. On the

other hand, use of typical capillary-segment values listed in Table 2.1 results in

the opposite inequality, τc < τiv. This discrepancy can be explained by the wide

distribution of anatomo-physiological parameters, such as capillary segment

length and erythrocyte velocity (see, e.g., Ref. [65]), on the scale of a typical

voxel, and warns again straightforward generalisation of conclusions obtained on

a single-capillary scale. Furthermore, it suggests that proper quantitative ‘up-

scaling’ from single-capillary to whole-tissue analyses must take into account

capillary network statistics.

The condition τc ≫ τiv for flow-limited exchange is the converse of Eq. (2.7a)

for fast clearance of tracer by the blood flow. Hence, in a flow-limited situa-

tion, the assumption that the concentration of tracer in the capillaries is barely

influenced by the extravascular concentration (Section 2.2.2) might be violated

if any tracer back-flux from extravascular space into the blood is not negligi-

bly low, rendering inaccurate the analysis of Chapter 3. The estimates for τc

and τiv for normal brain and myocardial tissue suggest that capillary flow is

not expected to be a limiting factor of transcapillary exchange. In this case,
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the theoretical analysis becomes independent of the amplitude scale of the in-

tracapillary concentration (as determined by flow and exchange processes) on

account of the assumption of linearity (see Section 2.2).

2. In a permeability-limited regime the blood–tissue transcapillary flux is rate-

limited by a low permeability of the capillary wall to the considered tracer. In

this situation, (i) the capillary flow can be assumed high enough to drive the

blood-to-tissue flux of tracer and, moreover, wash out any tracer which leaks

into the capillaries from the extravascular space; and (ii) efficient diffusion of

tracer in the extravascular space results in relatively shallow gradients in tracer

concentration (Fig. 3.7d).

It is intuitively apparent that, under permeability-limited conditions, the aver-

age diffusion length travelled by a diffusing molecule during an interval of time

equal to the mean extravascular residence time under hypothetical conditions of

fast diffusive mixing, τev, will be much greater than the characteristic radial di-

mension, A, of a pericapillary region. Thus, we have the estimate
√
Devτev ≫ A.

In other words, the root-mean-squared time taken by the molecules of tracer

to diffuse in the extravascular space, i.e., their characteristic extravascular dif-

fusion time τD, defined by Eq. (4.1) below, will be much smaller than τev.

Under permeability-limited conditions, the concentration of tracer near the

capillary wall will reach a quasi-steady state provided that the intracapillary

concentration does not vary too rapidly, and that the difference between intra-

and extravascular relaxation rates is not too great. As a result, the transcapil-

lary tracer flux will be virtually constant over time. The amount of tracer that

permeates across the membrane per unit surface area is therefore expected to

increase almost linearly with time.

3. Conversely, in a diffusion-limited regime, relatively longer times are required for

the tracer to diffuse in the available extravascular space. Therefore, depending

on the sense of the transcapillary flux, the tracer will tend to accumulate in,

or to be rapidly removed from, the vicinity of the capillary wall. This typically
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causes sharp concentration gradients with relatively long diffusion transients

(Fig. 3.7b).

If the capillary permeability parameter is allowed to increase but the extravas-

cular diffusion coefficient is held fixed, τev decreases but τD does not change.

On the other hand, if κ is held fixed but Dev is decreased, then τev remains un-

changed but τD increases. The effect of jointly increasing κ and decreasing Dev

is to diminish τev and to increase τD. It is therefore intuitively reasonable that,

under diffusion-limited conditions, the mean extravascular residence time (un-

der hypothetical fast diffusive mixing conditions) should be of the same order

as the characteristic extravascular diffusion time [80, p. 511]. A related dis-

cussion of this diffusion-limited regime in the context of diffusion and reaction

phenomena in biofilms is given in Ref. [149, pp. 399 ff.].

We recall that in this Thesis the term ‘diffusion’ refers to diffusive transport of

tracer in extravascular space, and that ‘permeation’ refers to non-osmotic, diffusive

transmembrane transport. The synonymous terms ‘permeability-limited exchange’

and ‘barrier-limited exchange’ are both well established in the literature (see, e.g.,

Refs [28, 69, 184]). We remark, however, that the term ‘diffusion-limited exchange’

has also been used in the ASL and indicator-dilution literature to refer to exchange

which is rate-limited by diffusive transcapillary permeation. In this context, a ‘freely

diffusible tracer’ is an idealised tracer for which transcapillary exchange is rate-limited

neither by capillary permeability nor extravascular diffusion. To quote Ziegler and

Goresky [184, p. 181], ‘The walls of the capillaries in heart muscle present a barrier

of varying permeability to a variety of substances. Substances for which this barrier

is appreciable may be said to exchange in a barrier-limited or diffusion-limited fash-

ion. Substances which cross the capillary wall freely may be said to exchange in a

flow-limited manner (. . .)’. As a further example, St. Lawrence et al. [31, p. 443],

citing supporting references, state that ‘exchange of water across the blood-brain bar-

rier is diffusion limited’ because PS assumes a finite value. The physical situations

described in these examples are clear, but the terminology reflects the fact that, in

these references, diffusive transport is assumed to occur only across the transcapil-
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lary barrier, instantaneous equilibration of tracer occurring in the radial, or lateral,

direction (see Ref. [184], p. 182, and Ref. [31], p. 441).

We define below several parameters which are expected to enter into the expres-

sions for blood–tissue exchange based on the foregoing qualitative discussion. The

mean residence time for tracer molecules in a well-mixed extravascular compartment

has been defined in Eq. (2.2c). We also define the characteristic radial extravascular

diffusion time1 for an annulus of inner radius a and outer radius A as

τD ≡ A2 − a2

4Dev

∼ A2

4Dev

, (4.1)

where this latter approximation is valid for sparse capillary networks. Thus, the ratio

of tracer residence time to tracer diffusion time in the pericapillary volume, i.e.,

τev
τD

=
2Dev

aκ
=

2ℓ

a
(4.2)

is equal (up to a factor of 2) to the normalised membrane thickness and quantifies

the ‘strength’ of tracer extravascular diffusion relative to diffusive transmembrane

permeation. The parameter κa/Dev is known as the Sherwood number [10]. Further

note that the normalised diffusion length, ς =
√
Devt/a, Eq. (3.38a), defines the

diffusion length scale for sparse capillary networks.

Figure 4.1 is central to several sections in this Chapter. It illustrates the various

regions in which both diffusion- and permeability-limited exchange may occur in

relationship to normalised membrane thickness and normalised diffusion length of

the tracer. The notional threshold line at
√
Devt/a = 10 is realistic for typical

intercapillary distances in human grey matter; for myocardium, this threshold is

expected to be somewhat lower, based on parameter values quoted in Table 2.1.

Qualitatively, in the cases in which the parameter Dev/κa is large, the transcapillary

exchange will be limited by capillary tracer permeability at all diffusion times. On

the other hand, when Dev/κa is of the order of unity, and if the observation time (i.e.,

after the arrival of tracer at the capillaries) is long enough, blood–tissue exchange

can occur in both permeability- and diffusion-limited regimes.

1In the sequel, where no ambiguity arises, the terms ‘characteristic’ and ‘radial’ shall both be

left understood.

171



4.1. Blood–tissue tracer exchange regimes

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

Brain, myocardium [water]

Diffusion-limited exchange

Spatiotemporal models

O
n

e
-d

im
e

n
s

io
n

a
l 
e

x
c

h
a

n
g

e

Kidney [inulin]

Permeability-limited exchange 

Lumped models

Figure 4.1: Tracer exchange regimes and validity regions of spatiotemporal and

lumped tracer-exchange models for sparse capillary networks. Note: kidney data

was reviewed in Ref. [44].

The foregoing qualitative remarks are made precise in the following Section. For

this purpose it is sufficient, as well as analytically simpler, to consider the blood-

to-tissue flux of tracer and the effective 2d extravascular depolarised volume. The

applicability of each class of tracer-exchange model, as shown in Fig. 4.1, is discussed

in Section 4.2.

4.1.2 Tracer-exchange time scales

Short diffusion times

At sufficiently short times, the distance which the molecules of a tracer can travel

by diffusion is relatively small. Hence, the tracer molecules diffusing in the vicinity

of the capillaries have a greater chance to permeate across the capillary wall than

172



Chapter 4. Applications and Model Comparisons

those farther away from the vessels. As a result, the exchange is rate-limited by

membrane permeabilities. Thus, the interval of short extravascular diffusion times

is such that the tracer diffusion length in extravascular space is much smaller than

capillary radius:
√
Devt

a
≪ 1 . (4.3)

For example, for brain and myocardium we estimate the upper bound t ≪ 10 ms,

from Table 2.1. During the interval in which (4.3) holds, extravascular diffusion can

be regarded as effectively one-dimensional; refer to Section 3.1 and Fig. 4.1.

The step response function at the capillary wall is given by

W (a+, t;Rev = 0) = 1− exp

(
Devt

ℓ2

)
erfc

(√
Devt

ℓ

)
(4.4)

from (3.13a). The resultant transcapillary flux is given by (3.18). Lastly, the effective

extravascular depolarised volume is given by

Λ2d(t) ≈ 2πaℓ

[
2√
π

√
Devt

ℓ
+ exp

(
Devt

ℓ2

)
erfc

(√
Devt

ℓ

)
− 1

]
(4.5)

from (3.44) and (3.21).

The capillary radius is seen to enter in a trivial way into the above expressions as

the bulk of exchange involves mostly the periphery of the capillaries. Importantly,

it is the ratio of tracer diffusion length to effective membrane thickness that governs

the exchange at small times.

1. At short diffusion times, the permeability-limited regime is characterised by

the condition
√
Devt

ℓ
≪ 1 , (4.6)

that is, tracer diffusion lengths are much smaller than the effective thickness of

the capillary wall (Fig. 4.2a). The small-argument expansion2

exp(z2) erfc(z) = 1− 2z√
π
+ z2 − 4z3

3
√
π
+O[z4]

2N(z) = exp(z2) erfc(z) is written in integral form as

N(z) = exp(z2)
2√
π

∫ ∞

z

exp(−t2) dt = 2√
π

∫ ∞

0

exp(−t2 − 2zt) dt .
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gives, putting z =
√
Devt/ℓ for brevity:

W (a+, t;Rev = 0) =
2√
π

√
Devt

ℓ
+O[z2] , (4.7a)

njκ(a, t) = κ

{
1− 2√

π

√
Devt

ℓ
+O[z2]

}
, (4.7b)

Λ2d(t) = 2πaκt+ aℓO[z3] . (4.7c)

It is recalled in Eq. (4.7b) that njκ(a, t) represents the blood-to-tissue flux

due to a unit step difference between the amplitude of the intracapillary and

extravascular concentration at the capillary wall. Thus, this equation is dimen-

sionally correct.

Under permeability-limited conditions the amplitude of the step response func-

tion is relatively low but, importantly, it depends upon the extravascular dif-

fusion coefficient as D
−1/2
ev . Equation (4.7a) coincides with the leading term of

Eq. (12) of Lee and Fronek [44], when this latter expression is evaluated at the

capillary entrance (z = 0, r = a); these authors, however, did not specify a

time interval in which their result holds.

On the other hand, the transcapillary flux per unit intracapillary concentra-

tion of tracer, Eq. (4.7b), is only weakly dependent on diffusion coefficient.

Moreover, it is nearly stationary, hence the effective extravascular depolarised

volume increases linearly with time, to a first approximation.

The left-hand equality gives N(0) = 1, N ′(z) = 2zN(z) − 2π−1/2, N ′′(z) = 2N(z) + 2zN ′(z) and,

by induction, N (m)(z) = 2(m − 1)N (m−2)(z) + 2zN (m−1)(z). This recurrence relation affords the

required Taylor expansion about z = 0.

Alternatively, it is noted from the above right-hand equality that for z ≪ 1 the term exp(−2zt)

in the integrand decreases slowly relative to exp(−t2), and that exp(−t2) decreases slowly relative

to exp(−2zt) for z ≫ 1. Taylor expansion of the slowly-varying terms about the origin, followed by

termwise integration of the resultant uniformly convergent series [173], yields the same expansion

as above.
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2. In the diffusion-limited regime, the tracer diffusion length is greater than the

effective thickness of the capillary wall (Fig. 4.2b), i.e.,

ℓ≪
√
Devt≪ a . (4.8)

This condition implies that membrane permeabilities must be relatively high.

The large-argument expansion (Ref. [185], p. 939)

√
π exp(z2) erfc(z) =

1

z
− 1

2z3
+

1 · 3
22z5

− · · ·

gives

W (a+, t;Rev = 0) = 1− ℓ√
πDevt

+O[z−3] , (4.9a)

njκ(a, t) =

√
Dev

πt
+ κO[z−3] , (4.9b)

Λ2d(t) = 2πaℓ

{
2√
π

√
Devt

ℓ
− 1 +O[z−1]

}
, (4.9c)

with z =
√
Devt/ℓ.

Therefore, the concentration just outside the capillary wall rises rapidly (since

ℓ/
√
Devt is small) and the flux decreases in like proportion. As expected, the

effective extravascular depolarised volume is proportional to diffusion length

times capillary radius, but includes a correction for the volume, 2πaℓ, ascribed

to the effective thickness of the capillary wall.

We note that the condition ℓ/a = Dev/κa ≪ 1 does not hold either for tracer

water or for low molecular weight paramagnetic tracers in brain and myocardial

capillaries.

Intermediate diffusion times

At intermediate extravascular diffusion times, tracer diffusion lengths are greater than

typical values of capillary radius, but much shorter than typical half-intercapillary

distances:

a <
√
Devt≪ A . (4.10)
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Figure 4.2: Diffusion-, a), and permeability-limited, b), 1d tracer exchange. The

capillary wall (shaded area) has effective thickness ℓ as well as (when observed from nearby

positions) a large apparent radius of curvature.

For example, t ≪ 40 – 50 ms in myocardium and t ≪ 200 – 1000 ms in brain tissue,

from the values of the parameters listed in Table 2.1. In this range of tracer diffusion

times, the approximation of one-dimensional extravascular diffusion cannot be made.

The effective extravascular depolarised volume is given approximately by Eq. (3.45).

Differentiating this quantity with respect to time gives the transcapillary tracer flux,

which upon substitution into Eq. (3.41a) gives the step response at the capillary wall.

Thus

W (a+, t;Rev = 0) ≈ 1− ℓ/a

ln(
√
Devt/a) + ℓ/a− γ′

, (4.11a)

njκ(a, t) ≈
Dev/a

ln(
√
Devt/a) + ℓ/a− γ′

, (4.11b)

plus terms of order (ℓ/a)(ln(
√
Devt/a) + ℓ/a− γ′)−2.

When ln(
√
Devt/a) ≪ ℓ/a, the transcapillary tracer flux is rate-limited by the

capillary permeability and the above expressions become

W (a+, t;Rev = 0) ≈ a

ℓ
ln

(√
Devt

a

)
, (4.12a)

njκ(a, t) ≈ κ . (4.12b)

The amplitude of the step response function at the capillary wall increases slowly

as ln t, rather than as t1/2 as is the case for the interval of short times, Eq. (4.7a).3

3Because of the ln t dependence of Eq. (4.12a), the choice of logarithmically equispaced time
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The expression for the transcapillary tracer flux coincides, to a first approximation,

with the right-hand side of Eq. (4.7b) for permeability-limited tracer flux at short

diffusion times. Furthermore, the result Λ2d(t) ≈ 2πaκt remains valid at intermediate

diffusion times.

On the other hand, when ℓ/a ≪ ln(
√
Devt/a) the transcapillary tracer flux is

limited by extravascular diffusion. In this case,

W (a+, t;Rev = 0) ≈ 1− ℓ/a

ln(
√
Devt/a)

, (4.13a)

njκ(a, t) ≈
Dev/a

ln(
√
Devt/a)

. (4.13b)

The effect of an impulse-like amount of tracer reaching a narrow capillary can be

studied by evaluating the effective extravascular diffusion volume, ΛD(t), Eq. (2.26).

Differentiating both µev(t) = Λ(t) and Eq. (4.11a), to account for an impulse-like,

rather than step-like, concentration in the capillary, yields the correct value of ΛD(t)

for the free diffusion case:

ΛD(t) ≈ 4πDevt [1 + (a/ℓ) ln(
√
4Devt/a)] → 4πDevt

as a→ 0, with κ > 0 and finite.

Long diffusion times

At long diffusion times,
√
Devt & A, the single-capillary approximation is no longer

accurate. It is nevertheless possible to gain quantitative insight when a steady state

is established. This regime is discussed in detail in Section 4.5.

4.1.3 Physiological examples

Tracer exchange across the blood–brain barrier

Water exchange across the normal blood–brain barrier and myocardial capillary wall

is strongly permeability limited, as indicated by some typical values of Dev/κa listed

in Table 2.1.

instants results in linearly equispaced amplitudes of W (a+, t) in Fig. 3.7d.
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We next discuss the influence of transcapillary water exchange on the dynamic

susceptibility contrast (DSC) MRI intensity in both these tissues. It is well known

that the first pass of a bolus of intravascular paramagnetic tracer at high concen-

tration through the microvasculature causes a large reduction in DSC MRI tissue

intensities: at the time of maximum tracer concentration in the blood plasma, reduc-

tions of between 30% to 60% of the baseline (pre-contrast) amplitude can be observed

[14, 150]. This strong effect is known to be mediated by long-ranged magnetic field

inhomogeneities arising from tracer-induced changes in the magnetic susceptibility

of blood; obviously, it cannot be explained by intravascular relaxation alone, given

the comparatively small volume fraction of intravascular space [14]. Transcapillary

water exchange contributes to tissue intensity reduction by allowing extravascular

water molecules to come into contact with the intravascular paramagnetic tracer on

a time scale of the order of MRI echo times, e.g., TE = 14 – 95 ms [14, 150]. The

effective extravascular volume occupied by these molecules in unit length of vessel

is estimated from (4.5) as (2κ/a)TE ≈ TE/τiv, when expressed as a fraction of mi-

crovascular volume, and as vivTE/τiv = PS ·TE when expressed as a fraction of whole

tissue volume [see Eq. (2.2b)]. Using the above echo times and the values of viv, τiv

listed in Table 2.1 or, equivalently, the values of PS given in Appendix 2.5.2, we

estimate this latter fraction as 0.04%– 0.2% for grey matter and 0.7%– 5% for my-

ocardium. These estimates corroborate that transcapillary water exchange in normal

grey matter and myocardium affects transverse relaxation in whole tissue much less

than tracer-induced susceptibility changes. Therefore, transverse magnetic relaxation

in the tissues is essentially a mesoscopic phenomenon [150].

Where disruption of the capillary wall allows the extravasation of tracer, both

short-ranged relaxivity effects and long-ranged susceptibility effects can arise [14].

The impaired blood–brain barrier appears to be rate-limiting even for small para-

magnetic molecules. For example, in a longitudinal study of mice glioma [186],

the volume transfer constant [28] of gadopentetate dimeglumine was estimated as

Ktrans ≈ PS ∼ 0.3 min−1 at one stage in the study; for comparison, PS for H 15
2 O

exchange in human brain tissue is of the order of 1 min−1 [160]. Using a realistic
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value of diffusion coefficient of gadopentetate dimeglumine in tissue of 0.26 µm2ms−1

[164], we estimate Dev/κa ∼ 2Dev/A
2PS ∼ 102 – 103. As another example, in a DCE

MRI study of breast tumours, the exchange rate for gadodiamide and gadopentetate

dimeglumine was determined to be in the range kep ≡ τ−1
ev = 0.04 – 3 min−1 [187,

Table 1].

Water exchange across the basolateral membrane of renal proximal tubules

The diffusive water permeability of the basolateral membrane of the renal proximal

tubule, κ ∼ 0.7 µmms−1, is about two orders of magnitude higher than that of both

the blood–brain barrier and myocardial capillaries. Since the ratio Dis/r2κ ∼ 10−1,

water exchange across the basolateral membrane of renal tubules is likely limited by

water diffusion in the interstitial space. (These parameters are listed in Table 2.1

and more details are given in Appendix 2.5.2).

4.2 Spatiotemporal versus lumped tracer-exchange

models

As stated in Section 1.1.2, when lumped tracer-exchange models are used in analysing

transport and exchange phenomena, compartmental tracer concentrations are consid-

ered spatially uniform at all times [9, 32]. However, while diffusion tends to smooth

out non-uniform tracer concentrations, this takes time. Moreover, a complete uni-

formity of tracer concentration might not be achievable in the presence of tracer

permeation and consumption. In this Section we consider short to intermediate dif-

fusion times and assume non-steady-state conditions; the steady state is considered

in Section 4.5.

To assess the accuracy of a class of lumped tracer-exchange model, we begin

by averaging the spatiotemporal tracer-balance equations (2.1a) and (2.1b) over,

respectively, the intracapillary and pericapillary spaces associated with any given
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capillary segment. For intracapillary space we obtain

dψiv(t)

dt
=
ψiv(0, t)− ψiv(L, t)

τc
−
ψiv(t)|a− − ψev(t)|a+

τiv
−Rivψiv(t) , (4.14)

where ψiv(t) denotes the spatially averaged concentration of tracer in a capillary

segment, in units of quantity of tracer per unit volume of tracer-accessible space, i.e.,

blood plasma or whole blood, depending on the tracer in question; ψiv(0, t), ψiv(L, t)

denote the average concentration at, respectively, the inflow and outflow ends of that

same capillary segment; ψiv(t)|a− , ψev(t)|a+ , denote spatially averaged concentrations

over, respectively, the luminal and abluminal face of the capillary wall; the mean

capillary-segment transit time is defined by Eq. (2.3a); and the mean intracapillary

residence time τiv is defined on the scale of a capillary segment4 and is given by

Eq. (2.2a).

Next, averaging the diffusion–consumption equation (2.1b) over a pericapillary

volume ∆V gives

dψev(t)

dt
=

1

∆V

∫
∆V

Dev∇2ψev(r, t) d
dr−Revψev(t) . (4.15a)

where ψev(t) is the spatially averaged concentration of tracer in the pericapillary

region, expressed in units of quantity of tracer per volume of tracer-accessible per-

icapillary space. The integral on the right-hand side becomes an integral over the

abluminal capillary surface ∆S with the use of the Gauss theorem and the boundary

conditions (2.1c) and (2.1d), as given by

1

∆V

∫
∆V

Dev∇2ψev(r, t) d
dr =

1

vev∆V

∫
∆S

−nvevDev∇ψev(a+, t) dS , (4.15b)

where n is a unit normal directed outwards from the abluminal capillary surface and,

here, vev denotes the fraction of tracer-accessible extravascular space in the pericapil-

lary region. The right-hand integrand is recognised as the mesoscopic transcapillary

permeation flux [cf. Eqs (2.39a) and (2.39b)] where ψev(a+, t) is regarded as a con-

centration in an effective homogenous medium (p. 21) whose intrinsic conductivity,

or reciprocal tortuosity (p. 73), is thus unity. Therefore, the average of this flux over

4See footnote 4 on p. 28.
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the surface of a capillary segment can be evaluated by a similar procedure to that

used in developing the capillary boundary condition on a mesoscopic scale starting

from the microscopic (i.e., pore-scale) concentration; cf. Eqs (2.66) and (2.67a) of

Appendix 2.5.1. This gives

1

vev∆V

∫
∆S

−nvevDev∇ψev(a+, t) dS =
κ∆S

vev∆V

[
ψiv(t)|a− − ψev(t)|a+

]
=
ψiv(t)|a− − ψev(t)|a+

τev
, (4.15c)

where κ is an effective capillary wall permeability on the scale of a typical capillary

segment and τev is defined on this scale by

τev =
vev∆V

κ∆S
=

∆Vev
κ∆S

; (4.15d)

the numerator is equal to the fraction of the given pericapillary region that is acces-

sible to tracer, with a notation as in Eq. (2.31c). On a whole-tissue scale, Eq. (4.15d)

may be expressed as Eq. (2.2c) where in this latter equation vev stands for the fraction

of tracer-accessible extravascular space per unit volume of whole tissue.5

The spatially averaged tracer-balance equation for extravascular space is obtained

upon substitution of Eq. (4.15c) into Eq. (4.15a) as

dψev(t)

dt
=
ψiv(t)|a− − ψev(t)|a+

τev
−Revψev(t) . (4.16)

The above spatially averaged equations include the time constants of tracer trans-

port, exchange and consumption/relaxation, which are thus described as first-order,

diffusion-independent processes. We note that one can integrate the spatiotemporal

Eqs (2.1a) and (2.1b) over the entire intracapillary and pericapillary spaces associated

with any given capillary segment because the intrinsic phased-averaged concentra-

tions which enter in these equations are defined for all space in an effective mesoscopic

medium; see Appendix 2.5.1, in particular Eqs (2.31a) and (2.31b), and item 1 on

p. 65.

Equations (4.14) and (4.16) apply respectively to any given capillary segment and

its associated pericapillary region. However, in practice they are often used in the

5See footnote 4 on p. 28.
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quantification of blood–tissue tracer exchange on the scale of ‘macroscopic’ measure-

ment volumes (e.g., typical MRI voxels with linear dimensions ∼ 1 mm; p. 61) by

assuming that all relevant mesoscopic parameters and quantities of interest remain

meaningful on a coarser scale. Alternative expressions are obtained by multiplying

both sides of (4.14) and (4.16) by the respective fraction of tracer-accessible intra-

capillary space per unit volume of whole tissue (p. 27), denoted by viv and vev, and

recalling the definitions of capillary permeability surface area product, PS, and cap-

illary tracer flow per volume of whole tissue, fiv. Thus,

viv
dψiv(t)

dt
= fiv [ψiv(0, t)− ψiv(L, t)]

− PS [ψiv(t)|a− − ψev(t)|a+ ]− vivRivψiv(t) , (4.17a)

vev
dψev(t)

dt
= PS [ψiv(t)|a− − ψev(t)|a+ ]− vevRevψev(t) . (4.17b)

Equations of this form including the PS parameter appear frequently in the tracer

kinetic literature; e.g., Refs [28, Eq. (16)] and [34, Eqs (11) – (12)], also Ref. [41].

In the limiting case where the blood–tissue tracer flux is rate-limited by capillary

wall permeability rather than by capillary flow (i.e., when τc/τiv ≪ 1), the intra-

capillary concentration ψiv(t) may be regarded as driving the blood–tissue tracer

flux and the appropriate two-compartment lumped tracer-exchange model reduces to

Eq. (4.16). In lumped modelling approaches, the amplitude of the concentration at

the capillary wall is assumed equal to the compartmental average value, hence (4.16)

becomes (cf. Eq. (16) of Ref. [28]):

dψev(t)

dt
=
ψiv(t)− ψev(t)

τev
−Revψev(t) , (4.18)

whose solution for initial-rest extravascular conditions is given by the convolution

ψev(t) = wlumped(t) ∗ ψiv(t) , (4.19a)

with

wlumped(t) =
1

τev
exp(−R+

evt) , R+
ev ≡ Rev +

1

τev
. (4.19b)
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The Green’s function, or impulse response function, for the lumped tracer-

exchange model given by Eq. (4.18) is obtained by comparing wlumped(t) with the

spatiotemporal blood-to-tissue impulse response function (2.15). Thus

Glumped(r, a+, t) =
1

κS
wlumped(t) =

1

Vev
exp(−R+

evt) . (4.19c)

The physical meaning of this expression is that the concentration of tracer at any

position r due to permeation of a packet of tracer molecules into extravascular space

at time zero is independent of position, but depends only on the elapsed time t.

This is another statement of the well-mixed assumption of lumped tracer-exchange

models.

Importantly, since the spatial concentration average over the abluminal face

of the capillary wall, ψev(t)|a+ , differs, in general, from the spatial concentration

average over the tracer-accessible extravascular space, ψev(t), and since the ratio

ψev(t)|a+/ψev(t) is a time-varying quantity, Eq. (4.16) and Eq. (4.18) are not, in gen-

eral, equivalent descriptions of tracer exchange. To illustrate this point, Fig. 4.3 plots

the ratioW (t)/W (a+, t) of the average amplitude of the step response function to the

amplitude of the step response function at the capillary wall. In this example, two

widely different values of capillary permeability have been chosen which are consis-

tent with, respectively, permeability- (solid line) and diffusion-limited (broken line)

exchange regimes. The calculations were carried out for radial distances r/a ≤ 10,

consistent with maximal half-intercapillary distances in grey matter of cats [65]; only

those step response profiles having negligibly low amplitude at r = 10a were consid-

ered in order not to bias the estimate of the average step response. [Note, however,

that the ratioW (t)/W (a+, t) depends on the choice of pericapillary radius A: in fact,

it diminishes when higher values of A are chosen].

As shown in Fig. 4.3, the ratio W (t)/W (a+, t) increases as diffusion time pro-

gresses, and attains its maximum value at steady state (not shown). For given values

of the capillary radius and diffusion coefficient, this ratio becomes higher for lower

permeabilities (i.e., lower Dev/κa), as expected. In this example, dependence with

capillary permeability is seen to be low, in absolute terms, but varies appreciably over
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Figure 4.3: Ratio of spatially averaged to abluminal amplitude of step re-

sponse function for sparse capillary networks. Both amplitudes were evaluated

from Eq. (3.40a). Values of the parameters: a = 2.8 µm; radial distance, a ≤ r ≤ 10a;

Dev = 1.8 µm2ms−1; κ = 5.2× 10−3 µmms−1 (solid line) and 5.2× 10−1 µmms−1 (broken

line).

the shown range of diffusion times: the shown curves differ by nearly 80% for times

such that log10(Devt/a
2) = −2 diminishing to about 10% for log10(Devt/a

2) & 0.

A comparison of Eqs (4.16) and (4.18) shows that for short to intermediate diffu-

sion times the average extravascular concentration predicted by the lumped tracer-

exchange model of Eq. (4.18) agrees with that predicted by the spatiotemporal model

when the amplitude of the abluminal concentration is almost equal to the spatially

averaged extravascular concentration, or when it is much lower than the intracapillary

concentration; these cases are discussed in turn below:

1. For lumped tracer-exchange modelling approaches, the assumption that extra-

vascular diffusion redistributes the tracer efficiently, relative to transcapillary

exchange, is valid when τD ≪ τev, i.e., when Dev/κa ≫ 1. This condition is

characteristic of permeability-limited exchange (Fig. 4.1). As was discussed in

Section 4.1, in this situation the transcapillary tracer flux will be only weakly

dependent on tracer diffusion. Also, if a diffusive steady state is attained, then
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any subsequent variations in the transcapillary flux will, initially, be rate-limited

by capillary wall permeability.

2. At sufficiently short diffusion times, given by t . min {a2/Dev , ℓ
2/Dev}, the

extravascular concentration is low, i.e., ψev(t)|a+ ≪ ψiv(t)|a− regardless of the

value of theDev/κa ratio. Thus, the blood-to-tissue flux is given, approximately,

by6

njκ(t) ≈ κψiv(t)|a− ≈ κψiv(t) (4.20)

and the amount of tracer in extravascular space therefore increases as

dµev(t)

dt
= Snjκ(t) ≈

µiv(t)

τiv
. (4.21)

The rate of tracer permeation into extravascular space at initial time, per unit

amount of intracapillary tracer, is equal to the reciprocal of the mean intra-

capillary residence time, τ−1
iv , as expected. Thus, at short diffusion times the

average extravascular concentration and the amount of tracer are identical for

the spatiotemporal model (4.16) and the lumped model (4.18), to within the

approximation made.

The well-mixed assumption prevents the use of lumped tracer-exchange models

for the analysis of diffusion-limited exchange (Fig. 4.1). During transient diffusion

(i.e., for tracer diffusion lengths not exceeding approximately one-half the typical

intercapillary distance), the lumped tracer-exchange model of Eq. (4.18) will overes-

timate the blood–tissue tracer flux, as it takes no account of the ‘jamming effect’ due

to gradients in tracer concentration at the capillary wall, i.e.,

|ψiv(t)|a− − ψev(t)|a+ | ≤ |ψiv(t)− ψev(t)| . (4.22)

Thus, a lumped tracer-exchange model overestimates the time rate of change of the

extravascular concentration. The jamming effect is most apparent in Fig. 3.7b: since

6Here, zero initial conditions prior to arrival of tracer at the capillaries have been assumed and

the common relaxation term appearing in (4.16) and (4.18) has been omitted.

185



4.3. Diffusion-limited exchange: blood–tissue gas exchange

the tracer concentration at the compartment barrier is distinctly higher than that at

positions farther away from the barrier, the tracer flux across the barrier is strongly

rate-limited by extravascular diffusion, thus rendering inapplicable the lumped model.

The regions of validity of both spatiotemporal and lumped tracer-exchange models

are graphed in Fig. 4.1.

4.3 Diffusion-limited exchange: blood–tissue gas ex-

change

Cellular respiration requires supply of oxygen to, and removal of carbon dioxide

from, the body tissues, involving convection, diffusion and chemical reaction processes

[1]. Because both of them are small non-polar molecules, O2 and CO2 permeate

rapidly across the lipid bilayer of capillary endothelial cells [1, 2]. Kassissia et al.

[35] estimated PS = 1.17 ml g−1 s−1 (= 70.2 ml g−1 min−1) for 18O2 in dog brain, i.e.,

approximately two orders of magnitude higher than regional PS values for H 15
2 O in

human brain, as determined by Herscovitch et al. [160].

In this Section, we review several gas exchange models from the literature and

compare them to the present blood–tissue exchange model under diffusion-limited

conditions. The main conclusions are as follows: (i) oxygen-delivery models are not

applicable to first-order extravascular consumption of tracers because tissue oxy-

gen consumption depends non-linearly on local oxygen tension; and (ii) simplified

modelling of gas exchange is possible using the results for absorbing intracapillary

boundary conditions presented in Chapter 3.

Reneau et al. [57] introduced a model for the evaluation of transient oxygen trans-

port in cerebral grey matter that includes oxygen delivery, diffusion (both axial and

radial) and consumption in the capillaries and the surrounding tissue. Modified forms

of this model were later applied by Lagerlund and Low [58] and by Sharma and Jain

[59] to rat peripheral nerve. In all cases, the physical geometry was assumed to be

well represented by a Krogh capillary–tissue unit. Equations (4.23a) – (4.24b) be-
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low are reproduced from Ref. [59] for convenience.7 In the capillary, the differential

equation for the oxygen partial pressure, or tension, P (r, z, t), reads

∂P

∂t
= Div∇2P − uzE

∂P

∂z
−KfP +KrP , (4.23a)

and that for the pericapillary region is

∂P

∂t
= Dev∇2P − C(P )

St

. (4.23b)

Here Div is an overall diffusion coefficient in whole blood (plasma and erythrocytes)

[57]; Kf, Kr respectively denote forward and reverse chemical reaction rates [59]

between plasma and haemoglobin-carrying erythrocytes [73]; E accounts for oxygen

bound to haemoglobin and dissolved in blood, and is a highly non-linear function of

oxygen tension [57]; and St is oxygen solubility in the tissue fluid [52]. (The oxygen

concentration in interstitial fluid is equal, by Henry’s law, to the product of oxygen

tension and solubility [52]). The metabolic consumption rate, C(P ), is represented

by Michaelis–Menten kinetics [58]:

C(P ) = Cmax
P

P + C50

, (4.23c)

where Cmax, C50 are constants. Typically, the tissue oxygen tension P < 40 mmHg [1,

p. 845] and C50 = 0.5 – 1 mmHg [73]. The following boundary conditions stipulated

continuity of oxygen tension and oxygen transcapillary flux at the capillary wall:

P (a−, t) = P (a+, t) , (4.24a)

nDiv∇P (a−, t) = nDev∇P (a+, t) . (4.24b)

A zero-flux condition was specified at the edge of the oxygen supply region; addi-

tional boundary conditions were specified at both the arterial and venous ends of the

capillary [58, 59]. The initial condition was set equal to the steady-state solution

of the system of equations. Because the modelling was applied to peripheral nerve,

7Parameters Div, Dev and uz in Eqs (4.23a) and (4.23b) of this Thesis correspond to Db, Dt and

v in Refs [58, 59].
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myoglobin-facilitated diffusion, as occurs in cardiac and skeletal muscle, was not in-

cluded; consideration of this mechanism leads to a more complex form of the Laplace

operator in (4.23b) [73].

Sharma and Jain [59] solved the above equations numerically beginning from a

steady-state distribution of oxygen tension, as determined by the geometry of the

Krogh capillary–tissue unit and the physiological parameters of the tissue. The aim

of these authors was to investigate the adaptation to new steady-state conditions after

arterial oxygen tension, blood flow velocity and rate of tissue oxygen consumption

were allowed, in turn, to vary in response to a monoexponential time course.

The main differences between the modelling of Eqs (4.23a) – (4.24b) and the one

presented in this Thesis are as follows:

1. Radial transport of oxygen within the microvasculature is a complex phe-

nomenon involving gradients in oxygen tension [55]. This contrasts with the

assumption of uniform distribution of tracer in intracapillary space made here

(Section 2.1.1).

Moreover, in using the boundary conditions (4.24a) and (4.24b), the capillary

wall is assumed to be fully permeable to oxygen (see Ref. [57]. In some cases,

the transcapillary oxygen flux is assumed to be proportional to the difference

between the radially averaged intracapillary tension and the tissue tension aver-

aged around the circumference of the capillary [55, 73]). On the other hand, it

is frequently the case that MRI and PET tracers do not permeate freely across

the capillary wall.

2. It is not possible to represent first-order consumption (e.g., local longitudinal

magnetic relaxation) by means of the non-linear relationship Eq. (4.23c): the

rate of oxygen consumption in the cells reaches a plateau when the oxygen

tension is high, but falls off to zero when there is reduced oxygen availability.

Roughton [56] considered the simplified case of a uniform oxygen tension in blood,

but allowed for diffusion and both zero- and first-order reactions in the extravascular
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tissue. With some notational changes, Eq. (2.1) of Ref. [56] reads8

∂P

∂t
=
D

St

∇2P − k

St

(P − P0)−
C

St

, (4.25)

where D = StDev is the oxygen diffusion coefficient in extravascular tissue, defined

in terms of pressure gradient instead of concentration, and k is the rate constant of

a first-order reaction. The initial and boundary conditions were specified as9

P (a < r ≤ A, t = 0) = 0 , (4.26a)

P (a, t ≥ 0) = 1 , (4.26b)

∂P (r, t ≥ 0)

∂r

∣∣∣∣
r=A

= 0 . (4.26c)

For the case of no zero-order reaction (C = 0), the solution representing, on

account of Eqs (4.26a) and (4.26b), the step response function, was given as Eq. (3.20)

of Ref. [56]. With some notational changes, that expression reads

P (r, t) = π
∞∑
n=1

J0(γna)Y0(γnr)− J0(γnr)Y0(γna)

[J0(γna)/J1(γnA)]
2 − 1

exp[−(Devγ
2
n +Rev)t]

1 +RevD−1
ev γ

−2
n

+ P (r, t→ ∞) , (4.27a)

where γn is the nth root of the equation

J0(γna)Y1(γnA)− Y0(γna)J1(γnA) = 0 . (4.27b)

The steady-state term, P (r, t→ ∞), is given by a linear combination of the modified

Bessel functions I0(·) and K0(·). Eliminating this term with the use of the initial

condition in (4.26a), we rewrite Roughton’s equation (4.27a) as

P (r, t) = π
∞∑
n=1

J0(γna)Y0(γnr)− J0(γnr)Y0(γna)

[J0(γna)/J1(γnA)]
2 − 1

1− exp[−(Devq
2
n +Rev)t]

1 +RevD−1
ev γ

−2
n

. (4.28)

8Roughton’s notation has been adapted to that employed in this Thesis as follows: p 7→ P , b 7→ a,

a 7→ A, α 7→ St, k/α 7→ Rev, xn/b 7→ γn.
9Roughton actually specified an arbitrary, but constant, oxygen tension p0 for a < r ≤ A at zero

time, and a constant tension pb at the capillary wall at all times. The solution, his Eq. 3.00 of Ref.

[56], may be expressed as a function P (r, t)− p0 with parameter pb − p0.
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Because Eq. (4.26b) fixes the abluminal oxygen tension to that in the luminal face

of the capillary wall, the modelling of Roughton tacitly assumes a very large capillary

permeability to oxygen. In this situation, the rate at which the local oxygen tension

approaches a new steady state is assumed to depend solely on extravascular diffusion

and reaction rate. We show next that for sparse capillary networks, Eq. (3.20) of

Roughton reduces to the step response function obtained in this Thesis, Eq. (3.40a),

for the case of vanishing ℓ/a (= Dev/κa). In this limit, Eq. (3.27) gives P (qna) →
J0(qna) and Q(qna) → Y0(qna). Thus, the scattering phase shift (3.25) satisfies

tan δn → −J0(qna)/Y0(qna) = −J1(qnA)/Y1(qnA), which is identical with (4.27b).

This shows that the eigenfrequencies γn → qn. Next, a term in the integrand of

(4.28) is rewritten as10[
J2
0 (qna)

J2
1 (qnA)

− 1

]−1

=
J2
1 (qnA)

J2
0 (qna)

1

1− J2
1 (qnA)/J

2
0 (qna)

=
J2
1 (qnA) + Y 2

1 (qnA)

J2
0 (qna) + Y 2

0 (qna)

1

1− J2
1 (qnA)/J

2
0 (qna)

≈ 2/π

J2
0 (qna) + Y 2

0 (qna)

1

qnA

≈ 2/π2

J2
0 (qna) + Y 2

0 (qna)

∆qn
qn

, (4.29)

where the approximations are valid for large qnA. Finally, substituting the last line of

(4.29) in (4.28), rearranging with the use of the parameters ς (3.38a) and ηa (3.40b),

and passing to the integral, results in the blood-to-tissue step response function

(3.40a) for highly permeable capillary walls. This is graphed in Fig. 4.4.

Hudson and Cater [52] in an extensive analysis of factors affecting oxygen delivery

considered a model similar to that of Roughton. These authors assumed zero-order,

but not first-order, reaction, so that their Eq. (5.1) is obtained by omitting the middle

10The substitution made in the second line of (4.29),

J2
1 (qnA)

J2
0 (qna)

=
J2
1 (qnA) + Y 2

1 (qnA)

J2
0 (qna) + Y 2

0 (qna)

follows from the expression of tan δn for vanishing ℓ/a given in the text. In the third line of Eq. (4.29),

the large-argument expansion of the Bessel functions [99, 172] has been used.
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term on the right-hand side of (4.25).11 They considered the effect of a sudden change

in oxygen tension at all points on the capillary wall from a steady-state value, P0, to

a new value P1, and evaluated the local difference in oxygen tension at time t and in

the steady state, Γ(r, t) ≡ P (r, t)− P (r, t→ ∞), with

Γ(a < r ≤ A, t = 0) = P0 − P1 , (4.30a)

Γ(a, t ≥ 0) = 0 , (4.30b)

∂Γ(r, t > 0)

∂r

∣∣∣∣
r=A

= 0 . (4.30c)

Note that Γ(r, t) is not a function of reaction rate C. The solution was given as

Eq. (5.10) of Ref. [52], reproduced below:

Γ(r, t) = (P1 − P0)
∞∑
n=1

πJ2
1 (γnA)

J2
0 (γna)− J2

1 (γnA)
[J0(γnr)Y0(γna)− J0(γna)Y0(γnr)]

× exp
[
−(D/St)γ

2
nt
]
, (4.31a)

where γn is the nth positive root of Eq. (4.27b) and the substitutions J ′
0(·) = −J1(·),

Y ′
0(·) = −Y1(·) have been made in the formula given by Hudson and Cater.

Equations (4.30a) and (4.30b) respectively prescribe a uniform Γ(r, t) at the initial

time and an absorbing intracapillary boundary condition. Γ(r, t) is therefore anal-

ogous to the extravascular concentration under absorbing intracapillary conditions,

ψabs
ev (r, t), Eq. (3.31). It should be noted that an instantaneous change in abluminal

oxygen tension, as expressed by Eq. (4.30b), can only occur if the capillary perme-

ability is very large. Then, by a similar procedure as was employed in arriving at

Eq. (4.28), the extravascular concentration under absorbing intracapillary conditions,

Eq. (3.31), is found as

ψabs
ev (r, t;κ→ ∞) =

∞∑
n=0

πJ2
1 (qnA)

J2
0 (qna)− J2

1 (qnA)
[J0(qna)Y0(qnr)− J0(qnr)Y0(qna)]

× exp(−Devq
2
nt) , (4.32)

11Here, the notations p, m, α, r0 and R of Hudson and Cater [52] have been replaced by P , C,

St, a and A, respectively.
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4.3. Diffusion-limited exchange: blood–tissue gas exchange

which is formally identical with Eq. (4.31a) of Hudson and Cater on putting P0 = 1

and P1 = 0, and with Eq. (3.10) of Roughton [56].

For sparse capillary networks, the right-hand side of (4.32) reduces to an integral

independent of pericapillary radius A, plus a small term of order a/A (Section 3.2).

Letting ℓ→ 0 in Eq. (3.37) gives

ψabs
ev (r, t;κ→ ∞) =

2

π

∫ ∞

0

J0(qa)Y0(qr)− Y0(qa)J0(qr)

[J2
0 + Y 2

0 ](qa)

exp(−Devtq
2)

q
dq . (4.33)

The above formula was not given in Refs [52, 56] and is plotted in Fig. 4.4 for a

range of extravascular diffusion times. (From the values of St and D quoted in Ref.

[52, p. 250], we estimate Dev ∼ 1 µm2ms−1 in muscle, and using a = 3 µm we find a

time range t ∼ 10−3 – 103 ms). Under extreme diffusion-limited exchange conditions,

the expression for the extravascular tracer concentration becomes independent of

capillary permeability, as expected. It should be noted that, since κ is very large, the

lumped tracer-exchange model of Eq. (4.18) is unsuitable for calculation of the blood–

tissue flux in this case. The curves graphed in Fig. 4.4 show that the transcapillary

flux becomes infinitely strong at the onset of transcapillary exchange.12

Tissue transport of the highly diffusible metabolic gas, carbon dioxide, was studied

by Severns and Milton Adams [188] using an approach analogous to that of Ref.

[52], with the consumption term replaced by a uniform metabolic generation term.

Under these modelling assumptions, Eq. (4.33) can be taken to represent the transient

concentration of carbon dioxide cleared from tissues with sparse capillary networks.

To conclude this Section, we mention briefly the work of Secomb et al. [55].

These authors developed a Green’s function method to analyse steady-state oxygen

distribution in realistic three-dimensional microvascular networks. The microvessels

and the tissue were respectively represented as a set of discrete oxygen sources and

12When viewed as a function of argument qa, with r/a a parameter, the fraction in the integrand

of (4.33) involving Bessel functions closely approximates to a sinusoid with period 2π(r/a − 1)−1,

except the first half cycle has a slightly higher amplitude than the others. Thus, for positions near

the capillary wall, the integral (4.33) is small of order r/a − 1. On the other hand, for large r/a

ratios, differentiation of with respect to r/a yields a Gaussian integral which vanishes as r/a grows

large; hence the integral is approximately constant.
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Figure 4.4: Extravascular tracer concentration under absorbing intracapillary

conditions, and blood-to-tissue step response function, for sparse capillary net-

works with a fully permeable capillary wall, in the absence of extravascular

consumption. Curves are shown for a range of normalised times, Devt/a
2 = 10−4 – 102.

In these curves, numerical integration introduces a maximum error of 0.14%, approximately.

sinks. The Green’s function was expressed as a sum of all microvascular point-source

terms; the oxygen tension was computed numerically in a tissue region exterior to

the microvascular network. These authors obtained realistic microvascular network

distributions from samples of several rat tissues, and showed that imposing zero-flux

boundary conditions can lead to overestimation of the extent of hypoxia.

4.4 Permeability-limited exchange: arterial spin la-

belling of brain and myocardium

This Section opens with a discussion of the validity of the modelling assumptions set

forth in Chapter 2 for ASL measurements. In Section 4.4.1 two literature models of

permeability-limited water exchange are reviewed. In Section 4.4.2 the spatiotempo-

ral tracer-exchange model developed in Chapters 2 and 3 is used to evaluate the ASL
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signal. Finally, in Section 4.4.3 the results of the spatiotemporal model and both the

examined literature models are compared for typical PASL and CASL experiments

in grey matter and myocardium.

The results of Chapter 3 can be applied to blood–tissue water exchange in, e.g.,

brain and myocardial tissue13 because the back-flux of tagged tissue water into the

capillaries is expected to be low, as discussed in the following paragraph.

The passage of a bolus of tagged blood water through the human microvasculature

lasts several seconds (e.g., 3 – 5 s in the human brain [189]). Such transit times

may be longer than typical ASL measurement times, which are of the order of 1 s

and 3 s for pulsed (PASL) and continuous (CASL) arterial spin labelling methods,

respectively. This suggests that blood–tissue exchange of magnetically tagged water

will occur mostly from blood into the extravascular tissue, provided that extravascular

transport by axial diffusion is less efficient than capillary flow, and that the capillary

wall permeability is not too high. Furthermore, for typical ASL measurement times

the expected ratio of extravascular to intracapillary magnetisation in grey matter

and in myocardium is low, perhaps only about 0.03 – 0.3, respectively (Fig. 3.7 and

Fig. 4.15); the tissue-to-blood flux after the passage of the bolus of tagged blood

water, too, is of this order of smallness relative to the blood-to-tissue flux during bolus

transit.14 On the other hand, in ASL animal studies the higher capillary blood flow

rates, hence reduced transit times (∼ 1 s), may result in greater back-flux of tagged

tissue water driven by the clearance of tagged blood water by the microcirculation.

The ASL signal, S(t), is proportional to the total (intra- and extravascular) mag-

netic moment, i.e., the volume integral of the magnetisation in unit volume of whole

13Both these tissues exhibit considerable interregional variations. For example, the longitudinal

relaxation time in the brain varies between 850 ms in the prefrontal cortex and 1800 ms in frontal

white matter [133]. In the sequel, where the presented results hold regardless of interregional varia-

tions, we shall usually refer generically to ‘brain’ or ‘grey matter’, and ‘myocardium’ for simplicity.
14For the net transcapillary flux during and after bolus transit are approximately proportional to,

respectively, the intracapillary and extravascular concentration at the capillary wall; see Eq. (4.20).
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tissue (e.g., a tissue voxel):

S(t) ∼ µiv(t) + µev(t) ≡ vivψiv(t) + vevψev(t) , (4.34)

where ψiv(t), ψev(t) are spatially averaged magnetisations in units of magnetic mo-

ment per unit of water-accessible volume in intracapillary and extravascular space,

respectively, and viv, vev are water volume fractions per unit volume of whole tissue.

Here, the extravascular diffusion time t is equal to the post-tagging delay minus the

arterial transit time of tagged blood water; hence t = 0 represents the time of arrival

of the inflowing magnetisation at the capillary. The intracapillary magnetisation,

ψiv(z, t), is obtained by convolving the inflowing magnetisation, ψiv(z = 0, t), with

the arterial-to-intracapillary impulse response function, hiva (z, t), Eq. (2.19a). Simi-

larly, the extravascular magnetisation, ψev(r, t), is obtained by convolving the intra-

capillary magnetisation with the blood-to-tissue impulse response function w(r, t),

Eq. (3.39). Further integration over the respective compartment spaces yields the

intracapillary and extravascular magnetic moments, µiv(t) and µev(t). This is done

in Section 4.4.2.

4.4.1 Review of selected ASL signal models

The literature water-exchange models to be compared (in Section 4.4.3) against the

spatiotemporal model set forth in this Thesis are briefly described below:

1. The one-barrier distributed parameter (1BDP) ASL model of St. Lawrence,

Frank and McLaughlin (Ref. [31] an references therein) takes into account

position-dependent capillary flow and transcapillary permeation, but not com-

partmental diffusion. The 1BDP ASL model is specified by Eqs (3a) and (3b)

of Ref. [31]. With slight notational changes15 and rearranging of terms, these

15The correspondence between the notation of St. Lawrence et al. in Ref. [31] and the one used

in this Thesis is as follows: Cc(x, t) 7→ ψiv(z, t), Cb(x, t) 7→ ψev(z, t), R1c 7→ Riv, R1b 7→ Rev,

F/Ac 7→ uz and PS/AcL 7→ 1/τiv, in appropriate units (see main text).
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4.4. Permeability-limited exchange: arterial spin labelling of brain and myocardium

equations are rewritten as:

∂ψiv(z, t)

∂t
= −uz

∂ψiv(z, t)

∂z
− ψiv(z, t)− λ−1ψev(z, t)

τiv
−Rivψiv(z, t) , (4.35a)

∂ψev(z, t)

∂t
=
ψiv(z, t)− λ−1ψev(z, t)

τev
−Revψev(z, t) , (4.35b)

where the magnetisations ψiv(z, t), ψev(z, t) are expressed in units of intracapil-

lary and extravascular magnetic moment per volume of whole tissue16 and λ is

the brain–blood partition coefficient [31], given by the ratio of extravascular to

intracapillary equilibrium magnetisations [190, p. 22]. (Hence this parameter is

perhaps more precisely referred to as the extravascular tissue–blood partition

coefficient).

Introducing intracapillary and extravascular water volumes per volume of whole

tissue (viv, vev), expressing the magnetisation in units of magnetic moment per

volume of intracapillary and extravascular water, and noting that the factor

λ−1 is to be replaced by λ−1(vev/viv) = 1, a pair of equations formally identical

with (4.35a) and (4.35b) is obtained. This shows that the 1BDP ASL model

equations may be obtained from the spatiotemporal model presented in this

Thesis by averaging the extravascular mass balance equation (2.1b) with respect

to radial position, then approximating the average abluminal concentration

ψev(z, t)|a+ by the radially averaged concentration ψev(z, t).

St. Lawrence et al. considered, analytically, the case in which tagged water

which permeates into the extravascular space relaxes before it can pass again

into the capillaries, resulting in negligibly low back-flux of tagged water. The

resultant model was termed the single-pass approximation (SPA) model [31].

In this case, the term proportional to ψev(z, t) is assumed to be very small and

hence the intracapillary and extravascular equations become decoupled [see

Eqs (9a) and (9b) of cited reference]. In particular, when ψev(a+) ≪ ψev(a−),

16St. Lawrence et al. defined the impulse response (‘residue’) function for a capillary/tissue unit

to be the sum of the impulse response functions for intracapillary and extravascular spaces; refer to

Eq. (5) of Ref. [31].
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intracapillary Eq. (4.35a) of the 1BDP-SPA model reduces to Eq. (2.1a) of the

spatiotemporal model developed here.

It is easily seen that the arterial-to-intravascular and arterial-to-extravascular

impulse response functions for the 1BDP-SPA model are respectively given by17

hiva (z, t) = δ(t− tz) exp(−R+
ivtz) , (4.36a)

heva (z, t) =
1

τev
exp

[
−R+

ivtz −Rev(t− tz)
]
θ(t− tz) , (4.36b)

where θ(·) is the unit step function (2.8) and tz = z/uz. The structure of (4.36b)

highlights the effect of intracapillary relaxation and blood–tissue exchange dur-

ing the interval 0 < t ≤ tz, then the effect of extravascular relaxation for t > tz.

The 1BDP-SPA solutions are given by Eqs (10a) – (17) of Ref. [31].18

2. The Parkes–Tofts model [34] is a two-compartment lumped model. Using the

present notation, the tracer-balance equations for this model read:

viv
dψiv(t)

dt
= fiv [ψiv(0, t)− ψiv(L, t)]

−PS [ψiv(t)− ψev(t)]− vivRivψiv(t) , (4.37a)

vev
dψev(t)

dt
= PS [ψiv(t)− ψev(t)]− vevRevψev(t) ; (4.37b)

see Eqs (11) and (12) of Ref. [34]. In that paper the inflowing and outflowing

magnetisations, ψiv(0, t) and ψiv(L, t), are in units of magnetic moment per

volume of blood, hence fiv is capillary blood flow; the average compartmental

magnetisations, ψiv(t) and ψev(t), are expressed in units of magnetic moment

per volume of intracapillary and extravascular water; viv, vev respectively denote

17Equations (4.36a) and (4.36b) do not appear in the article by St. Lawrence et al., Ref. [31], but

only their spatial integrals, Eqs (10a) and (10b) of Ref. [31], which are referred to by these authors

as the impulse residue function for blood and extravascular tissue, respectively.
18In Ref. [31] the total magnetic moment for CASL is given by Eq. (17), which tends to infinity

as the parameter R1b (= Rev) tends to zero. To correct this, the term βER[1− exp(−R1bt)] in that

equation should be replaced by −βER exp(−R1bt).
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intracapillary and extravascular water volumes per volume of whole tissue, and

PS is also given per volume of whole tissue (cf. Table 1 of Ref. [34]).19

Equations (4.37a) and (4.37b) above result from the spatiotemporal model pre-

sented here on putting

ψiv(t)|a− − ψev(t)|a+ ≈ ψiv(t)− ψev(t)

in the spatially averaged equations (4.17a) and (4.17b).

Parkes and Tofts [34] provided closed-form solutions for a rectangular bolus of

arterial magnetisation passing through the capillaries without dispersion. For

the case of negligible back-flux, the Parkes–Tofts solutions are given by Eqs

(20) – (23) of Ref. [34].

Goresky et al. [27] and Parkes and Tofts [34] have noted that lumped tracer-

exchange models cannot deal with tracer outflow properly because the well-

mixed assumption does not allow for position dependent tracer concentrations.

To overcome in part this difficulty, Parkes and Tofts assumed the venous mag-

netisation to be zero for t < τc, and equal to the average intracapillary mag-

netisation for t > τc [34, p. 32]. Thus, after one capillary transit time, the

capillary was considered a well-mixed compartment with apparent clearance

rate of tagged blood water given by Riv + τ−1
iv + τ−1

c , from Eq. (11) of Ref. [34].

In their paper, the authors employed a Gaussian distribution of capillary flow

rates in order to obtain more realistic outflow curves.

4.4.2 ASL signal taking into account extravascular diffusion

In the following subsections we evaluate the compartmental magnetisations and mag-

netic moments predicted by the spatiotemporal model developed in this Thesis.

19The correspondence between the notation of Parkes and Tofts in Ref. [34] and the one used in

this Thesis is as follows: vbw 7→ viv, vew 7→ vev; ∆mb 7→ ψiv, ∆me 7→ ψev; f∆ma(t) 7→ fivψiv(0, t)

and f∆mv(t) 7→ fivψiv(L, t).
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Intracapillary magnetisation

The magnetisation at the inflowing end of a capillary segment is modelled, following

Ref. [34], as a rectangular bolus of duration T that travels without dispersion. Thus,

ψiv(z = 0, 0 < t < T ) = exp(−Rat) , (4.38)

where the amplitude of the bolus is normalised by the inversion efficiency of the

tagging scheme, by the equilibrium magnetisation of arterial blood and by the cumu-

lative longitudinal relaxation experienced by the tagged blood water in the arterial

tree. Due to the differing tagging schemes employed, the decay rate Ra is zero for

CASL and is equal to the longitudinal relaxation rate of arterial blood [23] for PASL.

Convolving the inflowing magnetisation (4.38) with the arterial-to-intracapillary

impulse response function (2.19a) gives:

• Before the bolus appears at position z, the intracapillary magnetisation is zero:

ψiv(z, t) = 0 for t < tz = z/uz.

• In the interval tz < t < tz + T the bolus traverses the capillary cross-section at

position z; the intracapillary concentration is given by

ψiv(z, t) ≈
[
θ(t− tz) +

tz
τiv

U1(z, t)

]
exp

[
−Ra(t− tz)−R+

ivtz
]
, (4.39a)

where R+
iv = Riv + τ−1

iv , Eq. (2.19b), and

U1(z, t) =

∫ t−tz

0

w(a+, z, t
′) exp(Rat

′) dt′ .

• Lastly, in the interval t > tz + T the intracapillary magnetisation is due solely

to the back-flux of magnetisation into the capillary and is given by

ψiv(z, t) ≈
tz
τiv

U2(z, t) exp
[
−Ra(t− tz)−R+

ivtz
]
, (4.39b)

where

U2(z, t) =

∫ t−tz

t−tz−T
w(a+, z, t

′) exp(Rat
′) dt′ .
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Extravascular magnetisation

The extravascular magnetisation is obtained by convolving ψiv(z, t) with the blood-to-

tissue impulse response function, w(r, t). In the remainder of this Section we present

results which are valid for sparse capillary networks with negligible back-flux of mag-

netisation from extravascular into intracapillary space.20 This entails neglecting the

‘feedback’ term in the simplified arterial-to-intravascular impulse response function

(2.19a), hence also in (4.39a). That is, the intracapillary magnetisation due to the

inflowing magnetisation of Eq. (4.38) is given, approximately, by

ψiv(z, t) ≈ exp
[
−Ra(t− tz)−R+

ivtz
]
, t ≥ tz . (4.40)

• In the interval tz < t < tz+T , the convolution of (4.40) with the blood-to-tissue

impulse response function (3.39) yields the extravascular magnetisation as

ψev(r, t) ≈
2

π

∫ ∞

0

P (q′)Y0(q
′r′)−Q(q′)J0(q

′r′)

[P 2 +Q2](q′)

1− exp[−(q′2 + η)ς2z ]

q′2 + η
q′ dq′

× exp
[
−Ra(t− tz)−R+

ivtz
]

(4.41a)

where

ς2z =
Dev

a2
(t− tz) , η =

a2

Dev

(Rev −Ra) . (4.41b)

The parameter ςz represents a normalised diffusion length for the interval t−tz,
following transit of the leading edge of the bolus past position z along a capillary

segment. The parameter η quantifies the trade-off between tracer relaxation and

extravascular diffusion at short diffusion times and is pulse-sequence dependent

through the parameter Ra. Putting z = 0, r′ = 1 and Ra = Riv = Rev = 0 in

(4.41a) gives ψev(a+, 0, t) = 1− ψabs
2d (a+, 0, t), as expected; see Eq. (3.37).

20For permeability-limited exchange, the right hand-side of (4.39b) is small compared to (4.39a):

U2(z, t) ≤ U1(z, t) ≤
∫ T

0

w(a+, z, t
′) exp(Rat

′) dt′ ∼W (a+, z, T ;Rev = 0) exp(|Ra −Rev|T ) ,

where exp(|Ra−Rev|T ) ∼ 1 and, under permeability-limited conditions, the amplitude of the blood-

to-tissue step response function is small (see Fig. 3.7d).
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Intracapillary and extravascular magnetic moment

Integration of (4.39a) and (4.41a) over, respectively, intracapillary and pericapillary

space yields the respective magnetic moments in unit volume of whole tissue.21 For

the time interval 0 < t ≤ τc + T we find:

µiv(t) ≈ fiv
exp[−β1(t− tlead)]− exp[−β1(t− ttrail)]

β1
exp(−R+

ivt) (4.42)

and

µev(t) ≈ fiv exp(−R+
ivt)

∫ ∞

0

8Dev/π
2a2

[P 2 +Q2](q′)

1

β2 − β1

×
{
exp[−β1(t− tlead)]− exp[−β1(t− ttrail)]

β1
(4.43a)

− exp[−β2(t− tlead)]− exp[−β2(t− ttrail)]

β2

}
dq′

q′
,

where22

β1 = Ra −R+
iv , β2 = β1 +

Dev

a2
(q′2 + η) . (4.43b)

The time instants 0 ≤ ttrail, tlead ≤ τc mark the advance of the leading and

trailing edge, respectively, of the dispersionless bolus as it travels along the capillary

(Fig. 4.5):

1. For times 0 < t < min {τc, T}, the leading edge of the bolus is in transit along

the capillary segment but the trailing edge is still in the feeding vessel; in this

phase, ttrail = 0 and tlead = t.

2. In the interval min {τc, T} < t < max {τc , T} a short (i.e., T < τc) bolus is fully

in transit along the capillary, hence ttrail = t − T and tlead = t. On the other

hand, for a long (i.e., T > τc) bolus ttrail = 0 and tlead = τc.

21Averaging with respect to axial coordinate z leads to integrals of the form:

1

L

∫ zlead

ztrail

exp(αtz) dz =
exp(αtlead)− exp(αttrail)

ατc
,

while averaging with respect to radial coordinate r involves the evaluation of standard integrals of

Bessel functions. Use of (3.25) and (3.26) gives:
∫ A

a
[P (q′)Y0(q

′r′)−Q(q′)J0(q
′r′)] 2πr′dr′ = 4/q′2.

22While β2 = Rev −R+
iv +Devq

′2/a2 may vanish for some q′ > 0, no singularity will appear in the

integrand of (4.43a) since [exp(β2ttrail)− exp(β2tlead)]/β2 → ttrail − tlead as β2 → 0.
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Figure 4.5: Passage of a dispersionless bolus through a capillary segment. The

respective temporal widths are T and τc. a) Short bolus: T < τc. b) Long bolus: T > τc.

The capillary is depicted as a segment of temporal length τc.

3. In the time interval max {τc , T} < t < τc + T , the leading edge of the bolus is

past the capillary segment, while the trailing edge is still in transit. Thus, in

this phase ttrail = t− T and tlead = τc.

4. Finally, for times t > τc + T , the bolus has flowed past the capillary segment

and ttrail = tlead gives µiv(t) = 0 in the absence of back-flux.

From (4.42) it follows that, at times much shorter than the mean intracapillary

residence time for tracer molecules, τiv, the rate of increase of magnetic moment in

the capillary due to a rectangular bolus equals the capillary flow rate, fiv. On the

other hand, at sufficiently long times (τc, τiv ≪ t < τc+T ) the intracapillary magnetic

moment equals approximately fivτiv[1+(Riv−Ra)τiv]
−1 exp(−Rat) for a long bolus.23

For PASL, this expression becomes fivτiv exp(−Rivt) and the average magnetisation

in the capillary segment therefore equals τiv/τc, up to a relaxation term.

The magnetic moment expressions (4.42) and (4.43a) can be rewritten in terms

23This is seen on rewriting (4.42) as µiv(t) = (fiv/β1)[exp(β1tlead)−exp(β1ttrail)] exp(−Rat), with

ttrail = 0 and τc = tlead ≤ t ≤ τc + T .
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of the non-dimensional parameters Devt/a
2, Dev/κa, f iv ≡ a2fiv/Dev, τ c ≡ Devτc/a

2,

Riv ≡ a2Riv/Dev and Rev ≡ a2Rev/Dev. We have evaluated numerically the magnetic

moment dependence with respect to these parameters24 for the case of a long bolus

of steady inflowing magnetisation, given by ψiv(z = 0, t > 0) = 1; the results are

shown in Fig. 4.6 and Fig. 4.7 and are discussed in the sequel.

Figure 4.6 plots the percentage fraction of intravascular magnetic moment. As-

suming a2/Dev = 10 ms for magnetically tagged water in brain and myocardium,

the range of observation times is . 1 s and covers characteristic extravascular dif-

fusion times in brain tissue; transit times of ∼ 300 ms (τ c ∼ 30) are realistic for

medium-sized capillary segments (L ∼ 100 – 500 µm); the extravascular relaxation

rates used in Fig. 4.6a are comparable to literature values in thalamus and globus

pallidus at 3 T, while those in Fig. 4.6b are appropriate for cerebral white matter at

3 T [133, 168]. The value Riv = 6.25×10−3 corresponding to Riv = 1/1600 ms−1 was

used. For comparison, setting Riv = 1/1400 ms−1 (cf. Fig. 5.3 of Ref. [5]) results in

diminution of intravascular magnetic moment fraction by less than 0.12%.

The fraction of intracapillary magnetic moment is seen to decrease steadily with

time while the amount of extravascular magnetic moment rises. In the leakier cap-

illaries (i.e., for lower Dev/κa ratios) higher blood-to-tissue fluxes cause the fraction

of intracapillary magnetic moment to fall off sharply. The long-time value (not at-

tained in the time scale depicted in the Figure) is zero because the model equations

from which the fraction of intracapillary magnetic moment was calculated are valid

for a very large extravascular region. This implies that the fraction of intracapillary

magnetic moment will actually be somewhat higher than that shown in Fig. 4.6.

The fraction of intracapillary magnetic moment is greater for the case shown in

Fig. 4.6b (faster relaxation) than for that shown in Fig. 4.6a (slower relaxation). This

behaviour is consistent with the simplifying assumption (see Section 4.4.2) that the

intracapillary magnetisation (4.40), hence also the intracapillary magnetic moment

24Parameter values employed in the computation: Devt/a
2 = 0.1 – 100, Dev/κa = 0.1 – 100,

τ c = 10 – 100, Riv ≤ 12.5 × 10−3 and Rev = 5 × 10−3 – 12.5 × 10−3. Note that other combinations

are possible, for example Devt/a
2, Dev/κa, viv = fivτc, Devτc/a

2, Rivτc and Revτc.
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Figure 4.6: Time-dependent fraction of intravascular magnetic moment for a

range of effective membrane thickness values, Dev/κa = 0.1, 0.5, 1, 5, 10, 50, 100;

normalised capillary-segment length, τ c = 30; Riv = 6.25 × 10−3; Rev = 10 × 10−3 (left

panel) and 12.5× 10−3 (right panel). All barred quantities are defined on p. 202.

(4.42), is largely independent of extravascular conditions. In practice, with fast extra-

vascular consumption the transcapillary flux will tend to increase to a certain extent.

This may, in turn, result in a reduced fraction of intracapillary magnetic moment if

the rate of tissue-to-blood permeation exceeds the difference between intracapillary

and extravascular consumption rates, i.e., if τ−1
iv ≫ Rev − Riv; this latter condition

which holds when the abluminal concentration is low enough not to cause significant

jamming effects.

Figure 4.6 also shows that the time rate of the fraction of intracapillary magnetic

moment becomes somewhat sharper (i.e., more negative) at times t ≈ τc, since the

amount of tracer in the capillary segment can no longer increase and attains a steady-

state value which is dependent upon inflow of fresh magnetisation, transcapillary

exchange, and outflow of partially relaxed magnetisation. The change in slope is

more pronounced for lowly permeable capillaries (Dev/κa & 100 in the Figure), as

expected.

Figure 4.7 shows the ratio, expressed as percentage deviation, of the total amount

of tracer for the case of very slow consumption, µ(t;Riv → 0;Rev → 0), to the
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Figure 4.7: Percentage deviation of total magnetic moment for the case of slow

relaxation from that for typical water relaxation rates in blood and tissue.

Parameter values: Ra = 0; Dev/κa = 0.1, 1, 10 (solid lines) and 100 (broken lines); τ c = 30;

Riv = 6.25 × 10−3; Rev = 10 × 10−3 (left panel) and Rev = 12.5 × 10−3 (right panel). All

barred quantities are defined on page 202.

total amount of tracer, µ(t;Riv, Rev), corresponding to consumption rates in capillary

blood and tissue as in Fig. 4.6. We simulated the case of very slow relaxation by

setting Riv = 0 and Rev = 5.0 × 10−3 ≪ 1/τ c. Also note that the chosen range of

extravascular diffusion lengths, i.e.,
√
Devt/a ≤ 10, is appropriate for both brain and

myocardial tissue.

This Figure demonstrates that the spatiotemporal model for indicator-dilution

studies developed by Lee and Fronek [44] is not applicable to ASL experiments. The

cumulative deviation incurred by unrealistic modelling of consumption/relaxation

effects in blood and extravascular tissue is seen to increase rapidly with diffusion

time. Further, the deviation becomes higher as the blood–tissue exchange becomes

increasingly permeability-limited, for in the presence of lowly permeable capillaries

the amount of extravascular magnetic moment lost to relaxation is not replenished
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by the fresh arterial magnetisation as efficiently as it would in the case of highly

permeable capillaries. However, at sufficiently high values of the Dev/κa ratio (≈ 100

in the example; broken lines in Fig. 4.7), for times t > τc the computed deviation

between magnetic moments for the two cases compared is seen to increase at a slower

rate than that for t < τc. This may be understood by noting that, since the intracap-

illary magnetic moment represents a large proportion of the total magnetic moment

(∼ 50 – 80% for normalised times Devt/a
2 & τ c = 30 for Dev/κa = 100; Fig. 4.6),

for t > τc the inflow of fresh magnetisation can compensate in part the outflow of

partially relaxed magnetisation, the net effect being a reduced apparent relaxation

rate.

Furthermore, for times t . τc an increased extravascular relaxation rate (Fig. 4.7b,

bottom left) causes the deviation of the ‘true’ magnetic moment from that for the

case of very slow relaxation to become less sensitive to capillary wall permeability.

This occurs because, in the case under consideration, µiv(t) is only weakly dependent

on intracapillary relaxation rate.25 Thus, when the fraction of intracapillary magnetic

moment is low, so is µev(t), irrespective of extravascular consumption rate; on the

other hand, when the intracapillary magnetic moment is large, it dominates the

expression for the deviation.

Expressions for permeability-limited exchange in sparse capillary networks

The expression (4.43a) for the extravascular magnetic moment cannot, in general, be

integrated analytically. However, under permeability-limited exchange conditions,

the eigenfrequency dependence of β2 is shown below to be relatively unimportant,

leading to a simplified expression for µev(t). Specifically, if

1. observation times are shorter than typical extravascular residence times (i.e.,

25For Ra = 0, Eq. (4.42) becomes µiv(t) = fiv[1 − exp(−R+
ivt)]/R

+
iv. A review of T1 values in

Fig. 5.3 of Ref. [5] and of capillary H 15
2 O permeability values in Ref. [160] shows that at magnetic

field strengths of ≤ 3 T, Rivτiv . 1 (blood relaxation data at higher fields was not available in

the cited reference). Thus, blood–tissue water exchange, not intracapillary water relaxation, is the

dominant cause of reduced intracapillary magnetic moment in brain and myocardium.
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t < τev), so that according to (2.90) the main contribution to the integral in

(4.43a) comes from the interval q′c . a/
√
Devτev ;

2. the product |Riv −Rev|τiv is much smaller than one, i.e., any differences in the

compartmental relaxation rates barely influence the transcapillary exchange;

and

3. the capillary volume fraction is low (viv ≪ vev), so that the mean residence time

in extravascular space is much greater than that in capillary blood (τev ≫ τiv);

then in the second Eq. (4.43b) we have

Dev

a2
q′2 . 1

τev
≪ 1

τiv
≈ |Rev −R+

iv|

and hence β2 = Rev − R+
iv + (Dev/a

2)q′2 ≈ Rev − R+
iv is approximately independent

of eigenfrequency q′. In this case the integral in (4.43a) can be replaced, to a good

approximation, with ∫ ∞

0

8Dev/π
2a2

[P 2 +Q2](q′)

dq′

q′
=

2κ

a
=

1

τiv
,

which follows on comparison with ψabs
2d (a+, 0), given by Eq. (3.37), with the use of the

Wronskian (3.29). Inserting this result into (4.43a) gives an approximate expression

for the amount of tracer in extravascular space due to a rectangular arterial bolus,

under permeability-limited exchange conditions, as

µev(t) ≈
fiv
τiv

1

β′
2 − β1

{
exp[−β1(t− tlead)]− exp[−β1(t− ttrail)]

β1

− exp[−β′
2(t− tlead)]− exp[−β′

2(t− ttrail)]

β′
2

}
exp(−R+

ivt) , (4.44)

with β1 = Ra −R+
iv as previously defined and β′

2 = Rev −R+
iv.

Conditions 1 – 3 above hold for brain and myocardial ASL (values of the relevant

parameters are given in Table 2.1). First, since the time delay between earliest arrival

of tagged arterial blood at the capillaries and image acquisition is shorter than typical

extravascular residence times, an upper bound on the interval of eigenfrequencies

which make the greatest contribution to the integral in (4.43a), is correctly estimated
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as q′c . a/
√
Devτev. Second, the order-of-magnitude estimates |Riv − Rev| ∼ 10−5 –

10−4 ms−1 and 1/τiv ∼ 10−3 ms−1 give |Riv − Rev|τiv ∼ 10−2 – 10−1. Lastly, capillary

volume fractions in brain and myocardial tissues are a small percentage.

Equation (4.44) can be shown to be identical with the expression for the extra-

vascular magnetic moment for the 1BDP-SPA model of St. Lawrence et al., Ref. [31].

This follows by convolving the arterial bolus (4.38) with the arterial-to-extravascular

impulse response function (4.36b) and integrating in the extravascular space. Equa-

tion (4.44) is also identical with the expressions predicted by the Parkes–Tofts model

on the interval 0 < t ≤ τc, see Eqs (20) and (22) of Ref. [34] for PASL and CASL,

respectively. This result suggests that conditions 1 – 3 above specify quantitatively

the conditions under which low extravascular concentrations may be expected, as is

assumed in the 1BDP-SPA model; see Ref. [31].

In the interval 0 < t ≤ min {τc, T} the leading edge of the bolus is inside the

capillary (tlead = t) and the trailing edge is in the feeding vessel (ttrail = 0). At short

times such that |β1t| ≪ 1 and |β2t| ≪ 1, i.e., t/τiv ≪ 1 with the approximations

made above, expanding the terms inside the brackets in the right-hand side of (4.44)

gives

µev(t) ≈
fivt

2

2τiv
exp(−R+

ivt) = PSt
t

2τc
exp(−R+

ivt) . (4.45)

The term PSt represents the amount of tracer in the extravascular space per unit

concentration difference (intracapillary minus extravascular) at the capillary wall,

and per unit volume of whole tissue; the term t/2τc comprises the effect of capillary

flow; and the term exp(−R+
ivt) represents a diminution in extravascular magnetic

moment due to both intracapillary relaxation and capillary wall barriers. Thus, the

term (t/2τc) exp(−R+
ivt) can be interpreted as the fraction of intracapillary tracer

that is actually available for exchange at short times, relative to the intracapillary

residence time, after the arrival of tracer at the capillary.

The variation of µev(t) in (4.45) with the second power of time can be deduced

by noting that, during the initial course of transcapillary exchange, both the amount

of tracer present in the capillary and the exchanging capillary surface area, increase

linearly with time: µiv(t) ∼ fivt and S ∼ 2πauzt, respectively. In the considered
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time interval, i.e., t <
{
τc, T, β

−1
1 , β−1

2

}
, the ratio of extravascular to intracapillary

magnetisation is obtained from (4.42) and (4.45) as

µev(t)

µiv(t)
∼ t

2τiv
≪ 1 . (4.46a)

An upper bound on the ratio µev(t)/µiv(t) valid for longer times is estimated by

considering the idealised case of a uniform intracapillary magnetisation and neglecting

any differences between the intra- and extravascular relaxation rates:

µev(t)

µiv(t)
∼ Λ(t)

Viv
≈ κSt

Viv
=

t

τiv
, (4.46b)

which is not necessarily a small quantity. The effective extravascular depolarised

volume enters into the above expression through Eq. (2.25).

4.4.3 Comparison of ASL signal models

Figure 4.8 shows an example of the percentage deviation of the total (intra- and

extravascular) magnetic moment predicted by the 1BDP-SPA model from that pre-

dicted by the spatiotemporal model set forth in this Thesis, for a long rectangular

bolus of constant inflowing magnetisation (CASL). The values of the parameters used

are appropriate for, e.g., myocardium, thalamus, globus pallidus and cerebral white

matter. Because it does not account for jamming effects (discussed in Section 4.2)

at the capillary wall, the 1BDP-SPA model overestimates the total (intracapillary

and pericapillary) magnetic moment, compared to the spatiotemporal model. The

deviation increases with observation time, but tends to stabilise at sufficiently long

times as the extravascular magnetisation approaches a steady state. The graph shows

that a ten-fold increase in capillary wall permeability causes 1BDP-SPA deviations to

increase by, approximately, two orders of magnitude at short times (Devt/a
2 ∼ 0.1 –

1) and by one order of magnitude at longer diffusion times (Devt/a
2 ∼ 10 – 100).

It is noted that overestimation of the total magnetic moment will, in turn, lead to

overestimation of capillary blood flow.

Figure 4.8 also shows that when the blood–tissue exchange is rate-limited by

extravascular diffusion (i.e., for low Dev/κa ratios), the deviation of the 1BDP-SPA
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Figure 4.8: Total magnetic moment due to a long rectangular bolus of inflowing

magnetisation (CASL): percentage deviation of 1BDP-SPA model from spa-

tiotemporal model presented in this Thesis. Parameter values: Dev/κa = 0.1, 0.5,

1, 5, 10, 50, 100; τ c = 30; Riv = 6.25× 10−3 and Rev = 10× 10−3.

model from the presented spatiotemporal model is large for all observation times. On

the other hand, under permeability-limited conditions the 1BDP-SPA expression for

total extravascular magnetic moment, given by the sum of Eqs (4.42) and (4.44), is

quite accurate for Dev/κa & 50 (deviation < 3% in the time interval shown in the

Figure). Thus, in the presence of an intact blood-brain barrier (Dev/κa & 100) the

total amount of tracer predicted by the 1BDP-SPA model is in close agreement to

the spatiotemporal model set forth in this Thesis. Similar results (data not shown)

are obtained for myocardium using values of the parameters similar to those listed

in Table 2.1.

The deviation of the 1BDP-SPA model from the spatiotemporal model developed

in this Thesis depends moderately upon relaxation rate and capillary-segment length.

For each capillary-segment length used in the simulation, the deviation for each pair

of intracapillary and extravascular relaxation rates was divided by the corresponding

deviation for the case of slowest relaxation considered in the computation (Riv = 0,

Rev = 5× 10−3); the resultant ratio ranged between 84%– 107%.
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In the remainder of this Section we consider the case of negligibly low back-flux of

magnetically tagged water from extravascular space into the capillaries and compare

the time course the ASL signal predicted by the spatiotemporal model presented here,

equations (4.42) and (4.43a), to those for the 1BDP-SPA model, given by (4.42) and

(4.44), and the Parkes–Tofts model, described by equations (20) and (22) of Ref. [34].

Figure 4.9 and Fig. 4.10 illustrate the time course of magnetic moment per unit

capillary flow for PASL and CASL, respectively, as predicted by these three models.

In these examples, the inflowing magnetisation is described as a long rectangular

bolus of duration T , see Eq. (4.38); the value of T differs for PASL and CASL but in

both cases T is greater than the capillary-transit time τc. Capillary segment length,

L, and mean speed of tracer flow, uz, are the same throughout. The values of tissue

parameters used in the computations are appropriate for human grey matter (e.g.,

Riv is for prefrontal cortex) and rat myocardium, and normal values of capillary water

permeability are used.

Although the longitudinal relaxation rate of arterial blood, Ra, is higher than

that of capillary blood, Riv, due to a higher arterial haematocrit [167], for PASL

calculations we set Ra = Riv both for simplicity and for consistency with the litera-

ture ASL models utilised in this comparison. For the longitudinal relaxation rate of

capillary blood we used the literature value Riv = 1/1664 ms−1 ≈ 0.60 s−1 from in

vitro measurements at 3 T of bovine blood with a haematocrit (Hct) of 0.42 [132];

this estimate is comparable to 0.59 s−1, as obtained in another in vitro study [167]

at 1.5 T with Hct = 0.30, which is a realistic value of capillary haematocrit.

In addition, we have assumed the value of the extravascular relaxation rate, Rev,

to be almost equal to that of the relaxation rate in whole tissue, Rtiss, on the ba-

sis that the volume fraction of water-accessible extravascular space is large, and

that transcapillary exchange is sufficiently fast relative to the difference between the

intracapillary and extravascular relaxation rates. As discussed in Appendix 2.5.2,

under these conditions it is reasonable to assume |Riv−Rtiss| ≈ vev|Riv−Rev|, where
vev & 0.9 (see Table 2.1).

The results shown in Fig. 4.9 and Fig. 4.10 are discussed below:
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Figure 4.9: Magnetic moment per unit capillary flow for PASL of grey mat-

ter [prefrontal cortex, panels a), c), e)] and myocardium [panels b), d), f)]. Black solid

line: spatiotemporal model presented here, Eqs (4.42) and (4.43a); blue dashed line - - - - :

1BDP-SPA model [31]; red broken line – – – : two-compartment lumped model of Parkes

and Tofts [34] for times less than bolus duration T (see p. 214 in text). Parameter values:

capillary wall permeability, diffusion coefficient and relaxation rates of water are as in Table

2.1; capillary-segment transit time, τc = 267 ms (from L = 400 µm, uz = 1.5 µmms−1);

bolus duration, T = 700 ms.

• Because of their different capillary water permeabilities, for prefrontal cortex

and myocardium the relative proportions of intracapillary and extravascular

magnetic moment – hence the relative contribution of each physiological com-

partment to the ASL signal – are noticeably different; see panels a) through d)
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Figure 4.10: Magnetic moment per unit capillary flow for CASL of grey matter

[prefrontal cortex, panels a), c), e)] and myocardium [panels b), d) f)]. Black solid line:

spatiotemporal model presented herein; blue dashed line - - - - : 1BDP-SPA model; red

broken line – – – : Parkes–Tofts model for times not exceeding the bolus duration T (see

text). The values of the parameters are as in Fig. 4.9 except bolus duration, T = 1900 ms.

in these Figures.

• During the transit time (for t < τc) of the leading edge of the bolus through

the capillary segment, the predicted total magnetic moment per unit capillary

flow is slightly higher in prefrontal cortex than in myocardium, due to faster

intra- and extravascular relaxation in this latter tissue.

On the other hand, in the interval τc < t < T , the capillary lumen is filled with

magnetically tagged blood and the spatiotemporal model predicts the total
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magnetic moment per unit capillary flow in myocardium to be higher than in

prefrontal cortex because the myocardial capillary wall is more permeable to

water than the blood–brain barrier; see panels e), f). For PASL, intracapillary

relaxation over an interval of duration T − τc results in almost linear reduction

(since Riv|T − τc| ≪ 1) in intracapillary magnetic moment predicted by both

the spatiotemporal and 1BDP-SPA models, whereas for CASL the predicted

intracapillary magnetic moment remains constant due to the steady inflow of

fresh magnetisation; see panels a), b).

Lastly, in the interval τc < t < τc + T the amount of tagged blood in both

intracapillary space and the pericapillary region decreases steadily to zero. In

this time interval, the effect of a higher capillary permeability, which allows

for higher total magnetic moment, is eventually counterbalanced by that of

faster relaxation. As a result, in myocardium the total magnetic moment per

unit capillary flow is predicted to decrease faster than in prefrontal cortex; see

panels e), f).

• Compared to the spatiotemporal model presented here, the 1BDP-SPA model

overestimates both the extravascular and total magnetic moments due to the

jamming effect. The deviation increases steadily for all time after arrival of the

bolus at the capillary, but is rather small for normal myocardial and blood–

brain barrier permeabilities. Specifically, for the values of the parameters used

in Fig. 4.9 and Fig. 4.10, the peak deviations in extravascular magnetic moment

are as follows: for PASL, 1.3% in prefrontal cortex and 1.9% in myocardium; for

CASL, 1.5% and 2.1%, respectively. The respective deviations in total magnetic

moment are smaller, as expected: for PASL, 0.56% (prefrontal cortex) and 1.3%

(myocardium); for CASL, 0.84% and 1.6%, respectively.

• The time course of the ASL signal predicted by the Parkes–Tofts model is valid

for times not exceeding the bolus duration T , but in Fig. 4.9 and Fig. 4.10 the

corresponding curves (red broken line) have been extrapolated for times t > T

so as to avoid confusion with the curves for the other two models. In these
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examples, the deviations of the Parkes–Tofts model from the spatiotemporal

model developed here are, in general, more pronounced than those of the 1BDP-

SPA model. However, for sufficiently high capillary permeabilities, this latter

model may deviate from the spatiotemporal model more strongly than the

Parkes–Tofts model, as discussed later in this Section.

In the interval 0 < t < τc, the Parkes–Tofts expression for intracapillary mag-

netic moment for negligibly low back-flux is identical with that given by the

spatiotemporal model presented in this Thesis. However, for times greater than

the capillary-segment transit time, the value of µiv(t) predicted by the Parkes–

Tofts model is lower than that predicted by the spatiotemporal model. This

is due to the fact that, in this interval, the Parkes–Tofts model regards the

intracapillary space as a well-mixed compartment for tagged blood water (refer

to Section 4.4.1, p. 198).

As regards extravascular magnetic moment, in the interval 0 < t < τc the

Parkes–Tofts and 1BDP-SPA models each predict the same value, which over-

estimates the value obtained using the spatiotemporal model; the deviation is

greatest at t ≈ τc. Then in the interval τc < t < τc + T , the deviation of the

value of extravascular magnetic moment predicted by the Parkes–Tofts starts

to decrease and eventually changes sign, consistent with the underestimation

of intracapillary magnetic moment illustrated in panels a), b). Specifically, for

the considered values of the parameters, greatest deviations with respect to the

spatiotemporal model occur at t ≈ T and are as follows: for PASL, −3.6%

in prefrontal cortex and −9.7% in myocardium, whereas for CASL the devia-

tions are −11% and −19%, respectively. For the total magnetic moment, the

respective deviations rise to −7.1%, −13%, −13% and −20%.

Figure 4.11 illustrates the predicted effect of a ten-fold increase in capillary water

permeability on PASL signal, all other parameters being as in Fig. 4.9. (Note that in

spite of this substantial increase, blood–tissue water exchange in brain and myocardial

tissue remains rate limited by capillary permeability; see Fig. 4.1). An elevated wall

permeability causes the intracapillary (respectively, extravascular) magnetic moment
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per unit capillary flow to decrease (respectively, increase) and, furthermore, may

modify the shape of the time course of total magnetic moment from trapezoid-like for

lower (normal) permeabilities to wave-like for higher permeabilities; compare panels

e), f) in Fig. 4.9 and Fig. 4.11.

Unlike was the case for normal capillary permeabilities, for the high-permeability

cases considered in Fig. 4.11 the total magnetic moment predicted by the Parkes–Tofts

model deviates from the spatiotemporal model by a smaller percentage than does the

1BDP-SPA model. This is due to partial compensation between underestimation of

intracapillary magnetic moment (for reasons explained above) and overestimation of

extravascular magnetic moment (because concentration gradients at the capillary are

not taken into account) in the Parkes–Tofts model; panel f) suggests that for values

of the parameters appropriate for myocardial tissue, the Parkes–Tofts model may

predict a higher total magnetic moment than the spatiotemporal model.

On the other hand, in a situation of elevated capillary permeability, one expects in-

creased deviations of the 1BDP-SPA model from the spatiotemporal model presented

in this Thesis, as compared to the case of normal permeability; this is illustrated in

Fig. 4.8 for CASL. Also, the deviation of the total magnetic moment predicted by

the 1BDP-SPA and Parkes–Tofts models from the value given by the spatiotemporal

model, varies in time much in the same manner as described for the above-discussed

examples using lower capillary permeability parameter values. For the 1BDP-SPA

model, peak deviations of 12% for prefrontal cortex and 19% for myocardium are

predicted at a time equal to the bolus duration; for the Parkes–Tofts model, peak

deviations occur a time equal to the mean capillary-segment transit time and are

6.1% for prefrontal cortex and 14% for myocardium.

Deviations of the 1BDP-SPA model from the spatiotemporal model described here

are more pronounced for the set of parameters representative of myocardium than for

those representative of prefrontal cortex (see examples in the foregoing paragraphs;

full data not shown). For the case of permeability-limited exchange this result is

consistent with the set of conditions (p. 206) leading to Eq. (4.44) for the extravascular

magnetic moment, since both intracapillary volume fraction, viv, and the product
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Figure 4.11: Effect of elevated capillary water permeability on PASL signal. A

hypothetical value of capillary water permeability for grey matter and myocardium each

ten times greater than its value in Table 2.1 was used; the remaining parameters are as in

Fig. 4.9. Black solid line: spatiotemporal model presented here; blue dashed line - - - - :

1BDP-SPA model of St. Lawrence et al.; red broken line – – – : Parkes–Tofts model.

|Riv −Rev|τiv are greater in myocardium than in prefrontal cortex (Table 2.1).

Figure 4.12 illustrates the total magnetic moment per unit capillary flow for PASL

and CASL predicted by each of the three models compared in this Section, for various

combinations of capillary water permeability and extravascular relaxation rate pa-

rameters appropriate for brain tissue (literature values of relaxation rate in prefrontal

cortex and putamen at 3 T were used). As expected, the total magnetic moment is

largest for the pair of parameters consisting of the higher capillary water permeability

(κ+) and the lower extravascular relaxation rate (R−
ev).
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Figure 4.12: Joint effect of capillary permeability and extravascular relaxation on

total magnetic moment for PASL and CASL. Black solid line: spatiotemporal model

presented here; blue dashed line - - - - : 1BDP-SPA model; red broken line – – – : Parkes–

Tofts model. Values of the parameters: κ− = 1.7×10−3 µmms−1, κ+ = 1.7×10−2 µmms−1;

R−
ev = 1763−1 ms−1 [133], R+

ev = 1100−1 ms−1 [168]; the remaining parameters are as in

Fig. 4.9 (for PASL) and Fig. 4.10 (for CASL).

4.4.4 Extravascular diffusion times in ASL measurements

We conclude this Section with a discussion of the range of extravascular diffusion

times that may be expected in typical ASL measurements. The time course of the

inflowing bolus is in most cases unknown. However, the post-exchange time, tev, de-
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fined here as the time that tagged water molecules spend, on average, in extravascular

space before NMR signal acquisition, can be reasonably estimated. Assuming that

the bolus travels without dispersion, and further negligible back-diffusion of tagged

water into the capillaries,

tev ∼ τtag + τw − δτtag − τa − τiv , (4.47)

see Fig. 4.13. Here, τtag is the duration of the tag and is in general different from the

duration, T , of the tagged bolus reaching the imaging region; τw is the post-tagging

delay (also known as the inversion time or tagging–imaging delay) between the end of

tagging and the time of image acquisition;26 τa is the arterial transit time (also known

as the arterial, or bolus, arrival time) from the tagging region to the imaging location;

and δτtag is a transit delay which is dependent on both position (either proximal or

distal end of tagging region) and time of tagging (either at the start of tagging or at

time T ) for a packet of tagged blood water molecules. Letting Denoting τL denote the

transit time through any given tagging region of width L, δτtag = 0 for the leading

edge of the bolus and δτtag = τtag+τL for the trailing edge. Clearly, the time of image

acquisition, τtag+ τw, must be chosen in the range τa < τtag+ τw < τtag+ τL+ τa+ τc.

In Appendix 4.8.2 we estimate the range of post-exchange times for typical ASL

experiments in myocardium and brain tissue. According to these estimates, tev can

be as high as 1 – 2 s, depending on both biophysical and pulse-sequence parameters.

Because water exchange in brain and myocardium is strongly permeability limited

(Fig. 3.7d), the spatiotemporal model can reasonably be extrapolated to long extra-

vascular diffusion times. Comparison with characteristic diffusion times in extravas-

cular space suggests that a significant fraction of tagged tissue water is likely to have

reached a diffusive steady state by the time of NMR signal acquisition. It should

be noted, however, that tagged water might not have attained an equilibrium with

26The parameters τtag, τw are often denoted in the literature by τ , w (for CASL) and by TI1,

∆TI = TI2 − TI1 (for PASL) [23]. In PASL the QUIPSS II (Quantitative Imaging of Perfusion

using a Single Subtraction – 2nd version) scheme can be used to attempt to control the duration of

the tag, τtag, by applying a saturation pulse to the tagging region.
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Figure 4.13: Transit of arterial bolus from tagging region to imaging slice. The

parameters are defined in the text. The mean flow velocity decreases with vascular depth

and causes the width of the bolus to change as it travels down the arterial tree and into

the imaged region.

intracellular water, due to limited water permeability of parenchymal cell membrane

[119].
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4.5 Steady-state tracer exchange

A compartmental steady state is achieved when the net tracer flux of tracer through

the given compartment remains constant in time [190]. Steady-state tracer concen-

trations will, in general, be spatially non-uniform, but will remain constant in time

for the duration of steady state.

In this Section we compare the spatiotemporal and the lumped tracer-exchange

models when both the intracapillary and extravascular compartments have attained

a steady state: in intracapillary space, tracer inflow is equal to tracer outflow plus

total transcapillary flux; in extravascular space tracer consumption (or relaxation) is

exactly balanced by the change in tracer diffusive flux.

Setting the time derivative in Eq. (2.1a) equal to zero, the steady-state intracap-

illary tracer balance equation becomes

uz
dψss

iv(z)

dz
+Rivψ

ss
iv(z) +

ψss
iv(z)− ψss

ev(a+)

τiv
= 0 , (4.48a)

with a+ ≡ (z, a+). The steady-state abluminal concentration is expressed as

ψss
ev(a+) ≈ ψss

iv(z)

∫ tss

0

w(a+, t
′) dt′ , (4.48b)

where the time tss to attain extravascular steady state is much greater than all the

time constants of tracer exchange. Introducing this expression into (4.48a) and solv-

ing the resultant differential equation yields the intracapillary tracer concentration:

ψss
iv(z) = exp

[
−Rivtz −

1−
∫ tss
0
w(a+, t

′) dt′

τiv
tz

]
(4.48c)

with tz = z/uz, Eq. (2.19b), and the inflowing concentration is normalised to unit

amplitude. As shown in Appendix 4.8.1, the axial diffusive flux due to the gradient

of the approximate steady-state intracapillary concentration is in fact negligibly low,

as required by the modelling of Section 2.2.1.

The time to extravascular steady state is estimated by evaluating the integral in

the exponent of (4.48c) with the use of the eigenfunction decomposition (2.95a): this

shows that the intracapillary concentration is approximately constant for t ∼ tss ≫
λ−1
1 , and the eigenvalue relation λ1 ≤ Rev+τ

−1
ev , Eq. (3.50) gives tss ≫ τev/(1+Revτev).
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When the rate of tracer consumption is high, the trivial steady-state, ψss
ev(r) ≈ 0,

is established very rapidly. At the other extreme, when no tracer is consumed, the

steady state is attained at tss ≫ τev. Clearly, for the whole system to attain the

steady state, the tracer bolus must have a duration T ∼ tss. For magnetically tagged

water, Rev ∼ 1 s−1, whereas τev for myocardium and brain cortex is of the order of

1 s and tens of seconds, respectively (Table 2.1); thus in ASL experiments in these

tissues, establishment of a steady state requires that the bolus duration be greater

than about 1 s. As another example, the radiotracer 15O has a half-life of 2 min [191],

hence the bolus duration for H 15
2 O PET should be greater than τev in this case.

Since the above estimate of the onset of the steady state is not a function of diffu-

sion, it is but a rough estimate for diffusion-limited situations, such as gas exchange

in tissue. Hudson and Cater [52] estimated tss ≈ 5/Devγ
2
1 , where γ1r0 (= q1a, in

our notation) is the first root of Eq. (4.27b) for a Krogh annulus. For tissue oxygen

uptake, the resultant time to steady state is several seconds.

The steady-state extravascular diffusion–consumption equation is

Dev∇2ψss
ev(r)−Revψ

ss
ev(r) = 0 , (4.49a)

with the usual boundary conditions (2.1c), (2.1d). Its solution is

ψss
ev(r) = C1(z)[g1(qssr) + C2g2(qssr)] , (4.49b)

where qss =
√
Rev/Dev and g1(·), g2(·) are functions of position which are deter-

mined solely by the geometry of the pericapillary region. For a cylindrical annulus

with cylindrical symmetry, g1(·) = I0(qssr), g2(·) = K0(qssr) are the modified Bessel

functions of zero order. The coefficient C2 = −(g′1/g
′
2)|r=A is determined from the

zero-flux boundary condition at the outer surface of the pericapillary region27 and is

independent of κ. The coefficient C1(z) is determined from the boundary condition

at the capillary wall as

C1(z) =
κ

κG1 +G2

ψss
iv(a−, z) , (4.50)

27Here, the primes denote the gradient operator with respect to the non-dimensional argument

qssr.
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where G1 = (g1 + C2g2)(a+), G2 = −qssDev(g
′
1 + C2g

′
2)(a+) are dependent on peri-

capillary geometry, tracer diffusion coefficient and tracer consumption, but not (as

may expected on physical grounds) on capillary permeability. Then

ψss
ev(a+) =

κG1

κG1 +G2

ψss
iv(a−) , (4.51a)

which is an increasing function of capillary wall permeability, with limiting values

ψss
ev(a+)→ 0 for an impermeable capillary wall, and ψss

ev(a+)→ ψss
iv(a−) for a highly

permeable capillary wall. Similarly, the transcapillary flux is expressed as

njssκ = −Devn∇ψss
ev(a+) = κ [ψss

iv(a−)− ψss
ev(a+)]

=
κG2

κG1 +G2

ψss
iv(a−) . (4.51b)

Combining the above two equations shows that the steady-state ratio of transcapillary

tracer flux to abluminal tracer concentration is independent of membrane permeabil-

ity (provided that the membrane is not impermeable):

njssκ
ψss
ev(a+)

=
G2

G1

=
njssκ |κ→∞

ψss
iv(a−)|κ→∞

=
njssκ |κ→∞

ψss
ev(a+)|κ→∞

. (4.51c)

In Fig. 4.14, the non-dimensional ratio aD−1
ev nj

ss
κ /ψ

ss
ev(a+) is plotted as a function

of qssa = a
√
Rev/Dev for a range of compartment radii. When Rev is small, the

steady-state concentrations will be nearly the same on both sides of the membrane,

hence the transmembrane flux will be correspondingly low. On the other hand, when

Rev is relatively large, the extravascular concentration will be low and njssκ /ψ
ss
ev(a+)

will increase approximately as
√
DevRev. For tissue NMR relaxation, a

√
Rev/Dev ∼

10−1.

To assess the accuracy of a lumped tracer-exchange model, we evaluate the spa-

tially averaged extravascular concentration, ψss
ev, and the transcapillary flux, nĵssκ ,

predicted by lumped tracer-exchange modelling. The latter quantity is estimated as

nĵssκ = κ [ψss
iv − ψss

ev] , (4.52a)
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Figure 4.14: Steady-state ratio of transmembrane tracer flux to tracer concen-

tration at the outer face of the membrane for a cylindrical annulus. The ratio

a/A = 0.1, 0.2, . . . , 0.9 in the direction indicated by the arrow line.

where

ψss
ev =

1

RevVev

∫
ev

Dev∇2ψss
ev(r) d

dr

=
1

RevVev

∫
S

−Devn∇ψss
ev(a+) dS

=
1

κRevτev
njssκ , (4.52b)

with the use of the Gauss theorem and the zero-flux condition at the pericapillary

boundary.28 If there is a net flux of tracer from blood into tissue, ψss
ev ≤ ψss

ev(a+);

combining this with (4.52b) then (4.51b) gives the following lower bound on the

amplitude of the steady state extravascular concentration:

ψss
ev(a+)

ψss
iv(a−)

≥ 1

1 +Revτev
. (4.53)

28The second line of Eq. (4.52b) is proportional to steady-state transcapillary flux averaged over

the capillary wall. The last line of this equation gives the result for a thin axial slice with uniform

tracer concentration gradient at the capillary surface, without loss of essential physical meaning.
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In the sequel we show that there may be sizeable differences between steady-

state tracer concentrations and/or tracer fluxes as predicted by, respectively, the

spatiotemporal and the lumped tracer-exchange models. Two simple ‘measures’ of

deviations between these models may be defined as follows:

εψ ≡ ψss
ev − ψss

ev(a+)

ψss
ev(a+)

=
1

κRevτev

G2

G1

− 1 (4.54a)

and

εjκ ≡ nĵssκ − njssκ
njssκ

= −κG1

G2

εψ , (4.54b)

where equations (4.51c), (4.52a) and (4.52b) have been used. From these equations

the following may be noted:

• The concentration deviation εψ does not vary with capillary wall permeability,

whereas |εjκ| increases linearly as a function of capillary permeability.

• For small values of A
√
Rev/Dev ∼

√
RevτD, as is the case for magnetically

tagged water in myocardium and, to a lesser extent, grey matter, Eq. (4.54a)

becomes

εψ ≈ −A
2Rev

8Dev

4viv − v2iv − ln v2iv − 3

1− viv
< 0 . (4.55)

This expression implies that |εψ| increases with extravascular relaxation rate

and decreasing capillary volume fraction (since both result in lower extravas-

cular concentrations per unit intracapillary concentration) and with decreasing

tracer diffusion coefficients (since this slows down redistribution of tracer).

• Using (4.52a) and (4.54a) in (4.54b) we obtain the relation

εjκ = −κψ
ss
ev(a+)

njssκ
εψ = − ψss

ev(a+)

ψss
iv − ψss

ev(a+)
εψ . (4.56)

When ψss
ev(a+)/ψ

ss
iv < 1/2, the relative difference in tracer concentrations

for the spatiotemporal model and for the lumped tracer-exchange model is

greater than the relative difference in transcapillary fluxes, |εψ| > |εjκ |; con-
versely, if ψss

ev(a+)/ψ
ss
iv > 1/2, then |εjκ| > |εψ|, and so the smaller of the two

225



4.5. Steady-state tracer exchange

quantities, ψss
ev(a+) and njssκ , is estimated with poorer accuracy, as expected.

Therefore, an important conclusion is that, for permeability-limited exchange,

steady-state fluxes can, in principle, be more accurately estimated by means

of a lumped tracer-exchange model than can steady-state concentrations; for

diffusion-limited exchange the opposite conclusion holds.

In order further to investigate the third bulleted item above, we estimated εψ and

εjκ for a Krogh cylindrical annulus model for values of the parameters appropriate

for water exchange in three different tissues, as explained below. The numerical

results are presented in Fig. 4.15 and in Table 4.1; in all three cases the steady-state

intracapillary concentration was set to unit amplitude, i.e., ψss
iv = 1.

For values of the parameters (particularly the tissue relaxation rate) appropriate

for human prefrontal cortex (Fig. 4.15a) the steady-state extravascular concentration

is seen to be a small percentage (. 3%) of the intracapillary concentration, due both

to a low blood–brain barrier permeability to water, and to relatively long intercapil-

lary distances.29 The amplitude of the spatially averaged concentration is significantly

lower (∼ 31%) than the amplitude of the abluminal concentration. However, since

the resultant blood–tissue flux is driven mainly by the intracapillary concentration,

the difference between the estimated blood–tissue fluxes for the two models is small

(∼ 1%).

The second row of Table 4.1 illustrates the effect of a hypothetical ten-fold increase

in blood–brain barrier permeability to water. This causes the transcapillary tracer

flux and the amplitude of the abluminal concentration to increase nearly ten-fold. The

relative difference between the abluminal concentration and the spatially averaged

concentration remains unchanged, whereas the relative difference in transcapillary

tracer flux increases exactly ten-fold, as predicted by Eq. (4.54a) and Eq. (4.56),

29This amplitude is of the same order as that predicted by the blood-to-tissue step response for

sparse capillary networks and Dev/κa ∼ 102, since at tss ≈ 4 s after the appearance of a bolus of

tracer water at the capillary, the abluminal amplitude of the step response is ∼ 0.03 in the absence

of tracer relaxation; see second curve from top in Fig. 3.7d. Since |Rev −Riv|tss ≪ 1, this estimate

is reasonably accurate.
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respectively.

For parameter values appropriate for myocardium, the steady-state concentration

(Fig. 4.15b) is likely an order of magnitude higher than the estimate obtained above

for human prefrontal cortex parameters. This may be understood by noting that,

on average, myocardial intercapillary distances and capillary wall permeabilities to

water are smaller and higher, respectively, than those in the brain cortex, and these

factors seem to compensate for a comparatively faster myocardial relaxation rate.

Thus, both the transcapillary flux and abluminal concentration are predicted with

good accuracy. Note that the ratio τev/τD ∼ Dev/κa is similar for both these tissues.

For values of the parameters consistent with a simplified renal proximal tubule

geometry (Fig. 4.15c and Fig. 4.15d), a diffusive steady state in interstitial (per-

itubular) space is likely established within a few milliseconds, water concentrations

at each side of the basolateral membrane being very nearly equal (fourth row of Ta-

ble 4.1). In this highly simplified model, the lumped tracer-exchange model predicts

the concentration at the outer face of the basolateral membrane very accurately.

However, because the basolateral permeability to water is large, the lumped tracer-

exchange model overestimates the transmembrane water flux by a large percentage

(∼ 30%). With lower values of tubule volume fraction (last row of Table 4.1), as can

be obtained in preparations of partially distended tubules [137], the lumped tracer-

exchange model increasingly deviates from the presented spatiotemporal model; in

particular, the transmembrane flux of water appears to be grossly overestimated

(∼ 270%).

It is worth noting that since a Krogh annulus model was used to obtain the

results shown in Table 4.1, they should be viewed merely as reasonable estimates.

The values of pericapillary radius for human brain cortex and myocardium used in

the above examples are upper-range values, according to Table 2.1. Therefore, we

expect the calculated deviations ϵψ and ϵjκ to be worst-case values. For example,

setting A = 21 µm and 7.8 µm for grey matter and myocardium, respectively,30 the

30These values are obtained from the formula A = a/
√
viv, for values of intracapillary volume

fraction viv as given in Table 2.1.
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Figure 4.15: Steady-state water concentration for various Krogh-type models

of interstitial space. Red broken lines denote spatially averaged compartment concen-

trations. a) Human brain cortex (with Rev appropriate for prefrontal cortex). b) Human

myocardium. c) In vivo renal proximal convoluted tubules; tubular volume fraction is 80%.

d) Suspension of distended renal proximal tubules; tubular volume fraction is 22%. The

values of a, Dev, κ and Rev are as in Table 2.1, and the outer radius A = 29.1 µm, 9.125 µm,

24.6 µm and 46.9 µm, respectively, consistent with the literature values shown in Table 2.1.

respective deviations of the amplitude of the spatially averaged concentration from

that of the abluminal concentration diminish to 15% and 0.8%, approximately. It is

noted that the Krogh annulus geometry used in the foregoing discussion may prove

inaccurate for the evaluation of water exchange in, for example, the renal cortex, due

to the dense packing and highly convoluted arrangement of renal proximal tubules.
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4.6 Comparison with chemical exchange theory

The theory of chemical exchange is well established; see, e.g., Refs [128, 129] and ear-

lier references therein. In essence, the Bloch equations are modified to incorporate

exchange terms, thus enabling interpretation of relaxation measurements for species

exchanging between magnetically distinct compartments [128]. Compartmental dif-

fusion is considered fast enough not to hinder the exchange. In this Section we show

that some results of the theory, namely (i) the apparent relaxation rate under slow

chemical exchange conditions, and (ii) the apparent tissue blood volume, also fol-

low from the results for permeability-limited exchange set forth in this Thesis; we

presented these results previously in Ref. [96].

Apparent relaxation rate

It is well-known that compartmental exchange can alter the observed relaxation rates

[192]. In particular, when the net exchange rate (or rate of equilibration [129])

between the intracapillary and extravascular spaces is much slower than the difference

between the respective relaxation rates, i.e.,

|Riv −Rev| ≫
1

τiv
+

1

τev
, (4.57)

relaxation dominates over permeation and the system is said to undergo slow chemical

exchange [129]. In this situation, the intracapillary and extravascular spaces will relax

independently with respective rates Riv + τ−1
iv and Rev + τ−1

ev , where Riv, Rev are the

relaxation rates in the absence of exchange [129].

This result can also be obtained by noting that, for times t ∼ min {τiv, τev},
the intracapillary and extravascular concentrations will differ exponentially from

each other, and so the results for absorbing boundary conditions developed here

are therefore applicable. Letting Riv > Rev for definiteness, and substituting the

effective extravascular depolarised volume for permeability-limited exchange, given

by Λ(t) ≈ κSt = Vevt/τev, Eq. (4.7c), in the expression for the average extravascular
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concentration, Eq. (2.27), gives

ψev(t)

ψev(0)
≈

(
1− t

τev

)
exp(−Revt) ≈ exp(−R+

evt) , (4.58)

where the last approximation is valid for t < τev.

Apparent tissue blood volume

Donahue et al. investigated the effect of transcapillary water exchange on the quan-

tification of tissue blood volume [170]. These investigators performed T1 and T1-

weighted MR measurements in a rat model and demonstrated that tissue blood vol-

ume estimates are highly sensitive both to exchange modelling assumptions and to

experimental parameters, including imaging time and dose of paramagnetic tracer.

Under slow exchange conditions and further assuming a fully relaxed intravascular

space, the apparent tissue blood volume fraction, vappiv , was found to approach the

value given by Eq. (10) of Ref. [170]:

vappiv = viv

[
1 +

(
1

τiv
+

1

τev

)
TI

]
, (4.59)

where TI is the pulse-sequence inversion time. For sparse capillary networks, as in

rat myocardium, the net transcapillary exchange rate is given by τ−1
iv , to zero-order in

the intracapillary volume fraction. Thus, Eq. (4.59) predicts the difference between

the apparent and true tissue blood volumes to be vivTI/τiv = κSTI. This correction

term is equal, to the stated accuracy, to the effective extravascular depolarised volume

under permeability-limited conditions, Eq. (4.7c), evaluated at time t = TI.

4.7 Discussion

We begin by reviewing the relative merits of spatiotemporal vs lumped tracer-

exchange models, by way of introduction to a discussion of the ASL results developed

in this Chapter and the feasibility of parameter estimation using the presented spa-

tiotemporal model.

The higher complexity of spatiotemporal models results from the necessity to spec-

ify the geometry of tissue, from the greater number of time- and position-dependent
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quantities to be considered, and from the fact that certain mechanisms, like diffu-

sion, can only be adequately described by spatiotemporal, but not lumped, models.

Despite their higher complexity, spatiotemporal models have inherent advantages be-

yond their ability to describe physiological processes more realistically than lumped

models.

Importantly, upon averaging the time- and position-dependent solutions (e.g.,

the extravascular magnetisation) of the spatiotemporal model, the resultant time-

dependent variables (e.g., the extravascular magnetic moment) reveal the role of cer-

tain physical parameters (e.g., the diffusion coefficient) which are not available with

simpler lumped tracer-exchange approaches. Alternatively, by taking spatial aver-

ages in the governing model equations, consistent with the employed measurement

technique, more accurate lumped formulations can be obtained. Spatial averaging

yields the amplitude of the concentration at the boundary between adjacent com-

partments; these quantities cannot be completely taken into account by the class of

lumped tracer-exchange models.

It may also be noted that, for spatiotemporal models, the necessity to specify both

a tractable geometry and reasonable boundary conditions may bias to some degree

the estimation of physiological parameters. On the other hand, lumped models suffer

from the rather abstract definition of the well-mixed kinetic compartment.

In Section 4.2, the permeability-limited and diffusion-limited tracer exchange

regimes were both discussed in physical terms at length. Subsequently, the spa-

tiotemporal model developed in this Thesis was compared against four literature

models, namely the model of Hudson and Cater [52] for diffusion-limited gas ex-

change in tissue (Section 4.3); the spatiotemporal model of Lee and Fronek [44] for

microvascular transport and extravascular diffusion of non-absorbed indicators (Sec-

tion 4.4); and the models of St. Lawrence et al. [31] and Parkes and Tofts [34] for

permeability-limited water exchange in brain and myocardium (Section 4.4). The

analysis shows that it is important properly to account for different relaxation rates

in intracapillary and extravascular space in order to avoid large errors in the esti-

mated total magnetic moment. As expected, lumped tracer-exchange models were
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found to be adequate for the analysis of permeability-limited, but not diffusion-

limited, exchange. Importantly, however, it was shown that tracer concentrations

and permeation fluxes for spatiotemporal and lumped tracer-exchange models may

differ substantially even at steady state. To maximise accuracy, the governing system

of equations for the spatially-averaged tracer concentrations should be obtained from

a suitable spatiotemporal model by volume integration.

In the remainder of this Discussion we assess, briefly, how well the main modelling

assumptions made in this Chapter and in Chapter 2 apply to conventional ASL

approaches.

The issue of whether extravascular tissue may be considered a homogenous envi-

ronment for water diffusion was discussed in Section 2.4.3. Further, the assumption

that in brain and myocardial ASL the back-flux of tagged water into the capillar-

ies is negligible, is seen to be correct for the examples of Fig. 4.9 and Fig. 4.10.

This assumption may, however, prove incorrect when the exchange is rate-limited by

compartmental diffusion rather than barrier permeability, since the concentrations

at compartment barriers may be much higher than the respective spatially averaged

concentrations.

Equation (2.21) is the basis for the estimation of haemodynamic and tracer-

exchange parameters using the spatiotemporal model presented in this Thesis. A

two-step estimation process involves time deconvolution of the time course of the

ASL signal with the inflowing tracer concentration, ψiv(z = 0, t), followed by curve

fitting of the output of deconvolution to the term in brackets in (2.21), which com-

prises the two impulse response functions obtained in this work, hiva (z, t) and w(r, t).

The spatiotemporal model involves six independent parameters, namely fiv, τc, τiv,

Riv, Rev and Dev/a
2, or combinations thereof. As an approximate rule, we suggest

that the number of samples of inflowing magnetisation to be collected be an order

of magnitude greater than the number of independent model parameters. Practical

limitations (e.g., time resolution and signal-to-noise ratio) may prevent accurate es-

timation of all of the above parameters even when the ASL signal is time sampled

using currently available fast sequences. By way of example, Günther et al. [193]
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were able to estimate capillary flow and arterial transit time in the human brain

with a fast ASL pulse sequence capable of acquiring 23 images of a single tissue slice

during a repetition time of 2.5 s, with a temporal resolution of 100 ms (due to hard-

ware restrictions); including bolus duration in the non-linear fitting algorithm made

it unstable at low signal-to-noise ratios.

Under permeability-limited conditions, Eq. (4.42) and Eq. (4.44) can, in principle,

be used for the estimation of a reduced set of parameters, namely fiv, τc, τiv, Riv and

Rev. In practice, the longitudinal relaxation rates in blood and whole tissue may

be estimated independently using any of a number of available techniques. (This

approach may be justified for sparse capillary networks, in which the relaxation rate

in extravascular tissue is reasonably well approximated by that in whole tissue in-

cluding its contained intracapillary space; see Section Longitudinal relaxation rates

of Appendix 2.5.2, pp. 98 ff.).

Another difficulty consists in the accurate estimation of the inflowing tracer con-

centration for tracer-exchange models that perform deconvolution. Numerical de-

convolution is, in general, sensitive to signal noise, hence it is sometimes avoided in

practice by assuming a suitable analytic expression for the inflowing concentration.

This results in a ‘simple’ analytical signal expression which can be fitted to the ex-

perimental data. For example, a number of ASL models [24, 31, 34] describe the

arterial magnetisation as a dispersionless bolus with exponentially decaying ampli-

tude, Eq. (4.38). However, a problem with this approach is that it may bias the

fitting procedure if the assumed bolus shape differs markedly from the true one [18,

p. 716]. In this situation, faster sampling of the time course of the ASL signal will

not improve the fit.

Several ASL acquisition methods and/or signal models have been proposed that

aim to overcome in part these issues. Petersen, Lim and Golay [194] introduced a

method for the quantification of arterial blood volume and perfusion rate which re-

quired no modelling of the underlying exchange. Their approach followed the model

of Buxton et al. [24] and deconvolution was aided by first estimating the local arterial

magnetisation using an appropriate magnetic field gradient scheme and image sub-
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traction. The model of Kelly, Blau and Kerskens [37] also does not quantify the under-

lying blood–tissue water exchange explicitly, thus resembling a single-compartment

approach. Rather, pseudo-diffusion of tagged water molecules within whole tissue

was considered to contribute stochastically to the total (blood and tissue) volume

occupied by tagged water as the bolus flows from the tagging region into the tissue.

This model allowed estimation of arterial and microvascular transit times.

One expects increased water-exchange model accuracy if the amount of tagged

water present in, respectively, intracapillary, venous and extravascular space can be

determined. The longitudinal relaxation rate of blood practically does not vary with

blood oxygenation level [167] and any differences between intracapillary and extra-

vascular transverse relaxation rates at low main fields can reasonably be neglected.

However, at higher fields (∼ 4 T and above) the influence of increasing differences

in the transverse relaxation time of blood and tissue (both of which become closer

to typical echo-time values) caused by stronger susceptibility effects of partially de-

oxygenated blood, should be taken into account [195] in order to avoid bias in the

estimated parameters.

Several studies have incorporated transverse relaxation effects by assuming mono-

exponential reduction in compartmental magnetic moments [34, 195], possibly with

an oxygen-level dependent intracapillary relaxation rate [195]. Other studies [119]

also have modelled the effect of microvessel orientation on signal decay and have sug-

gested the presence of multiple extravascular compartments with distinct transverse

relaxation rates detectable on the ASL time scale. In this Thesis, the transverse relax-

ation of magnetically tagged water is not considered because long-ranged magnetic

susceptibility effects between erythrocytes, blood vessels and extravascular tissue

likely invalid the assumption of independent exchange in neighbouring pericapillary

regions.
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4.8 Appendices

4.8.1 Axial intracapillary diffusion in the steady state

Tracer diffusion in the direction parallel to the capillary axis has been neglected in

our treatment, for reasons discussed in Section 2.2. In this Appendix we obtain a

condition for negligible axial diffusion effects in the steady-state.

The steady-state intracapillary concentration (4.48c) is given by

ψss
iv(z) = exp(−kz) , (4.60a)

where

k−1 = uz

[
Riv +

1−
∫ tss
0
w(a+, t

′) dt′

τiv

]−1

(4.60b)

is a characteristic concentration fall-off length. The resultant non-zero axial gradient

in tracer concentration creates a position-dependent axial diffusive flux. If the steady-

state intracapillary equation is augmented with an axial diffusion term, and if the

solution to this latter equation is compared to the right-hand side of (4.48c), the axial

diffusion term is seen to be much smaller than both the convection and transcapillary

permeation terms when the time for tracer molecules to diffuse over the fall-off length

is much greater than the characteristic time for tracer relaxation/consumption and

transcapillary permeation, i.e., when

1

Dzk2
≫

[
Riv +

1−
∫ tss
0
w(a+, t

′) dt′

τiv

]−1

. (4.61)

For example, by the time a packet of magnetically tagged blood water molecules has

diffused axially a distance of order k−1, its NMR signal should be negligibly low.

Condition 4.61 is well satisfied for the parameter values listed in Table 2.1: from

these we estimate k−1 ∼ 102 – 103 µm, which is comparable to typical capillary

lengths.

236



Chapter 4. Applications and Model Comparisons

4.8.2 Typical diffusion times in ASL measurements

In this Appendix we estimate the average extravascular diffusion time, or post-

exchange time tev, as defined by equation (4.47) of Section 4.4.4 and reproduced

below for convenience:

tev ∼ τtag + τw − δτtag − τa − τiv .

Next we review a number of ASL studies of myocardium and brain tissue available

in the literature.

Wang et al. [196] adapted flow-sensitive alternating inversion recovery (FAIR)

PASL for free-breathing myocardial imaging at 1.5 T. A single slice along the short

axis of the left ventricle was imaged with post-tagging delays of 200 – 1700 ms. The

arterial transit time was estimated as ∼ 400 ms, using a single-compartment phar-

macokinetic model. We assume τtag = 700 ms [23], τL = 300 ms 31 and τiv = 300 ms

(from Table 2.1). For a post-tagging delay of 200 ms, early-arriving water molecules

will have tissue post-exchange times of up to 200 ms; for a post-tagging delay of

1700 ms, post-exchange times for late- and early-arriving water molecules are 700 ms

and 1700 ms, respectively.

MacIntosh et al. [197] estimated arterial transit times in brain tissue of nor-

mal subjects by fitting the kinetic model of Buxton et al. [24] to three-dimensional

gradient- and spin-echo PASL data at 3 T. Mean arterial transit times were, approxi-

mately, 600 ms in the temporal lobe and 1000 ms in the occipital lobe.32 The median

31Wong et al. [23] measured transit times through a 10-cm wide tag (placed presumably in the

head) of 700 – 800 ms. In the study of Wang et al. [196] the tagging region was 3 – 4 cm thick.
32Arterial transit time estimates appear to be consistent across a range of measurement conditions.

Alsop and Detre [198] estimated a minimum arrival time of 600 ms using gradient-echo echoplanar

CASL at 1.5 T in the thalamic region; the inversion plane was located 40 mm proximal to the

imaging slice, as was located the tagging region below the imaging volume in the above-mentioned

study of MacIntosh et al. Gallichan and Jezzard estimated arterial transit times of 300 – 1200 ms

(see Fig. 8, left panel, of Ref. [199]) on eight anatomical regions of interest situated at the level of

the thalamus by fitting a single-compartment model, with assumed Gaussian bolus dispersion, to

gradient-echo echoplanar PASL data at 3 T. In this study the offset between tagging region and

imaging slice was 15 mm.
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tagging time was 1000 ms and post-tagging delays between 400 – 2400 ms were ap-

plied; we assume τL = 300 ms and τiv = 900 ms. Equation (4.47) gives estimated

post-exchange times of 200 – 1500 ms and 600 – 1900 ms in the occipital and tempo-

ral lobes, respectively, for a post-tagging delay of 2400 ms. (Note that this value of

τw is probably an upper limit for 1.5 – 3 T measurements, to avoid excessive bolus

relaxation).

In another study, Fernández-Seara et al. [200] used CASL with three-dimensional

gradient- and spin-echo readout at 3 T; the parameters τtag = 2000 ms, τw = 1200 ms

were used. For the arterial transit times given by MacIntosh et al. [197], we estimate

tev ∼ 1700 ms in the temporal lobe and tev ∼ 1300 ms in the occipital lobe for water

molecules tagged at the start of the ASL pulse.
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Conclusions

The purpose of the research work described in this Thesis was to investigate the joint

effect of diffusion and first-order consumption in physiological exchange processes

between blood and extravascular tissue. A natural application of this work is to

arterial spin labelling (ASL) methods in magnetic resonance imaging (MRI).

The joint effect of diffusion and first-order consumption (e.g., magnetic relaxation)

can be assessed with the aid of tracer substances under both steady and non-steady

state conditions. This latter case has not been sufficiently addressed in the literature,

despite the fact that in recent years much research has been devoted to advancing

MRI-based quantification of physiological processes [5]. Theoretical spatiotemporal

models of blood–tissue tracer exchange taking into account extravascular diffusion

were presented by Lee and Fronek [44] and by Kuo, Gustafson and Friedman [45]

in the early 1970s. However, since they focussed on the kinetics of non-metabolised

indicators, these studies did not consider tracer consumption in blood or extravascular

tissue.

Another research area in which spatiotemporal models have found widespread use

is in the quantification of oxygen supply to extravascular tissues by the microcircu-

lation. However, because tissue oxygen consumption varies non-linearly with local

oxygen tension, oxygen delivery models are, in principle, not directly applicable to

MRI experiments with magnetically tagged water or paramagnetic tracers.
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5.1 Main contributions of this Thesis

The main contributions of this Thesis are discussed in the following subsections. The

stated research aims may be reviewed in Section 1.2.

Modelling blood–tissue tracer exchange

We began by discussing the main anatomical and physiological assumptions based

on which a model of capillary networks and extravascular tissue was adopted in this

work. Then we introduced the governing spatiotemporal equations of blood–tissue

tracer exchange. In the capillaries, we considered the effect of convective flow and

first-order consumption. In the extravascular space, we considered the effect of first-

order consumption and extravascular diffusion of a tracer substance. A distinguishing

feature of the present tracer-exchange model is its taking into account extravascular

diffusion and first-order consumption in intracapillary and extravascular space under

non-steady-state conditions. The exchange of tracer between blood and extravascular

tissue was assumed to occur by diffusive permeation only; other forms of transmem-

brane transport, such as facilitated diffusion, were not considered in the analysis.

The extravascular space was modelled as a medium with homogenous diffusion and

consumption properties throughout.

We obtained rather general expressions for the arterial-to-intracapillary impulse

response function and for the intracapillary-to-extravascular (i.e., blood-to-tissue)

impulse, and step, response functions for whole tissue, under idealised conditions of

linearity and time invariance of the microcirculation. In addition, we introduced a

quantity termed the effective extravascular depolarised volume, which measures the

clearance of extravascular tracer due to tissue-to-blood exchange under absorbing

intracapillary conditions. The main theoretical tool employed in these developments

was the Green’s function of the diffusion–consumption equation for whole extravas-

cular tissue.

The above framework is rather general, hence difficult to evaluate mathematically

for realistic capillary networks as found in macroscopic tissue volumes. We therefore

described a physical situation in which blood–tissue exchange could be evaluated
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on the basis of individual capillary segments, provided that any interactions among

neighbouring capillary segments had a negligible effect on the extravascular distribu-

tion of tracer; this was called the single-capillary approximation. We reasoned this

situation to be expected for diffusion times such that the diffusion lengths covered by

the tracer during the experiment is smaller, on average, than typical intercapillary

distances in the tissue in question. The single-capillary approximation was deemed

reasonable for sparse capillary networks as found in, e.g., brain and myocardium, for

extravascular diffusion times in the range of typical ASL measurements.

Based on this theoretical framework, we evaluated all the blood–tissue exchange

quantities analytically, where possible, and otherwise expressed them in terms of

integrals which were easily computed numerically. Steady-state exchange was also

considered under somewhat simplified capillary–tissue assumptions (see the next Sub-

section).

The spatiotemporal tracer-exchange model developed in this work made possible

a quantitative discussion of the main rate-limiting mechanisms encountered in blood–

tissue exchange, namely capillary wall permeability and extravascular diffusion.

The foregoing results were presented in Chapters 2 – 4.

Validity of tracer-exchange models

A number of literature studies [62] have addressed the scope and physiological inter-

pretation of certain lumped tracer-exchange models, while other researchers [38, 61]

have compared various such models for relative performance. However, analyses of

the validity of lumped tracer-exchange models when compared to the more realistic

class of spatiotemporal models appear, to the best of this author’s knowledge, to be

lacking in the literature. In this Thesis we have therefore presented such a discussion.

We showed that the class of lumped tracer-exchange models cannot deal properly

with the effect of the boundary conditions between adjacent tracer-accessible com-

partments. Because the value of the concentration at each face of the membrane

dividing any two physiological compartments differs, in general, from the respective

spatially averaged concentration (this is referred to as the jamming effect), the es-
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timation of transmembrane fluxes using lumped tracer-exchange models is prone to

inaccuracies. We showed the class of lumped tracer-exchange models to be adequate,

in general, for the quantification of transmembrane fluxes under permeability-limited,

but not diffusion-limited, conditions. Under diffusion-limited exchange contitions,

both the time course and spatial profile of the extravascular concentration of tracer

predicted by the spatiotemporal model presented in this Thesis were shown to deviate

strongly from those predicted by lumped tracer-exchange models.

In addition, we evaluated the steady state as a limiting case for the assessment

of the assumption of uniform concentrations which underlies any lumped tracer-

exchange approach. We found that this assumption might be inaccurate even in

certain permeability-limited cases. By evaluating theoretically the response of both

the spatiotemporal model presented herein and an appropriate two-compartment

lumped model for radially finite Krogh cylinders representative of grey matter and

myocardium, we found that the lumped model did predict correctly the amount of

tracer (labelled water, in this case) in extravascular space, but that it might fail accu-

rately to predict the spatially varying concentration in grey matter when compared

against the spatiotemporal model. Specifically, the abluminal concentration would be

underestimated, whereas at points far from the capillary wall the concentration would

be overestimated. Here the interplay of capillary wall permeability, relaxation rates

and tracer-accessible extravascular volume for each tissue seemed to be of significance.

On the other hand, under diffusion-limited conditions the lumped model predicted

the extravascular concentration – but not the amount of extravascular tracer – in

close agreement with the spatiotemporal model.

These results were presented in Chapter 4.

ASL model comparisons

We compared the presented spatiotemporal model to two literature models of wa-

ter exchange in brain tissue, namely the two-compartment lumped model of Parkes

and Tofts [34] and the one-barrier distributed-parameter, single-pass approximation

(1BDP-SPA) model of St. Lawrence, Frank and McLaughlin [31]. This latter model
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does not take into account tracer diffusion but does take account of axial distribution

of tracer in intracapillary space due to capillary flow and transcapillary exchange.

Model comparisons were made by generating the output of all three models using

a common set of test tissue parameters and boli of inflowing magnetisation. Inde-

pendent estimation of blood–tissue exchange parameters was not performed at this

stage.

Our results indicated that in the cases considered (i.e., pulsed and continuous ASL

modelling of water exchange in myocardial and cortical brain tissue), the time course

of total (intra- and extravascular) magnetic moment (or amount of ASL tracer) in

unit volume of tissue predicted by the 1BDP-SPA model agrees well with those of

predicted by the model presented in this Thesis, provided that transcapillary water

permeation is the rate-limiting mechanism. On the other hand, the 1BDP-SPA model

was found to deviate strongly from the spatiotemporal model presented here in the

case that inefficient redistribution of tracer by extravascular diffusion limited the

rate of transcapillary exchange. Predicted deviations of the 1BDP-SPA model from

the spatiotemporal model were evaluated numerically as a function of observation

time for a wide range of values of the non-dimensional parameter in Eq. (4.2), which

quantifies the trade-off between transcapillary exchange and extravascular diffusion.

On the other hand, for normal brain and capillary water permeabilities the total

magnetic moment in unit volume of tissue predicted by the lumped water-exchange

model of Parkes and Tofts is lower than that predicted by the spatiotemporal model

presented in this Thesis. This was attributed to the fact that a ‘black-box’ modelling

of intracapillary convection in this model makes it difficult to estimate the outflow of

tracer accurately, without further assumptions. For elevated capillary permeabilities,

however, the amount of tracer predicted by the Parkes–Tofts model can be more

nearly equal to that predicted by the presented spatiotemporal model than is the

case for the 1BDP-SPA model.

Finally, comparison of the spatiotemporal model developed herein and the model

of Lee and Fronek [44] – which accounts for capillary flow, transcapillary permeation

and extravascular diffusion, but not for tracer consumption – shows that unrealistic
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modelling of consumption/relaxation effects in blood and extravascular tissue leads

to rapidly increasing deviations as the time after arrival of tracer (e.g., arterial mag-

netisation) at the capillary increases, thus rendering this model unsuitable for ASL

studies.

The foregoing results were developed in Chapter 4.

5.2 Further work

In this Section we outline a number of potential extensions to the research work

described in this Thesis.

1. The treatment of tracer diffusion presented spatiotemporal tracer-exchange

model can be enhanced by (i) taking into account the non-trivial time de-

pendence of the mesoscopic tracer diffusion coefficient; and by (ii) considering

diffusion in more than one exchanging compartment.

2. The method of solution of the spatiotemporal model presented in this Thesis

must be extended to account for the case in which the concentration of tracer in

the capillaries is significantly altered by the back-flux of tracer from extravas-

cular space into the blood. This situation might occur under diffusion-limited

conditions, in particular if tracer is rapidly removed from the capillary blood,

or in tissues with low fractions of tracer-accessible extravascular space. A full

analytical treatment of tracer back-flux is rather involved, suggesting that nu-

merical solutions should be sought.

In fact, analysis of blood–tissue exchange in realistic capillary networks as ob-

tained from, e.g., electron micrographs of tissue specimens [55], usually de-

mands computational approaches. For the case of thin, highly permeable capil-

laries, the extravascular impulse-response distribution of tracer can be obtained

approximately by convolving the spatial profile of the capillary network with

the Green’s function for a discrete source in free space; at points far from the

edge of the sample, any boundary conditions effects can be neglected to a first
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approximation. (This method is also applicable to the mapping of magnetic

susceptibility effects, provided that the extravascular magnetic field induced

by the intracapillary magnetisation is much smaller than the main static field,

thus avoiding higher-order interactions; here the dipole field takes on the role

of basic free-space field). However, when it is a finite capillary permeability

that limits the blood-to-tissue flux of tracer, the Green’s function for a dis-

crete source must be replaced by the blood-to-tissue impulse response function

(2.15), which is valid for the case of negligibly low back-flux of tracer into the

capillaries. The blood-to-tissue impulse function involves spatial integration of

the Green’s function for the given tissue sample, and in practice the latter can

only be obtained by numerical methods.

3. As MRI field strengths continue to increase (≥ 4 T), any differences in trans-

verse relaxation rate between blood and extravascular tissue due to magnetic

susceptibility effects of partially deoxygenated blood become more important

and can no longer be neglected; see Ref. [195, p. 425] and references therein.

Because spatial heterogeneities in magnetic susceptibility of tissue – as induced

by, e.g., the compartmentalisation of a paramagnetic tracer – can profoundly

affect the NMR signal [14, p. 252], both the modelling of whole tissue and

the accompanying governing equations of diffusion, consumption and exchange

should be refined to account for long-ranged magnetic susceptibility effects be-

tween erythrocytes, blood vessels and the various physiological compartments

that can be identified in extravascular space.

4. The interval of extravascular diffusion times during which the single-capillary

method of solution presented in this Thesis applies is approximately 100 ms in

myocardium and is somewhat longer in brain tissue. Therefore, as discussed

in Section 4.7, analysis of transient water diffusion in these tissues requires

temporal resolutions well below ∼ 100 ms in order to estimate transport and

exchange model parameters. At present, this may pose a practical limitation

to implementation of the presented model. Strategies for robust parameter
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estimation from measured tracer-exchange data have not been considered in

this Thesis.

The research work described in this Thesis was for the most part theoretical; se-

lected results were tested, as appropriate, using Monte Carlo simulations involving

random walks of tracer particles. The presented model was not tested on subjects

at the present stage of development. Further advances will require designing and

performing dedicated experiments to answer specific theory-motivated questions (for

example, the characterisation of the transport properties of larger vessels is an impor-

tant issue that remains an open research topic) and to demonstrate the capability of

the presented model to produce robust estimates of blood–tissue exchange parameters

in subjects.

5.3 Concluding remark

In conclusion, in this Thesis we have presented a spatiotemporal model of blood–

tissue tracer exchange whose main distinguishing feature is its taking account of the

joint effect of extravascular diffusion and first-order consumption in intracapillary and

extravascular spaces. Notwithstanding its above-discussed limitations, this model

should prove useful in those cases in which extravascular diffusion is the dominant

rate-limiting mechanism of blood–tissue exchange, a physical situation which is not

covered by the class of lumped tracer-exchange models. The model presented in this

Thesis is anticipated to be applicable to, e.g., the quantitative assessment of water

exchange between physiological compartments under non-steady-state conditions, as

in arterial spin labelling MRI with fast image acquisition.
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