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Abstract 

Background Despite being a very common type of genetic variation, the distribution of copy‑number variations 
(CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of 
the local population, is a critical factor for distinguishing pathogenic from non‑pathogenic variation in the discovery 
of new disease variants.
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Results Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently 
contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish 
individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, 
produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Span‑
ish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences 
and they are used to populate the database. A web interface allows querying the database with different filters that 
include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo‑
control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in 
some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http:// csvs. clinb ioinf osspa. es/ 
spacn acs/.

Conclusion SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of 
the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference 
database.

Background
Copy-number variations (CNVs) is a frequent form of 
genetic variation that is increasingly being linked to 
genetic and phenotypic diversity as well as to disease 
[1–3]. The interest in the assessment of CNVs is grow-
ing among the rare diseases community in recent years, 
given that they can explain cases that remain unsolved 
after conventional single nucleotide variant (SNV) pri-
oritization [4]. Since there is a high level of natural (and 
apparently non-pathogenic) CNV mutational back-
ground [5, 6], it is important to have a reference reposi-
tory that provides local population context and helps to 
distinguish these benign CNVs from potential patho-
genic CNV findings in patients. As in the case of SNV 
variation, the local component of CNV variation is of 
utmost importance [7]. However, general databases, such 
as DECIPHER [8] or Gnomad [9] do not contain specific 
data from local populations that reflect the peculiarities 
of their CNV variant distributions. To offer this rele-
vant aspect to genetic studies, the SPAnish Copy Num-
ber Alteration Collaborative Server (SPACNACS) stores 
CNV variation for more than 400 unrelated individuals of 
estimated Spanish ancestry. This database has been gen-
erated as a collaborative effort of the Spanish Network for 
Research in Rare Diseases (CIBERER) [10], the Navarra 
genome Project (NaGen) [11], and other research groups 
under a crowdsourcing cooperative model. Actually, our 
participation in projects like the undiagnosed patients 
programme (EnoD from the CIBERER) [12] guarantees a 
continuous submission of new patients to the database.

Since obtaining genomic data on a significant number 
of confirmed healthy people is often difficult, the strat-
egy used here lies on the use of two annotations for the 
individuals: top levels of ICD10 and Human Phenotype 
Ontology (HPO) [13] annotations. This information 
allows building ad hoc queries in which the features of the 
studied individual are absent. In this way pseudo-control 

cohorts can be easily constructed in which, for example, 
Fanconi Anemia patients can take the role of pseudo-
healthy reference for patients with retinal dystrophy (and 
vice versa). Although pleiotropies cannot be completely 
ruled out, they are expected to be infrequent across 
ICD10 top categories or high-level HPO terms.

The availability of the local population variability 
at the level of CNV opens the door to additional rel-
evant studies, such as the contribution of natural copy 
number variation to the pharmacogenetic profile of the 
Spanish population. Because of the increasing abun-
dance of genomic data, most of the genomic variations 
associated with pharmacogenomics are Single Nucleo-
tide Variants (SNVs) and small indels [14], and the 
pharmacogenetic profile in the Spanish population has 
recently been described by us [15]. However, the role 
of CNVs in pharmacogenomic variation remains largely 
unknown and cannot be ignored [16]. A clear example 
of the potential role of these variants is the effect of the 
CNVs in the CYP2D6 gene, which encodes an enzyme 
which is key in the metabolism of xenobiotics, includ-
ing several drugs such as opioids [17], tricyclic antide-
pressants [18], selective serotonin reuptake Inhibitors 
[19], tamoxifen [20] or ondansetron/tropisetron [21].

The SPACNACS database is an example for future fed-
erated European infrastructures [22], whose aim is to 
enable discovery and analysis of genomic data without 
having direct access to them [23]. Moreover, SPACNACS 
is actively participating in the CNV specifications for the 
new Beacon 2.0 [24] standard that will facilitate the fed-
erated analysis of genomic data at CNV level for the first 
time. Interestingly, SPACNACS combines the discoverabil-
ity possibilities offered by a Beacon with the possibility of 
contacting the group that generated the sequence, a useful 
feature present in tools like Matchmaker Exchange [25].

http://csvs.clinbioinfosspa.es/spacnacs/
http://csvs.clinbioinfosspa.es/spacnacs/
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Implementation
Data
A subset of high-quality genomes and exomes from the 
Collaborative Spanish Variant Server database (CSVS) 
[15] were used to populate SPACNACS, and guaran-
tee a continuous flux of new CNV data as CSVS grows. 
Genomic sequences come from different projects such 
as the Medical Genome Project [7, 26], the EnoD, (Undi-
agnosed Rare Diseases programme) from the Spanish 
Network for Research in Rare Diseases (CIBERER), the 
Project Genome 1000 Navarra, The RareGenomics [27] 
from Madrid, and other research groups and initiatives 
across Spain [28–30].

Sample locality and potential kinship
The database contains only CNVs derived from unrelated 
individuals of Spanish ancestry. A leave-one-out cross-
validation (LOOCV) strategy, previously used as a qual-
ity assessment to populate the CSVS [15], was utilized to 
build a distribution of percentages of variants contrib-
uted by any single sample to the pool of variants present 
in the rest of the database. Samples 1.5 times under the 
first interquartile range were considered genetically too 
close [15] and not included in the database. On the other 
hand, a Machine Learning based model, trained with dif-
ferent populations from the 1000 genomes project [31], 
was used to discriminate Spanish samples from the rest 
of populations (see [15] for details).

Copy number variation predictions
For each sample, FASTQC v0.11.8 [32] was used to assess 
quality of raw data and fastp v0.20.0 [33] was run for 
quality preprocessing so that clean data is provided to 
downstream analysis. Then, filtered sequence reads were 
aligned to the reference human genome build hs37d5 
(hg19) by using the BWA v0.7.16a alignment tool [34]. 
The obtained mapped reads (BAM files) were sorted by 
samtools v1.11 [35] and duplicated reads were marked 
to mitigate biases introduced by data generation steps by 
means of Picard tools v2.17.3 [36]. BAM files were later 
analyzed in terms of QC using in-house scripts and the 
ngsCAT v0.1 tool [37].

Two pipelines for predicting deletions and duplica-
tions were developed. One based on Manta v1.5.0 [38] 
and another on Gridss v2.7.3 [39]. In both cases, the best 
practices recommended in the documentation were fol-
lowed. Only PASS variants were kept. Both predictions 
are available in SPACNACS and can be selected in the 
Search and Selection panel (see SPACNACS functional-
ity section below).

Pharmacogenomic analysis of the Spanish population
In order to evaluate the pharmacogenomic impact of 
CNVs in the Spanish population, we studied the variabil-
ity of 1049 pharmacogenes involved in drug pharmacoki-
netics and/or drug response (Additional file 2: Table S2) 
described in PharmGKB database [14, 40]. We used Bed-
tools [41] and Pandas [42] to calculate the frequency of 
genes that overlap (totally or partially) with a deletion or 
a duplication in the Spanish population.

Gene‑phenotype associations
Gene-phenotypes associations were downloaded from 
the Human Phenotype Ontology database [13]. Primary 
HPO terms for individuals were manually assigned by 
clinicians and experts from the corresponding genomic 
projects mentioned above. Statistics and plots were gen-
erated with numpy [43], Pandas [42] and matplotlib [44] 
libraries.

CNV annotations
SPACNACS includes an extensive annotation of CNVs 
with clinically relevant databases. A CNV is annotated 
with the features corresponding to the specific genomic 
region that overlaps. Such features include: (i) Clinvar 
database [45], a freely accessible, public archive of reports 
of the relationships among human variations and pheno-
types, with supporting evidence. It also provides gene-
disease relationships. (ii) DisGeNET [46], an exhaustive 
catalog of genes and variants associated with human 
diseases. DisGeNET integrates data from expert curated 
repositories, GWAS catalogs, animal models and the sci-
entific literature. (iii) Gene Ontology Annotation (GOA) 
[47, 48], which contains a mixture of manual annota-
tion and computationally assigned GO terms describing 
gene products. (iv) ClinGen [49], a National Institutes of 
Health (NIH)-funded resource that defines the clinical 
relevance of genes and variants for use in precision medi-
cine and research. (v) The Human Phenotype Ontology 
[13], which provides a standardized vocabulary of phe-
notypic abnormalities encountered in human disease. In 
addition, HPO annotations derived from gene-phenotype 
links obtained from the analysis of a patient network 
[50]. (vi) The wgEncodeEH000322 track from UCSC [51], 
which provides information about the mappability of the 
genome. This annotation can be useful to detect false 
positives and biases in CNV prediction technologies/
tools [52].

Statistical methods
To estimate the functional enrichment in the CNV vari-
ants, the frequency of genes that overlap (totally or 
partially) with a deletion or a duplication in the Gridss 
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pipeline prediction dataset was first calculated. Genes 
affected by more than one CNV of the same individual 
were only counted once. Then, a z-score normalization 
of the frequency was performed, and those genes with a 
score greater or equal to four were selected. Finally, the 
web tool metascape [53] was used to carry out the func-
tional enrichment.

Results
SPACNACS content description
Focusing on the Gridss pipeline, SPACNACS contains a 
total of 8559 unique CNVs, corresponding to 7069 dele-
tions (83%) and 1490 duplications (17%). The reciprocal 
overlapping between these CNVs and those contained 
in two other population databases (1000 genomes pro-
ject and Gnomad [9]) was evaluated. As a result, most 
SPACNACS CNVs overlap to a greater or lesser extent 
with some CNVs from both, 1000 genomes or Gnomad 
(Fig. 1). A total of 586 duplications (39% of the total dupli-
cations) and 3479 deletions (49% of the total deletions) 
of SPACNACS match almost completely with CNVs 
present in 1000 genomes and/or Gnomad (overlapping 
greater than 90%, which corresponds to the increment 
between the penultimate and the ultimate bars in Fig. 1). 

Interestingly, a remarkable amount of SPACNACS CNVs 
do not overlap with any other CNV from 1000 genomes 
or Gnomad (see the first column of bars in Fig. 1), specifi-
cally 407 duplications (27% of the total duplications) and 
1320 deletions (19% of the total deletions). These CNVs 
can be considered a priori either exclusive of the Spanish 
population or, at least, CNVs which are very abundant in 
the Spanish population but scarce in other populations. 
Therefore, these CNVs would play a crucial role in CNVs 
prioritization processes. The rest of CNVs display a par-
tial overlap with CNVs present in the 1000 genomes and 
Gnomad databases.

From the analysis of 417 individual samples (pro-
cessed with the Gridss pipeline), a total of 26,623 differ-
ent sequences, corresponding to diverse biotypes affected 
by at least one CNV, were observed. Among them, 
10,347 sequences (40%) are protein coding genes (see 
Additional file 1: Table S1), while the rest correspond to 
other biological categories (pseudogenes, RNAs, etc.). As 
expected, most of these genes are rarely affected by CNVs 
in the SPACNACS sample of the local population. Only 
1064 (10.2%) coding genes are affected by at least one 
CNV in more than 5% of the individuals.

Fig. 1 CNVs overlapping between SPACNACS and other databases. Comparative between the CNVs found in SPACNACS and the ones present in 
the 1000 genomes and Gnomad databases. The X axis incrementally represents the level of overlap between the CNVs compared, which range from 
0 (CNVs unique to SPACNACS) up to 100% (CNVS with a perfect match)
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Since SPACNACS is composed of patients of differ-
ent diseases (binned in subpopulations correspond-
ing to the highest ICD10 levels) it is expectable that 
CNVs shared by several subpopulations will not be 
disease-specific. Given that some subpopulations can 
have some overlap (e.g. “5: Mental and behavioural dis-
orders”, “6: Diseases of the nervous system”, “17: Con-
genital malformations, deformations and chromosomal 
abnormalities”, and the corresponding controls “31: 
Mental and behavioural disorders—controls”, “32: Dis-
eases of the nervous system—controls”, “43: Congenital 
malformations, deformations and chromosomal abnor-
malities—controls”), a threshold of 15 different subpop-
ulation affected have been chosen to ensure that CNVs 
are not disease-specific. There are 771 genes contained 
in CNVs that appear in individuals belonging to a total 
of 15 or more subpopulations. These genes constitute a 
conservative estimation of the genes affected by CNVs 
with likely no pathogenic consequences. Interestingly, 
189 of them have an OMIM annotation correspond-
ing to different inherited diseases (see Additional file 1: 
Table  S1). This suggests that, while point mutations 
affecting the functionality of the gene have a patho-
logic effect, dose effects due to copy number alterations 
of the whole genes are unlikely to imply pathogenicity. 
Generally speaking, genes of recessive disorders would 
not produce any phenotype in a deletion, providing a 

chromosome copy is preserved. It is also likely that a 
proper transcriptional control can cope with deficien-
cies or overabundances in the number of genes [54, 55].

Among the most frequently affected genes, there is a 
significant (p-value = 2.34*10–6) functional enrichment, 
according to the metascape tool [53] (see statistical meth-
ods section), in genes involved in detection of chemical 
stimulus involved in sensory perception (GO:0050907). 
This observation is in line with the fact that most olfac-
tory receptors genes are located in segmentally dupli-
cated regions, which are known to be frequently involved 
in regions affected by copy-number variation [56, 57]. 
Other biological functions detected in the enrich-
ment are of more complex interpretation, given that are 
very general terms, such as cell killing (GO:0001906; 
p-value = 0.00065), single fertilization (GO:0007338, 
p-value = 0.0026), anatomical structure maturation 
(GO:0071695, p-value = 0.0068) and neuron projection 
morphogenesis (GO:0048812, p-value = 0.0093).

SPACNACS architecture
The SPACNACS is a web server that can be found at: 
http:// csvs. clinb ioinf osspa. es/ spacn acs/. The front-end 
has been developed using the JavaScript REACT library 
v17.0.2 [58]. The genome browser has been built using 
the IGV.js library [59]. The Integrative Genomics Viewer 
(IGV) is a popular high-performance, easy-to-use, 

Fig. 2 The SPACNACS interface. A Genome browser panel consisting of an embedded Integrative Genomics Viewer preloaded with the Spanish 
CNV database and other useful tracks. B Search and selection panel, which provides several filters for specifying the genomic region and the data to 
be shown. C Filtering status panel, which shows information about the active filters. The whole dataset is shown by default

http://csvs.clinbioinfosspa.es/spacnacs/
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interactive tool for the visual exploration of genomic data 
[60]. The back-end has been written in Java programming 
language and the database has been built using Mongo 
[61], a NoSQL document database used to build highly 
available and scalable internet applications.

SPACNACS functionality
The web interface has 3 main sections: (i) The Browser 
panel (Fig. 2A), which consists of an embedded Integra-
tive Genomics Viewer [60] preloaded with the Span-
ish CNV database, world population CNVs derived 
from Gnomad v2.1 control samples [62] and the 1000 
Genomes Project structural variants phase 3 [63], regu-
latory regions as provided by Ensembl [64] and known 
clinically relevant copy number gains, copy number 
losses, duplications and deletions from ClinVar [45]. The 
browser provides several navigation controls for speci-
fying the genomic region to view. (ii) Search and selec-
tion panel (Fig.  2B). This section controls which CNVs 
are displayed in the CNVs track. Several filters for speci-
fying the genomic region and the data to be shown are 
provided. For example, filtering by intellectual disabil-
ity (C3714756) term in DisGeNET will show only CNVs 
overlapping genes associated with this phenotype in Dis-
GeNET. In a similar way, selecting a subset of samples 
according to the ICD10 category, gender or main HPO 
term will automatically update the CNV frequency. This 
allows researchers to use this repository as a pseudo-con-
trol population for ruling out non-causal CNVs and help-
ing to find new disease-causing CNVs. In the selection 
panel the type of pipeline used to infer the CNVs, Manta 
[38] or Gridss [39] (see Methods) can be selected. (iii) 
Filtering status panel (Fig. 2C), which shows information 
about the active filters. By default, the whole dataset is 
selected. Additional information about the interface can 
be found at the server documentation main page (https:// 
github. com/ babel omics/ SPACN ACS/ wiki).

The SPACNACS beacon
SPACNACS implements a Beacon (version 1.0), a stand-
ard protocol used to query the database to check whether 
a specific region is involved in a CNV. The Beacon is an 
initiative of the Global Alliance for Genomics & Health 
(GA4GH) that allows genomic data sharing across fed-
erated networks [65]. The Beacon is a web-accessible 
service that can be queried for information about one 
specific allele at a time. For example, in the classical 
Beacon a user can pose queries of the form “Have you 
observed this particular variation (e.g., nucleotide A) at 
this genomic location (e.g., position 21,926,123 on chro-
mosome 8)?” to which the Beacon responds with either 
“yes” or “no.” Here, the Beacon allows queries on ampli-
fications or deletions that involve regions. Since the 

definition of the boundaries of the CNVs is often diffi-
cult, the Beacon allows querying with ranges. The generic 
URL to query the SPACNACS beacon is as follows:http:// 
csvs. clinb ioinf osspa. es: 8080/ spacn acs- ga4gh- beacon- v1/ 
query? refer enceN ame= [chrom osome] & refer enceB ases= 
N& assem blyId= GRCh3 7& start Min= [starM in] & start 
Max= [starM ax] & endMin= [endMin] & endMax= [end-
Max] & varia ntType= [DUP/ DEL].

The Beacon 1.0 is used to query a region containing 
any base (reference Bases = N). For example, to search for 
any CNV (the & variant Type parameter is dropped) in 
the chromosome 8, in the locus spanning between posi-
tions 22,138,284 and 22,138,339 DEL within an interval 
of ± 10 nucleotides the query would be as follows:http:// 
csvs. clinb ioinf osspa. es: 8080/ spacn acs- ga4gh- beacon- v1/ 
query? refer enceN ame= 8& refer enceB ases= N& assem 
blyId= GRCh3 7& start Min= 22138 273& start Max= 22138 
293& endMin= 22138 328& endMax= 22138 348.

SPACNACS is participating in the definition of Beacon 
specifications for CNV-related queries in the new Beacon 
2.0 standard, currently under development [24].

Impact of CNV in human phenotype
Individuals in SPACNACS come from CSVS with 
detailed HPO annotations made by experts from the dif-
ferent genomic projects of origin. This allows carrying 
out an interesting correlation between phenotype and 
genes with phenotypic annotations in the different dis-
eases present in the database. Table  1 lists the different 
HPOs found in individuals present in the database along 
with the HPO-related genes affected by CNVs. There are 
phenotypes, like Intellectual disability, Global develop-
mental delay, Ataxia, Microcephaly, and nine more, in 
which all the CNVs present in affected individuals over-
lap genes annotated with HPOs corresponding to the 
phenotype. It is important to note that it does not mean 
that the causal genetic variation of the disease in all these 
individuals is a CNV. Actually, it could be the case that 
the diagnosis was due to a SNV for some individuals. 
However, it is remarkable that in some cases all the CNVs 
overlap, and presumably affect, genes with HPOs corre-
sponding to the phenotype of the individual. This sug-
gests an important role of copy number variation in some 
phenotypes. Actually, it is well known the role of struc-
tural variation in intellectual disabilities [66]. In other 
cases, like breast carcinoma, only in 10% of the patients a 
gene related to this HPO was affected by a deletion. In a 
wider spectrum of HPOs, none of the HPO-related genes 
was affected by a CNV. Several cancers, cardiomyopa-
thies and retinopathies are examples of diseases typically 
caused by SNVs and only in an infrequent number of 
cases by CNVs, which agrees with the observations sum-
marized in Table 1.

https://github.com/babelomics/SPACNACS/wiki
https://github.com/babelomics/SPACNACS/wiki
http://csvs.clinbioinfosspa.es:8080/spacnacs-ga4gh-beacon-v1/query?referenceName=%5Bchromosome%5D&referenceBases=N&assemblyId=GRCh37&startMin=%5BstarMin%5D&startMax=%5BstarMax%5D&endMin=%5BendMin%5D&endMax=%5BendMax%5D&variantType=%5BDUP/DEL%5D
http://csvs.clinbioinfosspa.es:8080/spacnacs-ga4gh-beacon-v1/query?referenceName=%5Bchromosome%5D&referenceBases=N&assemblyId=GRCh37&startMin=%5BstarMin%5D&startMax=%5BstarMax%5D&endMin=%5BendMin%5D&endMax=%5BendMax%5D&variantType=%5BDUP/DEL%5D
http://csvs.clinbioinfosspa.es:8080/spacnacs-ga4gh-beacon-v1/query?referenceName=%5Bchromosome%5D&referenceBases=N&assemblyId=GRCh37&startMin=%5BstarMin%5D&startMax=%5BstarMax%5D&endMin=%5BendMin%5D&endMax=%5BendMax%5D&variantType=%5BDUP/DEL%5D
http://csvs.clinbioinfosspa.es:8080/spacnacs-ga4gh-beacon-v1/query?referenceName=%5Bchromosome%5D&referenceBases=N&assemblyId=GRCh37&startMin=%5BstarMin%5D&startMax=%5BstarMax%5D&endMin=%5BendMin%5D&endMax=%5BendMax%5D&variantType=%5BDUP/DEL%5D
http://csvs.clinbioinfosspa.es:8080/spacnacs-ga4gh-beacon-v1/query?referenceName=%5Bchromosome%5D&referenceBases=N&assemblyId=GRCh37&startMin=%5BstarMin%5D&startMax=%5BstarMax%5D&endMin=%5BendMin%5D&endMax=%5BendMax%5D&variantType=%5BDUP/DEL%5D
http://csvs.clinbioinfosspa.es:8080/spacnacs-ga4gh-beacon-v1/query?referenceName=%5Bchromosome%5D&referenceBases=N&assemblyId=GRCh37&startMin=%5BstarMin%5D&startMax=%5BstarMax%5D&endMin=%5BendMin%5D&endMax=%5BendMax%5D&variantType=%5BDUP/DEL%5D
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Table 1 HPOs in the individuals and HPO‑related genes affected by CNVs in them

HPO ID HPO Individuals Deletions Amplifications Any CNV Percentage 
explained

HP:0001249 Intellectual disability 17 17 7 17 100.00

HP:0001263 Global developmental delay 17 17 10 17 100.00

HP:0001251 Ataxia 5 5 0 5 100.00

HP:0000252 Microcephaly 4 4 3 4 100.00

HP:0004322 Short stature 4 4 0 4 100.00

HP:0001298 Encephalopathy 3 3 0 3 100.00

HP:0002652 Skeletal dysplasia 2 2 0 2 100.00

HP:0001256 Intellectual disability, mild 1 1 0 1 100.00

HP:0001328 Specific learning disability 1 1 0 1 100.00

HP:0001270 Motor delay 1 1 0 1 100.00

HP:0001250 Seizures 1 1 0 1 100.00

HP:0001290 Generalized hypotonia 1 1 1 1 100.00

HP:0001067 Neurofibromas 1 1 0 1 100.00

HP:0200134 Epileptic encephalopathy 4 3 0 3 75.00

HP:0000729 Autistic behavior 2 1 0 1 50.00

HP:0001332 Dystonia 3 1 0 1 33.33

HP:0010864 Intellectual disability, severe 6 1 0 1 16.67

HP:0003002 Breast carcinoma 10 1 0 1 10.00

HP:0000083 Renal insufficiency 9 0 0 0 0.00

HP:0002206 Pulmonary fibrosis 6 0 0 0 0.00

HP:0000107 Renal cyst 5 0 0 0 0.00

HP:0002313 Spastic paraparesis 5 0 0 0 0.00

HP:0003003 Colon cancer 5 0 0 0 0.00

HP:0000488 Retinopathy 4 0 0 0 0.00

HP:0002664 Neoplasm 3 0 0 0 0.00

HP:0002110 Bronchiectasis 3 0 0 0 0.00

HP:0002342 Intellectual disability, moderate 2 0 0 0 0.00

HP:0011343 Moderate global developmental delay 2 0 0 0 0.00

HP:0009830 Peripheral neuropathy 2 0 0 0 0.00

HP:0001300 Parkinsonism 2 0 0 0 0.00

HP:0001258 Spastic paraplegia 2 0 0 0 0.00

HP:0012126 Stomach cancer 2 0 0 0 0.00

HP:0001638 Cardiomyopathy 2 0 0 0 0.00

HP:0003107 Abnormal circulating cholesterol concentration 2 0 0 0 0.00

HP:0004482 Relative macrocephaly 1 0 0 0 0.00

HP:0000256 Macrocephaly 1 0 0 0 0.00

HP:0008551 Microtia 1 0 0 0 0.00

HP:0000525 Abnormality iris morphology 1 0 0 0 0.00

HP:0007105 Infantile encephalopathy 1 0 0 0 0.00

HP:0002134 Abnormality of the basal ganglia 1 0 0 0 0.00

HP:0007002 Motor axonal neuropathy 1 0 0 0 0.00

HP:0003477 Peripheral axonal neuropathy 1 0 0 0 0.00

HP:0003198 Myopathy 1 0 0 0 0.00

HP:0001324 Muscle weakness 1 0 0 0 0.00

HP:0010978 Abnormality of immune system physiology 1 0 0 0 0.00

HP:0100242 Sarcoma 1 0 0 0 0.00

HP:0008527 Congenital sensorineural hearing impairment 1 0 0 0 0.00

HP:0008504 Moderate sensorineural hearing impairment 1 0 0 0 0.00

HP:0001639 Hypertrophic cardiomyopathy 1 0 0 0 0.00
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Impact of CNVs on genes relevant in pharmacogenomics
In order to know the contribution of CNVs to the vari-
ability of pharmacogenomic relevant genes, the number 
of copies of a total of 1049 genes, reported in the clini-
cal annotations from PharmGKB database [14], was 
assessed. Almost three quarters of these genes (71.7%, 
749 out of 1045 pharmacogenomics genes) were involved 
in CNVs, with almost a half of them (49.6%, 518 out 
of 1045) with the full length of the gene affected by a 
CNV. These results document a non-negligible poten-
tial impact of CNVs on pharmacogenetic protein func-
tion. Duplications were found in a slightly more frequent 
proportion (56.03%) than deletions (43.97%) (Fig.  3), 
with 29.1% of the genes harboring both kinds of events. 
Of note, a 5.59% of the genes showed a minor allele fre-
quency (MAF) higher than 5% in the Spanish population 
suggesting a relevant role of this kind of variation in the 
pharmacogenomics field. More interestingly, when the 
analysis was carried out only for the 21 well-described 
‘actionable’ pharmacogenomics genes (PharmGKB level 
1A), 80.95% of them showed CNVs with aggregated fre-
quency of 8.29%, excluding CYP2D6 contribution. The 
CYP2D6 analysis revealed a lower CNVs frequency in 

the Spanish population compared with the data reported 
for Caucasians (< 1% versus 5.7%) [17]. These differences 
could be explained because the algorithm used for CNV 
detection is not able to solve the complexity of the struc-
tural variant rearrangements between CYP2D6 and the 
pseudogene CYP2D7 next to the gene [67–69].

Discussion
CNVs are a pervasive form of genetic variation and, 
as more data are collected, they are increasingly being 
linked to phenotypic diversity and disease [1–3, 70]. 
Particularly, somatic CNVs are observed in the majority 
of cancer types and are known to have a clear impact in 
cancer development and progression [71, 72]. A com-
prehensive representation of somatic genomic varia-
tion profiles in cancer can be found in the Progenetix 
database [73]. Also, numerous reports support a signifi-
cant role of germinal CNVs in neurodevelopmental dis-
orders and multiple congenital abnormalities [74, 75]. 
For example, more than 12% of neurodevelopmental 
disorder cases can be explained by a CNV [66]. It has 
been reported that up to 15% of the autism spectrum 

Table 1 (continued)

HPO ID HPO Individuals Deletions Amplifications Any CNV Percentage 
explained

HP:0004356 Abnormality of lysosomal metabolism 1 0 0 0 0.00

HP:0032245 Abnormal metabolism 1 0 0 0 0.00

Fig. 3 Distribution of CNVs detected in pharmacogenes (PGx genes) according to the allele frequency. The number of genes harboring 
duplications (green) or deletions (red) of the 1045 PGx genes tested are shown according to the frequency detected in the population
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could be explained by CNVs that are either de novo or 
rarely inherited in nature [76, 77]. Because the most 
characterized penetrant CNVs are inherently rare, 
comparative analyses against reference populations 
are required to assess relative disease risk and to eluci-
date the potential etiologic role of such genetic events, 
currently classified as “variants of unknown signifi-
cance” (VUS) [66]. An important step in the discovery 
of genomic variation causal of diseases is the detailed 
knowledge of the local variability, as has been high-
lighted in the case of SNPs, where many databases with 
local variability have appeared in the last years [15, 78–
82]. Since CNV data have traditionally been obtained 
at a much slower pace than other omic data, such as 
whole genome or whole exome sequences or transcrip-
tomic data, finding these CNV reference population 
databases is often difficult. The necessity of addressing 
a wide range of CNV-related challenges ranging from 
detection and interpretation, including the lack of CNV 
databases with reference populations with a local com-
ponent has been identified by the ELIXIR’s recently 
established human CNV Community [23]. Here, SPAC-
NACS has followed the philosophy of CSVS [15], which 
has been described as an especially interesting exam-
ple of how to collect and distribute genomic data [83], 
and has built a local reference of the CNV variation in 
the Spanish population by collecting data from differ-
ent genomic projects. Another interesting feature of 
SPACNACS is that, instead of trying to use different 
tools to infer a consensus CNV profile, here, two differ-
ent approaches, Manta (52) and Gridss (53) have been 
used and are available. Since there is not a consensus 
pipeline for the detection of CNVs it is interesting that 
people using different pipelines can find in SPACNACS 
different CNV estimations.

As a demonstration of the usefulness of this resource 
two studies using SPACNACS data are presented here. 
Firstly, a study of the degree of matching between the 
HPO annotation of individuals in SPACNACS and the 
corresponding HPO-related genes affected by CNVs 
found in them. Interestingly, the higher affectation of 
HPO-related genes by CNVs occurs in HPOs corre-
sponding to diseases in which structural variation plays 
an important role in the etiology, such as mental disabili-
ties or related developmental malformations [66].

Another interesting aspect is the imbalance between 
CNV types: deletions are significantly more frequent 
than duplications, a disproportion which has also been 
observed in other databases, such as Gnomad [9]. Actu-
ally, this imbalance is long known, as it was described 
that 29% of genetic diseases were caused by CNVs, being 
22% of the deletions and only 7% duplications [84]. More-
over, another study in which spontaneous duplication 

and deletion rates were compared to observed CNV pol-
ymorphism data from sequenced genomes, suggest that 
the most gene duplications are likely detrimental and are 
removed by natural selection [85], which can explain the 
observed imbalance between deletions and duplications. 
However, this trend is not observed in pharmacogenomic 
genes, which are affected almost equally by duplications 
(56.03%) and deletions (43.97%). Speculating the reasons 
for this observation is beyond the scope of this manu-
script. It could be due to the fact that partial loss of func-
tion in pharmacogenomic genes is similar in deletions 
and duplications, contrarily to the case of essential genes 
mentioned above, causative of genetic diseases. Alterna-
tively, it might be simply a matter of sampling, because 
the number of genes pharmacogenomic genes is not high.

Also, in spite of some limitations due to the complex-
ity of pharmacogenomics variation, SPACNACS has 
demonstrated to be a valuable tool for exploring CNVs 
contribution in this type of genomic alteration, providing 
primary data about reference frequencies of pharmacog-
enomic genes in the Spanish population. Thus, the data 
presented here points to CNVs as a relevant type of vari-
ation for pharmacogenomic diagnosis and suggests their 
use, along with that of SVNs in the clinical implementa-
tion of pharmacogenomics.
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