000125849 001__ 125849
000125849 005__ 20241125101154.0
000125849 0247_ $$2doi$$a10.1038/s41597-022-01919-w
000125849 0248_ $$2sideral$$a133194
000125849 037__ $$aART-2023-133194
000125849 041__ $$aeng
000125849 100__ $$aLundstad, Elin
000125849 245__ $$aThe global historical climate database HCLIM
000125849 260__ $$c2023
000125849 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125849 5203_ $$aThere is a growing need for past weather and climate data to support science and decision-making. This paper describes the compilation and construction of a global multivariable (air temperature, pressure, precipitation sum, number of precipitation days) monthly instrumental climate database that encompasses a substantial body of the known early instrumental time series. The dataset contains series compiled from existing databases that start before 1890 (though continuing to the present) as well as a large amount of newly rescued data. All series underwent a quality control procedure and subdaily series were processed to monthly mean values. An inventory was compiled, and the collection was deduplicated based on coordinates and mutual correlations. The data are provided in a common format accompanied by the inventory. The collection totals 12452 meteorological records in 118 countries. The data can be used for climate reconstructions and analyses. It is the most comprehensive global monthly climate dataset for the preindustrial period so far.
000125849 536__ $$9info:eu-repo/grantAgreement/EC/H2020/787574/EU/A Palaeoreanalysis To Understand Decadal Climate Variability/PALAEO-RA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 787574-PALAEO-RA
000125849 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125849 590__ $$a5.8$$b2023
000125849 592__ $$a1.937$$b2023
000125849 591__ $$aMULTIDISCIPLINARY SCIENCES$$b16 / 134 = 0.119$$c2023$$dQ1$$eT1
000125849 593__ $$aEducation$$c2023$$dQ1
000125849 593__ $$aComputer Science Applications$$c2023$$dQ1
000125849 593__ $$aStatistics, Probability and Uncertainty$$c2023$$dQ1
000125849 593__ $$aLibrary and Information Sciences$$c2023$$dQ1
000125849 593__ $$aStatistics and Probability$$c2023$$dQ1
000125849 593__ $$aInformation Systems$$c2023$$dQ1
000125849 594__ $$a11.2$$b2023
000125849 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125849 700__ $$aBrugnara, Yuri
000125849 700__ $$aPappert, Duncan
000125849 700__ $$aKopp, Jérôme
000125849 700__ $$aSamakinwa, Eric
000125849 700__ $$aHürzeler, André
000125849 700__ $$aAndersson, Axel
000125849 700__ $$aChimani, Barbara
000125849 700__ $$aCornes, Richard
000125849 700__ $$aDemarée, Gaston
000125849 700__ $$aFilipiak, Janusz
000125849 700__ $$aGates, Lydia
000125849 700__ $$aIves, Gemma L.
000125849 700__ $$aJones, Julie M.
000125849 700__ $$aJourdain, Sylvie
000125849 700__ $$aKiss, Andrea
000125849 700__ $$aNicholson, Sharon E.
000125849 700__ $$aPrzybylak, Rajmund
000125849 700__ $$aJones, Philip
000125849 700__ $$aRousseau, Daniel
000125849 700__ $$aTinz, Birger
000125849 700__ $$aRodrigo, Fernando S.
000125849 700__ $$aGrab, Stefan
000125849 700__ $$0(orcid)0000-0003-3085-7040$$aDomínguez-Castro, Fernando
000125849 700__ $$aSlonosky, Victoria
000125849 700__ $$aCooper, Jason
000125849 700__ $$aBrunet, Manola
000125849 700__ $$aBrönnimann, Stefan
000125849 773__ $$g10, 1 (2023), [16 pp.]$$pSci. data$$tSCIENTIFIC DATA$$x2052-4463
000125849 8564_ $$s8463655$$uhttps://zaguan.unizar.es/record/125849/files/texto_completo.pdf$$yVersión publicada
000125849 8564_ $$s2655630$$uhttps://zaguan.unizar.es/record/125849/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125849 909CO $$ooai:zaguan.unizar.es:125849$$particulos$$pdriver
000125849 951__ $$a2024-11-22-12:08:22
000125849 980__ $$aARTICLE