A Revisit to Stability of Schauder Bases:
Fractalizing Multivariate Faber-Schauder Sys-
tem
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Abstract. Let X be a Banach space with a Schauder basis (2, )n,—o, and
I be the identity operator on X. It is known, at least in essence, that
if (Thn)m—o is a sequence of bounded linear operators on X such that
> oo Il =Tl < 00, then (Ton(zm)) " is also a basis. The first part
of this work acts as an expository note to formally record the aforemen-
tioned stability result. In the second part, we apply this stability result
to construct a Schauder basis consisting of bivariate fractal functions for
the space of continuous functions defined on a rectangle. To this end,
fractal perturbations of the elements in the classical bivariate Faber-
Schauder system are formulated using a sequence of bounded linear
fractal operators close to the identity operator in accordance with the
stability result mentioned above. This illustration although emphasized
only for the bivariate case, can easily be extended to higher dimensions.
Further, the perturbation technique used here acts as a companion for
a few researches on fractal bases in the univariate setting.
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1. Introduction

This work, broadly, lies at the intersection of perturbation theory of Schauder
basis and the theory of fractal (interpolation) function, a relatively recent field
in interpolation and approximation. To be specific, we target to construct
Schauder bases consisting of fractal functions (self-referential functions) for
the space of bivariate continuous functions by using a suitable result on the
stability of Schauder bases and the notion of fractal operators. The exposition
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herein is influenced by our attempt to make this note accessible to both
analyst ignorant of fractal interpolation function and researchers in fractal
approximation inexperienced in the perturbation theory of Schauder basis.

1.1. Schauder Basis

Let X be an infinite dimensional Banach space over K, where K=R or C. A
sequence (x,)o°_, in a Banach space X is a Schauder basis for X if for each
x € X there is a unique sequence of scalars (a,,(z))5_, such that
o0
x = Z Uy (T) T,
m=0

where the convergence is taken with respect to the norm on X. There is a vast
literature dedicated to the subject of Schauder basis; we shall just refer to the
well-known books [6, 21] for background information and [8] for a systematic
survey. The simplest and perhaps the most obvious way of constructing new
basis from a known basis is through a suitable topological isomorphism (a
bounded linear map with bounded inverse) of the underlying space. Let us
recall that if (z,,)5°_ is a Schauder basis for a Banach space X and 7' is a
topological isomorphism on X that transforms (x,,)5°_, to (ym)o0_, that is,

m=0>
Ym =T (), m=0,1,2,...,

then (ym,)5°_, is also a basis for X. The question on “stability under small
perturbations”, which is obviously connected to the process of transforming
a known basis is classical. That is, one may ask:

Question. Let (x,,)5°_ be a fixed but arbitrary basis for a Banach space X.
If a sequence (Ym)50_ in X is “close” to (x4,)50_, then must (y,,)55_, be a
basis for X7

There are affirmative answers to the previous question with various
interpretations attached to the notion of closeness; see, for instance, an albeit
incomplete list of references [2, 5, 7, 17, 23]. The Paley-Wiener theorem [24]
and most of the other approaches to the stability of Schauder bases seek to
construct an operator 7" which, in some sense, is close to the identity operator.

For the sake of exposition and record, we shall explicitly note down the
following result on the stability of Schauder bases by considering a pertur-
bation through an appropriate sequence of linear operators (75,,)50_,. Let
us recall that a sequence (z,,)7°_, in a Banach space is w-independent if
> o CmTm = 0 implies ¢,,, = 0 for all m.

Theorem 1.1 (A stability result). Let X be a Banach space and (x,,)5°

m=0

be a Schauder basis for X. If (7},)5°_, is a sequence of linear operators
preserving the w-independence of (x,,)%_q and Y ~_ o ||[I — T,,|| < oo, then

(Tm(xm))fnozo is a basis for X.

We do not claim complete originality to the aforementioned stability
result, as it resembles some stability results proven by various authors; for
instance, it may be seen, at least in essence, in [24]. However, we were unable
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to find a proper reference to this version in the literature, which befits the
current purpose, and hence decided to include the details here. The novelty
of the current note lies in the identification of suitable stability result on
Schauder basis and its effective application in the construction of Schauder
bases consisting of fractal functions for the space of bivariate continuous
functions.

1.2. Fractal Interpolation

Fractal interpolation function and its connection with various branches of
mathematics continue to receive a considerable research interest over the last
three decades; see, for instance, [3, 9]. A special type of fractal interpolation
function, referred to as the a-fractal function and the associated notion of
fractal operator were introduced and popularized by the first author [10,
11, 12]. Using the notion of univariate a-fractal function and fractal operator
associated with it, the existence of systems of fractal functions that constitute
Schauder bases for some standard function spaces has been established; see,
for example, [11, 12, 13]. The second part of the current note provides a more
general approach to construct fractal bases in the bivariate setting, and acts
as a supplement to the researches in [11, 13].

We could have started this part of our note on fractal interpolation
with the univariate fractal interpolation by Barnsley [3] or its most general
bivariate analogue by Ruan and Xu [19]. However, we decided to choose
a special case of [19], namely, the bivariate a-fractal function, due to the
independency of its treatment, and its relevance and adequacy for the current
study.

Let I, = [zo,2m], Iy = [Y0,¥yn] be closed and bounded intervals in R.
Suppose that D = I, x I,. We shall denote by C(D), the linear space of all
real-valued continuous functions on D endowed with the uniform norm ||| .

Let f € C(D), which is usually referred to as the germ function or seed
function. Consider the following.

1. The set A := {(mi,yj) i =0,1,...,m;j = O,1,...,n}, where zg <
] < - < Ty oand yo < yp < -+ < yp. Note that A, = {z; € R :
i = 0,1,...,m such that zyp < 1 < --- < x,,,} is a partition of I,
and Ay = {y; e R:j =0,1,...,nsuch that yo < y1 < --- < Y} is
a partition of I,,. Also, A = A, x A, provides a partition of D into
sub-rectangles.

2. Let a: D — R be a fixed continuous function with [|a||c = sup{|a(z,y)| :
(x,y) € D} < 1, called a scaling function.

3. Let L : C(D) — C(D) be a bounded linear operator such that L # I,
and L(f)(zi,y;) = f(zi,y;) for i € {0,m} and j € {0,n}. That is, L(f)
interpolates to f at four vertices of D.

Fori e N,, = {1,2,...,m}, let w; : I, — [z;—1, ;] be linear maps u;(z) =
a;x + b;, where constants are determined such that

{ ui(zo) = xi—1, ui(wy,)=x;, if i is odd,

ui(zo) = x5,  wi(xy,) =x;_q, if i is even.
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Similarly, for j € N, = {1,2,...,n}, let v; : I, — [y;j—1,y;]| be linear maps
v;(y) = ¢;y + d; satistying

vi(yo) = yj—1, vj(yn) = y;, if j is odd,
vi(yo) =y, v;(yn) = y,—1, if j is even.

Note that
uijrll(xi) =u; *(z;) Vi€ N,_1, and UJ-_lel(yj) = vj_l(yj) VjieN,_ 1.
Consider

Cr(D) = {g: D= Rig € C(D) and gla1,y;) = f(wi,yy):

Vi€ {0,m}, je{o,n}},

which is a complete metric space under the sup-metric. Now define a map
®R 1, which is a form of the Read-Bajraktarevi¢ operator (see [3, 9]), as
follows. For (z,y) € [xi—1,xi] X [y;—1,y;], where (i,7) € Ny, X Ny,

L)@ y) = flzy) +alz,y)(g— L)) (v ' (@),05 (),

for all g € Cy(D). It is easy to see that the mapping ®3 ; is well-defined and
it satisfies

doo (PR, 1.(91): PA £(92) < llelloo doo(91,92) ¥ 91,92 € C4(D).

Consequently, P} ; possesses a unique fixed point f{ ;, which satisfies the
self-referential equation

Fap(r,y) = fy) +aly) (fA L — L) (u ' (@),07 (), (1.1)
for (z,y) € [wi—1, ;] X [yj—1,y;], (i,5) € N,,, x N,,. Note that

FR 0 (@iyy) =F(iy) + @i yy) (FR L — L) (ug (@), 05 ()

1.2
=f(xi,y;), for all i € Npp,, and j € N,,. (12)

Analogous to the univariate setting [10], we call the function fX ;, a bivari-
ate a-fractal function corresponding to f with respect to the parameters A,
« and L. Note that fX ; is a special type of fractal interpolation function
corresponding to f. In the construction mentioned above, the fractal func-
tions fX , interpolate the germ function f at points in A, but not on the
entire coordinate lines (z;,y), (z,y;) for i € N,,, and j € N,,; see also the
construction in [14].

For a fixed choice of scaling function «, partition A, and operator L,
we associate with each f € C(D) its fractal perturbation fR ; to provide a
linear operator referred to as fractal operator denoted by Fg ; or F.

FAL :C(D) — C(D), K,L(f):fg,L'
In loose terms, one may interpret fX ; as a “fractal perturbation” of the
original function f and F} ; as a “fractal perturbation operator”. Depending
on the approximation problem at hand, the parameters A, a and L involved
in the perturbation process may be selected so that perturbations fX ; may
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preserve or modify the properties inherent in the original function f. Self-
referentiality of the function fX ; may be an added advantage.

The distance between the seed function and its fractal counterpart sat-
isfies the following inequality (see [11, 22] for details)

ol oo
(67 . < _ ==
HfA,L fHoo— 1—||Oé||oo

1 = L)oo (1.3)

Consequently, the corresponding operator norm satisfies

lalloo
Fa, -1 < e
H AL H =1 _ ||a||oo

I — LJ|. (1.4)

It is quite natural that the aforementioned bounded linear fractal oper-
ator assists the field of fractal interpolation to interact fruitfully with func-
tional analysis and operator theory - a fact which is well-explored in the
univariate setting [10, 11, 12]. Now, its development in multivariate setting is
still in its infancy, yet as inroads are made [14, 19, 22], interest is gathering
steam.

In this note, we target to construct Schauder bases consisting of fractal
functions for C(D) by using bivariate fractal operators and the stability result
that we alluded to. In fact, the efficacy of the univariate fractal operator in the
construction of particular examples of Schauder bases (consisting of fractal
functions) by perturbations of classical bases (see, for instance, [10, 11, 12])
stimulated the search for a suitable stability result for Schauder bases and its
application discussed herein. On the one hand, this note provides a fractal
Schauder basis in the bivariate setting, and on the other, a more general
approach herein supplements the study of fractal bases undertaken in the
univariate setting. Let us close this section with a remark that our approach
in this note can be easily adapted to higher dimensions via the stability result
for Schauder basis given here and the notion of multivariate fractal operator
introduced recently in [15].

2. Basics of Bases

We recall here a few basic facts on the notion of Schauder basis and Riesz
basis needed in the sequel; for details, the reader may refer [20, 21].
Let X be a Banach space and (z,,)5°_, be a Schauder basis for X.

Definition 2.1. A basis (2,,)5°_, is a bounded basis if (x,,)50_, is norm-

m=0
bounded both above and below, i.e., if 0 < inf ||z,,|| < sup ||z,| < co. A
basis (2,,)5°_ is a normalized basis if ||z,,| = 1 for every m.

Definition 2.2. The maps > 0 @m(2)Tm = am(x) and Py : X — X defined

by PN(ZOO am(x)xm) = ZN A ()2, are called the m-th coefficient

m=0 m=0
functional and the N-th natural projection associated with (x,,)%°_,, respec-

m=0>
tively.
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Remark 2.1. In fact, for each m, a,, is a continuous linear functional and
the partial sum operator Py is a bounded linear map. To refer explicitly
to both the basis and the associated coefficient functionals, we shall write
{(@m)oo_gs (am)oo_o} to say that (z,,)5°_ is a basis with the associated co-

efficient functionals (am)59_-

Definition 2.3. Let X be a Banach space. Two bases (,,,)5°_y and (ym)5—
for X are said to be equivalent if

o [ee)
g CmTm 18 convergent <= E CmYm 1S convergent.
m=0 m=0

Furthermore, two bases for X are equivalent if and only if there is a topolog-
ical isomorphism on X transforming one basis into the other.

Definition 2.4. If {(2:,,)50_¢, (am)5o_y} is a basis for a Banach space X, then

m=0> m=0

its basis constant is the finite number C' = supy || Pn|| satisfying C' > 1.

Theorem 2.1. The coefficient functionals a,, are continuous linear functionals
on X which satisfy 1 < ||am||||xm| < 2C, where C' is the basis constant for

{(@m) =0, (@m)py=o}-

Definition 2.5. A sequence (x,,)5°_, in a Hilbert space X is called a Bessel
sequence if there exists B > 0 such that Y ~_  [(z,2,,)|? < Blz|]? for all
r € X. A Bessel sequence is a frame if there exists A > 0 such that Alz|?* <
S W, 2m)|? < Bl|x|]? for all z € X.

m=0

Definition 2.6. A sequence (z,,)5°_, € X, where X is a Hilbert space, is

a Riesz sequence if there exist ki, ks > 0 such that for any (c¢,,)%_, € 2

m=0
2
kY00 o leml* < H > o cmme < ko> lem|?. A Riesz sequence is a
Riesz basis for its closed linear span [z,,] := span(x,,)5o_,. If [x,,] = X, then
(xm)S0_, is a Riesz basis.

Definition 2.7. A sequence (z,,)%°_, € X, where X is a Hilbert space, is a
Riesz basis if there is an orthonormal basis (y,)oo_, for X and a topological
isomorphism S : X — X such that x,, = S(ym)-

Definition 2.8. Let X and Y be Banach spaces. We shall denote by X ®, Y
the completion of the algebraic tensor product X ® Y in the norm

n
H sz ® Yi
i=1

and we denote by X ®, Y the completion of X ® Y in the norm

ol = int { D laallllsll - 2 = - 2 @ 0
=1 =1

where the infimum is taken over all possible representations of z € X ® Y.
Both the norms on X ®Y defined above satisfy ||x®@y|| = ||z||||y|| for a typical
element zr®@y in X ®Y.

= sup {||p(zi)yil| : ¢ € X*, ||| =1}
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Theorem 2.2. We have
C([a,b]) @ C([c.d]) = C([a,b] x [c,d]),
where the equality sign is interpreted as isometric isomorphism under the
association Y i T; @ y; v oy xi(8)yi(t).
Theorem 2.3. Let {(xm)55—_¢, (am)ov_o} be a Schauder basis for the Banach

m:07

space X and {(Ym)oo_o, (bm)5_o} be a Schauder basis for the Banach space
Y .Then the sequence {x,, ® yn}ﬁnzo ordered in the following way

o @ Yo, Lo @ Y1,T1 @ Y1,21 @ Yo, Lo X Y2,T1 QY2,T2 QY2,T2 QY1,T2DYo - - -

1s a Schauder basis for both X ®,\Y and X @Y with associated sequence of

coefficient functionals {am, @ by} . —o-

3. A Revisit to Stability of Schauder Basis and Allied Results

3.1. Banach Space Setting

Let X be a Banach space and {(z,,)%°_, (a:,)5%°_,} be a normalized basis.
Then for each z € X

o0
x = Z U () Ty«
m=0

Let us commence with the following straightforward observations.

Remark 3.1. Let P, be the n-th partial sum operator corresponding to the
normalized basis {(2,,)%°_y, (am)5_,}. We have

m=0
an(z)x, = Pyx — P,_qx. (3.1)
Taking C' as the basis constant of {(z,,)%_q, (am)5_}, by (3.1) we have
|an ()] = [lan(@)zn|
< |[Prz|l + ([ Praz] (3.2)
< 20|z

Consequently, ||a,| < 2C.

Remark 3.2. Let X be a Banach space. A closed subspace Y C X is said
to be complemented in X if there exists a closed subspace Z C X such that
X =Y @ Z, the direct sum. The codimension of a subspace Y of X is defined
as the dimension of the quotient space X/Y . Every closed subspace Y C X
of finite codimension is complemented in X (see, for example, [18]). To be
explicit, let us mention the following. Let ¢ : X — X/Y be the quotient map,
and {n1,7m2,...,nk} be a basis for X/Y. Choose z; € X such that ¢(z;) = n;
fori=1,2,...,k, and define Z = span{zy, 2o,...,2x}. Then X =Y & Z.

The following result, popularly known as the principle of small pertur-
bations, is fundamental in the theory of Schauder basis; see, for instance,

[1].
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Theorem 3.1. Let (,,)50_ be a Schauder basis for a Banach space X with
the basis constant C'. If (ym)oo_ 15 a sequence in X such that

||£Em||
then (Ym)oo_g is a basis for X equwalent to (m)5_-

Lemma 3.1. Let (2,,)50_ be a Schauder basis for a Banach space X . Suppose
that (T,,)59_, is a sequence of bounded linear operators on X such that

m=0
> I =Tl < 0.
m=0

Then there exists n € N such that the sequence (Y, )oo_, defined by

_Jxm form <n,
Ym = T () for m > n.

is a Schauder basis for X equivalent to (xp)o0_.

Proof. Let C be the basis constant for (z,,)3_. Since Y >_ [|[I =T, < oo,
we can find n € NU {0} large enough such that

o0

1
I-1T, —.
S =Tl < 54

m=n+1
Fix such an n € N U {0} and construct the sequence (y,,)>_, as prescribed
in the statement. We have

Hw ymH > ||xm - Tm(xm)H >
< I-T,| < —
3 lonrel = 57 Bl 3 ral < g

Hence, from the principle of small perturbations of Schauder basis (Theorem
3.1), it follows that (y.,)5°_, is a Schauder basis equivalent to ()5 O

m=0-"

Lemma 3.2. Let (x,,)50_ be a Schauder basis for a Banach space X, and let
(Ym)S0_ be a sequence in X with x,, = Yy, except for finitely many indices
m € NU{0}. If, in addition, (y,,)55_q is w-independent, then it is a Schauder

basis equivalent to (x,,)%0_,.

Proof. Choose n € N U {0} such that x,, = y,, for all m > n and define
Y = span{xz,, : m > n}, the closure of the linear span of {x,, : m > n}. Note
that X/Y is isomorphic to [zg, x1,x2,...,x,]| and hence, the codimension of
Y, that is dim(X/Y’), is n + 1. Further, both the families (z,, +Y)", _, and
(ym + YY) _o are linearly independent. Hence, there exists an isomorphism
T:X)Y = X/Y with T(2,, +Y) =y + Y for all 0 < m < n.

Since Y is a closed subspace of finite codimension, Y can be com-
plemented in X, that is, there exists a closed subspace Z of X such that
X =Y®Z; in fact, Z = span{zg, z1,...,2,} (see Remark 3.2). Consequently,
we infer that there is an isomorphism 7": X — X such that T'(z,,) = y,, for
all m =0,1,..., which completes the proof. U
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The following stability result follows at once from the above mentioned
pair of lemmas.

Theorem 1.1. Let X be a Banach space and (z,,)5°_, be a normalized

Schauder basis for X. If (7},,)5°_, is a sequence of linear operators such that

(T (%)) is w-independent and

Y =Tl < o,
m=0

00
m=0"

then (Tm (xm));o is a Schauder basis for X equivalent to (x,,)

=0
Let {(2m)o_0, (am)5o_o} be a bounded Schauder basis for X such that

0<ki<|lzm||<ks ¥V m=0,1,...

with the basis constant C'. Consider a sequence of bounded linear operators
(T},)%°_, such that (Tm(xm))fno is w-independent and
k

=0
= Z I — Tl < oo.
m=0

Let us define y,,, = T, (), for m = 0,1,... With a series of simple propo-
o0

sitions, we shall estimate bounds of the perturbed basis (Tm(acm))m:o, its

basis constant and the norm of the associated coefficient functionals.
First define the operator S on X by setting

S(z) = Z U, () Y- (3.3)
m=0

Using the assumption " || — T;,|| < oo, one can prove that Sy(z) =

Zan:o am (2)ym is a Cauchy sequence, and hence converges in X. Thus, S is
a well-defined linear operator. Consider F' = I — S on X, that is,

F(l‘) = Z am(x)(xm - ym)'
m=0

Proposition 3.1. The map F' is a bounded linear map with
|F|| < 2Ck] Kok
Consequently, S is a bounded linear map, and
S]] <1+ 2Ck; 'kok.
Proof. We have
|am ()] = (|2~ lam (@)Em || < k7 am @)z
= k7 Y|Sma — S|
< ky 20|,
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from which it follows that ||a,,|| < 2Ck;*. Therefore,
[F(2)] < Z | ()] |0 =Y || < Z | ()| [ T=Ton || |2 || < ki '2C ks,

from which one can read ||F|| < 2Ck; *kok. Tt follows at once that
ISI =11 = FIl < 1+ 2Ck; " ko,
establishing the claim. O

Remark 3.3. Following the second part of the proof of Theorem 12 in Chapter
1 of the book [24], we can prove that (i) F' is a compact operator, (ii) the
kernel of S = I —F'is {0}, and (iii) consequently, by the Fredholm alternative
S = I—F is invertible. Since S is a topological isomorphism and S(x,,) = ym,
we obtain an alternative approach to show that (y,,) is a Schauder basis.

Proposition 3.2. If 2C’kl_1k2k < 1, then the basis constant C corresponding

to (Tm(a:m)):::o is such that

1+ 2Ck;1k2k>

<c<c L2,
1— 20k Tkok

where C'is the basis constant of (x,,)50_,.

Proof. The basis constant C' = sup,, ||Sar||, where Sy is the M-th partial
sum operator corresponding to the basis (Tm(a:m))ooz . Then

r=505"1 )= am (S (x))ym,

m=0

and

|Shrall = | f_ am (57 (@)

SE i_ (57! @)

< [IS[ISa 1S~
By Proposition 3.1

1

STH=III-F) < < :

(3.4)

Consequently in view of Proposition 3.1 and Equation (3.4)

1+ 2Ck;1k2k)

1 —2Ck] "kok /)’

and the result follows. O

1Sull < Clisilils ™) < o
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Proposition 3.3. If 2Ck1_1k2k < 1, then the coefficient functionals a, corre-
sponding to the basis (Tm (xm))::() satisfy

1 B 20k
s < llamll < -
ko(1 + k) 1 —2Ck; kak
Proof. From
r=S808"(2) =Y an(S7'(@))ym.
m=0
we have

Wy = Ay, 0 S7L.
Proposition 3.1 and Equation (3.4) in conjunction with the above yield

20k

< Nlamlll1S7H| < _
lall < oS~ < T

o0

In view of Theorem 2.1, the basis (T0, (z:,)) = (Ym)o0_, satisfies

m=0 "~ m=0
1 < Jlamlllym|l < 2C.
Further,
lymll = 2wl < Nym — zmll = [T (@m) — 2m|| < M = Ton|[|zm || < kko,
from which
| T (@] = |yl < kka + ko = ka(1 + k).

Therefore
1

kg(l + k) ’
completing the proof. O

lazmll > Ilyml =" >

3.2. Hilbert Space Setting

The special properties possessed by the inner product norm enable us to relax
the previous hypothesis for the stability of the Schauder bases in Hilbert
spaces. Let (2,,)5°_, be an orthonormal basis for the Hilbert space X. Let
(T)50_, be a sequence of bounded linear operators on X such that

B =) [T = Tlf* < 0. (3.5)
m=0

Proposition 3.4. Let (2,,)5°_, be an orthonormal basis for a Hilbert space X
and (T),)50_ be a sequence of bounded linear operators on X satisfying (3.5).

Then the system (:L‘m — T (xm)):zo is a Bessel sequence for X.
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Proof. Let x € X. By applying the Cauchy-Schwartz inequality

oo

S~ @ m — Tzn)) | < 2P D N2 — T (@) |2
m=0 m=0

(oo
<z Y I = TulPPllzm

m=0

= k|

Thus (xm —T,, (xm))oo is a Bessel sequence with the Bessel constant k£*. [

m=0

Theorem 3.2. Let (2,,)55_y be an orthonormal basis for a Hilbert space X .
Suppose that (T,,)5_ is a sequence of bounded linear operators on X pre-
serving w-independence of (x,,)00_, and satisfying (3.5). Then (Tm(xm)):zo
1s a Riesz basis, and hence an exact frame for X. In particular, there exist
positive constants A, B such that

Allz]* < ) o, Tn(zm)* < Bllz|l?.

m=0

Proof. As before let us consider now the operator on X,

o0

F(Jj) = Z am(x)(xm - ym)7

m=0

where y,, = T (2,). Let Far be the M-th partial sum operator correspond-
ing to F. Then

1Fas @) = sup { [(Fas (@), )+ Nyl = 1}
- sup{\& () )} ol = 1)

m=0

= sup{‘ f: (%) (@ —ym,y)(2 Hlyll = 1}-
m=0

Using the Cauchy-Schwartz inequality we obtain

1P (a |\2<sup{(Zram )(Z| —ym)?) ¢ Il = 1}

By the Parseval identity and the previous proposition
[Far ()] < K |l2]?,

from which we deduce that F); is bounded. Since F); is of finite rank, it is
compact. One can easily see that F); converges to F, which ensures that F'

is compact. Now as previously, we define S = I — F. Since F' is compact,
dim(ker(I — F')) < co. Moreover,

X = ker(S5) @ rg(S*).
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Using w-independence of (Tm(mm))::(), we can show that ker(S) = {0}.
Consequently, S is an isomorphism and (S(z,)) . = (Tm(xm)):j: is a
U

. . m=0 0
Riesz basis for X.

Proposition 3.5. Let (2,,)5°_, be an orthonormal basis for a Hilbert space
X. Suppose that (T,,)50_ is a sequence of bounded linear operators on X

preserving w-independence of (x,,)2_, and satisfying (3.5). Then for all
(em)S_o C 12, there exist positive constants K; and Ky such that

o0
K, Z lem|? < H Z Con T (1) H2 < K, Z -
m=0

Proof. If (ep)50—y C I, then by the Riesz-Fischer theorem [18], the series
Zm o CmTm converges in X, say to x. Therefore
S@) = cmS(@m),
m=0

and hence

HZCm ()| —HZcm e = 1Sl < |5 ||x||2—||su22|cm|2

due to the orthonormality of (z,,)5_,. Since S is a topological isomorphism,
there exists K; > 0 such that

Killz]* < [|S@)|* Ve X.

In particular, for z =Y 7°_ ¢y,

K, i leml® < H io: cmS(asm)H2 = H f: cme(xm)HQ,
m=0 m=0 m=0

providing the claim. U

Remark 3.4. Recall that the invertibility of a bounded linear operator is
a stable property and the set of topological isomorphisms is open. Since
the operator S is a perturbation of the identity operator, by restricting the
value of the constant k (Section 3.1) or k* (Section 3.2) suitably, the system
(Tm(xm));ozo turns out to be a basis with no additional conditions on the
sequence (1,,)%°_,. For instance, bearing S = I — F' and || F|| < 2Ck in mind,

it follows that for k < the sequence (Tm (:Um)):: is a Schauder basis.

2C’ 0

4. Bivariate Fractal Faber-Schauder System

Here we apply the stability results in the previous section to construct Schauder
bases consisting of fractal functions for C(D) by perturbing known Schauder
basis of this space. The new system presents important features, namely, (1)
self-referentiality of its elements, and (2) lack of (piecewise) differentiability
of its elements.
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The construction of the (classical) Faber-Schauder system and its mul-
tivariate analogue using the idea of tensor product are well-known; see, for
instance, [20, 21]. In what follows, we shall outline the construction of the
bivariate Faber-Schauder system for the sake of completeness of the exposi-
tion.

For convenience, let us take D = [0,1] x [0,1]. Let 0 =tg < t; < --- <
tn = 1 be a partition of the interval [0,1] and 7" = (¢;)7_,. Denote by Br
the subspace of C([0, 1]) consisting of polygonal functions (piecewise linear
functions) with nodes at tg,t1,...,t,. The hat functions for partition T" are
the functions hz; in By determined by hg; (tp) = d;i for j,k = 0,1,...,n.
Consider a dense sequence in [0, 1], say, J := {0 = to,1 = t1,t2,... }. Denote
T, = {to,t1,...,t,} and define

of =hnl, o) =hn/>, &7 =n/", forn>2. (4.1)

The functions {(IDOJ, <I>‘17, ... } are the Schauder hat functions for the sequence
(tn).

Proposition 4.1. [20, Proposition 2.3.5] The sequence {®; }°_, is a Schauder
basis for C([0,1]), known as the Faber-Schauder system.

For instance, one can take the specified countable sequence of dyadic
1131

numbers and consider J := {0, 1,5,3: 580 } For notational convenience,
we shall denote ®7 by ®,,, for m > 0. Then we have

Po(x) =1 -2z, ®1(z) =z,
2k — 1

Ponyk(7) = max {0,1 = 2"z — —ms

|Pmlloc =1, m=0,1,...

on=01,..k=1,...,2"

The tensor product of two copies of the Schauder system {®,,, }>°_, in C([0, 1])
gives a basis for C(D) consisting of piecewise biaffine functions (see Section
2).

At this juncture, the reader, if needed, may revisit the notion of bivariate
a-fractal function and associated fractal operator given in the introductory
section. Here we shall give two examples for the operator L used in the
construction of the fractal operator FR ;.

1. One may consider L(f) = f o c where ¢ : C(D) — C(D) is a fixed
continuous mapping such that c(z;,y;) = (x;,y;) for i € {0,m} and
j € {0,n}, and ¢ # I, the identity map on D. In this case, ||L(f)|c =
1 o clloc = [[f]loc, and hence [|L[| = 1.
2. Another choice is L(f) = vf, where v € C(D) is a fixed non-constant
function such that v(z;,y;) = 1 for ¢ € {0,m} and j € {0,n}. Here
L] = (¥ lloo-
Using the stability result in the previous section, let us perturb the classical
bivariate Faber-Schauder system via suitable fractal operators and obtain a
basis for C(D) consisting of self-referential functions.
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Let X = C(D) and assume that the tensor product basis (®,,@®,)55 ,,—o
mentioned above takes the role of the normalized Schauder basis (xm) in
Section 3. We construct a sequence of fractal operators (FS A, . L)mon=0 With
choice of parameters as follows.

1. The parameter map L occurring in fractal operators ]-"g ... in the
above sequence is fixed, and it is defined by

L(f) = fec

where ¢ : C(D) — C(D) is a fixed continuous mapping such that
c(zi,y5) = (xi,y;) for i € {0,m} and j € {0,n}, and ¢ # I, the identity
map on C(D).

2. For all m and n, in the construction of F§ A L we shall take A, ;, as
the Cartesian product partition 7, x T of D= [0,1] x [0, 1], where T
is the segment of 7 used for the construction of Schauder hat functions
®,,, m > 0 and Ty is the segment of 7 used for the construction of ®,,,
n >0 (see (4.1)).

3. Assume that the sequence of scaling functions (a™")7 ,_ correspond-

loo < 00.

ing to the fractal operators F3 = | satisfies sz,nzo |

Theorem 4.1. For parameters amﬁn, Am’n and L as mentioned above, the
sequence (.FA (P x @ )) =0 constitutes a Schauder basis consisting
of fractal functzons (self- referentzal functions) for C(D).

Proof. As ||L|| =1, by (1.4) we have

= o o™l — o™l
Q™M
PO o | B VB T o = 2 ) T [l o
m,n=0 m,n=0 o0 m,n=0 o0

Since Y 7, o [[a™ "]l < 00, it follows that

o0

Z H]:Amn, —IH < 0.

m,n=0

Next assume that Y~ cmﬁn]:g::’L (@m ® Q)n) = 0. Then we have

Z cm,n]-"X:::’L (@, @ @y) (27, w5) =0, Vr,s €{0,1,2,...}.  (4.2)

m,n=0

Due to the interpolatory properties of the bivariate a-fractal functions given
n (1.2) we have

FR (O ® O (24,5) = (O ® B (24, 25),

at the points (z;,x;) € A,,,. Consequently, taking (z;,y;) sequentially for
i,7 €40,1,2,...} in (4.2) one obtains

¢mn =0 for all m,n €{0,1,2,...}.
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Thus, (fg:‘; L)m.n=o Preserves the w-independence of (®,, x®,)5? ,,—o. That
the system (fg:’:y,;(@m@@n)): 0
at once from Theorem 1.1. O

is a Schauder basis for C(D) now follows

An alternative procedure to perturb the bivariate Faber-Schauder system so
as to obtain a fractal Faber-Schauder system is as follows. Now let us choose
the parameters in the construction of fractal operators ]-"g:: L, asfollows.
1. The partition A, , of D is chosen as in the previous case.
2. Scaling function a™" : D — R is so chosen that |[a™" | < k < 1 for
all m,n in {0,1,...}.
3. Further, let L,,, be such that L, ,(f) = vm.nf, where vp,,, = 1 at
four vertices of D and Y 7 _[|1 — v nllee < 00. Here 1 denotes the
constant function 1 € C(D) defined by 1(z) =1 for all z € D.

Note that

(I = Linn) (lloo = lf = vimnflloo < 11 = vm.nlloo|[ floo-
For the constant function 1, we have
(I = Linn) (D) ]loo = [T = vim.nlloc |1l oo-
Consequently, ||I — Ly n|| = |1 — Vm.nlloo, and
- N e |
Z H'Fg'm,:nylzm,,n - IH S Z 1 - ||’n;,n oo’ ||I - Lmyn |
m,n=0 m,n=0 m,nlico
k [0 ]
S m Z H]]- _Vm,n |oo
m,n=0
< 0.
As in the proof of the previous theorem, using the stability result in Theorem
1.1 we can deduce that (fg:’:’Lm (P @ Pp))5s =0 is a Schauder basis for

C(D) consisting of self-referential functions.

Remark 4.1. Alternatively, as the univariate fractal operator is well-studied,
one could have used our stability result to fractalize univariate Faber-Schauder
system {®,,}°°_, in C([0, 1]). In this case, with appropriate choices of param-
eters used in the definition of the (univariate) fractal operator, the fractal
Faber-Schauder system (ngv L((I)m))::() is a Schauder basis for C([0,1]).

Consequently, the tensor product (]-"X:’ (D) ® fgz’ L((D"))zn:o yields a
Schauder basis for C(D).
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