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PREFACE

The Congress of Differential Equations and Applications / Congress of Applied Mathematics (CEDYA / CMA)
is the biennial congress of the Spanish Society of Applied Mathematics (S®eMA). The first CEDYA was celebrated
in September 1978 in El Escorial (Madrid), and the first joint CEDYA / CMA took place in Málaga in 1989.

The XXVII CEDYA / XVII CMA was held from 18th to 22nd July 2022 at the Facultad de Medicina of
the University of Zaragoza and was organized by the Instituto Universitario de Investigación de Matemáticas
y Aplicaciones de la Universidad de Zaragoza (IUMA). The congress format was hybrid due to the uncertain
pandemic situation caused by COVID-19.

This congress attracted near 350 participants from different universities. They presented 250 lectures, eight of
which were invited. The conference was structured in eighteen mini-simposia, proposed by different researchers
and groups, eight special sessions and a poster session, both organized by the Local Organizing Committee. The
topics of the conference covered Partial Differential Equations, Dynamical Systems and Ordinary Differential
Equations, Numerical Analysis and Simulation, Numerical Linear Algebra, Optimal Control and Inverse Problems,
Mathematics Applied to Industry, Social Sciences and Biology, Mathematical Education, Scientific Computation,
Approximation Theory and Discrete Mathematics.

These Proceedings have been published in the institutional repository of the University of Zaragoza. They
contain nineteen selected papers associated with the lectures presented at XXVII CEDYA / XVII CMA. The editors
would like to thank the authors for their contributions and cooperation, without them it would have been impossible
to produce these proceedings.

Finally, we thank the sponsors of the conference: SociedadEspañola deMatemáticaAplicada, IUMA,Facultades
de Medicina y Ciencias de la Universidad de Zaragoza and the Vicerrectorado de Educación Digital y Formación
Permanente de la Universidad de Zaragoza. We also wish to thank the Scientific Committee, the organizes of
the mini-symposia, all the conference participants, and the students collaborators, who were hugely helpful in the
organization of the conference.

Zaragoza, April 2023

The Local Organizing Commitee CEDYA / CMA 2022
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Iteration of rational Hopf-endomorphisms for graphical representation of
basins of attracting =-cycles

V. Álvarez-Aparicio1, J.M. García Calcines2, L.J. Hernández-Paricio1, M.T. Rivas-Rodríguez1
1. Universidad de La Rioja, Dpto. de Matemáticas y Computación, Edificio CCT, C/Madre de Dios, 53, Logroño, 26006, Spain

2. Universidad de La Laguna, Dpto. de Matemáticas, Estadística e I.O. e Instituto de Matemáticas y Aplicaciones (IMAULL), Avda.
Astrofísico Fco. Sánchez, s/n, Facultad de Ciencias. Sección de Matemáticas, La Laguna, 38200, Spain

Abstract

In this work, we present a new method to compute the basins of attraction of any complex rational map, and to
study the discrete-time dynamical behaviour of its attracting =-cycles. This new method, whose development has
been influenced by some highly relevant results of Complex Dynamics such as the Ergodic Theorem, is closely
related to Lyapunov exponents, a widely used concept on the study of non-linear continuous dynamical systems.

In addition, the implementation of the collection of algorithms that make up this method will be briefly
commented, since it helps to solve some of the computational problems that often arise in Numerical Analy-
sis, like overflows or mathematical indeterminations. This implementation is based on the iteration of Hopf-
endomorphisms induced by rational maps, and it can be found in the Lyapunov Cycle Detector module, available
in the following GitHub repository: github.com/LCD.

Finally, we will address a concrete example of this new method to the study of the basins of attraction induced
by Chebyshev’s method when applied to a complex cubic polynomial.

1. Introduction
In this work, we present a new collection of algorithms dedicated to compute the basins of attraction of a complex
rational map, based on Lyapunov exponents, as well as some of the key theoretical results in which they are based.
Computing the basins of attraction of a rational map is a relevant matter when studying some of the most extensively
used numerical methods to approximate solutions of non-linear polynomial equations.

For example, when one applies Newton method to a polynomial, it induces a rational map for which the roots
of the polynomial are super-attracting 1-cycles (fixed points). In order to compute the basins of attraction, we will
define a function that is constant on each basin, and which we will call a Lyapunov function due to its connection
with Lyapunov exponents, as we will address later on. This way, we can divide the Riemann sphere Ĉ = C ∪ {∞},
where C denotes the plane of complex numbers, into the different basins of attraction induced by the rational map
and its Julia set. It is also worth noting that the method we propose can be applied without having to compute the
list of =-cycles of the rational map beforehand.

From a scientific programming point of view, this new collection of algorithms solves some of the computational
problems that often arise in Numerical Analysis, like overflows or mathematical indeterminations. We achieve this
by considering the Hopf fibration (3 → (2 � %1 (C), where (= denotes the usual =-sphere and %1 (C) the complex
projective line, and computing the Hopf-endomorphism induced by the given rational map. This approach also
allows us to easily work with the infinity point ∞. Since this kind of computations are often very heavy, we chose
Julia Language in order to implement our algorithms, due to its efficiency, speed and proper syntax for mathematics.
Some parallel programming techniques are also applied in order to reduce the execution time of the algorithms.

This article will have the following structure:

• First, we will introduce the mentioned topological-geometrical model, addressing the Hopf fibration and
giving a construction of the Hopf-endomorphism induced by a rational map, which are key notions of the
presented theory.

• Then, we will define the Lyapunov functions which will be used by our algorithms to compute the basins of
attraction, and we will mention some of their properties proved in [2].

• Also, an schematic description of the algorithms will be given, and we will mention how they are capable to
sort some computational problems which could appear when computing the basins of attraction.

• Finally, we will apply our theory and algorithms to study a concrete example regarding Chebyshev’s method
applied to a complex cubic polynomial.
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2. Hopf-endomorphisms associated with rational maps
2.1. The Riemann Sphere
We consider three different models of the Riemann sphere: the Alexandroff’s compactification of the plane of
complex numbers Ĉ = C ∪ {∞}, the usual 2-sphere (2 = {(G, H, I) ∈ R3 | G2 + H2 + I2 = 1}, and the complex
projective line %1 (C) = C2\{(0,0) }

∼ , built from the following equivalence relation: (I, C) ∼ (I′, C ′) if and only if
∃_ ∈ C \ {0} such that (I, C) = (_I′, _C ′).

The equivalence class of a point (I, C) ∈ C2 \ {(0, 0)} will be denoted by [I : C] ∈ %1 (C). Moreover, we will
say that (I, C) are the homogeneous coordinates of the point [I : C], and that its absolute coordinates are I

C if C ≠ 0,
and C

I if C = 0 and I ≠ 0.
Given a point [I : C] ∈ %1 (C), it will be useful for our algorithms to consider its normalized homogeneous

coordinates, which will be denoted by [I, C], given by
(

I
|I |+ |C | ,

C
|I |+ |C |

)
∈ C2 \ {(0, 0)}. Considering normalized

homogeneous coordinates, our algorithms will be able to avoid numerical overflows when we compute the basins
of attraction.

It is known that there exists an analytic isomorphism between each pair of the previously mentioned models of
the Riemann sphere, so, even though our rational maps 5 : Ĉ→ Ĉ are naturally defined over Ĉ, we can apply the
corresponding analytic isomorphism and transfer the study of the iteration of the rational map to %1 (C) (considering
rational maps of the form 5 : %1 (C) → %1 (C)) in order to use homogeneous coordinates and avoid numerical
problems that can arise in a computational environment.

2.2. Homogeneous pairs of bivariate polynomials
One of the key notions needed to construct the Hopf-endomorphism associated with a rational map is that of
homogeneous polynomials.

Let � ∈ C[I, C] be a bivariate complex polynomial. We say that � is homogeneous if � = 0 or if ∃: ∈ N such
that ∀_ ∈ C \ {0}, � (_I, _C) = _:� (I, C),∀I, C ∈ C.

Let � ∈ C[I, C] be a homogeneous bivariate complex polynomial. Then if � ≠ 0, we say that the degree of
� is the smallest : ∈ N such that∀_ ∈ C\{0}, � (_I, _C) = _:� (I, C),∀I, C ∈ C, and if � = 0, we say its degree is−∞.

For every univariate complex polynomial one can define a homogeneization operator that transforms it into a
homogeneous bivariate complex polynomial. It can be defined the following way:

LetC[I]×N = {(�, 3) ∈ C[I] ×N | 346(�) ≤ 3}. Then we have the following operator � : C[I]×N→ C[I, C]
given by � (�, 3) = 0 if � = 0, and

� (�, 3) = 00C
3 + 01IC

3−1 + · · · + 0=I=C3−=, (2.1)

if � ≠ 0, � = 00 + 01I + · · · + 0=I=, 0= ≠ 0.
Note that this operator transforms a complex polynomial � and an upper bound of its degree 3 into a homoge-

neous bivariate polynomial � (�, 3).

Of course, when working with a rational map, one can consider it simply as a pair (�, �) ∈ C[I, C] × C[I, C]
just by applying the homogeneization operator both to its numerator and denominator. Then, we say that a pair
(�, �) ∈ C[I, C] × C[I, C] of homogeneous bivariate complex polynomials is a homogeneous pair if �� = 0 or if
� and � both have the same degree. In addition, if � ≠ 0, then we say that (�, �) is an A-homogeneous pair.

Moreover, we say that a homogeneous pair (�, �) ∈ C[I, C] × C[I, C] of homogeneous bivariate complex
polynomials is irreducible if (�, �) = (0, 0) or if (�, �) ≠ (0, 0) and, if (�, �) = (��1, ��1) for some
�, �1, �1 ∈ C[I, C] homogeneous bivariate polynomials, then 346(�) = 0.

It will also be beneficial for us to consider the normalization of an irreducible A-homogeneous pair of bivariate
polynomials, in order to prevent overflows in our computations.

Let � ∈ C[I, C] be a bivariate polynomial given by � (I, C) = 00C
3 + 01IC

3−1 + · · · + 0=I=C3−=. We say that the
norm of �, denoted by ‖�‖, is given by the expression ‖�‖ = |00 | + |01 | + · · · + |0= |.

Let (�, �) ∈ C[I, C] × C[I, C] be a homogeneous pair, with � (I, C) = 00C
3 + 01IC

3−1 + · · · + 0=I=C3−= and
� (I, C) = 10C

3 + 11IC
3−1 + · · · + 1<I<C3−<. We say that the norm of the homogeneous pair (�, �), denoted by

‖(�, �)‖, is given by ‖(�, �)‖ = ‖�‖ + ‖�‖.
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Thus, if we have a homogeneous paif of bivariate polynomials (�, �), we define its normalization, denoted by
[�, �], as

[�, �] =
{ (0, 0) si (�, �) = (0, 0)(

�
‖ (�,�) ‖ ,

�
‖ (�,�) ‖

)
si (�, �) ≠ (0, 0) (2.2)

We will say that a homogeneous pair (�, �) is normalized if it verifies that (�, �) = [�, �].

Attending to the previous notions, if '(I) = �(I)
� (I) is a rational map, we can consider an irreducible rep-

resentation '(I) = �1 (I)
�1 (I) . Then, if we apply the homogeneization operator both to �1 and �1 considering

3 = <0G{346(�1), 346(�1)} as the upper bound of the degrees of the numerator and denominator, we obtain the
irreducible homogeneous (A-homogeneous if � ≠ 0) pair (�, �) of bivariate complex polynomials, representing
the rational map '.

This way, when we have a rational map ' we have seen that following this process one can always represent
' as an irreducible A-homogeneous pair (�, �) of bivariate complex polynomials, which can be very useful when
working with the iteration of ' in a computational environment, since we avoid the calculations in which indeter-
minations and overflows can occur.

2.3. Construction of the Hopf-endomorphism associated with a rational map
In order to construct the Hopf-endomorphism associated with a rational map ', we consider the usual 3-sphere
(3 = {(I, C) ∈ C2 | |I | + |C | = 1}, which we consider as a subspace of C2.

Consider the following surjective quotient maps

C2 \ {(0, 0)} (3 %1 (C),? @

where ? : C2 \ {(0, 0)} → (3 is given by ?(I, C) = [I, C] =
(

I
|I |+ |C | ,

C
|I |+ |C |

)
∈ (3, and where @ : (3 → %1 (C) is

given by @(I, C) = [I : C], (I, C) ∈ (3.
Note that its composition transforms each point (I, C) ∈ C2 \ {(0, 0)} into a point [I′ : C ′] ∈ %1 (C) whose

normalized homogeneous coordinates are
(

I
|I |+ |C | ,

C
|I |+ |C |

)
.

We will refer to @ as the Hopf fibration and to the composition @? as the extended Hopf fibration.
Finally, if (�, �) is an irreducible A-homogeneous pair of bivariate polynomials representing a rational map ',

the following diagram is induced by the extended Hopf fibration:

C2 \ {(0, 0)} C2 \ {(0, 0)}

(3 (3

%1 (C) %1 (C)

'

? ?

'(

@ @

'%

where the map @ : (3 → %1 (C) is the Hopf fibration, and where ', '( and '% are given by

'(I, C) = (� (I, C), � (I, C)), where (I, C) ∈ C2 \ {(0, 0)},
'( (I, C) = [� (I, C), � (I, C)], where (I, C) ∈ (3,

'% ( [I : C]) = [� (I, C) : � (I, C)], where [I : C] ∈ %1 (C),
We will refer to the pair ('( , '%) as Hopf-endomorphism induced by the rational map '.

We have seen how to represent a rational map through its associated Hopf-endomorphism, which can be useful
when computing its basins of attraction and avoiding possible computational problems. Now, our main concern
will be to provide a fitting method to compute the basins of attraction and to extract some information regarding
the dynamics of the considered rational map.
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3. Lyapunov functions to compute the basins of attraction
In order to compute and distinguish between the different basins of attraction, we will define a function which is
constant in each basin and that has a strong connection with the Lyapunov exponents of the discrete-time dynamical
system induced by the iteration of the rational map.

It involves the notion of spherical derivative of a rational map 5 : Ĉ→ Ĉ, which is a map 5 # : Ĉ→ R+ = {A ∈
R | A ≥ 0} given by

5 # (I0) = | 5 ′(I0) | 1 + |I0 |2
1 + | 5 (I0) |2

, (3.1)

where 5 ′(I0) denotes the usual derivative of 5 in I0 ∈ Ĉ, for every I0 ∈ Ĉ.
Note that if 5 ′ is not defined in I0, we can define 5 # (I0) as the limit of the expression above when I → I0, and

it can be proven that this limit always exist, 5 # is well defined and it is continuous. Also, since 5 # is continuous
and Ĉ is compact, 5 # is bounded.

We will say that I0 ∈ Ĉ is a critical point of 5 if 5 # (I0) = 0, and we will also consider the usual notions of
super-attracting, attracting, indifferent and repelling points and cycles, using the spherical derivative 5 #.

It is important to note that the we have defined the spherical derivative of a rational map defined over Ĉ but,
thanks to the previously mentioned analytic isomorphism between Ĉ and %1 (C) we can transfer this notion to the
complex projective line, as it can be seen in [2]. In the reference, one can also find specific details and results
on how to compute the spherical derivative of a rational map represented by its associated Hopf-endomorphism
avoiding possible numerical problems.

3.1. Definition and properties of the Lyapunov function
The function we use to compute the basins of attraction of a rational map can be defined for continuous maps in
more general spaces as follows: Let - be a topological space, and let 5 : - → - and q : - → R+ be continuous
maps. We define the function ! 5 (q) : - → [0, +∞] given by the expression

! 5 (q) (G) = lim
=→+∞

(
=−1∏
:=0

q( 5 : (G))
) 1
=

, (3.2)

which we will call the Lyapunov function of 5 associated with q.
Note that the domain of ! 5 (q) is a subset of - not necessarily equal to - .
Also, if we consider the logarithm of ! 5 (q), we obtain the time average of ;>6(q). This allows us to establish

a connection between the presented method and Birkhoff’s Ergodic Theorem [4].
It is also worth noting that Lyapunov functions are used frequently in the context of Dynamical Systems to

study local stability. In our case, despite that the function ! 5 (q) is not a Lyapunov function in that context, we
will also call it a Lyapunov function, since it will be used to study local stability and dependency on initial conditions.

Since we want to be able to use and compute the Lyapunov function, it is also interesting to consider an
approximation. Let - be a topological space, and let 5 : - → - and q : - → R+ be continuous maps. We define
! [A ,B]5 (q) : - → R+ given by the expression:

! [A ,B]5 (q) (G) =
(
B∏
:=A

q( 5 : (G))
) 1
B−A+1

, (3.3)

which we will call the [A, B]-approximation of ! 5 (q).
Note that in this case the domain of ! [A ,B]5 (q) is - .

As it has been proven in [2], the previously defined functions, under certain conditions (that are verified in our
study), satisfy that they are equal-valued and constant in each basin of attraction of 5 . We will call each one of these
constants Lyapunov constant associated with the basin of attraction. It is important to note that these constants
might not be different so, in order to distinguish the basins of attraction, we have to take that into account when
implementing the algorithms.

In particular, if we consider - = %1 (C), 5 a rational map represented by its induced Hopf-endomorphism,
and q = 5 # the spherical derivative of 5 (considered over %1 (C)), then the logarithm of a Lyapunov constant is
precisely a Lyapunov exponent of the discrete-time dynamical system induced by the iteration of the rational map
5 , which are studied in [5].
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4. Computing the Lyapunov constants and the basins of attraction
In order to compute the basins of attraction of a rational map, we have to consider a finite set of points of %1 (C) (a
grid) to which we will apply the procedure described in this section. Since we want to avoid possible overflows in
our calculations, we will consider the normalized homogeneous coordinates of each point of the grid.

It is also worth noting that the algorithm exposed in this section does not depend on the previous calculation of
the list of =-cycles of the rational map. Instead, thanks to the properties of the considered Lyapunov functions, our
procedure detects when does the orbit of a given point converge to a =-cycle. However, due to computational rea-
sons, in order to apply this method one has to choose themaximum length of the @-cycles that themethodwill detect.

4.1. Description of the algorithm
Let G = [I : C] be a point of the considered grid, let 5 : %1 (C) → %1 (C) be a rational map, and let q = 5 # be its
spherical derivative. We have that, except in a set with zero Lebesgue measure, if G is in the domain of ! 5 (q), then
for every ) ∈ N and for every A ∈ N, there exists # () ,A ) > A such that

|! [A ,=−1]
5 (q) (G) − ! [A ,=]5 (q) (G) | ≤ 10−) , ∀= ≥ # () ,A ) . (4.1)

Therefore, given a grid of points of %1 (C), a tolerance 10−) () ∈ N), a maximum number of iterations, and the
maximum length of the @-cycles we want to compute, we can apply the following procedure:

0. If there are points of the grid we have not yet considered, we choose a new point G ∈ %1 (C). If we have
already applied the algorithm to every point of the grid, the algorithm ends.

1. We take a new value of @ ∈ N (starting at 1), where @ determines the length of the @-cycle we are trying to
detect.

2. We compute the next two terms (starting at : = 0) of (! [:,:+@−1]
5 (q) (G)):∈N; that is, we compute

! [:,:+@−1]
5 (q) (G) and ! [:+1,:+@ ]5 (q) (G).

3. We compare the terms and, if we have that

|! [:,:+@−1]
5 (q) (G) − ! [:+1,:+@ ]5 (q) (G) | < 10−) , (4.2)

then we consider that the orbit of the point G has converged to a @-cycle and we go back to step 0 to repeat the
procedure with another point. Note that, in this case, the last term we have computed, (! [:+1,:+@ ]5 (q) (G)), is
an approximation of the Lyapunov constant associated with the basin of attraction in which G lies.
If the condition 4.2 is not satisfied, we go back to step 2 and compute the next two terms.

4. If we have reached the given maximum number of iterations and the process has not yet converged (up to the
given tolerance), then we go back to step 1, choose the next value of @ and study whether if the orbit of the
point G converges to some (@ + 1)-cycle.

5. If we have reached the givenmaximum length of the @-cycles considered and the process has not yet converged
(up to the given tolerance), then we simply go back to step 0 and consider another point of the grid.

Once this procedure has been applied to every point in the considered grid (which represents a region of %1 (C),
and thus a region of Ĉ), we will have divided a region of the Riemann sphere Ĉ into the different basins of attraction
induced by the iteration of the rational map 5 and its Julia set. It is also important to note that we can cover the
entire Riemann sphere (2 � %1 (C) with just a neighborhood of the origin and a neighborhood of the infinity point
∞. This implies that, if we apply the previous process to two sufficiently large grids of points (each one representing
a neighborhood of the origin and of the infinity point, respectively), it will suffice to divide the whole Riemann
sphere into the different basins and the Julia set.

Moreover, thanks to the properties of the Lyapunov function involved in the process, one can extract from this
method useful information about the dynamics of 5 , such as its Lyapunov spectrum.
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4.2. Implementation in Julia Language
We have implemented the described algorithm, along with some additional functionalities that could be of use,
in Julia Language. We have chosen this particular language for several reasons, including its speed for numerical
calculations, its proper syntax for mathematical expressions and its designed centered in parallelism (see [3]). In
order to reduce the execution time of the algorithms, our implementation benefit from some parallel programming
techniques such as multi-threading.

As stated earlier, in our implementation we represent a rational map 5 as its associated normalized irreducible
A-homogeneous pair given by the homogeneization operator 2.2 applied to both the numerator and denominator of
5 . We have seen that this pair induces, through the extended Hopf fibration, the Hopf-endomorphism associated
with the rational map 5 . Also, for each point of the grid (which contains points of the Riemann sphere %1 (C)), we
consider the normalized homogeneous coordinates of each point. This way, and since the spherical derivative 5 #

of 5 is bounded, our code prevents overflows and indeterminations that could appear in our calculations.
The code containing the exposed algorithm can be found in the following GitHub repository: github.com/LCD

[1]. It also provides a user guide and some examples applied to Newton’s method, so that the code it is accessible
for everyone.

5. Basins of attraction for Chebyshev’s method applied to a cubic polynomial
In this last section we will explore and apply the exposed method to the particular case of the rational map induced
by Chebyshev’s method over the cubic polynomial ?(I) = (I2 − 1) (I − 1.28668). Of course, given any non linear
equation of the form 5 (I) = 0, and given a point I0 ∈ C, recall that Chebyshev’s method is given by the following
recurrent formula I=+1 = � 5 (I=), where

� 5 (I) = I −
(
1 + 1

2
! 5 (I)

)
5 (I)
5 ′(I) , (5.1)

where
! 5 (I) = 5 (I) 5 ′′(I)

( 5 ′(I))2 . (5.2)

Note that when we apply Chebyshev’s method to the polynomial ?, the rational map

�? (I) = 15I7 − 26UI6 + 15U2I5 − 6I5 − 3U3I4 − 9UI4 + 18U2I3 − I3 − 6U3I2 + 12UI2 − 9U2I + U3 − U
(3I2 − 2UI − 1)3 , (5.3)

where U = 1.28668, is induced. It is clear that the three roots of ? are super-attracting fixed points of �? , and
thus, the Lyapunov constant associated with each of its basins of attraction will be zero. In addition, the induced
rational map�? also presents the attracting 2-cycle (0.60098,−0.56408) whose basin of attraction has an associated
Lyapunov constant of 0.5093.

As part of the functionalities of the code, we can visualize the basins of attraction in a neighborhood both of
the origin and of the infinity point∞ (on the left and the right of Figure 1, respectively).

Fig. 1 Basins of attraction induced by Chebyshev’s method applied to the polynomial (I2 − 1) (I − 1.28668)
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In these graphics, attending to the color legend, observe that yellow (2), red (3) and green (4) correspond to the
basins of attraction of the fixed points of �? 1, −1, and 1.28668 respectively. The color gray (1) corresponds to the
basin of attraction of the infinity point∞, which in this case is a repulsive fixed point of�? with associated Lyapunov
constant 1.8, and the color black (0), corresponds to the basin of the attracting 2-cycle (0.60098,−0.56408).

This attracting 2-cycle has been indicated on the Figure 2 as a blue line joining its two elements, in order to
better appreciate its presence.

Fig. 2 Attracting 2-cycle appearing in the basins of attraction

We can also visualize the number of iterations that the method required to converge in each point of the
considered grid, which is particularly interesting if we focus on a region where part of the basin of the 2-cycle is
clearly visible. For that matter, we assign a different color to each number of iterations, so that we can appreciate
how such number distributes in the considered region. This graphical information, along with the values of each
Lyapunov constant, might be useful when comparing how attractive is each one of the basins.

Fig. 3 Number of iterations required to converge

We can see that, in the basin of attraction of the 2-cycle, the number of iterations that were required for the
method to end presents clearly chaotic behaviour; that is, it is unstable and extremely dependent on the initial
conditions.

Note that the choice of proper values for the maximum number of iterations and the tolerance is an important
matter. As the maximum number of iterations allowed increase, greater detail we obtain on the boundary of the
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basins, in spite of increasing the execution time of the algorithm. If the considered tolerance is high enough, we
might get low precision in the calculations, and if the tolerance is low enough, the algorithm might determine that
there are more basins of attraction than they actually are, due to slight numerical errors caused by the precision of
the calculations made by the computer. A decrease of the value of the tolerance should always be considered along
a significant increase of the maximum number of iterations in order to obtain the expected results. In this case, we
have considered 300 as the maximum number of iterations and a tolerance of 10−8 to generate the graphics exposed
in this section, except for the graphic in which the number of iterations is represented, for which the maximum
number of iterations considered was 1000.

A recent study of the super-attracting extraneous fixed points and =-cycles that might appear when applying
Chebyshev’s method to a cubic polynomial can be found in [6].
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Abstract

SisAl Pilot is a Horizon 2020-funded project coordinated by the Norwegian University of Science and
Technology (NTNU) which comprises 22 partners from 9 countries. The main objective of this project is to
demonstrate a patented novel industrial process to produce silicon. The actual carbothermic Submerged Arc
Furnace (SAF) process is replaced by a far more environmentally and economically sustainable alternative: the
aluminothermic reduction of quartz, which allows using secondary raw materials such as aluminium (�;) EoL
scrap and dross, instead of carbon reductant used today. To attain this goal, different types of furnaces are being
analysed. Depending on the furnace, the simulations require to study several physical processes strongly coupled:
heat transfer, multiphase fluid dynamics, electromagnetism, melting processes or chemical reactions. Thus, the
challenge is to carry out numerical simulations based on these models that can support the experimental trials in
the plant of the industrial partners. In this talk, we will focus on modelling and simulation of induction furnaces,
more precisely in the stirring conditions.

1. Introduction
The main objective of the SisAl project is to demonstrate a novel industrial process to produce silicon, replacing
the old carbothermic reduction of quartz with an aluminothermic reduction of quartz in slag using secondary raw
materials.

In a simplified description, the quartz ((8$2) and lime (�0$) mixture is heated until 1500◦C to form a slag
(this mixture allows to decrease the melting point). Then aluminium is added to the furnace and reacts by reducing
the quartz:

(8$2 (�0$ − (8$2 B;06) + 4
3
�; → (8 + 2

3
�;2$3 (�0$ − �;2$3 B;06) (1.1)

Finally, the �0$ and �;2$3 can be separated from the resulting slag to give a new use to this alumina.
The main advantages of this process are less energy consumption and the avoidance of direct �$2 emissions.

The energy consumption decreases since the slag has a lower melting point than the quartz and the aluminothermic
reduction is an exothermic reaction. Thus, SisAl represents an environmentally and economically sustainable
alternative to today’s carbothermic reduction process in the Submerged Arc Furnace (SAF), allowing Si production
in an increasingly carbon-lean Europe.

Different furnaces are involved in the SisAl process: induction furnaces, submerged arc furnaces and rotary
furnaces. In this work, we are focused on the induction furnace. Since the mixing of the materials inside the furnace
can be crucial during the industrial process, two different standard stirring tools were analysed. In particular, the
goal here is to determine the best stirring condition by means of the numerical solution of a hydrodynamic problem.
Notice that, for confidentiality reasons, the numerical scales have been removed from all figures included in this
document.

2. Induction furnace
An induction heating furnace essentially consists of one helical coil surrounding a crucible containing the load to
melt. When the charge pretended to melt is a non-conducting material, a conductor crucible (made of graphite
and insulated by a refractory) is used to heat the load by conduction. Thus, alternating current passing through
the coil (which is water-cooled to avoid overheating) induces a rapidly oscillating magnetic field which generates
eddy currents in the conductor crucible (Fig. 1a). Then, the crucible is heated due to the Joule effect (the dissipated
power is shown in Fig. 1b). Thus, the temperature of the system increases (Fig. 1c), the slag is heated by conduction
and finally, it melts.

The standard procedure to model an induction heating furnace with a cylindrical crucible is to consider it in
an axisymmetric setting (the fields do not depend on the azimuthal component and the current produced only has
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(a) Current density (b) Dissipated power (c) Temperature

Fig. 1 Numerical results on a cross-section of a fully loaded induction furnace after 5 hours of operation.

azimuthal component). This axisymmetric model does not include the detailed geometry of the coil, being the
helical coil approximated by toroidal rings. Since it is a standard modelling in the field, the description of these
models is not included in this document (for a detailed explanation the reader can consult [1], [2], [3]).

Regarding the numerical results shown in Fig. 1, they were obtained using the commercial software Altair
Flux2D which implements a numerical resolution of a thermo-electromagnetic problem using FEM. In this first
stage, the main goal is to analyse the melting point of the slag under different operation conditions. Notice that
at this level the motion of the slag is negligible as it is a very bad electrical conductor. However, one important
condition in this industrial process is the homogenisation of the mixture once the aluminium is added to the mixture,
which motivates the following section.

3. Stirring conditions
In this section, a model is presented to analyse the Slag-�; mixing (once melted) using two different stirring
conditions: a mechanical rotor and a nitrogen injection lance. Thus, we simulated the mixing inside the furnace
between two layers of melted materials. The chemical reaction will not be considered but only the fluid dynamic
simulation of the stirring process. Fig. 2a shows the shape of the mechanical rotor and the lance considered.

Let us describe the model used to simulate the mixing between two layers of melted materials. We considered
the incompressible Reynolds-Averaged Navier Stokes equations with the : − l SST turbulence model to capture
the movement of the melted materials:




div v = 0,
m

mC
(dv) + div (dv ⊗ v) = −grad c + div (

`4 5 5
(
grad v + grad v)

) ) + f − div (d:�),
m

mC
(d:) + div (d:v) = div (Γ:grad :) + 5: ,

m

mC
(dl) + div (dlv) = div (Γlgradl) + 5l ,

(3.1)

where v denotes the velocity field, d the mass density, c the pressure and Γ: , Γl the effective dissipation of the
turbulent variables. These models are coupled via the effective turbulent viscosity `4 5 5 which depends on the
turbulent variables, namely, the turbulent kinetic energy, : , and the specific dissipation rate, l (see [4] for more
information). Besides, the different fluids have to be identified and a Volume of Fluid (VOF) model was chosen as
the multiphase model to this end. This strategy relies on the fact that two or more fluids are not interpenetrating.
Thus, the volume fraction of the slag, UB;06, is introduced. The value of UB;06 is interpreted as the fraction of
the cell occupied by the slag. Then, the volume fraction of the aluminium is readily obtained as U�; = 1 − UB;06.
Values other than 0 or 1 for the volume fraction represent a mixture of the fluids and indicate that the free surface
is located inside the corresponding cell. The volume fraction verifies the following continuity equation:

m

mC

(
UB;06dB;06

) + div (
UB;06dB;06v

)
= 0,
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(a) Three-dimensional sketch (b) Cross-cut of the tetrahedral mesh

Fig. 2 Geometry (on the left) and mesh (on the right) of a generic induction furnace.

since the mass transfer between fluids is not considered. The models are coupled via the material properties through
the volume fraction:

d = dB;06UB;06 + d�; (1 − UB;06),
` = `B;06UB;06 + `�; (1 − UB;06).

Once a model capable of simulating the motion and interaction of both materials has been written, the stirring
conditions can be considered.

On the one hand, the gas introduced through the lance is supposed to break into bubbles. Thus, the nitrogen
injection is studied using a discrete phase model where the trajectory of the particles (these bubbles) is predicted
by integrating the balance force, i.e., the particle inertia with the forces acting on the particle:

<?
3v?
3C

= <?
v − v?
gA

+ <?6
d? − d
d?

e3,

where the subscript ? denotes the properties and fields relative to the particle; < denotes the mass and gA is the
droplet or particle relaxation time that depends on their diameter.

On the other hand, the rotor stirring is simulated by considering the rotational movement of the mechanical
rotor. Notice that the domain of the problem studied depends on time. The direct approach of creating a new
geometry (and its corresponding mesh) per time step is prohibitive from a computational point of view. Thus, the
stirring by a mechanical rotor is simulated by taking a subdomain around the rotor and imposing a rotation of this
subdomain. In this way, instead of creating a new geometry (and mesh) the subdomain is rotated per time step and
the contact between the subdomain around the rotor and the rest of the geometry is identified using a sliding mesh
technique.

Regarding the numerical results of the stirring analysis that can be found in the next section, they were obtained
using the commercial software ANSYS Fluent which uses a cell-centered finite volume method to solve the above
equations.

3.1. Numerical results
The two different techniques discussed were analysed at specific operating conditions: the stirring produced by a
mechanical rotor whose axis of rotation is off-centred, see Fig. 2a, with a rotation speed of 80 rpm and the one
produced by a gas injection using a lance in the centre of the furnace with a nitrogen flow of 10 Nl/min. In this
way, to obtain the velocity field in the mixture, some fixed conditions of temperature and pressure are imposed:
) = 1650◦C and c = 1atm. Thus, the motion produced by these stirring techniques and their corresponding
combination in a mixture of two immiscible liquids, �; and (8$2-�0$ slag, are simulated; see Fig. 3 which shows
the volume fraction in cross sections (the top of the mixture and a transversal cut) giving an idea of the mixing
between the aluminium and the (8$2-�0$ slag.

The nitrogen injection assumes breaking into bubbles which requires certain information related to the diameter
of the bubbles. To investigate the importance of this data, we have performed different tests where we consider
different distributions of the diameter of the bubbles:

• Test 1: uniform distribution of the diameter of the bubbles, fixed at is 2 mm which is the diameter of the
nitrogen inlet in the lance; see Fig. 3.
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(a) Only rotor (b) Only injection (c) Rotor and injection

Fig. 3 Volume fraction in cross sections using different stirring conditions: only rotor, only injection and both. In the nitrogen
injection, the diameter distribution of bubbles is considered uniform.

• Test 2: the diameter of the bubbles follows a Rosin-Ramler distribution with a maximum of 2 mm, aminimum
of 0.05 mm and a mean value of 0.5 mm and a spread parameter of 2; see Fig. 4.

Based on the results in Figs. 3-4, the injection of nitrogen is the more effective of the two techniques. Furthermore,
their combination shows that the rotor influences the procedure. Besides, the analysis of the bubble distribution
reveals the importance of the bubble size, which motivates the simulation of the formation of bubbles that is
presented below.

4. Bubble formation
In this sense, we have analysed the formation of bubbles for 2D and 3D reduced problems. Fig. 5 shows the
flux direction of the nitrogen with green arrows in the original geometry and the different approximations: the
lateral simplification, Fig. 5b, assumes a continuous lateral inlet instead of three holes, the axial simplification,
Fig. 5c, assumes a unique hole in the centre of the lance and the three-dimensional approximation, Fig. 5d, is a
wedge of 120 degrees corresponding with one of the original holes assuming symmetry with the other two parts.
Following this strategy, the lateral and axial simplifications can be approximated by bidimensional problems under
symmetric assumptions. Finally, to simplify the resolution the aluminium was discarded in this study. Thus, the
model presented in Sect. 3 can be used by simply removing the discrete phase model and changing the aluminium
considered as an incompressible fluid for the nitrogen considered as an ideal gas. So the incompressibility condition
in (3.1) is changed by the mass conservation equation:

md

mC
+ div (dv) = 0,

and the corresponding equation of state for the nitrogen is introduced:

c+ = =')

where + denotes volume, = amount of substance of the gas and ' the universal gas constant.
Figs. 6-7 show the volume fraction for the different approaches. Notice that the bidimensional approximations

are not realistic. But anyway, the result of all the cases is very similar and the formation of small bubbles is not
observed, just one big bubble.

5. Conclusions
We have analysed two different stirring techniques that can be found in industrial furnaces: mechanical rotor and
gas injection. First, we have simulated the mixing considering only the rotor and only the injection.The results
suggest that gas injection is more efficient for stirring. However, the simulation of the injection requires information
concerning the sizes of nitrogen bubbles. Thus, in the second approach, we have performed a sensitivity analysis
that shows that a better knowledge of nitrogen bubbles is crucial.
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(a) Only injection (b) Rotor and injection

Fig. 4 Volume fraction in cross sections using different stirring conditions: only injection and both (rotor and injection). In
the nitrogen injection, the diameter distribution of bubbles is considered with a Rosin-Ramler distribution.

(a) Original geometry

(b) Lateral simplification (c) Axial simplification
(d) 120 degrees 3d wedge

Fig. 5 Different geometrical approximations to study the formation of bubbles. The rotor is not considered in any of the cases.

Fig. 6 Volume fraction at different time steps in the bidimensional approximations: top lateral approximation and bottom
axial approximation. In the initial time step the green arrow marks the direction of injection.
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Fig. 7 Volume fraction at different time steps in the tridimensional wedge approximation. In the initial time step the green
arrow marks the direction of injection.

In this sense, in the third approach, we have analysed the formation of bubbles for 2D and 3D reduced problems.
All simulations are coherent with each other and the formation of small bubbles is not found. What we observe is
the formation of a unique bubble that grows until it reaches the nitrogen on the top pushing the slag and forming a
wave.
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Abstract

Lithium-ion batteries represent one of the most widely used energy storage devices in both mobile and stationary
applications. Its correct operation depends largely on the so-called Battery Management Systems (BMS) that
use mathematical models to be able to predict in real time the state of charge, the state of health and the state of
function of the battery in order to make a decision. Although equivalent circuit models [4] are often used for this
purpose, nowadays advanced BMS incorporate more complex electrochemical models [3] but handling battery
degradation is still a challenge. Since these models need to be solved faster than real time, it is neccesary to
apply specific order reduction techniques [6]. In this document, a physic-based reduced order model compatible
with real-time control applications is developed, which correctly captures the space-localized lithium plating [1]
phenomena and porosity decreasing [7] with ageing.

1. Introduction
A lithium ion battery cell is made of a stack of several electrodes where lithium ions can be stored, each pair of
them separated by an electrical insulator domain, the so-called separator, which prevents short circuit.Both the
electrodes and the separator are porous materials filled with an ionic liquid, the so-called electrolyte, so lithium ions
can travel from one electrode to the opposite throught the electrolyte. Each of the electrodes is made up of inactive
materials devoted to increase the electrode conductivity and stability and active materials where lithium ion can
be intercalated (lithiation) and deintercalated (delithiation). Undesired side reactions can take place reducing the
expected life of the battery cell, being solid-electrolyte interface formation and lithium plating the most prominent
ones.
In order to develop an advanced battery management system (BMS) able to avoid or reduce this degradation
mechanisms a computationally efficient while accurate battery model is required. While equivalent circuit models
are the state-of-the-art for BMS applications, their empirical nature make degradation mechanisms difficult to
implement. Another alternative, the single-particle models, as they are based on averaging the model equations
in space suffer the disadvantage of not being able to capture with accuracy the lithium plating, as it is an space
localized phenomena. Hence, the Doyle-Fuller-Newman porous electrode model is the simplest battery model that
fulfill our requirements. As those kind of models are computationally expensive, a reduced order version is needed
in order to use it on real-time control algorithms and battery management systems applications.

2. Full order model
The Doyle-Fuller-Newman porous electrode battery model (a comprehensible derivation from electrochemical
principles can be found on [4]) is comprised by a coupled set of parabolic partial differential equations, elliptic
partial differential equations and non-linear algebraic equations defined on two different scales:

• A macroscale, where the ionic potential q4 and the lithium ion concentration within the electrolyte 24 are
defined on the electrolyte domain and where the electric potential qB is defined in the electrodes.

• Amicroscale, where lithium concentration (assuming spherical symmetry) 2B is defined in the active material
particles.

Both scales are coupled by the lithium intercalation reactions 98=C taking place on the surface of the electrode
particles in contact with the electrolyte. In Figure 1 a schema of the domains involved on the model can be
consulted. Prior to the spatial discretization we perform an domain decomposition strategy so each continuous
variable is split in its negative electrode (a), separator (s) and positive electrode (c) part, including continuity and
flux continuity as additional equations.
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 !8 !8+ + 4−
 !8

G = 0 G = !B,− G = !B,+ G = !

Fig. 1 Left: Schema of a Li-ion cell and computational domain of the porous electrode model. Right: Illustration of the
electrochemical reactions on the graphite particle surface (picture extracted from J. Keil et al. [1])

2.1. Porous electrode model without degradation
Lithium ion concentration in the electrolyte is modelled by the parabolic partial differential equations:

m (n ;42;4)
mC

=
1
!2
;

m

mG

(
�;4,4 5 5

m2;4
mG

)
+ 1 − C+

�
9 ;C>C , G ∈ (0, 1), C > 0, ; ∈ {0, B, 2}, (2.1)

with initial condition 2;4
��
C=0 = 24,8=8 andwhere we are assuming that the total reaction flux (which will be introduced

later) in the separator is null, 9 BC>C ≡ 0 and that no ions are allowed to leave the cell by the current collectors, i.e:

m204
mG

����
G=0

= 0,
m224
mG

����
G=1

= 0, C > 0. (2.2)

Additionally, the equations are completed with transmission conditions on the electrodes / separator interface:

204
��
G=1 = 2

B
4

��
G=0 ,

1
!0
�04,4 5 5

m204
mG

����
G=1

=
1
!B
�B4,4 5 5

m2B4
mG

����
G=0

, C > 0, (2.3)

2B4
��
G=1 = 2

2
4

��
G=0 ,

1
!B
�B4,4 5 5

m2B4
mG

����
G=1

=
1
!2
�24,4 5 5

m224
mG

����
G=0

, C > 0. (2.4)

Lithium concentration within the particles of both electrodes is modelled by Fick’s law, so it take the form of a
parabolic partial differential equation:

'2
?,;

m2;B
mC

=
1
A2

m

mA

(
�;BA

2 m2
;
B

mA

)
, A ∈ (0, 1), G ∈ (0, 1), C > 0, ; ∈ {0, 2}, (2.5)

with initial condition 2;B
��
C=0 = 2

;
B,8=8 and boundary conditions

m2;B
mA

����
A=0

= 0, − �
;
B

'?,;

m2;B
mA

����
A=1

=
9 ;8=C

0;B�
, G ∈ (0, 1), C > 0, ; ∈ {0, 2}, (2.6)

that come from the spherical symmetry and the lithium intercalation reaction taking place on the particles surface.
The ionic potential in the electrolyte is modelled by the elliptic partial differential equations:

− 1
!2
;

m

mG

(
^;4 5 5

mq;4
mG

)
− 1
!2
;

m

mG

(
^;�,4 5 5

1
2;4

m2;4
mG

)
= 9 ;C>C , G ∈ (0, 1), C ≥ 0, ; ∈ {0, B, 2} (2.7)

with homogeneous boundary conditions as the ions are not allowed to leave the cell by the current collectors, i.e:

mq04
mG

����
G=0

= 0,
mq24
mG

����
G=1

= 0, C ≥ 0. (2.8)

Transmission conditions between the electrodes and separator reads as follows:

q04
��
G=1 = qB4

��
G=0 ,

1
!0
(^04 5 5

mq04
mG
+ ^0�,4 5 5

m ln 204
mG
)
����
G=1

=
1
!B
(^B4 5 5

mqB4
mG
+ ^B�,4 5 5

m ln 2B4
mG
)
����
G=0

, C ≥ 0, (2.9)
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qB4
��
G=1 = q24

��
G=0 ,

1
!B
(^B4 5 5

mqB4
mG
+ ^B�,4 5 5

m ln 2B4
mG
)
����
G=1

=
1
!2
(^24 5 5

mq24
mG
+ ^2�,4 5 5

m ln 224
mG
)
����
G=0

, C ≥ 0. (2.10)

The electric potential in the electrodes is modelled by the elliptic partial differential equations:

m

mG

(
f;4 5 5

mq;B
mG

)
= 9 ;C>C , G ∈ (0, 1), C ≥ 0, ; ∈ {0, 2}, (2.11)

with the following boundary conditions:

− f4 5 50
mq0B
mG

����
G=0

=
�0??

�
,

mq0B
mG

����
G=1

= 0, f
4 5 5
2

mq2B
mG

����
G=0

=
�0??

�
,

mq2B
mG

����
G=1

= 0, C ≥ 0. (2.12)

The intercalation reactions taking place on particle surfaces are modelled by the algebraic equations

9 ;8=C = 20;B8;0,8=C sinh
(

1
2
�

')
[;8=C

)
, G ∈ (0, 1), C ≥ 0, ; ∈ {0, 2}, (2.13)

where

[;8=C = q
;
B − q;4 − ';8, 5 8;<

9 ;8=C

0;B
−*; (2;B,BDA/2;B,<0G), G ∈ (0, 1), C ≥ 0, ; ∈ {0, 2}, (2.14)

are the intercalation overpotentials and ';8, 5 8;< =
X;
5 8;<

^ 5 8;<
the ionic resistances due to the degradation layer.

2.2. Degradation model
The degradation model is based on the one presented on J. Keil et al. [1] but some modifications and simplifications
have been made. In this work, solid -electrolyte interface re-formation due to cracking and lithium stripping are
omitted. In Figure 1 right one can see where this degradation mechanisms are located on the particle/film surface
and their associated conductivities.
Plating flux in the negative electrode follows the (distributed) algebraic equation

9; ?; =

{
200B 80,; ?; sinh(U; ?; �') [; ?;) [; ?; ≤ 0

0 [; ?; > 0 G ∈ (0, 1), C ≥ 0, (2.15)

where
[; ?; = q

0
B − q04 −*; ?; , G ∈ (0, 1), C ≥ 0 (2.16)

is the lithium plating overpotential.
Solid-electrolyte interface flux in the negative electrode follows the (distributed) algebraic equation

9B48 = 0
0
B 80,B48 exp(−UB48

�

')
[B48), G ∈ (0, 1), C ≥ 0, (2.17)

where
[B48 = q

0
B − q04 − '04, 5 8;<

908=C
00B
−*B48 , G ∈ (0, 1), C ≥ 0 (2.18)

is the solid-electrolyte interface formation overpotential and '04, 5 8;< =
X05 8;<
f 5 8;<

is the electronic resistance due to the
degradation layer.

Remark 2.1 Notice that there are two big differences between the growths of the solid-electrolyte interface and
the lithium plating. The first one is that the overpotential of the solid-electrolyte interface has a resistive term
that involves its associated flux, and the second one is that lithium plating reaction is strongly dependent on
charge/discharge behaviour as opposed to the solid-electrolyte interface which will grow not only in charge, but
also (slowly) in discharge and relaxation.

The model is closed by introducing the total reaction flux which is a sum of the intercalation and degradation fluxes:

90C>C = 9
0
8=C + 9B48 + 9; ?; , 92C>C = 9

2
8=C , G ∈ (0, 1), C ≥ 0. (2.19)

Lastly, it remains to model how the degradation film and the anode porosity evolves with ageing.
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Porosity and film thickness evolution
Film thickness of the negative electrode follows the (distributed) ordinary differential equation

mX0
5 8;<

mC
=
"B48
�dB48

9B48
00B
+ "!8
�d!8

9; ?;

00B
, G ∈ (0, 1), C > 0,

X05 8;<

���
C=0

= X05 8;<,0,

(2.20)

and anode porosity evolution is related to this film thickness by

− mn
0
4

mC
=
"B48
�dB48

9B48 +
"!8
�d!8

9; ?; , G ∈ (0, 1), C > 0,

n04
��
C=0 = n

0
4,0.

(2.21)

This last relationship is extracted from X-G. Yang et al. [7] as in J. Keil et al. [1] porosity evolution is not modelled.

2.3. Numerical implementation
We approximate the microscale using Legendre polynomials

2;B (G, A, C) ≈
#;∑
8=0

2;B,8 (G, C)q;28 (A), ; ∈ {0, 2}

where only even degrees are considered due to the spherical symmetry assumption. Then, we build the weak
formulation for the coefficients through a standard Galerkin projection:
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The weak formulation for the complete mixed system of equations is derived and discretized in space using the
finite element method. P1 finite elements are used and the implementation is carried on the FEniCS library [2].
After the space discretization we arrive to a differential-algebraic system of the form:

"
3G

3C
(C) = 5 (C, G(C)), C0 < C ≤ C 5 ,

G(C0) = G0,
(2.22)

where " is a singular matrix due to the presence of elliptic and algebraic equations. The system is discretized in
time using the implicit Euler method and the resulting non-linear systems are solved by Newton’s method.

3. Reduced order model
In order to meet the requirements of real-time control applications the previous model is not suitable, not only due
to its computational cost but also to non-linearities which complicates the application of filtering techniques. In
this section we will deduce a reduced-order model in state-space form, i.e:

G:+1 = �G: + �D: , : = 0, 1, . . .
H:+1 = �G:+1 + �D:+1

(3.1)

where G(·) ∈ R= represents the model state, H(·) ∈ R@ the model output and D(·) ∈ R? the model input. The matrix
� ∈ R=×= represents the state matrix, � ∈ R=×? the input matrix, � ∈ R@×= the ouptut matrix and � ∈ R@×?
the feedforward matrix. To do this, we will use the discrete realization time algorithm (DRA) methodology firstly
introduced in G. Plett book [4]. This methodology can be summarized in five main steps:

1. Linearize the equations which involves some variable transformations.
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2. Compute a function, the so-called transfer function that maps the Laplace transform of the input into the
Laplace transform of the output

� (B) = . (B)
* (B) =

L(H(C))
L(D(C)) , B ∈ C,

where by capital letters variables we denote the Laplace transform of lowercase letters variables, i.e:

. (B) := L(H(C)) (B) =
∫ ∞

0
H(C)4−BC3C.

3. Compute the Markov parameters (response of the system to an unit pulse) for that transfer function.

4. Apply the Ho-Kalman algorithm to compute the matrices defining the state-space model.

5. Revert the variable transformations to recover the variables of interest, cf. Table 1.

Remark 3.1 In [5] the authors apply the Ho-Kalman algorithm for all the variables at once, while here we will
apply the realization algorithm for each variable alone and then concatenate the matrices to build the state-space
system.

3.1. Transfer functions for the porous electrode model without degradation
In this section we will give an idea about how the transfer function for the electrolyte concentration is derived. We
refer to A. Rodríguez et al. [5] for the full derivation of all the involved transfer functions.

Output Nonlinear correction

�̃04
Li+ concentration
in the liquid phase 204 (I, C) = 2̃04 (I, C) + 24,0

�̃B4
Li+ concentration
in the liquid phase 2B4 (I, C) = 2̃B4 (I, C) + 24,0

�̃24
Li+ concentration
in the liquid phase 224 (I, C) = 2̃24 (I, C) + 24,0

�̃0,★B,BDA
Li surf. concentration
in the solid phase 20B,BDA (I, C) = 2̃0,★B,BDA (I, C) + 20B,0

�̃2,★B,BDA
Li surf. concentration
in the solid phase 22B,BDA (I, C) = 2̃2,★B,BDA (I, C) + 22B,0

�08=C Intercalation flux 908=C (I, C) = 9̃08=C (I, C)
�28=C Intercalation flux 928=C (I, C) = 9̃28=C (I, C)

Output Nonlinear correction

Φ̃0,★B−4
Potential diff. between
solid and liquid phase q0B−4 (I, C) = q̃0,★B−4 (I, C) +*0 (

20B,0E6 (C)
20B,<0G

)

Φ̃2,★B−4
Potential diff. between
solid and liquid phase q2B−4 (I, C) = q̃2,★B−4 (I, C) +*0 (

20B,0E6 (C)
20B,<0G

)

Φ̃04 Liquid phase potential q04 (I, C) = q̃4,0 (I, C) − q̃0B−4 (0, C) −*0 (
20B,0E6 (C)
20B,<0G

)
Φ̃B4 Liquid phase potential qB4 (I, C) = q̃4,B (I, C) − q̃0B−4 (0, C) −*0 (

20B,0E6 (C)
20B,<0G

)
Φ̃24 Liquid phase potential q24 (I, C) = q̃4,2 (I, C) − q̃0B−4 (0, C) −*0 (

20B,0E6 (C)
20B,<0G

)
Φ̃0B Solid phase potential q0B (I, C) = q̃0B (I, C)
Φ̃2B Solid phase potential q2B (I, C) = q̃0B (I, C) + E24;; (C)

Tab. 1 Outputs of the transfer functions and corrections to recover their respective physically meaningful variables.

After linearization of the model equations around an equilibrium point and after transforming the variables with
nonlinear corrections we arrive at the homogeneous partial differential equation in the frequency domain for the
electrolyte concentration:

m4

mI4��̃;4 (I, B) − g
;
1 (B)

m2

mI2��̃;4 (I, B) + g
;
2 (B)��̃;4 (I, B) = 0, ; ∈ {0, 2}

m2

mI2��̃B4 (I, B) + g
B
1 (B)��̃B4 (I, B) = 0.

(3.2)

The generic solution of Equation (3.2) takes the form

��̃;4 (I, B) = c
;
14
Λ;1I + c;24−Λ

0
1 I + c;34Λ

;
2I + c;44−Λ

;
2I , ; ∈ {0, 2} (3.3)

��̃B4 (I, B) = c
B
14
ΛB1 I + cB24−Λ

B
1 I , (3.4)

where

Λ;1 (B) =

√√√
g;1 −

√
(g;1)2 − 4g;2

2
, Λ;2 (B) =

√√√
g;1 +

√
(g;1)2 − 4g;2

2
, ΛB1 (B) =

√
gB1 .

The coefficients c08 , 8 ∈ {1, . . . , 4}, cB8 , 8 ∈ {1, 2} and c28 , 8 ∈ {1, . . . , 4} are obtained from the boundary and
transmission conditions.
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Fig. 2 Bodé plots for the transfer functions. The transfer functions described on this section have been implemented and
sampled at different space locations from low (10−6) to high (102) rad/s frequency

Remark 3.2 Some transfer functions have a pole at B = 0 so in the realization algorithm we will use the transfer
function obtained after removing the integrator pole, that is,

�★(I, B) := � (I, B) − 1
B

lim
B→0

B� (I, B).

In this case, we will need to extend the state-space model to include the removed integrator pole which typically
has a physical meaning, for example, the average concentration within the particles.

Now that we have deduced all the transfer functions, we can move to the first step of the discrete time realization
algorithm.

3.2. Discrete time realization algorithm. Computation of Markov parameters
Assume that we have a system represented by a given transfer function � (B) and we set the time step for the model
to be )B . The associated Markov parameters 6: , : ∈ {0, 1, . . . } are defined by the response of the system to an unit
pulse

D(C) =



1, if C ∈ [0, )B],

0, otherwise,
(3.5)

evaluated at times :)B , : ∈ {0, 1, . . . }. By considering ℎ(C), the continuous-time impulse response related to � (B)
by the Laplace inversion formula ℎ(C) = 1

2c8

∮
Γ
� (B)4BCdB, with Γ a suitable contour. The Markov parameters can

be computed with the convolution of ℎ(·) and D(·). Indeed, we have

6: =
∫ :)B

0
ℎ(C)D(:)B − C)dC. (3.6)

These integrals are approximated with a convolution quadrature method:
∫ C=

0
ℎ(C̄) D(C= − C̄)dC̄ ≈

=∑
<=0

l
) fast
B
= D(C=−<), (3.7)

where the weights are given by Tustin’s formula cf. G. Plett’s book [4] for more details.
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3.3. Discrete time realization algorithm. Ho-Kalman algorithm
Now that we have the Markov parameters 6: , : = 0, 1, . . . we can compute the state-space model matrices using
the Ho-Kalman algorithm. It can be summarized into three steps:

1. Build the Hankel matrix H8, 9 = 68+ 9−1, 8 = 1, . . . , ;1, 9 = 1, . . . , ;2 from the Markov parameters computed
in previous section.

2. Compute the singular value decomposition (SVD) of the Hankel matrix H , i.e: H = *Σ+) and compute
the shifted Hankel matrixH ↑8, 9 = 68+ 9 .

3. Compute the observability matrix O := *Σ1/2 and the controlability matrix C := Σ1/2+) . Then, the state
space model matrices can be obtained as (using pseudo-inverses)

� := O−1H ↑C−1, � := C:,0, � := O0,:, � := lim
B→∞�i (I, B).

If the transfer function �i (I, B) has a pole at B = 0, the system needs to be augmented to take care of the
integrator state so

� ≡
(
� 0
0 1

)
, � ≡

(
�
1

)
,

� ≡
(

�
res�★i

))
, � := lim

B→∞�
★
i (I, B).

The derived state-space model matrices with this procedure are not unique and this is a problem when model
blending is considered. Some transformations can be performed to arrive at a standard form, as explained in G.
Plett’s book [4].

3.4. State-space model validation
In Table 2, the set of parameters used for the discrete-time realization algorithm are shown.

Variable I Order Time [s] Variable I Order Time [s]
90 0 4 1000 92 0 2 2000

1 4 1000 1 2 2000
q04 0 4 0 q24 0 4 2000

1 4 2000 1 4 2000
q0B4 0 4 1000
204 0 3 4000 224 0 3 4000

1 3 2000 1 3 2000
20B4 0 4 1000 22B4 0 4 2000

1 4 1000 1 4 2000

Lower bound Upper bound Setpoints
State-of-charge ( 0.00 1.00 10
Anode porosity n0 0.15 0.35 5

P2D SSM SSM+Blending
Total simulation time 18.74s 0.05 2.72
Time to be simulated /
Total simulation time 16.00 6000.00 110.29

Tab. 2 Left: Maximum order and minimum time requested by impulse response to decay for each variable and location. Right
top: Blending parameters. Right bottom: Performance comparison for the simulation of a 180s discharge followed by 120s
relaxation with a time-step of one second

In Figure 3, a comparison between the solutions given by the reduced order model and the full order model from
the previous section can be found. A performance comparison of the two models in terms of computational cost
is shown in Table 2. We can see in two bottom figures that the weak coupling of degradation described in the
previous section gives accurate results and that the reduced order model captures well the space-localized lithium
plating. Reduced-order model accuracy can be improved by including model blending in the state-of-charge and
the negative electrode porosity. Suppose we have a collection of state-space model matrices computed offline at
different states-of-charge and negative electrode porosities. Then, in real time we can construct the state-space
model matrices by interpolation between the closest offline computed matrices:

�: = (1 − b() [(1 − bn )�;,; + bn �;,A ]
+ b( [(1 − bn )�A ,; + bn �A ,A ]

(3.8)

being b( = (:−(;
(A−(; and b) =

n:−n;
nA−n; such that (: ∈ [(; , (A ] and n: ∈ [n; , nA ]. The proccedure is analogous for the rest

of state-space model matrices. A compromise between computational cost and accuracy is to perform blending
only with a certain frequency instead of at every time step.
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Fig. 3 Comparison between full order model and reduced order model simulations for a 180s discharge followed by 120s
relaxation with a time-step of one second

4. Real-time control application. Reference governor
In order to use the electrochemically-derived state-space model in real applications, where the battery user is going
to demand (resp. apply) some current, it is useful to include a reference governor which, using the state-space
model, will compute the maximum current that the model can supply (resp. receive) while guaranteeing safety in
form of user-defined constraints on state-space model states and outputs. On one hand we have constraints defined
by the battery manufacturer on voltage, temperature or maximum current. This kind of constraints can be handled
without a physic-based model, for example with an empirical equivalent circuit model. However, using these simple
models, we could not enforce relevant constraints on lithium plating overpotential, electrode concentrations or even
electrolyte depletion. More precisely, with our methodology constraints such as:

\0<8= ≤
20B (G, A, C)
20B,<0G

≤ \0<0G , \2<8= ≤
22B (G, A, C)
22B,<0G

≤ \2<0G , 24,<8= ≤ 24 (G, C), [; ?;,<8= ≤ [; ?; (G, C), (4.1)

can be hadled. In order to show the performance of this methodology, we have implemented a reference governor
similar to the one in S. Moura et. al. [3]. It requires to solve two constrained optimization problem at every time
step in order to find the maximum allowable current that the battery can provide or receive, and this should be done
in real-time.
On Figure 4 it can be seen how the reference governor modifies the charging protocol to keep the side reaction
overpotential positive, avoiding lithium plating formation and premature ageing.

Conclusions
In this paper a physically-based reduced order battery model is briefly derived from the Doyle-Fuller-Newman
porous electrode model. It includes two of the most relevant degradation mechanisms, that is, solid-electrolyte
interface formation and lithium plating. It is shown to be compatible with real time control applications by means
of a reference governor.
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Fig. 4 Applied current and lithium plating overpotential with and without the modified reference governor.
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Abstract

This communication analyzes the diffusive spatially heterogeneous predator-prey model introduced by the
authors in [16], which takes into account the saturation effects of the predator in the abundance of preys through
a saturation coefficient W<(G) 
 0 with ‖<‖∞ = 1. The main result establishes the existence of, at least, two
coexistence states for sufficiently large W > 0 in a region of the parameters where the Lotka–Volterra counterpart
cannot admit any coexistence state, regardless the size and shapes of the logistic and interactions coefficients of
the model.

1. Introduction
This communication analyzes the existence and multiplicity of coexistence states for the generalized spatially
heterogeneous predator-prey model




L1D = _D − 0(G)D2 − 1(G) DE

1 + W<(G)D in Ω,

L2E = `E + 2(G) DE

1 + W<(G)D − 3 (G)E
2 in Ω,

B1D = B2E = 0 on mΩ,

(1.1)

where Ω is a bounded domain of R# whose boundary, mΩ, is a # − 1 dimensional manifold of class �2, and L1
and L2 are second order uniformly elliptic operators in Ω of the form

L^ := −div (�^ (G)∇) +
#∑
9=1

1 9 ,^ (G)m 9 + 2^ (G), ^ = 1, 2,

where, for every : = 1, 2, �^ (G) :=
(
08 9 ,^ (G)

)
1≤8, 9≤# is a symmetric matrix of order # such that

08 9 ,^ = 0 98,^ ∈ ,1,∞ (Ω) and 1 9 ,^ , 2^ ∈ !∞ (Ω) for all 1 ≤ 8, 9 ≤ #.

In this model, B1 and B2 are general boundary operators of mixed type such that, for every ^ = 1, 2 and
b ∈ C(Ω̄) ∩ C1 (Ω ∪ Γ1,^ ),

B^b :=

{
b on Γ0,^ ,

ma^ b + V^ (G)b on Γ1,^ ,
(1.2)

where Γ0,^ and Γ1,^ are two closed and open disjoint subsets of mΩ such that

Γ0,^ ∪ Γ1,^ = mΩ.

In (1.2), V^ ∈ C(Γ1,^ ;R), and a^ ∈ C1 (Γ1,^ ;R# ) is an outward pointing nowhere tangent vector field. Moreover,
the functions coefficients 0(G), 1(G), 2(G), 3 (G) and <(G) are continuous in Ω̄ and satisfy 1 
 0, 2 
 0, < ≥ 0, and

0(G) > 0, 3 (G) > 0 for all G ∈ Ω̄,

while W > 0 and _, ` ∈ R are regarded as bifurcation parameters.
From an ecological point of view, (1.1) models the interaction between a prey with density D and a predator

with density E in the inhabiting territory Ω, where both species are assumed to have a logistic growth, or decay,
in the absence of each other. In the special case when < = 0, (1.1) provides us with a rather generalized diffusive
counterpart of the classical Lotka–Volterra predator-prey model, while if <(G) is a positive constant, it is a
generalized heterogeneous counterpart of the diffusive Holling–Tanner model introduced by Casal et al. [4]. The
kinetics in [4] took into account the saturation effects of the predator in the presence of a high population of preys;
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the constant < > 0 measuring the predator saturation level. In (1.1), the function W<(G) measures the level of
saturation of the predator at any particular location G ∈ Ω where <(G) > 0, while saturation effects do not play any
role if <(G) = 0. Throughout this note, we assume that

‖<‖∞ ≡ max
Ω̄
< = 1.

Thus, W can be viewed as the maximal amplitude of the saturation effects of the predator. Under these general
assumptions, (1.1) combines, within the same territory Ω, the classical interactions of Lotka–Volterra type in the
region <−1 (0) with the Holling-Tanner functional responses in {G ∈ Ω : <(G) > 0}. In its greatest generality, (1.1)
includes most of the existing models of this type in the literature. In applications, _ − 21 (G) and ` − 22 (G) stand for
the neat growth, or decay, rates of the prey and the predator in the absence of each other.

The main goal of this note is analyzing the dynamics of (1.1) when W grows to infinity. Thus, it is natural to
perform the change of variables

F := W D, Y =
1
W
.

According to it, the model (1.1) can be expressed as




L1F = _F − Y0(G)F2 − 1(G) FE

1 + <(G)F in Ω,

L2E = `E − 3 (G)E2 + Y2(G) FE

1 + <(G)F in Ω,

B1F = B2E = 0 on mΩ.

(1.3)

Hence, the problem of analyzing the dynamics of (1.1) for sufficiently large W > 0 is equivalent to analyze the
dynamics of (1.3) for sufficiently small Y > 0. Throughout this paper we will focus attention into (1.3) as a sort of
shadow system perturbing from




L1F = _F − 1(G) FE

1 + <(G)F in Ω,

L2E = `E − 3 (G)E2 in Ω,

B1F = B2E = 0 on mΩ,

(1.4)

which is an uncoupled problem.
The plan of this note is the following. Section 2 collects some preliminaries. Section 3 gives some necessary

and sufficient conditions for the existence of coexistence states of (1.1), as well as a local bifurcation result valid for
all Y ≥ 0. Section 4 ascertains the fine structure of the component of coexistence states of (1.4) bifurcating from
the semitrivial positive solution of the form (F, E) = (0, E) with E > 0. Finally, based on these results, in Section 5
we deliver our main multiplicity result for (1.3), with sufficiently small Y > 0. Essentially, as Y moves away from
0, a metasolution of (1.4) perturbs into a second coexistence state of (1.3) (see [13], if necessary, for the concept
of metasolution).

2. Preliminaries
As a direct consequence of the elliptic ! ?-theory, it is apparent that any non-negative weak solution of (1.3), (F, E),
satisfies

D ∈�1 :=
∞⋂
?=#

,2, ?
B1
(Ω), E ∈�2 :=

∞⋂
?=#

,2, ?
B2
(Ω),

where, for every ^ = 1, 2 and ? > # , ,2, ?
B^
(Ω) stands for the Sobolev space of the functions F ∈ ,2, ? (Ω) such

that B^F = 0 on mΩ. According to the Sobolev imbeddings, there is enough regularity on mΩ as to consider B^
in the classical sense, and (D, E) must be a strong solution of (1.1) (see, e.g., [12, Th. 5.11]).

For any given + ∈ !∞ (Ω) and ^ = 1, 2, we will denote by

f0 [L^ ++,B^ ,Ω]

the principal eigenvalue of the linear eigenvalue problem{ (L^ ++)i = gi in Ω,
B^i = 0 on mΩ,
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whose existence and uniqueness in our general setting was established in [12, Ch. 7]. The associated principal
eigenfunction, unique up to a multiplicative positive constant, can be taken strongly positive in Ω, i �^ 0, in the
sense that

i(G) > 0 for all G ∈ Ω ∪ Γ1,^ and
mi

m=
(G) < 0 for all G ∈ Γ0,^ ,

where = stands for the outward unit normal vector field to Ω. The following result, going back to Cano-Casanova
and López-Gómez [3] in its present generality, establishes the monotonicity of the principal eigenvalue with respect
to the potential.

Theorem 2.1 Let +1, +2 ∈ !∞ (Ω) be such that +1 � +2. Then, for every ^ = 1, 2,

f0 [L^ ++1,B^ ,Ω] < f0 [L^ ++2,B^ ,Ω] .

Thus, the map + ↦→ f0 [L^ ++,B^ ,Ω] is continuous in !∞ (Ω) and increasing.
The next characterization is pivotal for analyzing elliptic equations or systems, as it is a key ingredient to infer

most of our results. It goes back to López-Gómez and Molina-Meyer [14] for cooperative systems under Dirichlet
boundary conditions, and to Amann and López-Gómez [2] and [11] for general boundary conditions of mixed type
(see also [12, Th. 7.10] for further details).

Theorem 2.2 For every + ∈ !∞ (Ω) and ^ = 1, 2, the next conditions are equivalent:

(a) f0 [L^ ++,B^ ,Ω] > 0.

(b) The tern (L^ ++,B^ ,Ω) admits a positive strict supersolution, ℎ ∈ �̂ , i.e., for some ℎ ∈ �: such that
ℎ 
 0, the next estimates hold { (L^ ++)ℎ ≥ 0 in Ω,

B^ℎ ≥ 0 on mΩ,

with some of these inequalities strict.

(c) The tern (L^ + +,B^ ,Ω) satisfies the strong maximum principle, i.e., F �^ 0 for every function F ∈ �̂

such that { (L^ ++)F ≥ 0 in Ω,
B^F ≥ 0 on mΩ,

with some of these inequalities strict.

The next result is invoked when analyzing the logistic equation in our abstract setting here. For a detailed proof
of Theorem 2.3 in the classical case when V^ ≥ 0 the reader is sent to Fraile et al. [8, Th. 3.5]. The general
case when V: changes of sign can be reduced to the classical case through the exponential change of variable of
Fernández-Rincón and López-Gómez [7, Sect. 3]. Alternatively, see Theorem 1.1 of Daners and López-Gómez [6],
though this change of variable goes back to [12, Ch. 2] in a linear context.

Theorem 2.3 Suppose d ∈ R and b ∈ � (Ω̄; (0,∞)). Then, for every ^ = 1, 2 and + ∈ !∞ (Ω), the semilinear
boundary value problem {

(L^ ++)F = dF − b (G)F2 in Ω,

B^F = 0 on mΩ,
(2.1)

admits a positive solution if, and only if,

d > f0 [L^ ++,B^ ,Ω] ,

which is unique if it exists. Moreover, if we denote it by

Fd,^ ≡ \ [L^++ ,d, b ] ∈ �̂ ,

then Fd,: �^ 0, the map d → Fd,^ is point-wise increasing if

d > f0 [L^ ++,B^ ,Ω] ,

and Fd,^ bifurcates from F = 0 at d = f0 [L^ ++,B^ ,Ω]. Furthermore, if D̄ is a positive strict supersolution of
(2.1), then D̄ �^ Fd,^ . Similarly, if D is a positive strict subsolution of (2.1), then D �^ Fd,^ .
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More precisely, through this note, we denote by \ [L^++ ,d, b ] the maximal non-negative solution of (2.1). Hence,
by Theorem 2.3,

\ [L^++ ,d, b ] :=
{

0 if d ≤ f0 [L^ ++,B^ ,Ω] ,
�^ 0 if d > f0 [L^ ++,B^ ,Ω] .

Moreover, as a byproduct of Theorem 2.3, (1.1) has a semitrivial positive solution of the form (D, 0) if, and only if,
_ > f0,1 ≡ f0 [L1,B1,Ω]

and, in such case, (D, 0) = (
\ [L1 ,_,0] , 0

)
. Similarly, (1.1) has a semitrivial positive solution of the form (0, E) if,

and only if,
` > f0,2 ≡ f0 [L2,B2,Ω]

and, in such case, (0, E) = (
0, \ [L2 ,`,3 ]

)
.

3. Coexistence regions and bifurcation of coexistence states from (0, \ [L2 ,`,3 ])
In this section we are going to estimate the regions of the (_, `)–plane where the problem (1.1), or, equivalently,
(1.3) has some coexistence state. Then, regardless the values of Y > 0 and ` > f0,2, it is established the existence
of a component of coexistence states bifurcating from the semitrivial curve (0, \ [L2 ,`,3 ]) at a certain (unique) value
of _.

Next result collects some (optimal) necessary and sufficient conditions for the existence of coexistence states
and, hence, it determines the coexistence regions of (1.3). It is a direct consequence of [16, Th. 4.1 & 5.1].

Theorem 3.1 Suppose that, for some Y > 0, (1.3) has a coexistence state, (F, E). Then,
_ > iY (`) ≡ f0

[
L1 + 1 \[L2 ,`,3]

1+<\[L1 ,_,Y0]
,B1,Ω

]
and ` > ΨY (_) ≡ f0

[
L2 − Y2 \[L1 ,_,Y0]

1+<\[L1 ,_,Y0]
,B2,Ω

]
. (3.1)

Conversely, under the following condition

_ > Φ(`) ≡ f0
[
L1 + 1\ [L2 ,`,3 ] ,B1,Ω

]
and ` > ΨY (_), (3.2)

the problem (1.3) has, at least, a coexistence state.

Figure 1 sketches the construction of the wedges (3.1) and (3.2) given by Theorem 3.1. By Theorem 2.1,

iY (`) ≡ f0

[
L1 + 1 \[L2 ,`,3]

1+<\[L1 ,_,Y0]
,B1,Ω

]
< f0

[
L1 + 1\ [L2 ,`,3 ] ,B1,Ω

] ≡ Φ(`), for all ` > f0,2.

According to Theorem 3.1, (1.3) has a coexistence state in the solid area of Figure 1, whereas outside the union
of the solid and dashed wedges of Figure 1, it cannot admit any coexistence state. Thus, the dashed wedge must
contain the edge of the coexistence region. By the analysis already done in [16, Sec. 3], the global structure of the
curve ` = ΨY (_) can change according to the nature of <(G), as illustrated in Figure 1 and explained in its caption.

Since \ [L1 ,_,Y0] = Y
−1\ [L1 ,_,0] , it is apparent that

lim
Y↓0

iY (`) = lim
Y↓0

f0

[
L1 + 1 \[L2 ,`,3]

1+<Y \[L1 ,_,0]
,B1,Ω

]
= f0

[
L1 +

(
1 − jint supp<

)
1(G)\ [L2 ,`,3 ] ,B1,Ω

]
,

where, for any subset � ⊂ R# , j� stands for the characteristic function of the set �, i.e., j� (G) = 1 if G ∈ �, and
j� (G) = 0 if G ∈ R# \ �. In the next section, it will become apparent that the function

i0 (`) := f0

[
L1 +

(
1 − jint supp<

)
1(G)\ [L2 ,`,3 ] ,B1,Ω

]
, ` > f0,2, (3.3)

provides us with the left limiting curve to the region where the uncoupled model (1.4) possesses a coexistence state.
The curve _ = i0 (`) has been also plotted in Figure 1 and, again by Theorem 2.1, i0 (`) < iY (`) if 1< 
 0.

According to Theorem 2.2, for every real number 4 > max{−f0,1,−f0,2} and ^ = 1, 2, (L^ + 4,B^ ,Ω) is an
invertible operator with strongly positive inverse. Thus, the solutions of the problem (1.3) are the zeroes of the
operator

F : R × R × R × C1
B1
(Ω̄) × C1

B2
(Ω̄) →�1 ×�2,

defined, for every _, `, Y ∈ R, F ∈ C1
B1
(Ω̄) and E ∈ C1

B2
(Ω̄), by

F(_, `, Y, F, E) :=

(
F − (L1 + 4)−1 [(_ + 4)F − Y0F2 − 1 FE

1+<F
]

E − (L2 + 4)−1 [(` + 4)E − 3E2 + Y2 FE
1+<F

]
)
.

The next result shows the bifurcation to coexistence states from the semitrivial positive solution (0, \ [L2 ,`,3 ]) along
the curve _ = Φ(`). It is a direct consequence of the theorem of bifurcation from simple eigenvalues of Crandall
and Rabinowitz [5]. It provides us with the local structure of the set of bifurcating coexistence states.
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Fig. 1 The coexistence regions of (1.3) according to Theorem 3.1 if <(G) > 0 for all G ∈ Ω̄ (left picture) or int<−1 (0) ≠ ∅
(right picture). When <(G) > 0 for all G ∈ Ω̄ the curve ` = ΨY (_) , _ > f0,1, inherits the same asymptotic behavior as in
the classical Holling–Tanner case when <(G) ≡ < > 0, whereas in case int<−1 (0) ≠ ∅ it possesses the same asymptotic
features as in the classical Lotka–Volterra model with < ≡ 0.

Theorem 3.2 For every ` > f0,2 and Y ∈ R, there exist X = X(`, Y) > 0 and an analytic map (_, F, E) : (−X, X) →
R ×�1 ×�2 such that:

(i) (_(0), F(0), E(0)) = (
Φ(`), 0, \ [L2 ,`,3 ]

)
.

(ii) F(_(B), `, Y, F(B), E(B)) = 0 for all B ∈ (−X, X).
(iii) E(B) �2 0 if B ∈ (−X, X), F(B) �1 0 if B ∈ (0, X) and F(B) �1 0 if B ∈ (−X, 0).
(iv) The set of solutions of (1.3) in a neighborhood of (_, F, E) = (

Φ(`), 0, \ [L2 ,`,3 ]
)
consists of the curves(

_, 0, \ [L2 ,`,3 ]
)
, _ ∼ Φ(`), and (_(B), F(B), E(B)), B ∈ (−X, X).

Moreover, there are two functions F1, F
∗
1 �1 0 such that

_′(0)=
∫
Ω

(
Y0−1\ [L2 ,`,3 ]

)
F2

1F
∗
1+
∫
Ω
1

(
L2+23\ [L2 ,`,3 ]−`

)−1(
Y2\ [L2 ,`,3 ]F1

)
F1F

∗
1. (3.4)

Remark 3.3 As the dependence of F on Y ∈ R is also analytic, by the implicit function theorem used in the proof
of the theorem of Crandall and Rabinowitz [5], it becomes apparent that the bifurcated curve

(_(B), F(B), E(B)) ≡ (_(B, Y), F(B, Y), E(B, Y))

also is analytic with respect to the parameter Y.

4. The coexistence states of the uncoupled problem (1.4)
This section determines the set of coexistence states of the limiting shadow problem (1.4). As E satisfies{

L2E = `E − 3 (G)E2 in Ω,

B2E = 0 on mΩ,

the condition ` > f0,2 ≡ f0 [L2,B2,Ω] is imperative so that (1.4) can have a coexistence state. Otherwise, E = 0
for any component-wise nonnegative solution, (F, E), of (1.4). Thus, throughout this section, we assume that
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` > f0,2. In such case, by Theorem 2.3, for every coexistence state (F, E) of (1.4), necessarily E = \ [L2 ,`,3 ] �2 0,
and F �1 0 is a positive solution of the associated problem



L1F = _F − 1(G)\ [L2 ,`,3 ]

F

1 + <(G)F in Ω,

B1F = 0 on mΩ.
(4.1)

The next result ascertains the range of _’s where (4.1) has a coexistence state.

Lemma 4.1 Suppose 1< 
 0 and F ≠ 0 is a positive solution of (4.1). Then, F �1 0 and

f0,1 ≤ i0 (`) < _ = f0

[
L1 + 1 (G) \[L2 ,`,3]

1+<(G)F ,B1,Ω
]
< Φ(`), (4.2)

where i0 (`) and Φ(`) are the functions defined in (3.3) and (3.2), respectively.

According to Theorem 3.2, there is a bifurcation to positive solutions of (4.1) from (F, E) = (0, \ [L2 ,`,3 ]) at
_ = Φ(`), which is subcritical, because

_′(0) = −
∫
Ω
1\ [L2 ,`,3 ]F

2
1F
∗
1 < 0. (4.3)

Set F0 (_, `, F, E) ≡ F(_, `, 0, F, E), and let denote by �0 the set of nontrivial solutions of (4.1) defined by

�0 := {(_, `, F, \ [L2 ,`,3 ]) ∈ F−1
0 (0) : F ≠ 0} ∪ {(_, `, 0, \ [L2 ,`,3 ]) : _ ∈ Σ(ℒ(_))},

where Σ(ℒ(_)) stands for the generalized spectrum of the Fredholm curve

ℒ(_) := � (F,E)F0 (_, `, 0, \ [L2 ,`,3 ]).
The next result establishes that the component �+0 of positive solutions of �0 with (Φ(`), `, 0, \ [L2 ,`,3 ]) ∈ �̄+0
satisfies

P_ (�+0 ) = (i0 (`),Φ(`)), (4.4)

where P_ stands for the _-projection operator, P_ (_, `, F, \ [L2 ,`,3 ]) ≡ _. Moreover, it shows that�+0 is unbounded
at _ = i0 (`) and it provides us with its fine structure nearby _ = Φ(`) and _ = i0 (`). This is a crucial information
to obtain the main multiplicity result of this note for (1.3) with sufficiently small Y > 0.

Fig. 2 An admissible component �+0 in case 1< 
 0.

Theorem 4.2 The component �+0 satisfies (4.4). Moreover, for every sequence of positive solutions, in �+0 ,
{(_=, `, F=, \ [L2 ,`,3 ])}=≥1, such that lim=→∞ _= = i0 (`), necessarily

lim
=→∞ ‖F=‖∞ = +∞. (4.5)
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On the other hand, in a neighborhood of (_, `, F, \ [L2 ,`,3 ]) = (Φ(`), `, 0, \ [L2 ,`,3 ]) in R × R ×�1 × {\ [L2 ,`,3 ]},
�+0 consists of the analytic curve (_(B), `, F(B), \ [L2 ,`,3 ]) given by Theorem 3.2. Actually, there exists A > 0 such
that, for every _ ∈ [Φ(`) − A,Φ(`)), (4.1) has a unique positive solution. Moreover, for sufficiently small A > 0,
this positive solution is linearly unstable with one-dimensional unstable manifold.

Furthermore, there exists A > 0 such that, for every _ ∈ (i0 (`), i0 (`) + A], (4.1) has a unique positive solution,
(_, `, F_, \ [L2 ,`,3 ]), which is non-degenerate. Thus, for these values of _, �+0 consists of an analytic curve of
positive solutions bifurcating from +∞ at _ = i0 (`).

Figure 2 shows an admissible component �+0 of positive solutions of (4.1) adjusted to the patterns of Theorem
4.2. Although (4.1) has a unique positive solution for_ sufficiently close to eitherΦ(`), or i0 (`), the problemmight
possess an arbitrarily large number of positive solutions for some intermediate range of values of the parameter _,
as illustrated in Figure 2.

5. An optimal multiplicity result for the original model
The next multiplicity result is the main theorem of this communication. Recall that, owing to Theorem 3.1, for
every ` > f0,2, (1.3) has a coexistence state if _ > Φ(`). Moreover, in such case, _ > iY (`).

Theorem 5.1 Fix _∗ ∈ (i0 (`),Φ(`)). Then, there exists Y0 ≡ Y0 (_∗) > 0 such that, for every Y ∈ (0, Y0), (1.3)
possesses a component �+Y of coexistence states satisfying the following properties:

(a) P_
(
�+Y

)
= [_) , +∞) for some _) ≡ _) (Y) ∈ (iY (`), _∗].

(b) For every _ ∈ [_∗,Φ(`)), (1.3) has, at least, two different coexistence states.
(c) �+Y is an analytic curve, with respect to the parameter _, in a neighborhood of

(_, `, F, E) = (Φ(`), `, 0, \ [L2 ,`,3 ]).

Fig. 3 The components �+0 (dashed line) and �+Y (solid line) for small Y > 0

Naturally, �+Y is the perturbation of the component �+0 constructed in Section 4 as Y > 0 leaves Y = 0. Figure
3 shows an admissible component �+Y (solid line) perturbing from �+0 (dashed line) and satisfying Theorem 5.1.
Roughly spoken, the proof of Theorem 5.1 relies on the following features:

• The existence of a priori bounds for the coexistence states of the problem (1.4). These bounds can be derived
as an application of Theorems 2.2 and 2.3. The existence of a priori bounds together with [10, Th. 7.2.2]
guarantee that the component �+Y is unbounded in _, i.e., P_

(
�+Y

)
should contain an interval of the form

[_̂, +∞) for some _̂ > i0 (`).



38 Julián López-Gómez and Eduardo Muñoz-Hernández

• The use of the implicit function to make sure that �+Y consists of two arcs of analytic _-curve for _ ∼ i0 (`)
and _ ∼ Φ(`) and sufficiently small Y > 0, and the construction of an open isolating neighborhood, O, for a
certain subcomponent of �+0 joining these two arcs.

• Showing that, for sufficiently small Y > 0, the isolating neighborhood also packages the components �+Y .

• Using the fixed point index in cones, as axiomatized by Amann [1], to infer the multiplicity result as in [9].
According to it, the existence of a second coexistence state for all _ ≥ _∗ holds.

Remark 5.2 According to Theorem 3.2 and [10, Th. 7.2.2], the existence of a _∗ ∈ (iY (`),Φ(`)) such that,
for every _ ∈ [_∗,Φ(`)), (1.3) has, at least, two coexistence states is guaranteed if _′(0) < 0. This occurs for
sufficiently small Y, which might be larger than the Y0 given by Theorem 5.1; at least, for Y ∈ (0, Y∗), where Y∗
satisfies _′(0, Y∗) = 0.
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Abstract

In transport traffic analysis, road traffic is modelled as a system of interacting particles. In the last decades a
number of mathematical models have been proposed to represent the dynamics of this process. Most important
among them are the car-following models, which have been used to model both the inter-vehicles dynamics (micro
modelling) and the aggregated traffic process (macro modelling).

Even though these models accurately represent phenomena observed in real roads, like congestion creation,
metastability and wave propagation, they are sometimes based on narrow assumptions that do not match the
behaviour of real drivers and vehicles. The accuracy of these models is specially relevant now that new communi-
cation technologies like 5G and V2X (Vehicle to everything) are intended to be a key part of the future road-traffic
infrastructure, and will require stringent latency requirements, complicating the dynamics of the traffic process.

This paper presents results on a new, general purpose traffic model to be used in the study of the impact of new
V2X technologies on the road traffic phenomena. The results include application to micro (particle dynamics) and
macro (fluid-like dynamics) simulation scenarios and numerical evaluation and validation of the mathematical
model using an extension to network simulator ns-3.

1. Introduction
Transport traffic analysis has gained significant attention in the last decades, joining the techniques developed in
modern physics and the capabilities offered by modern computing platforms. Road traffic is modelled as a system
of interacting particles (vehicles), and present phenomena similar to those observed in physical systems, like phase
transitions, metastability and wave propagation [7, 10].

The models developed have been focused on modelling the behaviour of the driver and its interaction with the
environment, specially the dynamics of other vehicles. These models accurately represent some of the situations
observed in real roads, but they are usually based on narrow assumptions that do not match the behaviour of
real drivers and vehicles. Moreover, the modelling is now further complicated because a significant number of
autonomously driven vehicles is expected to appear in the roads in the near future. On the other hand, technologies
introduced in the last generation of mobile network standards (5G), called vehicle-to-everything communications
(V2X), are now capable to offer latencies low enough to enable delay critical driving assistance over mobile
connections. This is considered a fundamental cornerstone for safely deploying self-autonomous driving systems.

Paramount for the successful adoption of these services is the understanding of the challenges and risks derived
of the mobility scenarios. This will be especially critical for applications highly dependent on strict timing, which
will be affected by both network traffic and road traffic conditions.

This paper presents results on a new car-following model recently introduced [8], based on a delay-difference
equation of a sigmoidal class of functions, that provides a realistic alternative to the existing car-following models,
overcoming some of their limitations. This model is useful to assess two-vehicle dynamics in which the follower
vehicle is autonomously driven, and may be affected by variations on the reaction time to adjust its velocity (for
instance, because of congestion on some communication process involved). The accuracy, advantages and range
of applications of the model is demonstrated using simulation techniques. Then, the applicability to a scenario
involving V2X communications (see [11]) is shown by considering the influence of the variability of the delay
inherent to the communications process in the car-following model dynamics.

1.1. Car following models
Most road traffic studies are focused on the determination of the conditions that generate congestion and traffic
jams, for which two main techniques are used: themicroscopic model, where traffic is seen as individual interacting
particles, and the macroscopic model, where traffic is seen as a compressible fluid.

A typical micro model is the follow-the-leader or car-followingmodel, where the vehicles move in a single lane
and no lane changes are considered, and the evolution of the vehicle = is affected by the vehicle = − 1 ahead. There
exist different approaches to describe the dynamics involved, the most common being those based on modelling the
influence of the distance between their position (-=−1− -=) and the difference between their velocities (- ′=−1− - ′=).
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In particular, the General Motors’ model (GM) states that the acceleration of the follower is a function of its speed,
the speed difference and the distance [4]. Also, it is normally considered that there is a reaction delay g= in the
application of the acceleration to the vehicle, due to human and mechanic reaction time in such a way that the
dependence of the acceleration with the position and velocity can in general be expressed by some delay differential
equation (���) that includes the reaction delay g=. Historically there have been successive proposals for this ���
trying different dependencies on the variables to reflect real world driver behaviour, which can be summarized in
the generalized GM model as [3]:

- ′′= (C + g=) = 2
- ′= (C)<

(-=−1 (C) − -= (C));
(- ′=−1 (C) − - ′= (C)) (1.1)

This formula can model different degrees of influence of the variables by means of the exponents < and ;.
Nevertheless, despite accurately represent real world situations and explain some important traffic dynamics, these
models allow the vehicles to be arbitrarily close when both have the same velocity, which is unrealistic when such
velocity is high.

An alternative approach called the Optimal Velocity Model (OVM) (see [2, 12]) has also been introduced to
model a behaviour in which the follower adjust its velocity according to an optimal velocity, which is a function +
of the distance between the vehicles, i.e.:

- ′= (C + g=) = + (-=−1 (C) − -= (C)) = + (Δ-= (C)) (1.2)

where+ is nonlinear, has to bemonotonically increasing and has a maximum value (typically, a sigmoidal function).
This approach does modulate the velocity depending on the distance, and presents the advantage of being easily

tractable analytically. In fact, one can approximate the acceleration function and remove the implicit dependency
on the delay by series expansion, and, assuming that the delay g is the same for all the vehicles, we get:

- ′′= (C) ≈
1
g
(+ (Δ-= (C)) − - ′= (C)) (1.3)

This provides an explicit dependence of the acceleration on the distance, the velocity and the delay. This makes
this model very convenient for establishing a relationship between the micro and the macro models ( [7, 9, 10]).
Nevertheless, the assumption behind equation (1.3) is that the vehicle always can change the velocity to the optimal
one in time g, regardless of the present value of the velocity - ′= (C). This allow for extremely high values for the
acceleration function in certain circumstances, which is rather unrealistic.

2. The nDDE model
As a way to overcome the limitations of existing models described above, a new car-following model has been
proposed in [8]. This model complies with the main requirements used in former models (dependence on the
distance and the relative velocity, and inclusion of the delay due to reaction time), while, at the same time, provides
more realistic dynamics.

The model similarly focuses on the case of two vehicles (denoted now as 0 for the leading car and 1 for the
follower car). It also considers that the leading car has a constant velocity - ′0 (C) = E0, and defines new variables
for the distance between the cars (B(C)) and the relative velocity (B′(C)):

B(C) = (-0 (C) − -1 (C)) B′(C) = (E0 − - ′1 (C)) B′′(C) = (−- ′′1 (C)) (2.1)

So, the retarded dependence of the acceleration function (like in equations (1.1) and (1.3)) can be expressed in
a general way as:

− B′′(C + g) = - ′′1 (C + g) = 6(B(C), B′(C)) (2.2)

where 6() is some function, to which some additional requirements are added:

i.) We must avoid B(C) = 0, so, for any E0, it is defined a minimum distance between cars <. In equilibrium,
B = <, and B′′ = 0.

ii.) There is a maximum acceleration 0 > 0 and a maximim deceleration 1 < 0, so 1 < 6(B, B′) < 0
iii.) The function 6 is increasing with respect to B.

The model is based on the following sigmoidal function, that meets the previous requirements:

6(B, B′) = 0 − (0 + 1)
1 + 10 43 (B−<+:B

′) ,∀(B, B
′) ∈ R2 (2.3)
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where 3 is a parameter to model the intensity of the response of the car-driver ensemble, and : is a parameter to
model the driver’s response according to the safe distance and the perceived relative velocity [8].

This is the nDDE model (new car-following traffic model), which offers a more realistic behaviour than the
previous models, since the acceleration is now bounded to a range of real vehicle values, and the equilibrium
distance is an increasing function of the vehicle velocity. Reference [8] characterizes the nDDE equation as a
Retarded Functional Differential Equation (RFDE) [6], and provides an analysis of the dynamical characteristics
and the change from stability to oscillatory solutions in equilibrium depending on the value of the delay term (Hopf
bifurcation).

We next introduces an improvement to the nDDE base model that accounts for real vehicle mechanics and has
been used in the simulations presented in next sections of the paper.

2.1. Modelling real vehicle behaviour
In the nDDEmodel, once the deviation on B or B′ is significant, the acceleration and deceleration values easily reach
the maximum values. For the deceleration action one can expect sudden variations in its value, if needed (by the
action of variably pressing the brakes). But for the acceleration process it is physically impossible to accelerate over
the limits imposed by the engine-gear mechanism. Thus, for the model to be more realistic, it should be expected
that the acceleration process is somewhat more progressive. Indeed, the maximum acceleration achievable is
dependent not only on a given engine power output, but also on the vehicle speed and the gear engaged. The
acceleration is typically a decreasing function approaching 0 when the vehicle approaches the maximum velocity
(see, for instance, [13]). For the deceleration it is possible to assume that the value 1 is independent on the velocity,
and determined by the brakes, tires and road ensemble [13].

Therefore it is expected that the real acceleration process is smoother than the one in the original =��� model,
with the maximum acceleration 0 dependent on the velocity, instead of a constant value. For the purpose of this
analysis, we consider the following function to model the acceleration process, inspired by the example provided
in [13]:

0(B′) = 2
3
40.25− ( (E0−B

′)+10)2
400 ((E0 − B′) + 10) (2.4)

This function tries to emulate the progressive decrease of the maximum acceleration when the vehicle gains speed,
until it is barely capable of accelerating at higher speeds (in this case, around 40 m/s).

In this way, the =��� model is transformed on account of this maximum acceleration:

− B′′(C + g) = 6(B, B′) = 0(B′) − (0(B′) + 1)
1 + 1

0 (B′) 4
3 (B−<+:B′) ,∀(B, B

′) ∈ R2 (2.5)

For the sake of clarity, in the rest of the paper we will refer to this< modified =��� model as =���0.

3. Numerical evaluation
This section contains a numerical evaluation of the modified =���0 model introduced in the preceeding section.
We base the analysis on an extension of the ns-3 simulation platform widely used in communication network
analysis.

3.1. ns-3 simulation platform
ns-3 (Network Simulator version 3, https://www.nsnam.org/) is an open source platform for discrete-event
(i.e., Monte-Carlo) simulation for communication systems. It is based on C++ and Python, with an extensive model
library for Internet and mobile communications systems, and is a key tool for many projects in current network
research activity.

The interesting aspect of using ns-3 for our analysis is three-fold: first, it provides a library of mobility models
that has been extended to model the dynamics of the =��� models; secondly, it offers models to simulate
all modern communication systems, thus allowing a seamless integration of the simulation of the mobility and
communications dynamics; finally, it allows us to simulate micro (i.e., two vehicles) and macro (many vehicles)
scenarios using the same code base.

It is worth noting that this work introduces complexmobility dynamics and delayed reactions in ns-3 simulations.
The implementation of the =��� models required to build the simulation objects for the road and vehicles system,
the modification of existing ns-3 objects to enable the delayed update of the acceleration, and the introduction of
the nDDEmodel dynamics in the simulation logic. To perform the validation we have simulated the same scenarios
as in [8], which use the following parameters: 0 = 2.0576 </B2, 0(0) = 6.6666 </B2, 1 = 1.5677 </B2,
E0 = 22.2222 </B, < = 44.4444 <, 3 = 0.1124 and : = 11.3890 B.
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3.2. Micro behaviour
[8] includes a detailed characterization of the original nDDEmodel, in which numerical simulations of the solutions
in the Hopf bifurcation for different delay parameters g are provided. We follow the same structure to present the
results, in which each graphic has two parts: above is the graphic of the B, B′ and B′′ with respect to time; and below
the 2D-curve (B, B′).

Figure 1a provides the original results in [8] for a scenario in which the follower vehicle is initially at a higher
distance and a lower speed than the equilibrium values, with a delay g = 1.2B. This has been generated using the
code dde23 of Matlab to solve the DDE. Figure 1b shows the results produced by the simulator. We can see that
the simulation reproduces with a high degree of accuracy the results produced by the numerical integration of the
equations.

(a) Numerically solved with dde23 routine of Matlab. (b) Using the ns-3 simulation

Fig. 1 Oscillatory and stable solution for g = 1.2B in =���

It is also interesting to check for higher delay values, since for very high values the instability of the system
lead to the crash of the vehicles (distance = 0). This can be seen in figure 2a, where after a short time, the solution
contains negative values for the inter-vehicle distance. But this is explicitly avoided in the simulation, as can be
seen in figure 2b. This allow us to use the simulation platform to study situations with more complex interactions
beyond the analysis of the Hopf bifurcation, which is specially important to evaluate the behaviour of the =���
acceleration model in multi vehicle (macro) scenarios.

(a) Numerically solved with dde23 routine of Matlab. (b) Using the ns-3 simulation

Fig. 2 Oscillatory and unstable solution for g = 6.2B in =���

3.3. Macro behaviour
Macroscopic analysis is focused on the traffic process seen as a fluid motion. A most important objective is
to determine the conditions that generate congestion and traffic jams, for which it is usually used the so-called
fundamental diagram, which relates the vehicle density d with the density current (flow) @ (see for instance [7,10]).
The traffic transition from free traffic at low densities to congested traffic at high densities is a phenomena usually
compared to phase transition processes in physics.

Macro models represent the traffic flow in the same way as a compressible fluid. The traffic process in a point
in space G and a time C is described in terms of the vehicle density d(G, C) and the average velocity E(G, C). The
traffic current is then @(G, C) = d(G, C)E(G, C)

The model is described by the continuity equation for fluids:
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+ m@
mG

= 0 (3.1)

For some microscopic models, a relationship has been established with its dual macroscopic model by finding
the equation (momentum equation) that relates the density and the velocity of the flow. For instance, for the Optimal
Velocity Model (OVM) ( [2,12]), the following equation has been found to explain the macroscopic behaviour [9]:

mE

mC
+ E mE

mG
=

1
g
[+ (d−1) − E] − + ′

2gd3
md

mG
+ 1

6gd2
m2E

mG2 (3.2)

where V is the optimal velocity (dependent on the vehicle distance (1.2)) and g is the delay implicit in the OVM.
These equations have been used to explain the formation of density waves in situations of traffic variability. The
purpose of this section is to show that the proposed =��� models are suitable for modelling the macro process
too, compared to this well known model

For instance, stability analysis for equation (3.2) indicates that in the OVM the flow will be stable for delay
values under the limit g;8< < 1

2+ ′ (B0) , where B0 is the headway distance in the equilibrium and+ the optimal velocity
in (1.2). If + is defined as + (B) = E<0G · (1 − 1

1+43 (B−<) ) with 3 and < with the same values as in Section 3.1, we
get an stability limit for the delay g;8< = 0.2B.

Figure 3a shows the simulation of the evolution in C = 100B of a traffic flow that initially is stable with an
equilibrium distance B8=8C = 50< and an initial velocity E8=8C = 22.2222</B, when the delay is g = 0.45B > g;8<.
The evolution for 100 vehicles in the simulation (index 251 to 350) is shown. The propagating density waves
are manifested in groups of vehicles with similar velocities and distances (stop and go traffic), groupings that are
backwards propagated in the road to the following vehicles.

The changes of velocity of the OVMmodel are rather sudden and symmetric in the acceleration and deceleration
processes. Vehicles behaves with the same aggressiveness in the two phases, and the density waves show regular,
quasi-periodic patterns, all of which is not very realistic.

(a) OVM simulation. g = 0.5B, C = 100B (b) =��0 model simulation. g = 3B, C = 100B

Fig. 3 Distance and velocity evolution

To check the adequacy of the nDDE model to study macroscopic traffic evolution, similar scenarios have been
simulated with the =���0 acceleration model. In figure 3b the same evolution for the =���0 model is presented.
In this instance instability sets in for higher values of the delay (g = 3B), and we get asymmetric and aperiodic
density waves. We also observe a smoother transition from the stop situation to the higher speeds as a result of
the application of the maximum acceleration dependence on the velocity. This also produces groups with a higher
number of vehicles, which seems more in agreement with reality.

Thus these results indicate that the =���0 model reproduce the behaviour expected at the macroscopic scale
(wave formation and propagation), and, when a realistic function for the acceleration process is used, it provides
a more realistic traffic representation. The analysis of the macroscopic characteristics and the link with the
microscopic dynamics to determine the limiting delay that produces instability is intended as future work.

4. Applicability to V2X communications
V2X technologies [11] have seen an strong development as a result of the advances on the mobile communications
technologies in the last two decades, up to the point to be considered a reliable support of communications between
vehicles to coordinate driving functions. The application of these technologies are focused mostly in safety
applications and autonomous driving (also referred to as ITS, Intelligent Transportation Systems), which inherently
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require a very low packet loss probability and communications delay. The required level of performance has only
started to be achieved with the fourth generation of mobile networks in the decade 2010-2020, though the range of
applications and the amount of real applications have been somewhat limited as of today [11].

One of themost important standars in the firstwave of standardization isDedicated Short RangeCommunications
(DSRC), also known as the 802.11p standard from IEEE, consisting on the setting up of an ah-hoc network among
close vehicles to exchange status updates.

We use now a simplified model of the DSRC protocol as a first approach to test the performance of the car-
following model under study, taking into account the additional source of complexity introduced by the variability
of the delay of the communications process.

4.1. Ad-hoc network modelling
We consider a multi-vehicle system in which each vehicle broadcasts the information about its state (position-speed)
to the rest of vehicles using DSRCmessages, and each vehicle adapts its own dynamics by adjusting the acceleration
according to the =���0model (eq. (2.5)). Each vehicle send its status messages accessing the shared channel, and
the message is received by the vehicles in its area of coverage (defined by a radius '). The messages are sent by each
vehicle periodically but asynchronously, in such a way that there exist a certain probability that two transmissions
collide (i.e., two vehicles transmitting at the same time and thus mutually interfering their transmission), which
translates to a corresponding delay by the need of retransmitting the message after a random waiting time [5].
The most important source of such collisions is the "hidden node" problem [14]. Due to the limited reach of the
transmission of a given vehicle, it is possible that two vehicles are so far away that they do not detect each other’s
transmissions, but some vehicles in between are able to receive both of them, so, if they are simultaneous, neither
message is received correctly by this intermediate vehicle.

For this situation the probability % of a successful transmission can be calculated using the classical unslotted
ALOHA model [1, 14]:

% = 4−2·d ·_(� ·) (+2)C (2'−�)) (4.1)

where _ is the message generation rate of each vehicle, )C is the packet transmission time, )( is the length of a
timeslot (basic digital transmission time), ' is the radius of the coverage area of the vehicle, � is the distance for
which a collision is detected (� > ') and d is the vehicle density.

A receiving vehicle will get the information correctly after a number of trials # (geometrically distributed with
parameter %), so the average delay caused by the hidden node problem is:

g =
#

_
=

1
_ · % (4.2)

4.2. Results for the coupled system
The effect of introducing a variable delay in the =���0 model as an effect of communications congestion has
been simulated. First we focus on the impact on the microscopic modelling, and later we provide some insights on
the macroscopic modelling.

Microscopic behaviour of nDDE model with variable delay
The consideration of the dependence of the delay on the trafficdensity introduces and additional degree of complexity
if we want to consider that the changes in density could influence the velocity of all the vehicles, including the
leader. Nevertheless, we can test the influence of variable delay on the microscopic behaviour by considering a
simpler two-vehicle system that is part of an autonomously driven platoon (with the leader maintaining constant
velocity) that travel along a road with light load, but with the road in opposite direction having variable density,
which would induce changes in the experienced delays (in both directions of the road).

In such a case, gathering equations (2.5), (4.1) and (4.2), we now have the following system of equations
governing the dynamics of the two-vehicle system:

{
B′′(C + g(d)) = −6(B, B′) = −0(B′) + (0 (B′)+1)

1+ 1
0 (B′) 4

3 (B−<+:B′)

g(d) = 1
_ 4

2·d ·_(� ·) (+2)C (2'−�))
(4.3)

where d is the density of the road in opposite direction.
As an example of the impact, we first provide the results for the case in which the platoon traverses a road sector

with significantly more density in the opposite road. Figures 4a and 4b show the evolution of the dynamics of
the follower vehicle when the density it encounters in the opposite road changes from 0.0225 veh./m (inter-vehicle
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(a) Density change from 0.0225 veh./m to 0.04275 veh./m (b) Density change from 0.0225 veh./m to 0.04725 veh./m

Fig. 4Micro evolution for delay depending on vehicle density.

distance of 44.44 m) to values of 0.04275 veh./m (distance 21.85 m) and 0.04725 veh./m (distance 21.16 m)
respectively.

It can be appreciated that small variations of vehicle density produce remarkably different instability oscillations
(the highest density value differs only 10% between the two examples), and the instability takes some time to set in
after the density changes, and it takes a much shorter time to recover once the density and the delay have returned
to lower values.

Despite the complexity introduced by the variable delay, this scenario is relatively simple, since the delay
variation is not influenced by the action of the two vehicles of the car-following model. Nevertheless, from the
point of view of the global traffic process (beyond the car-following two-car system), it is also interesting to analyze
the complete coupling of the vehicles and communication system, including the feedback process that the change
of the velocity of the vehicles introduce on the density of vehicles, which in turn modify the delay and therefore
again the velocity.

Given the complexity associated with the system defined by equation (4.3) to analyze a multi-vehicle system
following the nDDE model, to study the global behaviour of the system requires the usage of the paradigm of the
macro model. We will provide some ideas about this in next section.

Macroscopic behaviour of nDDE model with variable delay
Wehave tested an scenario that is initially stable, where the system is composed by 600 vehicles cruising at a velocity
E = 15, 6</B and an inter-vehicle distance of B = 33.33<, each one behaving according to the =���0 model
with constant delay g = 0.5B. As expected, for such low values for the delay, the traffic remains in equilibrium,
maintaining the initial conditions (time C = 100 and C = 150B are shown).

The impact of a variable delay induced by the changes in density is shown in figures 5a and 5b. In this case,
the value of density at each point G is calculated as the average of the vehicle density d(G) at the surrounding area
[G − ', G + '] (' = 300<). The delay experienced in G is then a function of the density g(d(G)) following equation
(4.3).

We show in figures 5a and 5b the evolution of the simulation for two points in time, namely 20 s and 150 s. For
practical considerations, we have limited the maximum delay in the function g(d(G)) to g<0G = 5B.

• After 20 s (C = 20B) the system is still near the equilibrium state, with values of density and delay starting to
change, which introduce variation in the distance and relative velocity

• In C = 150B the density waves grow in size, and the delay fluctuates between the maximum and minimum
values depending on the accumulation of vehicles.

These results show that due to the exponential dependence of the delay on the density (equations (4.1), small
density variations may produce significant excursions in the delay, which in turn cause the formation of density
waves that reinforce the density variations.

5. Conclusion and future work
This paper has presented an evaluation of a new car-following model (the =��� model introduced in [8]) which
present more realistic behaviour with respect to former car-following models. An improvement on the original
model (called =���0) has been introduced to adapt the model to real vehicle mechanics. The capabilities of the
model to represent realistic traffic situations, both at micro (2 vehicles) and macro (N vehicles) scales has been



46 José Enríquez Gabeiras, Juan Francisco Padial Molina

(a) t = 20 s. (b) t = 150 s.

Fig. 5Macro evolution with density 0.03 veh./m and and variable delay dependent on the density.

shown using a new simulation tool developed on the ns-3 platform. This tool is intended to study the dynamics of
the road traffic management that relies on vehicle communications to update state information. In this regard, a
first example of the interaction of the two dynamics (road traffic and communication traffic) has been presented.

Future developments of this research will progress along the following lines:

• Evolution of the =���0 model to include more precise assumptions, specially on the acceleration and
deceleration mechanical models.

• Application of the presented simulation methodology to the study of stability and performance evaluation of
other V2X standards, specially the new generation systems (802.11bd and NR-V2X)

• Introduce communication protocol simulation instead of the performance model, taking advantage of the
existing models in the ns-3 library.

• Study of the stability limit of the macro behaviour of the =���0 model, and validation with the simulation
tool.
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1. Introduction
The design of well-balanced schemes has been a very interesting and challenging task in the last decades , and
continues to be a very active field of research. These schemes are able to preserve some (or all) stationary solutions
for a given problem, resulting on a large improvement on accuracy in most cases. One of the first articles that
treats this problem is [3]. Other important contributions for the shallow-water system of equations can be found
on [1–7,9, 10, 13] and the references therein. In particular, this system is a balance law that can be written as

mC* + mG 5 (*) = B(G,*), * ∈ R × R+ → Ω ⊂ R# , 5 ∈ �1 (R# ,R# ),
B : R ×Ω ↦→ R# .

This balance law is discretized in a finite volume framework. In particular, we consider semi-discrete high-order
finite-volume schemes:

3*8
3C

= − 1
ΔG

(
�8+ 1

2
(C) − �8− 1

2
(C)

)
+ 1
ΔG
(8 . (1.1)

In this work, we present two novel schemes for the shallow-water equations with Coriolis forces. First, a scheme
for the one dimensional case, which is able to preserve the geostrophic stationary solutions. Second, a scheme
for the two dimensional case which improves the accuracy of the standard finite volume schemes when the system
is close to a stationary solution. We follow the well-balancing method proposed in [8] which will be revisited in
Section 2. In section 3 we introduce the first order well-balanced scheme. In Section 4 we describe the second
order well-balanced scheme. Finally, in Section 5 we provide some numerical experiments for both schemes.

2. Well-balanced schemes
In the finite volume framework for balance laws, we are interested in the preservation of the stationary solutions of
the PDE described by:

∇f (u) = S(u). (2.1)

According to this interest, we introduce the following definition.

Definition 2.1 (Exactly well-balanced scheme) A finite volume scheme for balance laws is said to be exactly
well-balanced if it is able to preserve the exact stationary solutions of the hyperbolic PDE given by (2.1).

We will not always be able to compute the stationary solutions of a given balance law. This difficulty motivates us
to introduce a weaker definition:

Definition 2.2 (Well-balanced scheme) A finite volume scheme for balance laws is said to be well-balanced if it
is able to preserve a high order aproximation of the exact stationary solution of the PDE.

To preserve the stationary solution we follow the procedure described in [7] and [8]. Here we will describe only
the discrete well-balanced procedure. First of all, we write the quadrature formula

U=8 =
"∑
:=0

U8:U(G8: , C=) ≈
1
ΔG

∫ G8+1/2

G8−1/2
u(G, C=)3G,

where G8: are the quadrature points and U8: their weights. This quadrature formula is used to compute all the
integrals involved in the numerical scheme and its order must be equal or greater than the reconstruction order.
Given the quadrature points in each cell, we introduce the following definition.
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Definition 2.3 (Points of interest) Given a (exactly) well-balanced finite volume scheme, we define points of
interest of a stencil S8 as the set of points in the domain G ∈ Ω(S8) where the local stationary solution has to be
evaluated.

Now, we can describe the general discrete well-balanced procedure following [8]. The main idea described here
is to obtain a reconstruction operator %8 (G; {* 9 }) for every stencil that satisfies

%8 (G) = u∗ (G),

when U 9 = U∗9 where u∗ (G) is the exact solution (or a high order approximation) of (2.1). This means that the
reconstruction operator is the stationary solution when applied to the cell averages of the stationary solution.

In order to obtain this reconstruction operator, we must follow the next steps for every stencil in our domain (we
drop the time dependency for simplicity):

1. Compute, if possible, the local stationary solution U∗8 (G) on the stencil of cell �8 , (∪ 9∈(8 � 9 ) defined as the
solution of the ODE

∇f (U∗8 ) = s(G,U∗8 ),
"∑
:=0

U8:U∗8 (G8: ) = U8 . (2.2)

Finding this local stationary solutions is most nightmarish step of this procedure. If it is not possible to
found this local steady state on the stencil, we set*∗8 ≡ 0.

2. Compute the fluctuations {V 9 } 9∈(8 given by

V 9 = U 9 −
"∑
:=0

U
9
:U
∗
8 (G 9: ), 9 ∈ S8 ,

and compute the reconstruction operator:

&8 (G) = &8 (G; {V 9 } 9∈S8 ).

3. Finally, define
%8 (G) = U∗8 (G) +&8 (G). (2.3)

Once we have built the well-balanced reconstruction operator, we have to modify the semidiscrete finite volume
scheme in the following way:

3U8
3C

=
1
ΔG

(
F8−1/2 − f (UC ,∗8 (G8−1/2)) − F8+1/2 + f (UC ,∗8 (G8+1/2))

+
"∑
:=0

U8:
(
S(%C8 (G8: )) − S(UC ,∗8 (G8: ))

)
3G

)
. (2.4)

Which results in following theorem that can be proved (see [8, 11]).

Theorem 2.4 If the reconstruction operator is well-balanced for a stationary solution *∗ (G), then the numerical
method (2.4) is exactly well-balanced in the sense of the Definition 2.1.

Remark 2.5 It is important to notice that (2.2) and (2.4) determine the points of interest of our problem (see
Definition 2.3). We need to know the stationary solution at the points of quadrature in every cell of the stencil in
order to calculate average values of the stationary solution and the source term. Also, we need to know the value
of the stationary solution at the two intercells G8±1/2 in order to compute the fluxes.

3. Well-balanced scheme for the 1d shallow-water equations with Coriolis forces
In the case of the one dimensional shallow-water equations with Coriolis forces, the hyperbolic system reads:

mC


ℎ
ℎD
ℎE


+ mG


ℎD

ℎD2 + 6ℎ2/2
ℎDE


=


0

5 ℎE − 6ℎmGI
− 5 ℎD


,

where ℎ is the fluid depth, ℎD and ℎE are the horizontal linear moments, I is the bottom topography, 6 and 5 are
the gravity and Coriolis constant, respectively.



High-order well-balanced finite volume schemes for 1d and 2d shallow-water equations with Coriolis forces 49

If ℎD ≠ 0, the geostrophic stationary solutions [10] of the system are given by:

mG


ℎ∗D∗

(D∗)2/2 + 6(ℎ∗ + I)
E∗


=


0
5 E∗

− 5


, (3.1)

we recall that our main interest is to determine, locally, this stationary solutions, therefore we can follow the
procedure described in the previous section to obtain the well-balanced reconstruction operator.

This ODE system describing the stationary solutions can be solved locally in order to determine the local
stationary solution. First equation leads to (ℎD)∗ (G) = ℎD8 . Third equation indicates that the velocity E is linear, in
this case

E∗ (G) = − 5 (G − G8) + E8 . (3.2)

These two solutions are easily computed in any point of interest, notice that we have neither set a reconstruction
order nor quadrature formula. The main difficulty arises from the calculation of ℎ∗, which is described by the
second equation. This equation indicates that the stationary value of the water depth ℎ∗ (G?) must be a root of the
cubic equation

Z (ℎ∗, E8 , G? , �8) =6(ℎ∗)3 (G?) +
(
6I(G?) − 5 +∗ (G?) − �8

) (ℎ∗)2 (G?) + (ℎD)82
, (3.3)

where G? is any point of interest of our problem, +8 (G) is a primitive function of E∗ (G) and �8 is the local energy of
the system. Notice that (3.3) has always a negative root and may have one, two or no positive roots. Here, we follow
the same procedure that the one described in [6] to choose the appropriate value root. Following this procedure,
we have an exactly well-balanced scheme according to Definition 2.1.

3.1. Well-balanced scheme for first and second order reconstructions
In this case, we can use the midpoint quadrature formula. Therefore, we can relate the values of the cell averages
with the values of the solution at the cell centre. This means that the velocity E∗ is

E∗ (G) = − 5 G + (ℎE)8
ℎ8
+ 5 G8 ,

so the potential energy associated to E∗ can be calculated by a direct integration:

+∗8 (G) = − 5
G2

2
+ ( 5 G8 + E8)G.

And using (3.3) we can calculate the local energy at the cell centre

�8 =
(D8)2

2
+ 6

(
ℎ8 + I(G8) − 5

6
+∗8 (G8)

)
,

where D8 = (ℎD)8/ℎ8 . Knowing the local energy, we can find the rest of values of the water depth ℎ∗ (G) in the
points of interest G? by solving the cubic equation (3.3).

3.2. Well-balanced scheme for third order reconstruction
In this case, we are assuming a third order CWENO reconstruction. The main issue arises from the quadrature
formula, we need at least two points of quadrature in each cell to compute the integrals. So, in this case, we can not
calculate point-wise values of the velocity field, and accordingly, we can not calculate the local energy by a direct
substitution of values.

First, we multipliy (3.2) and ℎ∗, we derive the following relation

E8 + 5 G8 =
2(ℎE)8 + 5 G0

8 ℎ
∗ (G0

8 ) + 5 G1
8 ℎ
∗ (G1

8 )
ℎ∗ (G0

8 ) + ℎ∗ (G1
8 )

,

where G0
8 and G

1
8 are the two quadrature points on the i-th cell. Then, the primitive is

+∗8 (G) = − 5
G2

2
+

(
2(ℎE)8 + 5 G0ℎ

∗ (G0
8 ) + 5 G1ℎ

∗ (G1
8 )

ℎ∗ (G0
8 ) + ℎ∗ (G1

8 )

)
G.
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Now we introduce the following functions

l0 (G0
8 , G

1
8 , �8) = 0.5

(
ℎ∗ (G0

8 ) + ℎ∗ (G1
8 )

)
+ ℎ8 ,

l1 (G0
8 , G

1
8 , �8) = Z (ℎ∗ (G0

8 ), E8 , G0
8 , �8), l2 (G0

8 , G
1
8 , �8) = Z (ℎ∗ (G1

8 ), E8 , G1
8 , �8).

We recall the dependency of +∗ on both ℎ∗ (G0
8 ) and ℎ∗ (G1

8 ). Finally, we solve the non-linear system of equations
(l0, l1, l2) = (0, 0, 0) for (ℎ∗ (G0

8 ), ℎ∗ (G1
8 ), �8). Once this solution is computed, the other values of ℎ∗ at the points

of interest are obtained by solving the cubic equation (3.3) with the local energy �8 obtained from this procedure.

4. Well-balanced scheme for the 2d shallow-water equations with Coriolis forces
The two dimensional shallow-water system reads:

mC


ℎ
ℎD
ℎE


+ mG


ℎD

ℎD2 + 6ℎ2

2
ℎDE


+ mH


ℎE
ℎDE

ℎE2 + 6ℎ2

2


=


0

−6ℎmGI(G, H)
−6ℎmHI(G, H)


+


0
5 ℎE
− 5 ℎD


.

In this case, we deal only with 1st and 2nd order schemes in rectangular meshes. We are interested in the set of
geostrophic stationary solutions (see [5]) given by:

mGD
∗ + mHE∗ = 0, (4.1)

mG (ℎ∗ + I) = 5 E∗/6, mH (ℎ∗ + I) = − 5 D∗/6. (4.2)

The main difficulty on this system is that it is an eliptic problem, while the one dimensional case (3.1) is an
EDO. Also, we have a null divergence equation (4.1) which is very restrictive for our discrete system. Also, this
system allows infinite functional forms for D and E while we only know ℎD and ℎE.

Our approach consists on modifying the continuous equation (4.1) with a discrete version of itself:

XG*
∗
8, 9 + XH+∗8, 9 = 0. (4.3)

Where
XG*8, 9 =

*8+1, 9 −*8−1, 9

ΔG
, XH*8, 9 =

*8, 9+1 −*8, 9−1

ΔH
.

As we are applying first and second order reconstructions, we can compute:

(D, E)8, 9 =
(
ℎD

ℎ
,
ℎE

ℎ

)
8, 9

,

with these values, we check equation (4.3). If it is satisfied, then*∗ = * and+∗ = + . In the other case, we calculate
the values*∗8±1, 9 and +

∗
8, 9±1 such that:

XG*
∗
8, 9 + XH+∗8, 9 = 0,

min
* ∗ ,+ ∗

[ ∑
:=−1,1

(
(*∗8+:, 9 −*8+:, 9 )2 + (+∗8, 9+: −+8, 9+: )2

)]
.

Once known the point values of the stationary velocity field, we can calculate the functional form and the water
depth:

1. In the case of the first order reconstruction, our points of interest are the intercells and the cell centre. In this
case, we assume affine velocities:

@∗8, 9 (G) = @8, 9 + XG@8, 9 + XH@8, 9 , for @ = D, E. (4.4)

Then, we can calculate the stationary water depth by a direct integration using (4.2):

ℎ∗ (G, H) = ℎ8 +
∫
�8, 9

I3+ + 5
6

(
E8, 9 (G − G8) + XEG2

(G − G8)2 + XEH (H − H 9 ) (G − G8)

−D8, 9 (H − H 9 ) −
XDH

2
(H − H 9 )2

)
− I(G, H).
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2. For the second order reconstruction we need to know the values of the stationary solution in the adjacent
cells. In this case, we assume picewise affine velocities such that the conservation property is satisfied in the
whole stencil. This is acquired by imposing that the velocity field is (4.4) in the middle cell and extending
this function linearly from the midpoints to the centres of the adjacent cells. After so, one can calculate ℎ∗
by a direct integration of this function.

Attending to definitions 2.1 and 2.2, our scheme is exactly well-balanced for an affine velocity field with ℎ∗
fullfilling (4.2). While the scheme will be well-balanced for any other geostrophic stationary solution.

5. Numerical experiments
In this section we are going to provide numerical experiments that test both schemes. In both problems (1d and
2d), we use an HLL Riemann solver ( [12]) with the wave speed estimates given by the procedure from [2]. Also
a CFL condition is applied:

ΔC ≤ ��! min
all cells

(
Δ+

max: _: }

)
,

where _: is the wave speed in each intercell and Δ+ is the volume of the cell in the selected mesh. For the
second order scheme we choose a minmod limiter, in the 1d and 2d cases. For the third order scheme a CWENO
reconstruction is applied. The errors are calculated under the !1 (Ω) norm, �# = ‖U(G, )) − u∗ (G)‖!1 (Ω# ) ,
where u∗ is the exact solution when known.

5.1. 1d geostrophic stationary solutions test
For this numerical experiment, we consider the steady-state proposed in [10]:

ℎ∗ (G) = 42G , D∗ (G) = 4
−2G

2
, E∗ (G) = − 5 G, I(G) = − 5

2

2
G2 − 42G − 4

−4G

8
.

The numerical experiment will be initizialised under this stationary state. While we consider 5 = 6 = 1,
��! = 0.8, ) = 5B and domain G ∈ [0, 1]. We consider Neumann boundary conditions. In table 1 we can find the
results for # = 25, 50, 100, 200, 400. We see how our scheme is exactly well-balanced for this stationary solution
as the errors are of the order of the machine error. It is important to notice that a small accumulation error rises in
the third order scheme due to the non-linear system that has to be solved.

Variable ℎ ℎD ℎE
Reconstruction O(1) O(2) O(3) O(1) O(2) O(3) O(1) O(2) O(3)N

25 0e+00 0e+00 5e-14 2e-16 6e-16 1e-14 1e-15 7e-16 5e-14
50 4e-16 0e+00 9e-14 3e-15 3e-16 7e-15 4e-14 6e-16 1e-13
100 1e-15 0e+00 3e-13 6e-15 2e-16 7e-14 9e-14 4e-16 2e-13
200 1e-14 0e+00 8e-13 4e-14 5e-16 2e-13 4e-13 4e-16 5e-13
400 1e-17 1e-17 2e-12 3e-16 3e-16 6e-13 2e-15 4e-16 9e-13

Tab. 1 !1 errors for the 1st, 2nd and 3rd order schemes.

5.2. 2d affine geostrophic stationary solutions
For this experiment we choose affine velocities and fix ℎ and I to be a geostrophic stationary solution:

D∗ (G, H) = 0.5 + 0.1G + 0.05H, E∗ (G, H) = 0.4 + 0.2G − 0.1H,

I(G, H) = 5

6

(
0.1G2 − 0.025H2 − 0.1GH

)
, ℎ∗ (G, H) = 3 + 5

6
(0.4G − 0.5H) .

We set ��! = 0.9, 5 = 6 = 1, a domain Ω = [0, 1] × [0, 1] and a final time ) = 1. The mesh chosen is # × #
with # = 10, 20, 40, 80, 160. In Table 2 we show the obtained errors. We observe that the scheme is exactly
well-balanced as we expected.
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h hu hvN O(1) O(2) O(1) O(2) O(1) O(2)
10 1e-15 1e-15 2e-15 7e-16 2e-15 6e-16
20 1e-15 1e-15 3e-15 2e-15 4e-15 2e-15
40 2e-15 2e-15 6e-15 1e-15 5e-15 1e-15
80 5e-15 5e-15 1e-14 1e-15 1e-14 1e-15
160 2e-15 2e-15 1e-14 1e-15 2e-14 1e-15

Tab. 2 !1 errors for the first and second order schemes.

Fig. 1 Exact stationary solution.

5.3. 2d vortex stationary solution
For this last experiment, we choose a stationary vortex proposed in [9], with:

ℎ(G, H) = 1 + Y2Ψ(G, H), D(G, H) = −YHΘ(G, H), E(G, H) = YGΘ(G, H),

Ψ(G, H) =



2.5(1 + 5Y2)A2, if A < 1
5 ,

1+5Y
10 + 2A − 0.3 − 2.5A2 + Y2

(
4 log(5A) + 7

2 − 20A + 25
2 A

2
)

if 1
5 ≤ A < 2

5 ,
1−10Y2+20Y2 log(2)

5 , if 2
5 ≤ A,

Θ(G, H) =



5 if A < 1
5 ,

2
A + 5 if 1

5 ≤ A < 2
5 ,

0 if 2
5 ≤ A,

where A =
√
G2 + H2. We consider (G, H) ∈ [−1, 1] × [−1, 1], ) = 10B, ��! = 0.5. We fix 6 = 1/Y2 and

5 = 1/Y, for Y = 0.05. Also we take null flux boundaries and a flat bottom topography. In figures 2-3 we show the
comparison between the stationary solution and the the 1st and 2nd order schemes in the WB and non WB cases.
The WB schemes preserve much better the shape of the vortex while the non WB schemes break its symmetries.
Also, the WB second order scheme performs much better than the WB 1st order one.
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Fig. 2 Stationary solutions. WB first order, left, WB second order, right.

Fig. 3 Stationary solutions. Non WB first order, left, non WB second order, right.
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Abstract
In this paper, we consider the total variation flow on bounded domains in metric measure spaces. For Neumann

or Dirichlet boundary conditions, we generalise the notion of weak solutions to the metric case using the first-order
linear differential structure due to Gigli and a version of the Gauss-Green formula. Moreover, we provide a notion
of solutions to the Neumann problem which is valid for !1 initial data.

1. Introduction
The total variation flow in an open bounded set Ω ⊂ R# is formally the equation

DC = div
(
�D

|�D |

)
in Ω × (0,∞). (1.1)

Since its introduction in the seminal work [18] by Rudin, Osher and Fatemi in order to solve the denoising problem,
it has remained one of the most popular tools in image processing. From the mathematical point of view, the
natural setting to look for solutions to (1.1) is to require that for a.e. C ∈ (0,∞) the function D(·, C) is a function
of bounded variation, i.e. its distributional derivative is a Radon measure. The main difficulty is that the operator
on the right-hand side of (1.1) is degenerate, so it is not immediately clear how to properly define the right-hand
side of equation (1.1), taking into account that the denominator may disappear on a set of positive Lebesgue
measure; actually, this phenomenon of formation of facets it a typical property of solutions to the total variation
flow. A characterisation of solutions was established in the monograph [4] by replacing �D

|�D | with a vector field
with integrable divergence which agrees |�D |-a.e. with the Radon-Nikodym derivative 3�D

3 |�D | , using the classical
theory of maximal monotone operators due to Brezis [7], the Crandall-Liggett theorem [9], and a Gauss-Green
formula for vector fields with integrable divergence and BV functions due to Anzellotti [5].

The study of gradient flows in metric spaces faces some additional difficulties (for a standard reference, see [2])
and requires very different methods from the Euclidean setting. The reason is that, in general, in a metric space
directions are not well-defined (even locally), so it is unclear how to define directional derivatives of a function.
In general, in place of a derivative of a Lipschitz or Sobolev function, one can use one of several equivalent
objects (such as the minimal upper gradient) which in the Euclidean case correspond to the length of the gradient.
Therefore, in this way we do not obtain a linear structure, and consequently the definitions of solutions necessarily
avoid direct use of the directional derivatives. A classical problem of this type is the heat flow or the ?-Laplacian
evolution equation: it has been studied by Ambrosio, Gigli and Savaré in a series of papers (see for instance [3])
using the semigroup approach. In a complete and separable metric measure space (X, 3, a), under mild assumptions
on the measure a, the authors define it as the gradient flow in !2 (X, a) of the Dirichlet-Cheeger energy and study
its properties under the assumption that (X, 3, a) has Ricci curvature bounded from below. In these papers, the
gradient flow in !2 (X, a) is defined in the framework of maximal monotone operators in Hilbert spaces and the
corresponding ?-Laplacian operator is defined through the subdifferential of the ?-Cheeger energy (but without
giving any direct characterisation); some basic properties of the total variation flow were obtained using the same
method by Ambrosio and di Marino in [1].

One definition of solutions known in the Euclidean case which proved particularly difficult to generalise to the
metric setting was the definition of weak solutions. In this paper, we summarize the results obtained in [14] (see
also [12] for a similar study of the ?-Laplacian evolution equation), and show how to introduce weak solutions to
the total variation flow in metric measure spaces. Using the first-order differential structure on a metric measure
space introduced by Gigli, we characterise the subdifferential in !2 (X, a) of the total variation. This leads to a
new definition of solutions to the total variation flow in metric measure spaces, in which a crucial role is played
by a vector field (defined via Gigli’s differential structure) satisfying some compatibility conditions. We provide
a characterisation of solutions and prove their existence and uniqueness, using the classical theory of maximal
monotone operators when the data is in !2 (Ω, a) and the theory of completely accretive operators for data in
!1 (Ω, a), in the following three situations: the evolution with Neumann boundary conditions with initial data
in !2 (Ω, a); with Dirichlet boundary condition in !1 (mΩ, |�jΩ |a) and initial data in !2 (Ω, a); and finally we
introduce the notion of entropy solutions to the Neumann problem and allow for initial data in !1 (Ω, a).
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2. Preliminaries
2.1. Standing assumptions
Throughout the paper, we assume that the metric space (X, 3) is complete and separable. Furthermore, we require
that a is a doubling measure and X supports a weak (1, 1)-Poincaré inequality. We restrict the presentation of the
notions from analysis on metric spaces to a minimum; for more details, we refer to [6] and [11].

2.2. Sobolev and BV spaces
Given a metric measure space (X, 3, a) and ? ∈ [1,∞), there are several possible definitions of Sobolev spaces on
X; nonetheless, under the assumptions of this paper, all of them agree (see [3]), and to simplify the presentation
we choose to use the Newtonian approach. We follow the presentation in [6]; we say that a Borel function 6 is an
upper gradient of a Borel function D : X→ R if for all curves W : [0, ;W] → X we have

��D(W(;W)) − D(W(0))�� ≤
∫
W
6 :=

∫ ;W

0
6(W(C)) | ¤W(C) | 3C 3B,

where
| ¤W(C) | := lim

g→0

W(C + g) − W(C)
g

is the metric speed of W. If this inequality holds for ?-almost every curve, i.e. the ?-modulus (see for instance [6,
Definition 1.33]) of the family of all curves for which it fails equals zero, then we say that 6 is a ?-weak upper
gradient of D. The Sobolev space,1, ? (X, 3, a) is defined as

,1, ? (X, 3, a) :=
{
D ∈ ! ? (X, a) : there exists an upper gradient 6 ∈ ! ? (X, a)

}
.

In the literature, this space is sometimes called the Newton-Sobolev space (or Newtonian space) and is denoted
#1, ? (X). For every D ∈ ,1, ? (X, 3, a), there exists a minimal ?-weak upper gradient |�D | ∈ ! ? (X, a), i.e. we
have |�D | ≤ 6 a-a.e. for all ?-weak upper gradients 6 ∈ ! ? (X, a) (see [6]). It is unique up to a set of measure
zero. The space,1, ? (X, 3, a) is endowed with the norm

‖D‖, 1, ? (X,3,a) =
( ∫
X
|D |? 3a +

∫
X
|�D |? 3a

)1/?
.

Also for functions of bounded variation there are several different ways to introduce them in metric measure spaces,
but again under the assumptions of this paper they are equivalent (see [1]). In this paper, we follow the definition
of total variation introduced by Miranda in [16]. For D ∈ !1 (X, a), we define the total variation of D on an open set
Ω ⊂ X by the formula

|�D |a (Ω) := inf
{
lim inf
=→∞

∫
Ω
6D= 3a : D= ∈ Liploc (Ω), D= → D in !1 (Ω, a)

}
, (2.1)

where 6D= is a 1-weak upper gradient of D. The total variation |�D |a (X) defined by formula (2.1) is lower
semicontinuous with respect to convergence in !1 (X, a). The space of functions of bounded variation �+ (X, 3, a)
consists of all functions D ∈ !1 (X, a) such that |�D |a (X) < ∞. It is a Banach space with respect to the norm

‖D‖�+ (X,3,a) := ‖D‖!1 (X,a) + |�D |a (X).
We turn our attention to the definition of the boundary measure of an open set in a metric measure space. A set
� ⊂ X is said to be of finite perimeter if j� ∈ �+ (X, 3, a), and its perimeter is defined as

Pera (�) := |�j� |a (X).
Another common way to define the boundary measure in metric measure spaces in the codimension one Hausdorff
measure. Given a set � ⊂ X, it is defined as

H(�) := lim
'→0

inf

{ ∞∑
8=1

a(�(G8 , A8))
A8

: � ⊂
∞⋃
8=1

�(G8 , A8), 0 < A8 ≤ '
}
.

If � ⊂ X is a set of finite perimeter, then for any Borel set � ⊂ X we have 1
�H(� ∩ m∗�) ≤ |�j� |a (�) ≤

�H(�∩m∗�), where m∗� is the measure-theoretic boundary of � , i.e. the set of all G ∈ X for which simultaneously

lim sup
A→0+

a(�(G, A) ∩ �)
a(�(G, A)) > 0 and lim sup

A→0+

a(�(G, A) \ �)
a(�(G, A)) > 0.
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In particular, if m∗Ω = mΩ, the spaces ! ? (mΩ,H) and ! ? (mΩ, |�jΩ |a) coincide as sets for every ? ∈ [1,∞], and
are equipped with equivalent norms. Definition of boundary values of BV functions in a metric measure space is a
more delicate issue; we restrict our attention to open sets and adopt the following definition.

Definition 2.1 Let Ω ⊂ X be an open set and let D be a a-measurable function on Ω. A number )ΩD(G) is a trace
of D at G ∈ mΩ if

lim
A→0+
−
∫
Ω∩� (G,A )

|D − )ΩD(G) | 3a = 0.

We say that D has a trace in mΩ if )ΩD(G) exists forH -almost every G ∈ mΩ.
Well-posedness of the trace and identifying the trace space of ,1,1 (Ω, 3, a) or �+ (Ω, 3, a) in the setting of

metric measure spaces is not immediate and requires additional structural assumptions on Ω. We summarize the
results known in the literature in the following Theorem (see [15] and [17]).

Theorem 2.2 Let Ω be an open bounded set which supports a weak (1, 1)-Poincaré inequality. Assume that Ω
additionally satisfies the measure density condition, i.e. there is a constant � > 0 such that

a(�(G, A) ∩Ω) ≥ �a(�(G, A))
for H -a.e. G ∈ mΩ and every A ∈ (0, diam(Ω)). Moreover, assume that mΩ is Ahlfors codimension 1 regular, i.e.
there is a constant � > 0 such that

�−1 a(�(G, A))
A

≤ H(�(G, A) ∩ mΩ) ≤ � a(�(G, A))
A

for all G ∈ mΩ and every A ∈ (0, diam(Ω)).

Under these assumptions, Definition 2.1 defines an operator )Ω : �+ (Ω, 3, a) � !1 (mΩ,H). Moreover, the
operator )Ω is linear, bounded and surjective.

Under the same assumptions there is a (nonlinear) bounded extension operator Ext : !1 (mΩ,H) → �+ (Ω, 3, a)
such that )Ω ◦ Ext is the identity operator on !1 (mΩ,H). When mΩ is Ahlfors codimension one regular, we have
m∗Ω = mΩ, so the spaces ! ? (mΩ,H) and ! ? (mΩ, |�jΩ |a) coincide as sets and have equivalent norms.

2.3. The differential structure
We follow Gigli [11] and Buffa-Comi-Miranda [8] in the introduction of a first-order differential structure on a
metric measure space (X, 3, a).

Definition 2.3 We define the cotangent module to X as

PCM? =

{
{( 58 , �8)}8∈N : (�8)8∈N ⊂ B(X), 58 ∈ ,1, ? (�8),

∑
8∈N

∫
�8

|� 58 |? 3a < ∞
}
,

where �8 is a partition of X. We define the equivalence relation ∼ as

{(�8 , 58)}8∈N ∼ {(� 9 , 6 9 )} 9∈N if |� ( 58 − 6 9 ) | = 0 a − a.e. on �8 ∩ � 9 .
Consider the map | · |∗ : PCM?/∼→ ! ? (X, a) given by

|{( 58 , �8)}8∈N |∗ := |� 58 |
a-everywhere on �8 . It is called pointwise norm on PCM?/∼. We define the norm ‖ · ‖ in PCM?/∼ as

‖{( 58 , �8)}8∈N‖ ? =
∑
8∈N

∫
�8

|� 58 |?

and set ! ? ()∗X) to be the closure of PCM?/∼ with respect to this norm. The space ! ? ()∗X) is called the
cotangent module and its elements will be called ?-cotangent vector fields. It is a ! ? (a)-normed module; we
denote by !@ ()X) the dual module of ! ? ()∗X), namely !@ ()X) := HOM(! ? ()∗X), !1 (X, a)), which is a !@ (a)-
normed module. The elements of !@ ()X) will be called @-vector fields on X. The duality between l ∈ ! ? ()∗X)
and ! ∈ !@ ()X) will be denoted by l(-) ∈ !1 (X, a). Since the module ! ? ()∗X) is reflexive, we can identify

!@ ()X)∗ = ! ? ()∗X),
where 1

? + 1
@ = 1.
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Definition 2.4 Given 5 ∈ ,1, ? (X, 3, a) we can define its differential 35 as an element of ! ? ()∗X) as
35 = ( 5 ,X).

Clearly, the operation of taking the differential is linear as an operator from,1, ? (X, 3, a) to ! ? ()∗X); moreover,
from the definition of the norm in ! ? ()∗X) it is clear that this operator is bounded with norm equal to one.
Furthermore, again from the definition of the pointwise norm, it is clear that

|35 |∗ = |� 5 | a-a.e. on X for all 5 ∈ ,1, ? (X, 3, a).
Now, following [8], we define the divergence of a vector field, in the case when it can be represented by an

integrable function. For 1
A + 1

B = 1, we set

D@,A (X) =
{
- ∈ !@ ()X) : ∃ 5 ∈ !A (X, a) ∀6 ∈ ,1, ? (X, 3, a) ∩ !B (X, a)

∫
X
5 6 3a = −

∫
X
36(-) 3a

}
.

Here, the right hand side makes sense as an action of an element of ! ? ()∗X) on an element of !@ ()X); the
resulting function is an element of !1 (X, a). The function 5 , which is unique by the density of ,1, ? (X, 3, a) in
! ? (X, a), will be called the (@, A)-divergence of the vector field - , and we shall write div(-) = 5 . An exhaustive
discussion on the uniqueness of the divergence and its dependence on the exponents can be found in [8, 12].

In the course of the paper, we will extensively rely on the first order differential structure presented above. It
is well-defined on metric spaces which are complete and separable; moreover, at least a priori, the structure is
not defined locally - the objects )∗X and )X are not well-defined (the notation ! ? ()∗X) and !@ ()X) is purely
formal) and there is no immediate way to localise it to an open set Ω ⊂ X. However, whenever Ω ⊂ X is an open
bounded set, thenΩ is also a complete and separable metric space; hence, the whole first-order differential structure
described above may be defined on Ω as well. However, under the assumptions of Theorem 2.2, we may identify
Newton-Sobolev and BV functions on Ω and Ω (see [13]). Then, on Ω the Newton-Sobolev space is equivalent to
the Sobolev space defined by test-plans as in [11] and [8], so we may also define the differential structure on Ω if
it is sufficiently regular; with a slight abuse of notation, we write ! ? ()∗Ω) and !@ ()Ω), even though technically
these objects are defined via an isometric extension to Ω.

However, under this identification, the divergence introduced above is not suitable for our purposes, because it
takes into account the boundary effects. We need to use a notion of divergence which only sees the structure of -
inside the open set Ω. To this end, we test the definition of the divergence using only functions which vanish at the
boundary. Given an open bounded setΩ ⊂ X which satisfies the assumptions of Theorem 2.2, for 1

A + 1
B = 1, we set

D@,A0 (Ω) =
{
- ∈ !@ ()Ω) : ∃ 5 ∈ !A (Ω, a) ∀6 ∈ ,1, ?

0 (Ω, 3, a) ∩ !B (Ω, a)
∫
Ω
5 6 3a = −

∫
Ω
36(-) 3a

}
,

where ,1, ?
0 (Ω, 3, a) is the space of Sobolev functions in ,1, ? (Ω, 3, a) with zero trace. We again say that the

(uniquely defined) function 5 is the divergence of - and we write div0 (-) = 5 . The relationship between the two
definitions of the divergence can be roughly described as follows: the divergence div(-) is the divergence div0 (-)
plus a boundary term which has an interpretation of the normal trace. Finally, let us note that when the metric
measure space is Euclidean equipped with the Lebesgue measure, the vector fields and differentials arising from
this construction coincide with their standard counterparts defined in coordinates, see [11].

2.4. Anzellotti pairings and Gauss-Green formula
We now present the notion of Anzellotti pairings and a Gauss-Green formula for a bounded domain in a metric
space, which will be our key tool in the identification of solutions; this is a generalisation of the classical
results due to Anzellotti [5] in the Euclidean setting. In this subsection, we require that Ω ⊂ X satisfies the
assumptions of Theorem 2.2. Moreover, we require that Ω is a regular domain in the following sense: denote
ΩC = {G ∈ Ω : dist(G,Ω2) ≥ C}. An open set Ω ⊂ X is a regular domain if it has finite perimeter and

|�jΩ | (X) = lim sup
C→0

a(Ω \ΩC )
C

.

Suppose that - ∈ !∞ ()Ω) and D ∈ �+ (Ω, 3, a). As in the case of classical Anzellotti pairings, we will additionally
assume a joint regularity condition on D and - which makes the pairing well-defined. The condition is as follows:
for ? ∈ [1,∞), we have

div0 (-) ∈ ! ? (Ω, a), D ∈ �+ (Ω, 3, a) ∩ !@ (Ω, a), 1
?
+ 1
@
= 1. (2.2)

In other words, we assume that - ∈ D∞, ?0 (Ω) and D div0 (-) is integrable.
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Definition 2.5 Suppose that the pair (-, D) satisfies condition (2.2). Then, given a Lipschitz function 5 ∈ Lip(Ω)
with compact support, we set

〈(-, �D), 5 〉 := −
∫
Ω
D div0 ( 5 -) 3a = −

∫
Ω
D 35 (-) 3a −

∫
Ω
D 5 div0 (-) 3a.

It turns out that the functional (-, �D) can be represented by a Radon measure which is absolutely continuous
with respect to |�D |a . Moreover, for every Borel set � ⊂ Ω we have∫

�
| (-, �D) | ≤ ‖- ‖∞

∫
�
|�D |a .

Moreover, the following Gauss-Green formula was proved in [13] (for an earlier result concerning Lipschitz
functions see [8]). Given - ∈ D∞, ?0 (Ω), there exists a function (- · aΩ)− ∈ !∞ (mΩ, |�jΩ |a) such that for all
D ∈ �+ (Ω, 3, a) with the property that the pair (-, D) satisfies condition (2.2) we have∫

Ω
D div0 (-) 3a +

∫
Ω
(-, �D) = −

∫
mΩ
)ΩD (- · aΩ)− 3 |�jΩ |a .

Note that the sign on the right hand side is different from the usual Gauss-Green formula due to the fact that
(- · aΩ)− has an interpretation of the weak normal trace defined using the interior normal vector.

3. The total variation flow
We begin with the Neumann problem




DC (C, G) = div
(
�D (C ,G)
|�D (C ,G) |a

)
in (0, )) ×Ω;

mD
m[ := �D

|�D |a · [ = 0 on (0, )) × mΩ;

D(0, G) = D0 (G) in Ω.

(3.1)

This Section is organised into two parts. In the first one, we consider the gradient flow of the total variation with
Neumann boundary data and prove existence, uniqueness and characterisation of weak solutions for !2 initial data.
Then, we present the notion of entropy solutions to deal with !1 initial data. From now on, we impose the following
regularity assumptions on the domain: Ω ⊂ X is an open bounded set; it is a regular domain; and both Ω and X\Ω
satisfy the assumptions of Theorem 2.2.

3.1. Weak solutions
Consider the energy functional TV# : !2 (Ω, a) → [0, +∞] defined by

TVN (D) :=


|�D |a (Ω) if D ∈ �+ (Ω, 3, a) ∩ !2 (Ω, a);

+∞ if D ∈ !2 (Ω, a) \ �+ (Ω, 3, a).

It is clear that TVN is convex and lower semi-continuous with respect to the !2 (Ω, a)-convergence. Then, by the
theory of maximal monotone operators (see [7]) there is a unique strong solution of the abstract Cauchy problem{

0 ∈ D′(C) + mTVN (D(C)) for all C ∈ [0, )];
D(0) = D0.

To characterize the subdifferential of TVN , we define the following operator.

Definition 3.1 (D, E) ∈ AN if and only if D, E ∈ !2 (Ω, a), D ∈ �+ (Ω, 3, a) and there exists a vector field
- ∈ D∞,20 (Ω) with ‖- ‖∞ ≤ 1 such that the following conditions hold:

−div0 (-) = E in Ω;

(-, �D) = |�D |a as measures;

(- · aΩ)− = 0 |�jΩ |a − a.e. on mΩ.



60 Wojciech Górny, José M. Mazón

The main result of this Section states that the operator AN coincides with the subdifferential of TVN . To
get this characterisation, we use the methods of convex duality, and in particular the Fenchel-Rockafellar duality
theorem (see for instance [10]). It is possible to prove the characterisation using duality techniques, because the
Gigli differential structure is linear and our assumptions on the domain guarantee that the trace operator is linear
and bounded. The main reason to rely on duality theory is that the differential structure is (at least a priori) not
defined locally and some of the Euclidean tools fail; for instance, it is not clear how to approximate a vector field
with integrable divergence by more regular vector fields.

Theorem 3.2 The set � (AN) is dense in !2 (Ω, a) and

mTVN = AN .

Our concept of solutions to the Neumann problem (3.1) is the following:

Definition 3.3 Given D0 ∈ !2 (Ω, a), we say that D is aweak solution of the Neumann problem (3.1) in [0, )], if D ∈
� ( [0, )]; !2 (Ω, a)) ∩,1,2

loc (0, ) ; !2 (Ω, a)), D(0, ·) = D0, and for almost all C ∈ (0, )) we have D(C) ∈ �+ (Ω, 3, a)
and there exist vector fields - (C) ∈ D∞,20 (Ω) with ‖- (C)‖∞ ≤ 1 such that the following conditions hold:

div0 (- (C)) = DC (C, ·) in Ω;

(- (C), �D(C)) = |�D(C) |a as measures;

(- (C) · aΩ)− = 0 |�jΩ |a − a.e. on mΩ.

Then, using the classical theory of maximal monotone operators (see for instance [7]), as a consequence of
Theorem 3.2 we have the following existence and uniqueness theorem.

Theorem 3.4 For any D0 ∈ !2 (Ω, a) and all ) > 0, there exists a unique weak solution of the Neumann problem
(3.1) in [0, )].

In a similar way, we can get existence and uniqueness of weak solutions to the Dirichlet problem for the total
variation flow; we summarize the main results in the following Remark.

Remark 3.5 Consider the Dirichlet problem for the total variation flow




DC (C, G) = div
(
�D (C ,G)
|�D (C ,G) |a

)
in (0, )) ×Ω;

D(C, G) = 5 (G) on (0, )) × mΩ;

D(0, G) = D0 (G) in Ω.

(3.2)

Given D0 ∈ !2 (Ω, a), we say that D is a weak solution of the Dirichlet problem (3.2) in [0, )], if D ∈
� ( [0, )]; !2 (Ω)) ∩ ,1,2

loc (0, ) ; !2 (Ω, a)), D(0, ·) = D0, and for almost all C ∈ (0, )) there exist vector fields
- (C) ∈ D∞,20 (Ω) with ‖- (C)‖∞ ≤ 1 such that the following conditions hold:

div0 (- (C)) = DC (C, ·) in Ω;

(- (C), �D(C)) = |�D(C) |a as measures;

(- (C) · aΩ)− ∈ sign()ΩD(C) − 5 ) |�jΩ |a − a.e. on mΩ.

Note that the sign of the normal trace of the vector field - is different than in the standard definition of weak
solutions for the total variation flow in Euclidean spaces; this is due to the fact that (- · aΩ)− corresponds to the
choice of an interior unit normal and the standard Anzellotti normal trace is defined using the exterior unit normal.
Then, for any 5 ∈ !1 (mΩ,H), D0 ∈ !2 (Ω, a) and ) > 0, there exists a unique weak solution of the Dirichlet
problem (3.2) in [0, )]. Moreover, the following comparison principle holds: if D1, D2 are weak solutions for the
initial data D1,0, D2,0 ∈ !2 (Ω, a) ∩ !@ (Ω, a) respectively, then

‖(D1 (C) − D2 (C))+‖@ ≤ ‖(D1,0 − D2,0)+‖@ for all 1 ≤ @ ≤ ∞.
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3.2. Entropy solutions
We shift our attention to the Neumann problem for initial data in !1 (Ω, a). To this end, we make use of the notion
of entropy solutions, which are defined using a family of inequalities involving truncations as in the Euclidean case;
for : > 0, denote by ): : R→ R the truncation function

): (A) :=


: sign(A) if |A | > :;

A if |A | ≤ :.

Definition 3.6 (D, E) ∈ BN if and only if D, E ∈ !1 (Ω, a), ): (D) ∈ �+ (Ω, 3, a) for all : > 0, and there exists a
vector field - ∈ D∞,10 (Ω) with ‖- ‖∞ ≤ 1 and −div0 (-) = E in Ω such that

∫
Ω
(F − ): (D)) E 3a ≤

∫
Ω
(-, �F) −

∫
Ω
|�): (D) |a

for all F ∈ �+ (Ω, 3, a) ∩ !∞ (Ω, a) and : > 0.

Proposition 3.7 The following conditions are equivalent:
(8) (D, E) ∈ BN;
(88) D, E ∈ !1 (Ω, a), ): (D) ∈ �+ (Ω, 3, a) for all : > 0, and there exists a vector field - ∈ D∞,10 (Ω) with ‖- ‖∞ ≤ 1
such that

−div0 (-) = E in Ω;∫
Ω
(-, �): (D)) =

∫
Ω
|�): (D) |a for all : > 0;

(- · aΩ)− = 0 |�jΩ |a − a.e. on mΩ.

As a consequence, we have
BN ∩ (!2 (Ω, a) × !2 (Ω, a)) = AN .

Theorem 3.8 The operator BN is<-completely accretive in !1 (Ω, a) and homogeneous of degree zero. Moreover,
� (BN) is dense in !1 (Ω, a).

In particular, the operator AN is also completely accretive as a restriction of BN to !2 (Ω, a) × !2 (Ω, a).

Definition 3.9 We say that D ∈ � ( [0, )]; !1 (Ω, a)) ∩,1,1
loc (0, ) ; !1 (Ω, a)) is an entropy solution of the Neumann

problem (3.1) in [0, )] with initial data D0 ∈ !1 (Ω, a), if for all : > 0 we have ):D(C) ∈ �+ (Ω, 3, a) and there
exist vector fields - (C) ∈ D∞,10 (Ω) with ‖- (C)‖∞ ≤ 1 such that for a.e. C ∈ [0, )] the following conditions hold:

div0 (- (C)) = DC (C, ·) in Ω;

(- (C), �):D(C)) = |�):D(C) |a as measures;

(- (C) · aΩ)− = 0 |�jΩ |a − a.e. on mΩ.

Theorem 3.10 For any D0 ∈ !1 (Ω, a) and all ) > 0 there is a unique entropy solution D(C) of the Neumann
problem (3.1) in [0, )]. Moreover, the following comparison principle holds: if D1, D2 are entropy solutions for the
initial data D1,0, D2,0 ∈ !@ (Ω, a), respectively, then

‖(D1 (C) − D2 (C))+‖@ ≤ ‖(D1,0 − D2,0)+‖@ for all 1 ≤ @ ≤ ∞. (3.3)

The comparison principle given in equation (3.3) is a consequence of the complete accretivity of the operator
BN . Actually, this notion of solutions for !1 initial data can also be applied not only for the Neumann problem,
but also for the total variation flow defined on the whole space, considered for instance in [12]. This is formalised
in the following Remark.

Remark 3.11 Suppose that a(X) < ∞. Consider the energy functional

TV(D) =
{ |�D |a if D ∈ �+ (X, 3, a) ∩ !2 (X, a);
+∞ if D ∈ !2 (X, a) \ �+ (X, 3, a)
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and its gradient flow in !2 (X, a) {
0 ∈ D′(C) + mTV(D(C)) for all C ∈ [0, )];
D(0) = D0.

(3.4)

By theory of maximal monotone operators, there exists a unique solution of (3.4) for initial data D0 ∈ !2 (X, a) and
its characterisation in terms of Anzellotti pairings was given in [12]. In a similar way as in this subsection, we may
also introduce the notion of entropy solutions valid for initial data in !1 (X, a); for the purpose of this Remark only,
denote by (-, �D) the Anzellotti pairing introduced in [12], i.e. as in Definition 2.5, but with the divergence div
in place of div0.

With this understood, we say that D ∈ � ( [0, )]; !1 (X, a)) ∩,1,1
loc (0, ) ; !1 (X, a)) is an entropy solution of the

Cauchy problem (3.4) in [0, )] with initial data D0 ∈ !1 (X, a), if for all : > 0 we have ):D(C) ∈ �+ (X, 3, a)
and there exist vector fields - (C) ∈ D∞,1 (X) with ‖- (C)‖∞ ≤ 1 such that for almost all C ∈ [0, )] the following
conditions hold:

div(- (C)) = DC (C, ·) in X;
(- (C), �):D(C)) = |�):D(C) |a as measures.

For any D0 ∈ !1 (X, a) and ) > 0, there exists a unique entropy solution of the Cauchy problem (3.4) in [0, )], and
it satisfies the comparison principle and estimates given in Theorem 3.10.

Acknowledgments. This research was funded partially by the Austrian Science Fund (FWF), grant ESP 88. The
first author has also been partially supported by the OeAD-WTZ project CZ 01/2021. The second author has been
partially supported by the Conselleria d’Innovació, Universitats, Ciència y Societat Digital, project AICO/2021/223.
For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

References
[1] L. Ambrosio and S. Di Marino, Equivalent definition of BV spaces and total variation on metric measure spaces. J. Funct. Anal. 266

(2014), 4150–4188.

[2] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics
ETH Zürich, Birkhäuser Verlag, Basel, 2005.

[3] L. Ambrosio, N. Gigli and G. Savaré, Density of Lipschitz function and equivalence of weak gradients in metric measure spaces, Rev.
Mat. Iberoam. 29 (2013), 969–996.

[4] F. Andreu, V. Caselles, and J.M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathe-
matics, vol. 223, Birkhäuser, 2004.

[5] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983),
293–318.

[6] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical
Society, Zürich, 2011.

[7] H. Brezis, Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973.

[8] V. Buffa, G.E. Comi and M. Miranda Jr., On BV functions and essentially bounded divergence-measure fields in metric spaces, Rev. Mat.
Iberoam. 38 (2022), no. 3, 883–946.

[9] M. G. Crandall and T. M. Liggett, Generation of Semigroups of Nonlinear Transformations on General Banach Spaces, Amer. J. Math.
93 (1971), 265–298.

[10] I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland Publ. Company, Amsterdam, 1976.

[11] N. Gigli, Nonsmooth differential geometry - an approach tailored for spaces with Ricci curvature bounded from below, Mem. Amer.
Math. Soc. 251 (2018), no. 1196, v+161 pp.

[12] W. Górny and J.M. Mazón, On the ?-Laplacian evolution equation in metric measure spaces, J. Funct. Anal. 283 (2022), 109621.

[13] W. Górny and J.M. Mazón, The Anzellotti-Gauss-Green formula and least gradient functions in metric measure spaces, preprint (2021),
available at arXiv:2105.00432.

[14] W. Górny and J.M. Mazón, The Neumann and Dirichlet problems for the total variation flow in metric measure spaces, Adv. Calc. Var.
(2022), ahead of print, doi.org/10.1515/acv-2021-0107.

[15] P. Lahti and N. Shanmugalingam, Trace theorems for functions of bounded variation in metric spaces, J. Funct. Anal. 274 (2018), no. 10,
2754–2791.

[16] M., Miranda Jr., Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. 82 (2003), 975–1004.

[17] L. Maly, N. Shanmugalingam, M. Snipes, Trace and extension theorems for functions of bounded variation, Ann. Scuola Norm-Sci. 18
(1) (2018), 313–341.

[18] L. Rudin, S. Osher and E. Fatemi, Nonlinear Total Variation based Noise Removal Algorithms. Physica D. 60 (1992), 259–268.



XVII CMA / XXVII CEDYA. Zaragoza, July 18th–22nd, 2022 63

Singularly perturbed reaction-diffusion problems with non-smooth initial
and/or boundary data

José Luis Gracia1, Eugene O’Riordan2
1. IUMA and Department of Applied Mathematics. Universidad de Zaragoza, Spain

2. School of Mathematical Sciences, Dublin City University, Ireland

Abstract
This paper reviews a series of papers by the authors dealingwith different approaches to generating a parameter-

uniform global approximation to the solution of singularly perturbed reaction-diffusion problems with non-smooth
data. In addition to the usual layers that appear in the solution due to the presence of the singular perturbation
parameter, additional layers can appear when the data for the problem are not sufficiently smooth. All of the
approaches involve finite difference operators on Shishkin meshes, coupled with some additional feature in the
algorithm to deal with the new effects generated by the lack of regularity in the continuous solution.

1. Introduction
Singularly perturbed problems are often used as mathematical models describing physical processes in many
areas of applied sciences. They are characterized by the presence of a small positive parameter multiplying the
highest derivatives of the differential equation, causing their solutions to typically have large derivatives in narrow
subregions of the domain, called layers. Due to the presence of the layers, classical numerical methods are
not appropriate and parameter-uniform numerical methods are required [2, 18]. The convergence properties of a
parameter-uniform numerical method are not adversely affected by the presence of singular perturbation parameters
in the differential equation. Throughout the paper, 0 < Y ≤ 1 denotes a singular perturbation parameter, which can
take arbitrary small values.

In the literature two approaches have been used to design a parameter-uniform numerical method: fitted
operator [16] and fitted mesh methods [2]. Fitted mesh methods have been widely used over the last few decades
and the most common incorporate either Bakhvalov [1] or Shishkin meshes [21]. The latter meshes, are piecewise
uniform and are fine in the layer regions. The mesh is constructed using a priori information of the singularly
perturbed nature of the solution. In this respect, it is important to note that it is not possible to construct a fitted
operator method on a uniform mesh for a class of linear parabolic reaction-diffusion problems [19] that includes
the singularly perturbed heat equation −YDGG + DC = 5 (G, C) for (G, C) ∈ (0, 1) × (0, 1].

In this paper we shall only consider finite difference schemes defined on uniform and Shishkin meshes. These
schemes will give an approximation to the solution of the problem at the mesh nodes. A global approximation in
the whole domain can be generated from the nodal values using an interpolation operator. Global approximations
are desirable when approximating the solution of singularly perturbed problems due to the multiscale character of
the solution. We cannot fail to point out that for some classes of singularly perturbed problems, there are fitted
operator methods on uniform meshes that are nodally but not globally parameter-uniformly convergent [2].

In general, singularly perturbed problems with smooth data have boundary layers. If either the coefficients of
the differential equation are discontinuous or the source term has a point source [17,20], then the solution can also
exhibit interior layers. The analysis of the asymptotic behaviour of the solution provides information about the
location and width of the layers, and this information is crucial in designing layer-adapted a priori meshes, such as,
for example, the piecewise-uniform Shishkin meshes.

Most papers assume that all problem data (including the initial and boundary conditions) are smooth in the
error analysis to establish parameter-uniform error bounds on the numerical approximations. In addition, when
singularly perturbed parabolic problems posed on a domain &̄ are considered, it is also usually assumed that second
level compatibility conditions between the initial and boundary conditions are satisfied in order to guarantee that
the solution is in C4+W (&̄) (which denotes the space of all functions whose spatial derivatives up to fourth order
and time derivatives up to second order are Hölder continuous of degree W.)

The aim of this paper is to review the main results and conclusions of our research for singularly perturbed
linear parabolic initial-boundary-value problems with non-smooth data. A collection of these results are now
presented in this single paper and our interest focusses on the cases that either the initial and boundary conditions
do not satisfy zero level compatibility conditions or the initial or boundary conditions are discontinuous. The
difficulties for approximating these three problem classes are well-known as standard fitted mesh methods are not
parameter uniformly convergent [12–14] for problems with non-smooth data. In the case of reaction-diffusion
problems, one deals with a bi-singular problem where a classical singularity is entwined with the singular nature
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of the differential operator when Y � 1. The scenario is much more complex if a convective term (i.e., 0(G, C)DG)
is present in the differential equation. Then, the singularity is transported along a characteristic of the reduced
problem (which is formally obtained by setting Y = 0 in the differential equation) causing an interior layer, whose
location moves with time. When the final time is large enough, this interior layer interacts with a boundary layer
causing serious difficulties from the theoretical and numerical point of view. We shall confine our discussion
to singularly perturbed problems of reaction-diffusion type although some comments are made in the case of
convection-diffusion problems.

Three approaches are considered in this paper for these singularly perturbed problems with non-smooth data and
the technical details can be found in [5,6,11,12,14,22]. In § 2 singularly perturbed problems of reaction-diffusion
type are regularized by replacing the discontinuous data with a smooth function and the regularized problem is
approximated with a fitted mesh method [5]. A second alternative approach for this problem class is considered in
§ 3; from the values computed with a nodally (but not globally) fitted mesh method defined on a uniform mesh [14],
a global approximation to the solution is obtained by using a special interpolation operator which is exact for the
error function [6]. Finally, in § 4 a numerical/analytical approach [11, 12] is considered. First, the main singular
component associated with the discontinuity is identified and separated off from the solution D, then the remainder,
which is smoother than D, is approximated with a standard finite difference scheme on a Shishkin mesh.

Notation: Throughout, � denotes a generic positive constant that is independent of the singular perturbation
parameter Y and all discretization parameters. The !∞ norm on the domain � will be denoted by ‖ · ‖� .

2. First Approach: Regularization of the data
Consider the following problem: Find D(G, C) such that

!D := DC − YDGG + 1(G, C)D = 5 (G, C), (G, C) ∈ & := (0, 1) × (0, )], (2.1a)
D(0, C) = q! (C), D(1, C) = q' (C), 0 < C ≤ ), D(G, 0) = q(G), 0 ≤ G ≤ 1, (2.1b)

where 5 and 1 are smooth functions. Without loss of generality, assume that 1(G, C) ≥ V > 0 for (G, C) ∈ &̄,
otherwise consider the transformation E(G, C) = D(G, C)4−U0C with U0 > 0 a constant sufficiently large.

If the initial condition q and the boundary conditions are smooth functions and we assume that they satisfy
second order compatibility conditions at the point (0, 0)

q! (0) = q(0), q′! (0) − Yq′′(0) + 1(0, 0)q(0, 0) = 5 (0, 0), (2.2a)
( 5 − !q)C (0, 0) − Y( 5 − !q)GG (0, 0) = 0, (2.2b)

and similar conditions are satisfied at (1, 0), then D ∈ �4+W (&̄). In order to analyze the uniform convergence of a
numerical scheme, the solution is decomposed into a regular component and boundary layer components [15]

D = E + F! + F', (2.3)

with D, E, F ∈ �4+W (&̄) and they satisfy for 0 ≤ : + 2< ≤ 4���� m:+<mG:mC<
E(G, C)

���� ≤ � (1 + Y1−:/2), (G, C) ∈ &̄, (2.4a)���� m:+<mG:mC<
F! (G, C)

���� ≤ �Y−:/24−G√V/√Y , (G, C) ∈ &̄, (2.4b)���� m:+<mG:mC<
F' (G, C)

���� ≤ �Y−:/24−(1−G)√V/√Y , (G, C) ∈ &̄, (2.4c)

showing the presence of two boundary layers near G = 0 and G = 1 with a width of order $ (√Y). Let # and " be
two positive integers. Use backward Euler and standard central differences

!# ,"D
9
8 := �−C D

9
8 − YX2

GD
9
8 + 1(G8 , C 9 )D

9
8 = 5 (G8 , C 9 ), (G8 , C 9 ) ∈ &# ," (2.5)

defined on the mesh &̄# ," = {(G8 , C 9 ), 0 ≤ 8 ≤ #, 0 ≤ 9 ≤ "} to generate an approximation to the solution of
problem (2.1). The discrete operators �C and X2

G are defined by

�−C D
9
8 :=

D
9
8 − D

9−1
8

C 9 − C 9−1
, X2

GD
9
8 :=

2
ℎ8 + ℎ8+1

(
D
9
8+1 − D

9
8

ℎ8+1
− D

9
8 − D

9
8−1

ℎ8

)
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with ℎ8 := G8 − G8−1. If one considers a uniform mesh for the temporal variable and a piecewise uniform Shishkin
mesh for the spatial variable

[0, f] ∪ [f, 1 − f] ∪ [1 − f, 1], f := min
{

1
4
, <0

√
Y√
V

ln #
}
, (2.6)

where <0 is an arbitrary positive constant and the # grid points are distributed in the ratio #/4 : #/2 : #/4, then
the following error estimate is satisfied [15]

|D(G8 , C 9 ) − D 98 | ≤ � (#−1 ln #)2 + "−1).
If the initial and/or boundary data are discontinuous, the previous error analysis is no longer valid. Even further,
this method does not produce parameter-uniform numerical approximations [13, 14]. For example, consider
problem (2.1) with

q(G) = 1 q! (C) = 0,

and sufficient compatibility conditions are satisfied at the point (1, 0). Observe that q(0) ≠ q! (0).
In order to obtain an accurate approximation to the solution of problem (2.1), the first approach is based on

replacing the initial condition with a smooth function so that the solution of the new problem DA46 ∈ �4+W (&̄).
Consider the following initial condition for the regularized problem

q(G; Y) =
(
1 − 4

−1√
Y

)−? (
1 − 4

−G√
Y

) ?
, ? ≥ 4, G ∈ (0, 1).

Observe that this initial condition tends to a discontinuous initial condition as the singular perturbation parameter
tends to zero. The solution of the regularized problem DA46 is decomposed into a regular E and singular F, I
components, which satisfy for 0 ≤ : + 2< ≤ 4 and (G, C) ∈ &̄���� m:+<mG:mC<

E(G, C)
���� ≤ � (1 + Y1−:/2),

���� m:+<mG:mC<
F(G, C)

���� ≤ �Y−:/24−(1−G)√V/√Y ,
���� m:+<mG:mC<

I(G, C)
���� ≤ �Y−:/24−G√V/√Y .

If the regularized problem is approximated with the standard scheme (2.5) on the Shishkin mesh (2.6), one can
prove the following error estimates [5, Theorem 2] for (G8 , C 9 ) ∈ &̄# ,"

|DA46 (G8 , C 9 ) − (DA46) 98 | ≤ � ((#−1 ln #)2 + #−1Y1/2 + "−1). (2.7)

In [5] it is illustrated that the approximations (DA46) 98 are only accurate approximations to the solution D outside an
Y dependent neighbourhood of the point (0, 0). In other words, this approach will not generate parameter-uniform
global approximations to the solution D of the original problem.

Problem (2.1) with a discontinuous initial condition at the point (3, 0) with 3 ≥ �√Y is also considered in [5].
This problem exhibits an interior layer along G = 3 of width $ (√Y) and an appropriate regularized problem
is constructed to be approximated with a numerical method. The solution of the regularized problem is also
decomposed into several components showing the asymptotic behaviour of the solution, but the regular component
and the singular component associated with the interior layer of this problem are discontinuous functions along
G = 3. The Shishkin mesh condenses near the boundary and interior layers

[0, 3 − f1] ∪ [3 − f1, 3 + f2] ∪ [3 + f2, 1 − f2] ∪ [1 − f2, 1], (2.8)

where
f1 = min

{
3

2
, 2

√
Y

V
ln #

}
, f2 = min

{
1 − 3

4
, 2

√
Y

V
ln #

}
.

The # grid points are distributed in the ratio #/8 : #/4 : #/4 : #/4 : #/8. If this problem is approximated with
the standard scheme (2.5) on the Shishkin mesh (2.8), then one derives similar estimates to (2.7).

This approach has been also used in [3, 4, 7] to approximate problems of convection-diffusion with a discon-
tinuous initial condition at the point (3, 0) where 3 is either independent of Y or 3 = $ (Y?) with ? < 1/2. In
this case, the classical singularity travels along the characteristic of the reduced problem emanating from the point
(3, 0). This causes an interior layer with a width of order $ (√Y). In order to approximate the solution and prove
the uniform convergence of a numerical method, the problem is transformed by using the mapping

- (G, C) :=




3

3 (C) G, if G ≤ 3 (C),

1 − 1 − 3
1 − 3 (C) (1 − G), if G ≥ 3 (C),

(2.9)
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where 3 (C) is the solution of the initial value problem
3 ′(C) = 0(3 (C), C), C > 0, 3 (0) = 3. (2.10)

The transformed domain consist of two rectangular subdomains &̄− := [0, 3] × [0, )] and &̄+ := [3, 1] × [0, )].
The solution is decomposed into a regular E, boundary F and interior I layer components, where F is a smooth
function and E and I are discontinuous functions, but sufficiently smooth in each subdomain &̄− and &̄+. Backward
Euler method and upwinding approximation on a rectangular Shishkin mesh in the transformed domain—which is
aligned with the interior layer in the original coordinate system—are used for the numerical approximation of this
problem and it is proved that it is a parameter uniformly convergent scheme.

Problems with a delta-function present in the initial condition have also been examined. The initial condition
chosen for the regularized problem is given by

q(G; Y) = 61 (G) + 62 (G)4−\
(G−3)2
Y , 3 = $ (1);

where 61, 62 are two smooth functions. Observe that the initial condition involves a Gaussian profile with a standard
deviation determined by two parameters Y and \. Problems of reaction-diffusion and convection-diffusion with this
type of initial condition are considered in [9] and [8], respectively. In both problems the asymptotic behaviour of
the solution is analysed by using an appropriate decomposition of the solution. The components of the solution in
the case of the reaction-diffusion problem are smooth unlike for the convection-diffusion problem. In the case of a
reaction-diffusion problem [9], it is examined in detail the effect of the scale width of the initial layer on the solution
if it is either thinner (\ ≥ 1) or wider (\ < 1) than the scale induced by the differential equation. It is proved that
the solution has, in addition of the typical boundary layers, an interior layer of width$ (

√
Y/\). This information is

used to design the Shishkin mesh for the finite difference scheme and its uniform convergence is proved. In addition,
the error estimates reveal the effect of the width of the initial layer on the rate of convergence of the scheme. If a
convective term (0DG) is present in the differential equation, then the pulse travels along the characteristic of the
reduced problem generating an interior layer. In [8] this problem is approximated when \ = $ (1) by using the
mapping (2.9) to align the mesh with the trajectory of the interior layer. Error estimates are given for a numerical
scheme which combines backward Euler method and upwinding approximation on a Shishkin mesh, proving that
the method is almost first-order uniformly convergent, due to the presence of a logarithmic factor.

3. Second Approach: Fitted operator method: Nodal and global convergence
We present an alternative approach (proposed in [13, 14]) to dealing with singularly perturbed problems with
non-smooth data. Consider problem (2.1) where the reaction term 1 = 1(C) depends only on the time variable and
the initial condition is discontinuous at G = 3 with 3 = $ (1). Similar results can be deduced if the singularity is
caused by an incompatibility in the problem data. Suppose the later situation and it is incompatible at the point
(0, 0). Estimates of the solution are deduced via a decomposition of the solution D = E + I, where the regular E and
singular I components satisfy ���� m:+<mG:mC<

E(G, C)
���� ≤ �

(
1 + Y1−: C1/2−(<+:/2)4−

G
2Y
√
C

)
, (3.1a)���� m:+<mG:mC<

I(G, C)
���� ≤ �

(
1 + Y−: C−(<+:/2)4−

G
2Y
√
C

)
. (3.1b)

These bounds reveal that the derivatives of the solution are unbounded in the neighbourhood of the point (0, 0)
and in the neighbourhood of the generated interior layer. The solution can also have boundary layers, but they are
avoided here.

Problem (2.1) with an incompatibility at (0, 0) is now approximated with the fitted scheme proposed in [14].
This scheme is defined on a uniform mesh and the discrete operator is given by

− Y^(G, C)X2
GD

9
8 + 1(C 9 )* + �−C D

9
8 = 5 (G8 , C 9 ), (G8 , C 9 ) ∈ &# ," , (3.2)

where the fitting coefficient ^ is defined by

^(G, C) :=
�−C (l(G, C) + D0 (G, C)) + 1(C) (l(G, C) + D0 (G, C))

YX2
G (l(G, C) + D0 (G, C))

, (G, C) ∈ &# ," , (3.3)

where D0 (G, C) = −G3 − 6YGC and

l(G, C) :=
1
2
4−

∫ C
A=0 1 (A ) 3A erf

(
G

2
√
YC

)
, erf (Z) :=

2√
c

∫ Z

A=0
exp(−A2) 3A. (3.4)
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For C = 0, the error function is defined by continuous extension at G = 0. The fitting coefficient ^ is chosen such
that the scheme �−C l − Y^X2

Gl + 1(C)l = 0, i.e., this scheme is exact for the function l(G, C).
Under certain conditions, including 1 = 1(C), the fitted scheme satisfies the following error estimates [14]

|D(G8 , C 9 ) − D 98 | ≤ � (#−a + "−a),

with a ∈ (0, 1/3), which are more pessimistic than the computed orders of convergence observed in the numerical
experiments. These estimates show that this method converges nodally to the solution of problem (2.1), nevertheless
one cannot generate a global approximation in the whole domain using these nodal values and bilinear interpolation

*̄ (G, C) :=
# ,"∑
8=0, 9=1

D
9
8 i8 (G)[ 9 (C),

where i8 (G) is the standard hat function centered at G = G8 and [ 9 (C) = " (C − C 9−1), C ∈ [C 9−1, C 9 ). The lack of
global convergence of the fitted scheme is not caused by the accuracy of the nodal approximations. To support this
observation, we compare the solution D with its bilinear interpolant D̄ generated on the Shishkin mesh (2.6). Using
the estimates (3.1), we obtain

‖D − D̄‖'8. 9 ≤
{
�#−1 + �"−1#−1, if G8 ≥ f,
� (#−1 ln #)2X−1 + �"−2X−2, if C 9 ≥ X and G8 < f,

where '8, 9 := (G8 , G8+1) × (C 9 , C 9+1). These estimates show that the fitted piecewise-uniform Shishkin mesh and
bilinear interpolation only give global parameter-uniform convergence accuracy outside of the corner layer region
(G, C) ∈ (0,√Y ln #) × (0, X), X > 0, although we have accurate approximations of the solution at all mesh points,
even if they are very close to the corner (0, 0). In [6] it is proposed a nonlinear interpolant operator which is exact
for the constant function 1 and the error function in order to obtain a global approximation to the solution in the
whole domain. This interpolant operator in the cell '8, 9 is given by

*̄ (G, C) :=
1∑

;,<=0
D
9+<
8+1 ) (C; G8+; , C 9+<)((G, C; G8+;), (3.5)

where

) (C; G8+; , C 9+<) :=
l(G8+; , C) − l(G8+; , C 9+1−<)

l(G8+; , C 9+<) − l(G8+; , C 9+1−<) , ((G, C; G8+;) :=
l(G, C) − l(G8+1−; , C)
l(G8+; , C) − l(G8+1−; , C) .

We have observed global approximations to the solution of all the test problems considered with non-smooth data
when the fitted scheme (3.2) on the Shishkin mesh (2.6) and the nonlinear interpolation operator (3.5) are used.
Nevertheless, the proof of the parameter uniform global convergence of this numerical method is an open question.

4. Third Approach: Analytical/numerical approach
In the third approach the main singular component B(G, C) associated with the singularity is identified. This singular
function involves the error function. The other term

H = D − B where !H = 5 − !B, (4.1)

and the initial/boundary data associated with the function H are continuous functions. This function H is approxi-
mated using a numerical method.

Nevertheless, all the difficulties have not disappeared as the right-hand side 5 − !B is, in general, a non-smooth
function. In addition, it is only satisfied the zero order compatibility condition or the initial/boundary data are
piecewise smooth functions, and this can cause a small reduction in the order of convergence of the numerical
methods [22]. This reduction is not only a theoretical issue, but it is observed in the computed orders of convergence.
In [12] three problem classes are analysed and they are described below and for the sake of simplicity, we assume
that 1 = 1(C), if not otherwise indicated.

Consider first the case that the initial and boundary conditions are incompatible at (0, 0), i.e., q(0) ≠ q! (0).
For this problem class, the function B is given by

B(G, C) = q(0+)4−1 (0)C erf
(
G

2
√
YC

)
.
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The function H is decomposed into H = E + F! + F', where the regular E and right boundary F' components are
in �4+W (&̄) and they satisfy similar estimates to (2.4). The component F! ∈ �2+W (&̄) and it satisfies���� m8+ 9mG8mC 9

F! (G, C)
���� ≤ �Y−(8/2)4− `2 G√

) Y , 0 ≤ 8 + 2 9 ≤ 2; (G, C) ∈ &̄,���� m8mG8 F! (G, C)
���� ≤ �

Y(√YC)8−2
4
− `2 G√

) Y , 8 = 3, 4; , (G, C) ∈ &;
���� m2

mC2
F! (G, C)

���� ≤ �C , (G, C) ∈ &,

with 0 < ` < 1. Thus, the solution has two layers near G = 0 and G = 1 of width $ (√Y) and the standard
scheme (2.5) on the Shishkin mesh (2.6) is used to approximate the function H. Moreover, the higher derivatives
of the boundary layer components are singular initially, which means that the theoretical error analysis requires a
nonstandard approach.

Secondly, consider the case that the initial condition is discontinuous at (3, 0) with 3 = $ (1). The singular
component B is now given by

B(G, C) = [q] (3)
2

4−1 (0)C erf
(
G − 3
2
√
YC

)
,

where [q] (3) := q(3+) −q(3−). The function H is further decomposed into H = E+F! +F' +F� ,where the left F!
and right F' boundary components are continuous functions and the regular E and interior layer F� components
are discontinuous functions, but smooth enough in each subdomain &̄− := [0, 3] × [0, )] and &̄+ := [3, 1] × [0, )].
The interior layer component satisfies���� m8+ 9mG8mC 9

F� (G, C)
���� ≤ �Y−(8/2)4− ` |G−3 |2

√
Y) , 0 ≤ 8 + 2 9 ≤, ` < 1, (G, C) ∈ &̄− ∪ &̄+,���� m8mG8 F� (G, C)

���� ≤ �

Y(√YC)8−2
4
− `2 |G−3 |√

) Y , 8 = 3, 4, (G, C) ∈ &− ∪&+;
���� m2

mC2
F� (G, C)

���� ≤ �C , (G, C) ∈ &− ∪&+.

In addition to the boundary layers, the solution has an interior layer in the vicinity of G = 3 of width $ (√Y). The
standard scheme (2.5) is now defined on the Shishkin mesh (2.8).

We consider now the third problem class where the boundary condition q! is discontinuous at G = 3 with
3 = $ (1). The singular function for this problem is

B(G, C) = [q] (3)� (C − 3)
(
1 − 4−1 (0) (C−3) erf

(
G

2
√
Y(C − 3)

))
, where � (G) :=

{
0, for G < 0,
1, for G ≥ 0.

The function H is decomposed into H = E + F' + F! , with E, F' ∈ �4+W (&̄) and F! ∈ �2+W (&̄) and the character
of the function H for this problem class is the same as for the first problem class. Then, the standard scheme (2.5)
is defined on the Shishkin mesh (2.6).

In [12] it is proved that the numerical schemes proposed for the three problem classes are uniformly and globally
convergent, and they have second order in space and first order in time, except for a logarithmic factor.

This approach has been also applied to other problem classes observing global convergence in all of them.
Among other problems, we have considered in [11] the following problem class

!D := Y(DC − DGG) + 1(G, C)D = 5 (G, C), (G, C) ∈ &, (4.2a)
D(0, C) = q! (C), D(1, C) = q' (C), 0 < C ≤ ), D(G, 0) = q(G), 0 ≤ G ≤ 1, (4.2b)

with 1(G, C) ≥ V > 0 and 5 , 1, q, q! and q' are smooth functions, but q(0) ≠ q! (0). The solution has boundary
layers in the vicinity of G = 0 and G = 1, a classical discontinuity at (0, 0) caused by the discontinuous data and an
initial layer in the vicinity of C = 0, which is generated from the fact that the coefficient of the time derivative is Y
in this problem class. For this problem, the function H in (4.1) is defined by

B(G, C) = (q! (0) − q(0))4−1 (0,0)C/Y erfc
(
G

2
√
C

)
,
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where erfc(·) is the complementary error function. The component H solution is decomposed into H = E+F! +F'+
F� + F� �; where E, F! and F' are the regular and boundary layers components which satisfy similar estimates
to (2.4). The component F� is associated to the initial layer and it satisfies the estimates���� m8+ 9mG8mC 9

F� (G, C)
���� ≤ �Y−8/2Y− 94− VCY , 0 ≤ 8 + 2 9 ≤ 4; (4.3)

and for the initial-boundary layer component F� � we have����m2F� �
mG2 (G, C)

���� +
����mF� �mC

(G, C)
���� ≤ � + �Y

(
4−

√
V
Y G + 4−

√
V
Y (1−G) + 4− VCY

)
,����m4F� �

mG4 (G, C)
���� +

����m2F� �
mC2

(G, C)
���� ≤ �Y + � YC 4−

VC
Y

+ �
Y2

(
4−

√
V
Y G + 4−

√
V
Y (1−G) + 4− VCY

)
.

We have that E, F! , F', F� ∈ �4+W (&̄) but F� � ∈ �2+W (&̄). This information is used to define the numerical
scheme to approximate the function H and in the error analysis of the scheme. Consider the discrete operator

!# ,"D
9
8 := Y(�−C D 98 − X2

GD
9
8 ) + 1(G8 , C 9 )D

9
8 = 5 (G8 , C 9 ), (G8 , C 9 ) ∈ &# ," , (4.4)

on the Shishkin mesh (2.6) for the spatial variable. Estimates (4.3) show that there is a layer near C = 0 and we have
also considered a piecewise mesh for the temporal variable

[0, g] ∪ [g, )], where g := min
{

1
2
,
Y

V
ln"

}
(4.5)

and the " grid points are equally distributed between the intervals [0, g] and [g, )] . In [11, Theorem 4] error
bounds are given and they prove that the numerical method converges globally and uniformly with second order in
space and first order in time (except for a logarithmic factor.)

In [10] several numerical results are given when this strategy is applied to parabolic problems in two space
dimensions. For example, consider the following test problem

!D := Y(DC − DG1G1 − DG2G2 ) + (1 + G1 + G2 + C)D
= 4(G1 (1 − G1) + G2 (1 − G2)), (G1, G2, C) ∈ Ω × (0, 1],

D(G1, G2, C) = 0, (G1, G2) ∈ mΩ, C ∈ (0, 1],

D(G1, G2, 0) = 6(G1, G2) = sin
(

5c
4
G1 + 3c

4

)
sin

(
5c
4
G2 + 3c

4

)
, (G1, G2) ∈ Ω,

where Ω = (0, 1)2. Observe that this problem has an incompatibility between the initial condition 6(G1, G2) and the
boundary condition along the faces G1 = 0 and G2 = 0. For this problem, the function B in (4.1) is defined as

B(G1, G2, C) := 6(G1, G2)4−1 (0,0,0)C/Y erf
(
G1

2
√
C

)
erf

(
G2

2
√
C

)
.

The function H is approximated with the standard extension of scheme (2.5) to the two dimensional case on a
Shishkin mesh which is given as in (2.6) for each variable G1 and G2, and the piecewise mesh (4.5) for the time
variable. The uniform orders of convergence computed with this method suggest that this method converges
globally and uniformly to the function H.

5. Further remarks
The first approach is purely numerical; uses a classical finite difference operator on a standard Shishkin mesh and
generates a global approximation with simple bilinear interpolation. However, it generates a globally accurate
approximation to the solution of a regularized problem, which is close to the solution of the original problem only
outside an Y-dependent neighbourhood of the location of the singularity induced by the non-smooth data. This first
approach is relatively easy to implement and the technique could be extended to other classes of singularly perturbed
problems with non-smooth data. To generate a globally accurate approximation throughout the entire domain, the
second approach uses a special fitted finite difference operator coupled with a sophisticated form of interpolation.
The resulting global parameter-uniform accuracy has, at present, only been observed numerically and the form of
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interpolation used limits the potential of extending this approach to other classes of problems. The final approach
is a mixed analytical/numerical technique which uses a significant amount of a priori knowledge about the nature of
the singularity induced by the lack of smoothness in the data. Nevertheless, this final approach has been extended to
a wider class of singularly perturbed problems with non-smooth data and does produce parameter-uniform globally
accurate approximations.
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Abstract

In this article, we show some results we obtained related to observability and control of parabolic equations
on networks. By using a novel Carleman inequality, we found that the observability of the entire network could be
achieved under certain hypothesis about the position of the observation domain. The main difficulty we tackled,
due to the existence of loops, was to avoid entering into a circular fallacy, notably in the construction of the
auxiliary function for the Carleman inequality. The difficulty was overcomed with a careful treatment of the
boundary terms on the junctions. Finally, we used the observability to prove the null controllability of the network
and to obtain the Lipschitz stability for an inverse problem consisting on retrieving a stationary potential in the
parabolic equation from measurements on the observation domain.

1. Introduction

Network theory can be useful for studying complex systems such as those that arise, for example, in physical
sciences, engineering, economics and sociology. These systems can be modeled as networks, also known as metric
graphs, and their elements and interactions or links are identified respectively by vertices and edges. During the
last decades, the use of networks has been helpful and effective, among others, in the study of pipes, neural systems
(the brain can be thought of as a network of neurons), the flow of traffic on roads, the global economy and the
human circulatory system (see, for example, [4, Chapter 9], [5, 8, 16, 18]).

In this work, we consider the propagation of heat on a network with loops. We seek to control these networks
by acting in its interior with a source term, and to estimate the solutions with an observation domain located in the
interior of the network. Indeed, the main purpose of this research is to extend the results of [13] to networks with
loops. This is relevant considering that loops arise naturally in pipe systems, transport systems, etc.

Recent important works involving the control of parabolic equations on networks are the followings: [11],
where the controllability of the discretized heat equation is studied, [6], where bilinear controls are analyzed
on networks, [17], where the optimal control is studied in time-fractional diffusion equations and, [2], where
the controllability is analyzed with vanishing viscosity. Note that the literature related to the controllability of
hyperbolic equations on networks is more extensive, on which we may highlight the book [7] and the paper [12].
Particularly, [7] mainly analyzes the problem of propagation, observation and control of waves on planar one-
dimensional networks, using groundbreaking developments related to non-harmonic Fourier series, Diophantine
approximation, graph theory and wave propagation techniques (d’Alembert formula, for example).

1.1. Basic definitions

We first define some concepts related to graph theory that we use in this work. Let G = (V, E) be a graph.

• An edge 4 ∈ E that is incident to the vertices E and Ẽ ∈ V is expressed as 4 = EẼ, where E and Ẽ are the ends
of 4. The set of ends of 4 is denoted by V(4). Similarly, for every vertex E ∈ V, E(E) denotes the set of
edges incident to E. The degree of a vertex E ∈ V, denoted by 3 (E), is |E(E) |.

• V0 = {E : |E(E) | ≥ 2} denotes the set of inner vertices, and Vm = V \ V0 denotes the set of boundary
vertices of the graph.
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• A sequence of vertices E0E1...E=−1E= such that E8 ∈ V for all 8 = 0, ..., = and such that E8−1E8 ∈ E for all
8 = 1, ..., = is called a walk. If all the vertices are distinct, it is called a path, and if all the vertices are distinct
except E0 = E= it is called a cycle.

• A graph is connected if there is a walk joining each pair of vertices.

• A graph isomorphic to ({E0, ..., E=}, {E0E1, ..., E=−1E=}) for some = ∈ N is called path graph.

We define a network as a tuple G = (V, E,I), whereV is a finite set of vertices, E ⊂ V ×V is the set of edges,
and I is the identification of each edge 4 = EẼ and its ends E and Ẽ with a closed interval [0, !4] and the ends 0
and !4 respectively. Formally, the identification can be viewed as a function from E to - × V × V, where - is
the set of compact intervals. Notably, � (4) = ( [0, !4], E, Ẽ), where E is the end of 4 identified with 0, and Ẽ is the
other end of 4, which we identify with !4. This definition is also referred in the literature as metric graph. With
the identification I, for every edge 4 ∈ E, we define the following numbers for the vertex E identified with 0 and
for the vertex Ẽ identified with !4:

=4 (E) = −1 and =4 (Ẽ) = 1.

This allows to define the operator m=4 (E) H = =4 (E)mGH4 (E), which can be shorten to m=4 H when the vertex is clear.
Usually, we make a small abuse of notation and do not write the identification I explicitly when we denote the
network G.

In this article we work in the functional spaces , :, ?
?F (E), which denotes the set of functions that belong to

, :, ? (4) for all 4 ∈ E, : ∈ N and 1 ≤ ? ≤ ∞, and,1, ? (E) := , :, ?
?F (E) ∩�0 (E). Here “pw" stands for piecewise.

Similar definitions apply to �:?F (E) and �: (E). In this context, given a function 5 ∈ , :, ?
?F (E), we define by mG 5

the derivative in each of the edges. Clearly, if 5 ∈ , :, ?
?F (E), then mG 5 ∈ , :−1, ?

?F (E).

1.2. The controllability result

The problem that we study here is the dynamics of the flux and the control, which can be modelled by the following
parabolic system:




0mC H − `m2
GGH + 1mGH + 2H = 5 1l , in (0, )) × E,

H = 0, on (0, )) × Vm,
H48 = H4 9 , on (0, )) × V0, ∀48 , 4 9 ∈ E(E),∑
4∈E (E)

`4m=4 H
4 = WH, on (0, )) × V0,

H(0, ·) = H0, in E .

(1.1)

In this model H denotes the flux of the heat on the entire network. Throughout this article, we denote the restriction
of a function to an edge 4 by adding the superscript 4. In addition, 0 and ` are positive coefficients and 1 and 2
are coefficients which characterize the properties of the pipes of the network (roughness or properties of the heat
flux, for example). Moreover, W is a real coefficient measuring the flux of the heat on junctions, and l ⊂ E is the
control domain. Here, when writing l ⊂ E we make a small abuse of notation to mean l ⊂ ∪4∈E 4.

In addition, by coefficients we mean functions which model the properties of the systems like the heat diffusivity
and, unless stated otherwise, depend on the time and spatial variables.

It is trivial to prove in system (1.1) the usual energy estimations in !2 (0, ) ;�1 (E)) ∩ �0 ( [0, )]; !2 (E)) and
regularity result in !2 (0, ) ;�2

?F (E)) ∩ �1 (0, ) ; !2 (E)) for parabolic equations. This can be done by multiplying
the first equation of the system by H and HC and integrating it in (0, )) × E (see [9] for a particular case).

In order to solve the controllability and inverse problems with respect to the parabolic system (1.1), we study
the observability properties of the adjoint system, which is given by:
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


−0mCi − `m2
GGi − mG1i − 1mGi + 2i = 0, in (0, )) × E,

i = 0, on (0, )) × Vm,
i48 = i4 9 , on (0, )) × V0, ∀48 , 4 9 ∈ E(E),∑
4∈E (E)

`4m=4i
4 =

©­«
−

∑
4∈E (E)

=414 + Wª®¬
i, on (0, )) × V0,

i(), ·) = i) , in E .

(1.2)

System (1.2) might not be observable unless the control domain intersects a sufficient number of edges. In
particular, in order to avoid some of those non-observable cases, we assume that the control domain intersects a
sufficient number of edges:

Hypothesis 1 (Existence of an indexing function) Let G = (V, E) be a network and l ⊂ E an open subdomain.
We suppose that:

1. l intersects all the cycles of G. That is, if E1, ..., E= ∈ V such that 41 := E1E2, ..., 4=−1 := E=−1E=, 4= := E=E1
satisfy 48 ∈ E for all 8 = 1, ..., =, then there is : ∈ {1, ..., =} such that 4: ∩ l ≠ ∅.

Moreover, we suppose that there exists a function D : {4 ∈ E : 4 ∩ l = ∅} ↦→ V0 such that:

2. D is injective.

3. 4 is incident to D(4).

Roughly speaking, the state of the equation in the edge 4 is controlled by l if 4 ∩ l ≠ ∅, and by D(4) otherwise,
which is controlled by the rest of the adjacent edges. Identifying the right hypothesis, in the sense that allows us
to prove the results without being too restrictive, is not trivial and is one of the contributions of our work. Indeed,
the main breakthrough with respect to the previous work, and notably [13], is to make sure that we do not enter a
circular reasoning fallacy. This is done with Hypothesis 1, as the proof of the controllability follows in a fluid way.

Remark 1.1 (Identification of edges) Let G = (V, E) be a network and let l be a control domain such that
Hypothesis 1 is satisfied with an indexing function D that we fix. In order to identify an edge 4 such that l ∩ 4 = ∅
with an interval [0, !4], we establish that the end identified with !4 is the vertex D(4). This assignment simplifies
some computations in the proof of Proposition 2.1.

The main observability result in this work is a Carleman inequality (see Proposition 2.4 in Section 2.2). With
that inequality, we prove the following null controllability result regarding open-loop control:

Theorem 1.2 (Controllability of the heat equation on networks with loops) Let G = (V, E) be a network sat-
isfying Hypothesis 1, 0, ` ∈ ,1,∞ ((0, )); !∞ (E)) ∩ !∞ ((0, ));,1,∞

?F (E)) such that inf 0, inf ` > 0, 1 ∈
!∞ ((0, ));,1,∞

?F (E)), 2 ∈ !∞ ((0, )) × E) and W ∈ !∞ ((0, )) × V0). Then, there exists � > 0 such that for
all H0 ∈ !2 (E) there is 5 ∈ !2 ((0, )) × l) such that:

‖ 5 ‖!2 ( (0,) )×l) ≤ �‖H0‖!2 (E) ,

and the solution of (1.1) satisfies H(), ·) = 0.

Theorem 1.2 is proved by duality with the results of Section 2 (see [1]).
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1.3. Application to the resolution of inverse problems

Carleman estimates can also be used to obtain results in the field of inverse problems, which is an additional
objective of our work. In fact, the link between Carleman inequalities and their applications is well known. Some
important references regarding this topic include [14, 15], and detailed surveys are included in [3, 19].

In this work, we seek to generalize the results of [13] to systems with loops. With that purpose, let us consider
the system: 



mC H − `m2
GGH + ?H = 0, in (0, )) × E,

H = 0, on (0, )) × Vm,
H48 = H4 9 , on (0, )) × V0, ∀48 , 4 9 ∈ E(E),∑
4∈E (E)

`4m=4 H
4 = WH, on (0, )) × V0,

H(0, ·) = H0, in E,

(1.3)

for ` a piecewise constant function, W a real parameter, H0 the initial state and ? the static potential. Moreover, we
denote by H[?, H0] the solution of (1.3).

Our objective is to recover the potential ? by making measurements on the flux of the heat at a time C0 > 0
and also on the observation domain l but throughout the whole time interval (0, )). In particular, we prove the
following result:

Theorem 1.3 (Resolution of an inverse problem) Let G = (V, E) be a network satisfying Hypothesis 1, ? ∈
!∞ (E), A > 0 and H0 ∈ !2 (E) such that H[?, H0] ∈ �1 (0, ) ;�2

?F (E)) ∩�2 (0, ) ; !2
?F (E)) and such that for some

C0 ∈ (0, )) the following estimate holds:

|H[?, H0] (C0, ·) | ≥ A in E . (1.4)

Then, for any< > 0, there is a constant� (<, A, ), ‖mC H[?, H0] ‖!∞ ( (0,) )×E) ) such that for any @ ∈ !∞ (E) satisfying:

‖@‖!∞ (E) ≤ <,

we have:

‖@ − ?‖!2 (E) ≤ �
(
‖H[?, H0] (C0, ·) − H[@, H0] (C0, ·)‖� 2 (E) + ‖H[?, H0] − H[@, H0] ‖� 1 (0,) ;!2 (l))

)
. (1.5)

The proof of Theorem 1.3 is an easy consequence of the Carleman inequality in Proposition 2.4 (see [1]).

2. The observability problem

In this section we explain the main results and tools we need in order to prove the observability inequality for
system (1.2). With that purpose, in Section 2.1 we construct an auxiliary function of Fursikov-Imanuvilov type, and
in Section 2.2, using appropriate weights, we show the observability of system (1.2) with a Carleman inequality.

2.1. Construction of the auxiliary function

In this section we construct an auxiliary function that is required to define the Fursikov-Imanuvilov weights in
Section 2.2. Throughout this section we consider an open subdomain l̃ ⊂ l such that l̃ ⊂ l and such that, for all
4 ∈ E, l̃ ∩ 4 ≠ ∅ if and only if l ∩ 4 ≠ ∅.

We need to make sure that for all edge 4, if 4 ∩ l̃ ≠ ∅, the maximum of [4 is achieved in l̃ and if 4 ∩ l̃ = ∅,
the maximum of [4 is achieved on D(4), being its derivative small near D(4). As the “smallness" depends on the
coefficients of the system, we get a family of auxiliary functions whose derivatives near D(4) are as small as needed,
and such that they are uniformly bounded in,2,∞

?F (E).

Proposition 2.1 (Construction of the auxiliary function) Let G = (V, E) be a network, and l̃ be a domain
satisfying Hypothesis 1 with the indexing function D. We identify the edges of G as in Remark 1.1. Then, there is
� > 0 such that for all X ∈ [0, 1] there exists a function [ satisfying:
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1. The function [ ∈ �0 (E) ∩ �2
?F (E) and ‖[‖, 2,∞

?F
≤ �.

2. For all edges 4 such that 4 ∩ l̃ = ∅, then:

• mG[4 ≥ X on 4,
• m=4[4 (0) = −mG[4 (0) = −1,
• m=4[4 (!4) = mG[4 (!4) = X.

3. If an edge 4 that we identify with [0, !4] satisfies 4 ∩ l̃ ≠ ∅, then:
• |mG[ | = 1 on 4 \ l̃,
• m=4[4 (0) = −mG[4 (0) = −1,
• m=4[4 (!4) = mG[4 (!4) = −1.

The proof of the existence of such function is based on an induction on the number of edges of G. In order to prove
Proposition 2.1, we need to study the case of an edge assuming we have some restrictions on the boundary. This is
done with Lemmas 2.2 and 2.3, whose proofs are standard (see [1, 10]). In Lemma 2.2 we study the construction
of the auxiliary function for edges that have no intersection with l̃.

Lemma 2.2 (Extension of the auxiliary function with one constraint) Let l̃ ⊂ E be an open subdomain, 4 '
[0, !4] be an edge such that l̃ ∩ 4 = ∅, ' ∈ R, ? ∈ {0, !4} and X ∈ [0, 1]. Then, there is a function [4 ∈ �2 (4)
such that:

• mG[4 ≥ X on [0, !4],
• ‖[4‖!∞ (0,!4) ≤ |' | + !4, ‖mG[4‖!∞ (0,!4) ≤ 1, ‖mGG[4‖!∞ (0,!4) ≤ 1

!4 ,

• m=4[4 (0) = −mG[4 (0) = −1,

• m=4[4 (!4) = mG[4 (!4) = X,
• [4 (?) = '.

Next, in the following Lemma, we study the construction of the auxiliary function for edges which intersect l̃.

Lemma 2.3 (Extension of the auxiliary function with two constraints) Let l̃ ⊂ E be an open subdomain, 4 '
[0, !4] be an edge such that l̃ ∩ 4 ≠ ∅ and '1, '2 ∈ R. Then, there is a function [4 ∈ �2 (4) such that:

• ‖[4‖, 2,∞
?F (0,!4) ≤ � ( |'1 |, |'2 |, !4, l̃), for � increasing with |'1 | and |'2 | for a fixed !4 and l̃,

• |mG[4 | = 1 on [0, !4] \ l̃,
• m=4[4 (0) = −mG[4 (0) = −1,

• m=4[4 (!4) = mG[4 (!4) = −1,

• [4 (0) = '1, [4 (!4) = '2.

2.2. A new Carleman inequality

The auxiliary function constructed in the previous section allows us to define the usual Fursikov-Imanuvilov
weights:

U(C, G) :=
46_‖[ ‖∞ − 4_(4‖[ ‖∞+[ (G))

C () − C) , b (C, G) :=
4_(4‖[ ‖∞+[ (G))

C () − C) , ∀ (C, G) ∈ (0, )) × E, (2.1)

where [ is defined in Proposition 2.1 for l̃ an open domain compactly included in l such that 4∩ l̃ = ∅ if and only
if 4∩l = ∅ for all 4 ∈ E, and for X > 0 a sufficiently small parameter that will be defined in the proof of Proposition
2.4 (see [1]) for absorbing boundary terms. Bearing this in mind, we state the next Carleman inequality:
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Proposition 2.4 (A new Carleman inequality) Let 0, ` ∈ ,1,∞ ((0, )); !∞ (E))∩!∞ ((0, ));,1,∞
?F (E)) such that

inf 0, inf ` > 0, ℎ ∈ !∞ ((0, )) × V0) and 6 ∈ !2 (&). Then, there is � > 0 depending on G, l, 0, and ` such that
for all i) ∈ !2 (E), _ ≥ � and B ≥ � () + )2) the following inequality is satisfied:

B3_4
∬
&
4−2BUb3 |i|2 dG dC ≤ �

(
B3_4

∬
&l

4−2BUb3 |i|2 dG dC +
∬
&
4−2BU |6 |2 dG dC

)
, (2.2)

for U and b the weights defined in (2.1), and i the solution of:




−0mCi − `m2
GGi = 6, in (0, )) × E,

i = 0, on (0, )) × Vm,
i48 = i4 9 , on (0, )) × V0, ∀48 , 4 9 ∈ E(E),∑
4∈E (E)

`4m=4i
4 = ℎi, on (0, )) × V0,

i(), ·) = i) , in E .

(2.3)
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Eigenvalue problems for the ?–Laplacian in the critical range 1 < ? < 2
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Abstract
A simple variational characterization for the first nontrivial eigenvalue to a family of nonlinear eigenvalue

problems is discussed in this paper. The best representative is provided by the Neumann problem for the ?–
Laplacian operator, 


−Δ?D = _ |D |?−2D G ∈ Ω,
mD

ma
= 0 G ∈ mΩ,

whereΩ ⊂ R# is a bounded �1,U domain, a is the outer unit normal and Δ?D = div ( |∇D |?−2∇D). The key point
is the fact that the exponent ? falls in the somehow critical range 1 < ? < 2. Research reported here is inspired
by our work [32].

1. Introduction
The study of the spectrum of the ?–Laplacian operator Δ? , constrained by a set of standard boundary conditions,
is one of the challenging subjects in nonlinear analysis ( [30]). Most of the well–established achievements for the
Laplacian Δ (? = 2) are still in an early stage of development for ? ≠ 2, to say the less. A tentative list of these
subjects may be: distribution of the eigenvalues ( [4], [18], [30]), isolation ( [5], [29]), multiplicity ( [24], [1], [37]),
nodal sets ( [16], [22]) and Fredholm alternative ( [19], [34, 35]).

In order to fix the goals of the present paper let us review some general features on the Neumann problem,



−Δ?D = _ |D |?−2D G ∈ Ω,
mD

ma
= 0 G ∈ mΩ,

(1.1)

where Ω ⊂ R# is a bounded smooth domain and ? > 1. We begin with by recalling the definition of weak
eigenvalue: a (weak) eigenfunction D ∈ ,1, ? (Ω) \ {0} to (1.1) associated to the eigenvalue _ ∈ R is defined
through the equality, ∫

Ω
|∇D |?−2∇D∇E 3G = _

∫
Ω
|D |?−2DE 3G, (1.2)

which must be satisfied for all test functions E ∈ ,1, ? (Ω).
It follows from (1.2) that eigenvalues _ to (1.1) must be nonnegative while _1 = 0 is the first (trivial) eigenvalue,

which verifies

_1 = 0 = inf
D∈, 1, ? (Ω)

∫
Ω
|∇D |?∫
Ω
|D |? .

It is in addition a simple eigenvalue (all possible associated eigenfunctions are constant) and the only one with the
property of exhibiting one–signed eigenfunctions. In fact any other eigenfunction D associated to an eigenvalue
_ ≠ 0 must satisfy the average condition,

∫
Ω
|D |?−2D = 0. Hence D must change sign in Ω. Furthermore, _1 = 0 is

isolated since if were _= → 0 for a sequence _= of nontrivial eigenvalues, then a properly normalized sequence D=
of associated eigenfunctions would keep the sign in Ω for large = what is not possible.

On the other hand, an infinite amount of other eigenvalues to (1.1), under the form of an increasing sequence
_ = _(!= →∞, can be obtained by the minimax procedure,

_!(= = inf
(∈S=

sup
D∈(

∫
Ω
|∇D |?∫
Ω
|D |? .

Here, S= = {( ⊂ ,1, ? (Ω) : ( compact, ( = −(, W(() ≥ =} where W stands for the Krasnoselskii genus of �
( [33]). This means that the class of positive eigenvalues is non void. As _1 = _!(1 = 0 is isolated, a second
eigenvalue _2 to (1.1) exists and is defined as,

_2 = min{_ > 0 : _ is an eigenvalue to (1.1) }.
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The main objective of this work is just presenting a simple variational characterization of _2. In addition, to obtain
a similar result for a broader class of eigenvalue problems. To review background findings let us mention that a
first contribution in this direction was obtained in [3] and states,

_2 = _
(!
2 = inf

(∈S2
sup
D∈(

∫
Ω
|∇D |?∫
Ω
|D |? . (1.3)

A further alternative expression to (1.3) is obtained by replacing S2 by the more friendly class Σ2. It consists
of the images ℎ(S1), ℎ : S1 → ,1, ? (Ω), ℎ being an odd continuous mapping, S1 the unit circumference ( [21]).

A third representation of _2 is,

_2 = inf
q∈Γ

sup
B∈[−1,1]

∫
Ω
|∇q(B) |?∫
Ω
|q(B) |? , (1.4)

where Γ = {q : [−1, 1] → ,1, ? (Ω) \ {0} : q continuous, ±q(±1) ≥ 0}. Actually, (1.4) was shown in [7] for
a more general kind of nonsymmetric problems including (1.1) as a particular case. Despite all these strange
characterizations, there still exists a simpler expression for _2. Namely,

_2 = inf

{∫
Ω
|∇D |?∫
Ω
|D |? : D ∈ ,1, ? (Ω) \ {0} ,

∫
Ω
|D |?−2D = 0

}
. (1.5)

It should be remarked that (1.5) exactly matches with the natural formula for the linear case ? = 2. As a matter of
fact, (1.5) is presented in [10] without proof under the status of a well–known result. Nevertheless, while the case
? ≥ 2 is straightforward, to show (1.5) in the critical case 1 < ? < 2 is far from obvious (see [11]). In fact, (1.5)
is just shown in [26] only when ? ≥ 2. This paper is devoted to produce an independent proof of (1.5) when ?
falls in the critical regime 1 < ? < 2. We are also pursuing a similar result in a variety of problems ranging from
Steklov conditions to the ?–Laplacian on graphs.

The work is organized as follows. Section 2 states the differentiability of the variance functional. It constitutes
the key tool for our proofs. Two different versions of the Neumann problem (1.1) are addressed in Sections 3
and 4, while the Stekloff problem is considered in Section 5. The eigenvalue problem for Δ? in a compact and
connected Riemannian manifold without boundary is presented in Section 6. An #–dimensional version of the
periodic eigenvalue problem is analyzed in Section 7. The work concludes by studying the ?–Laplacian on graphs
in Section 8.

2. Variance functional
We begin with a basic result.

Lemma 2.1 Let (-, `) be a measurable space, D ∈ ! ? (-) with ? > 1. Then there exists a unique D̃ ∈ R so that:

‖D − D̃‖? = inf
C ∈R
‖D − C‖? , ‖D‖? := ‖D‖!? (- ) .

Moreover, C = D̃ is characterized as the solution to equation
∫
Ω
|D − C |?−2 (D − C) = 0. Furthermore, the functional

" : ! ? (-) → R, " (D) = D̃, is continuous.

Definition 2.2 Value D̃ is defined as the ?–average of D ∈ ! ? (-) while +? (D) =
∫
Ω
|D − D̃ |? , is the variance of D.

Our main result in this section reads as follows ( [32]).

Theorem 2.3 Let (-, `) be a measurable space. Then, the variance functional +? is Fréchet differentiable in
! ? (-) for all ? > 1. Moreover, its differential �+? (D) at D is represented as:

〈
�+? (D), E

〉
= ?

∫
-
|D − D̃ |?−2 (D − D̃)E 3`, E ∈ ! ? (-). (2.1)

Remark 2.4 Proof of Theorem 2.3 is straightforward if ? ≥ 2 and D ∈ ! ? (-) is not a constant function. In fact,
the average functional " (D) = D̃ can be computed by solving in C the equation,

1(D − C) = 0, 1(E) =
∫
-
|E |?−2E, E ∈ ! ? (-). (2.2)
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The Implicit Function Theorem then implies the existence of the differential �" (D) so that,

〈�" (D), E〉 =
∫
-
|D − D̃ |?−2E∫

-
|D − D̃ |?−2

, E ∈ ! ? (-).

Thus, both the differentiability of �+? and the expression (2.1) are obtained from the identity,

+? (D) =
∫
-
|D − " (D) |? .

Remark 2.5 The approach in Remark 2.4 can not be employed to manage the case 1 < ? < 2 since functional 1 in
(2.2) in no more �1. To deal with this critical case, variance +? is regarded as the infimum of a family of functions
5D (C),

+? (D) = inf
C ∈R

5D (C), 5D (C) =
∫
-
|D − C |? ,

having D ∈ ! ? (-) as a parameter. Then, the differentiability of +? with respect to D is shown by directly using this
variational representation. Reader is referred to [32] for full details.

3. The Neumann problem
In this section we are concerned with a slightly more general version of (1.1). Namely,



−Δ?D = _ <(G) |D |?−2D, G ∈ Ω,
mD

ma
= 0, G ∈ mΩ,

(3.1)

where < > 0 a. e. in Ω and either < ∈ !∞ (Ω) or < ∈ !A (Ω) with A >
(
?∗
?

) ′
= #

? if 1 < ? ≤ # , A = 1 otherwise.
Point iii) of the next statement provides us with a proof of identity (1.5), a principal objective of this work.

Notice that i), ii) are well–known and are included here for completeness. However, iii) requires a careful analysis
in the critical regime 1 < ? < 2.

Theorem 3.1 Let Ω ⊂ R# be a bounded �0,1 domain and set

_̂ = inf
D∈M0\{0}

∫
Ω
|∇D |? 3G∫

Ω
|D |? < 3G ,

whereM0 = {D ∈ ,1, ? (Ω) :
∫
Ω
|D |?−2D < 3G = 0}. Then,

i) The infimum is achieved at some D̂ ∈ M0 and thus _̂ > 0.
ii) Every eigenvalue _ ≠ 0 to the Neumann problem (3.1) satisfies _ ≥ _̂. In particular, _ = 0 is an isolated
eigenvalue.
iii) _̂ is actually an eigenvalue and therefore _2 = _̂.

Proof While i) is shown by means of the direct methods in calculus of variations, assertion ii) is a consequence of
the expression of _̂. As for point iii) first notice that D̃ − D̃ = 0 for every D ∈ ,1, ? (Ω) and so,

M0 = {D ∈ ,1, ? (Ω) : D̃ = 0} = {D − D̃ : D ∈ ,1, ? (Ω)}.
Accordingly, an alternative writing for _̂ is,

_̂ = inf
E∈M0

∫
Ω
|∇E |?∫
Ω
|E |? = inf

D∈, 1, ? (Ω)

∫
Ω
|∇(D − D̃) |?∫
Ω
|D − D̃ |? = inf

D∈, 1, ? (Ω)

∫
Ω
|∇D |?

+? (D) =: inf
D∈, 1, ? (Ω)

&(D),

where D ∉ span (1Ω). Since & achieves its minimum at D = D̂ then,

〈�&(D̂), E〉 = 0, E ∈ ,1, ? (Ω).
By using the differentiability of +? , which holds regardless the value of ? > 1 is, and (2.1) we get,∫

Ω
|∇D̂ |?−2∇D̂∇E 3G = _̂

∫
Ω
|D̂ |?−2D̂E < 3G, E ∈ ,1, ? (Ω),

and the conclusion follows from the fact D̂ has zero average. �

Remark 3.2 An alternative proof assertion iii) can be obtained by means of the approach in [17] (see a similar
reasoning in [11]).
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4. Generalized Neumann problems
A more general version of (3.1) is provided by the problem,



−Δ?D = _<(G) |D |@−2D G ∈ Ω,
mD

ma
= 0 G ∈ mΩ,

(4.1)

where 1 < @ < ?∗, < > 0 a. e. in Ω with < ∈ !∞ (Ω) or either, < ∈ !A (Ω), and A >
(
?∗
@

) ′
= # ?

# (?−@)+?@ if
1 < ? ≤ # together with A = 1 when ? > # . The Dirichlet counterpart of (4.1) was formerly studied in [24] while
a later discussion in # = 1 is contained in [20]. On the other hand, (4.1) is termed as a ?@–generalized eigenvalue
problem in [12].

Next result furnishes the existence of a principal branch of nontrivial solutions to (4.1). Its proof is obtained by
combining Theorem 3.1 with the arguments in Section 3 (see [32]).

Theorem 4.1 Assume that the exponent @ and weight < satisfy the prescribed restrictions. Then problem (4.1)
satisfies the following properties.
i) Existence of nontrivial solutions can only happen if _ > 0.
ii) Every nontrivial solution to (4.1) satisfies the average condition

∫
Ω
|D |@−2D <3G = 0.

iii) There exists a family of nontrivial solutions (_, D_), D_ = ±
(
_
_0

) 1
?−@ (D − D̃), _0 = +@ (D)

?
@ −1`, where D is a

minimizer to,
` = inf{

∫
Ω
|∇D |? :

∫
Ω
|D |@ < 3G = 1 ,

∫
Ω
|D |@−2 (D) < 3G = 0}. (4.2)

Remark 4.2 An infinite collection of branches F= = {(_, D (=)_ )} of solutions to (4.1) can be found by substituting
the ‘inf’ procedure in (4.2) by a suitable mini–max argument.

5. The Stekloff problem
We are now interested in the Steklov eigenvalue problem,



−Δ?D = 0, G ∈ Ω,

|∇D |?−2 mD

ma
= _ |D |?−2D, G ∈ mΩ,

(5.1)

which has received much attention in recent literature, as we are going to report below. Stekloff problem shares
many features with Neumann problem. In fact, _̃1 = 0 is the unique principal eigenvalue since eigenfunctions
D ∈ ,1, ? (Ω) associated to eigenvalues _ ≠ 0 must satisfy the average condition on the boundary,

∫
mΩ
|D |?−2D = 0.

It is also an isolated eigenvalue, while an infinite sequence of eigenvalues 0 = _̃1 = _̃!(1 < _̃!(2 ≤ · · · ≤ _̃!(= ≤ · · · ,
_̃!(= →∞, is furnished by,

_̃!(= = inf
(∈S=

max
D∈(

∫
Ω
|∇D |?∫

mΩ
|D |? ,

where S= = {( ∈ ,1, ? (Ω) \,1, ?
0 (Ω) : ( = −(, ( compact, W(() ≥ =}.

Therefore, a second eigenvalue _̃2 > 0 to (5.1) can be defined in the same vein as in Section 1. Moreover, it can
be shown that

_2 = _̃2 = inf
(∈S2

max
D∈(

∫
Ω
|∇D |?∫

mΩ
|D |? .

Thus we get a first variational representation of _̃2. Our main goal in this section is to state a variational
characterization of _̃2 patterned on (1.5). Proof of next theorem is achieved by using the ideas of Section 3.

Theorem 5.1 The weighted eigenvalue problem,



−Δ?D = 0, G ∈ Ω,

|∇D |?−2 mD

ma
= _<(G) |D |?−2D, G ∈ mΩ,
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where <(G) > 0 a. e. in mΩ and either < ∈ !∞ (mΩ) or < ∈ !A (mΩ) with A >
(
?∗
?

) ′
= #−1

?−1 if 1 < ? ≤ # , A = 1
otherwise, possesses a second (first nontrivial) eigenvalue which can be expressed as,

_̃2 = inf

{ ∫
Ω
|∇D |?∫

mΩ
|D |? < 3(

:
∫
mΩ
|D |?−2D < 3( = 0

}
. (5.2)

Remark 5.2 Problem (5.1) has deserved a considerable amount of effort in recent times, see for instance [9, 23],
[31], [25], [27], [28] and [6]. However it should be stressed that in all of these works, either the equation or the
boundary condition are perturbed by a zero order term of the form 0(G) |D |?−2D. Thus, the first eigenvalue is no
more trivial, the average condition

∫
mΩ
|D |?−2D = 0 fails and accordingly, formula (5.2) ceases to be valid in these

perturbed problems.

Remark 5.3 Stekloff problem can be formulated for the so–called pseudo ?–Laplacian operator,



−div(Φ? (∇D)) = 0, G ∈ Ω,

〈Φ? (∇D), a〉 = _ |D |?−2D, G ∈ mΩ,
(5.3)

where a is again the outward unit normal but nowΦ? (b) stands for the fieldΦ? (b) = ( |b1 |?−2b1, . . . , |b# |?−2b# ).
Under this format the corresponding version of formula (5.2) was obtained in an independent way in [11]. Never-
theless, our approach here can be also used to show the natural version of (5.2) for problem (5.3).

6. Closed Riemannian manifolds
Let (", 6) be a compact and connected #–dimensional Riemannian manifold endowed with a Riemannian metric
6 which induces the associated volume element E6 on " . The ?–Laplacian operator Δ?," on " is defined as
Δ?,"D = div6( |∇D |?−2∇D), D ∈ ,1, ? ("), where the divergence div6 and gradient ∇D operators are understood in
the sense of the metric 6. The eigenvalue problem,

− Δ?,"D = _ |D |?−2D, (6.1)

for the ?–Laplacian on " consists in finding pairs (_, D) ∈ R ×,1, ? ("), D ≠ 0, such that,∫
"
|∇D |?−2∇D∇E 3E6 = _

∫
"
|D |?−2DE 3E6, E ∈ ,1, ? (").

By the reasons just argued in Section 1, _1," = 0 is the unique principal eigenvalue to −Δ?," which is isolated.
Thus, the second (first nontrivial) eigenvalue _2," is well defined. By employing the standard calculus apparatus
in (", 6) together with Theorem 2.3 one can shows the next result.

Theorem 6.1 The ‘first’ nontrivial eigenvalue _2," of−Δ?," in a compact, connected #–dimensional Riemannian
manifold (", 6) without boundary is expressed by,

_2 = inf

{∫
"
|∇D |? 3E6∫

"
|D |? 3E6

: D ∈ ,1, ? ("),
∫
"
|D |?−2D 3E6 = 0

}
.

Remark 6.2 Theorem 6.1 was proved in [36] by an approximation argument. In fact, it is not achieved there that
any minimizer D̂ to the Rayleigh quotient is an eigenfunction. However, our approach here shows that all possible
minimizers actually define eigenfunctions to (6.1).

7. A zero average flux problem
There is still available one more example falling in the scope of the ideas in Section 3. Namely,




−Δ?D = _ |D |?−2D, G ∈ Ω,
D = 2, G ∈ mΩ,∫
mΩ
|∇D |?−2 mD

ma
= 0,

(7.1)

where 2 has the status of a free constant, not ‘a priori’ determined. In the case ? = 2, problem (7.1) arises from the
study of plasma equilibrium configurations ( [8]). One can check that (7.1) is nothing else but the #–dimensional
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version of the classical periodic problem (# = 1). Since boundary value 2 is an unknown the energy space for this
problem is - = ,1, ?

0 (Ω) ⊕ R. Thus, an eigen pair (_, D) ∈ R × - is defined through the equality,∫
Ω
|∇D |?−2∇D∇E = _

∫
Ω
|D |?−2DE, for all E ∈ - .

Problem (7.1) exhibits _̂1 = 0 as the only principal eigenvalue which is simple and isolated. Ljusternik–
Schnirelmann theory provides us with an increasing sequence _̂(!= → ∞ of eigenvalues so that _̂(!2 matches
the ‘second eigenvalue’ _̂2 (see the explanation in Section 1). Accordingly,

_̂2 = inf
�∈Ŝ2

sup
D∈�

∫
Ω
|∇D |?∫
Ω
|D |? ,

where Ŝ2 = {( ∈ - : ( = −(, ( compact, W(() ≥ 2}. Next result proposes a more simpler expression in the line
of previous cases.

Theorem 7.1 First non trivial eigenvalue _̂2 to (7.1) can be variationally expressed as,

_̂2 = inf
{∫

Ω
|∇D |? : D ∈ -,

∫
Ω
|D |? = 1,

∫
Ω
|D |?−2D = 0

}
.

8. The ?–Laplacian on graphs
A =–order graph is defined as a pair G = (V, �) where V = {E1, . . . , E=} are the ‘vertices’ of G and � is a
distinguished family � = {4 = {D, E} ⊂ V} of two–points sets of V called the ‘edges’ of G. In fact, a vertix D is
said to be connected (or ‘adjacent’) to another E provided that 4 = {D, E} ∈ � ( [15]).

A convenient way of both defining the edges and measuring the connectedness degree between vertices is
by introducing a symmetric matrix of nonnegative weights � = (l8 9 ), l8 9 ≥ 0, l8 9 = l 98 , l88 = 0. This is
the ‘connectivity’ or ‘similarity’ matrix. Under this convention {E8 , E 9 } defines an edge provided that l8 9 >
0. A graph G is said to be connected if every couple D, E ∈ V can be related by means a family of edges
{D, E1}, {E1, E2}, . . . , {E8<−1 , E}. Equivalently,

l{D,E1 }l{E1 ,E2 } · · ·l{E8<−1 ,E } > 0.

The space H of functions 5 : V → R on a graph G consists of vectors 5 ∈ R=, so that 5 = ( 58) where
58 = 5 (E8) =: 5 (8). On the other hand, the Dirichlet’s form,

D( 5 ) = 1
2

∑
8, 9

l8 9 | 58 − 5 9 |? ,

is the equivalent to the Dirichlet integral J (D) :=
∫
Ω
|∇D |? in the continuous case. Remark that the ?–Laplacian

is nothing else but −Δ?D = 1
?�J (D). Thus we can already introducing both the definition of the ?–Laplacian

operator together with its eigenvalues ( [2], [13,14]). Please, kindly notice that a minus sign has been incorporated
to the definition of the ?–Laplacian so as to keep the analogies with partial differential operators.

Definition 8.1 The ?–Laplacian operator −Δ? : H → H in G is defined as −Δ? = ∇D? . In other words,

−Δ? ( 5 ) (8) =
∑
9

l8 9 | 58 − 5 9 |?−2 ( 58 − 5 9 ).

A (weighted) eigen pair (_, 5 ) to −Δ? is defined as,

−Δ? ( 5 ) (8) = _a8 | 58 |?−2 ( 58), 5 ≠ 0,

where a8 > 0, 1 ≤ 8 ≤ =, is a given set of weights.
The eigenvalues of −Δ? are just the critical values of the Dirichlet form D( 5 ) in the unit sphere M1 =

{∑8 a8 | 58 |? = 1}. In other words, the critical values of the Rayleigh quotient,

Q( 5 ) = 1
2

∑
8, 9 l8 9 | 58 − 5 9 |?∑

8 a8 | 58 |?
.
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On the other hand, the spectrum of −Δ? is a compact set in [0,∞), while _1 = 0 is a trivial eigenvalue which
has constant functions as the only associated eigenfunctions (G is connected). In addition, eigenfunctions 5 to
eigenvalues _ > 0 must ‘change sign’ since they satisfy the ‘zero average’ condition:∑

8

a8 | 58 |?−2 ( 58) = 0.

This means _1 = 0 is isolated and a second eigenvalue _2 > 0 should exist.
Next statement furnishes the right version of the existence assertions on eigenvalues to −Δ? introduced in [2],

[13]. In fact, existence results in these references are only be correctly stated in the regime ? ≥ 2. An explanation
of the critical case 1 < ? < 2 is missing in the mentioned works.

Theorem 8.2 Let G be a connected graph. Then, the second eigenvalue _2 of −Δ? is given by,

_2 = min
M0

D( 5 )∑
8 a8 | 58 |?

,

where
M0 = { 5 :

∑
8

a8 | 58 |?−2 ( 58) = 0}.

Similarly, the maximum eigenvalue is,
_∗ = max

M0

D( 5 )∑
8 a8 | 58 |?

.

Remark 8.3 Nodal regions associated to the eigenfunctions to _2 play a prominent rôle in spectral clustering of
graphs. Reader is referred to [15] and [13] for a deeper account on this important subject.
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Abstract

In this work, we present a Godunov type scheme to approximate the solution of the Ripa model. The main
objective is to design a scheme far from dry areas that verifies a fully discrete entropy inequality and preserves
the lake at rest equilibrium. Some numerical experiments are carried out to illustrate the scheme relevance.

1. Introduction
This work deals with the numerical approximation of the weak solutions of the Ripa model with topography source
term in one space dimension given by the following Cauchy problem:

mC
©­«
ℎ
ℎD
ℎ\

ª®¬︸︷︷︸
:=F

+mG ©­«
ℎD

ℎD2 + 6i (\)2 ℎ2

ℎ\D

ª®¬︸               ︷︷               ︸
:= 5 (F)

=
©­«

0
−6ℎi(\)mGI

0

ª®¬︸            ︷︷            ︸
:=( (F)

, G ∈ R, C > 0,

F(G, C = 0) = F0 (G), G ∈ R,

(1.1)

where i : R+∗ → R+∗ is a smooth invertible function. This model governs the water height ℎ > 0 and the velocity
D ∈ R of a fluid. The gravitation constant is 6 > 0 and I : R → R+ is a given time independent positive smooth
topography function. The temperature of the fluid is i(\) > 0. After [3], the system (1.1) is equivalent to the usual
Ripa model in which i(\) = \. The fluid is assumed to be far from the dry regions and the unknown state vector F
is assumed to be in the convex set Ω =

{(ℎ, ℎD, ℎ\) ∈ R3 | ℎ > 0, ℎD ∈ R, ℎ\ > 0
}
. Finally, F0 : R→ Ω is a given

measurable function of !1
loc (R). According to [3], if the function i verifies

i′′(\)i(\) − i′(\)2/2 > 0, i(\) − \i′(\) + \2i′′(\)/2 > 0, ∀\ ∈ R+∗ , (1.2)

then the system (1.1) can be endowed with a pair entropy-entropy flux ([, �) given by

[(F) = ℎD2/2 + 6i(\)ℎ2/2, � (F) = ℎD3/2 + 6i(\)ℎ2D, ∀F ∈ Ω, (1.3)

where F ↦→ [(F) is a strictly convex function. As a consequence, the solutions of (1.1) has to satisfy in addition
the following entropy inequality:

mC

(
[(F) + k(F)I

)
+ mG

(
� (F) + � (F)I

)
≤ 0, (1.4)

which is related to the physical energy and where we have set k(F) := 6ℎi(\) and � (F) := 6ℎi(\)D. In
addition, the presence of the source term ((F) involves the existence of non-trivial stationary solutions verifying
mG 5 (F) = ((F). Among these steady states, the lake at rest given by D = 0, \ = cst, ℎ + I = cst is here of main
importance.

From a numerical point of view, we consider uniform meshes in space (G8+ 1
2
)8∈Z in R of constant size ΔG > 0.

Thus, we have G8+ 1
2
= G8− 1

2
+ ΔG for all 8 in Z. We also consider uniform meshes in time (C=)=∈N in [0, +∞) of

constant size ΔC > 0, and we have C=+1 = C= + ΔC for all = in N. On each cell (G8− 1
2
, G8+ 1

2
), the topography is

discretized according to I8 = 1
ΔG

∫ G8+ 1
2

G
8− 1

2
I(G) dG for all 8 in Z. At time C= and on each cells the weak solutions of

(1.1) are approximated with constant states F=8 such that F
=
8 ≈ 1

ΔG

∫ G8+ 1
2

G
8− 1

2
F(G, C=) dG for all 8 in Z.
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From a sequence (F=8 )8∈Z many strategies are well known to evaluate the updated sequence (F=+18 )8∈Z at time
C=+1 (see for instance [2–4]). Here, a suitable scheme has to be well-balanced for the lake at rest solution. This
property writes at a discrete level for all 8 in Z

D=8 = 0, \=8 = cst, ℎ=8 + I8 = cst, then F=+18 = F=8 . (1.5)

A scheme has to verify, in addition, a discrete version of the entropy inequality (1.4) that reads

[(F=+18 ) + 6ℎ=+18 i(\=+18 )I8 ≤ [(F=8 ) + 6ℎ=8 i(\=8 )I8 −
ΔC
ΔG

(G̃8+ 1
2
− G̃8− 1

2

)
, ∀8 ∈ Z, (1.6)

where G̃8+ 1
2
is a consistent approximation of � + �I. In this regard, the authors of [3] introduced a well-balanced

scheme satisfying a discrete entropy stability perturbed by an error therm of the form O(ΔG2) while in [6] an
entropy inequality is reached in the flat regions.

In this work, we consider schemes written under the from of a Godunov type scheme [4] that read

F=+18 =
1
ΔG

∫ G8

G
8− 1

2

F̃
( (G − G8− 1

2
)/ΔC, F=8−1, F

=
8

)
dG + 1

ΔG

∫ G
8+ 1

2

G8

F̃
( (G − G8+ 1

2
)/ΔC, F=8 , F=8+1

)
dG, ∀8 ∈ Z, (1.7)

where (F̃(·, F=8 , F=8+1))8∈Z is a set of juxtaposed approximated Riemann solvers without interaction. This non
interaction is ensured by a restriction on the time step ΔC also called the non interaction CFL condition. In the
sequel, we propose to design a scheme satisfying a fully discrete entropy inequality (1.6) and well-balanced for the
steady state at rest (1.5) in the wet regions.

2. A well-balanced entropy stable numerical scheme for the Ripa model
First, considering an interface between two constants statesF=8 andF

=
8+1, we establish an integral consistency relation

and an entropy stability sufficient condition to be stated on the approximated Riemann solver F̃(·, F=8+1, F=8 ).

Lemma 2.1 Consider the Riemann problem associated to the Ripa equations given by the system (1.1) with the
following initial condition (

F(G, C = 0), I) = { (F=8 , I8) if G < G8+ 1
2
,

(F=8+1, I8+1) otherwise. (2.1)

Consider F̃(·, F=8 , F=8+1), a Riemann solver that approximates the solutions of the above Riemann problem. Assume
that a non interaction CFL condition holds. If

1
ΔG

∫ G8+1

G8

F̃
( (G − G8+ 1

2
)/ΔC, F=8 , F=8+1

)
dG =

F=8 + F=8+1
2

− ΔC
ΔG
( 5 (F=8+1) − 5 (F=8 )) + ΔC(=8+ 1

2
, (2.2)

where (=
8+ 1

2
is a consistent discretization of 1

ΔG

∫ G8+1
G8

(
(
F(G, C=)) dG, then the Godunov type scheme (1.7) is consistent

with (1.1) and conservative on flat topography (I = cste). Moreover, if i′′(\) > 0 for all \ in R+∗ and if

1
ΔG

∫ G8+1

G8

k
(
F̃

( (G − G8+ 1
2
)/ΔC, F=8 , F=8+1

) )
dG ≤ k(F

=
8 ) + k(F=8+1)

2
− ΔC
ΔG

(
� (F=8+1) − � (F=8 )

)
, (2.3)

1
ΔG

∫ G8+1

G8

[
(
F̃

( (G − G8+ 1
2
)/ΔC, F=8 , F=8+1

) )
dG ≤ [(F

=
8 ) + [(F=8+1)

2
− ΔC
ΔG

(
� (F=8+1) − � (F=8 )

) − ΔC
ΔG
H8+ 1

2
(I8+1 − I8),

(2.4)

where

H8+ 1
2

:=
� (F=8 ) + � (F=8+1)

2
− ΔG

4ΔC
(
k(F=8+1) − k(F=8 )

) + 1
2ΔC

∫ G8+1

G
8+ 1

2

k
(
F̃

( (G − G8+ 1
2
)/ΔC, F=8 , F=8+1

) )
dG

− 1
2ΔC

∫ G
8+ 1

2

G8

k
(
F̃

( (G − G8+ 1
2
)/ΔC, F=8 , F=8+1

) )
dG,

(2.5)
then the Godunov type scheme (1.7) associated to the Riemann solver F̃(·, ·, ·) satisfies a fully discrete entropy
inequality (1.6).
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Proof The condition (2.2) is standard and we refer to [1] for the proof of both consistency and conservation on
flat topography. Here, we focus on the establishment of the discrete entropy stability. Since \ ↦→ i(\) is strictly
convex, it is easy to show that F ↦→ k(F) is also convex. Hence, if we apply k to the Godunov type scheme (1.7),
the Jensen inequality yields the following inequality:

k(F=+18 ) ≤
1

2ΔG

∫ G
8+ 1

2

G8

k
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG + 1

2ΔG

∫ G8

G
8− 1

2

k
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG

+ 1
2ΔG

∫ G8

G8−1

k
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG + 1

2ΔG

∫ G8+1

G8

k
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG

− 1
2ΔG

∫ G
8− 1

2

G8−1

k
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG − 1

2ΔG

∫ G8+1

G
8+ 1

2

k
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG.

Now, we use the condition of (2.3) to obtain

k(F=+18 ) ≤
1

2ΔG

∫ G
8+ 1

2

G8

k
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG + 1

2ΔG

∫ G8

G
8− 1

2

k
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG

+ 1
2

(
k(F=8−1) + k(F=8 )

2
− ΔC
ΔG

(
� (F=8 ) − � (F=8−1)

) ) + 1
2

(
k(F=8 ) + k(F=8+1)

2
− ΔC
ΔG

(
� (F=8+1) − � (F=8 )

) )

− 1
2ΔG

∫ G
8− 1

2

G8−1

k
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG − 1

2ΔG

∫ G8+1

G
8+ 1

2

k
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG.

Using the definition ofH given by (2.5), the above inequality rewrites

k(F=+18 ) ≤ k(F=8 ) −
ΔC
ΔG

(
H8+ 1

2
−H8− 1

2

)
. (2.6)

On the other hand, with [ convex, using the Jensen inequality and the condition (2.4) the following estimates holds:

[(F=+18 ) ≤
1

2ΔG

∫ G
8+ 1

2

G8

[
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG + 1

2ΔG

∫ G8

G
8− 1

2

[
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG

+ 1
2

(
[(F=8−1) + [(F=8 )

2
− ΔC
ΔG

(
� (F=8 ) − � (F=8−1)

) − ΔC
ΔG
H8− 1

2
(I8 − I8−1)

)

+ 1
2

(
[(F=8 ) + [(F=8+1)

2
− ΔC
ΔG

(
� (F=8+1) − � (F=8 )

) − ΔC
ΔG
H8+ 1

2
(I8+1 − I8)

)

− 1
2ΔG

∫ G
8− 1

2

G8−1

[
(
F̃((G − G8− 1

2
)/ΔC, F=8−1, F

=
8 )

)
dG − 1

2ΔG

∫ G8+1

G
8+ 1

2

[
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG.

(2.7)
Since the topography I is positive, (2.6)×I8+(2.7) yields the fully discrete entropy inequality (1.6) with the following
numerical entropy flux:

G̃8+ 1
2

=
� (F=8+1) + � (F=8 )

2
− ΔG

4ΔC
(
[(F=8+1) − [(F=8 )

) + 1
2ΔC

∫ G8+1

G
8+ 1

2

[
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG

− 1
2ΔC

∫ G
8+ 1

2

G8

[
(
F̃((G − G8+ 1

2
)/ΔC, F=8 , F=8+1)

)
dG + H8+ 1

2

I8+1 + I8
2

,

(2.8)
that achieves the proof. �

In Lemma 2.1, we require the strict convexity of the function \ ↦→ i(\). Such functions that verify in addition the
conditions (1.2) exist: for instance i(\) = Y4\ with Y > 0 an arbitrary constant or i(\) = \3 are possible choices.

According to Lemma 2.1, it is clear that an approximated Riemann solver F̃(·, F=8+1, F=8 ) is entirely locally
defined around an interface G8+ 1

2
having two constant states F=8 , F

=
8+1 on its either sides. For the sake of clarity in

the notations, we now adopt an interface located in G = 0 and two constant states F! , F' respectively being on the
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left, right side of this interface. We adopt a symmetric Riemann solver made of two intermediate states separated
with a stationary wave. A such solver writes

F̃( G
ΔC
, F! , F') =




F! if
G

ΔC
≤ −_,

F∗! if − _ < G

ΔC
≤ 0,

F∗' if 0 <
G

ΔC
≤ _,

F' if _ <
G

ΔC
,

(2.9)

where _ > 0 stands for the artificial numerical diffusion and the two intermediate constant states (F∗U)U∈{!,'} =
(ℎ∗U, ℎ∗UD∗U, ℎ∗U\∗U)TU∈{!,'} have to be characterized. Our objective is to choice the intermediate states F∗! and F∗'
such that the conditions (2.2)-(2.3)-(2.4) hold. In this regard, considering a solver (2.9), the quantityH!' given by
(2.5) now reads

H!' = � (F!) + � (F')
2

− _
2
(
k(F') − k(F!)

) + _
2
(
k(F∗') − k(F∗!)

)
,

and assuming a non interaction CFL condition holds, the conditions (2.2)-(2.3)-(2.4) now write

F∗! + F∗'
2

= FHLL + (0,ΔGB!'/(2_), 0)T,

k(F∗!) + k(F∗')
2

≤ kHLL,

[(F∗!) + [(F∗')
2

+ I' − I!
4

(
k(F∗') − k(F∗!)

) ≤ [HLL + (kI)HLL − kHLL I! + I'
2

,

(2.10a)

(2.10b)

(2.10c)

where B!' is a consistent finite volume approximation of 1
ΔG

∫ ΔG
2
− ΔG2
(−6ℎi(\)mGI) dG, and where we have defined

the following notations:

FHLL := (ℎHLL, (ℎD)HLL, (ℎ\)HLL)T =
F! + F'

2
− 5 (F') − 5 (F!)

2_
,

[HLL :=
[(F!) + [(F')

2
− � (F') − � (F!)

2_
,

kHLL :=
k(F!) + k(F')

2
− � (F') − � (F!)

2_
,

(kI)HLL :=
k(F!)I! + k(F')I'

2
− � (F')I' − � (F!)I!

2_
.

(2.11)

In order to satisfy the relations (2.10), we propose to govern the intermediate states (F∗U)U∈{!,'} by the following
equations:

ℎ∗! + ℎ∗'
2

= ℎHLL, D∗! = D
∗
'

ℎ∗!D
∗
! + ℎ∗'D∗'

2
= (ℎD)HLL + ΔGB!'

2_
,

ℎ∗!\
∗
! + ℎ∗'\∗'

2
= ℎHLL\HLL,

k(F∗!) + k(F∗')
2

= k(FHLL)
(
1 +

( 2HLLΔC (\' − \!)
(ℎ\)HLL

)2)
,

ℎ∗' − ℎ∗! +
ℎ∗!ℎ

∗
'

ℎHLL
i(\∗') − i(\∗!)

i(\HLL) = − exp
( _(\' − \!)2
2HLL (\HLL)2

) (
ℎ∗' − ℎ∗! + 2I' − 2I!

)
,

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

where we have introduced \HLL := (ℎ\)HLL/ℎHLL > 0, 2HLL :=
√
6ℎHLL > 0 and k(FHLL) := 6ℎHLLi(\HLL) > 0.

We will see in Theorem 2.2 that the above system endowed with a suitable choice of _ and ΔC may ensure the
required conditions (2.10).
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The set of equations (2.12) is non linear and despite our efforts, we are not able to exhibit an explicit solution.
Nevertheless, using (2.12a)-(2.12b), we deduce

D∗! = D
∗
' =

1
ℎHLL

(
(ℎD)HLL + ΔGB!'/(2_)

)
. (2.13)

In the particular cases where \! = \', the above definition of D∗! = D
∗
' supplemented with

(ℎ∗', ℎ∗! , \∗! , \∗')T = (ℎHLL − (I' − I!)/2, ℎHLL + (I' − I!)/2, \HLL, \HLL)T, (2.14)

define a solution of (2.12). In addition, considering the cases where _ is large enough and |I' − I! | is small
enough, the Implicit Function Theorem can be applied to ensure the existence of regimes (formally, _ large and ΔG
small) such that the system (2.12) admits solutions. From a numerical point of view, the solutions of the system
(2.12) may be easily computed with a fix point procedure or a standard Newton method as presented Section 3. As
a consequence, we reasonably may assume the existence of solutions of the system (2.12). Now, we give our main
result.

Theorem 2.2 Consider the Riemann problem associated to the Ripa equations (1.1) with i a strictly convex
function satisfying the conditions (1.2). Consider F̃(·, F! , F'), an approximated Riemann solver in the form (2.9)
made of two intermediates constant states F∗! , F

∗
' governed by the equations (2.12). Assume that a non interaction

CFL condition holds. Consider a solution of (2.12) verifying ℎ∗' − ℎ∗! + 2(I' − I!) ≠ 0 if I' ≠ I! and \' ≠ \! .
Consider the following discrete source term definition:

ΔGB!' = −6ℎHLLi(\HLL) (I' − I!) − � (F!) + � (F')
2HLLℎHLL

(I' − I!)2, (2.15)

where ℎHLL, \HLL, 2HLL are defined in (2.11)-(2.12) respectively. Then, the approximated Riemann solver satisfies
the consistency condition (2.2). Moreover, for states F! , F' such that

D! = D' = 0, \! = \', ℎ! + I! = ℎ' + I', (2.16)

we have D∗! = D
∗
' = 0, \∗! = \

∗
' = \' = \! , ℎ

∗
! = ℎ! and ℎ∗' = ℎ'. In addition, there exists _ large enough and

ΔC small enough, such that both entropy conditions (2.3)-(2.4) are satisfied. As a consequence, the Godunov type
scheme (1.7) associated to the solver F̃(·, ·, ·) is consistent, well-balanced for the lake at rest (1.5) and satisfies a
fully discrete entropy inequality (1.6) with the numerical entropy flux detailed in (2.8).

We impose the restriction ℎ∗' − ℎ∗! + 2(I' − I!) ≠ 0 if I' ≠ I! and \' ≠ \! on the solutions of the system (2.12).
Once again, according to our numerical experiments, this condition seems to be numerically satisfied. Now, we
give the proof of the above statement.

Proof The consistency is a direct consequence of the conservation equations (2.12a)-(2.12c) used for the solver
design. Now, we prove the well-balanced property. Since the conditions (2.16) hold for the lake at rest, let denote
\! = \' := \ and using the equation (2.13) we have

D∗! = D
∗
' =

2
ℎ! + ℎ'

(
− 6

4_
[ℎ2i(\)] + ΔGB!'

2_

)
= − 2

ℎ! + ℎ'
6i(\)

4_
((ℎ! + ℎ') [ℎ] + (ℎ! + ℎ') [I]) = 0, (2.17)

where we have set [·] := ·' − ·! . Since [\] = 0, then a solution of (2.12a)-(2.12c)-(2.12d)-(2.12e) is given by
(2.14). As a consequence, we have \∗! = \

∗
' = \

HLL = \. Finally, for the water heights, since we have [I] = −[ℎ]
for the lake at rest, we deduce form (2.14)

ℎ∗! =
ℎ! + ℎ'

2
+ [I]

2
= ℎ! , and, ℎ∗' =

ℎ! + ℎ'
2

− [I]
2
= ℎ',

that achieves to show the well balanced property. Concerning the entropy stability, we show that the inequalities
(2.10b)-(2.10c) may be ensured with a suitable couple (_,ΔC). Thanks to the strict convexity of \ ↦→ i(\), with _
is large enough then straightforward computations yield to k(FHLL) ≤ kHLL, and the case k(FHLL) = kHLL occurs
if and only if [\] = 0. As a consequence, using the equation (2.12d) and a continuity argument, it is possible to
show that there exists ΔC small enough such that

k(F∗!) + k(F∗')
2

= k(FHLL)
(
1 +

( 2HLLΔC [\]
(ℎ\)HLL

)2)
≤ kHLL, (2.18)
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and thus the inequality (2.10b) holds. Now, we focus on (2.10c). If [I] = 0 then F∗! = F
∗
' = F

HLL is solution
of the system (2.12). In this case, the solver (2.9) degenerates to the standard HLL solver [4] and the inequality
(2.10c) is satisfied. In the case where [I] ≠ 0, we show that the inequality (2.10c) reads

− 6
8
i(\HLL) exp

( _[\]2
2HLL (\HLL)2

)
[ℎ∗ + 2I]2 + 6

8
i(\HLL)

( 2HLLΔC [\]
(ℎ\)HLL

)2 (
[ℎ∗ + 2I] [ℎ∗] + 4(ℎHLL)2

)
≤ [HLL − [(F̃HLL) + (kI)HLL − kHLL I! + I'

2
, (2.19)

with [(F̃HLL) := ( ℎ̃DHLL)2/(2ℎHLL) + 6(ℎHLL)2i(\HLL)/2, ℎ̃DHLL := (ℎD)HLL + ΔGB!'/(2_). Indeed, according
to the definition of [ given by (1.3), we have

[(F∗!) + [(F∗')
2

=
1
2

(
ℎ∗'D

∗
' + ℎ∗!D∗!

2
D∗' + D∗!

2
+ [ℎ

∗D∗] [D∗]
4

+ ℎ
∗
! + ℎ∗'

2
k(F∗!) + k(F∗')

2
+ [ℎ

∗] [k(F∗)]
4

)
.

But, using the equations (2.12)-(2.13), the above equation reformulates
[(F∗!) + [(F∗')

2
= [(F̃HLL) + 6

8
[ℎ∗] [ℎ∗i(\∗)] + ℎ

HLL

2
k(FHLL)

( 2HLLΔC [\]
(ℎ\)HLL

)2
. (2.20)

Nowwe have to rewrite the quantity [ℎ∗i(\∗)]. In this regard, using the equations (2.12a)-(2.12d), a straightforward
computation yields to

6ℎHLL
i(\∗!) + i(\∗')

2
+ 6 [ℎ

∗] [i(\∗)]
4

= k(FHLL)
(
1 +

( 2HLLΔC (\' − \!)
(ℎ\)HLL

)2)
.

As a consequence, we have

[ℎ∗i(\∗)] = [ℎ∗] i(\
∗
!) + i(\∗')

2
+ ℎ
∗
! + ℎ∗'

2
[i(\∗)],

= [ℎ∗]
(
i(\HLL)

(
1 +

( 2HLLΔC [\]
(ℎ\)HLL

)2)
− [ℎ

∗] [i(\∗)]
4ℎHLL

)
+ ℎHLL [i(\∗)],

= i(\HLL)
(
[ℎ∗] + ℎHLL

(
1 −

( [ℎ∗]
2ℎHLL

)2
)
[i(\∗)]
i(\HLL)

)
+ [ℎ∗]i(\HLL)

( 2HLLΔC [\]
(ℎ\)HLL

)2
,

= i(\HLL)
(
[ℎ∗] + ℎ

∗
'ℎ
∗
!

ℎHLL
[i(\∗)]
i(\HLL)

)
+ [ℎ∗]i(\HLL)

( 2HLLΔC [\]
(ℎ\)HLL

)2
.

Plugging the above equation and the equation (2.20) in the inequality (2.10c), we obtain (2.19). Now, in order to
enforce the condition (2.19), we have two distinct cases. The first one is [\] ≠ 0. In this case, since [ℎ∗ + 2I] is
assumed to be non null, then we deduce the existence of (_,ΔC) such that the inequality (2.19) holds. The second
case is [\] = 0. In this case, F∗! , F

∗
' are given by (2.13)-(2.14). Let denote \ := \! = \', so that the expected

inequality (2.19) now writes

0 ≤ (
[HLL − [(F̃HLL)) ��[\ ]=0 +

6i(\)
4
[I]

(
[ℎ] − (ℎD)! + (ℎD)'

_

)
+ 6

8
i(\) [I]2. (2.21)

We show that the above inequality is satisfied for large enough _. A direct computation provides

(
[HLL − [(F̃HLL)) ��[\ ]=0 +

6i(\)
4
[I]

(
[ℎ] − (ℎD)! + (ℎD)'

_

)
+ 6

8
i(\) [I]2 =

_→+∞
ℎ'ℎ! [D]2

4(ℎ! + ℎ')

+ 6i(\)
8
[ℎ + I]2 − [D]

2ℎ'ℎ! (ℎ!D' − ℎ'D!)
4_(ℎ! + ℎ')2

− (ℎD)! + (ℎD)'
4_

(
6i(\) [I] + ΔGB!'

ℎHLL

)
+ O

(
1
_2

)
.

As soon as [D] ≠ 0 or [ℎ + I] ≠ 0, (2.21) is satisfied with _ large enough. Now, if [D] = 0 and [ℎ + I] = 0, denoting
D := D! = D', we have ΔGB!'

��� [\ ]=0,
[ℎ+I ]=0,
[D ]=0

= −6ℎHLLi(\) [I] − 6Di(\) ℎ!+ℎ'
2HLLℎHLL

[I]2, that involves

(
[HLL − [(F̃HLL) + 6i(\)

4
[I]

(
[ℎ] − (ℎD)! + (ℎD)'

_

)
+ 6

8
i(\) [I]2

) ��� [\ ]=0,
[ℎ+I ]=0,
[D ]=0

=
_→+∞

6D2 (ℎ! + ℎ')2i(\)
4_

[I]2
2HLL (ℎHLL)2 + O

(
1
_2

)
.
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Once again, we deduce that (2.21) is satisfied with _ large enough. The case D = 0, [\] = 0, [ℎ + I] = 0 occurs only
for the lake at rest in which both sides of the inequality (2.10c) goes to 0 thanks to the well-balanced property of
the scheme. As a consequence, the two inequalities (2.10b)-(2.10c) always hold with a suitable choice of (_,ΔC).
Arguing Lemma 2.1, the proof is achieved. �

A numerical scheme (1.7) associated to the solver described in Theorem 2.2 verifies a discrete entropy stability
but does not necessary preserve the convex set Ω. As a consequence we complete the solver with a conservative
limitation procedure as done in [5]. The next section deals with the numerical experiments.

3. Numerical experiments
Theorem 2.2 ensures the existence of (_,ΔC) such that the entropy stability is satisfied. From a practical point of
view, we select a couple (_,ΔC) as follows: for each interface, starting from

_ = max
U∈{!,'}

( |DU ±
√
6ℎUi(\U) |, |DU |), ΔC =

ΔG
2_
,

we solve the system (2.12) with a standard Newton method. If the solution satisfies the inequalities (2.18)-(2.19),
then the above _, ΔC are accepted. Otherwise, we increase _, we decrease ΔC and we repeat the procedure until the
two inequalities (2.18)-(2.19) are satisfied. We fix 6 := 1 and i(\) := exp(\). The test case is a slightly modified
version of the break dam introduced in [2]. The space domain is [−1, 1]. The bottom topography is given by

I(G) =



2 cos(10c(G + 0.3)) + 2, if − 0.4 ≤ G ≤ −0.2,
0.5 cos(10c(G − 0.3)) + 0.5, if 0.2 ≤ G ≤ 0.4,

0, otherwise.
(3.1)

We consider the following initial condition:

(ℎ, D, i(\))T (G, C = 0) =
{ (5 − I, 0, 1.5)T, if G ≤ 0,
(1 − I, 0, 5)T, otherwise, (3.2)

that ensures that the fluid is always far from the dry areas. We lay down homogeneous Neumann conditions on both
boundaries. We compute references solutions with the standard HLL scheme [4] coupled to the discrete source
term (2.15) on a fine grid having 50 000 cells. The final time is 0.3. The Figure 1 displays the numerical results.

Fig. 1 Numerical results of the solver described in Theorem 2.2 and for the test case (3.1)-(3.2) at time C = 0.3, on a mesh
made of 400 cells in red and made of 3 200 cells in blue.
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We observe an acceptable agreement to the reference solution. The numerical solution is nevertheless diffusive.
On a coarse grid, the front shock on the right is slightly misplaced and is localized before the reference position.
This misplacement is widely corrected with finer grids. We measure g defined as the ratio between the CPU time
needed to run this problem with the scheme of Theorem 2.2 and the CPU time required to run the standard HLL
scheme. We have g = 2.15. This increasing of the CPU time is due to the search of an admissible couple (_,ΔC)
and due to the non-linear set of equations (2.12) that have to be solved at each time step and on each interfaces.

4. Conclusion
We have introduced a well-balanced entropy stable scheme for the Ripa system in the wet regions. We have proved
the well-balanced property and the fully discrete entropy stability verified by the scheme. The stability result
depends on numerical viscosity _ and on time step ΔC that are implicit in our main result. From a numerical
point of view, the proposed scheme results are good but diffusive. As a consequence, the design of an efficient
selection procedure of the couple (_,ΔC) and the transition toward dry areas should be investigated. The existence
of solutions of the system (2.12) and the solutions restriction assumed in Theorem 2.2 also should be investigated.
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Abstract
In this work we study the convergence of the sequence {D=} of weak solutions of the problems{ −Δ?D= + 1

= | 5 (G) |D= = 5 (G) in Ω,
D= = 0 on mΩ,

where Ω is a bounded open set of R# (# ≥ 2), −Δ?D is the usual ?-Laplacian operator (1 < ? < ∞) and 5 (G) is
an !1 (Ω) function. This work has been motivated by the "&-condition" result proven in [2] which guarantees the
existence of D= for every fixed = ∈ N. We show that {D=} converges in some sense to D, the entropy solution of
the problem { −Δ?D = 5 (G) in Ω,

D = 0 on mΩ.

1. Introduction
In this text we deal with some of the most relevant aspects of the paper [9]. For the sake of simplicity, we only
study here the model problem. All this work revolves around the boundary value problem{ −Δ?D = 5 (G) in Ω,

D = 0 on mΩ, (%)

whereΩ is a bounded open set of R# (# ≥ 2), −Δ?D = −div( |∇D |?−2∇D) is the ?-Laplacian operator (1 < ? < ∞)
and 5 (G) is an !1 (Ω) function.

We stress that the problem (%) does not always have a weak solution in the,1,1
0 (Ω) space when the right-hand

side is in !1 (Ω) and ? is near 1; more specifically, when ? ≤ 2 − 1
# . For the convenience of the reader, we have

decided to include the Proposition 2.1 which contains an elemental proof of this fact.
To solve this question, many authors started to establish other more general concepts of solutions. In this line

we find, for example, the work [6], where the authors use the notion of renormalized solution, or the paper [5],
where the authors introduce the concept of entropy solution (see Definition 2.3). This last kind of solution will
develop an essential role throughout the present work.

In [2] (see also [1]) Arcoya and Boccardo studied the regularizing effect that a lower order term could have on
problem (%). Concretely, they considered the boundary value problem{ −Δ?D + 1(G)D = 5 (G) in Ω,

D = 0 on mΩ, (%1)

with 0 ≤ 1(G) ∈ !1 (Ω) and 5 (G) ∈ !1 (Ω). They showed that if the so-called Arcoya-Boccardo &-condition is
satisfied, i.e., if there is some & > 0 such that

| 5 (G) | ≤ &1(G), (1.1)

then there exists an unique weak solution D ∈ ,1, ?
0 (Ω) ∩ !∞ (Ω) of (%1). Moreover, they also proved that this

solution is bounded in !∞ (Ω) by &, i.e., that
‖D‖∞ ≤ &.

Therefore, these authors proved that this interplay between 1(G) and 5 (G) provides a regularizing effect on
problem (%).

Motivated by this result, for each = ∈ N we consider the problem{ −Δ?D= + 1
= | 5 (G) |D= = 5 (G) in Ω.

D= = 0 on mΩ. (%=)

See that its coefficients always satisfy the &-condition (1.1) since

| 5 (G) | ≤ = · 1
= | 5 (G) |,
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so the results of [2] allows us to assure that for each = ∈ N there exists some D= ∈ ,1, ?
0 (Ω) ∩ !∞ (Ω) such that

‖D=‖∞ ≤ =. (1.2)

The main goal of this work is to study the behaviour of the sequence {D=} of weak solutions of (%=) at infinity.
We stress that similar studies can be done with other types of problems for which similar &-condition results
have been proven, such as the Hamilton-Jacobi equations (see [3]) or Dirichlet problems with distributional data
(see [4]), among others.

Here below we state the main theorem of this work, which is extremely related with the entropy solution of (%)
(see Definition 2.3). We recall that in [5] it is proved that this type of solution always exists and always is unique.
Nevertheless, our result is an alternative proof of this fact where the main difference is that we do not have to
approach the datum 5 (G).

Theorem 1.1 Assume that 5 ∈ !1 (Ω). Then the entropy solution D of (%) exists and the sequence {D=} of weak
solutions of (%=) satisfy that

D= → D in measure.

We point out that, in general, the sequence {D=} cannot be bounded in the ,1,1
0 (Ω) space because that would

imply the existence of a weak solution of (%) for every datum 5 (G) ∈ !1 (Ω), which is false in general (see
Proposition 2.1). However, under the assumption that the weak solution of (%) exists it can be showed that {D=}
converges strongly in,1, ?

0 (Ω). The proof of this fact can be found in [9].
The scheme of this work is as follows. In Section 2 we include the proof of an elemental result about the

nonexistence of weak solution for the problem (%) for at least one 5 (G) ∈ !1 (Ω), we recall the definition of weak
and entropy solution of (%) and we give a brief review about the Marcinkiewicz spaces. Finally, in Section 3, we
include a summarized version of the proof of the Theorem 1.1; the whole proof can be found in [9].

2. Preliminaries
We begin this section by giving an elemental proof of a well known result which partly motivated many authors to
introduce new concepts of solutions different from the usual ones.

Proposition 2.1 If ? ≤ 2− 1
# , then there exists some 5 ∈ !1 (Ω) such that the problem (%) does not have a solution

in the,1,1
0 (Ω) space.

Proof First of all, observe that Δ?D can be seen as an element of
(
,

1, 1
2−?

0 (Ω)
) ′
= ,−1, 1

?−1 (Ω) when D ∈ ,1,1
0 (Ω).

Indeed, since ? < 2, then 1
?−1 > 1 and thus we can apply Hölder’s inequality to obtain that

����
∫
Ω
|∇D |?−2∇D∇i

���� ≤
(∫
Ω
|∇D |

) ?−1 (∫
Ω
|∇i| 1

2−?

)2−?
< +∞ when i ∈ ,1, 1

2−?
0 (Ω).

So, if we assume that for every 5 ∈ !1 (Ω) the problem (%) has a solution D which belongs to,1,1
0 (Ω), from the

equality −Δ?D = 5 we can deduce that !1 (Ω) ⊆ ,−1, 1
?−1 (Ω) and by this reason the duals of these spaces satisfy

that ,
1, 1

2−?
0 (Ω) ⊂ !∞ (Ω). But this inclusion is true if, and only if, 1

2−? > # , i.e, if ? > 2 − 1
# , thus obtaining a

contradiction. �

We stress that the concept of entropy solution of (%) solves the existence problem stated on the above result.
We recall here its definition and the definition of weak solution of (%).

Definition 2.2 A function D : Ω→ R is a weak solution for the problem (%) if D ∈ ,1, ?
0 (Ω) and∫

Ω
|∇D |?−2∇D∇i =

∫
Ω
5 (G)i

for every i ∈ ,1, ?
0 (Ω) ∩ !∞ (Ω).

Definition 2.3 A function D : Ω → R is an entropy solution for the problem (%) if ): (D) ∈ ,1, ?
0 (Ω) for every

: > 0 and ∫
Ω
|∇D |?−2∇D∇): (D − i) =

∫
Ω
5 (G)): (D − i)

for every i ∈ ,1, ?
0 (Ω) ∩ !∞ (Ω) and every : > 0.
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See that every weak solution of (%) is an entropy solution. Reciprocally, in [5, Corollary 4.3] it is proved that
if the entropy solution belongs to,1, ?

0 (Ω), then it is also a weak solution. This shows that, indeed, the concept of
entropy solution is more general than the weak one.

In the proof of the Theorem 1.1 we use the Marcinkiewicz spaces. For the convenience of the reader, we recall
here their definition and some of their properties. For 0 < @ < ∞, we denote byM@ (Ω) the set of measurable
functions E : Ω→ R such that there exists � > 0 satisfying that

meas{|E | > :} ≤ �

:@
, ∀: > 0. (2.1)

This space is a complete quasi-normed space with the quasi-norm

‖E‖@M@ (Ω) = inf{� > 0 : (2.1) holds}.

We also recall that, since Ω is bounded, then

M@2 (Ω) ↩→ !@1 (Ω) ↩→M@1 (Ω)

for 0 < @1 < @2 < ∞.
Related with these spaces we state the following lemma whose proof can be found in [5, Lemma 4.1]. For any

: > 0 we set ): (B) = min{:,max{B,−:}}.

Lemma 2.4 ( [5]) Let D : Ω→ R be a function such that ): (D) ∈ ,1, ?
0 (Ω) for every : > 0 and

1
:

∫
{ |D |<: }

|∇D |? ≤ "

for some constant " > 0 and for every : > 0. Then D ∈ M ?1 (Ω) for ?1 =
# (?−1)
#−? if 1 < ? < # and for every

?1 > 1 if ? ≥ # . More precisely, there exists � = � (", #, ?) > 0 such that

meas{|D | > :} ≤ �

: ?1
, ∀: > 0.

3. Convergence to the entropy solution
In this section we give a summarized version of the proof of the Theorem 1.1.

Proof (Proof of Theorem 1.1) First, let us remember that as D= are weak solutions of (%=), then for every = ∈ N
and for every i ∈ ,1, ?

0 (Ω) ∩ !∞ (Ω) we have that∫
Ω
|∇D= |?−2∇D=∇i + 1

=

∫
Ω
| 5 (G) |D=i =

∫
Ω
5 (G)i. (3.1)

Now we begin with the proof.
Step 1. {D=} is bounded on some Marcinkiewicz space.
Taking ): (D=) ∈ ,1, ?

0 (Ω) ∩ !∞ (Ω) as test function in (3.1) we obtain for every = ∈ N and for every : > 0 that∫
{ |D= | ≤: }

|∇D= |?−2∇D=∇): (D=) + 1
=

∫
Ω
| 5 (G) |D=): (D=) =

∫
Ω
5 (G)): (D=).

Observe that the second integral is nonnegative since B ): (B) ≥ 0 for every B ∈ R, so, from the above equality we
deduce that ∫

Ω
|∇): (D=) |? ≤

∫
Ω
5 (G)): (D=) ≤ : ‖ 5 ‖1, ∀= ∈ N, ∀: > 0. (3.2)

Thus, we can apply Lemma 2.4 to assure that there exists a constant � > 0 depending only of # , ?, U and 5
such that

meas{|D= | > :} ≤ �:−
# (?−1)
#−? , (3.3)

for every = ∈ N and every : > 0. As a consequence, we deduce that {D=} is bounded on the spaceM ?1 (Ω) with
?1 =

# (?−1)
#−? .

Step 2. {D=} converges in measure to some function D.
The key here is to prove that {D=} is Cauchy in measure by using the (3.3) estimate and that {): (D=)} is bounded

in ,1, ?
0 (Ω) for every : > 0 by (3.2). Once this has been proven, this implies that there exists some measurable
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function D such that D= → D in measure. As a consequence, there exists a subsequence of {D=}, still denoted by
{D=}, such that

D= → D a.e. in Ω.

Now, since for : > 0 fixed the sequence {): (D=)} is bounded in,1, ?
0 (Ω) by (3.2) and ): (D) is its only possible

almost everywhere limit because of the continuity of ): , we can conclude that

): (D=) ⇀ ): (D) in,1, ?
0 (Ω),

): (D=) → ): (D) in ! ? (Ω),
): (D=) → ): (D) a.e. in Ω.

Observe that this implies that ): (D) ∈ ,1, ?
0 (Ω) for every : > 0.

Step 3. ): (D=) strongly converges to ): (D) in,1, ?
0 (Ω) for every : > 0.

Following the ideas of [8], in order to obtain the strong convergence of the truncations in the ,1, ?
0 (Ω) space

we choose
F= = )2: (D= − )ℎ (D=) + ): (D=) − ): (D))

with ℎ > : > 0 as test function in (3.1). After several calculations, we can prove that

lim
=→∞

∫
Ω
[|∇): (D=) |?−2∇): (D=) − |∇): (D) |?−2∇): (D)]∇(): (D=) − ): (D)) = 0.

This allows us to apply Lemma 5 of [7] to conclude that

): (D=) → ): (D) strongly in,1, ?
0 (Ω) for every : > 0.

Step 4. D is the entropy solution of (%).
Let us take ): (D= − i) with i ∈ ,1, ?

0 (Ω) ∩ !∞ (Ω) and : > 0 as test function in (3.1). Observe that if we
define ! = : + ‖i‖∞, then we have that ∇): (D= − i) = 0 on the set {|D= | > !}, so we can write∫

Ω
|∇D= |?−2∇D=∇): (D= − i) =

∫
Ω
|∇)! (D=) |?−2∇)! (D=)∇): (D= − i)

and thus (3.1) with this test function can be rewriten as∫
Ω
|∇)! (D=) |?−2∇)! (D=)∇): (D= − i) + 1

=

∫
Ω
| 5 (G) |D=): (D= − i) =

∫
Ω
5 (G)): (D= − i). (3.4)

Since )! (D=) → )! (D) strongly in ,1, ?
0 (Ω), then we have that ∇)! (D=) → ∇)! (D) a.e. in Ω and, as a

consequence of Lebesgue Theorem, we have that

|∇)! (D=) |?−2∇)! (D=) → |∇)! (D) |?−2∇)! (D) in ! ?′ (Ω).
As we also have that ∇): (D= − i) → ∇): (D − i) in ! ? (Ω), we can assure that∫

Ω
|∇)! (D=) |?−2∇)! (D=)∇): (D= − i) →

∫
Ω
|∇)! (D) |?−2∇)! (D)∇): (D − i) =

∫
Ω
|∇D |?−2∇D∇): (D − i).

If we bear in mind that 1
= | 5 (G) |6(D=) → 0 in !1 (Ω) thanks to the (1.2) estimate, we can easily pass to the limit

in (3.4) to obtain that ∫
Ω
|∇D |?−2∇D∇): (D − i) =

∫
Ω
5 (G)): (D − i),

so we can conclude that D is the entropy solution of (%). Finally, observe that due to the uniqueness of the entropy
solution we can assert that the whole original sequence {D=} converges in measure to D. �
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Abstract
In this work, we analyze different cases for the lower order terms and, in each case, obtaining a regularizing

effect on singular problems. The model of this problems is
{
−ΔD + 0(G)6(D) = 5 (G)

DW
in Ω,

D = 0 on mΩ,

where Ω is a bounded open set of R# , W > 0, 5 (G) and 0(G) are nonnegative functions in !1 (Ω) and 6(B) is a
continuous function. Imposing to the datum 5 (G) an interaction either with the boundary of the domain or with
the lower order term, we are able to prove the existence of solution.

1. Introduction
In this work, we study the following boundary value problem{

−ΔD + 0(G)6(D) = 5 (G)
DW in Ω,

D = 0 on mΩ.
(1.1)

Here, Ω is a bounded open subset of R# (# ≥ 2), 0(G), 5 (G) ∈ !1 (Ω) are nonnegative functions and 6(B) is a
continuous function.

The scope of this text is to analyze the existence of solutions to (1.1) in �1
0 (Ω) in a more general range of values

of W that has been studied until now (regularizing effect). We show that it is connected with the interplay of 5 with
the boundary of Ω or with the lower order term. We point out that the hypotheses that we will impose are natural
in order to obtain our principal results according to the existing literature on the problem (1.1).

In [6], the authors studied the problem (1.1) with 5 (G) a positive Hölder continuous function in Ω and they
showed that this problem always has a classical solution which may not be in �1

0 (Ω). Concretely, they proved that
the solution belongs to �1

0 (Ω) if, and only if, W < 3.
In [3], the authors extensively study problem (1.1) with 5 ∈ !< (Ω) for < ≥ 1 and obtain existence results

depending on W and on the summability of 5 . For W = 1 and 5 ∈ !1 (Ω), they proved the existence of a solution
belonging to �1

0 (Ω). The same was proved for W < 1, but this time more summability on 5 is needed, namely
5 ∈ !< (Ω) with < ≥ � (#, W) > 1. Finally, for the case W > 1 and 5 ∈ !1 (Ω) it was proved the existence of a
solution D belonging to �1

loc (Ω) satisfying that D
W+1

2 belongs to �1
0 (Ω).

In [2], the authors partially improved the results in [3] for the case W > 1 by adding more restrictive hypotheses.
Specifically, for a regular domain and for 5 ∈ !< (Ω) greater than a positive constant they proved the existence of
a finite energy solution to (1.1), with 0(G)6(D) ≡ 0, for every 1 < W < 3<−1

<+1 . These results seem optimal, since if
5 belongs to !∞ (Ω) then we have that such solution is in �1

0 (Ω) for all W < 3 (see [6]).

2. Main results
Our approach is twofold, on one hand we extend known results to the problem (1.1) and on the other hand we
analyze the regularizing effect produced by different interplays of 5 , illustrated here according to whether W is
greater or less than one.

In the first case (W > 1), we will assume that there exists A > −1 such that, the function 5 (G) satisfies, for some
<1 > 0, that

5 (G) ≥ <1i
A
1 a.e. in Ω, (2.1)

where i1 denotes a positive eigenfunction associated to the first eigenvalue of the operator −Δ with zero Dirichlet
boundary conditions. Also, we will assume that 6 : R→ R is continuous function verifying that

6(B) is nonnegative and increasing (2.2)
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and that
0(G)6(B) ∈ !1

loc (Ω) for each B � 0 fixed. (2.3)

Moreover, we will suppose that there exists some 0 < B0 < 1 and some 21, 22 > 0 such that



0(G)6(B) ≤ 21B

A−2W
2+A if A ≥ 2W,

0(G)6(B) ≤ 21 (B + 22)
A−2W
2+A if A < 2W,

(2.4)

for every 0 ≤ B ≤ B0 and almost every G ∈ Ω.
Finally, the regularity result is obtained when there exists <2 > 0 and an open neighborhood of mΩ in Ω,

denoted by Γ, such that
5 (G) ≤ <2i

A
1 a.e. in Γ. (2.5)

The main result of the paper in the case W > 1 is the following one.

Theorem 2.1 Assume that Ω satisfies the interior sphere condition, W > 1 and that 6(B) satisfies (2.2) and (2.3).
Assume also that there exists A > −1 such that 0 ≤ 5 (G) ∈ !1 (Ω) satisfies (2.1) and 0(G)6(B) verifies (2.4). Then
there exists D ∈ �1

loc (Ω) solution to (1.1) such that D
W+1

2 ∈ �1
0 (Ω) and, if W < 2A + 3 and 5 (G) satisfies (2.5) then

D ∈ �1
0 (Ω).

In the second case (W ≤ 1), we are inspired by [1]. We assume that 6 : R→ R is a continuous function satisfying
that

6 is increasing, odd and we denote 6∞ = lim
B→+∞ 6(B). (2.6)

We also assume the called “Q-condition":

there exists & ∈ (0, 6∞) such that 5 (G) ≤ &0(G) a.e. in Ω. (2.7)

We remark that (2.7) is natural in order to obtain more regularity as we can observe in [1] where the authors show
this phenomenon thanks to this hypothesis for the first time in the literature.

Our main result of the paper in the case W ≤ 1 is the following one.

Theorem 2.2 Assume that W ≤ 1 and 6 verifies (2.6). Assume also that 0(G) and 5 (G) satisfy (2.7). Then the
problem (1.1) has only one solution D ∈ �1

0 (Ω) ∩ !∞ (Ω).

Remark 2.3 The lower order term 0(G)6(D) can be generalized to a Carathéodory function 6(G, B). General results
can be found in [4].

3. Preliminaries
The concept of solution we will adopt is gathered in the following definition.

Definition 3.1 A function D ∈ �1
loc (Ω) such that D ≥ 0 a.e. in Ω, 0(G)6(D) ∈ !1

loc (Ω),
5
DW ∈ !1

loc (Ω) is said to be
a supersolution to problem (1.1) if∫

Ω
∇D∇q +

∫
Ω
0(G)6(D)q ≥

∫
Ω

5

DW
q, ∀0 ≤ q ∈ C1

2 (Ω).

We say that D is a subsolution for problem (1.1) if the reverse inequality is satisfied and Dg ∈ �1
0 (Ω) for some

g > 0.
A function D ∈ �1

loc (Ω) is a solution for (1.1) if it is both a subsolution and a supersolution for such a problem.
If, in addition, D ∈ �1

0 (Ω), we say that D is a finite energy solution for problem (1.1).

Let us clarify that the function 5
DW q takes the value +∞ in the case D = 0 and 5 q ≠ 0 while takes the value zero

whenever 5 q = 0.
For any : > 0 we set ): (B) = min{:,max{B,−:}} and �: (B) = B − ): (B).
In the next result we summarize the main existence results for



−ΔD= + 6= (G, D=) = 5= (G)(

|D= | + 1
=

)W in Ω,

D= = 0 on mΩ.
(3.1)
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Lemma 3.2 Assume that 0 ≤ 5= ∈ !∞ (Ω) and 6= (G, B) is a Carathéodory function with 6= (G, B)B ≥ 0 for every
B ∈ R and a.e. G ∈ Ω and 6= is bounded for B in bounded sets. There exists 0 ≤ D= ∈ �1

0 (Ω) solution of (3.1) for
every fixed = ∈ N. In addition, for W ≤ 1 we have that D= ∈ !∞ (Ω). Moreover, in the case W > 1, the existence of
solution D= ∈ �1

0 (Ω) is deduced even for 5= ∈ !1 (Ω).
The rest of the section is devoted to the case W > 1 where we approximate the datum 5 (G) by

5= (G) = 5 (G) + j(A)
=A (W+1)/(2+A )

,

where A is given by (2.1), j(A) = 0 for A ≤ 0 and j(A) = 21 + 1 for A > 1, where 21 is given by (2.4). We
also approximate the nonlinearity 0(G)6(B) by a suitable sequence of Carathéodory functions 6= defined in Ω × R.
Specifically, we define

6= (G, B) =


)= (0(G)6(B)), B ≥ 1

= ,
= B )= (0(G)6(B)), 0 < B < 1

= ,
0, B ≤ 0.

Observe that 6= (G, B) is increasing in B for a.e. G ∈ Ω when (2.2) is satisfied and that 6= (G, B) ≤ 0(G)6(B) for B ≥ 0.
Following the ideas of [2], in the next lemma we prove that a certain power of an approximation of i1 is a

subsolution of (3.1).

Lemma 3.3 Assume that W > 1, 6(B) satisfies (2.2) and there exists A > −2 such that 0 ≤ 5 (G) ∈ !1 (Ω)
verifies (2.1) and 0(G)6(B) verifies (2.4). Then there exists =0 ∈ N such that the function

I= (G) =
(
�i1 (G) + 1

=(W+1)/(2+A )

) 2+A
W+1
− 1
=

is a subsolution of (3.1) for = ≥ =0 and for � > 0 (independent of =) sufficiently small. As a consequence,

I= ≤ D= a.e. in Ω.

The Lemma 3.3 allows us to obtain that lower boundedness for the sequence {D=}=≥=0 and this suffices to prove
the existence of a solution of (1.1).

Theorem 3.4 Assume that W > 1 and 6(B) satisfies (2.2) and (2.3). Assume also that there exists A > −1 such
that 0 ≤ 5 (G) ∈ !1 (Ω) satisfies (2.1) and 0(G)6(B) verifies (2.4). Then there exists D ∈ �1

loc (Ω) solution of (1.1)
satisfying that D

W+1
2 ∈ �1

0 (Ω). Moreover, D= → D a.e. in Ω.

4. Regularizing effect due to the behavior of the data at the boundary of Ω
In this section we prove Theorem 2.1.

Proof Taking
(
): (D=) + 1

=

) \
− 1
=\
∈ �1

0 (Ω) ∩ !∞ (Ω) with \ > max
{
0, W − (A+1) (W+1)2+A

}
as test function in (3.1),

we obtain, after dropping a positive term, that

U\

∫
Ω

(
): (D=) + 1

=

) \−1
|∇): (D=) |2 ≤

∫
Ω
5=

(
D= + 1

=

) \−W
. (4.1)

If we take \ < W, we can apply the Lemma 3.3 to deduce that

∫
Ω
5=

(
D= + 1

=

) \−W
≤

∫
Ω
5=

(
�i1 (G) + 1

=(W+1)/(2+A )

) (2+A ) (\−W)
W+1

. (4.2)

On one hand, there is �1 > 0 such that i1 > �1 in Ω\Γ (Γ given by (2.5)) since i1 > 0 in Ω, i1 ∈ C(Ω) and
Ω\Γ is closed. Therefore, we have that

∫
Ω\Γ

5=

(
�i1 (G) + 1

=(W+1)/(2+A )

) (2+A ) (\−W)
W+1

≤ �2

∫
Ω
( 5 + 1 + 21). (4.3)

On the other hand, we can apply hypothesis (2.5) to obtain that

∫
Γ
5=

(
�i1 (G) + 1

=(W+1)/(2+A )

) (2+A ) (\−W)
W+1

≤ �1

∫
Γ

(
i1 (G) + j(A)

=(W+1)/(2+A )

)A+ (2+A ) (\−W)W+1
< +∞. (4.4)
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In this way, we can deduce from (4.1), (4.2), (4.3) and (4.4) that the sequence{(
): (D=) + 1

=

) \+1
2

− 1
=
\+1
2

}

is bounded in �1
0 (Ω) by a constant independent of : . For this reason, we can use Fatou Lemma to assure that

{(
D= + 1

=

) \+1
2

− 1
=
\+1
2

}

is bounded in �1
0 (Ω) and thus, up to a subsequence, we can assume that it converges weakly in �1

0 (Ω). Since
D= → D a.e. in Ω, this weak limit has to be equal to D \+12 and, consequently D \+12 ∈ �1

0 (Ω).
Finally, let us note that

\ ∈
]
max

{
0, W − (A + 1) (W + 1)

2 + A

}
, W

[
⇐⇒ 1 < W < 2A + 3.

�

5. Regularizing effect thanks to the &-condition
In this section we prove Theorem 2.2.

Proof Inspired by [1], we define the approximated problems



−ΔD= + 0= (G)6(D=) = 5= (G)(

|D= | + 1
=

)W in Ω,

D= = 0 on mΩ,
(5.1)

where
5= (G) = 5 (G)

1 + 1
= 5 (G)

, 0= (G) = 0(G)
1 + &= 0(G)

.

Since the Q-condition is hold, 0= (G) and 5= (G) are nonnegative functions and 6(B)B ≥ 0 for all B ∈ R by (2.6),
we can apply Lemma 3.2 to assure the existence of 0 ≤ D= ∈ �1

0 (Ω) ∩ !∞ (Ω) solution of (5.1), i.e., satisfying∫
Ω
∇D=∇q +

∫
Ω
0= (G)6(D=)q =

∫
Ω

5= (G)q(
|D= | + 1

=

)W , ∀q ∈ �1
0 (Ω) ∩ !∞ (Ω). (5.2)

The scheme of the rest of the proof is as follows:
Step 1. {D=} is bounded in !∞ (Ω) and in �1

0 (Ω).
Step 2. Control of the right hand side integral of (5.2).
Step 3. Passing to the limit in (5.2).
Step 1. In this step we essentially apply the ideas of [1]. To obtain the boundedness of {D=} in !∞ (Ω) we use

�: (D=) ∈ �1
0 (Ω) ∩ !∞ (Ω) as test function in (5.1), with : = max{1, 6−1 (&)} obtaining that

U

∫
Ω
|∇�: (D=) |2 +

∫
Ω
0= (G) [6(D=) −&]�: (D=) ≤ 0

and, as the second integral is nonnegative because 6(D=) ≥ & on the set {D= ≥ :}, we can conclude that
‖�: (D=)‖� 1

0 (Ω) = 0 and then {D=} is bounded in !∞ (Ω) with ‖D=‖∞ ≤ : .
Now, using D= ∈ �1

0 (Ω) ∩ !∞ (Ω) as test function in (5.1) and using this boundedness of {D=} in !∞ (Ω), we
can deduce by (2.6) that

U

∫
Ω
|∇D= |2 ≤

∫
Ω
5 (G):1−W .

Thus, {D=} is bounded in �1
0 (Ω). Therefore, there exists a subsequence, still denoted by {D=}, which converges

weakly in �1
0 (Ω) and a.e. to some 0 ≤ D ∈ �1

0 (Ω) with ‖D‖∞ ≤ : .
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Step 2. In this part we follow the ideas of [5]. We introduce for X > 0 the function

/X (B) =



1, if 0 ≤ B ≤ X,
− BX + 2, if X ≤ B ≤ 2X,

0, if 2X ≤ B.

Taking /X (D=)q ∈ �1
0 (Ω) ∩ !∞ (Ω) as test function in (5.1), where q ∈ �1

0 (Ω) ∩ !∞ (Ω) with q ≥ 0, one has∫
Ω
∇D=∇q /X (D=) +

∫
Ω
0= (G)6(D=)/X (D=)q = 1

X

∫
{X≤D=≤2X }

∇D=∇D=q +
∫
Ω

5= (G)(
D= + 1

=

)W /X (D=)q.
Since /X (D=) = 1 in {D= ≤ X} and the first integral of the right hand side is positive, we can deduce the

inequality

0 ≤
∫
{D=≤X }

5= (G)(
D= + 1

=

)W q ≤
∫
Ω
∇D=∇q /X (D=) +

∫
Ω
0= (G)6(D=)/X (D=)q.

Using that {D=} is bounded in !∞ (Ω) and converges weakly in �1
0 (Ω) and a.e. in Ω to D, we can easily pass to

the limit in = to obtain that

0 ≤ lim sup
=→+∞

∫
{D=≤X }

5= (G)(
D= + 1

=

)W q ≤
∫
Ω
∇D∇q/X (D) +

∫
Ω
0(G)6(D)/X (D)q.

Now, we pass to the limit as X tends to 0 using that 6(0) = 0 and that ∇D = 0 a.e. in {D = 0} since D ∈ �1
0 (Ω)

allow us to conclude that
lim sup
=→+∞

∫
{D=≤X }

5= (G)(
D= + 1

=

)W q→ 0 as X→ 0. (5.3)

Step 3. At this point, thanks to the boundness and convergence of D= we can assure that∫
Ω
∇D=∇q +

∫
Ω
0= (G)6(D=)q→

∫
Ω
∇D∇q +

∫
Ω
0(G)6(D)q ∀q ∈ �1

0 (Ω) ∩ !∞ (Ω). (5.4)

Now we choose X< → 0 such that meas{D = X<} = 0 an we split the right hand side integral of (5.2) into two
parts, namely ∫

Ω

5= (G)(
D= + 1

=

)W q =
∫
{D=≤X< }

5= (G)(
D= + 1

=

)W q +
∫
Ω

5= (G)
(D= + 1

= )W
j{D=>X< }q. (5.5)

Observe that thanks to (5.2), (5.4) and (5.5) and Lebesgue Theorem we have that

lim
=→∞

∫
{D=≤X< }

5= (G)(
D= + 1

=

)W q =
∫
Ω
∇D∇q +

∫
Ω
0(G)6(D)q −

∫
{D>X< }

5 (G)
DW

q

and, using (5.3), we obtain that

lim
<→∞

∫
{D>X< }

5 (G)
DW

q =
∫
Ω
∇D∇q +

∫
Ω
0(G)6(D)q. (5.6)

In particular, using Fatou Lemma we deduce that 5 (G)DW q ∈ !1 ({D > 0}) and then, using Lebesgue Theorem that

lim
<→∞

∫
{D>X< }

5 (G)
DW

q =
∫
{D>0}

5 (G)
DW

q. (5.7)

In addition, we can apply Fatou Lemma to obtain that∫
{D=0}

5 (G)
DW

q ≤ lim sup
=→+∞

∫
{D=≤X }

5= (G)(
D= + 1

=

)W q, ∀X > 0,

which in view of (5.3) implies that∫
{D=0}

5 (G)
DW

q = 0 and
∫
{D>0}

5 (G)
DW

q =
∫
Ω

5 (G)
DW

q.
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This, combined with (5.6) and(5.7) give us∫
Ω
∇D∇q +

∫
Ω
0(G)6(D)q =

∫
Ω

5 (G)
DW

q, ∀q ∈ �1
0 (Ω) ∩ !∞ (Ω).

Moreover, 0(G)6(D) ∈ !1 (Ω) since D ∈ !∞ (Ω) and 5
DW ∈ !1

loc (Ω) since
∫
Ω
5 (G)
DW |q| < +∞ for every q ∈

�1
0 (Ω) ∩ !∞ (Ω). Thus, it is proved that the function D ∈ �1

0 (Ω) ∩ !∞ (Ω) is a solution of (1.1), as desired. �
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Abstract

We introduce a special family of boundary optimal control problems in which we select, in a very precise way,
the class of Dirichlet-boundary data that we would allow to compete. Not every possible datum is admitted. We
therefore work in a subspace of the form

L ≡ H + �1
0 (Ω) ⊂ �1 (Ω)

for a proper subspaceH in �1 (Ω). In this form, only boundary data found inH are admitted. Other ingredients are
typical of a standard optimal control problem like the cost functional or the PDE-state equation. We will explore
existence and optimality in this framework, and write a few helpful ideas about the numerical approximation of
optimal solutions. The practical implementation is so special that it would have to wait, though, until some issues
are resolved.

1. Introduction
Let Ω ⊂ R# be a regular, bounded domain, and let H be a non-trivial, closed subspace of �1 (Ω) such that

H ∩ �1
0 (Ω)

is the trivial function. Under these circumstances, the subspace H + �1
0 (Ω) is a direct sum

L ≡ H ⊕ �1
0 (Ω),

and the two (non-orthogonal) projections

c1 : H ⊕ �1
0 (Ω) ↦→ H, c2 : H ⊕ �1

0 (Ω) ↦→ �1
0 (Ω)

are linear, continuous operators. The subspace H contains the set of feasible boundary conditions that we would
like to consider, in the sense that functions D ∈ L are such that there is some* ∈ H with D −* ∈ �1

0 (Ω). Since

�1
0 (Ω)⊥ = {D ∈ �1 (Ω) : −ΔD + D = 0 in Ω}

is the orthogonal complement of �1
0 (Ω) in �1 (Ω), we can regard H as a subspace of �1

0 (Ω)⊥, i.e. all functions in
H can be assumed to be (weak) solutions of the linear, elliptic PDE

−ΔD + D = 0 in Ω.

In this case, the two projections c8 , 8 = 1, 2, would be orthogonal projections. This perspective, however, is not
important, and, in fact, it is of no practical interest.

We would like to consider the optimal control problem

Minimize in* ∈ H : � (*) =
∫
Ω
q(x, D(x),∇D(x)) 3x (1.1)

where D is the unique minimizer of the problem

Minimize in E ∈ �1 (Ω) :
∫
Ω
i(x, E(x),∇E(x)) 3x

under the fixed Dirichlet boundary condition
E = * on mΩ.

The operation taking
* ∈ H ↦→ D ∈ �1 (Ω),
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can, under suitable hypotheses, be also written in the form

− div[iu (x, D(x),∇D(x))] + iD (x, D(x),∇D(x)) = 0 in Ω, (1.2)
D = * on mΩ.

Note that D ∈ L. Here

q(x, D, u) : Ω × R × R# → R,
i(x, D, u) : Ω × R × R# → R,

are densities enjoying typical conditions to ensure that problem (1.2) admits a unique solution D for each feasible
* ∈ H.

Though other possibilities can be considered, our main explicit example is the one examined in [8]. Our
framework here is a generalization of that principal situation. Let F ∈ �1 (Ω) be a fixed, non-constant harmonic
function in Ω

ΔF = 0 in Ω,

and consider
H = {k(F) : k(F) ∈ �1 (Ω)},

for suitable functions k(G) of a single variable. As a matter of fact, if we put

H̃ = {k, measurable :
∫
�
k(_)2l0 (_) 3_ +

∫
�
k ′(_)2l1 (_) 3_ < ∞}, (1.3)

where:

1. � = F(Ω) ⊂ R, an interval (recall that F is harmonic);

2. l0 is the weight given by

l0 (_) = H#−1 ({F = _} ∩Ω) =
∫
{F=_}∩Ω

1 3((x);

3. l1 is the weight determined by

l1 (_) =
∫
{F=_}∩Ω

|∇F(x) |2 3((x),

then
H = {k(F) : k ∈ H̃}.

H̃ is a weighted Sobolev space, and hence H is closed in �1 (Ω). The fact that the intersection

H ∩ �1
0 (Ω)

is the trivial function is a consequence of the fact that the interval

� = F(mΩ)

as well, given that F is harmonic (maximum principle). See [8] for more details.
There are several scenarios of increasing complexity that we can look at depending on the form of the two

densities q and i.

1. One first, main paradigmatic example would be

q(x, D, u) = 1
2
|u|2 + 1

2
D2, i(x, D, u) = 1

2
|u|2 − 5 (x)D,

for a function 5 ∈ !2 (Ω), where both densities are quadratic in the variable u.

2. We can allow general quadratic dependences on u for both q and i.

3. More general, non-quadratic dependence in u can be implemented in q, but i has to remain quadratic in u.
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4. If we take q ≡ i, then the dependence on u does not have to be quadratic. This very particular situation in
which q ≡ i is especially relevant. It was the one examined in [8].

5. If i is non-quadratic, the problem is in need of relaxation. This is well-beyond the scope of this paper.

We plan to cover several steps in the analysis of this kind of problems:

1. We will make precise the functional analytical framework and hypotheses on the various ingredients to have
a precise, well-defined problem.

2. We will show existence and, whenever appropriate, uniqueness of optimal solutions.

3. We will move on to explore optimality conditions.

4. Some simple ideas about the practical numerical implementation based on optimality will be indicated, as
we plan to pursue the numerical approximation of some selected cases through a descent mechanism in the
near future.

We will treat these various issues successively in subsequent sections. As our emphasis is on admissible boundary
data, other ingredients are typical of a standard optimal control problem, and can be found in references like
[2, 3, 6, 7, 9], or the pioneering work [5]. For standard material on Sobolev spaces, check [1] or [4].

2. Motivation
From the purely mathematical viewpoint, it is interesting to consider and study the proposed situation as one can
learn new things that eventually may help in maturing old ideas.

From a more applied or practical perspective, one would rather discretize appropriately the boundary of the
physical domainΩ, and allow for certain families of boundary data that are constant on the discretized subdomains,
for example. These families are incorporated into the subspace H, which would be finite-dimensional in this
situation.

Another possibility is that there be parts of the boundary mΩ where the boundary datum must be an unknown
constant. This is the idea behind the boundary datum of the form

D = k(F)
for a given fixed function F: points in mΩ in the same F-level will be assigned the same, unknown value at the
boundary for feasible D′s.

Another important motivation comes from inverse problems in conductivity in the 3D case. This was the main
reason in [8] to consider variational problems of the form

Minimize in D ∈ L :
∫
Ω
q(x, D(x),∇D(x)) 3x

that correspond to the equal-case q ≡ i. The most natural way to approximate numerically these minimizers goes
through the investigation of the family of boundary optimal control problems examined here. In fact, this numerical
approximation has been one main point in pursuing this more general scenario.

3. Existence and uniqueness
Assume that subspace H of �1 (Ω) has been given with the properties indicated earlier. It is the class of boundary
conditions that we are willing to admit in our optimization problem (it could be even finite-dimensional). The two
densities q and i are given. For simplicity, we will take

i = i(x, u), q = q(x, D, u),
as the more general situation does not pose any particular difficulty under suitable sets of hypotheses. We assume
to begin with that i(x, u) is quadratic, strictly convex in the variable u, as usual, so that state equation (1.2)

div[iu (x,∇D(x))] = 0 in Ω, D = * on mΩ, (3.1)

is linear, well-posed and admits a unique solution. We therefore face the problem

Minimize in* ∈ H : � (*) =
∫
Ω
q(x, D(G),∇D(x)) 3x (3.2)

subject to (3.1).
If, in addition to i being quadratic in u, so is density q in (D, u), the dependence of functional � in (3.2) on *

is quadratic and coercive, and as such, beyond any other consideration, there is a unique optimal solution in H. We
are looking for a more general existence result.
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Theorem 3.1 In addition to the assumptions already indicated, if the density q(x, D, u) is convex in u, and with
quadratic growth at infinity with respect to pairs (D, u), problem (3.2) admits an optimal solution * ∈ H. If, in
addition, q is strictly convex in (D, u) the optimal solution is unique.

Proof Let {* 9 } be a minimizing sequence for the problem with {D 9 }, the sequence of their corresponding states

div[iu (x,∇D 9 (x))] = 0 in Ω, D 9 = * 9 on mΩ.

By the coercivity of q(x, D, u) with respect to (D, u), there is a weak limit (for a non-relabeled subsequence)

D 9 ⇀ D in �1 (Ω), D 9 → D in !2 (Ω).

The decomposition
D 9 = * 9 + E 9 , E 9 = D 9 −* 9 ∈ �1

0 (Ω),
implies that

* 9 = c1D 9 , E 9 = c2D 9 ,

and both sequences {* 9 }, and {E 9 }, are bounded in �1 (Ω). For additional subsequences (not relabeled), we also
have

* 9 ⇀*, E 9 ⇀ E

in �1 (Ω) with
* ∈ H, E ∈ �1

0 (Ω)
(because both subspaces are weakly closed). By the uniqueness of limit, it ought to be true that

D = * + E, * ∈ H, E ∈ �1
0 (Ω),

and D ∈ L. We claim that this weak limit D is indeed the state associated with the weak limit * ∈ H. To have this
crucial fact for our analysis is unavoidable to rely on the linearity of the state equation (3.1). Once this is granted,
then it is immediate to have that (3.1) indeed holds for D and*, our weak limits. Then, the convexity of q on u and
its continuity with respect to D imply that

� (*) =
∫
Ω
q(x, D(x),∇D(x)) 3x

≤ lim
9→∞

∫
Ω
q(x, D 9 (x),∇D 9 (x)) 3x

= lim
9→∞

� (* 9 ),

and* is indeed a minimizer. The uniqueness under strict convexity is standard. �

The situation where q and i are the same densities is so special that it deserves a separate statement. In this
case, the optimal control problem becomes

Minimize in D ∈ L = H ⊕ �1
0 (Ω) :

∫
Ω
q(x, D(x),∇D(x)) 3x. (3.3)

Proposition 3.2 Suppose q(x, D, u) satisfies the hypotheses in the previous theorem. If i ≡ q, then problem (3.3)
admits a solution. If convexity with respect to u is strengthened to strict convexity with respect to pairs (D, u), the
optimal solution is unique.

This is the particular situation considered in [8]. Exactly the same ideas as in the proof of the previous statement
lead to the existence of optimal solutions for the equal-case.
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4. Optimality
As usual, we can write optimality conditions not necessarily linked to the available existence results. We therefore
assume that problem (1.1) under (1.2) admits an optimal solution *0 ∈ H, and we will assume the necessary
smoothness and regularity conditions on the two functions q and i for the following manipulations to be valid. We
recover here the full dependence

q = q(x, D, u), i = i(x, D, u).
Let *0 ∈ H be a feasible element of our problem, and take * ∈ H a feasible variation such that the linear

combination*0 + A* is feasible for every A . Put

− div[iu (x, D0 (x),∇D0 (x))] + iD (x, D0 (x),∇D0 (x)) = 0 in Ω,
D0 = *0 on mΩ,

and let D be the variation produced on D0 due to the change that * produces on *0, so that to first-order in A, we
would have

− div[iu (x, D0 (x) + AD(x),∇D0 (x) + A∇D(x)]
+iD (x, D0 (x) + AD(x),∇D0 (x) + A∇D(x)) = 0 in Ω.

Differentiating with respect to A, and evaluating at A = 0, we see that

− div[iuD (x, D0,∇D0)D] − div[iuu (x, D0,∇D0)∇D]
+iDD (x, D0,∇D0 (x))D + iDu (x, D0,∇D0 (x))∇D = 0 in Ω,

which can be simplified to

− div[iuu (x, D0,∇D0)∇D] + [iDD (x, D0,∇D0 (x)) (4.1)
− div iuD (x, D0,∇D0)]D = 0 in Ω.

The above is a short-form of the true calculation which would require to write

− div[iu (x, D(x, A),∇D(x, A)] + iD (x, D(x, A),∇D(x, A)) = 0 in Ω,
D(·, A) = *0 + A* on mΩ,

with D(·, 0) = D0. Differentiation with respect to A , and later evaluation at A = 0, leads to (4.1) for D = DA (·, 0)
together with the boundary datum D = * on mΩ. Since the resulting problem for D is a linear, non-degenerate
problem, we can conclude, through the implicit function theorem, that the computations performed are correct,
and (4.1) along with the boundary datum D = * on mΩ furnishes the correct perturbation D to D0 produced by the
perturbation* to*0.

The same perturbation calculations with the cost functional pushes us to express the rate of change∫
Ω
[qD (x, D0,∇D0)D + qu (x, D0,∇D0)∇D] 3x (4.2)

in terms of our variable k with the help of the co-state E. This is standard. The co-state E must be the unique
solution of the problem

− div[∇EA0 (x) + b0 (x)] + 00 (x)E + 10 (x) = 0 in Ω, (4.3)
E = 0 on mΩ,

where

A0 (x) = iuu (x, D0 (x),∇D0 (x)),
b0 (x) = qu (x, D0 (x),∇D0 (x)),

00 (x) = iDD (x, D0 (x),∇D0 (x)) − div iuD (x, D0 (x),∇D0 (x)),
10 (x) = qD (x, D0 (x),∇D0 (x).

Problem (4.3) can, equivalently written in the more standard form

− div[A0 (x)) ∇E + b0 (x)] + 00 (x)E + 10 (x) = 0 in Ω, (4.4)
E = 0 on mΩ,
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where A0 (x)) stands for the transpose matrix. Then it is a typical exercise to write (4.2) in the form∫
mΩ
D(A)0 ∇E + b0) · n 3((x), (4.5)

where we have taken into account (4.1) and (4.4). n is the unit, outer normal to mΩ. The point is that now we have
to respect the boundary form of feasible D’s which is D = *. Indeed, (4.5) is written∫

mΩ
* (A)0 ∇E + b0) · n 3((x). (4.6)

In this generality, without specifying further the nature of H, not much more can be said. If we put

H|mΩ = {* |mΩ : * ∈ H} ⊂ !2 (mΩ), (4.7)

then if all the integrals in (4.6) vanish, then

(A)0 ∇E + b0) · n ∈ H|⊥mΩ
where ⊥ means orthogonal complement in the Hilbert space !2 (mΩ). We have shown the following.

Theorem 4.1 Suppose the integrand
i(x, D, u) : Ω × R × R# → R

is C2 in pairs (D, u), and
q(x, D, u) : Ω × R × R# → R,

is C1 in pairs (D, u). If D0 is a minimizer for our corresponding optimal control problem, then

(A)0 ∇E0 + b0) · n ∈ H|⊥mΩ
if H|mΩ is the subspace in (4.7), and orthogonality is interpreted in !2 (mΩ). Here n is the unit, outer normal to
mΩ,

A0 (x) = iuu (x, D0 (x),∇D0 (x)), b0 (x) = qu (x, D0 (x),∇D0 (x)),
and E0 is the associated co-state solution of (4.3) for the additional functions

00 (x) = iDD (x, D0 (x),∇D0 (x)) − div iuD (x, D0 (x),∇D0 (x)),
10 (x) = qD (x, D0 (x),∇D0 (x).

The converse is correct, as usual, in two main circumstances:

1. under convexity conditions for the integrand q, and convex, quadratic for i;

2. just under convexity conditions for the integrand q, provided q and i are identical.

For our main explicit example
H = {k(F) : k(F) ∈ �1 (Ω)}, (4.8)

with F a fixed, harmonic function in Ω, k ∈ H̃ given in (1.3), and

� = F(Ω) = F(mΩ) ⊂ R,
our optimality result Theorem 4.1 can be much more explicit. All computations until (4.5) do not require to take
into account the particular nature of H. If we go back to (4.6) with * = k(F), since the function F is given, and
cannot be changed, to factor out our variable functions k from the integral in (4.6), we write it in the form∫

�

∫
{F=_}∩mΩ

k(F) (A)0 ∇E + b0) · n 3( | {F=_} 3_,

where
3( = 3( | {F=_} 3_.

Hence, the previous integral can be finally written in the form∫
�
k(_)

∫
{F=_}∩mΩ

(A)0 ∇E + b0) · n 3( | {F=_} 3_. (4.9)

If*0 = k0 (F) is indeed a minimizer of our problem, all of these directional derivatives should vanish, i.e. integrals
in (4.9) ought to vanish for arbitrary k, and this leads immediately to the following corollary.
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Corollary 4.2 With the same notation and hypotheses as in Theorem 4.1, if D0 is a minimizer for our corresponding
optimal control problem with H given in (4.8), then∫

{F=_}∩mΩ
(A)0 ∇E0 + b0) · n 3( | {F=_}∩mΩ = 0

for every _ ∈ �.

5. Some ideas on the numerical approximation
To be specific, as it is usually required in practical approximation mechanisms, we will focus directly in our main
situation (4.8). We become interested in designing a practical numerical procedure to approximate the unique
optimal solution of the optimization problem

Minimize in k(G) : � (k) =
∫
Ω
q(x, D(x),∇D(x)) 3x (5.1)

where D is the unique solution of the PDE problem

− div[iu (x, D(x),∇D(x))] + iD (x, D(x),∇D(x)) = 0 in Ω,
D = k(F) on mΩ.

We assume all of the necessary assumptions, as examined in the previous sections, to justify the manipulations
that follow. We are trying to implement a typical descent mechanism. The main step of such a procedure is to
determine the steepest descent direction, which we treat in the sequel. The way in which this descent direction is
defined is so special that its practical implementation is far from standard, and it is not clear how to use typical
software packages for it. We will address this important issue in the near future.

By taking advantage of the calculations performed earlier about optimality, we can formally write

〈� ′(k0), k〉 =
∫
�
k(_)

∫
{F=_}∩mΩ

(A)0 ∇E0 + b0) · n 3( | {F=_} 3_

where E0 is the unique solution of

− div[A)0 (x)∇E0 + b0 (x)] + 00 (x)E0 + 10 (x) = 0 in Ω,
E0 = 0 on mΩ,

and

A0 (x) = iuu (x, D0 (x),∇D0 (x)),
b0 (x) = qu (x, D0 (x),∇D0 (x)),

00 (x) = iDD (x, D0 (x),∇D0 (x)) − div iuD (x, D0 (x),∇D0 (x)),
10 (x) = qD (x, D0 (x),∇D0 (x).

Here

− div[iu (x, D0 (x),∇D0 (x))] + iD (x, D0 (x),∇D0 (x)) = 0 in Ω,
D0 = k0 (F) on mΩ,

If we put

Ψ0 (_) =
∫
{F=_}∩mΩ

(A)0 ∇E0 + b0) · n 3( | {F=_} ,

then the steepest descent direction will be the minimizer of the quadratic variational problem

Minimize in k :
1
2
‖k‖2 + 〈� ′(k0), k〉.

If we put

‖k‖2 =
∫
�
[k(_)2 + k ′(_)2] 3_, 〈� ′(k0), k〉 =

∫
�
k(_)Ψ0 (_) 3_,

it is easy to realize that the steepest descent direction is the unique solution of the one-dimensional problem

− k ′′ + k = −Ψ0 in �, k ′(m�) = 0. (5.2)



116 Pablo Pedregal

Note that the local decay of � in (5.1) along this direction k trivially becomes∫
�
k(_)Ψ0 (_) 3_ = −‖k‖2.

In addition, at a point of minimum Ψ0, identically vanishes, and so does the steepest descent direction k in (5.2).
These simple calculations are the basis for a practical steepest descent method.
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Abstract
In this work we present a certified Reduced Basis for the unsteady Smagorinsky turbulence model, for which

we introduce an a posteriori error indicator based upon the Kolmogorov turbulence theory, which introduces
an expression for the energy cascade. The main idea of this estimator is that if the full order solution and the
Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also
be close. For this a posteriori error indicator, we also present some numerical tests which supports that the use
of this indicator is helpful. We use as full-order model a finite element discretisation of the LES Smagorinsky
model, and the Reduced Order Model, considering the inner pressure supremizer, for obtaining stable reduced
velocity-pressure spaces.

1. Introduction
Reduced Order Modeling (ROM) has been successfully used in several fields to provide large reduction in compu-
tation times to solve Partial Differential Equations [9–11]. In fluid mechanics a popular strategy is to use POD to
extract the dominant structures for high-Reynolds flow, which are then used in a Galerkin approximation of the un-
derlying equations [10,12]. Application of the POD-Galerkin strategy to turbulent fluid flows remains a challenging
area of research. By construction, ROMs generated using only the first most energetic POD basis functions are
not endowed with the dissipative mechanisms associated to the creation of lower size, and less energetic, turbulent
scales.

In this work we present an unsteady Reduced Basis (RB) Smagorinsky turbulence model. We address a
turbulence model to consider realistic situations, as turbulent flows frequently appear in actual applications. The
Smagorinsky model is a basic Large Eddy Simulation (LES) turbulence model, that provides accurate solutions for
the large scales of the flow, and a part of the inertial spectrum. We address the a posteriori error analysis - based
reduced order modeling of incompressible flow equations.

We present an a posteriori error indicator, based upon the Kolmogorov turbulence theory. Since the full-order
model is intended to be a good approximation of the continuous problem, it should accurately approximate the
energy spectrum of the continuous problem in the resolved part of the inertial spectrum. The key is to use the error
deviation with respect to the full-order energy spectrum by the RB solution to select the new basis functions by
the Greedy algorithm. To validate this indicator, we develop an academic test in which we compare the use of the
Kolmogorov indicator as error estimator with the use of the exact error between the full order and reduced order
solution, for the selection of the basis functions in the Greedy algorithm. This error estimation procedure has the
advantage of applying to any kind of numerical discretisation, and to any physical time at which the turbulence is in
statistical equilibrium. This allows to overcome the technical difficulties related to the building of error estimation
for the Reduced Basis discretisation, as the ones developed in [3, 4, 6], based upon the Brezzi-Rappaz-Raviart
theory [2].

Moreover, we use the Empirical Interpolation Method (EIM) to build reduced approximations of the non-linear
eddy viscosity term, coming from the Smagorinsky model. This allows to linearize the eddy viscosity term, being
able to efficiently decouple the RB problem in an offline/online procedure.

The structure of this work is as follows. In Section 2, we present the Finite Element (FE) discretization for
the Smagorinsky turbulence model. Then, in Section 3 we present the Reduced Basis method for this problem.
In Section 4, we present the linearization of the Smagorinsky term, recalling the Empirical Interpolation Method.
We present the development of the a posteriori error indicator based upon the Kolmogorov turbulence theory in
section 5, with the numerical test related in this part presented in ssection 6. Finally, in section 7, we present some
conclusions.

2. Smagorinsky Finite element problem
In this section we present the unsteady Smagorinsky turbulence model, that is the basic LES turbulence model, in
which the effect of the subgrid scales on the resolved scales is modeled by eddy diffusion terms [5]. We introduce
a discretization by the Finite Element method using inf-sup stable velocity-pressure spaces.
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Let Ω be a bounded domain of R3 (3 = 2, 3), with Lipschitz-continuous boundary Γ. We assume that Γ is
split into Γ = Γ� ∪ Γ# where Γ� and Γ# are two connected measurable sets of positive (3 − 1)-dimensional
measure, with disjoint interiors. We intend to impose Dirichlet and Neumann boundary conditions on Γ� and Γ# ,
respectively.

We present a parametric unsteady Smagorinsky turbulence model, where we consider the Reynolds number as
a physical parameter, denoted by ` ∈ D, where D is a compact sub-set of R. Also, we consider the time interval
[0, ) 5 ], with ) 5 > 0 a chosen finite time. Although the Smagorinsky model is intrinsically discrete, we present it
in a continuous form in order to clarify its relationship with the Navier-Stokes equations: We search for a velocity
field w : Ω × [0, ) 5 ] ↦→ R3 and a pressure function ? : Ω × [0, ) 5 ] ↦→ R such that




mCw + w · ∇w + ∇? − ∇ ·
(

1
`
∇w + a) (w)∇w

)
= f in Ω × [0, ) 5 ],

∇ · w = 0 in Ω × [0, ) 5 ],
w = 0 on Γ� × [0, ) 5 ],

n ·
(

1
`
∇w + a) (w)∇w

)
= 0 on Γ# × [0, ) 5 ],

w = 0 in Ω × {0}

(2.1)

where f is the kinetic momentum source, a) (w) is the eddy viscosity defined as

a) (w) = �2
(

∑
 ∈Tℎ

ℎ2
 

��∇w | ��j , (2.2)

where
�� · �� denotes the Frobenius norm in R3×3 , and �( is the Smagorinsky constant.

To state the full-order discretization that we consider for problem (2.1), let us introduce the velocity and pressure
spaces

. = {v ∈ �1 (Ω)3 , s.t. v |Γ� = 0 }, " = {@ ∈ !2 (Ω), s.t.
∫
Ω
@ = 0 }.

We assume f ∈ . ′.
Let .ℎ and "ℎ be two finite element subspaces of . and " , respectively, that satisfy the discrete inf-sup

condition, i.e.,
‖@ℎ ‖0,2,Ω = sup

vℎ ∈.ℎ

(@ℎ ,∇ · vℎ)Ω
‖∇vℎ ‖0,2,Ω , ∀@ℎ ∈ "ℎ , (2.3)

We introduce the discretisation of the unsteady Smagorinsky model (2.1),




∀` ∈ D and C ∈ [0, ) 5 ], find (uℎ (C), ?ℎ (C)) = (uℎ (C; `), ?ℎ (C; `)) ∈ .ℎ × "ℎ such that
(mCuℎ , vℎ)Ω + 0(uℎ , vℎ; `) + 1(vℎ , ?ℎ; `) + 0( (wℎ;wℎ , vℎ; `) + 2(uℎ , uℎ , vℎ; `) = 〈f, vℎ〉 ∀vℎ ∈ .ℎ ,
1(uℎ , @ℎ; `) = 0 ∀@ℎ ∈ "ℎ ,

(2.4)
where the bilinear forms 0(·, ·; `) and 1(·, ·; `) are defined as

0(u, v; `) = 1
`

∫
Ω
∇u : ∇v 3Ω, 1(v, @; `) = −

∫
Ω
(∇ · v)@ 3Ω; (2.5)

while the trilinear form 2(·, ·, ·; `) is defined as

2(z, u, v; `) = 1
2

[∫
Ω
(z · ∇u)v 3Ω −

∫
Ω
(z · ∇v)u 3Ω

]
. (2.6)

Moreover, the non-linear form 0( (·; ·, ·; `), is a Smagorinksy modelling for the eddy viscosity term, and it is given
by

0( (z;u, v; `) =
∫
Ω
a) (z) ∇u : ∇v 3Ω. (2.7)
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3. Smagorinsky Reduced basis problem
In this section we introduce the Reduced Basis (RB) model for problem (2.1). The RB problem reads




Find (u# , ?# ) ∈ .# × "# such that

0(u# , v# ; `) + 1(v# , ?# ; `) + 0( (w# ;w# , v# ; `) + 2(u# , u# , v# ; `) = 〈f, v# 〉 ∀v# ∈ .# ,
1(u# , @# ; `) = 0 ∀@# ∈ "# .

(3.1)
Here, we denote by .# the reduced velocity space, and by "# the reduced pressure space. Their dimensions

are intended to be much smaller than their finite element counterparts .ℎ and "ℎ . The computation of the reduced
spaces is done through a POD+Greedy approach [8]. We follow a POD strategy considering the time as a parameter,
and the Greedy algorithm for the Reynolds number physical parameter. For the POD, we use a separate strategy in
the sense that we apply the POD to a velocity correlation matrix SD , and also to a pressure correlation matrix S? .
To build the correlation matrices, it is necessary to establish spatial norms for velocity and pressure, since the time
should be considered as a parameter. In this case, we use the �1-seminorm, and !2-norm for the pressure, for the
spaces .ℎ and "ℎ , respectively.

In order to guarantee the inf-sup condition (2.3) for the reduced spaces, we need to introduce the inner pressure
supremizer, defined by (∇) `? @ℎ ,∇vℎ )Ω = 1(@ℎ , vℎ; `) ∀vℎ ∈ .ℎ . (3.2)

In [13], G. Stabile and G. Rozza propose two different strategies to implement the supremizer when POD is
applied over a parameter. We use here the exact supremizer enrichment, this is, we compute the supremizer basis
from the pressure basis obtained in the POD procedure. We consider Algorithm 1 for the construction of reduced
spaces.

Algorithm 1 POD+Greedy with supremizer
Set n1,C>; , n2,C>; > 0, #<0G ∈ N, `∗ ∈ DCA08=, ZD = [ ], Z? = [ ] and ( = { };
while # < #max do

( = ( ∪ {`∗};
Compute*=ℎ (`∗) = (u=ℎ (`∗), ?=ℎ (`∗)) for = = 1, . . . , !;
Build SD = [u1

ℎ (`∗), u2
ℎ (`∗), . . . , u!ℎ (`∗)], S? = [?1

ℎ
(`∗), ?2

ℎ
(`∗), . . . , ?!

ℎ
(`∗)];

[bD
1
, . . . , bD

"D
] = POD(SD , n1,C>;);

[b ?
1
, . . . , b ?

" ?
] = POD(S? , n1,C>;);

ZD = [ZD , bD
1
, . . . , bD

"D
];

Z? = [Z? , b ?
1
, . . . , b ?

" ?
];

[iD
1
, . . . , iD

# D
] = POD(ZD , n2,C>;);

[i?
1
, . . . , i?

# ?
] = POD(Z? , n2,C>;);

Compute iD# D+8 = )
`
? i

?
8 for 8 = 1, . . . , # ?;

# = #D + 2# ?;
.# = {iD8 }#

D+# ?

8=1 , "# = {i?8 }#
?

8=1 ,
`∗ = arg max`∈DCA08= Δ# (`, !);
n# = Δ# (`∗, !);
if n# ≤ nC>; then

#<0G = #;
end if

end while

We summarize in the following Algorithm 1:

1. For a given `∗, we solve the Smagorinsky Model for any time C= for = = 1, . . . , !, and we save the result in
the snapshot matrices SD for velocity and S? for pressure.

2. We apply the POD procedure separately for velocity and pressure, for a given tolerance Y1,C>; and we add the
results in the matrices ZD and Z? .

3. Finally, we apply a second POD to ZD and Z? for a given tolerance Y2,C>; . This procedure avoid repetition in
the basis.

4. We compute the supremizer for the pressure basis resulting above and we add it to the velocity basis, obtaining
.# and "# .
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5. Lastly, we apply the Greedy Algorithm to the RB problem associated to the spaces.# and "# , obtaining the
new parameter `∗. We use the estimate Δ# (`) at the last time since it is assumable that the energy spectrum
is well-developed at that time.

4. Approximation of eddy viscosity term and pressure stabilizing coefficient
In this section, we present the approximation of the non-linear terms with respect to the parameter, throughout the
Empirical Interpolation Method [1, 7]. The Smagorinsky eddy-diffusion term defined in (2.2), a) (∇w) := a) (`),
is a non-linear function of the parameter, and consequently needs to be linearised with the EIM to build the RB
model, in order to reduce the on-line computation times.

For this purpose, we build a reduced-basis space,(
" = {@(1 (`), . . . , @("1

(`)} by a greedy procedure selection.
In this case, we consider the time also as a parameter jointly with the Reynolds number. Thus, we approximate the
non-linear Smagorinsky term by the following trilinear form:

0( (w# ;w# , v# ; `) ≈ 0̂( (w# , v# ; `), (4.1)

where,

0̂( (w# , v# ; `) =
"1∑
:=1

f(: (`)B(@(: ,w# , v# ), (4.2)

with,
B(@(: ,w# , v# ) =

∑
 ∈Tℎ

(
@(: ∇w# ,∇v#

)
 , (4.3)

In practise, we solve problem (3.1) considering 0̂( (·, ·; `) instead of 0( (·; ·, ·; `).

5. A posteriori error indicator based upon Kolmogorov’s theory
The aim of this section is to introduce an a posteriori error indicator for the selection of the parameter in the Greedy
procedure. This indicator is based upon the Kolmogorov turbulence theory, which introduces an expression for the
energy cascade. The main idea of this indicator is that a trial solution is accurate if its energy spectrum is close to
the theoretical :−5/3 spectrum predicted by the Kolmogorov theory.

Andrei Kolmogorov stated that under certain hypothesis, there exists an inertial range [:1, :2] where the energy
spectrum � (:) can be expressed by the wavenumber : and the turbulent dissipation Y, this is, � (:) = �Y2/3:−5/3,
:1 and :2 two wavenumbers associated to the largest inertial scale of the flow and the smaller scale under which
the viscosity effects take place, respectively.

By considering the Smagorinsky model (2.7), we are solving the scales in some inertial subrange [:1, :2], with
:2 = X−1, where X is the mesh size. The mesh Tℎ should be carefully chosen in order to solve a part of the inertial
range, this is, :2 ∈ [:1, :2]. We then assume that within the inertial sub-range [:1, :2], the energy spectrum has
the expression

� (:, `) = U(`):−5/3, (5.1)

where U(`) > 0 depends on the turbulent dissipation Y.
Thus, let �# (:; `) be the energy spectrum associated to u# (`), solution of (3.1). We define an a posteriori

error indicator as follows

Δ# (`) = min
U

(∫ :2

:1

|�# (:; `) − U(`):−5/33:
) (1/2)

. (5.2)

This a posteriori indicator measures how close is a given solution (either ROM or FOM-obtained) to the
theoretical Kolmogorov spectrum, in the range of inertial wavenumbers [:1, :2] which is solved by the Smagorinsky
model.

6. Numerical results
In this section, we solve the Smagorinsky model (2.4) for 2D flows, in the time interval C ∈ [0, 30], over the unit
square Ω = [−1/2, 1/2]2 with periodic boundary conditions. We do not consider any source, thus f = 0. We select
the Reynolds number, `, as the parameter, ranging on D = [1000, 16000]. We consider a structured mesh, where
we divide each edge in N = 64 intervals, obtaining a mesh with 8192 triangles and 4225 vertices. We consider
the inf-sup stable Taylor-Hood Finite Element, i.e., P2− P1 Finite Element for velocity-pressure discretization. We
consider a Crank-Nicolson scheme for the time derivative discretization.
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Fig. 2 EIM applied to unsteady Smagorinsky Model.

To determine the initial condition, we look for a velocity field with an inertial energy spectrum as in (5.1). We
consider a velocity field w0

ℎ = (E, E), where E is defined through its Fourier transform:

Ê(:) =
{
:−(5/3+1)/2 if 0 < : ≤ N/4,
0 other case. (6.1)

To determine the initial condition for problem (2.4), we solve the Smagorinsky model taking w0
ℎ as the initial

state for ` = 8500, the intermediate Reynolds number, and we take as initial condition the velocity field for C = 15.
In Figure 1, we show the initial condition u0

ℎ and its energy spectrum. For wavenumbers between :1 = 5 and
:2 = 32, we obtain a good approximation of the inertial spectrum. For : > 32, we observe an abrupt decay of the
energy. This is produced by the wavenumbers that are out of the circle of the largest radio inside the unit square
and the viscous effects. As we can see, we start from a well-developed inertial energy spectrum.

As we mentioned in section 4, we need to linearise the Smagorinsky eddy viscosity term (2.2), with respect
to the parameter. For this purpose, we compute the finite element solution (u=ℎ (`), ?=ℎ (`)) for all = = 1, . . . , !,
` = {1 000, 6 000, 11 000, 16 000} and we apply the EIM to compute the approximation of the eddy viscosity
function. We stop the algorithm on 186 basis functions when the error is below n��" = 10−5. The convergence
error is shown in Figure 2a, while in Figure 2b, we show the error, where each line represents a time step C; for
= = 1, . . . , 48.

We compare the use of the estimate Δ# (`) introduced in (5.2) versus the use of the exact error at the final time,
) 5 = 30

Y# (`) = ‖uℎ (`) − u# (`)‖0,2,Ω, (6.2)

for the parameter selection.
In Table 1, we show the comparison using the indicator Δ# (`) (left table) and the exact error Y# (`) (right

table) for the selection of the parameter `. Using Δ# (`) for the stopping criteria, we stop the algorithm in the third
iteration, since the next Reynolds number has been already selected and we remain with the same number of basis
functions, # = 98 in Table 1. The exact error and the number of RB basis are similar if we use either the indicator
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It. ` # max
`Δ# (`)

max
`
Y# (`)

1 1 000 30 7.92 · 10−1 2.57 · 10−3

2 16 000 72 5.27 · 10−1 2.37 · 10−4

3 2 250 98 3.51 · 10−1 6.04 · 10−5

4 16 000 98

It. ` # max
`
Y# (`)

1 1 000 30 2.57 · 10−3

2 16 000 72 2.37 · 10−4

3 3 500 100 3.52 · 10−5

4 7 250 119 3.53 · 10−5

Tab. 1 Step by step of the POD+Greedy algorithm, using Δ# (`) (left table) and Y# (`) (right table) for the parameter
selection.
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Fig. 3 Convergence of POD+Greedy algorithm.

Δ# (`) or the exact error Y# (`), which supports that the use of the indicator Δ# (`) is quasi-optimum. Notice that
a relatively small decrease of the indicator Δ# produces a much larger decrease of the error Y# .

In Figure 3a, we show the comparison of the indicator Δ# (`) at each iteration of the POD+Greedy algorithm
described in Table 1 versus

Δℎ (`) = min
U

(∫ :2

:1

|�ℎ (:; `) − U(`):−5/3 |2 3:
)1/2

and �ℎ (:; `) for : ∈ (:, :2) represents the energy spectrum of uℎ (`).
Since the reduced solution is built from the FE approximation, we should not expect that Δ# (`) tends to 0

when # → ∞, it should rather converge to Δℎ . We observe in Figure 3a that indeed Δ# (`) approaches Δℎ as
# increases and Δℎ is not zero as the finite element solution is just an approximation of the physical flow, with
some error with respect to the theoretical inertial spectrum in :−5/3. The best that we can expect in the ROM is to
reproduce the approximation to the theoretical inertial spectrum given by the FOM solution. In Figure 3b, we show
the error Y# (`) for ` = {1 000, 1 625, . . . , 16 000} at each POD+Greedy algorithm iteration. In the last iteration,
the error is smaller than 10−4.

In Table 2, we show the computational time, the values of the estimates, and the error between the RB and FE
solution at the final time ) 5 = 15.

` = 1 825 ` = 4 804 ` = 11 757 ` = 13 605 ` = 14 027
)�� 55.63s 58.67s 58.3s 58.09s 57.94s
)'� 2.95s 2.99s 2.83s 2.92s 3.06s

Speedup 19 20 21 20 19
Δ# (`) 3.42 · 10−1 2.8 · 10−1 2.97 · 10−1 3.11 · 10−1 3.17 · 10−1

Δℎ (`) 3.18 · 10−1 3.23 · 10−1 3.09 · 10−1 3.2 · 10−1 3.25 · 10−1

Tab. 2 Validation of RB model.

We obtain speed-ups ratio close to 20, what is satisfying for an evolution turbulence model. We can observe
that the value of the indicator for the full-order solution is near to the value of the indicator for the reduced-order
solution. We already saw that considering n# (`) instead of Δ# (`) does not significantly reduce the number of
basis functions, thus, the indicator yields nearly optimal results.
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7. Conclusions
In this work, we have presented an a posteriori error indicator, based upon the Kolmogorov turbulence theory for
the unsteady Smagorinsky turbulence model, applied in the construction of a Reduced Basis Method by means of
a POD+Greedy algorithm. We have validated this indicator with an academic numerical test, in which we have
observed that considering the use of the indicator generates reduced spaces that do not substantially differ from
those constructed using the exact error instead of the indicator. Actually, the number of basis functions when we
consider either the a posteriori error indicator and the exact error are quite close.
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Abstract

Motivated by some facts of the car traffic flow, such as oscillatory behavior in the car–following situations,
we build and study a new traffic model. Since its mathematical expression is a Functional (Delayed) Differential
Equation, we start with a presentation of this type of equations and the features we need to deal with our model,
mainly the Hopf Bifurcation result for these equations.

Keywords Bifurcation, Delay Differential Equations, Oscillatory Solutions,Traffic Models.

1. Introduction
Whenmodelling the evolution of many situations of the real world by using ordinary or partial differential equations,
it is implicitly assumed that the future of the system is completely determined by its state in a particular moment,
which can be (or taken as) the present. When dealing with many other situations, or refining previous models of
some others, it becomes apparent that the model to study the future state of the systemmust include some of the past
states of the system. For those cases, the right mathematical tool is that of the Functional (Delayed) Differential
Equations (for several applications, see [9]). In Section 2 we give some of the main definitions related to these
equations. We also present, in Section 3, a general theory of Hopf bifurcation for Functional (Delayed) Differential
Equations (see Hale [7] and Hale and Lunel [8]). In Section 4, we introduce a traffic model built by Padial and
Casal [11] involving both driver and mechanic reaction times. Looking for oscillatory behaviour of solutions of its
solutions, it turns out that the delay time play an important role, as the suitable parameter to study the bifurcation.
In Section 5, we adapt the Hopf Bifurcation theory introduce by Hale for the case where the bifurcation parameter
is the delay time, and we apply this result to our car-following model.

2. Functional Differential Equations
One definition of the Differential Delay Equations (DDE) or Functional Differential Equations (FDE), in one of
their proper settings can be found in Hale [7] or Lunel and Hale [8].

Let R= the =−dimensional linear vector space over the real numbers with euclidean norm |·|, � ( [0, 1] , R=)
is the Banach space of continuous functions mapping the interval [0, 1] into R= with the topology of uniform
convergence. Consider a given number g ∈ R, g > 0 and let C := � ( [−g, 0],R=) and the norm of an element
q ∈ C by ‖q‖ = sup−g≤\≤0 ‖q(\)‖.

Given two real numbersf, � ≥ 0 and x ∈ � ( [f − g, f + �] ,R=), then for any C ∈ [f, f + �] we define xC (\) =
x(C + \) with \ ∈ [−g, 0]. GivenD a subset of R×C, we consider the functional F : D ⊂R×� ( [−g, 0],R=) → R=
such that

3

3C+
x (C) = F(g, xC ) (2.1)

where 3
3C+ represents the right–hand derivative, and in the following we denote by x′ = 3

3C+ x. We say that the
relation (2.1) is a Retarded Functional Differential Equation on D, a RFDE associated with F (we denote by
RFDE(F) if we need to emphasize the the equation is defined by F).

Definition 2.1 Given g > 0 and C := �2 ( [−g, 0],R=), a function x is said to be a solution of the Retarded
Functional Differential Equation (2.1) onD ⊂R × C for a given functional F : D → R=, if there are f and � ≥ 0,
such that x ∈ �2 ( [f − g, f + �] ,R=), (C, xC ) ∈ D and x satisfies equation (2.1) for any C ∈ [f, f + �].

In the same framework as in Definition 2.1, we introduce the

Definition 2.2 (IVP) For given f ≥ 0, q ∈ C, we say that x(f, q,F) is a solution of the initial value problem for
the Retarded Functional Differential Equation (2.1) on D ⊂R × C for a given functional F : D → R=, with initial
value q at f, or a solution through (f, q), if there is a real number � ≥ 0 such that x(f, q,F) is a solution of
equation (2.1) on [f − g, f + �) and xf (f, q,F) = q.
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In this sense, solutions of FDE could be viewed as curves in a Banach space. In the above mentioned
references [7] and [8], suitable definitions and results of the fundamental theory, such as those on existence,
uniqueness, continuous dependence and differentiability on data and parameters, regularity with respect to initial
conditions and continuation are given (in these equations is important to distinguish between forward and backwards
continuation). Answers on these questions depend of the regularity of the above function.

3. Hopf bifurcation for FDE
To present theHopf Bifurcation Theory, wewill refer and state theHopf Bifurcation Theorem as inHale [7, Theorem
1.1, p. 246].

We recall the formulation of the Hopf bifurcation Theorem 1.1 of [7] for RFDE (2.1). Let F be of class
: ≥ 2,F (g, 0) = 0 for all g ∈ R, C := � ( [−g, 0] ,R=) and xC (\) = x(C + \) with \ ∈ [−g, 0]. Define
L : R × C →R= by

L (g) k = Fq (g, 0) k (3.1)

with k ∈ C, where Fq (g, 0) is the derivative of F (g, q) with respect to q ∈ C at q = 0 and define

5 (g, q) = F (g, q) − L (g) q.

We have to consider also the following hypotheses:

(H1) The linear RFDE(L (0)) (that is, x′ = Fq (0, 0) xC ) has a simple purely imaginary characteristic root D0 =
H08 ≠ 0 and all characteristic roots D(D = G + H8) are different of D0, D0 (conjugate of D0) and satisfy D ≠ ℎD0
for any integer ℎ.

By Lemma 2.2 of Section 7.2 of [7], There exist g0 > 0 and simple characteristic root D (g) of the linear
RFDE(L (g)) (that is, x′ = Fq (g, 0) xC ) such that has a continuous derivative D′ (g) for |g | < g0. Moreover, we
assume that

(H2) Re(D′(0)) ≠ 0 (transversality condition).

We introduce the additional notation of [7], to make the statement of the result more specific. By taking g0
sufficiently small, we may assume ImD (g) ≠ 0 for |g | < g0 and obtain a function qg ∈ C which is continuously
differentiable in g and allows to define a basis for the solutions of the RFDE(L (g)) corresponding to D (g). The
functions

Φg := (Reqg , Imqg)
form a corresponding basis for the characteristic roots D0 (g), D0 (g). Similarly, a basis Ψg for the adjoint equation
can be obtained, with 〈Ψg ,Φg〉 = �. Decomposing C by (D0 (g) , D0 (g)) as C = Pg ⊕ &g , then Φg is a basis for
Pg . We know that

Φg (\) = Φg (0) exp � (g) \, −g ≤ \ ≤ 0,

and the eigenvalues of the 2×2 matrix � (g) are D0 (g) and D0 (g). By a change of coordinates and maybe redefining
the parameter g we may assume that

� (g) = H0�0 + g�1 (g)
with

�0 =

(
0 1
−1 0

)
, �1 =

(
1 W (g)

−W (g) 1

)

where W (g) is continuously differentiable on 0 ≤ |g | < g0. We can now state the Hopf bifurcation theorem and
we refer to the conclusions stated in this theorem as a Hopf Bifurcation.

Theorem 3.1 Suppose � (g, q) has continuous first derivatives with respect to g, q, � (g, 0) = 0 for all g and
Hypothesis (H1) and (H2) are satisfied. Then there are constants 00 > 0, g0 > 0, X0 > 0, functions g (0) ∈ R,
l (0) ∈ R, and an l (0) −periodic function G∗ (0), with all functions being continuously differentiable in 0 for
|0 | < 00, such that G∗ (0) is a solution of equation (2.1) with

G∗0 (0)%g = Φg (0) H∗ (0) , G∗0 (0)&g = I∗0 (0)

where H∗ (0) = col (0, 0) + > ( |0 |), I∗0 (0) = > ( |0 |) as |0 | −→ 0. Furthermore, for |g | < g0, |l − (2c/H0) | < X0,
every l−periodic solution of equation (2.1) with ‖GC ‖ < X0 must be of the above type except for a translation in
phase.
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4. A car–following model
Our investigation on the impact of the reaction delay enhances phenomenological insights into the emergence and
evolution of traffic congestion. In traffic, the phenomenon of stop–and–go waves (known as a start–stop waves, or a
‘phantom jam’) has been empirically studied by many authors. Some studies have shown that a change in driver’s
sensitivity (for instance, a sudden acceleration or deceleration) can lead to such oscillatory behaviour.

When dealing with the delay equations arising in car–following problems, and in order to obtain more refined
models, it seems convenient to consider the delay as the total effect of different causes (see [13] among others).
One of them is the time between drivers’ perception of changes or hazards ahead, becoming aware of them and
acting accordingly. Another part of the reaction time would be the processing of the information, and the actions
taken on the mechanisms of the car.

Concerning the driver, there has been an evolution of models characterized by increasingly sophisticated
assumptions about the driver behaviour. There are further models taking into account several other features, some
of them still open, as those considering the comparison of the driver’s estimation of spacing with the actual spacing,
or more realistic ones, where the delay may be dependent of the state of the system, such as relative positions or
velocities In some other fields this situation has been considered, as in [1] and in the references therein, mainly [9].

By taking the delay as central in the analysis of the change of stability of the solutions, we can also analyse the
time–delayed traffic dynamics in a control problem perspective. In several works, within a large family of problems,
the delay is a tool for control (see e.g. [2], [3], [13]).

Some previous car–following models built from a follow–the–leader General Model (GM). Let us consider a
car following another, under the following assumptions: the cars flow on a single lane, if C is the time (assuming
that the initial time C0 = 0), for the following car at the time C, -1 (C) is its position, - ′1 (C) is its velocity, and - ′′1 (C)
is its acceleration. The driver of the following car adjust his speed with respect to the speed of the leading car, as
before, at the time C, -0 (C) is its position, - ′0 (C) is its velocity, and - ′′0 (C) is its acceleration. There exist a time lag
g reaction of the following car to the actions of the leading car. As said above,

g = g3 + g<
with g3 is the reaction delay of the driver and g< is the mechanic delay of his car.

A first analysis is to consider that the acceleration (or deceleration) of following car is proportional to the
perceived difference with respect to car leading car Mathematically,

- ′′1 (C + g) =
(
- ′0 (C) − - ′1 (C)

)
D.

where C is the time, -0 (C) is the position of the leading car and -1 (C) is that of the following car at the instant C. - ′8
and - ′′8 are the velocity and the acceleration respectively. We assume that the velocity of leading car (i. e. - ′0 (C)) is
a given positive constant E0. This is the velocity that the following car want to reach, and keeping a safety distance
<.

Now we can distinguish if D is a constant or a non-constant function depending, for instance, of the distance
between cars, the relative velocity, etc. (e.g. D = D

(
-0, -1, -

′
1
)
).

When D is a constant function, the car–following model is linear. In this case, the acceleration (response) is
directly proportional to the relative velocity (stimulus) (see [4]).

When D is a non-constant function, the car–followingmodel is non-linear. Several relationship can be considered,
usually a certain power (to be determined) of the following car’s speed. Moreover, Gazis, Herman and Potts [6]
found that the above equation could not quite explain the traffic situation in higher density since, in it, the behaviour
of driver that follows does not take into account the relative spacing between cars.

Considering the separation between the cars (B (C) = -0 (C) − -1 (C) = E0C − -1 (C)) and the corresponding
relative velocity and the relative acceleration of the following car (B′ (C) = E0 − - ′1 (C) and B′′ (C) = −- ′′1 (C)), for
the car-following model, we introduce the initial value problem

B′′ (C + g) = −6 (B′ (C) , B (C)) , C ≥ 0 (4.1)
B (C) = B0 (C) , B′ (C) q(\) = q0 (\), \ ∈ [−g, 0] (4.2)

where the real function 6 (B, B′) with (B, B′) ∈ R2 satisfying some conditions, and the functions q(\) :=
(
B
B′

)
(\)

and q0 (\) :=
(
B0
B′0

)
(\) are regular enough (see Padial and Casal [11]).

The equation (4.1) of this model is a Functional Differential Equation (FDE).
The model needs that the real function 6 (B, B′) satisfies some conditions:
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i) For any E0 there exists an <, minimum recommended distance between cars. We assume that the car
following the leader is in an equilibrium state when there is no speed difference with the leading car, that is
B′ (C) = 0; and when it follows it at the safe minimum distance B (C) = <, thus the velocity of the following
car is constant and then the acceleration is zero, that is 6 (<, 0) = 0 at the equilibrium point.

ii) There is a maximum acceleration of the following car, 0 > 0, thus 6 (B, B′) ≤ 0, and a maximum deceleration,
1 < 0, thus 1 ≤ 6 (B, B′). So, 1 ≤ 6 (B, B′) ≤ 0 for all (B, B′) ∈ R2.

iii) If the relative velocity B′ (C) = 0, then 6 (B, 0) > 0 if B > <, 6 (B, 0) = 0 if B = < and 6 (B, 0) < 0 if B < <. If
the relative velocity B′ (C) > 0 (increasing the distance between cars), the car that follows would accelerate
even when the distance B(C) < <. If the relative velocity B′ (C) < 0 (decreasing the distance between cars),
the car that follows would decelerate even when the distance B(C) > <.

iv) Moreover, 6 is increasing with respect to B.

On the other hand, we want to include in the modelling the temperament of the driver and that of the mechanic
of its vehicle, meaning a sort of intensity of the response 3 (in some references this type of parameters are called
aggressivity both for the drivers and the cars [12]). We will also take into account a parameter : which determine
the driver’s intensity of the action according to the safe distance and the minimum relative velocity which the
driver is able to perceive (which is not neither the real relative velocity nor the real safe distance, but the driver’s
perception of them). A suitable choice is to take : = </F, where < is the safe minimum distance and F is the
relative velocity that the driver can perceive.

As a convenient functions satisfying the above conditions, we consider a class of sigmoidal functions. In
particular, we will take a function 6 of the distance between the cars B and of the speed difference B′:

6 (B, B′) = 0 − (0 + 1)
1 + 10 43 (B−<+:B

′) , ∀ (B, B
′) ∈ R2. (4.3)

Under the regularity conditions, the results of existence, uniqueness and continuous dependence on the initial data
and forward continuation are fulfilled [8] for the FDE problem (4.1) and (4.2).

5. Time delay as bifurcation parameter
Our particular car–following modelling has led us to a FDE in which the delay g is a parameter including, namely,
the different reaction times corresponding to the drivers, to the mechanic of the cars and to some others related to
them. Our interest is to give an explanation on how, in this case, the structure of the solutions can change, from
constant to oscillatory solutions, when the delay parameter varies. We will show that theses changes of structure
can be described as a Hopf bifurcation phenomenon. To do that, we will write the second order delay differential
equation (4.1) in the form of first order delay system (2.1). As usual, we introduce two functions I1 (C) = B (C) − <
and I2 (C) = B′ (C) (recall that < is the safety distance). We rescale the time by making C̄ = C + g, and we rename C̄
as C obtaining the equivalent system{

I′1 (C) = I2 (C)
I′2 (C) = −6 (I1 (C − g) + <, I2 (C − g))

As before, let us consider the FDE with

F : D ⊂R × �2 ( [−g, 0],R2) → R2 (5.1)
(f, zC ) → F (f, zC ) =

(
I2C ,−6

(
I1C + <, I2C

) )
(5.2)

with f ∈ R, z = (I1, I2) ∈ �2 ( [−g, 0],R2) and I8C (C) = I8 (C + \), \ ∈ [−f, 0], 8 = 1, 2.
By the definition of 6, notice that F (f, q) has a continuous first and second continuous derivatives in q for all

f real and q in C := �2 ( [−g, 0],R2) and F(f, 0) = 0 for all f > 0 (notice that 0 = (0, 0) is the equilibrium point
for (5.2) and (<, 0) is the equilibrium point for (4.1) and that 6(<, 0) = 0). These properties on F and the initial
condition (4.2) ensure affirmative and convenient answers to the basic fundamental theory [7, Chap. 2].

Theorem 5.1 For F defined in (5.2), there exists g0 > 0 such that the problem RFDE (2.1), (4.2) for this g0 has a
periodic solution.

For the proof of the theorem we will use the characteristic equation associated to the FDE equation (4.1).
Taking G = f − < + :l and 6̃ (G) = 6 (f, l), the McLaurin series in G = 0 of 6̃ is 6̃ (G) = 3 01

0+1 G +$
(
G2) . In

particular
6 (f, l) = 3 01

0 + 1 (f − < + :l) + Higher Order Terms
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Considering the McLaurin series of 6̃ (G) (= 6 (f, l)) in (4.3)

B′′ (C + g) = −6̃ (B (C) − < + :B′ (C)) + Higher Order Terms
= −3 01

0+1 (B (C) − < + :B′ (C)) + Higher Order Terms

Making the change of variables ( = B − < and renaming the coefficients, we obtain

(′′ (C + g) = −� (′ (C) − �( (C) (5.3)

with � = 3 01
0+1 and  = : . The quasi–characteristic equation for this delay equation is

F24Fg + � F + � = 0. (5.4)

Finally, making D = Fg we obtain D24D + � gD + �g2 = 0. Taking D = G + 8H, form the above transcendental
equation, we obtain the curves(

(G2 − H2) cos (H) − 2GH sin (H)
)
4G + �g2 + � gG = 0, (5.5)(

(G2 − H2) sin(H) + 2GH cos(H)
)
4G + � gH = 0,

corresponding to the real and imaginary parts respectively.

Proof (of the Theorem 5.1) For the proof of this result we use the Hopf bifurcation Theorem 3.1. To do that, we
need to prove that the hypothesis (H1) and (H2) are fulfilled.

By the definition (3.1) of L, the simple purely imaginary characteristic root of the RFDE(L (g)) can be identify
with the simple purely imaginary characteristic root of system (5.5).

To prove (H1) we compute the roots D = G + 8H of the system (5.5). From the Implicit Function Theorem, there
exist g0 such that 0 < g < g0 there exist solutions for (5.5). Now we obtain the purely imaginary roots D0 = H08,
taking G = 0. From the last system we obtain that H0 has to verify the following system

−H2 sin(H) + � gH = 0,
−H2 cos (H) + �g2 = 0.

Solving in g, we obtain that

H0± (g) = ±g
√

2
2
�1/2

(√
 4�2 + 4 +  2�

)1/2
≠ 0, g > 0.

Let D0± = H0±8. Thus (H1) is fulfilled.
We need to check that the transversality condition (H2) holds when G = 0. We derivate implicitly the quasi-

characteristic equations (5.4). Let �1 (G, H) be the real part of left hand side of (5.4) and �2 (G, H) the imaginary
part of left hand side of (5.4) denoting F = G + 8H. Now the equation (5.4) is

�1 (G, H) + �2 (G, H) 8 = 0,

with

�1 (G, H) =
(
G2 − H2

)
4Gg cos (Hg) − 2GH4Gg sin (Hg) + � G + �,

�2 (G, H) = 2GH4Gg cos (Hg) +
(
G2 − H2

)
4Gg sin (Hg) + � H

(see (5.5)). To obtain G ′ := 3
3g G (g) and H′ := 3

3g H (g), we derivate the last equation:
m

mG
�1 (G, H) G ′ + m

mH
�1 (G, H) H′ = 0,

m

mG
�2 (G, H) G ′ + m

mH
�2 (G, H) H′ = 0.

We are interested in non-trivial solutions for this linear system in (G ′, H′). Thus, we impose the condition that the
range of the matrix of system is one. So we compute the determinant of the matrix of the system

Δ (G, H) =

�������
m

mG
�1 (G, H) m

mH
�1 (G, H)

m

mG
�2 (G, H) m

mH
�2 (G, H)

������� .
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The hypothesis of transversality (H2) is equivalent to verify that the derivative of the real part in the point (0, H)
is different from zero. So, we solve Δ (0, H) = 0. Calculating the partial derivatives and substituting above and
computing for G = 0, we obtain

m

mG
�1 (0, H) =  � − 2H sin (Hg) − H2g cos (Hg) ,

m

mH
�1 (0, H) = −2H cos (Hg) + H2g sin (Hg) ,

m

mG
�2 (0, H) = 2H cos (Hg) − H2g sin (Hg) ,

m

mH
�2 (0, H) =  � − 2H sin (Hg) − H2g cos (Hg) ,

Δ (0, H) =
����  � − 2H sin (Hg) − H2g cos (Hg) −2H cos (Hg) + H2g sin (Hg) ,

2H cos (Hg) − H2g sin (Hg)  � − 2H sin (Hg) − H2g cos (Hg)
���� ,

Δ (0, H) =
(
 � − 2H sin (Hg) − H2g cos (Hg)

)2
+

(
2H cos (Hg) − H2g sin (Hg)

)2

For the values such that Δ is zero the (H2) of the Hopf conditions is fulfilled and there are changes of the
structure from constant to periodic solutions according with the numerical results. To look for solutions to equation
Δ (0, H) = 0, it is equivalent to look for solutions to the following non-linear system

 � − 2H sin (Hg) − H2g cos (Hg) = 0
2H cos (Hg) − H2g sin (Hg) = 0.

If H and g verify the above system, we get that H = +
√
−2 +

√
4 + g2 2�2/g and calling I = Hg, from the last

equation we obtain that I tan(I) = 2 and joint to the relation between H and g we get a solutions for the system.
Then, (H2) is fulfilled.

�

We show for some particular values of the parameters, the existence of periodic solution by solving the
Δ (0, H) = 0. These test values comes from experimental data and those which allow to improve the graphic

Fig. 1Delay time g = 2.147780. A stable periodic solution appears. The follower doesn’t get a constant velocity as the leader.

visibility of the behaviour of the solution (see e.g. [5] and its references). We will take the following parameters:
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0 = 2.0576m/s2, 1 = 1.5677m/s2, 3 = 0.1124, < = 44.4444m, : = </F = 11.3890s (F = 3.9024m/s). For these
parameter,  = : = 11.389 and � = 3 01

0+1 = 0.1. We can obtain numerically that Δ (0, 0.501389) ≈ 10−9 for
g = 2.147780, given an oscillatory solution for the FDE.

For to show the numerical solution graphically, we also fix a constant velocity of the leader car, E0, at 80
km/h = 22.2222 m/s and for the follower, its velocity is 100 km/h = 27.7778 m/s constant in [−g, 0]. Thus,
the relative velocity B′(\) = −5.5556 m/s for any \ ∈ [−g, 0]. On the other hand, the initial distance between
vehicles it was taken at 20m plus the safety distance < = 44.4444<. So, the initial function distance will be
B(\) = (20 + <) + B′(\)\ = 64.4444 − 5.5556\ for all \ ∈ [−g, 0]. That is

q0 (\) =
(

64.4444 − 5.5556 \
−5.5556

)
, \ ∈ [−g, 0] .

For these parameters we solve numerically the problem (4.1)-(4.2) by using the code dde23 of Matlab R2018a.
Additionally this procedure allows us to present graphically the appearance (see Fig. 1) of the periodic solution for
the problem (4.1)-(4.2) obtained for the bifurcation parameter g = 2.147780s.

In these phenomena we obtain a transition from a constant distance between two vehicles to another behaviour
which is oscillatory and this change can be noticed in the real traffic. This change of the structure, a bifurcation, is
due to a delay in the action of the driver and the vehicle.

The simulation studies show interesting effects on the dynamics of solutions of the system associated to the
car–following model. In particular, there are changes of structure in its solutions as the delays vary. There are
equilibrium states of the system, stable or unstable, and as the delay vary, a given equilibrium, a stable solution,
may loss its stability and other equilibria may branch off. Very often this happens to constant solutions which lead
to time periodic oscillations.
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On the Motion of Two Point Masses inside a Homogeneous Cloud
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Abstract

We consider the problem of motion of two material points within a homogeneous spherical cloud, under the
hypotheses that the mutual interactions between these point masses and between the bodies and the particles of
the cloud are described by their Newtonian gravitational attraction. The constant density of the cloud is supposed
to be sufficiently small so that the resistance of the medium to the motion of those point masses can be neglected.

Under these hypotheses, the problem of relativemotion of the said bodies can be recast as a perturbedKeplerian
system (Radzievskij’s two–body problem), in which the perturbing effects are formalized by a conservative central
force. With the help of the first integrals of the angular momentum and the total energy, the standard solution
procedure in terms of plane polar coordinates ( A , i ) allows the reduction of the problem to a quadrature involving
an integral that apparently is Abelian, and thanks to which the orbit equation can be obtained in finite terms.

In this paper some previous analytical investigations on this problem are reviewed, and then we explore other
different analytical approaches to the study of this Radzievskij problem (namely Planetary Equations in Gaussian
form, some methods of regularisation and linearisation of Keplerian systems, and Hamilton–Jacobi technique).

2020 Mathematics Subject Classification System: 70 F 15, 70 F 05, 70 M 20, 70 H 15, 70 H 20.
Keywords and expressions: homogeneous cloud, gravitational two–body problem, perturbed Keplerian

systems, central force, Planetary Equations, regularisation and linearisation, Hamilton–Jacobi Theory.

1. Introduction
Radzievskij, [10], dealt with the problem of motion of two point masses, < 1 and < 2 , within a homogeneous
spherical cloud, assuming that the mutual interactions between these point bodies and between the bodies and
the particles of the cloud are described by their gravitational attraction according to Newton’s Law of Universal
Gravitation. In addition to this, the constant density of the cloud is supposed to be sufficiently small so that the
resistance of the medium to the motion of the bodies can be neglected.

The problem of relative motion of one of these particles with respect to the other one can be reformulated
as a perturbed Kepler problem in which the perturbing force is also a conservative central force. Accordingly,
this problem of relative motion can be treated as a conservative central–force one–body problem (Boccaletti and
Pucacco, [2], Ch. 2, §2.1, pp. 126–131; Goldstein [5], Ch. 3, §3.1–§3.3, pp. 70–82). Consequently this system
admits the first integral of the orbital angular momentum vector and that of the total mechanical energy.

On the basis of these considerations, Radzievskij concentrated on the motion within the (fixed) orbital plane,
introduced polar coordinates ( A , i ) in that plane, and (following the standard solution procedure in polar co-
ordinates starting from the said first integrals) reduced the problem to a quadrature involving an integral that is
(apparently) Abelian, and thanks to which the orbit equation can be obtained in finite terms.

In this respect we would like to point out that the quadrature that Radzievskij considered to be an Abelian
integral is in fact an elliptic integral that can be treated according to formulae of Byrd and Friedman, [4].

Later on Mihailović, [7–9], taking different approaches, also studied this problem posed by Radzievskij.
In this paper we apply several standard techniques of Classical Analytical and Celestial Mechanics and Astro-

dynamics to look further into this same problem.
In particular we will resort to some methods of regularisation and linearisation of Keplerian systems, namely:

Binet’s method (Boccaletti and Pucacco, [2], Ch. 2, §2.1, pp. 134–135; Goldstein, [5], Ch. 3, §3.5, pp. 85–86),
and the Izsák–Sperling method (Bond and Allman, [3], Ch. 9, §9.3, pp. 151–154; Izsák [6]; Sperling [11]), by
means of which the equations of motion governing perturbed Keplerian systems can be brought into the form of
second–order ordinary differential equations governing perturbed harmonic oscillators.

We also obtain the Planetary Equations in Gaussian Form (Abad, [1], Ch. 12, §12.3, pp. 195–197) corre-
sponding to this Radzievskij problem, reformulate these equations with the eccentric anomaly of elliptic Keplerian
motion as the independent variable, and integrate the resulting differential system over one revolution along the
unperturbed orbit, which allows us to identify the secular and periodic terms in the variation of a set of elliptic
Keplerian orbital elements over one period of that eccentric anomaly.

Finally, taking advantage of the Theory of Canonical Transformations within the framework of Hamiltonian
Mechanics (Boccaletti and Pucacco, [2], Ch. 1, Part C, §1.12 – §1.16, pp. 76–106; Goldstein [5], Ch. 9 – 10, pp.
378–498), we will consider theHamilton–Jacobi method (Boccaletti and Pucacco, [2], Ch. 1, Part C, §1.15 – §1.16,
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pp. 90–106; Goldstein [5], Ch. 10, pp. 438–498) looking for a complete solution to the Hamilton–Jacobi partial
differential equation attached to Radzievskij’s problem formulated in the Hill–Whittaker canonical variables, also
called polar nodal variables (Abad, [1], Ch. 9, §9.8, pp. 158–159), proceeding by separation of variables and
quadratures (which will also involve elliptic integrals).

2. The Kepler Problem and Its First Integrals
The problem of motion in space of two material particles, with masses < 1 and < 2 , under the effect of forces due
to their mutual interactions (“internal forces” that satisfy the Law of Action and Reaction, or Third Law of Motion,
established by Newton), can be reduced (Boccaletti and Pucacco, [2], Ch. 2, §2.1, pp. 126–128) to two independent
–or decoupled– (sub)problems: the problem of motion of their centre of mass (which will be a uniform rectilinear
motion), and the problem of relative motion (motion of one of the particles with respect to the other one).

In the special case in which the interactions between those particles are governed by their mutual gravitational
attraction according to Newton’s Law of Universal Gravitation, we are dealing with the so–called gravitational
two–body problem, and the corresponding problem of relative motion is known as the Kepler problem (Abad, [1],
Ch. 7, §7.5–7.6, pp. 115–118; Bond and Allman, [3], Ch. 2, §2.2, pp. 13–15).

The differential equation of motion of the Kepler problem in Newtonian formulation (Abad, [1], Ch. 7, §7.6, Eq
(7.23), p. 116–117, Ch. 8, §8.1, pp. 123–124; Boccaletti and Pucacco, [2], Ch. 2, §2.1, Eq (2.16), p. 131; Bond
and Allman, [3], Ch. 2, §2.2, Eq (2.8), p. 14) can be formulated as the second–order ordinary differential equation
(for the vector unknown function r of the scalar independent variable C , which represents the physical time)

¥r = − `

A 3 r = − `

A 2
r
A
= − `

A 2 r̂ , with A = ‖ r ‖ , r̂ =
r
A
, ` = G (< 1 + < 2) , (2.1)

where at any instant of time r is the relative position vector of one of the particles with respect to the other one, the
scalar A is the (Euclidean) distance separating the particles, r̂ stands for the (unit) direction vector of their relative
position, ` is the Keplerian coupling parameter (or gravitational coupling parameter) of the (two–body) system of
particles with masses < 1 and < 2 , and G denotes the Universal Gravitational Constant.

In addition to this we use dot notation for derivatives with respect to physical time C .
The differential problem posed by Eq. (2.1) possesses the (time–independent) vector first integrals of the orbital

angular momentum G and the Laplace vector A , and the (time–independent) scalar first integral of the Keplerian
energy E : (Abad, [1], Ch. 8, §8.2, p. 124–126; Boccaletti and Pucacco, [2], Ch. 2, §2.1, p.128–134; Bond and
Allman, [3], Ch. 2, §2.4, pp. 19–26, Ch. 8, §8.4, p.126; Goldstein, [5], Ch. 3, §3.2, pp.71–74, §3.9, p.102–105):

G ( C , r , ¤r ) = r × ¤r , A ( C , r , ¤r ) = ¤r × G − `

A
r , E : ( C , r , ¤r ) = 1

2
| | ¤r | | 2 − `

A
. (2.2)

3. Perturbed Kepler Problems and Variation of Keplerian First Integrals under Perturbations
A perturbed Kepler problem is a problem of Keplerian motion slightly distorted by the occurrence of some other
effects or phenomena due to the presence of other bodies or other forces acting on the original Keplerian system.

The differential equation of perturbed Keplerian motion, when additional perturbing forces P = P ( C , r , ¤r )
are considered, can be written in the Newtonian formulation as (Abad, [1], Ch. 12, §12.1, pp.191–192; Bond and
Allman, [3], Ch. 8, §8.1, p. 117)

¥r = F C>C0; ( C , r , ¤r ) = F 4?;4A ( − , r , − ) + P ( C , r , ¤r ) = − `

A 3 r + P ( C , r , ¤r ) . (3.1)

Time variations of the above Keplerian constants of motion (2.2) under the effect of perturbing forces P are
described by the equations (Bond and Allman, [3], Ch. 8, §8.6, Formulae (8.36–8.37), (8.41), (8.54), pp. 127–134),

3G
3 C

= r × P ,
3 E :
3 C

= P · r , 3 A
3 C

= 2 ( P · ¤r ) r − ( r · ¤r ) P − ( P · r ) ¤r . (3.2)

4. The Perturbed Keplerian System Considered by Radzievskij. Force Model and First Integrals
After some simplifications Radzievskij ( [10], p. 1309) arrives at a perturbed Keplerian system whose force model
can be written in the form

F C>C0; ( C , r , ¤r ) = F C>C0; ( r ) = F 4?;4A ( r ) + P ( r ) = − `

A 3 r − : r = −
( `
A 2 + : A

) r
A
= 5 (A) r̂ , (4.1)

with : = (4/3) c G X , where X is the (constant) density of the homogeneous cloud. Consequently, 0 < : << 1 ,
and so : can be taken as a small perturbation parameter. And in this way the differential equation of motion for
the perturbed Kepler problem studied by Radzievskij ( [10], Eqs. (2), p. 1309) can be written as

¥r = 5 (A) r̂ = −
( `
A 2 + : A

) r
A
= − `

A 3 r − : r . (4.2)
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In view of the form, sign and functional dependence of function 5 (A) < 0 , the total force acting in this problem
is an attractive, conservative central force, which entails that Eq. (4.2) admits the first integrals of the angular
momentum vector G and the total mechanical energy E of the system (see Formulae (4.3) below). Notice also
that the perturbing force in Eqs. (4.1)–(4.2), P = P ( C , r , ¤r ) = P ( − , r , − ) = − : r , can be derived from
the scalar perturbing potential +%4ACDA1. ( A ) = ( 1/2 ) : A 2 , while the total force derives from the total scalar
potencial + C>C0; ( A ) = + 4?;4A ( A ) + +%4ACDA1. ( A ) = − ( `/A ) + ( 1/2 ) : A 2 . The existence of this scalar
potential allows us to specify an analytical expression for the total mechanical energy E of the system in Eq. (4.3).

As a conclusion, from the said constants of motion in this Radzievskij two–body problem we have ( [10], Eqs.
(3) and (4), p. 1310)

G ( C , r , ¤r ) = r × ¤r ; E ( C , r , ¤r ) = 1
2
| | ¤r | | 2 − `

A
+ 1

2
: A 2 =⇒ E 2 = | | ¤r | | 2 = 2 `

A
− : A 2 + 2 E . (4.3)

But the Laplace vector of the Kepler problem, A , is not a constant of motion for this system, since by (3.2)

3 A
3 C

= ( − : r · ¤r ) r +
(
: A 2

)
¤r = ( − : A ¤A ) r +

(
: A 2

)
¤r ≠ 0 .

5. The Radzievskij First–Integral Approach to the Solution. Orbit Equation in Finite Terms (Inverted Form)
After Introducing plane polar coordinates ( A , i ) in the orbital plane, from the above first integrals (4.3) one has

G = r × ¤r =⇒ ‖G ‖ = � = A 2 ¤i = const. =⇒ ¤i =
3 i

3 C
=

�

A 2 , (5.1)

E 2 =

(
3 r
3 C

)2
= ¤A 2 + A 2 ¤i 2 =

(
3 A

3 i

)2
� 2

A 4 + � 2

A 2 =
2 ` − : A 3 + 2 E A

A
. (5.2)

Note that the last expression in (5.2), read as a function of A , possesses (at least) one real root A 0 . From the
underlined part of Formula (5.2) Radzievskij obtained the differential equation of the orbit as a first–order ordinary
differential equation for the unknown function A of the independent variable i ; by separation of variables, and
considering some initial conditions of the form C = C 0 , A ( C 0 ) = A 0 , i ( C 0 ) = i 0 , he arrived at an equation
of the orbit in finite terms (in the inverted form) i = i ( A ; A 0 , i 0 ) , instead of a parametric representation
A = A ( i ; A 0 , i 0 ) in plane polar coordinates with the polar angle as the parameter ( [10], Eq. (5), p. 1310)

i = i ( A ; A 0 , i 0 ) = i 0 + �
∫ A

A0

(1/A) 3 A√
2 ` A − : A 4 + 2 E A 2 − � 2

. (5.3)

At this stage of his developments he stated that the integral in this expression is an Abelian (or hyperelliptic)
integral. However it may be treated as an elliptic integral (Byrd and Friedman, [4]).

6. Some Analytical Treatments of Mihailović
In several of his papers, [7–9], Mihailović investigated the problem of motion (4.2) posed by Radzievskij.

In [7] he essentially performed a vector–element treatment of this perturbed Keplerian system, in terms of the
Milanković elements G , A , C ? , where C ? is the instant of a pericentre passage; the perturbation equations are
presented in the forms proposed by Milanković and Popović, and a vector element introduced by Bilimović is used.

Another vector–element treatment, à la Milanković–Popović–Bilimović, in terms of the time derivative of the
Laplace vector of Keplerian motion A (see Formulae (2.2) above), is proposed in [8].

In [9] he reformulated the differential equation (4.2) in the form of the equation of motion of a 3–dimensional
nonlinearly–forced harmonic oscillator, with the forcing term equal to the force giving rise to the Kepler problem,
that is, ¥r + : r = − (

`/A 3 )
r . The solution of this problem is formally approached according to the method

of variation of the (vector) integration constants, c 1 and c 2 , involved in the general solution to the second–order
homogeneous linear differential equation with constant coefficients corresponding to the unperturbed harmonic
oscillator, namely r ( C ; c 1 , c 2 ) = c 1 cos

(√
: C

)
+ c 2 sin

(√
: C

)
. A bound for the time changes of the said

quantities is also given: | ¤c 9 | ≤
(
1/
√
:

) (
`/A 2 )

.

7. Orbital Elements of an Elliptic Keplerian Motion and Planetary Equations for their Time Changes
Keplerian orbital elements are certain constants or parameters that unambiguously characterize a conic–section
solution to a Kepler problem. At any instant of time they give account of the geometric shape, size, and position
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of the orbit in space, but also of the position of the moving particle along the Keplerian conic–section at issue
(Abad, [1], Ch. 9, §9.1 – §9.2, pp.141–145; Boccaletti and Pucacco, [2], Ch. 2, §2.5, p. 156–157; Bond and
Allman, [3], Ch. 4, §4.6, p. 49–55; Goldstein, [5], Ch.10 , §10.7, p. 478–479).

Consider an elliptic Keplerian orbit characterized by the following orbital elements:
• 0 = semi–major axis of the ellipse,
• 4 = its numerical eccentricity (and the related notation [ =

√
1 − 4 2 ) ,

• � = inclination of the orbital plane (with respect to the G 1 G 2 fundamental plane of the coordinate system),
• Ω = argument of longitude of the ascending node,
• l = argument of the periastron (or argument of the pericentre),
• ℓ = mean anomaly,

and the additional concepts and notations,
• 5 = Keplerian true anomaly,
• � = eccentric anomaly of elliptic Keplerian motion.
Orbital elements can undergo variations under perturbations. To study these variations, sets of differential

equations describing such changes in orbital elements due to the presence of some perturbing force are established.

• If the perturbing forces admit a scalar (perturbing) potential +%4ACDA1. , the time variations of orbital elements
can be expressed in terms of partial derivatives of the perturbing potential with respect to the orbital elements,
by means of the so–called planetary equations in the Lagrange form (Abad, [1], Ch. 12, §12.2, pp. 192–195).

• If the perturbing forces cannot be derived from a scalar (perturbing) potential, the time variations of orbital
elements can be developed in terms of the radial, transversal, and normal components of the perturbing
force, which gives rise to the planetary equations in the Gauss form (Abad, [1], Ch. 12, §12.3, pp. 195–197).

In what follows we will take this last approach. To this end, let the perturbing force P = P ( C , r , ¤r )
be decomposed into its components with respect to the orbital reference frame, or Gaussian frame, { u , v , n }
(Abad, [1], Ch. 6, §6.4, pp. 101–103, and Ch. 9, §9.4, §§9.4.5, pp. 149–150), P = ( % D , % E , % = ) . Obviously,
if P is a central force then its transversal and normal components are zero, and P = ( % D , 0 , 0 ) . The planetary
equations in Gaussian form for the preceding orbital elements are (Abad, [1], §12.3, Formulae (12.21), p. 196)

3 0

3 C
=

2 4 sin 5
= [

% D + 2 0 [
= A

% E ,
3 4

3 C
=

[ sin 5
0 =

% D +
(
[ 3

4 = A
− [ A

0 2 4 =

)
% E ,

3 �

3 C
=

A cos (l + 5 )
0 2 = [

% = ,
3Ω
3 C

=
A sin (l + 5 )
0 2 = [ sin �

% = ,

3 l

3 C
=

[ cos 5
0 4 =

% D + A (2 + 4 cos 5 ) sin 5
0 2 4 = [

% E + A sin (l + 5 ) cos �
0 2 = [ sin �

% = ,

3 ℓ

3 C
= = +

(− 2 A
0 2 =

+ [ 2 cos 5
0 4 =

)
% D − A (2 + 4 cos 5 ) sin 5

0 2 4 =
% E .

The right–hand sides of these equations become simpler in the case of central forces, for which % E = 0 and
% = = 0 . In particular, for the case of our Radzievskij problem (4.2) the preceding planetary equations reduce to

3 0

3 C
= − 2 4 :

= [
A sin 5 ,

3 4

3 C
= − [ :

0 =
A sin 5 ,

3 �

3 C
= 0 ,

3Ω
3 C

= 0 ,

3 l

3 C
= − [ :

0 4 =
A cos 5 ,

3 ℓ

3 C
= = + 2 :

0 2 =
A 2 − [ 2 :

0 4 =
A cos 5 .

In order to obtain these planetary equations in Gaussian form with respect to the eccentric anomaly of elliptic
Keplerian motion, � , as the (new) independent variable, by virtue of the chain rule we have that for any orbital
element f (Abad, [1], Ch. 8, §8.5, §§8.5.3, pp. 134–136; Boccaletti and Pucacco, [2], Ch. 2, §2.4, pp. 150–151)

3 f

3 C
=

3 f

3 �

3 �

3 C
=

= 0

A (�)
3 f

3 �
=⇒ 3 f

3 �
=

A (�)
= 0

3 f

3 C
, where A ( � ) = 0 ( 1 − 4 cos � ) . (7.1)

We are also interested in having the right–hand sides of the preceding equations available in terms of � ; for
this reason we express the circular functions of the true anomaly 5 in terms of circular functions of the eccentric
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anomaly � , with the semi–minor axis 1 = 0
√

1 − 4 2 = 0 [ , namely (Bond and Allman [3], Ch. 4, §4.3,
Formulae (4.10) and (4.14), pp. 44–45)

cos 5 =
cos � − 4

1 − 4 cos �
=

0 ( cos � − 4 )
A ( � ) , sin 5 =

√
1 − 4 2 sin �
1 − 4 cos �

=
1 sin �
A ( � ) ,

and then the right–hand sides of the above equations are rewritten as explicit functions of � in the form

3 0

3 C
= − 2 4 : 1

= [
sin � ,

3 4

3 C
= − [ : 1

0 =
sin � ,

3 �

3 C
= 0 ,

3Ω
3 C

= 0 ,
3 l

3 C
= − [ :

4 =
( cos � − 4 ) ,

3 ℓ

3 C
= = + 2 :

0 2 =
A 2 − [ 2 :

4 =
( cos � − 4 ) .

To describe the variations of the orbital elements with respect to the eccentric anomaly � we reformulate these
Gauss planetary equations with the eccentric anomaly as the independent variable, according to Formulae (7.1),
and obtain the system of first–order ordinary differential equations

3 0

3 �
= − 2 4 0 :

= 2 ( 1 − 4 cos � ) sin � ,
3 4

3 �
= − [ 2 :

= 2 ( 1 − 4 cos � ) sin � ,

3 �

3 �
= 0 ,

3Ω
3 �

= 0 ,

3 l

3 �
= − [ :

4 = 2 ( cos � − 4 ) ( 1 − 4 cos � ) ,
3 ℓ

3 �
= ( 1 − 4 cos � ) + 2 :

= 2 ( 1 − 4 cos � ) 3

− [
2 :

4 = 2 ( cos � − 4 ) ( 1 − 4 cos � ) .

Integrating these equations with respect to the eccentric anomaly over one revolution along the unperturbed
Keplerian ellipse (which entails that 0 , 4 , [ , and = are taken as constant quantities on the right–hand sides) leads
to

Δ 0 =
2 4 0 :
= 2 cos � − 4 2 0 :

2 = 2 cos 2� , Δ 4 =
[ 2 :

= 2 cos � − [ 2 4 :

4 = 2 cos 2� ,

Δ � = 0 , ΔΩ = 0 ,

Δl =
3 [ :
2 = 2 � − [ :

(
1 + 4 2 )
4 = 2 sin � + [ :

4 = 2 sin 2� ,

Δ ℓ =

[
1 + 3 [ 2 :

2 = 2 + 2 :
= 2

(
1 + 3

2
4 2

) ]
� −

[
4 + [ 2 :

4 = 2

(
1 + 4 2

)
+ 6 :

= 2

(
4 + 1

4
4 3

) ]
sin �

+
[
[ 2 :

4 = 2 +
3 : 4 2

2 = 2

]
sin 2� − : 4 3

6 = 2 sin 3� .

These expressions give account of the secular and periodic variations of those orbital elements over one period
of the eccentric anomaly. Note that the elements � and Ω remain constant (as expected, given that their changes
are governed by the normal component % = of the perturbing force, and for central forces that component is zero).

8. Binet’s Regularisation Method. Application to Our Radzievskij Problem
Under the effect of a conservative central force, with a force law given by a scalar function 5 (A) and scalar
potential + (A) , the equation of motion in the radial direction in polar coordinates ( A , i ) taken within the orbital
plane reduces to (Goldstein, [5], Ch. 3, §3.2, Eq (3–12), p. 74)

¥A − � 2

A 3 = 5 ( A ) , 5 ( A ) = − 3 + ( A )
3 A

.

This second–order ordinary differential equation, after the changes of the dependent and independent variables
(Boccaletti and Pucacco, [2], Ch. 2, §2.1, pp. 134–135; Goldstein, [5], Ch. 3, §3.5, pp. 85–86) given by
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A −→ D : A =
1
D
, C −→ i : 3 C =

A 2

�
3 i , (8.1)

with prime notation for derivatives with respect to the polar angle i , takes on the form (Binet’s Equation),

D′′ + D = − 1
� 2

{
1
D 2 5

(
1
D

) }
, (8.2)

which admits the (energy–like) first integral

( D ′ ) 2 + D 2 = − 2
� 2 +

(
1
D

)
+ Ẽ , with Ẽ = const.

By solving for D ′, this first integral provides us with a first–order ordinary differential equation of the orbit.
In particular, Binet’s Method applied to our Radzievskij problem leads to the second–order ordinary differential

equation, for the unknown function D of the independent variable i ,

D′′ + D =
`

� 2 +
:

� 2 D 3 , with the first integral ( D ′ ) 2 + D 2 =
2 `
� 2 D −

:

� 2 D 2 + Ẽ .

From this first integral, solving for D ′, proceeding by separation of variables, and choosing some initial
conditions at an instant C = C 0 , A ( C 0 ) = A 0 , D ( C 0 ) = D 0 , i ( C 0 ) = i 0 , we obtain the following equation
of the orbit in finite terms (in inverted form) in terms of an elliptic integral,

i = i ( D ; D 0 , i 0 ) = i 0 + �
∫ D

D 0

D 3 D√
2 ` D 3 − : + � 2 Ẽ D 2 − � 2 D 4

.

9. Izsák–Sperling Regularisation Technique
A perturbed Keplerian system (3.1), under the differential transformation of the independent variable

C −→ B : 3 C = A 3 B (Sundman transformation) ,

and after embedding the Keplerian first integrals of the Keplerian energy E : and the Laplace vector A , becomes

r ′′ + ( − 2 E : ) r = − A + A 2 P ( C , r , r ′ ) , (9.1)

with prime notation for derivatives with respect to the new independent variable B (Bond and Allman, [3], Ch. 9,
§9.3, pp. 151–154 ), from which the following scalar differential equation for the distance A can be derived,

A ′′ + ( − 2 E : ) A = ` + [ r · P ( C , r , r ′ ) ] A . (9.2)

Taking these steps, the transformed equations (9.1) and (9.2) corresponding to our Radzievskij problem (4.2) are

r ′′ + ( − 2 E : ) r = − A −
(
: A 2

)
r , A ′′ + ( − 2 E : ) A = ` − : A 3 .

This last scalar equation for the distamce A admits the (energy–like) first integral

1
2
| | r ′ | | 2 − E : A 2 = − A · r − 1

2
: A 4 + E ∗ , with E ∗ = const. ,

from which (after considering some initial conditions at an instant C = C 0 , B ( C 0 ) = B 0 , A ( C 0 ) = A 0 ) we can
obtain the solution (in inverted form), involving an elliptic integral,

B = B ( A ; A 0 , B 0 ) = B 0 +
∫ A

A0

3 A√
2E ∗ − 3� 2 + 2 ` A + 2 E : A 2 − : A 4

.

10. Hill–Whittaker Polar Nodal Canonical Variables. A Hamiltonian Formulation of the Radzieskij System
Instead of using the set of polar spherical variables wewill resort to the canonical set of theHill–Whittaker variables,
also known as polar nodal variables (Abad, [1] , Ch. 9, §9.8, pp. 158–159). Our notations for these variables will
be ( A , \ , a ; ? A , ? \ , ? a ) , with the following meaning,
• A = ‖ r ‖ ≥ 0 denotes the Euclidean norm of the position vector r , and represents the Euclidean distance

from the origin to the moving particle;
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• \ = l + 5 is the argument of latitude of the moving mass (angular distance measured from the ascending
node to the moving point), and is defined modulo 2 c ;
• a = Ω represents the argument of longitude of the asceding node;

as for the canonically conjugate momenta corresponding to these coordinates,
• ? A = ¤A is the radial component of the velocity of the moving mass;
• ? \ = � = ‖G ‖ designates the norm of the orbital angular momentum of the particle, and
• ? a = � cos � denotes the polar (or vertical) component of the angular momentum vector.
Remember the notations previously used for some Keplerian orbital elements and parameters: l = argument

of the pericentre, 5 = true anomaly, Ω = longitude of the ascending node, � = inclination of the orbital plane.
The Hamiltonian function of a perturbed Kepler problem in polar nodal variables will be a function

H ≡ H ( C , A , \ , a , ? A , ? \ , ? a ) = H0 ( − , A , − , − , ? A , ? \ , − ) + +%

=

{
1
2

[
? 2
A +

? 2
\

A 2

]
− `

A

}
+ +% ( C , A , \ , a , ? A , ? \ , ? a ) , (10.1)

where H0 is the Hamiltonian of a pure Keplerian system, and +% represents the potential of the perturbing forces.
In particular, for our Radzievskij problem (4.2) in polar nodal variables, with +% = +% ( A ) = ( 1/2 ) : A 2 ,

H ≡ H ( − , A , − , − , ? A , ? \ , − ) = 1
2

[
? 2
A +

? 2
\

A 2

]
− `

A
+ 1

2
: A 2 ( = energy of the system ≡ ? ! ) .(10.2)

Since the canonical variables \ , a and ? a are ignorable (cyclic), their canonically conjugate variables are
constants of the motion: ? \ = const. , ? a = const. , a = const.

With the aim of taking advantage of the conservation of these quantities along the motion, we will look for
changes to new canonical variables, starting from the polar nodal set, that preserve the couple of canonically con-
jugate variables a and ? a , i. e., transformations that, on these variables, act as the identity transformation. More
specifically, we look for canonical transformations ( A , \ , a ; ? A , ? \ , ? a ) −→ ( @ ! , @� , @ � ; ? ! , ?� , ? � ) ,
introducing new canonical variables ( @ ! , @� , @ � ; ? ! , ?� , ? � ) , in such a way that the pair of canonically
conjugate variables ( a ; ? a ) should remain unchanged, while the transformation actively operates on the variables
( A , \ ; ? A , ? \ ) and ( @ ! , @� ; ? ! , ?� ) .

For instance, such transformations can be defined bymeans of generating functions ( ≡ ( ( A , \ , a ; ? ! , ?� , ? � )
of the second kind, that is, depending on the old coordinates and the new momenta (Boccaletti and Pucacco, [2],
Ch. 1, Part C, §1.13, pp. 82–84; Goldstein, [5], Ch. 9, §9.1, pp. 383–384, Ch. 10, §10.1, pp. 438–442, §10.3, pp.
445–449)

11. A Canonical Transformation Yielding Some Canonical Constants
Weperforma completely canonical transformation ( A , \ , a ; ? A , ? \ , ? a ) −→ ( @ ! , @� , @ � ; ? ! , ?� , ? � ),
mixing old coordinates and new momenta, derived from a generating function of the second kind

( ≡ ( ( A , \ , a ; ? ! , ?� , ? � ) = \ ?� + a ? � +
∫ A

A0

√
& 3 A , (11.1)

& ≡ & ( A , − , − ; ? ! , ?� , − ) = 2 ? ! + 2 `
A
− : A 2 − ? 2

�

A 2 =
2 ? ! A 2 + 2 ` A − : A 4 − ? 2

�

A 2 (11.2)

where A 0 is a zero of the equation (in A ) & ( A , − , − ; ? ! , ?� , − ) = 0 . In practice, it is usually taken as the
least positive root of that equation.

The implicit transformation equations derived from ( are (Boccaletti and Pucacco, [2], Ch. 1, Part C, §1.13,
Formulae (1.C.70), p. 83; Goldstein, [5], Ch. 9, §9.1, Formulae (9.17ab), p. 383)

? A ( = ¤A ) =
m (

m A
=

√
& , ? \ ( = � ) = m (

m \
= ?� , ? a =

m (

m a
= ? � ,

@ ! =
m (

m ? !
=

∫ A

A0

3 A√
&

−→ generalized Kepler equation ,

@� =
m (

m ?�
= \ − ?�

∫ A

A0

3 A

A 2 √& , @ � =
m (

m ? �
= a .

Note that here ? ! is the total energy of the problem, while ?� is the magnitude of the orbital angular momentum.
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Alternatively, the coordinates @ ! and @� of the new canonical set are given by the relations

@ ! =
∫ A

A0

A 3 A√
2 ? ! A 2 + 2 ` A − : A 4 − ? 2

�

,

@� = \ − ?�

∫ A

A0

3 A

A
√

2 ? ! A 2 + 2 ` A − : A 4 − ? 2
�

.

Introducing the following notations and abbreviations,

R ( A ) = 2 ? ! A 2 + 2 ` A − : A 4 − ? 2
� , I1 =

∫ A

A0

A 3 A√
R ( A )

, I2 =
∫ A

A0

( 1/A ) 3 A√
R ( A )

, (11.3)

one has that @ ! = I1 , and @� = \ − ?� I2 .

Note that the above integrals I1 and I2 share the form

I =
∫ A

A0

(rational function of A ) 3 A√
R ( A )

, (11.4)

and can be reduced to elliptic integrals, [4].

12. The Radzievskij Problem in the New Canonical Variables
The completely canonical transformation derived from the generating function ( given in Formulae (11.1)–(11.2)
converts the Hamitonian (10.2) of the Radzievskij problem into a function K ( − , @ ! , @� , @ � , ? ! , ?� , ? � ) ,
of the new variables, that in this case reads

K ≡ K ( − , − , − , − , ? ! , − , − ) = ? ! . (12.1)

From the canonical equations of motion derived from this new Hamiltonian K we obtain a canonical solution
to this Radzievskij problem in the new canonical variables,

3 @ !
3 C

=
mK ( ? ! )
m ? !

= 1 =⇒ @ ! ( C ) = C + const. , (12.2)

while the remaining new variables are constant.

Note also that we have already established that @ ! = I1 , and so C + const. = I1 , which can be interpreted
as a generalized Kepler equation.
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Abstract
The topological derivative is a very useful tool for the solution of inverse problems. In this paper we compare

its behaviour on a couple of problems viewed as particular cases of an abstract one. The abstract formulation
is useful to derive a general formula valid for many different scenarios. However, depending on the physical
phenomenon under consideration, we can expect qualitatively different results.

1. Introduction
The solution of inverse problems is a very active research field. It has many applications as structural health
monitoring, non-destructive testing, tumor shape detection or oil and gas prospecting to name a few of them.

All these problems follow a common pattern. There is some object (a cavity, an oil deposit, a tumor, . . . )
whose shape we are looking for, which is made of a different material than the background medium. Based on the
knowledge of the properties of these two materials, we choose a phenomenon, like acoustic wave propagation, heat
transfer, electromagnetic scattering, etc where these two materials behave differently. With this in mind we design
a measuring experiment in which this physical magnitude is measured. For example, in this paper we consider
a problem where dielectric objects with unknown shape are irradiated by electromagnetic waves and another one
where a metallic plate with possible cavities is heated by an infrared lamp. In the first one, the electric field is
measured at a series of antennas whereas on the second one the temperature on one of the sides of the plate is
inferred from an infrared thermogram.

The direct problem is considered to be the one consisting of computing these physical quantities (electric
field/temperature) at any point in the domain when the shape and properties of the object and the kind of excitation
(incident electromagnetic wave, thermal radiation, etc) are known. Conversely, the problem of deducing the shape
and possibly the properties of the object given some amount of measurements of the electric field/temperature, is
the inverse problem.

While it is usually the case that the direct problem is well posed in the Haddamard sense, i.e. it has a solution
which is unique and depends continuously on the input data, most inverse problems are severely ill-posed. On
the one hand, if too few measurements are performed there are infinite solutions and on the other hand, if there
are enough measurements it is often the case that measuring errors prevent the problem from having a solution at
all. Even if the problem is formulated in a minimization fashion, the solution will not depend continuously on the
measured data, that is, very small amounts of experimental error will lead to completely different approximations
of the scatterer/cavity, rendering the solution useless in practical terms.

For this reason, special techniques and algorithms where the inverse problem is regularized are needed. One of
these methods is based in the computation of the topological derivative [6] of a shape functional measuring how
‘far‘ is the measured data to the one simulated for a generic known shape.

The formula for the topological derivative for the two-dimensional electromagnetic scattering problem was
obtained in [3] (see [7] for the formula of the full three-dimensional case) and the first studies of the topological
derivative applied to thermal waves were performed in [4]. In this paper we compare the performance of the topolog-
ical derivative in two specific applications related with processing experimental two-dimensional electromagnetic
data (previously studied in [2]) and synthetic thermograms of thin plates (studied in [8, 9]).

The paper is organized as follows: in section 2 the general physical model for both problems is presented.
Section 3 is devoted to describing the concept of the topological derivative, why it is useful for solving this kind of
problems and how it can be computed in a fast way. After that, in sections 4 and 5 the results for the electromagnetic
scattering and the thermographic inspection problems are shown. In this section the abstract model as well as
the aforementioned formula for the topological derivative are particularized for each problem and the results are
analyzed. Finally, in section 6 some conclusions and future work are presented.

2. Abstract problem
Both inverse problems we are going to study respond to the same abstract formulation. Let R ⊂ R2 be a connected
domain andD ⊂ R a bounded subset of it. The domain R will represent the background medium while the domain
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D will be the defect, cavity or object whose shape we are trying to detect. The material properties will be described
by two piecewise constant functions defined on R which, in general, can attain complex values:

` (x) =
{
`e x ∈ R \ D
`i x ∈ D , _ (x) =

{
_e x ∈ R \ D
_i x ∈ D .

They are related to the magnetic permeability and the electrical permittivity in electromagnetic scattering,
whereas in the thermal case the properties involved are the thermal inertia and the thermal conductivity of the
materials.

If we denote by i : R → C the complex amplitude of the electric field or the temperature at each point of the
domain, then i is the solution to the problem:




`eΔi + _ei = 0 in R \ D
`iΔi + _ii = 0 in D
i+ = i− on mD
`e∇i+ · n = `i∇i− · n on mD
�(i) = 6 on mR

, (2.1)

where n is the outward normal vector and the superscripts + and − refer to the limits when approaching mD from
outside and inside respectively.

The operator � denotes a boundary value condition which will be different in each case, 6 being the ‘forcing‘
term for the equation, that is, the incident field in the electromagnetic scattering problem and the heat flux coming
from the lamp in the thermographic inspection problem.

R

D

Γmeas

Fig. 1 Sketch of the setup for the abstract model. The set Γmeas is not restricted to be connected and can consist of discrete
points.

Given a set of points Γmeas ⊂ R where the variable i is going to be measured (see Fig. 1 for a graphical
illustration), we will denote by imeas the measured data. Note that, as neither the measuring process has absolute
precision, nor the physical model is an exact representation of the real process, it will not be true, in general, that
imeas = i |Γmeas , that is, imeas does not coincide with the restriction of i to Γmeas.

In order to solve this kind of inverse problems, the aforementioned equality is usually relaxed to a minimization
problem. If we define the functional:

9 (i) B 1
2

∫
Γmeas
|i (x) − imeas (x) |2 dW (x) , (2.2)

and denote by iΩ the solution to problem (2.1) when settingD = Ω, then we can reformulate the original problem
as a minimization problem where the aim is to find the set Ω ⊂ R such that 9 (iΩ) is minimum, i.e.:

Find the domain Ω∗ = arg min
Ω⊂R

9 (iΩ) such that iΩ is the solution to problem (2.1).

Finding the minimizer Ω∗ usually requires iterative methods which are computationally expensive. With our
method we will find an approximation of the minimizer by a one step algorithm based on the concept of the
topological derivative, which we describe in the following section.

3. Topological derivative
Given a shape functional J , that is a rule that associates a real number to each shape, and an initial domain Ω the
topological derivative, as presented in [10,11] is a non-zero and finite function TD : Ω→ R defined in such a way
that the asymptotic expansion:

J
(
Ω \ Bn (x)

)
= J (Ω) + TD (x) 5 (n) + > ( 5 (n)) ,
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holds at every point x as n → 0+. The function 5 is a non-negative monotonically increasing function such that
5 (0) = 0, which acts as a measure of the size of the ball Bn (x).

That means that, at every point x ∈ Ω, the topological derivative is a measure of the sensitivity of the shape
functional J to the inclusion of an infinitesimal hole. If TD (x) is large and negative it means that, at least to
first order, if we consider a small perturbation centered at x, the value of the functional evaluated in the perturbed
domain would decrease with respect to the original one.

If we consider the shape functional:

J
(
R \ Bn (x)

)
B 9

(
iBn (x)

)
, (3.1)

where 9 is the functional defined at (2.2), then J will measure how far are the experimental measurements to the
ones we would obtain if the scatterer/cavity were a ball of radius n centered at the point x.

By computing the topological derivative of the functional (3.1) and looking for the points where it attains its
largest negative values, we will find points where, at least to first approximation, locating a small scatterer/cavity
in the domain R makes the simulated measurements be closer to the experimental ones.

With this in mind, we will propose as reconstructed domains, the family of sets

Dapp
_ =

{
x ∈ R : TD (x) ≤ _min

y∈R
TD (y) , 0 < _ < 1

}
, (3.2)

where _ is a parameter that controls how conservative we are about considering a point as part of the object/cavity.
The topological derivative of this kind of shape functional can be computed in a very fast way. The abstract

problem (2.1) when no object is present, admits a variational formulation: find i ∈ �1 (R) such that:
0 (i, k) = ℓ (k) ∀k ∈ �1 (R) ,

where 0 : �1 (R) × �1 (R) → C is a bilinear form, ℓ : �1 (R) → C is a linear form, and �1 (R) is the Sobolev
space of order 1. As shown in [3], the topological derivative can be expressed as:

TD (x) = ℜe
((

2`e
`e − `i
`e + `i

)
∇* (x) · ∇+ (x) + (_i − _e)* (x)+ (x)

)
,

where* is the state field, which solves

0 (*, k) = ℓ (k) ∀k ∈ �1 (R) ,
that is, the state field corresponds to the solution when no scatterer or cavity is present. + is the adjoint field, and
it is the solution to

0 (k,+) = X 9 (*) (k) ∀k ∈ �1 (R) ,
where X 9 (*) is the functional derivative of (2.2) at function*:

X 9 (*) (k) B ℜe

(∫
Γmeas
(* (x) − imeas (x)) k (x) dW (x)

)
. (3.3)

We can observe that the difference between the measured data and the one corresponding to a domain without any
object or cavity acts as a forcing term in the adjoint problem.

In the following two sections we present the results obtained for the electromagnetic scattering problem as well
as for thermographic inspection.

4. Electromagnetic scattering
The two-dimensional Fresnel database [1] contains experimental measurements of the electromagnetic scattering
by different objects at several frequencies. It was developed by the Fresnel Institute of Marseille for a special issue
of the journal Inverse Problems with the purpose of allowing different research groups to test or benchmark their
inversion algorithms against common data.

In each experiment, objects are placed in the center of an an-echoic chamber and are irradiated by electromagnetic
waves. The emitting antenna is located at 'E = 0.72 m from the center and we will denote its position by xE. The
total field is measured, both with the presence of the target and without it, at #R = 49 positions in a circumference
of radius 'meas = 0.76 m and whose angle with respect to the emitting antenna are linearly spaced between 60◦ and
300◦. We will look for the targets in the inspection zone

{(G, H) ∈ R2 − ! < G < !; −! < H < !} with ! = 0.1 m.
In Fig. 2 an schematic of the experimental setup is shown compared with the size of the inspection zone, as well
as one of the targets compared with the inspection zone.
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Incident field Total field Two dielectrics target

Fig. 2 Sketch of the experimental setup. The emitting antena is the red point, whereas the receiving antennas are the white
ones. The inspection zone is the lavander square. The incident field (measured without the presence of the objects) and the
total field (corresponding to measurements in presence of the objects) are shown in the first two plots. The true objects and
their location inside the inspection zone are illustrated in the third plot.

For a fixed frequency the aforementioned measuring process is repeated #E = 36 times, rotating the target 10◦
each time. However, we will assume that the target is fixed, and it is the whole set of antennas which rotates around
it, changing the emitting direction. After the target is rotated the full 360◦, the process is repeated for the next
frequency in the dataset.

In this paper we will only present the results obtained for a target consisting in two cylinders made of dielectric
material (see figure 2 for a sketch of its cross section), however we have studied more cases in [2]. Taking into
account that all the targets are vertical cylinders with constant section and that both the emitting antenna as well as
the receiving ones are vertically polarized, the vertical component of the electric field � : R2 → C must solve the
problem: 



Δ� + :2� = 0 in R2 \ D
Δ� + :2Yr� = 0 in D
�+ = �− on mD
∇�+ · n = ∇�− · n on mD
limA→∞

√
A
(
m
mA

(
� − � inc) − 8: (

� − � inc) ) = 0

, (4.1)

where � inc denotes the incident field, that is, the one that would appear if no object were present (see left image
of figure 2). The dielectric objects are modelled as having a different electrical permittivity Yr than that of the
surrounding air, but same magnetic permeability. The wavenumber in the background is : = 2ca

c , a being the
frequency and c the speed of light. Finally, as the experiments are performed in an an-echoic chamber, the problem
can be posed inR = R2, so the boundary conditions become a radiation condition at infinity, known as Sommerfeld’s
radiation condition.

As Γmeas consists of a finite set of isolated points, the misfit functional we use is a sum rather than an integral:

J
(
R2 \Ω

)
=

1
2

#meas∑
==1

���Ω (
xmeas
=

) − �meas
=

��2 . (4.2)

If we compare this model with the abstract model (2.1) we observe that the topological derivative of (4.2) can
be computed as:

TD (x) = (Yr − 1)ℜe
(
* (x)+ (x)

)
(4.3)

where the state field* : R2 → C is the solution to the problem:
{
Δ* + :2* = 0, in R2

limA→∞
√
A
(
m(*−�inc)

mA − 8: (* − �inc)
)
= 0,

(4.4)

and the adjoint field + : R2 → C is the solution to the problem:



Δ+ + :2+ =

#meas∑
==1

(
* − �meas

=

)
Xxmeas
=

in R2

limA→∞
√
A
(
m+
mA + 8:+

)
= 0.

. (4.5)
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On one hand, the adjoint field can be expressed as a combination of fundamental solutions:

+ (x) =
#meas∑
A=1

(
* − �meas

=

)
� (2)0

(
:
��x − xmeas

A

��) ,
where � (2)0 denotes the Hankel function of second kind and zero order. On the other hand, the state field is the
incident field and we can approximate its values in the inspection zone by fitting a fundamental solution to the data
measured in front of the emitting antenna:

* (x) = � inc
front

� (1)0 (: ('E + 'meas))
� (1)0 (: |x − x� |) ,

where � inc
front denotes the measure of the incident field took at the receiving antenna which is right in front of the

emitting one.
In figure 3 we show the topological derivative field for different frequencies. We can observe that in general

we obtain very good reconstructions. The only reconstruction with poor quality is the one at the lowest frequency
in the dataset (1 GHz) in which we cannot distinguish the number of scatterers. It is important to note that at this
frequency, the wavelength would be approximately as large as 4 times the side of the inspection zone. What is

ν = 1.0 GHz ν = 2.0 GHz ν = 3.0 GHz ν = 4.0 GHz

ν = 5.0 GHz ν = 6.0 GHz ν = 7.0 GHz ν = 8.0 GHz

Fig. 3 Single frequency reconstructions. The topological derivative field is plotted in gray scale. The largest negative values
correspond with dark colors. Superimposed is the contour of the approximated domain Dapp

_ as defined in (3.2) corresponding
to _ = 0.7.

perhaps even more impressive is that the reconstructions with fewer emitting directions are also very robust as can
be seen in figure 4.

ν
=

3.
0

G
H

z

0◦ < θE < 360◦ 0◦ < θE < 300◦ 0◦ < θE < 240◦ 0◦ < θE < 180◦ 0◦ < θE < 120◦ 0◦ < θE < 60◦

ν
=

5.
0

G
H

z
ν

=
7.

0
G

H
z

Fig. 4 Reconstructions with limited angle of emission for three different frequencies. The emitting directions are shown as
black arrows.
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5. Thermographic inspection
In [8, 9] we tested a very similar algorithm in a problem consisting in the determination of the shape and number
of defects or cracks in a metallic plate from a thermogram of one of its sides that was heated by an infrared lamp.

In this paper we will present a simplified model where the plate is considered to be two-dimensional. The
region R occupied by the plate will be:

R = {(G, H) ∈ R2 : 0 < G < !G , 0 < H < !H
}
,

where !G = 0.01 m and !H = 1 m so it can be considered a thin plate. The boundary of the plate will be separated
into three sets:

Γfront B
{(G, H) ∈ R2 : G = 0, 0 < H < !H

}
, Γback B

{(G, H) ∈ R2 : G = !G , 0 < H < !H
}
,

and
Γsides B

{(G, H) ∈ R2 : 0 < G < !G , H = 0
} ∪ {(G, H) ∈ R2 : 0 < G < !G , H = !H

}
.

The plate will be heated from an infrared lamp situated at x; , on the same side as Γfront see (Fig. 5) i.e.
Γmeas = Γfront. We model the lamp as an isotropic emitter, so the heat absorbed by the plate would be:

@lamp (x, C) = U � (C)2c
x · i

(x − x;) · (x − x;) , x ∈ Γfront,

where � is the intensity of the lamp, U is the surface absorptance of the plate and i denotes the unit vector along the
G-axis.

Fig. 5 Sketch of the thermal set up. (a) Three dimensional setup of the experiment. (b) Two-dimensional domain simplification.
(c) Zoom of the computational mesh around the defect.

If the intensity of the lamp varies harmonically in time with frequency l, then the temperature also varies
harmonically at the same frequency, and its complex amplitude ) : R → C must solve the problem:




^eΔ) + 8lde2e) = 0 in R \ D
^iΔ) + 8ldi2i) = 0 in D
)+ = )− on mD
−^e∇)+ · n = −^i∇)− · n on mD
−^e∇) · n = 0 on Γsides

−^e∇) · n = ℎeff) −&lamp on Γfront

−^e∇) · n = ℎeff) on Γback

, (5.1)

where &lamp denotes the complex amplitude of the absorbed heat. The coefficient hreff takes into account the heat
transfer between the plate and the surrounding air both via natural convection as well as infrared radiation.

A thermogram is a picture where each pixel color corresponds to the temperature of that point in the image.
Hence, in this case the misfit functional can be expressed as:

J
(
R \Ω

)
B

1
2

∫ !H

0
|)Ω (x) − )meas (x) |2 dH. (5.2)
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Comparing with the abstract formulation (2.1) we observe that now both of the coefficients, namely the thermal
conductivity ^, as well as the thermal inertia d2, have different values inside the defect and in the rest of the plate.

The topological derivative of (5.2) can be expressed as

TD (x) = ℜe
(
2^e

^e − ^i
^e + ^i

∇* (x) · ∇+ (x) + 8l (di2i − de2e)* (x)+ (x)
)

(5.3)

where the state field* : R → C is the solution to the problem:




^eΔ* + 8lde2e* = 0 in R
−^e∇* · n = 0 on Γsides

−^e∇* · n = ℎeff* −&lamp on Γfront

−^e∇* · n = ℎeff* on Γback

and the adjoint field + : R → C is the solution to the problem:




^eΔ+ − 8lde2e+ = 0 in R
−^e∇+ · n = 0 on Γsides

−^e∇+ · n = ℎeff+ − (* − )meas) on Γfront

−^e∇+ · n = ℎeff+ on Γback

In this case, we had no experimental data, and the forward problem was solved by a finite element method
(FEM) approximation to generate numerical data simulating thermograms. The state and adjoint field problems
were also solved by the FEM.

In Fig. 6 we show a plot of a thermogram as well as the topological derivative of the corresponding experiment,
restricted to the side Γfront. We can see that the topological derivative clearly marks the height (H-coordinate) at
which the defect is located.
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0.06

T
[K

]

0.0 0.2 0.4 0.6 0.8 1.0

y[m]

−1.0

−0.5

0.0

TD

Fig. 6 Thermogram and topological derivative for a lamp at x; = (−0.2, 0.2) and l = 2.5 GHz.

The topological derivative field in a region surrounding the defect is plotted in Fig. 7. As we can see, it is not
able to show the correct depth of the defect (i.e. the G-coordinate of the center of the circle). This behaviour does
not depend on the location or the frequency of the emitting lamp, and hence, cannot be solved by using a linear
combination of topological derivatives corresponding to several experiments.

6. Conclusions and future work
The topological derivative has proven to be a very efficient and reliable indicator for object detection in different
scenarios.

When tested against electromagnetic experimental data it was able to recover the shapes with great accuracy
without a priori information on the number of objects or their size. Albeit being a one step method, the quality of
the reconstructions was comparable to the iterative methods tested in the special session [1]. Furthermore, we have
shown its accuracy against limited angle emissions, being able to approximate the shape with less than a quarter of
the data.

In the thermal case it was able to recover the position of the defect in the H-direction and also gave a good
estimation of the size of the defect, but has no information on its depth. In [9] it was shown that in the full
three-dimensional case it is able to recover the projection of the shape on the measuring surface. This difference
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Fig. 7 Topological derivative field for different experiments.

in behaviour with respect to the electromagnetic case is due to the experimental thermogram being "closer" to the
simulated thermogram one would obtain for a perturbation of radius n → 0 centered at a point in the surface than
for a thermogram corresponding to a perturbation of radius n → 0 but centered at the correct depth.

If the topological derivative is going to be used for testing very thin plates, this is not a real problem, as we
mostly need finding the H-coordinate of the defect. It would be interesting to study if the second order topological
derivative [5] also promotes minima towards the surface of the plate or if it is able to recover the correct depth.
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Abstract
We develop a machine learning technique based on two different methods: Reduced-Order and interpolation

methods. In particular, we use first Support Vector Regression method, and second an interpolation method on
a data set of scattered data. The developped strategy is applied to predict thermal performances in courtyards.
These predictions can help to improve the courtyard design, and subsequently, to get better energy performance
of buildings.

1. Introduction
Data-driven mathematical methods are becoming a very important tool for modelling and understanding problems
coming from all branches of the science and engineering. In general, the main goal of these methods is to capture
with a small subset of the full and usually, high-dimensional state space, the most important properties of the
evolution of a physical system.

More specifically, the main idea behind Reduced-Order Models (ROMs) is to consider time snapshots of the
data (which could come, for instance, from a Partial Differential Equation solution), and build a lower dimensional
system, which is able to catch the main features of the original model. A review of Data-driven methods for reduced
order modelling can be consulted in [2].

On the other hand, Support Vector Machines (SVMs) were introduced in the 90s by Vapnik and his collaborators
[3], in the framework of statistical learning theory. Although originally SVMs were thought to solve binary
classification problems, they are currently used to solve various types of problems, for instance, regression problems
[8], which we focus on, and can be considered a special case of ROMs methods.

The idea behind SVMmethods, is to select a separation hyperplane, which is equidistant to the closest examples
of each class, in order to achieve the so-called maximum margin on each side of the hyperplane. Furthermore,
when defining the hyperplane, only those examples whose distance from the hyperplane is the margin distance are
considered. These examples are called vectors support. More specifically, we focus on this work on Support Vector
Regression (SVR) method, which is briefly presented in the folllowing section.

Although these methods could be used with data coming from very different fields, we have chosen to focus
on prediction of temperature in courtyards. As it is well known, courtyards are an effective passive strategy for
improving the energy performance of buildings. Here, we consider the prediction of courtyard thermal performances
based on machine learning techniques, as we developped in [4]. In particular, in a first step, we use the SVRmethod
based on monitored data in every hour of one week for different periods in various courtyards located in Badajoz,
Córdoba and Seville (Spain), to predict the temperature inside the courtyard in the whole week. Subsequently, in a
second step, based on the climate zoning and aspect ratios of a courtyard, we have predicted its courtyard thermal
performances by interpolating the predicted data provided by the SVR method.

The rest of the chapter is outlined as follows. In Section 2, we present the SVRmethod. In Section 3, we predict
the temperature of a courtyard by using its climate zone, period of the year and aspect ratios. Finally, Section 4 is
devoted to the conclusions of this work.

2. Support Vector Regression method
We attempt to predict the value of a function 5 : R# → R using some information related to it. In particular, to
find the function 5 , we use the <-collection of experimental data associated to it. The idea of the SVR method [8]
is to obtain a function such that for every sample (G8 , H8), 8 = 1, . . . , <, it is satisfied that | 5 (G8) − H8 | ≤ Y, for some
Y > 0 small. Concretely, given Y, W and � > 0, the following optimization problem is considered,

max



1
2

<∑
8, 9=1
(U8 − U∗8 ) (U 9 − U∗9 ) exp(−W‖G8 − G 9 ‖2) − Y

<∑
8=1
(U8 + U∗8 ) +

<∑
8=1

H8 (U8 − U∗8 )

 ,

subject to
<∑
8=1
(U8 − U∗8 ) = 0, for U8 , U∗8 ∈ [0, �] .
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This problem can be solved, for instance, using the statistical software '. In particular, by using the e1071
library [7], a software package designed to solve classification and regression problems using Support Vector
Machines, which can be easily installed in '. The solution provides a possible candidate function,

5 (G) =
<∑
8=1
(U8 − U∗8 ) exp(−W‖G8 − G‖2) + 1,

where the constant 1 ∈ R can be computed by forcing the Karush-Kuhn-Tucker (KKT) condition [6]. The function
 (G, G ′) = exp(−W‖G − G ′‖2) is called radial basis kernel. It holds that | 5 (G8) − H8 | ≤ Y, for all 8 = 1, . . . , <. The
quality of function 5 depends on the choice of the parameters Y, W and �.

3. Predicted temperature of a courtyard
As an instance of the Data Driven Reduced Order Methods, in this section we work on predictions of the value of
the temperature inside a courtyard using its climate zone, period of the year and aspect ratios, as it was done more
widely in [4]. To do that, we consider two stages.

In the first stage, we have worked with the data from 12 monitored courtyards in every hour of one week, from
different periods of the year, in varios courtyard located in Badajoz, Córdoba and Seville (Spain), see Tab. 1.

Location Courtyards
Badajoz Juan Pablo II, Los Maestros, Manuel Gil, Suárez Somonte
Córdoba Carlos Rubio, Pompeyos
Sevilla Dr. Fleming, Hernán Cortés (2 and 3), IMUS, San Sebastián, UNED

Tab. 1 Location of monitored courtyards in this work.

For each courtyard and each week, we have used the SVR method to predict the value of the temperature inside
the courtyard all along the week, by using some information related to it. More specifically, we attempt to predict
the value of the temperature inside a courtyard considering the time, the outside courtyard temperature, the wind
speed and direction. More specifically, we consider G = (G1, G2, G3, G4), where

• G1 = time (hours),

• G2 = outside temperature (Celsius degrees),

• G3 = wind speed (m/s),

• G4 = wind direction (angle degrees),

and we look for a function 5 : R4 → R, such that H = 5 (G) provides the temperature inside the courtyard.
In a second stage, using the library of predicted data obtained from the machine learning method, we have

predicted the temperature inside a given courtyard, based on its climate zone, period of the year and aspect ratios.
We focus on each one of this two stages stage from now on. In the first stage, through the monitoring data and

the SVRmethod, we have obtained a library of predicted temperatures inside various courtyards located in different
cities of the south of Spain. In this second stage, by using this library, we predict the temperature inside a given
courtyard.

We are going to use the concept Aspect Ratio, that we define subsequently. We consider two Aspect Ratios, the
first one, �'� is defined as the relation between the width and the height, and the second one, �'�� is defined as
the relation between the width and the length, as follows,

�'� = ℎ<0G/, and �'�� = ℎ<0G/!,

where ℎ<0G is the maximum height,, is the width and ! is the length of the courtyard.
Now that the concept of Aspect Ratio is defined, we proceed to predict the temperature inside a given courtyard

in this way: We have classified the courtyards library into three different classes, depending on the range of
temperatures of the patios and we have used an interpolation technique to predict the temperature inside a courtyard
of the same class by using the aspect ratios data. In particular, we have classified the courtyards library into this
three different classes:

C1. Temperature range: (15◦, 35◦).
C2. Temperature range: (20◦, 40◦).
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C3. Temperature range: (25◦, 45◦).
In Tab. 2 we classify the courtyards within these different classes. Note that some courtyards are in more than

one class, because the temperature range in the courtyard has changed from one week to another. We denote by W8
the week number 8 of the measured data in the courtyard.

Temp. range class Courtyards
C1 J. P. II, Los Maestros, M. Gil, S. Somonte
C2 C. Rubio (W3), H. Cortés (2 and 3), IMUS (W1,4), San Sebastián, UNED
C3 C. Rubio (W1,2), IMUS (W2,3), Pompeyos

Tab. 2 Classification of courtyards within temperature range class. We denote by W8 the week number 8 of the measured data
in the courtyard.

Moreover, courtyard Dr. Fleming is between C2 and C3, so it has not been inlcluded in Tab. 2. Thus, for a
given courtyard, we first estimate its range of temperature, classifying it into C1, C2 or C3.

Then, given the Aspect Ratios �'� and �'�� of some courtyards in the same class and their corresponding
predicted temperatures through the SVR method, by an interpolation technique implemented in the scientific
software MATLAB, we obtain a prediction of the temperature inside a courtyard of the same class. To do the
interpolation, we have used the MATLAB function scatteredInterpolant, which perform interpolation on a 2-D
data set of scattered data. In particular, it returns the interpolant � for the given data set, such that we can evaluate
� at a set of query points in 2-D, to produce interpolated values )@ = � (�'�@ , �'� �@), obtaining the temperature
inside the courtyard )@ .

Also, a quantitative analysis has been carried out. On the one hand, we evaluated the relative error of the
predicted temperature with respect to the monitored temperature in different discrete norms:

• !1 (%) =

#∑
8=1
|)<>=8C. − )?A43. | (C8)

#∑
8=1
)<>=8C. (C8)

· 100,

• !2 (%) =



#∑
8=1
()<>=8C. − )?A43.)2 (C8)

#∑
8=1
)2
<>=8C. (C8)



1/2

· 100,

where we have denoted by)<>=8C. (C8) (resp,)?A43. (C8)) themonitored temperature (resp., the predicted temperature)
at time C8 , 8 = 1, . . . , # (hours, [ℎ]). Moreover, we evaluated the percentage in time for which the obtained absolute
error within the predicted and the monitored temperature is less than or equal to a fixed tolerance C>; = 2>�. On the
other hand, we computed the following statistical parameters: the correlation coefficient ', the Root Mean Square
Error ('"(�) and the Mean Absolute Percentage Error ("�%�). The formulas for these parameters are:

• ' =

#∑
8=1
()<>=8C. (C8) − )<>=8C.) ()?A43. (C8) − ) ?A43.)

[
#∑
8=1
()<>=8C. (C8) − )<>=8C.)2

#∑
8=1
()?A43. (C8) − ) ?A43.)2

]1/2 ,

• '"(� (>�) =



#∑
8=1
()<>=8C. − )?A43.)2 (C8)

#



1/2

,

• "�%� (%) = 1
#

#∑
8=1

|)<>=8C. − )?A43. | (C8)
)<>=8C. (C8) · 100,
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where in the formula for the correlation coefficient ' we have denoted by)<>=8C. (resp, ) ?A43.) the mean monitored
temperature (resp., themean predicted temperature). The values of the relative and absolute errors, and the statistical
parameters are shown in tables 3 and 4 for the air temperature in each selected courtyard of each temperature range
class.

Now, we show the predicted temperature in one courtyard of each temperature range class. We represent the
predicted temperature in comparison to the monitored temperature inside the courtyard, as well as the outdoor
temperature. For the class C1, we have considered the courtyard Los Maestros, located in Badajoz, (which has not
been included in the courtyards C1 data base). The prediction is performed for the date 20th to 26th May 2018.
The obtained results are represented in Fig. 1 and tables 3 and 4 (first row).
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Fig. 1 Predicted temperature versus monitored and outdoor temperatures inside a C1 courtyard.

Temp. range class !1 (%) !2 (%) Absolute error ≤ C>; (%)
C1 5.09 6.10 91.67
C2 4.93 6.62 84.28
C3 3.50 4.31 89.88

Tab. 3 Relative and absolute errors for the air temperature in each selected courtyard of each temperature range class.

Temp. range class ' '"(� (>�) "�%� (%)
C1 0.96 1.24 5.17
C2 0.88 1.62 4.82
C3 0.89 1.21 3.52

Tab. 4 Statistical parameters for the air temperature in each selected courtyard of each temperature range class.

Second, for the class C2we have considered the courtyardUNED, located in Seville. The prediction is performed
for the date 7th to 13th September 2018. The obtained results are represented in Fig. 2 and tables 3 and 4 (second
row).

Finally, for the class C3 we have considered the courtyard Carlos Rubio, located in Córdoba. The prediction
is performed for the date 26th July to 1st August 2017 (W1). The obtained results are represented in Fig. 3 and
tables 3 and 4 (third row).

4. Conclusions
In this work, we have presented a prediction method based on machine learning techniques, and we have used it to
predict courtyard thermal performances. The method is developped in two different stages. In a first step, we have
used the SVR method based on provided data, to predict the temperature inside the courtyard in a whole week.
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Fig. 2 Predicted temperature versus monitored and outdoor temperatures inside a C2 courtyard.
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Fig. 3 Predicted temperature versus monitored and outdoor temperatures inside a C3 courtyard.

After that, based on the climate zoning and aspect ratios of a courtyard, we have predicted its courtyard thermal
performances, by interpolating the predicted data provided by the SVR method. We proceed now to present briefly
the quality of the obtained results.

On the one hand, the values for the relative errors in different discrete norms are around 5% and the percentage
in time for which the obtained absolute error with restect to the monitored temperature is less than or equal to
C>; = 2>� is superior to 80%.

On the other hand, the values for the statistical parameters that indicate that the simulation is accurate are:
' −→ 1, '"(� −→ 0, "�%� −→ 0, see [1, 9]. The values of these parameters for the air temperature in the
present courtyards for each simulation confirm that the used strategy is rather accurate. In particular, the correlation
coefficient ' is superior to 0.85 for all range classes. The '"(� values are around 1.5> � and the "�%� values
are around 5%.

We can see that the values of the computed statistical parameters are in a similar range than those obtained in [5]
for a similar problem. There, the authors performed a very accurate courtyard thermal simulation based upon a
Computational Fluid Dynamics (CFD) FreeFEM 3D model, which is much more computationally expensive than
the machine learning technique SVR used in this work. In particular, the computation of one week temperature
through the SVR method takes around one minute, while the CFD method takes around four minutes per one day
of simulation. Thus, we have checked in this context that ROMs plus interpolation techniques are a powerfull tool
to make predictions.
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