
SoftwareX 22 (2023) 101363

o
a
t
p
i
f
m
t

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

tegdet: An extensible Python library for anomaly detection using time
evolving graphs
Simona Bernardi a,∗, Raúl Javierre b, José Merseguer a

a Dept. de Informática e Ing. de Sistemas, Universidad de Zaragoza, Spain
b Hiberus, Spain

a r t i c l e i n f o

Article history:
Received 28 October 2022
Received in revised form 23 January 2023
Accepted 8 March 2023

Dataset link: https://github.com/DiasporeU
nizar/TEG

Keywords:
Unsupervised anomaly detection
Univariate time-series
Time evolving graphs
Dissimilarity metrics

a b s t r a c t

This paper presents tegdet, a new Python library for anomaly detection in unsupervised approaches.
The input of the library is a univariate time series, representing observations of a given phenomenon.
Then, tegdet identifies anomalous epochs, i.e., time intervals where the observations differ in a
given percentile of a baseline distribution. Epochs are represented by time evolving graphs and the
baseline distribution is given by the dissimilarities between a reference graph and the graphs of
the epochs. Currently, the library implements 28 dissimilarity metrics, i.e., 28 different anomaly
detection techniques, and its extensible design allows to easily introduce new ones. tegdet exposes
a complete functionality to carry out the anomaly detection, through a straightforward designed API.
Summarizing, to the best of our knowledge, tegdet is the first publicly available library, based on time
evolving graphs, for anomaly detection in time series. Our experimentation shows promising results.
For example, Clark and Divergence techniques can achieve an accuracy of 100%, while the time to
build the model and predict lasts for few hundreds milliseconds.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00349
Permanent link to Reproducible Capsule
Legal Code License GNU GPL-2.0
Code versioning system used pypi, git
Software code languages, tools, and services used python
Compilation requirements, operating environments & dependencies python >= 3.6.1, pandas, scipy
If available Link to developer documentation/manual https://github.com/DiasporeUnizar/TEG
Support email for questions simonab@unizar.es

1. Motivation and significance

Time series analysis and forecasting is a noticeable branch
f data science that focuses on developing models derived from
sequence of data points, observed at different time instants,

o gain an understanding of a given phenomenon and to make
redictions on its future [1]. Anomaly detection [2] in time series
s a step forward and, nowadays, one of the main topics of interest
or researchers and practitioners in uncountable application do-
ains. For example, network intrusion detection, malware detec-

ion, fraud detection, data center monitoring, industrial damage

∗ Corresponding author.
E-mail address: simonab@unizar.es (Simona Bernardi).

detection, medical images, military surveillance or social media
research.

Numerous anomaly detection methods, based on time series,
have been proposed in the literature, and three categories have
been identified [3]: statistical approaches, machine learning ap-
proaches and deep learning approaches. Detection methods can
deal with univariate and/or multivariate time series. A univariate
time series is an ordered set of real-valued observations, where
each observation is recorded at a specific time. A multivariate
time series is an ordered set of k-dimensional vectors, where each
vector is recorded at a specific time and consists of k real-valued
observations [4].

The tegdet library implements a statistical approach, in par-
ticular a class of dissimilarity-based anomaly detection methods
ttps://doi.org/10.1016/j.softx.2023.101363
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2023.101363
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101363&domain=pdf
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00349
https://github.com/DiasporeUnizar/TEG
mailto:simonab@unizar.es
mailto:simonab@unizar.es
https://doi.org/10.1016/j.softx.2023.101363
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Simona Bernardi, Raúl Javierre and José Merseguer SoftwareX 22 (2023) 101363

f
g
f
t
v
d
m
h
g
a
f
d

s

Fig. 1. Overview of the tegdet library architecture.

or univariate time series. These methods rely on time evolving
raphs [5] (TEGs), which offer a graph-based representation of
ixed-length subsequences of the original time series. According
o Akoglu et al. [5] many reasons make graph-based approaches
ital and necessary, among them a powerful representation of
ata inter-dependencies and its robust machinery. Each detection
ethod in tegdet leverages a dissimilarity metric, which defines
ow to compare graph-based subsequences with a reference
raph, and how to build a baseline distribution model. Then,
nomalous epochs are identified as data subsequences that differ,
rom the reference graph, in a given percentile of the baseline
istribution.
Statistical libraries for the analysis and forecasting of time

eries are available in Python [6] and R [7], e.g., statmodels1 in
Python or stats2 in R. However, to the best of our knowledge,
none of these libraries provide support to the anomaly detection
of time series based on time evolving graphs. Moreover, most
dissimilarity-based implementations from the literature [4] are
based on only one fixed metric, typically the Euclidean distance.
The tegdet library overcomes these limitations by currently sup-
porting 28 dissimilarity metrics using TEGs, and it has been
designed to be easily extended with new ones. This is important
since, as pointed out in [3], each detection method is specific to
the type data, hence the dissimilarity metric greatly influences
the accuracy of the detection results. For example, techniques
based on Clark and Divergence metrics [8] are well suited to
detect energy frauds [9]. In the end, offering tegdet many differ-
ent statistical techniques greatly improves the chances of getting
better results in different fields.

2. Software description

tegdet is a novel library for anomaly detection, based on time
evolving graphs (TEGs) and implemented in Python language [6]
(compatible version >= 3.6.1). The input of the library must be a

1 https://www.statsmodels.org/
2 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html

univariate time series representing observations of a given phe-
nomenon. The output identifies anomalous epochs, as previously
defined.

2.1. Software architecture

Fig. 1 depicts a modules view of the library’s software architec-
ture. It is made of two packages and it uses three other different
Python libraries (pandas, numpy and scipy):

• teg: It is the main package. It defines the API for the users
of the library.

• graph comparison: It is responsible for creating graphs and
computing dissimilarities between these graphs, according
to a given metric.

Each package of the library is made up of a set of Python
classes,3 which are also depicted in Fig. 1.

As previously introduced, tegdet implements 28 dissimilar-
ity metrics, hence, 28 different anomaly detection techniques.
Moreover, it has been designed to be easily extended to in-
troduce new anomaly detection techniques. The tegdet design
ensures the extensibility by decoupling the computation of the
dissimilarity metric and the rest of the training and testing pro-
cess. In particular, the abstract class GraphComparator, Fig. 1,
will be specialized in as many classes as techniques want to be
implemented. Fig. 1 depicts three specialized classes as exam-
ples, e.g., GraphJSDissimilarity, which implements the Jensen–
Shannon metric [8]. Each specialized class only needs to im-
plement the abstract method compare_graphs, having the pur-
pose of implementing the technique defined by the dissimilarity
metric.

The decoupling introduced by tegdet not only ensures the
extensibility, it also favors the good performance results of the
library, as proved in [9]. Being the temporal complexity to cre-
ate the TEGs linear, with respect to the length of the input, in

3 A detailed description of the attributes and methods of these classes can
be found in: https://github.com/DiasporeUnizar/TEG.
2

https://www.statsmodels.org/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
https://github.com/DiasporeUnizar/TEG

Simona Bernardi, Raúl Javierre and José Merseguer SoftwareX 22 (2023) 101363

t
d
t

2

t
(
m
o

i

Fig. 2. Workflow of the usage of the library.

he worst case, then, the performance impact of adding a new
etection technique is attributable to the implementation of the
echnique exclusively.

.2. Software functionalities

The methods of the TEGDetector class, conform the API of the
egdet library. These methods are for the users of the library to:
a) discretize a dataset, (b) create TEGs, (c) construct a prediction
odel, and (d) detect outliers. The following list describes each
f these methods in detail.

nit(): This method is the constructor of the TEGDetector class.
Hence, it is the entry point for the user of the library to
initialize the parameters for constructing the model and
carrying out the detection. These parameters conform the
attributes of the class, they are described at the end of this
section.

get_dataset() This method is used to load a dataset, which is
indicated as a parameter. The dataset file must be in CSV
(comma-separated values) format. The method returns a
pandas Dataframe ready to be used for building a model.

build_model() This method is used to build a prediction model.
The method receives as a parameter a training dataset,
created by the previous method. The model is returned as
a ModelBuilder object, also the time to build the model
is returned.

predict() This method is used to make a prediction. It receives a
testing dataset and a model. Then, the method returns: the
outliers, as a numpy array of {0,1} values, the total number
of observations, and the time spent to make the prediction.

compute_confusion_matrix() This method is used to compute a
confusion matrix. It receives two numpy arrays, one with
ground true values and the other with the predicted values
obtained by the previous method. The method returns the
confusion matrix.

print_metrics() This method is used to print on the standard
output. In particular, it prints: the name of the metric,
the setting of the input parameters, the name of the test-
ing dataset, the performance metrics (i.e., time to build
the model and time to make predictions) and finally the
confusion matrix.

metrics_to_csv() This method is used to save information, in CVS
format, in the file indicated as a parameter. In particular, it
saves: the current configuration, the name of the testing
dataset, the performance metrics and finally the confusion
matrix.

The attributes of the TEGDetector class, which are the param-
eters of the constructor method, represent the information that
the user needs to provide for carrying out the anomaly detection.
The following list describes each of these attributes in detail.

metric: The name of the dissimilarity metric used to compare
graphs. The complete list of metrics currently implemented
in the library appears in Listing 1, lines 11–16.

n_bins: Being the time series observations mapped into an or-
dered set of levels, then n_bins represents the cardinality
of this set, i.e., the number of levels (its default value is 30).
The size of the generated graphs (i.e., number of nodes and
edges) is proportional to this value.

n_obs_per_period: Being the time series partitioned into a set of
consecutive periods, i.e., epochs, then this attribute repre-
sents the number of observations in each period, see Fig. 3.
The length of the graph sequence, that corresponds to the
number of period partitions, is inversely proportional to
this value. Its default value is 336.

alpha: Represents a threshold for the anomaly detection (its
default value is 5). Hence, an epoch will be labeled as
anomalous when its observations differ from the reference
model in a quantity above the 100-alpha percentile of the
baseline distribution.

2.3. Usage of the library

The methods of the API previously described are for the users
of the library to construct a prediction model and carry out
the anomaly detection. Fig. 2 summarizes such steps, which are
detailed in the following.

Construction of the prediction model. First, the init method is
called to set the parameters needed to create the training TEGs
and the prediction model. Next, the get_dataset method loads
the training dataset. Then, the build_model method generates the
prediction model, as follows: (a) it produces a discretized dataset;
(b) it generates a sequence of training graphs; (c) it obtains the
global graph; and (d) computes the dissimilarities between each
graph of the sequence and the global graph.

Anomaly detection. Initially, the get_dataset method is called to
load the testing dataset. Then, the predict method is called, which
triggers: (a) the computation of the dissimilarities between each
testing graph of the sequence and the global graph; and (b) the

computation of outliers.

3

Simona Bernardi, Raúl Javierre and José Merseguer SoftwareX 22 (2023) 101363

o

r

3

t
m
c
e

t
v
G
(
v
t
t

t
f
T
t
t

Fig. 3. Time series partitioning (n_obs_per_period = 170). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

Table 1
Excerpt from the results file, saved in CVS format.

detector,n_bins,n_obs_per_period,alpha,testing_set,time2build,time2predict,tp,tn,fp,fn
Hamming,30,170,5,testing,0.029548168182373047,0.012964010238647461,0,2,0,1
Cosine,30,170,5,testing,0.03642392158508301,0.01453399658203125,1,2,0,0
...
Clark,30,170,5,testing,0.030735254287719727,0.013725996017456055,1,1,1,0
Additivesymmetric,30,170,5,testing,0.028728961944580078,0.012762784957885742,1,2,0,0

3. Illustrative examples

The following examples demonstrate how to use tegdet to:
build prediction models using training datasets, make predictions
using testing datasets and save results in CSV format. The script in
Listing 1, that uses the methods of the API described in previous
section, clearly identifies each step for using tegdet. The datasets
and scripts used in these examples are available at the tegdet
epository.4

.1. Heartbeat anomaly detection

This example considers the QTDB 0606 ECG dataset [10], in
extual format, which has been downloaded from the Gram-
arViz repository [11]. The time series, shown in Fig. 3 (blue
urve), consists of 2299 observations, and the third heartbeat,
mphasized by a red region, is known to be anomalous.
Concerning the input parameters: the number of observa-

ions per period (n_obs_per_period) has been set to 170, this
alue corresponds to the window size used in the experiment by
rammarViz [11], the number of levels and the significance level
n_bins and alpha) are set to their default values. In Fig. 3, the
ertical dotted lines mark the start/end of each epoch according
o this setting. The green and red regions in the plot, emphasize
he normal and anomalous epochs, respectively, of the testing set.

Table 1 shows an excerpt of the results produced by running
he script in Listing 1, which corresponds to this example. The
irst line contains the headers of the columns for the other lines.
hen, each of the following lines indicate: the name of the metric,
he setting of the parameters, the performance results, i.e., time
o build the model and time to make predictions, and, finally, the

4 https://github.com/DiasporeUnizar/TEG

Table 2
Formulae using the confusion matrix entries.
true positive rate (tpr) tp/(tp + fn)
true negative rate (tnr) tn/(fp + tn)
balanced accuracy (tpr + tnr)/2

entries of the confusion matrix, i.e, true positive, true negative,
false positive and false negative, respectively.

These results have been post-processed to analyze the quality
of the metrics, in terms of performance and detection capability.
Fig. 4 shows the balanced accuracy of each metric, that is a
function of the confusion matrix entries, as indicated by the
formula in Table 2. Observe that most of the metrics make a
correct prediction, i.e., two normal heartbeats and one anomalous
(balanced accuracy of 100%), three metrics correctly identify the
anomalous heartbeat but are not able to recognize the normal
ones (balanced accuracy of 75%), whereas the remaining metrics
have poor quality (balanced accuracy of 50%).

3.2. Energy fraud detection

Although resilient and reliable to supply electricity, smart
grids are vulnerable to attacks and frauds [12]. In [9], tegdet is
used to identify energy frauds caused by swap attacks, i.e., at-
tacks aim at defrauding the energy utility by paying less than
consumed. Moreover, [9] presents a complete assessment of the
quality of the tegdet library. Experiments in [9] assume a time-
of-use contract, and the cost of the energy depends on peak and
off-peak periods [13].

The dataset used comes from the Ireland’s Commission for
Energy Regulation [14], and it collects the energy consumption
(in kWh) of a particular smart meter, every half an hour during
75 weeks. The time series is assumed not to be affected by
attacks and it has been partitioned in training and testing sets,
4

https://github.com/DiasporeUnizar/TEG

Simona Bernardi, Raúl Javierre and José Merseguer SoftwareX 22 (2023) 101363

r
t
i

Fig. 4. Metrics balanced accuracy (n_bins = 30, n_obs_per_period = 170, alpha = 5).

Fig. 5. Time series of the two testing sets, one week observations.

Fig. 6. Results of Clark method: (left) accuracy (right) mean time to build the model (ms.).

espectively of 60 and 15 weeks length. Additionally, a synthetic
ime-series, representing a swap attack, is used as a second train-
ng set: it is generated from the first training set, by swapping the

observations between peak and peak-off periods (from 9:00am to
midnight and from midnight to 9:00am) [15]. Fig. 5 shows the
first week observations from the two testing sets.
5

Simona Bernardi, Raúl Javierre and José Merseguer SoftwareX 22 (2023) 101363

L

i
r
m
p
l
(
p
n
a
t

o

isting 1: Script ecg_tegdet_variants.py
1 import os
2 import pandas as pd
3 import numpy as np
4 from tegdet.teg import TEGDetector
5
6 #Input dataset/output results paths
7 TS_PATH = " /dataset/ecg/ecg0606.csv "
8 RESULTS_PATH = " /script_results/ecg/tegdet_variants_results.csv "
9

10 #List of metrics (detector variants)
11 list_of_metrics = (" Hamming " , " Cosine " , " Jaccard " , " Dice " , " KL " , " Jeffreys " , " JS " ,
12 " Euclidean " , " Cityblock " , " Chebyshev " , " Minkowski " , " Braycurtis " ,
13 " Gower " , " Soergel " , " Kulczynski " , " Canberra " , " Lorentzian " ,
14 " Bhattacharyya " , " Hellinger " , " Matusita " , " Squaredchord " ,
15 " Pearson " , " Neyman " , " Squared " , " Probsymmetric " , " Divergence " ,
16 " Clark " , " Additivesymmetric ")
17
18 def build_and_predict(metric,n_bins,n_obs_per_period ,alpha):
19
20 #Create a new tegdet
21 tegd = TEGDetector(metric,n_bins,n_obs_per_period ,alpha)
22
23 #Load time series
24 cwd = os.getcwd()
25 ts_path = cwd + TS_PATH
26 ts = tegd.get_dataset(ts_path)
27
28 #Partition the time series in training and testing sets
29 test = ts[:600]
30 train = ts[600:]
31
32 #Build model with the training set
33 model, time2build = tegd.build_model(train)
34
35 #Make prediction with the testing set
36 outliers , n_periods , time2predict = tegd.predict(test, model)
37
38 #Set ground true values
39 ground_true = np.zeros(n_periods)
40 ground_true[n_periods -1] = 1
41
42 #Compute confusion matrix
43 cm = tegd.compute_confusion_matrix(ground_true , outliers)
44
45 #Collect detector configuration
46 detector = {’metric’: metric, ’n_bins’: n_bins,
47 ’n_obs_per_period’:n_obs_per_period , ’alpha’: alpha}
48
49 #Collect performance metrics in a dictionary
50 perf = {’tmc’: time2build , ’tmp’: time2predict}
51
52 #Store basic metrics
53 results_path = cwd + RESULTS_PATH
54 tegd.metrics_to_csv(detector , " testing " , perf, cm, results_path)
55
56 if __name__ == ’__main__’:
57
58 for metric in list_of_metrics:
59 build_and_predict(metric ,30,170,5)

The experiments in [9] produced promising results regard-
ng the accuracy of the Clark and Divergence dissimilarity met-
ics.5 For example, Fig. 6(a) shows that the Clark based detection
ethod is slightly sensitive to the significance level (alpha) and it
redicts correctly all the testing epochs, both normal and anoma-
ous ones, when the length of the epochs are set at least half-week
168 observations). Concerning the execution time of the im-
lemented algorithms, it is sensitive to the values set to the
_obs_per_period and n_bins parameters, which define the char-
cteristics of the graph sequence. Fig. 6(b) shows the mean time
o build the model: the lower is the value of n_obs_per_period

5 Accuracy metric was considered in the experiments, since they were based
n balanced normal and anomalous testing sets.

the higher is the execution time, since the longer will be the
sequence of graphs to be generated. Besides, the higher is the
value of n_bins the higher is the execution time, since the size
of the graphs to be generated (number of nodes and edges), as
well as the computation of the graph dissimilarity, are in direct
proportion to the number of levels.

4. Impact

Anomaly detection is a broad field of research that can be ap-
plied in uncountable application domains. The methods support-
ing the anomaly detection span multiples fields, from classical
statistical methods to more actual machine learning techniques.
The work in [3] compared the performance of 20 univariate
anomaly detection methods by using 368 univariate time series
6

Simona Bernardi, Raúl Javierre and José Merseguer SoftwareX 22 (2023) 101363

d
p
e
s
m
f
a
e
a

r/
atasets. The authors concluded that the statistical approaches
erform best on univariate time-series by detecting anomalous
pochs, also detecting point anomalies. The work affirms that
tatistical techniques require less computation time compared to
achine learning and deep learning approaches. Although these

acts highlight the significance of the statistical libraries, such
s tegdet, we consider necessary to have software packages for
ach anomaly detection field. Moreover, endowing these pack-
ges with capabilities for being easily extended, as tegdet does,

the chances for addressing a large number of domains grow,
hence the potential impact of the tegdet library.

In this context, tegdet is the first publicly available library for
anomaly detection in time series, based on time evolving graphs.
These graphs offer a better representation of inter-dependencies,
as well as more robust mathematical machinery, than other for-
malisms [5]. Aside the experiments presented in this paper and
in [9], tegdet was used in a project related to smart grid secu-
rity [16] and it is currently being used in the project here referred
in the Acknowledgments section. Since the release of version
1.0.0 in June 2022 in the PyPI public repository, tegdet has had
around 960 downloads, according to Google BigQuery [17].

5. Conclusions

The tegdet library offers a simple API that intuitively en-
ables the user to load datasets, build a prediction model and
detect outliers. The user can fine-tune the detection process by
customizing a few input parameters. Concretely, the metric or
detection method, the number of observations per period, the
number of levels and the significance level. The work in [9]
explains how to easily improve the anomaly detection process
by setting these parameters. For example, regarding the accuracy,
it was achieved a 100%: first, by analyzing the periodicity of
the time series thus setting the length of the periods, and later
carrying out a sensitivity analysis over the complete set of the
metrics in the library.

The software design of the library decouples, for the sake of
the extensibility, the inherent processes of the anomaly detection.
In fact, the simplicity of the design makes that users with very ba-
sic skills in Python, and completely oblivious to the time evolving
graphs formalism, can introduce new methods of detection.

Another important aspect of the library is the good perfor-
mance results achieved. Indeed, the experiments in [9] show
that when the number of graphs is in the order of hundreds
and their size ranges from 10 to 50 nodes then the time to
build the model is around few hundreds milliseconds. For longer
graph sequences, in the order of thousands, the time to build
the model is few seconds, where the most time consuming step
concerns the computation of graph dissimilarities (i.e., 70% of
the overall time). As future work, we aim to investigate whether
advanced representations for TEGs could improve the time to
build the model. For example, graph implementations based on
sparse matrices could improve the memory and time efficiency
of the graphs comparison.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The data/code is available at: https://github.com/DiasporeUniza
TEG.

Acknowledgments

S. Bernardi and J. Merseguer were supported by the Spanish
Ministry of Science and Innovation [ref. PID2020-113969RB-I00]

Appendix A. Library repositories

The tegdet library is available at the official PyPi repository6
as well as at the GitHub repository.7 In particular, the latter also
includes the following resources:

• API documentation.
• Documentation about the installation and implementation.
• Datasets used in this paper.
• Python scripts. Listing 1 shows the script used in Sec-

tion 3.1.

References

[1] Shumway Robert H, Stoffer David S. Time series analysis and its appli-
cations. Springer texts in statistics, fourth ed.. Springer Science+Business
Media; 2017.

[2] Grubbs Frank E. Procedures for detecting outlying observations in samples.
Technometrics 1969;11(1):1–21.

[3] Braei Mohammad, Wagner Sebastian. Anomaly detection in univariate
time-series: A survey on the state-of-the-art. 2020, CoRR, abs/2004.00433.

[4] Blázquez-García Ane, Conde Angel, Mori Usue, Lozano Jose A. A review
on outlier/anomaly detection in time series data. ACM Comput Surv
2021;54(3).

[5] Akoglu Leman, Tong Hanghang, Koutra Danai. Graph based anomaly detec-
tion and description: A survey. Data Min Knowl Discov 2015;29(3):626–88.

[6] van Rossum Guido. Python programming language. In: Chase Jeff, Se-
shan Srinivasan, editors. Proceedings of the 2007 USENIX annual technical
conference, Santa Clara, CA, USA, June (2007) 17-22. USENIX; 2007.

[7] R Core Team. R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing; 2018.

[8] Cha Sung-Hyuk. Comprehensive survey on distance/similarity measures
between probability density functions. Int J Math Models Methods Appl
Sci 2007;1(4):300–7.

[9] Bernardi Simona, Merseguer José, Javierre Raúl. Tegdet: An extensible
python library for anomaly detection using time-evolving graphs. 2022,
https://arxiv.org/abs/2210.08847, [Accessed: 2022-10-20].

[10] Laguna P, Mark RG, Goldberg A, Moody GB. A database for evaluation of
algorithms for measurement of qt and other waveform intervals in the
ecg. In: Computers in cardiology. 1997, p. 673–6.

[11] Pavel Senin. GrammarViz GitHub repository. 2022, https://github.com/
GrammarViz2/grammarviz2_src, [Accessed: 2022-10-13].

[12] He Haibo, Yan Jun. Cyber-physical attacks and defences in the smart grid:
a survey. IET Cyber-Phys Syst: Theory Appl 2016;1(1):13–27.

[13] Krishna VB, Lee K, Weaver GA, Iyer RK, Sanders WH. F-DETA: A framework
for detecting electricity theft attacks in smart grids. In: 2016 46th Annual
IEEE/IFIP international conference on dependable systems and networks
(DSN), 2016, p. 407–18.

[14] Irish social science data archive, commission for energy regulation.
CER Smart Metering Project; 2012, URL https://www.ucd.ie/issda/data/
commissionforenergyregulationcer/.

[15] Bernardi Simona, Javierre Raúl, Merseguer José, Requeno José Ignacio.
Detectors of smart grid integrity attacks: an experimental assessment.
In: 17th European dependable computing conference, EDCC 2021, Munich
Germany, September (2021) 13-16. IEEE Computer Society; 2021.

[16] Bernardi Simona, Merseguer José. Model & data-driven resilience engi-
neering for complex dynamic systems (medrese). Ministerio de economía,
industria y competitividad; 2019-2021, RTI2018-098543-B-I00.

[17] Naidu Siddartha, Tigani Jordan. Google bigquery analytics. John Wiley &
Sons; 2014.

6 PyPi url: https://pypi.org/project/tegdet/.
7 GitHub url: https://github.com/DiasporeUnizar/TEG.
7

https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
https://github.com/DiasporeUnizar/TEG
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb2
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb2
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb2
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb3
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb3
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb3
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb5
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb5
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb5
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb6
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb6
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb6
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb6
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb6
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb7
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb7
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb7
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb8
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb8
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb8
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb8
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb8
https://arxiv.org/abs/2210.08847
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb10
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb10
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb10
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb10
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb10
https://github.com/GrammarViz2/grammarviz2_src
https://github.com/GrammarViz2/grammarviz2_src
https://github.com/GrammarViz2/grammarviz2_src
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb12
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb12
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb12
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb15
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb16
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb16
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb16
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb16
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb16
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb17
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb17
http://refhub.elsevier.com/S2352-7110(23)00059-6/sb17
https://pypi.org/project/tegdet/
https://github.com/DiasporeUnizar/TEG

	tegdet: An extensible Python library for anomaly detection using time evolving graphs
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Usage of the library

	Illustrative examples
	Heartbeat anomaly detection
	Energy fraud detection

	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Library repositories
	References

