000125917 001__ 125917
000125917 005__ 20241125101136.0
000125917 0247_ $$2doi$$a10.3390/bioengineering10020190
000125917 0248_ $$2sideral$$a133432
000125917 037__ $$aART-2023-133432
000125917 041__ $$aeng
000125917 100__ $$aNaveiro, J. M.$$uUniversidad de Zaragoza
000125917 245__ $$aThree-dimensional computational model simulating the initial callus growth during fracture healing in long bones: application to different fracture types
000125917 260__ $$c2023
000125917 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125917 5203_ $$aBone fractures are among the most common and potentially serious injuries to the skeleton, femoral shaft fractures being especially severe. Thanks to recent advances in the area of in silico analysis, several approximations of the bone healing process have been achieved. In this context, the objective of this work was to simulate the initial phase of callus formation in long bones, without a pre-meshed domain in the 3D space. A finite element approach was computationally implemented to obtain the values of the cell concentrations along the whole domain and evaluate the areas where the biological quantities reached the thresholds necessary to trigger callus growth. A voxel model was used to obtain the 3D domain of the bone fragments and callus. A mesh growth algorithm controlled the addition of new elements to the domain at each step of the iterative procedure until complete callus formation. The implemented approach is able to reproduce the generation of the primary callus, which corresponds to the initial phase of fracture healing, independently of the fracture type and complexity, even in the case of several bone fragments. The proposed approach can be applied to the most complex bone fractures such as oblique, severely comminuted or spiral-type fractures, whose simulation remains hardly possible by means of the different existing approaches available to date.
000125917 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP37-21$$9info:eu-repo/grantAgreement/ES/FPI-MINECO/BES-2017-080433
000125917 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125917 590__ $$a3.8$$b2023
000125917 592__ $$a0.627$$b2023
000125917 591__ $$aENGINEERING, BIOMEDICAL$$b44 / 123 = 0.358$$c2023$$dQ2$$eT2
000125917 593__ $$aBioengineering$$c2023$$dQ3
000125917 594__ $$a4.0$$b2023
000125917 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125917 700__ $$0(orcid)0000-0001-7944-9625$$aGracia, L.
000125917 700__ $$aRoces, J.
000125917 700__ $$0(orcid)0000-0003-4489-3130$$aAlbareda, J.$$uUniversidad de Zaragoza
000125917 700__ $$0(orcid)0000-0002-3613-4209$$aPuértolas, S.$$uUniversidad de Zaragoza
000125917 7102_ $$11013$$2830$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Traumatología y Ortopedia
000125917 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000125917 773__ $$g10, 2 (2023), 190 [15 pp.]$$pBioengineering$$tBioengineering$$x2306-5354
000125917 8564_ $$s4481599$$uhttps://zaguan.unizar.es/record/125917/files/texto_completo.pdf$$yVersión publicada
000125917 8564_ $$s2631926$$uhttps://zaguan.unizar.es/record/125917/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125917 909CO $$ooai:zaguan.unizar.es:125917$$particulos$$pdriver
000125917 951__ $$a2024-11-22-12:01:06
000125917 980__ $$aARTICLE