000125965 001__ 125965
000125965 005__ 20240731103331.0
000125965 0247_ $$2doi$$a10.1007/s00604-023-05698-y
000125965 0248_ $$2sideral$$a133474
000125965 037__ $$aART-2023-133474
000125965 041__ $$aeng
000125965 100__ $$0(orcid)0000-0003-1654-3803$$aCamacho-Aguayo, J.$$uUniversidad de Zaragoza
000125965 245__ $$aIn situ enzymatic generation of Au/Pt nanoparticles as an analytical photometric system: proof of concept determination of tyramine
000125965 260__ $$c2023
000125965 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125965 5203_ $$aIn situ enzymatic generation of bimetallic nanoparticles, mainly Au/Pt, overcomes the drawbacks (continuous absorbance drift, modest LOQ, and long-time reaction) observed when AuNP alone are produced. In this study, Au/Pt nanoparticles have been characterized by EDS, XPS, and HRTEM images using the enzymatic determination of tyramine with tyramine oxidase (TAO) as a model. Under experimental conditions, the Au/Pt NPs show an absorption maximum at 580 nm which can be related to the concentration of tyramine in the range 1.0 × 10-6M to 2.5 × 10-4M with a RSD of 3.4% (n = 5, using 5 × 10-6M tyramine). The Au/Pt system enables low LOQ (1.0 × 10−6 M), high reduction of the absorbance drift, and a significant shortening of the reaction time (i.e., from 30 to 2 min for a [tyramine] = 1 × 10−4M); additionally, a better selectivity is also obtained. The method has been applied to tyramine determination in cured cheese and no significant differences were obtained compared to a reference method (HRP:TMB). The effect of Pt(II) seems to involve the previous reduction of Au(III) to Au(I) and NP generation from this oxidation state. Finally, a three-step (nucleation-growth-aggregation) kinetic model for the generation of NPs is proposed; this has enabled us to obtain a mathematical equation which explains the experimentally observed variation of the absorbance with time.
000125965 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E25-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105408GB-I00
000125965 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125965 590__ $$a5.3$$b2023
000125965 592__ $$a0.848$$b2023
000125965 591__ $$aCHEMISTRY, ANALYTICAL$$b16 / 106 = 0.151$$c2023$$dQ1$$eT1
000125965 593__ $$aAnalytical Chemistry$$c2023$$dQ1
000125965 594__ $$a9.8$$b2023
000125965 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125965 700__ $$0(orcid)0000-0002-7902-6005$$aMarcos, S. de$$uUniversidad de Zaragoza
000125965 700__ $$aFelices, C.
000125965 700__ $$0(orcid)0000-0002-8973-5104$$aGalbán, J.$$uUniversidad de Zaragoza
000125965 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000125965 773__ $$g190, 4 (2023), 114 [9 pp.]$$pMikrochim. acta$$tMicrochimica Acta$$x0026-3672
000125965 8564_ $$s807468$$uhttps://zaguan.unizar.es/record/125965/files/texto_completo.pdf$$yVersión publicada
000125965 8564_ $$s2439603$$uhttps://zaguan.unizar.es/record/125965/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125965 909CO $$ooai:zaguan.unizar.es:125965$$particulos$$pdriver
000125965 951__ $$a2024-07-31-09:46:40
000125965 980__ $$aARTICLE