000125978 001__ 125978
000125978 005__ 20241125101137.0
000125978 0247_ $$2doi$$a10.3390/nano13101582
000125978 0248_ $$2sideral$$a133536
000125978 037__ $$aART-2023-133536
000125978 041__ $$aeng
000125978 100__ $$0(orcid)0000-0002-0341-9662$$aTrujillo, Celia
000125978 245__ $$aImproving the detectability of microplastics in river waters by single particle inductively coupled plasma mass spectrometry
000125978 260__ $$c2023
000125978 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125978 5203_ $$aDetection of microplastics in environmental samples requires fast, sensitive and selective analytical techniques, both in terms of the size of the microparticles and their concentration. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows the detection of plastic particles down to ca. 1 µm and down to concentrations of 100 particles per mL. In SP-ICP-MS, detection of carbon-containing particles is hampered by the presence of other forms of carbon (carbonates, organic matter, microorganisms…). An acidic pre-treatment of river water samples with 10% (v/v) nitric acid for 24 h allowed the reduction of the presence of dissolved carbon to ultrapure water levels and the digestion of potential microorganisms in the samples, recovering polystyrene microparticles up to 80%. Carbon-containing particles were detected in most of the samples analysed from Spanish and French Pyrenean rivers. The presence of microplastics in these samples was confirmed by Raman microscopy and their morphology was defined by electron microscopy combined with energy-dispersive X-ray spectroscopy. The developed SP-ICP-MS method is suitable for the rapid screening of river waters for the presence of microplastics, which can then be analysed by inherently slower but more selective techniques (e.g., Raman microscopy).
000125978 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E29-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-123203OB-I00
000125978 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125978 590__ $$a4.4$$b2023
000125978 592__ $$a0.798$$b2023
000125978 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b146 / 439 = 0.333$$c2023$$dQ2$$eT2
000125978 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000125978 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b62 / 141 = 0.44$$c2023$$dQ2$$eT2
000125978 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2
000125978 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b70 / 231 = 0.303$$c2023$$dQ2$$eT1
000125978 591__ $$aPHYSICS, APPLIED$$b47 / 179 = 0.263$$c2023$$dQ2$$eT1
000125978 594__ $$a8.5$$b2023
000125978 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125978 700__ $$0(orcid)0000-0002-4681-3934$$aPérez-Arantegui, Josefina$$uUniversidad de Zaragoza
000125978 700__ $$aLobinski, Ryszard
000125978 700__ $$0(orcid)0000-0002-4169-0357$$aLaborda, Francisco$$uUniversidad de Zaragoza
000125978 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000125978 773__ $$g13, 10 (2023), 1582 [16 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000125978 8564_ $$s2931706$$uhttps://zaguan.unizar.es/record/125978/files/texto_completo.pdf$$yVersión publicada
000125978 8564_ $$s2795364$$uhttps://zaguan.unizar.es/record/125978/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125978 909CO $$ooai:zaguan.unizar.es:125978$$particulos$$pdriver
000125978 951__ $$a2024-11-22-12:01:21
000125978 980__ $$aARTICLE